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DelayedH∞ control of 2Ddiffusion systems

under delayedpointlikemeasurements

Anton Selivanov a, Emilia Fridman b
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bSchool of Electrical Engineering, Tel Aviv University, Israel

Abstract

Up to now, robust control of multi-dimensional diffusion systems was confined to averaged measurements. In this paper, we consider
2D diffusion systems with delayed pointlike measurements. A pointlike measurement is the state value averaged over a small
subdomain that approximates its point value. The main novelty enabling the study of such measurements is a new inequality, which
we call the reciprocally convex variation of Friedrich’s inequality. It bounds the difference between a function and its point values
in the L

2-norm using the function’s derivatives. Combining this result with a new Lyapunov–Krasovskii functional, which has a
spatially-varying kernel, we solve the H∞ control and filtering problems in the presence of time-varying input and output delays.
We show that any 2D semilinear diffusion system with pointlike measurements can be stabilized by static output feedback applied
through characteristic functions if the controller gain and number of sensors/actuators are large enough while the input and output
delays are sufficiently small. The results are demonstrated on a 2D catalytic slab model.

Key words: Distributed parameter systems, time-delays, Lyapunov–Krasovskii functionals, LMIs

1 Introduction

Partial differential equations model tremendous amount of
processes: heat transfer, fluid dynamics, fusion reactions,
wave propagation, etc. Many of these processes require
feedback control to remain stable, e.g., chemical reactors
[1], oil drill strings [2], tokamaks [3], and axial compres-
sors [4]. In this paper, we study robust stabilization of 2D
semilinear diffusion systems (i.e., those composed of a lin-
ear diffusion and a nonlinearity) under delayed pointlike
measurements.

A pointlike measurement is the state value average over
a small subdomain, which approximates its point value
[5]. Point measurements are usually modeled by the Dirac
delta function. Such an approach is quite theoretical since
a physical device occupies a certain region and cannot op-
erate in one point. Moreover, it leads to considerable diffi-
culties in the stability and performance analysis, especially
in the presence of time-delays.

For 1D heat equations, point observers/controllers have
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been constructed and analyzed under continuous [6–11]
and sampled in time [8,12,13] measurements. N -D diffu-
sion equations with averaged measurements (i.e., the state
values are averaged over subdomains covering the entire
space domain) were studied in [14–16]. Robust stabilization
of N -D diffusion systems under pointlike measurements is
an open challenging problem. In this paper, we resolve this
problem for 2D domains and provide robust stability con-
ditions in terms of linear matrix inequalities (LMIs). The
key steps that allowed us to do so are the following:

(1) We derive a new inequality, which is a reciprocally
convex variation of Friedrich’s inequality. It bounds
the difference between a function and its point value
in the L2-norm using the reciprocally convex combi-
nation of its derivatives (Section 2). This inequality
refines and generalizes Lemma 4.1 of [17].

(2) We reduce the pointlike measurements to the point
values of the state using the mean value theorem (Sec-
tion 3). This idea comes from [18], where 1D domains
were considered.

(3) In the presence of time-delays, we first isolate the
delay-induced error (similarly to [14,15]) and only
then apply the mean value theorem to the non-delayed
measurements. Then, the delay-induced error enters
the systems through a bounded operator. This en-
ables the introduction of a new Lyapunov–Krasovskii
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term with a spatially-varying kernel that compen-
sates the delay-induced error. Subsequently, this aids
in solving the H∞ control problem (Section 4).

We show that any 2D semilinear diffusion system with
pointlike measurements can be stabilized by static output
feedback applied through characteristic functions (or shape
functions close to them) if the controller gain and number of
sensors/actuators are large enough while the input/output
delays are sufficiently small. The results are demonstrated
on a model of a 2D catalytic slab (Section 6). Preliminary
results on H∞ filtering under pointlike measurements are
presented in [19].

Notations: For Ω ⊂ R
n, Ω denotes its closure, ∂Ω is its

boundary, |Ω| is its volume, and Conv(Ω) is its convex hull.
If z : Ω× [0,∞) → R, then zxi

and zt are the partial deriva-
tives and ∇z = (zx1

, zx2
)T is the spatial gradient. The di-

vergence of a vector field f is denoted by div(f). For a ma-
trix P , the notation P > 0 implies that P is square, sym-
metric, and positive definite with the symmetric elements
sometimes marked as ∗. We denote 1n = (1, . . . , 1)T ∈ R

n,
N0 = N ∪ {0}, R>0 = {x ∈ R | x > 0}. The symbols Hp

and H1
0 correspond to the Sobolev spaces, while ‖ · ‖ al-

ways stands for the L2-norm. The support of a function f
is denoted by supp f .

2 Reciprocally convex variation of Friedrich’s in-
equality

In this section, we present a new inequality (Theorem 1),
which enables studying pointlike measurements on 2D
domains (see (23)). This inequality bounds the L2-norm
of the difference between a function and its point value
by the reciprocally convex combination of the L2-norms
of its derivatives. Theorem 1 refines and generalizes [17,
Lemma 4.1].

For any n-dimensional multi-index α = (α1, . . . , αn) ∈ N
n
0

and sufficiently differentiable function f : Rn → R, we de-
note

∂αf =
∂α1+···+αnf

∂xα1

1 · · · ∂xαn

n
.

For example, ∂(3,0,2)f = ∂5f
∂x3

1
∂x2

3

.

Theorem 1 Let f ∈ Hn((0, l1)× · · · × (0, ln)). Then

‖f(·)− f(0)‖2 ≤
∑

α∈In

cα
λα

‖∂αf‖2 (1)

for any λα ∈ R>0 such that
∑

α λα = 1, where

In = {(α1, . . . , αn) | αi ∈ {0, 1}, 1 ≤ i ≤ n,
∑

i αi > 0}
are the binary multi-indices with nonzero lengths and

cα =

(
2l1
π

)2α1

· · ·
(
2ln
π

)2αn

, α = (α1, . . . , αn) ∈ In.

PROOF. See Appendix A.

For n = 1, Theorem 1 coincides withWirtinger’s inequality
(Lemma 4). For f ∈ H2((0, l1)×(0, l2)), Theorem 1 implies

‖f(·)− f(0)‖2 ≤ 1

λ(1,0)

(
2l1
π

)2

‖fx1
‖2

+
1

λ(0,1)

(
2l2
π

)2

‖fx2
‖2+ 1

λ(1,1)

(
2l1
π

)2(
2l2
π

)2

‖fx1x2
‖2

(2)

with any λ(1,0), λ(0,1), λ(1,1) ∈ R>0 such that λ(1,0) +
λ(0,1) + λ(1,1) = 1.

Remark 1 If l1 = · · · = ln = π/2, then cα = 1 for all
α ∈ In and the right-hand side of (1) is a reciprocally
convex combination of ‖∂αf‖2.

Remark 2 Theorem 1 remains valid for f ∈ Hn(Ω) with
a non-rectangular Ω ⊂ R

n such that, for all (x1, . . . , xn) ∈
Ω and k ∈ {1, . . . , n}, the vector (x1, . . . , xk−1, 0, . . . , 0)
belongs to Ω.

The following lemma allows the conditions on λα fromThe-
orem 1 to be reformulated as an LMI.

Lemma 1 The conditions

µi > 0 ∀i ∈ {1, . . . , n},
n∑

i=1

µ−1
i ≤ 1 (3)

are equivalent to

diag{µ1, . . . , µn} ≥ 1n1
T
n . (4)

PROOF. By Schur’s complement lemma, (4) is equiva-
lent to[
diag{µ1, . . . , µn} 1n

1T
n 1

]
≥ 0,

which is equivalent to

0 < diag{µ1, . . . , µn},

0 ≤ 1− 1T
n diag{µ−1

1 , . . . , µ−1
n }1n = 1−

n∑

i=1

µ−1
i .

The latter coincides with (3).

Corollary 1 For f ∈ H2((0, l1)× (0, l2)),

µ0‖f(·)− f(0)‖2 ≤ µ1

(
2l

π

)2

‖fx1
‖2 + µ2

(
2l

π

)2

‖fx2
‖2

+ µ3

(
2l

π

)4

‖fx1x2
‖2 (5)

with l = max{l1, l2} and any µ0, µ1, µ2, µ3 ∈ R>0 such that

diag{µ1, µ2, µ3} ≥ µ0131
T
3 . (6)

2



Fig. 1. Subdomains Ωi and the subset supp ci ⊂ Ωi

PROOF. Let λ(1,0) = µ0/µ1, λ(0,1) = µ0/µ2, and λ(1,1) =
µ0/µ3. By Lemma 1, the condition (6) guarantees that∑

α λα = µ0

∑3
i=1 µ

−1
i ≤ 1. Clearly, Theorem 1 remains

valid if
∑

α λα ≤ 1. Thus, (2) implies (5).

3 Stabilization under pointlike measurements

Consider the semilinear diffusion system

zt(x, t) = ∆Dz(x, t) + f(x, t, z(·, t)) +
N∑

i=1

bi(x)ui(t),

z|∂Ω = 0, z|t=0 = z0 ∈ H1
0 (Ω)

(7)

with the domain Ω = (0, 1) × (0, 1) ⊂ R
2, state z : Ω ×

[0,∞) → R, diffusion operator

∆Dz(x, t) = div(D∇z(x, t)), D =
[
d1 d2

d2 d3

]
> 0, (8)

and nonlinearity f : Ω × (0,∞) × H1
0 (Ω) → R such that

f(·, t, z) ∈ L2(Ω) and

‖f(·, t, z)‖2 ≤ cf‖z‖2 +
∫

Ω

(∇z)TF (∇z) (9)

for all t > 0 and z ∈ H1
0 (Ω), where cf > 0 and 0 < F ∈

R
2×2. This system models numerous physical phenomena,

such as air pollution [20], rotating stalls in axial compres-
sors [4], and heat transfer in catalytic slabs (see Section 6).

Remark 3 (Nonsquare domains) We consider Ω =
(0, 1) × (0, 1) for simplicity. The results are applicable to

any open parallelogram Ω̃ ⊂ R
2, which can be transformed

to Ω using a nonsingular change of variables x = Ax̃ + b.

In this case, D = AD̃AT and F = AF̃AT , where D̃ and F̃

are the matrices from (8) and (9) for the domain Ω̃.

We assume that Ω is divided into N rectangular subdo-
mains Ωi (Fig. 1) with an actuator and a sensor placed in
each Ωi. The actuators are modeled by

bi ∈ L2(Ω): supp bi ⊂ Ωi, i ∈ {1, . . . , N}. (10)

We assume that bi approximate the characteristic functions

χi(x) =

{
1, x ∈ Ωi,

0, x 6∈ Ωi,
i ∈ {1, . . . , N}, (11)

so that the quantity

cb = max
1≤i≤N

‖bi − χi‖2
|Ωi|

(12)

is small enough. Examples of such actuators are air injec-
tors in axial compressors or cooling medium in catalytic
slabs. The sensors provide the measurements

yi(t) =

∫

Ωi

ci(ξ)z(ξ, t) dξ,

0 ≤ ci ∈ L2(Ωi),

∫

Ωi

ci = 1, i ∈ {1, . . . , N}.
(13)

The averaged measurements correspond to ci = χi/|Ωi|,
which were considered in [15]. Here, we do not demand
supp ci to cover Ωi. This allows the consideration of

ci(ξ) =





1

ε2
, |ξ − xi

c|∞ <
ε

2
,

0, |ξ − xi
c|∞ ≥ ε

2

(14)

with xi
c ∈ Ωi and small ε > 0 (such that supp ci ⊂ Ωi).

Such ci approximate the Dirac delta functions δ(ξ − xi
c)

corresponding to the point measurements at xi
c. Thus, we

call (13), (14) pointlike measurements. An example of such
measurements is the average temperature in the vicinity of
a given point.

We study (7) under the static output feedback

ui(t) = −Kyi(t), i ∈ {1, . . . , N}, (15)

which leads to the closed-loop system

zt = ∆Dz + f −K

N∑

i=1

bi(x)yi(t),

z|∂Ω = 0, z|t=0 = z0 ∈ H1
0 (Ω).

(16)

A classical solution of (13), (16) is a function

z ∈ C1((0,∞), L2) ∩ C([0,∞), L2),

z(t) ∈ H1
0 (Ω) ∩H2(Ω) ∀t > 0

(17)

that satisfies (13), (16). The existence of a unique classical
solution to (13), (16) follows from [21, Theorem 6.3.3].

The last term of (16) approximates the stabilizing feedback
−Kz:

−K

N∑

i=1

biyi = −K

N∑

i=1

(bi − χi)yi −K

N∑

i=1

χiyi

=

[
−K

N∑

i=1

(bi − χi)yi

]
+

[
Kz −K

N∑

i=1

χiyi

]
−Kz

= ǫ + σ −Kz, (18)

where

ǫ(x, t) = −K

N∑

i=1

(bi(x)− χi(x))yi(t),

σ(x, t) = Kz(x, t)−K

N∑

i=1

χi(x)yi(t).

(19)

3



Since supp bi ⊂ Ωi, suppχi = Ωi, and Ωi are disjoint, the
error ǫ can be bounded as

‖ǫ(·, t)‖2 =

∫

Ω

[
−K

N∑

i=1

(bi(x)− χi(x))yi(t)

]2

dx

=

∫

Ω

[
N∑

i=1

(bi(x)− χi(x))
2(Kyi(t))

2

]
dx

=
N∑

i=1

‖bi − χi‖2(Kyi(t))
2

=
N∑

i=1

‖bi − χi‖2
|Ωi|

∫

Ω

(χi(x)Kyi(t))
2
dx

(12)

≤ cb

N∑

i=1

‖χiKyi‖2 = cb

∥∥∥∥∥

N∑

i=1

χiKyi

∥∥∥∥∥

2

(19)
= cb‖Kz − σ‖2.

(20)

Thus, for any µ4 > 0,

0 ≤ −µ4‖ǫ(·, t)‖2 +µ4cb‖Kz(·, t)− σ(·, t)‖2 ∀t ≥ 0. (21)

The error σ appears because the state z is approximated
using the measurements yi. Below, we explain the main
idea that allows us to bound σ. By the mean value theo-
rem 1 , for every t ≥ 0 and i ∈ {1, . . . , N},

∃xi(t) ∈ Conv(supp ci) :

∫

Ωi

ci(ξ)z(ξ, t) dξ = z(xi(t), t).

(The convex hull appears because we do not require supp ci
to be path-connected.) Thus, σ(xi(t), t) = 0. Each rectan-
gle cornered at xi and lying in Ωi (see Fig. 2) has sides
smaller than

l = max
1≤i≤N

max
ω∈∂Ωi

d∈supp ci

|ω − d|∞. (22)

Applying Corollary 1 on each of such rectangles and sum-
ming over them, we obtain

0 ≤ −µ0
‖σ‖2
K2

+ µ1

(
2l

π

)2

‖zx1
‖2 + µ2

(
2l

π

)2

‖zx2
‖2

+ µ3

(
2l

π

)4

‖zx1x2
‖2 (23)

for any µ0, µ1, µ2, µ3 ∈ R>0 satisfying (6). The positive
terms in (23) can be made arbitrarily small by reducing l,
which always can be achieved by increasing the number of
sensors N . This corresponds to the general intuition that
a larger amount of sensors allows for better estimation of
the state.

Using (18), we present the closed-loop system (16) as

zt = ∆Dz + f −Kz + ǫ+ σ,

z|∂Ω = 0, z|t=0 = z0 ∈ H1
0 (Ω).

(24)

1 The idea to use the mean value theorem comes from [18],
where a scalar domain Ω ⊂ R was considered

Fig. 2. Four rectangles cornered at xi ∈ Conv(supp ci)

To study its stability, consider V0 = ‖z‖2. We have

V̇0 = 2

∫

Ω

zzt
(24)
= 2

∫

Ω

z [∆Dz + f −Kz + ǫ+ σ] .

Since z|∂Ω = 0, by the divergence theorem,

2

∫

Ω

z∆Dz = 2

∫

Ω

z div(D∇z) = −2

∫

Ω

(∇z)TD∇z.

Therefore,

V̇0 = −2

∫

Ω

(∇z)TD∇z− 2K

∫

Ω

z2 +2

∫

Ω

z (f + ǫ+ σ) .

(25)

Clearly, ∆Dz and −Kz from (24) give “stabilizing” nega-
tive summands in (25). To compensate the cross term with

f , we add to V̇0 the right-hand side of

0 ≤ −µ5‖f(·, t, z)‖2+µ5cf‖z‖2+µ5

∫
Ω
(∇z)TF (∇z), (26)

which follows from (9) for any µ5 ≥ 0. To compensate the
errors ǫ and σ, we will add the right-hand sides of (21)
and (23), respectively. The first order derivatives from (23)
are balanced by the first term of (25). To compensate the
second order derivative from (23), we introduce

V1 =

∫

Ω

(∇z(x, t))TP∇z(x, t) dx, P = [ p1 p2

p2 p3
] > 0. (27)

Since z|∂Ω = 0 and zt|∂Ω = 0, applying the divergence
theorem twice, we obtain

V̇1 = 2
∫
Ω
(∇z)TP∇zt = −2

∫
Ω
div (P∇z) zt

(16)
= −2

∫
Ω
div (P∇z) [∆Dz + f −Kz + ǫ+ σ]

= −2
∫
Ω
div (P∇z)∆Dz − 2K

∫
Ω
(∇z)TP∇z

− 2
∫
Ω
div (P∇z) [f + ǫ+ σ] .

(28)

IfP = p0D, then the first term is−2p0‖∆Dz‖2, which com-
pensates ‖zx1x2

‖2 from (23). Such P can be used to study
a spatially varying diffusion matrix D(x) in (8) (as consid-
ered in [15] for the case of averaged measurements). Here,
we consider P of a more general form but for a constantD.
This leads to less restrictive convergence conditions.

Theorem 2 Consider the system (7) subject to (9) and
(10) with the measurements (13). For given controller gain
K and decay rate α > 0, let there exist

P = [ p1 p2

p2 p3
] > 0, µi > 0 ∀i ∈ {0, . . . , 8}

4



such that 2 (6) is true, Φ ≤ 0, and Φ∇ ≤ 0, where

Φ =




Φ11 0 1 1− µ4cbK 1

∗ Φ22 −p̄ −p̄ −p̄

∗ ∗ −µ5 0 0

∗ ∗ ∗ −µ0/K
2 + µ4cb 0

∗ ∗ ∗ ∗ −µ4




,

Φ11 = −2(K − α)− (µ7 + µ8)π
2 + µ5cf + µ4cbK

2,

Φ22 = −p̄d̄T − d̄p̄T +

[
0 0 µ6

0 µ3(2l/π)
4−2µ6 0

µ6 0 0

]
,

Φ∇ = −2D − 2(K−α)P + µ5F+

(
2l

π

)2[ µ1 0
0 µ2

]
+
[ µ7 0

0 µ8

]
,

cb is given in (12), l is defined in (22), p̄ = (p1, 2p2, p3)
T ,

and d̄ = (d1, 2d2, d3)
T . Then the static output feedback (15)

exponentially stabilizes the system (7) in theH1
0 -norm with

the decay rate α, i.e.,

∃C : ‖z(·, t)‖H1

0

≤ Ce−αt‖z0‖H1

0

∀t ≥ 0.

PROOF. See Appendix B.

Remark 4 (Feasibility of LMIs) The LMIs of Theo-
rem 2 are always feasible for a large enough controller gain
K, small enough cb given in (12), and small enough l de-
fined in (22). Indeed, D > 0 implies d1d3 − d22/q > 0 for a
large enough q < 1. By Young’s inequality,

2
[

0 −d1d2

−d1d2 0

]
≤ 2 diag{qd21, d22/q},

2
[

0 −d2d3

−d2d3 0

]
≤ 2 diag{d22/q, qd23}.

Then, for l = 0, p̄ = (d3, 0, d1)
T , and µ6 = d21 + d23, we

obtain

Φ22 ≤




−2(d1d3 − d2

2

q ) 0 0

0 −2(1− q)µ6 0

0 0 −2(d1d3 − d2

2

q )


 < 0.

Therefore, Φ < 0 for cb = 0 and large enough µ4, µ5, K,
and µ0. Clearly, Φ∇ < 0 for a large enough K and (6)
holds for large enough µ1, µ2, and µ3. Thus, the LMIs of
Theorem 2 are feasible for cb = 0 and l = 0. By continuity,
they remain feasible for small enough cb and l.

Corollary 2 The semilinear diffusion system (7) with the
measurements (13) is exponentially stable under the static
output feedback (15) with a large enough controller gain K
if cb given in (12) and l defined in (22) are small enough
(i.e., the shape functions bi are close to χi and the number
of sensors N is large enough).

2 MATLAB code for solving the LMIs is available at
https://github.com/AntonSelivanov/Aut19

Remark 5 (Different boundary conditions) The re-
sults can be extended to (7) with the boundary conditions

z|ΓD
= 0,

∂z

∂n
|ΓN

= 0, (29)

where ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, and n is the normal
to ΓN . All calculations in the proof of Theorem 2 remain
valid except for (B.2), which, according to Lemma 4, should
be replaced by

0 ≤ −µ7q1π
2

∫

Ω

z2 + µ7

∫

Ω

z2x1
,

0 ≤ −µ8q2π
2

∫

Ω

z2 + µ8

∫

Ω

z2x2
,

where

q1 =





1 if z|x1=0 = z|x1=1 = 0,

1

4
if z|x1=0 or z|x1=1 = 0,

0 otherwise,

q2 =





1 if z|x2=0 = z|x2=1 = 0,

1

4
if z|x2=0 = 0 or z|x2=1 = 0,

0 otherwise.

Remark 6 (Point measurements) Theorem 2 re-
mains valid if ci(x) = δ(x − xi

c), which correspond to
the point measurements yi(t) = z(xi

c, t). In this case,
l = max1≤i≤N maxω∈∂Ωi

‖ω − xi
c‖∞.

Remark 7 (3D domains) If Ω = (0, 1)3 ⊂ R
3, then one

can use Theorem 1 to bound the approximation error σ in a
manner similar to (23). This bound involves the 3rd order
space derivative, which we do not know how to compensate.
Thus, it is not clear how to extend the proposed method to
3D domains.

4 Delayed H∞ control under delayed pointlike
measurements

Consider the perturbed semilinear diffusion system

zt(x, t) = ∆Dz(x, t) + f(x, t, z(·, t))

+

N∑

i=1

bi(x)ui(t− τui (t)) + w(x, t),

z|∂Ω = 0, z|t=0 = z0 ∈ H1
0 (Ω),

(30)

where w : Ω × (0,∞) → R is a disturbance and τui (t) are
unknown time-varying input delays satisfying

0 ≤ τui (t) ≤ τuM ∀t ≥ 0 (31)

with a known bound τuM . The other terms are as in (7). We
assume that Ω is divided into N rectangular subdomains
Ωi (Fig. 1) with an actuator and a sensor placed in each
Ωi. The actuators are modeled by bi subject to (10). The
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sensors provide the time-delayed noisy measurements

ỹi(t) =





∫

Ωi

ci(ξ)z(ξ, t− τyi (t)) dξ + vi(t), t ≥ τyi (t),

0, t < τyi (t),

0 ≤ ci ∈ L∞(Ωi),

∫

Ωi

ci = 1, i ∈ {1, . . . , N},

(32)

with the measurement noise vi : [0,∞) → R and unknown
time-varying output delays τyi (t) satisfying

0 < τym ≤ τyi (t) ≤ τyM ∀t ≥ 0. (33)

We study (30) under the static output feedback

ui(t) = −Kỹi(t), i ∈ {1, . . . , N}, (34)

which leads to the closed-loop system

zt = ∆Dz + f −K

N∑

i=1

bi(x)ỹi(t− τui (t)) + w,

z|∂Ω = 0, z|t=0 = z0 ∈ H1
0 (Ω).

(35)

The disturbance w(x, t) and measurement noise vi(t) are
called admissible if there exists a unique classical (in the
sense of (17)) solution to (32), (35). This can be established
for w(·, t) and vi(t) that are Hölder continuous in t: one
needs to apply [21, Theorem 6.3.3] consecutively on each
interval [0, τym], [τym, 2τym], . . . treating the delayed terms as
inhomogeneities. Less restrictive conditions on w and vi
can be imposed by considering strong solutions.

Clearly,

ỹi(t− τui (t)) = yi(t− τi(t)) + vi(t− τui (t)), (36)

where yi are from (13) and

τi = τui (t) + τyi (t− τui (t)).

In view of (31) and (33),

0 ≤ τym ≤ τi(t) ≤ τM = τuM + τyM . (37)

We denote

κ(x, t) = K
N∑

i=1

χi(x)[yi(t)− yi(t− τi(t))],

v(x, t) =
N∑

i=1

bi(x)vi(t− τui (t)).

The function κ represents the delay-induced error, while v
is the distributed effect of the measurement noise. Similarly
to (18), we have

−K

N∑

i=1

bi(x)ỹi(t− τui (t))

(36)
= −K

N∑

i=1

bi(x)yi(t− τi(t))−K
N∑

i=1

bi(x)vi(t− τui (t))

(19)
= ǫ(x, t−τi(t)) + σ(x, t) + κ(x, t)−Kz(x, t)−Kv(x, t).

(38)

Thus, the closed-loop system (32), (35) takes the form

zt = ∆Dz + f −Kz + ǫ(x, t− τi(t)) + σ + κ−Kv + w

z|∂Ω = 0, z|t=0 = z0 ∈ H1
0 (Ω).

(39)

Similarly to (20),

‖ǫ(·, t− τi(t))‖2 ≤ cb

∥∥∥∥∥

N∑

i=1

χi(·)Kyi(t− τi(t))

∥∥∥∥∥

2

= cb‖Kz − σ − κ‖2,
which implies

0 ≤ −µ4‖ǫ(·, t−τi(t))‖2+µ4cb‖Kz−σ−κ‖2 ∀t ≥ 0 (40)

for any µ4 > 0. The approximation error σ and nonlinearity
f will be compensated using (23) and (26). To compensate
the delay-induced error κ, we introduce the Lyapunov–
Krasovskii term

Vr = crr

∫ 0

−τM

∫ t

t+θ

N∑

i=1

∫

Ωi

e−2α(t−s)ci(ξ)z
2
s(ξ, s) dξ ds dθ

(41)

with the constant cr > 0 to be defined hereafter.

Remark 8 (New Lyapunov–Krasovskii term) The
term (41) originates from [22,23], where a double integral
term was used to study fast-varying delays in finite dimen-
sional systems. The operator form of the double integral
term was considered in [24] for infinite dimensional time-
delay systems. In [8], it was transformed to a triple integral
term to study parabolic PDEs with time-delays. Here, we
make one further step by introducing the spatially-varying
kernel ci(ξ), which compensates for the output delays in
(32). More sophisticated functionals used to study finite
dimensional systems (see, e.g., [25]) might be generalized
in a similar way. This should lead to less conservative but
more complicated convergence conditions.

Making the change of variable ς = t+ θ, we get

V̇r + 2αVr = crr

∫ 0

−τM

N∑

i=1

∫

Ωi

ci(ξ)z
2
t (ξ, t) dξ dθ

− crr

∫ t

t−τM

N∑

i=1

∫

Ωi

e−2α(t−ς)ci(ξ)z
2
ς (ξ, ς) dξ dς.

Now we show that the negative term is upper bounded by
−r‖κ(·, t)‖2 for the appropriate cr. To do so, we use the
following version of Jensen’s inequality.

Lemma 2 (Jensen’s inequality [26]) For Lebesgue-
integrable f : [a, b] → R and ρ : [a, b] → [0,∞),
[∫ b

a

ρ(s)f(s) ds

]2

≤
∫ b

a

ρ(s) ds

∫ b

a

ρ(s)f2(s) ds.
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Using this lemma with ρ = ci (recall that
∫
Ωi

ci = 1) and
ρ ≡ 1, we obtain

− crr

∫ t

t−τM

N∑

i=1

∫

Ωi

e−2α(t−ς)ci(ξ)z
2
ς (ξ, ς) dξ dς

≤ −crre
−2ατM

N∑

i=1

∫ t

t−τi

∫

Ωi

ci(ξ)z
2
ς (ξ, ς) dξ dς

Lem.2
≤ −crre

−2ατM

N∑

i=1

∫ t

t−τi

[y′i(ς)]
2
dς

Lem.2
≤ −crre

−2ατM

N∑

i=1

1

τi

[∫ t

t−τi

y′i(ς) dς

]2

= −crre
−2ατM

N∑

i=1

1

τi|Ωi|

∫

Ω

χi(x)

[∫ t

t−τi

y′i(ς) dς

]2
dx

(11)

≤ − crre
−2ατM

τM maxi |Ωi|

∫

Ω

[
N∑

i=1

χi(x)

∫ t

t−τi

y′i(ς) dς

]2

dx

= − crre
−2ατM

τM maxi |Ωi|K2

∫

Ω

κ2(x, t)dx = −r‖κ(·, t)‖2

if

cr = e2ατM τM max
1≤i≤N

|Ωi|K2. (42)

That is,

V̇r+2αVr ≤ crrτM max
1≤i≤N

‖ci‖∞
∫

Ω

z2t (x, t) dx−r‖κ(·, t)‖2.

(43)

The negative term −r‖κ(·, t)‖2 will compensate the cross
terms with κ(x, t) in the derivative of the Lyapunov–
Krasovskii functional.

The system (32), (35) is internally exponentially stable if
it is exponentially stable for w = v ≡ 0. For given du > 0
and γ > 0, consider the cost functional

J(u) =

∫ ∞

0

∫

Ω

[z2(x, t) + d2uu
2(x, t)

− γ2w2(x, t)− γ2v2(x, t)] dx dt, (44)

where u(x, t) =
∑N

i=1 bi(x)ui(t − τui (t)). We say that the
output feedback (34) solves theH∞ control problem for the
system (30), (32) if it leads to an internally exponentially
stable system (32), (35) and guarantees that J(u) ≤ 0 for
any solution of (30) with z|t=0 = 0 and admissible w, v ∈
L2((0,∞), L2(Ω)). We solve theH∞ control problem using
the method described in [25, Section 4.3].

Theorem 3 Consider the system (30) subject to (9), (10),
and (31) with the measurements (32) subject to (33). For
given controller gainK and decay rate α > 0, let there exist

P = [ p1 p2

p2 p3
] > 0, µi > 0 ∀i ∈ {0, . . . , 8},

r > 0, γ1 > 0, γ2 > 0, γ3 > 0

such that 3 (6) is true, Φ̃ ≤ 0, and Φ∇ ≤ 0, where

Φ̃ =




Φ̃16 1− γ3K 1 −τMrK

−p̄ −p̄ −p̄ τMrd̄

Φ′ 0 0 0 τMr

µ4cb + γ3 γ3 0 τMr

γ3 γ3 0 τMr

∗ ∗ ∗ ∗ ∗ Φ̃66 γ3 0 τMr

∗ ∗ ∗ ∗ ∗ ∗ Φ̃77 0 τMr

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2 τMr

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̃99




,

Φ̃16 = 1− µ4Kcb − γ3K,

Φ̃66 = −r + µ4cb + γ3,

Φ̃77 = −γ2/K
2 + γ3,

Φ̃99 = −re−2ατM /(K2 maxi |Ωi|maxi ‖ci‖∞),

Φ′ = Φ+ γ1 [ 1 0 0 0 0 ]
T
[ 1 0 0 0 0 ]

+γ3 [−K 0 0 1 1 ]
T
[−K 0 0 1 1 ] ,

Φ and Φ∇ are from Theorem 2, p̄ = (p1, 2p2, p3)
T , and

d̄ = (d1, 2d2, d3)
T . Then the static output feedback (15)

solves the H∞ control problem with J(u) given in (44),

γ =
√
γ2/γ1, and du =

√
γ3/γ1.

PROOF. See Appendix C.

Remark 9 (Feasibility of LMIs) The LMIs of Theo-
rem 3 are always feasible for large enough K and γ2 and
small enough cb, l, τM , γ1, and γ3. This follows from Re-
mark 4 for τM = 0 and remains so for a small enough τM
by continuity.

Corollary 3 The static output feedback (34) solves theH∞

control problem for the semilinear diffusion system (30)
under the delayed noisy measurements (32) if the controller
gain K and the desired L2-gain γ are large enough while cb
from (12), l from (22), and τM from (37) are small enough.

Remark 10 (Point measurements) In the absence of
delays (τM = 0), the conditions of Theorem 3 can be sim-

plified by eliminating the last column and row from Φ̃. Mod-
ified in this way, Theorem 3 with l given in Remark 6 pro-
vides conditions guaranteeing that the output feedback (34)
solves the H∞ control problem under the noisy point mea-
surements ỹi(t) = z(xi

c, t) + vi(t). In the presence of de-
lays (τM 6= 0), Theorem 3 cannot be applied with ci(x) =
δ(x−xi

c) since it includesmaxi ‖ci‖∞. This happens because
the delay-induced error κ(x, t) containing an unbounded op-
erator is hard to compensate using Lyapunov–Krasovskii

3 MATLAB code for solving the LMIs is available at
https://github.com/AntonSelivanov/Aut19
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terms. (For instance, it can be compensated in the 1D case
using Halanay’s inequality [8], but this approach does not
work in 2D due to the presence of zx1x2

in (23).) If δ(x−xi
c)

are approximated by ci from (14), then maxi ‖ci‖∞ is in-
creasing while ε → 0 leading to a smaller bound on the ad-
missible delays τM that vanishes at the limit.

Remark 11 (Different boundary conditions) The
results of this section can be extended to the boundary
conditions (29) with the same adjustments as in Remark 5.

5 H∞ filtering under delayed pointlike measure-
ments

Consider the semilinear diffusion system

zt(x, t) = ∆Dz(x, t) + f(x, t, z(·, t)) + w(x, t),

z|∂Ω = 0, z|t=0 = z0 ∈ H1
0 (Ω)

(45)

with the nonlinearity f : Ω × (0,∞) × H1
0 (Ω) → R such

that f(·, t, z) ∈ L2(Ω) and

‖f(·, t, z1)− f(·, t, z2)‖2 ≤ cf‖z1 − z2‖2

+

∫

Ω

(∇z1 −∇z2)
TF (∇z1 −∇z2) (46)

for all t > 0 and z1, z2 ∈ H1
0 (Ω), where cf > 0 and 0 <

F ∈ R
2×2. The other terms are as in (7) and (30). Let the

measurements be given by (32) with known time-varying
delays τyi (t) satisfying (33). To estimate the state of (45),
we construct the observer

ẑt(x, t) = ∆D ẑ(x, t) + f(x, t, ẑ(·, t))

− L

N∑

i=1

χi(x)

(∫

Ωi

ci(ξ)ẑ(ξ, t− τyi (t)) dξ − ỹi(t)

)
,

ẑ|∂Ω = 0, ẑ|t=0 = ẑ0 ∈ H1
0 (Ω), ẑ|t<0 = 0

(47)

with the injection gain L and characteristic functions χi

defined in (11). The estimation error z̄(x, t) = z(x, t) −
ẑ(x, t) satisfies

z̄t = ∆D z̄ + f̄ − L

N∑

i=1

χi

∫

Ωi

ci(ξ)z̄(ξ, t− τyi (t)) dξ

− Lv + w,

z̄|∂Ω = 0, z̄|t=0 = z0 − ẑ0 ∈ H1
0 (Ω), z̄|t<0 = 0

(48)

with f̄(t, z, ẑ) = f(t, z) − f(t, ẑ) and the distributed dis-

turbance v(x, t) =
∑N

i=1 χi(x)vi(t).

Remark 12 (Unknown delays) We assume that the de-
lays τyi (t) are known to guarantee that the observer (47)
is implementable. If τyi (t) are not known and replaced by
0 in (47), then the error system (48) depends on the plant
state z. This requires more sophisticated analysis (see, e.g.,
[27]).

The system (48) is internally exponentially stable if it is
exponentially stable for w = v ≡ 0. The system (48) has

the L2-gain not greater than γ > 0 if
∫ ∞

0

∫

Ω

[z̄2(x, t)− γ2w2(x, t)− γ2v2(x, t)] dx dt ≤ 0 (49)

for any solution of (48) with z̄|t=0 = 0 and admissible
w, v ∈ L2((0,∞), L2(Ω)).

The error system (48) coincides with (32), (35) if bi = χi,
K = L, τui ≡ 0, z is replaced by z̄, and f is replaced by f̄ .
Thus, Theorem 3 implies the following result.

Theorem 4 Consider the system (45) subject to (46) with
the measurements (32) subject to (33). Let the conditions
of Theorem 3 be feasible with cb = 0, τuM = 0, and K = L.
Then the observer (47) estimates the state of the system

(45) with the L2-gain not greater than γ =
√
γ2/γ1.

6 Example: catalytic slab

Consider the catalytic slab model

zt =
1

2π2
∆z + f(z) +

N∑

i=1

bi(x)ui(t− τ iu(t)) + w,

z|∂Ω = 0, z|t=0 = z0

(50)

with the domain Ω = (0, 1) × (0, 1), state z representing
the temperature, disturbance w, and

f(z) = −βUz + βT (e
−γa/(1+z) − e−γa),

where βT = 50 is the heat of the reaction, βU = 2 is the heat
transfer coefficient, and γa = 4 is the activation energy.
The controls ui represent the temperature of the cooling
medium, bi subject to (10) model the actuators, and the
unknown time-varying input delays τ iu(t) satisfy (31). The
model (50) is a 2D extension of the catalytic rodmodel from
[6, Section 4.3.1]. Clearly, z ≥ 0 if z0 ≥ 0 and w ≡ 0. We
assume that w is such that this property is preserved. Then
f satisfies (9) with cf = maxz≥0 |f ′|2 ≈ 22.72 and F = 0.
We assume that Ω is divided into N square subdomains
(this implies

√
N ∈ N) with a sensor and an actuator placed

in the center of each subdomain.

First, we consider the system (50) without disturbances
(w ≡ 0) under the output feedback (15) with the pointlike
measurements (13), (14). In this case, (22) implies

l = (1/
√
N + ε)/2. (51)

The LMIs of Theorem 2 are feasible for

K = 10, α = 0.01, l = lM = 0.0785, cb = 0.01.

The value of l given in (51) is not greater than lM = 0.0785
if N = 49 and ε ≤ 0.014 or N = 64 and ε ≤ 0.032.
Fig. 3 (blue dashed line) shows ‖z(·, t)‖H1

0

= ‖∇z(·, t)‖ for

N = 64, ε = 0.0125, bi = χi, and the initial conditions

z0(x1, x2) = sin(πx1) sin(πx2), x1, x2 ∈ [0, 1]. (52)
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Fig. 3. Blue dashed line – the state of (50) with w ≡ 0 under
(13)–(15); red solid line – the state of (50) with w 6≡ 0 under
(14), (32), (34)

Now, consider the system (50) with disturbances (w 6≡ 0)
under the delayed output feedback (34) with the delayed
pointlike measurements (14), (32) subject to (33). Clearly,

maxi |Ωi| = 1
N , maxi ‖ci‖∞ = ε−2.

The LMIs of Theorem 3 are feasible for

K = 10, α = 0.01, N = 64, ε = 0.0125,

cb = 0.01, τM = 10−3, γ = 100, du = 0.1,

and l given in (51). Fig. 3 (red solid line) shows ‖z(·, t)‖H1

0

for the initial conditions (52), τyi (t) = τui (t) ≡ τM/2, and

w(x, t) = sin(10x1 + t) sin(10x2 + t)e−t,

vi(t) = cos(100t)e−t ∀i ∈ {1, . . . , N}.
Thus, we constructed an output-feedback ensuring the de-
sired temperature of the catalytic slab.

7 Conclusions

Robust control of multi-dimensional diffusion systems was
confined to averaged measurements. In this paper, we solve
theH∞ control problem for 2D semilinear diffusion systems
with delayed pointlikemeasurements. The results are based
on a new inequality, which is a reciprocally convex variation
of Friedrich’s inequality, and a new Lyapunov-Krasovskii
term.

The presented approach can be extended to other
types of multi-dimensional PDEs, including Kuramoto–
Sivashinsky and 2D Navier–Stokes equations.
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A Proof of Theorem 1

The proof is based on the following two lemmas.

Lemma 3 For any v1, . . . , vn from a normed space X and
any λ1, . . . , λn ∈ R>0 such that λ1 + · · ·+ λn = 1,
∥∥∥∥∥

n∑

i=1

vi

∥∥∥∥∥

2

X

≤
n∑

i=1

λ−1
i ‖vi‖2X .

PROOF. By the convexity of ‖ · ‖2X ,
∥∥∥∥∥

n∑

i=1

λiλ
−1
i vi

∥∥∥∥∥

2

X

≤
n∑

i=1

λi

∥∥λ−1
i vi

∥∥2
X

=

n∑

i=1

λ−1
i ‖vi‖2X .

Lemma 4 (Wirtinger’s inequality [28]) For f ∈
H1(a, b),

‖f‖ ≤ 2(b− a)

π
‖f ′‖ if f(a) = 0 or f(b) = 0,

‖f‖ ≤ (b− a)

π
‖f ′‖ if f(a) = f(b) = 0.

For f ∈ H2((0, l1)× (0, l2)) and any β ∈ (0, 1),

‖f(·)− f(0)‖2 = ‖(f(·, ·)− f(·, 0)) + (f(·, 0)− f(0, 0))‖2
Lem.3
≤ 1

β
‖f(·, ·)− f(·, 0)‖2 + 1

1− β
‖f(·, 0)− f(0, 0)‖2

Lem.4
≤ 1

β

(
2l2
π

)2

‖fx2
‖2 + 1

1− β

(
2l1
π

)2

‖fx1
(·, 0)‖2.

For any γ ∈ (0, 1), we have

‖fx1
(·, 0)‖2 = ‖(fx1

(·, 0)− fx1
(·, ·)) + fx1

(·, ·)‖2
Lem.3
≤ 1

γ
‖fx1

(·, 0)− fx1
(·, ·)‖2 + 1

1− γ
‖fx1

‖2

Lem.4
≤ 1

γ

(
2l2
π

)2

‖fx1x2
‖2 + 1

1− γ
‖fx1

‖2.

Therefore,

‖f(·)− f(0)‖2 ≤ 1

(1− β)(1− γ)

(
2l1
π

)2

‖fx1
‖2

+
1

β

(
2l2
π

)2

‖fx2
‖2 + 1

(1− β)γ

(
2l1
π

)2(
2l2
π

)2

‖fx1x2
‖2,

which coincides with (2) if β = λ(0,1) and γ = λ(1,1)/(1−β).

To prove the inductive step, let (1) be true for all g ∈
Hn−1(Ω) with Ω = (0, l1)× · · · × (0, ln−1). Taking g(x) =
f(x, 0), where f ∈ Hn(Ω× (0, ln)), we obtain

∫

Ω

[f(x, 0)− f(0, 0)]2dx ≤
∑

α∈In−1

cα
λα

∫

Ω

[∂αf(x, 0)]2dx

for any λα ∈ R>0 such that
∑

α λα = 1. Thus, for any
β ∈ (0, 1),

‖f(·)− f(0)‖2 =

∫ ln

0

∫

Ω

[(f(x, xn)− f(x, 0))

+ (f(x, 0)− f(0, 0))]2 dx dxn

Lem.3
≤ 1

β

∫ ln

0

∫

Ω

[f(x, xn)− f(x, 0)]2dx dxn

+
1

1− β

∫ ln

0

∫

Ω

[f(x, 0)− f(0, 0)]2 dx dxn

Lem.4
≤ 1

β

(
2ln
π

)2

‖fxn
‖2

+
∑

α∈In−1

cα
(1− β)λα

∫ ln

0

∫

Ω

[∂αf(x, 0)]2dx dxn.

For any γ ∈ (0, 1) and α ∈ In−1, we have

∫ ln

0

∫

Ω

(∂αf(x, 0))
2
dx dxn

=

∫ ln

0

∫

Ω

[(∂αf(x, 0)− ∂αf(x, xn)) + ∂αf(x, xn)]
2dx dxn

Lem.3
≤ 1

γ

∫ ln

0

∫

Ω

[∂αf(x, 0)− ∂αf(x, xn)]
2
dx dxn

+
1

1− γ
‖∂αf‖2

Lem.4
≤ 1

γ

(
2ln
π

)2 ∥∥∥∥
∂

∂xn
∂αf

∥∥∥∥
2

+
1

1− γ
‖∂αf‖2 .
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Therefore,

‖f(·)− f(0)‖2 ≤ 1

β

(
2ln
π

)2

‖fxn
‖2

+
∑

α∈In−1

(
2ln
π

)2
cα

(1− β)λαγ

∥∥∥∥
∂

∂xn
∂αf

∥∥∥∥
2

+
∑

α∈In−1

cα
(1− β)λα(1− γ)

‖∂αf‖2 =
∑

α∈In

cα
λα

‖∂αf‖2,

where

λ(0,...,0,1) = β,

λ(α1,...,αn−1,1) = (1− β)λ(α1,...,αn−1)γ,

λ(α1,...,αn−1,0) = (1− β)λ(α1,...,αn−1)(1− γ).

Note that cα with α ∈ In−1 differ from cα with α ∈ In.
Clearly, the condition

∑
α∈In−1

λα = 1 is equivalent to∑
α∈In

λα = 1. By induction, (1) holds for any n ∈ N.

B Proof of Theorem 2

For z ∈ C∞
0 , integration by parts yields

0 = −2µ6

∫

Ω

z2x1x2
+ 2µ6

∫

Ω

zx1x1
zx2x2

. (B.1)

Since C∞
0 is dense in H1

0 , the latter holds for z ∈ H1
0 ∩H2.

Since z|∂Ω = 0, Lemma 4 with a = 0 and b = 1
2 implies

0 ≤ −(µ7 + µ8)π
2

∫

Ω

z2 +

∫

Ω

(∇z)T
[ µ7 0

0 µ8

]
∇z. (B.2)

Consider V = V0 + V1 with V0 = ‖z‖2 and V1 from (27).
Calculating its derivative (see (25) and (28)) and adding
the right-hand sides of (21), (23), (26), (B.1), and (B.2),
we obtain

V̇ + 2αV ≤
∫

Ω

ϕTΦϕ+

∫

Ω

(∇z)TΦ∇∇z ≤ 0,

where ϕ = (z, zx1x1
, zx1x2

, zx2x2
, f, σ, ǫ)T . Thus, V̇ ≤

−2αV , which implies the exponential stability of (16) in
the H1

0 -norm with the decay rate α.

C Proof of Theorem 3

For t ≥ τM , consider V = V0 + V1 + Vr, where V0 = ‖z‖2,
V1 is defined in (27), and Vr is given by (41) with cr from
(42). Similarly to (25), we have

V̇0 + 2αV0
(39)
= −2

∫

Ω

(∇z)TD∇z − 2(K − α)

∫

Ω

z2

+ 2

∫

Ω

z[f + ǫ(x, t− τi) + σ + κ−Kv + w].

Similarly to (28), we have

V̇1+2αV1 = −2

∫

Ω

div (P∇z)∆Dz−2(K−α)

∫

Ω

(∇z)TP∇z

− 2

∫

Ω

div (P∇z) [f + ǫ(x, t− τi) + σ + κ−Kv + w] .

Summing up (23), (26), (40), (43), (B.1), (B.2), and the
above expressions, we obtain

V̇ + 2αV + γ1‖z(·, t)‖2 + γ3‖u(·, t)‖2

− γ2‖w(·, t)‖2 − γ2‖v(·, t)‖2

≤
∫

Ω

ϕ̃T Φ̃sϕ̃+

∫

Ω

(∇z)TΦ∇∇z

+ crrτM max
i

‖ci‖∞‖zt(·, t)‖2,

where u(x, t)
(38)
= ǫ(x, t− τi(t)) + σ + κ−Kz −Kv,

ϕ̃ = (z, zx1x1
, zx1x2

, zx2x2
, f, σ, ǫ(x, t− τi(t)), κ,−Kv,w)T ,

and Φ̃s is obtained from Φ̃ by eliminating the last column
and row. Substituting (39) for zt and using the Schur’s

complement lemma, we deduce that the conditions Φ̃ ≤ 0
and Φ∇ ≤ 0 guarantee

V̇ + 2αV + γ1‖z(·, t)‖2 + γ3‖u(·, t)‖2

− γ2‖w(·, t)‖2 − γ2‖v(·, t)‖2 ≤ 0.

Since the initial time interval [0, τM ) does not influence
the decay-rate analysis [29], the latter implies the internal
exponential stability in theH1

0 -norm with the decay rate α.
If z|t≤0 = 0, then the functional V is well-defined for t ≥ 0
and V |t=0 = 0. Thus, integrating the previous inequality
from 0 to ∞, we prove that J(u) ≤ 0 with J given in (44),

γ =
√
γ2/γ1, and du =

√
γ3/γ1.
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