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Statistical Methods for Adjusting
Estimates of Treatment Effectiveness
for Patient Nonadherence in the Context
of Time-to-Event Outcomes and Health
Technology Assessment: A Systematic
Review of Methodological Papers

Abualbishr Alshreef , Nicholas Latimer, Paul Tappenden,

Ruth Wong, Dyfrig Hughes , James Fotheringham, and Simon Dixon

Introduction. Medication nonadherence can have a significant negative impact on treatment effectiveness. Standard

intention-to-treat analyses conducted alongside clinical trials do not make adjustments for nonadherence. Several

methods have been developed that attempt to estimate what treatment effectiveness would have been in the absence

of nonadherence. However, health technology assessment (HTA) needs to consider effectiveness under real-world

conditions, where nonadherence levels typically differ from those observed in trials. With this analytical requirement

in mind, we conducted a review to identify methods for adjusting estimates of treatment effectiveness in the presence

of patient nonadherence to assess their suitability for use in HTA. Methods. A ‘‘Comprehensive Pearl Growing’’ tech-

nique, with citation searching and reference checking, was applied across 7 electronic databases to identify methodo-

logical papers for adjusting time-to-event outcomes for nonadherence using individual patient data. A narrative

synthesis of identified methods was conducted. Methods were assessed in terms of their ability to reestimate effective-

ness based on alternative, suboptimal adherence levels. Results. Twenty relevant methodological papers covering 12

methods and 8 extensions to those methods were identified. Methods are broadly classified into 4 groups: 1) simple

methods, 2) principal stratification methods, 3) generalized methods (g-methods), and 4) pharmacometrics-based

methods using pharmacokinetics and pharmacodynamics (PKPD) analysis. Each method makes specific assumptions

and has associated limitations. Five of the 12 methods are capable of adjusting for real-world nonadherence, with

only g-methods and PKPD considered appropriate for HTA. Conclusion. A range of statistical methods is available

for adjusting estimates of treatment effectiveness for nonadherence, but most are not suitable for use in HTA. G-

methods and PKPD appear to be more appropriate to estimate effectiveness in the presence of real-world adherence.
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Patient nonadherence to medications can have a signifi-

cant negative impact on treatment effectiveness and

health care costs and has the potential to alter the con-

clusions of economic evaluations and health technology
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assessments (HTAs).1–3 An economic evaluation typically

assesses the cost-effectiveness of a new treatment com-

pared to standard treatment using evidence on clinical

effectiveness and costs. Intention-to-treat (ITT) analysis,

which compares randomized groups regardless of nonad-

herence or withdrawal, is a well-established method for

estimating treatment effectiveness from randomized con-

trolled trials (RCTs).4 However, ITT estimates may not

be relevant if the HTA aims to assess the effectiveness of

treatment given real-world adherence patterns.5,6

There is evidence to show that adherence in the real

world is likely to differ from RCTs (depending on the

type of treatment, disease area, and health care setting),

which leads to uncertainty around the actual effectiveness

of treatments.7–9 Clinical effectiveness estimates have a

direct impact on cost-effectiveness; consequently, a cost-

effectiveness analysis (CEA) that does not incorporate

nonadherence may produce misleading conclusions

regarding the value of the technology. In the HTA con-

text, we are interested in effectiveness estimates inferred

to the entire study population (as defined by scope and

study eligibility criteria), which can be identified at base-

line, as opposed to estimates focused on a latent sub-

group of the population (e.g., compliers). Moreover,

HTA agencies are interested in adjustment methods,

which can be used for reestimating treatment effective-

ness for any given level of adherence, to reflect potential

real-world adherence levels.10,11

The fundamental issue in estimating effectiveness asso-

ciated with alternative adherence levels is the methodologi-

cal challenge associated with adjusting for time-dependent

confounding. In this context, time-dependent confounders

are prognostic factors that predict subsequent nonadher-

ence and outcomes, yet are themselves predicted by previ-

ous nonadherence.12 When time-dependent confounders

are present, more complex methods than simple regression

adjustment are needed because simple regression adjust-

ment is unable to deal with variables that predict adher-

ence and are also an intermediate step between adherence

and outcome. A range of methods has been proposed for

estimating the causal effect of treatments in the presence

of nonadherence, but little guidance exists about their rela-

tive advantages,13–15 and not all deal with time-dependent

confounding appropriately. In addition, these methods

have been designed, principally, to reestimate effectiveness

assuming perfect adherence, whereas HTA requires reesti-

mation for suboptimal (real-world) adherence.

The aims of the review are to systematically identify

approaches for adjusting for nonadherence in the context

of time-to-event outcomes using individual patient data

in RCTs, to describe how each is undertaken, and to

assess their suitability for reestimating effectiveness based

on alternative, suboptimal adherence levels.

Methods

Review Question and Protocol

The review question was as follows: ‘‘What methods have

been proposed in the methodological literature to

account for the impact of nonadherence to treatments on

clinical effectiveness and cost-effectiveness?’’ The review

approach adheres to published international guidelines

for undertaking and reporting systematic reviews, and

methods were prespecified in a protocol.16–20

Search Strategy

A ‘‘Comprehensive Pearl Growing’’ (CPG) technique17

and 2-stage iterative search approach was used across 7

databases (MEDLINE, Embase, Cochrane Library,

EconLit, Scopus, Web of Science, MathSciNet).

Databases were searched for potentially relevant papers

published in English from inception to February 9, 2018

(first stage search), to May 23, 2018 (second stage

search). The database searches were complemented by

citation searches and reference list checking for each

‘‘pearl’’ (key paper) to identify additional relevant papers.

The search approach was designed to identify the initial

paper proposing the method (or articles reporting exten-

sions to a previously developed method), rather than arti-

cles reporting the application of methods in studies.

The database search strategy comprises keywords for

patient adherence combined with methods terms and

focused MeSH headings of known pearls. The second

stage search was informed from the collective analysis of

newly identified pearls title, abstract, keywords, and
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MeSH and floating headings using the online Yale

MeSH Analyzer Tool.13,21–28 Search terms and strategies

are provided in online Supplementary Appendix A.

Inclusion and Exclusion Criteria

The selection of papers included for narrative synthesis

was conducted in 2 stages: 1) records retrieved from all

sources were screened by titles followed by abstracts

screening, and 2) potentially relevant full-text articles were

assessed for eligibility using the inclusion and exclusion cri-

teria (Suppl. Table S1 in Appendix B). One author (AA)

screened all potentially relevant papers retrieved. A second

author (SD) independently screened a subset of papers

against the eligibility criteria. Disagreements between the 2

reviewers were resolved by discussion, and a consensus

was reached on the final list of included papers. Expert

opinion was obtained from 2 experts (DH, IW) for recom-

mendation of additional papers.

Data Extraction

A data extraction form was developed to extract the

basic information and key characteristics for each

method identified (Suppl. Table S2 in Appendix B).

Data Synthesis

A narrative data synthesis approach was followed for

each relevant method identified and its extensions. This

included a description of the key characteristics of each

method, as specified by the appraisal framework

(Suppl. Table S3 in Appendix B).29 As part of this, we

assessed which forms of nonadherence the method is

capable of addressing, using the classification devel-

oped by Vrijens and colleagues.28 This classification

differentiates between 3 stages of medication nonad-

herence: 1) initiation (when the first dose is taken by

the patient), 2) implementation (how closely the actual

dosage of a patient corresponds to the prescribed dos-

ing regimen), and 3) persistence (time to discontinua-

tion or end of therapy).28

We provide a brief description of the concept of each

adjustment method, together with the causal model, its

estimand (defined in the next section), key assumptions,

and limitations. We assess whether the method is capable

of reestimating effectiveness for other suboptimal levels

of adherence (as opposed to optimal adherence). This

assessment was based on the capability of the method to

estimate the treatment effect under alternative counter-

factual adherence levels (i.e., not observed adherence lev-

els) given the adherence level and treatment effect

actually observed in the trial. Finally, we assess the

appropriateness of nonadherence adjustment methods

for the HTA context based on criteria developed by the

authors. The criteria were 1) the suitability of the esti-

mand (as described in the next section), 2) the types of

nonadherence the method is capable of dealing with, and

3) whether it is possible to use the method to account for

real-world nonadherence levels.

Possible Estimands and Suitability for HTA

An estimand is the parameter of interest estimated by

the statistical method that we can use to make inferences

about a population using a sample from that popula-

tion.5,30 A range of possible estimands was identified,

but only a few are appropriate for HTA. In the HTA

context, resource allocation decisions are usually made

for a specified population defined by the scope for each

decision problem. Hence, the estimands of interest are

those covering the entire study population (as specified

by the RCT eligibility criteria), and this should be identi-

fiable at baseline for resource allocation decision mak-

ing. Therefore, estimands focused on latent subgroups of

patients (e.g., compliers) may not be appropriate for the

HTA context.

Results

Overview of Included Papers

This review includes 20 papers describing 12 methods

and 8 extensions to those methods.22,31–49 In total, the

searches resulted in 4472 records (Figure 1). The included

papers were published between 1992 and 2018 (inclusive);

the majority were published in the Statistics in Medicine

journal (30%) and Biometrics journal (25%). Other char-

acteristics of included papers are given in Supplementary

Table S4 in Appendix B.

Taxonomy of Methods

A taxonomy of methods for adjusting estimates of treat-

ment effectiveness for nonadherence in the context of

time-to-event outcomes is proposed (Table 1). The pur-

pose of the taxonomy is to increase understanding of the

concept behind each method and its relation to other

methods in terms of estimands and estimators.30 The

structure of the taxonomy was initially developed by 1

author (AA) and further revised based on consultations

with other authors (NL, PT, DH, JF, SD) and an expert

in causal inference methods (IW).

912 Medical Decision Making 39(8)
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Figure 1 PRISMA Flow Diagram. PRISMA, preferred reporting items for systematic reviews and meta-analyses. Numbers in

red represent records from the 2nd stage of searches. The dashed lines show that citation searches and references lists checking

were done for pearls identified from databases searching. Papers excluded for the reason of ‘‘comparison of known methods’’ are

included in the citation searches and references lists checking as these were considered relevant for this purpose.
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In the proposed taxonomy, methods are broadly

classed into 4 groups: 1) simple methods that do not

appropriately adjust for nonadherence; 2) principal stra-

tification methods for estimating the complier average

causal effect (CACE) estimand50; 3) generalized methods

(g-methods), which are based on the counterfactual out-

come framework originally developed by Neyman51 and

Rubin52 for estimating the effect of time-fixed treat-

ments, as well as further extended by Robins et al.53,54

for time-varying treatments; and 4) pharmacometric-

based methods as a unique approach using pharmacoki-

netics and pharmacodynamics (PKPD) analysis com-

monly used in clinical trials for evaluating newly

developed pharmacological interventions. The estimand

Table 1 Taxonomy of Methods for Adjusting Treatment Effectiveness for Nonadherence in the Context of Time-to-Event

Outcomes

Methods Group
Method

Subcategory Method/Extension Reference

Simple methods ITTa Intention-to-treat (ITT) analysis Yu et al., 201546

PP Per-protocol (PP) analysis Wu et al., 201545

AT As-treated (AT) analysis Korhonen et al., 199934

Principal
stratification
methods

CPH with PLE Cox proportional hazards (CPH) model with
partial likelihood estimator (PLE)

Cuzick et al., 200741

MCC Markov compliance class (MCC) model in a 3-
stage method (3SM)

Lin et al., 200742

Wtd PP Weighted per-protocol (Wtd PP) analysis using a
proportional hazards model with an
expectation-maximization (EM) estimator

Li and Gray, 201647

C-PROPHET Compliers PROPortional Hazards Effect of
Treatment (C-PROPHET)

Loeys and Goetghebeur,
200339

IV Instrumental variable (IV) with likelihood
estimator

Baker, 199832

IV extension: IV with plug-in nonparametric
empirical maximum likelihood estimation
(PNEMLE)

Nie et al., 201143

IV extension: transformation promotion time
cure model with maximum likelihood
estimation to estimate the complier average
causal effect (CACE) and the complier effect on
survival probability (CESP)

Gao and Zheng, 201748

G-methods MSMs Marginal structural models (MSMs) with inverse
probability of censoring weighting (IPCW)

Robins and Finkelstein,
200022

MSM extension: MSMs with inverse probability
of treatment weighting (IPTW)

Hernan et al., 200135

SNFTMs Structural nested failure time models (SNFTMs)
with G-estimation

Robins et al., 199231

RPSFTMs Rank-preserving structural failure time models
(RPSFTMs) with G-estimation

Loeys et al., 200136

RPSFTM extension: incorporating covariates to
improve the precision of estimators

Korhonen and
Palmgren, 200237

RPSFTM extension: improving the efficiency of
the estimators

Loeys and Goetghebeur,
200238

RPSFTM extension: allowing for dependent
censoring

Matsui, 200440

RPSFTM extension: choice of model and impact
of recensoring

White and Goetghebeur,
199833

Pharmacometrics-
based methods

PKPD Pharmacokinetics and pharmacodynamics
(PKPD)–based method

Pink et al., 201444

PKPD extension: modeling varying
implementation and persistence types of
nonadherence

Hill-McManus et al.,
201849

aITT does not adjust for nonadherence but is included in the taxonomy as a ‘‘do nothing’’ approach (i.e., ignoring nonadherence).
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and key assumptions used by each method are provided

in Table 2, and the appropriateness for HTA is provided

in Table 3. We provide an overview of methods in each

group in the following subsections. We do not further

describe the ITT analysis, since it does not attempt to

adjust for nonadherence.

Simple Methods

Per-protocol analysis. The standard per-protocol (PP)

analysis strategy attempts to estimate the treatment effect

among adherent patients by excluding protocol noncom-

pliers.45 PP can deal with random (nonselective) types of

nonadherence (initiation, implementation, persistence).

The main concern is that excluding some patients from

the analysis may undermine the prognostic balance gen-

erated by the randomization, which may introduce selec-

tion bias. This is likely to be the case if nonadherence is

not random (i.e., if nonadherence is influenced by other

patient characteristics and prognostic factors).55 Even if

prognostic factors that are associated with nonadherence

are correctly identified, PP analysis will introduce bias in

the presence of time-dependent confounding.

As-treated analysis. The as-treated (AT) method attempts

to adjust for the random initiation type of nonadherence.

AT estimates the average causal effect (ACE) among

patients who actually received the treatment compared to

those who did not receive the treatment, assuming they are

similar regardless of randomization.34 The main problem

with this approach is that the group who actually received

the treatment is unlikely to be comparable to the group

who did not, making this approach prone to selection

bias.56 AT analysis is less commonly used in practice com-

pared with ITT and PP conventional methods.

Principal Stratification Methods

Cox proportional hazards model with partial likelihood

estimator. The Cox proportional hazards (CPH) model

with partial likelihood estimator (PLE) is a method for

estimating the treatment effect adjusted for initiation

nonadherence at baseline while respecting the randomi-

zation.41 This is a semiparametric model whereby the

treatment effect on the distributions of failure times is

the parametric part. In the basic model, an individual

with covariates (k, z0, z) will have a hazard function pre-

sented in equation (1).

exp gT z0 +bz+ gkð Þl tð Þ; ð1Þ

where gT is the treatment effect in compliers (CACE esti-

mand) expressed in terms of the hazard at time t for a

cumulative hazard function Lk(t) (this is only observable

for the compliers class), gk is the adherence class of the

kth individual, z0 is a vector of baseline covariates, and z

is a set of time-dependent covariates. The standard

method assumes that covariates are independent of non-

adherence. The method can be used to adjust for nonad-

herence in situations where nonadherence is dependent

on baseline covariates, but this approach requires a more

complex estimator.41 The key limitation of this method

is the difficulty of modeling time-varying treatments and

other types of nonadherence beyond initiation.

Markov compliance class model in a 3-stage method. The

Markov compliance class (MCC) model can accommo-

date both initiation and time-varying nonadherence

(implementation) in the context of longitudinal studies

where patients are randomized at baseline and randomi-

zation is maintained over time.42 The concept of this

method is based on specifying 2 possible adherence

classes that are applied at specified time points; for exam-

ple, 5 time points results in a total of 32 (25) adherence

patterns. A stratification strategy can then be used to

stratify adherence patterns into superclasses (low com-

pliers, decreasing compliers, and high compliers). This

can be used to estimate the CACE estimand among the

compliers superclass. Model (2) can then be used to

account for the relationship between adherence and sur-

vival time at time t.

h tjUi = kð Þ= h0 tð Þexp bkI Ui = kð Þð Þ; ð2Þ

where bk for one of the adherence superclasses is

assumed 0 for identification (reference superclass) and Ui

is individual i’s adherence superclass for a k number of

superclasses.42 As a limitation, the method cannot deal

with time-dependent confounding.

Weighted per-protocol analysis with expectation-

maximization estimator. The weighted per-protocol

(Wtd PP) method estimates the CACE by focusing on

the ambivalent (compliers) class. The method attempts

to deal with treatment initiation over time with 2 main

features: 1) proposing a Wtd PP estimator by using

time-varying weights that are subject specific (depend

on baseline and time-dependent covariates) in a survival

model and 2) proposing an expectation-maximization

algorithm to maximize the full likelihood (FL) and

PLEs.47 The method was developed to adjust for

Alshreef et al. 915



Table 2 Estimands, Causal Interpretation of Estimates, and Key Assumptions for Nonadherence Adjustment Methods

Method Estimanda Estimand Attribues Causal Interpretation of the Estimate Key Assumptions

ITT The effect of treatment
assignment (not the effect
of treatment itself)

Entire study population;
ignoring events such as
nonadherence and dropout

The average causal effect of treatment
assignment on the survival outcome
in a particular study (regardless of
adherence, dropout, etc.)

The randomization assumption
(i.e., group membership is
randomly assigned), which
implies that groups are
comparable or exchangeable

PP The effect of following the
study protocol

Subpopulation of the protocol
compliers in the study;
excluding protocol
noncompliers from the
analysis set

The average causal effect of treatment
on the survival outcome in
individuals who adhered to the
protocol in terms of eligibility,
adherence, outcome assessment, etc.

The groups of patients who
adhered to the protocol in each
arm are comparable after
covariate adjustment.

AT The effect of treatment
actually received

Subpopulation of patients who
initiated treatment, with
patients who switched
treatment analyzed with the
group they switched to
regardless of randomization

The average causal effect of treatment
on the survival outcome among
individuals who actually received the
treatment in the experimental group
(including control group patients
who switched onto the experimental
treatment) compared to those who
actually received the standard
treatment (or those who actually did
not receive the treatment in placebo-
controlled trials) regardless of
treatment assignment

The group of patients who
received the treatment is
comparable to those who did
not, regardless of their
treatment assignment.

CPH with PLE CACE Subpopulation who adhered
to the protocol, excluding
patients who did not adhere
to the protocol in each arm
of the study

The average treatment effect on the
survival outcome in the complier
subpopulation (patients who
adhered to the protocol)

Covariates included in the model
are independent of adherence.

MCC CACE As above As above The Markov assumption
Time-varying adherence
depends on the history of
adherence

Latent and ignorable missing
data mechanism

Wtd PP CACE As above As above Patient population consists of 3
(possibly latent) subgroups:
‘‘ambivalent,’’‘‘insisters,’’ and
‘‘refusers’’

C-PROPHET CACE As above As above The exclusion restriction
assumption

IV CACE As above As above The exclusion restriction
assumption

Randomization has no effect on
the probability of adherence to
treatment

Monotonicity assumption

(continued)
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Table 2 (continued)

Method Estimanda Estimand Attribues Causal Interpretation of the Estimate Key Assumptions

MSMs with
IPCW/IPTW

The effect of treatment had
everyone remained
adherent to the protocol

Entire study population; had
everybody adhered to the
protocol with perfect
adherence to the prescribed
dosing regimen or had
everybody adhered to the
protocol at an alternative
level of adherence to the
prescribed dosing regimen
than what was observed in
the trial (e.g., real-world
adherence level)

The average causal effect of treatment
that would have been observed if
everybody adhered to the protocol.
MSMs estimate the average
treatment effect in the entire
population, but the causal effect in a
subset of the population (defined by
a combination of variables L) can
also be estimated. The IPCW
estimand can also be interpreted as a
comparison of the potential
(counterfactual) outcomes under
different levels of adherence in the
same group of subjects.

No unmeasured confounders
Positivity assumption

SNFTMs with G-
estimation

The effect of treatment had
everyone remained
adherent to the protocol

As above The average treatment effect that
would have been observed if
everybody adhered to the protocol
(or remained at a particular
adherence level such as real-world
adherence level). SNFTMs can be
used to estimate the average causal
effect in a subset of the population
defined by a combination of factors
(L), e.g., men, patients aged .60
years

No unmeasured confounders
Survival times and treatment-free
survival times are proportional
by an unknown factor that
depends on the exposure.

RPSFTMs with
G-estimation

The effect of treatment had
everyone remained
adherent to the protocol

As above The average treatment effect that
would have been observed if
everybody adhered to the protocol
compared to none treated.

The randomization assumption
The common treatment effect
assumption

Survival times and treatment-free
survival times are proportional
by an unknown factor that
depends on the exposure.

PKPD method The effect of following a
particular adherence
pattern in the study
population

Entire study population; given
a particular pattern of
adherence to the prescribed
dosing regimen

The average causal effect of treatment
if individuals followed a particular
adherence pattern

The exclusion restriction
assumption

Correctly specified model

AT, as treated; CACE, complier average causal effect; CPH, Cox proportional hazards; C-PROPHET, Complier PROPortional Hazards Effect of Treatment; IPCW, inverse

probability of censoring weighting; IPTW, inverse probability of treatment weighting; ITT, intention to treat; IV, instrumental variable; MCC, Markov compliance class; MSMs,

marginal structural models; PKPD, pharmacokinetics and pharmacodynamics; PLE, partial likelihood estimator; PP, per protocol; RPSFTMs, rank-preserving structural failure

time models; SNFTMs, structural nested failure time models; Wtd PP, weighted per protocol.
aThe estimand is the parameter of interest defined using 4 attributes: 1) the population, 2) the outcome variable or endpoint, 3) the specification of how to deal with intercurrent

events (e.g., include compliers only), and 4) the population-level summary of the outcome variable. The description of the estimand in this table is focused on 2 attributes (the

population and specification of how to deal with intercurrent events), as the other 2 attributes (the outcome variable and the population-level summary of the outcome variable) are

expected to be similar in the context of time-to-event outcomes.
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Table 3 Appropriateness of Estimand for the HTA Context, Types of Nonadherence, Possibility to Account for Real-World Adherence Levels, and Suitability of

the Effectiveness Estimates for HTA Using the Alternative Adjustment Methods

Method

Appropriateness of
Estimand for the
HTA Contexta

Type of Nonadherence That Can Be
Adjusted for Using the Method

Possibility to
Account for
Real-World

Nonadherence
Levelsc

Suitability of
the Method for
Use in HTA Notes

Initiation,
Implementation,

Persistence

Random,
Explainable
Nonrandom,
No-Randomb

ITT Yes None None No No The estimand is marginalized to the
entire population.

Cannot estimate counterfactual
estimands (i.e., treatment effectiveness
given adherence levels in the real
world).

PP No Initiation,
implementation,
persistence

Random No No The estimand is not marginalized to the
entire population.

Excluding the protocol noncompliers
may break the randomization balance,
leading to selection bias if protocol
noncompliance is related to
underlying prognosis.

AT No Initiation Random No No Does not respect the randomization
balance, which may lead to selection
bias.

Cannot estimate counterfactual
estimands.

CPH with PLE No Initiation Random,
explainable
nonrandom

No No The CACE estimand used by all 5
methods is not marginalized to the
entire population.

The compliers class is a latent group of
patients that is not identifiable at
baseline, making it difficult for
policymakers to make resource
allocation decisions based on CACE
estimand.

IV can estimate effectiveness given real-
world adherence level based on the
counterfactual outcome framework.

MCC No Initiation,
implementation

Random No No

Wtd PP No Initiation Explainable
nonrandom

No No

C-PROPHET No Initiation Nonrandom No No

IV No Initiation,
implementation,
persistence

Nonrandom Yes No

(continued)
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Table 3 (continued)

Method

Appropriateness of
Estimand for the
HTA Contexta

Type of Nonadherence That Can Be
Adjusted for Using the Method

Possibility to
Account for
Real-World
Nonadherence

Levelsc

Suitability of
the Method for
Use in HTA Notes

Initiation,
Implementation,

Persistence

Random,
Explainable
Nonrandom,
No-Randomb

MSMs Yes Initiation,
implementation,
persistence

Explainable
nonrandom

Yes Yes Effectiveness estimates are marginalized
to entire study population.

Can be used to account for real-world
adherence levels.

RPSFTM only estimates the ‘‘all
treated’’ v. ‘‘nontreated’’ estimand,
making it applicable to adjust for
‘‘initiation’’ type of adherence only.

SNFTMs Yes Initiation,
implementation,
persistence

Explainable
nonrandom

Yes Yes

RPSFTMs Yes Initiation Nonrandom Yes Yes

PKPD Yes Initiation,
implementation,
persistence

Explainable
nonrandom

Yes Yes The estimand is marginalized to the
entire population.

Can estimate effectiveness given
different adherence patterns.

AT, as treated; CACE, complier average causal effect; CPH, Cox proportional hazards; C-PROPHET, Complier PROPortional Hazards Effect of Treatment; HTA, health

technology assessment; IPCW, inverse probability of censoring weighting; IPTW, inverse probability of treatment weighting; ITT, intention to treat; IV, instrumental variable; MCC,

Markov compliance class; MSMs, marginal structural models; PKPD, pharmacokinetics and pharmacodynamics; PLE, partial likelihood estimator; PP, per protocol; RPSFTMs,

rank-preserving structural failure time models; SNFTMs, structural nested failure time models; Wtd PP, weighted per protocol.
aIn the HTA context, the estimand of interest includes the entire study population, and this should be identifiable at baseline for resource allocation decision making.
bThis column specifies the type of nonadherence that each adjustment method is capable of dealing with in terms of random (nonselective) nonadherence, explainable nonrandom

(selective) nonadherence (i.e., nonadherence explainable by observed covariates), or no-random (selective) nonadherence.
cIn the HTA context, methods for adjusting trial data for nonadherence need to be capable of reestimating treatment effectiveness for any given level of adherence (e.g., real-world

adherence levels).

9
1
9



time-dependent confounders, which are associated with

nonadherence. The partial likelihood estimator used by

this model is similar to that used in the CPH with PLE

approach (model (1)). Details of the FL estimator are

reported in Li and Gray.47

Compliers PROPortional Hazards Effect of Treatment. The

Compliers PROPortional Hazards Effect of Treatment (C-

PROPHET) identifies adherent patients (initiation at

baseline) and estimates the treatment effect in this group,

adjusting for baseline covariates.39 C-PROPHET is a semi-

parametric model with the parametric side being the effect

of the exposure on the survival times distribution.39 If indi-

vidual patients who actually adhered to the protocol can be

predicted at baseline in the intervention and control arms

of an RCT, then one could fit a PH model for this study

subpopulation to estimate the treatment effect.

The C-PROPHET model assumes that the hazard of

survival time (Ti) is as provided in equation (3).39

l tjZi= 1,E1i = 1ð Þ= l tjZi = 0,E1i = 1ð Þexp c0ð Þ; ð3Þ

where Zi is the randomization variable for individual i

(Zi = 1 for the intervention group, Zi = 0 for the control

group) and E1i represents the principal stratum at the

treatment initiation stage. The parameter c0 denotes the

causal proportional hazards effect in the subpopulation

of compliers. This is the parameter of interest that is

called C-PROPHET.39 In terms of limitations, the

method cannot be used to adjust for time-dependent

nonadherence.

Instrumental variable method. The instrumental variable

(IV) method can be used for adjusting for all types of

nonadherence using a binary adherence variable. The

method relies on the exclusion restriction assumption;

that is, the IV affects the survival outcome only through

its effects on the exposure. Three variants of the IV

approach were identified: 1) IV with likelihood estima-

tor,32 2) IV with plug-in nonparametric empirical maxi-

mum likelihood estimator (PNEMLE),43 and 3)

transformation promotion time cure model with maxi-

mum likelihood estimator (MLE).48

The IV with likelihood estimator works by classifying

individuals in the trial population into 4 groups (similar

to the classification used by MCC method). The estima-

tor should be used to calculate the probability of having

the case-specific event of interest at time t for each latent

adherence class. Treatment effect in terms of hazard ratio

(HR) can then be computed. This method was further

applied to estimate adherence-adjusted cost-effectiveness

using RCT data.32

The PNEMLE approach assumes the following sur-

vival functions for compliers in the intervention group

(equation (4)), denoted as Sc1(V), and control group

(equation (5)), denoted as Sc0(V), while never-takers

have similar survival function in both groups, denoted as

Snt(V).

ST jR= 1 Vð Þ=pcSc1 Vð Þ+ 1� pcð ÞSnt Vð Þ; ð4Þ

ST jR= 0 Vð Þ=pcSc0 Vð Þ+ 1� pcð ÞSnt Vð Þ; ð5Þ

where pc is the fraction of compliers in the intervention

group.

The IV extension using transformation promotion

time cure model is a semiparametric model for estimat-

ing CACE and complier effect on survival probability

(CESP) estimands. Further details of this extension are

reported in Gao and Zheng.48 By using an IV approach,

the analyst can deal with time-dependent confounding.

The main drawback of this method is finding an instru-

mental variable that meets all the criteria of a valid IV15;

an inadequate IV can lead to an imprecise and/or biased

estimate.

G-Methods

Marginal structural models with inverse probability of

censoring weighting/inverse probability of treatment

weighting. This method can be used to adjust for all

types of nonadherence by censoring individuals at the

first time they become nonadherent and then use inverse

probability of censoring weighting (IPCW) for estimat-

ing the ACE of treatment using marginal structural mod-

els (MSMs).22 The IPCW can be used to obtain a valid

treatment effect by adjusting for baseline and time-

dependent confounders. IPCW makes the ‘‘no unmea-

sured confounding’’ assumption, that is, the assumption

of explainable nonrandom nonadherence by measured

time-dependent confounders.13,22 Stabilized weights are

used because unstabilized weights can be inefficient. In

practice, the analyst should construct stabilized weights

(ŵstab
it ) for each individual i in time interval t by multiply-

ing all the probabilities of remaining uncensored (adher-

ent) up to time t using equation (6).

ŵstab
it =

Yt
k= 0

1

1� p̂ik
=
Yt
k= 0

1

1� p̂
0ik

=
Yt
k= 0

1� p̂
0ik

1� p̂ik
; ð6Þ
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where p̂ik is the predicted probability of nonadherence in

time interval k given the randomization group and

adjusting for baseline and time-dependent covariates,

and p̂0ik is the probability of nonadherence given the ran-

domization group and adjusting for baseline covariates

only. A pseudo-population should be created using the

IPCW, and then any survival analysis (e.g., a Cox partial

likelihood estimator) can be applied for estimating

adherence-adjusted effectiveness. The main limitation of

IPCW is the assumption of no unmeasured confounders,

which cannot be proven empirically.

As an alternative approach to IPCW, one could allow

individuals to become adherent again following a period

of nonadherence—this can be modeled using the inverse

probability of treatment weighting (IPTW) approach.35

The key feature of this method is that it allows for model-

ing longitudinal adherence patterns where patients follow

erratic adherence behaviors in implementing the pre-

scribed dosing regimen (i.e., on/off adherence patterns).

Structural nested failure time models with G-estimation. The

structural nested failure time models (SNFTMs) can be

applied to adjust for all types of nonadherence by con-

trolling for time-dependent confounding using the G-

estimation technique.31 The model relates the individu-

al’s observed survival time and treatment history to the

counterfactual outcome. In the SNFTM framework, the

no unmeasured confounding assumption implies that the

potential outcome does not add to the prediction model

for treatment initiation, conditional on other covariates

included in the model. To formally explain the G-estima-

tion procedure, let us assume the treatment effect model

in equation (7).57 We fit a logistic regression model to

obtain the coefficients in equation (8).

Y t
;Xc tð Þgiven �At, �Ltð Þ; ð7Þ

P A tð Þ½ �=b0 tð Þ+b1A t � 1ð Þ+b2L tð Þ+b3Xc; ð8Þ

where Y t is the observed survival time, ;means has the

same distribution as, Xc tð Þ is the counterfactual outcome,
�At is the past treatment, �Lt is the history of covariates,

and P A tð Þ½ � is the probability of initiating the treatment

at time t.

G-estimation is used to search for c value, which adds

the least to the prediction model (i.e., treatment initia-

tion is independent of counterfactual outcomes). This

means we search for a value of ĉ that results in a Xc term

having a coefficient b3 = 0 in model (8). That value of c

provides the best estimates of counterfactual survival

times adjusted for nonadherence. The main limitation of

SNFTMs is the potential biases related to the no unmea-

sured confounding assumption, which cannot be for-

mally tested.

Rank-preserving structural failure time models with G-

estimation. The rank-preserving structural failure time

model (RPSFTM) is a semiparametric model for adjust-

ing for initiation nonadherence using the randomization

factor, observed survival time, and treatment history.36

The method relies on the ‘‘common treatment effect’’

assumption (equal treatment effect regardless of when

the treatment was initiated but relative to the time for

which the treatment was received). It also relies upon the

randomization of the trial, meaning that counterfactual

survival times are equal between groups.

A simple RPSFTM (equation (9)) can be constructed

to estimate the counterfactual survival time (T 0

i ).
14,38

T0

i =

ðTi

0

exp½�cZiAi(t)�dt; ð9Þ

where Zi is the randomization variable, Ai is a binary

adherence variable that equals 1 when a patient initiated

the treatment and 0 otherwise, Ti is the observed survival

time, and the factor exp cð Þ is the causal effect (the value
by which survival time is shrunk or expanded as an effect

of the treatment). At the ‘‘true’’ value of the parameter c

(which we can find using G-estimation), the counterfac-

tual survival between randomized groups will be equal,

and that value of c would be the point estimate of the

treatment effect.

RPSFTM allows us to deal with time-dependent

initiation issues and can deal with time-dependent con-

founding. The original RPSFTM was extended to incor-

porate baseline covariates to improve the precision of

estimators37,38 and uses recensoring to allow the method

to deal with potentially informative censoring in the

counterfactual data set.33,40 As limitations, the RPSFTM

can only be used for adjusting for the initiation type of

nonadherence, and it relies on the common treatment

effect assumption, which is difficult to test.

Pharmacometrics-Based Methods

Pharmacokinetics and pharmacodynamics–based method.

The Pharmacokinetics and pharmacodynamics (PKPD)–

based methods model all types of nonadherence for esti-

mating treatment effectiveness. PKPD-based methods

require model development and fitting using appropriate

data, typically collected during each phase of clinical
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drug development, as well as simulation based on differ-

ent patterns of adherence, dosing schedules, and patient

characteristics where covariate effects are relevant. The

pharmacodynamic endpoint may be of direct relevance

(e.g., anticoagulant international normalized ratio [INR])

or may require extrapolation to estimate the link between

the PKPD parameter and the outcome of interest (e.g.,

risk of cardiovascular events) using evidence from the liter-

ature.44,58 PKPD makes the exclusion restriction assump-

tion, that is, randomization affects the outcome only

through the exposure treatment.

The PKPD method has been extended for modeling

varying nonadherence and estimating adherence-adjusted

cost-effectiveness of treatments.44,49 The main limitation of

this method is its reliance on an accurate model specifica-

tion and PKPD data, which might not be routinely avail-

able in RCTs or observational studies across disease areas.

Appropriateness of Nonadherence Adjustment

Methods to the HTA Context

The results based on the criteria applied for assessing

appropriateness (suitability of the estimand, type of non-

adherence, and possibility to account for real-world non-

adherence levels) for each of the identified adjustment

methods is provided in Table 3. Five methods (ITT,

MSMs, SNFTMs, RPSFTMs, and PKPD) generate the

estimand that is appropriate for HTA (covering the

entire study population), with only 3 of these being capa-

ble of accounting for all types of nonadherence (MSMs,

SNFTMs, and PKPD). Five methods are thought to be

capable of reestimating effectiveness for real-world levels

of nonadherence. When looking across all 3 facets of

estimating effectiveness for HTA, g-methods and PKPD

appear to be more appropriate.

The main differences between the 4 classes of methods

are the estimands, assumptions, and the types of nonad-

herence that each method is capable of dealing with.

Simple methods are only valid in the presence of random

(nonselective) nonadherence. Principal stratification

methods are capable of adjusting for some types of non-

adherence, but their estimands seem inappropriate for

the HTA context based on the criteria we set out in the

Methods section. Both g-methods and PKPD can deal

with real-world nonadherence, and their estimands are

appropriate for HTA. G-methods are similar in terms of

their capability for adjusting effectiveness estimates for

counterfactual nonadherence levels. However, PKPD is

a unique method that uses a different approach com-

pared to g-methods.

In practice, the analyst could apply g-methods to indi-

vidual patient-level data from an RCT to reestimate

treatment effectiveness (adjusted for nonadherence) for

populating cost-effectiveness models. Real-world adher-

ence levels could be estimated from registry data or

observational studies. All g-methods could be applied

using standard software (e.g., SAS, Stata, or R).12,59–61

While g-methods could be applied to real RCT data sets,

the PKPD approach relies on simulating an RCT data

set based on a specified pattern of nonadherence (e.g.,

real-world adherence) and then uses the simulated data

for generating the adjusted estimates. This would require

data (including PKPD data) collected at different phases

of clinical drug development. The PKPD method can be

applied using a specialist software (e.g., NONMEM) or

standard software (e.g., R) for simulating the data set.62

Discussion

A total of 12 methods for adjusting for nonadherence in

the context of time-to-event outcomes were identified

and briefly described in this article. The proposed taxon-

omy classifies adjustment methods into 4 groups: 1) sim-

ple methods, 2) principal stratification methods, 3)

g-methods, and 4) pharmacometrics-based methods.

Each method makes specific assumptions and has associ-

ated limitations, and many of these assumptions are non-

testable. Identification and collection of baseline and

time-dependent confounders were identified as crucial

for adjusting for nonadherence.

The purpose of adjustment was highlighted as a funda-

mentally important issue as estimands differ between the

methods, as do the practicalities of using the method to

reestimate effectiveness for alternative levels of adherence.

G-methods and PKPD appear more appropriate for

adjusting effectiveness estimates given real-world adher-

ence levels and the likely existence of time-dependent con-

founding in RCT data sets. Simple methods and principal

stratification methods cannot reestimate effectiveness

based on alternative, suboptimal adherence levels. The

Wtd PP method uses weights similar to IPCW, but the

estimand is restricted to the complier subpopulation.

Many potentially relevant papers with a focus on

cost-effectiveness aspects were excluded as these did not

provide a methodological contribution. This gap in the

methodological literature on CEA for modeling the link

between nonadherence and treatment effectiveness is

consistent with findings from other studies.8,63 A previ-

ous review by Hughes et al.27 reported 5 methods for

adjusting cost-effectiveness for nonadherence, which was

focused on pharmacoeconomic models rather than the
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impact of nonadherence on effectiveness. In that review,

the PKPD approach is the only method relevant to our

review, with the other methods being health-economic

models (decision tree, Markov, discrete-event simulation)

for incorporating adherence-adjusted treatment effects in

economic evaluations.

Many of the methods identified by our review have

been described and compared (mostly in pairwise com-

parisons) in the methodological literature.13,14,34,64,65

Mostazir et al.66 published a review of methods for han-

dling nonadherence to intervention protocols in RCTs that

identified some of the methods; however, their review

missed several relevant methods due to the restricted

search strategy used. The limitations of simple methods in

adjusting for nonadherence are consistently reported in the

methodological literature.33,34,39,45,56,64,67 It has been noted

previously that principal stratification methods require a

binary adherence variable (e.g., compliers/noncompliers),

which may be problematic as a threshold is required, and

this is often arbitrarily decided (e.g., 80% adherence

level).68 This may also be an issue for g-methods and

PKPD methods, where, in adjusting for nonadherence, we

first need to define what constitutes ‘‘adherence.’’ This

review has identified which nonadherence adjustment

methods are likely to be useful in an HTA context.

However, the remaining methods all have limitations, and

their performance in relevant scenarios is unknown.

This review has used novel iterative search techniques

and followed international guidelines16–18 but has limita-

tions. First, a higher number of papers were excluded at

the title screening stage because the paper’s title was not

relevant. Second, we excluded non-peer-reviewed reports

and other gray literature. While these two limitations

might be an issue, the final list of included papers was

checked by 2 experts, and we are confident that no

important relevant method was missed. Third, minor var-

iants of methods extensions are not included (e.g., pro-

posing alternative censoring mechanisms for IPCW),69

which is inevitably a subjective decision. These decisions

were based on discussions among the authors. Finally,

the review does not assess the performance of the alterna-

tive methods; therefore, further research (well-conducted

simulation studies) is warranted to provide recommenda-

tions for application in the HTA context.

In conclusion, economic evaluations frequently ignore

the adjustment of treatment effectiveness for patient non-

adherence, which carries the risk of producing misleading

cost-effectiveness evidence if adherence levels in the real

world differ from trials. A range of statistical methods is

available for adjusting estimates of treatment effective-

ness in the presence of patient nonadherence, although g-

methods and PKPD appear to be more promising to

account for real-world adherence levels in HTA. Further

research is warranted to assess the performance of these

methods.
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