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Network Communities of 
Dynamical Influence
Ruaridh Clark1*, Giuliano Punzo2 & Malcolm Macdonald1

Fuelled by a desire for greater connectivity, networked systems now pervade our society at an 

unprecedented level that will affect it in ways we do not yet understand. In contrast, nature has already 
developed efficient networks that can instigate rapid response and consensus when key elements 
are stimulated. We present a technique for identifying these key elements by investigating the 
relationships between a system’s most dominant eigenvectors. This approach reveals the most effective 
vertices for leading a network to rapid consensus when stimulated, as well as the communities that 

form under their dynamical influence. In applying this technique, the effectiveness of starling flocks was 
found to be due, in part, to the low outdegree of every bird, where increasing the number of outgoing 

connections can produce a less responsive flock. A larger outdegree also affects the location of the 
birds with the most influence, where these influentially connected birds become more centrally located 
and in a poorer position to observe a predator and, hence, instigate an evasion manoeuvre. Finally, 
the technique was found to be effective in large voxel-wise brain connectomes where subjects can be 
identified from their influential communities.

Human capacity to create networked systems is expanding with the growing popularity of cloud services1, 
improvements in mobile (cellular) network infrastructure and the expansion of the internet, including satellite 
based provision2. Increased connectivity is not without its drawbacks where denial of service attacks, exploiting 
Internet of Things (IoT) devices, are an example of the vulnerabilities that can emerge in large, complicated, 
networks3. To protect against this growing reliance on networked systems, this paper strives to further our under-
standing of how network topology influences dynamical response by identifying communities as key pathways of 
communication from the most influential network nodes.

Artificial networks are sophisticated but they cannot compete with nature’s accomplishments, where the 
human brain is estimated to contain 100 billion neurons and 100 trillion synaptic connections4. For the small 
neuronal system of the Caenorhabditis elegans5 and in a low resolution network representation of the macaque 
connectome6, the flow of information has been simulated to reveal the existence of bottlenecks and clusters. Such 
numerical models of information flow become intractable at a sufficiently large scale, therefore this paper uses a 
spectral method to uncover communication dynamics in some of nature’s most sophisticated networks, including 
human connectomes with around 850,000 vertices.

Community Detection
This paper presents an eigenvector-based community detection method. Most community detection, partition-
ing and graph clustering methods consider either the edge direction or the graph spectral properties to create 
network divisions, such as modularity, random walk based methods and spectral clustering7. Modularity detects 
communities by comparing the density of edges present with the density that would be present if all the edges 
were reassigned a new destination vertex at random8. Random walk based methods can either emulate the prop-
erties of the first eigenvector of the adjacency matrix, see PageRank9, or be used to identify communities from 
modelled diffusion of information6,10. Two commonly used spectral clustering approaches are normalised cuts11 
and k-means clustering12. The approach, detailed herein, is most similar to that of k-means clustering whereby 
multiple eigenvectors of the Laplacian matrix are used to split the graph into communities. In the case of k-means 
clustering, it employs a heuristic algorithm (k-means) to separate the network into k clusters where each cluster 
is defined in relation to one of k centroids. These centroids iteratively adjust their positions with the final com-
position of the clusters dependent on the initial placement of the centroids12. There is no optimal solution to the 
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selection of k for any given network instead multiple runs can be performed to determine the sensitivity of k to 
a chosen criteria13.

In this paper, we detect communities without the use of recursive optimisation, instead the number of com-
munities, their members, and influential vertices are all a product of the network’s spectral properties. The com-
munities, defined herein, are referred to as Communities of Dynamical Influence (CDI) as each is associated 
with a vertex that has a high dynamical influence. Dynamical influence is defined as a measure of how strongly a 
node’s dynamical state affects the collective behaviour (i.e. state) of the network14. These influential vertices are 
detected with the first left eigenvector of the Laplacian matrix, which has been employed previously to identify 
the most effective vertices for spreading information or disease in a dynamical network14. The first eigenvector of 
the adjacency matrix is also widely used as a centrality metric15, where it identifies vertices that would be visited 
most often by agents performing a random walk on the graph. Influential communities have been considered 
before from the perspective of identifying a node grouping that maximises its influence. To achieve these high 
influence groupings, community detection parameters are varied using for example modularity or k-core16, with 
each vertex given an influence value that is defined either independently of the network topology, by applying a 
weighting to the vertices17, or as a product of the topology, by using Katz centrality (a form of eigenvector cen-
trality)18. Influence can also be assessed after community designation, where an influence propagation model can 
be used to assess each community’s influential reach19. In this paper, we do not attempt to maximise the influ-
ence of community members but instead consider the influence that propagates from vertices during consensus. 
Information propagation of linear consensus has been used previously to define influential communities20, where 
each community is composed of vertices that are on one of the most effective pathways from an influential vertex. 
In this paper, the same definition is applied for community detection but we do not rely on a model or numerical 
process, instead communities and dynamical influence can be detected from the relationships between the sys-
tem’s eigenvectors.

This paper includes the application of CDI on a starling flock model and voxel-wise human brain networks. 
Starlings are known to employ a near constant outdegree (six to seven for all flock members21), which has been 
found to maximise robustness and allows them to manage uncertainty in consensus22. It has also been observed 
that starlings on the edge of the flock are those that trigger predator avoidance manoeuvres, as they are first to 
observe predators23,24. The current paper builds on these findings be considering how the outdegree, maintained 
by starlings, can facilitate their responsiveness to birds attempting to trigger a predator evasion manoeuvre. While 
the brain analysis compares the influential communities present in the same subject but at different times, using 
scan-rescan magnetic resonance imaging (MRI) data from Landman et al.25, to not only identify subjects from 
their neuronal communities but also detect changes in their functional activity.

Influence of Network Perturbations
To validate the claims that the CDI are the communities with the greatest influence over the consensus process, 
we investigate the optimisation of consensus leadership. The speed of consensus can be captured analytically 
by assessing the first eigenvalue of the system matrix26. Consensus can be driven to a target value by applying 
a constant input perturbation to a set of vertices that have a directed connection to all other vertices26. Similar 
perturbation optimisations have been studied extensively in the context of leadership selection for the control 
of multi-agent and swarm systems26–30. In these cases, the perturbation is often constrained so that only a set 
number of leaders are chosen with a binary option for perturbation input, i.e. vertices set as leaders or follow-
ers. In the context of multi-agent systems, there is significantly more literature on minimising the steady-state 
variance about an input perturbation27,28 than there is on fast convergence to consensus. There has been an 
attempt to tackle both problems, but this work was restricted to 1-D community and ring graphs29, and an 
examination of how the proportion of leader vertices affects the convergence rate to consensus in multiplex 
networks30. Of most relevance, to the work herein, is globally bounded input perturbations that can be applied 
with a variable distribution to any combination of vertices26. For such a case, the first left eigenvector of the 
Laplacian matrix was identified as a sub-optimal resource allocation (equivalent to an input perturbation) for 
achieving fast convergence to consensus26. An improvement in this allocation has since been developed for 
directed k-outdegree graphs, where a near-optimal perturbation vector can be produced by combining first 
left eigenvectors from manipulated versions of the adjacency matrix31. It is worth noting that the globally 
bounded perturbation optimisation problem, to maximise convergence rate to consensus, has no verifiable 
solution. A numerical optimiser can produce near-optimal solutions, but detection of the global minima is 
not guaranteed. A significant contribution of this article is the filtering out of local minima by highlighting the 
most effective network influencers, a process that functions at any network scale and is no longer restricted to 
k-outdegree graphs.

Results
The Communities of Dynamical Influence (CDI) are detected using the most dominant left eigenvectors of the 
Laplacian matrix, as described in the Methods section. The CDI are shown in Fig. 1 for 100 vertex, k = 10, nearest 
neighbour (k-NNR) networks. The k-NNR networks are generated by randomly distributing vertices in a square 
plane with each vertex connecting to its k nearest neighbours according to euclidean distance. The first left eigen-
vector (vL1) is always used to determine the dynamical influence of the CDI but, as shown in Fig. 1 where the axes 
are vL2 and vL3, the other input eigenvectors affect the community composition. This can be seen most clearly in 
Fig. 1b where the second eigenvector of the Laplacian matrix (vL2) divides the network in two as CDI only has 
the first two eigenvectors as input. vL1 has only positive entries, so community vertices form a trail behind their 
community leader that ends close to the origin of the eigenvector coordinate system.

The CDI can be used as an input to a perturbation optimiser, detailed in the Methods section (Algorithm 
3), that optimises the network’s convergence to consensus by maximising the first eigenvalue of the perturbed 
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Laplacian matrix. Essentially, the optimisation identifies the most effective leaders in the network, those with 
the highest vL1 values in each community, and applies a perturbation of variable magnitude to those vertices. The 
leadership perturbations applied from the CDI-based optimisation are detailed in Fig. 1, where the 3, 4 and 5 
eigenvector CDI (Fig. 1b,c) produce the same result and a faster convergence than the 1, 2 and 6 eigenvector CDI. 
The optimal number of eigenvectors, in terms of effective consensus leadership, varies depending on the network. 
Using only one or two eigenvectors makes it more likely that important community divisions are not identified, as 
seen in Fig. 1a,b, which produce the slowest convergence by only identifying two communities. Using more eigen-
vectors can also result in a sub-optimal performance with 6 eigenvectors outperforming the 1 and 2 eigenvector 
case but not the 3, 4 or 5 eigenvector optimisation.

In the following section, three eigenvectors are used for the detection of dynamical influence. CDI with three 
eigenvectors does not always produce the fastest consensus but in the following section it is shown to produce 
consistently good results (see Fig. 2). Three eigenvectors provides accurate community division whilst ensuring 
all communities are amongst the most influential. The issue with using more eigenvectors is that the detected 
communities may no longer reflect the most effective for leading network consensus. This has already been seen 
in Fig. 1e where a community formed (light blue - top right) with vertices that had high vL1 values because they 
were connected to more influential vertices in other communities, and not because they were effective network 
leaders on their own. A perturbation optimisation comparisons between 3 and 4 eigenvector CDI, using the series 
of k-NNR networks from Fig. 2b, revealed that 4 eigenvector CDI often produced a superior community division, 
and hence faster convergence, but it was occasionally susceptible to significant inaccuracies. Such inaccuracies 
were a result of poor community designation for the same reason that Fig. 1e produced a sub-optimal result.

Validation of community influence. When referring to the influence of a community, we are referring 
to the influence of the influential vertices in that community. These vertices wield the greatest global influence 
within their local cluster, but this usually means that they are also the most locally influential vertex. To validate 
the claim that the CDI are influential, we performed a series of analyses comparing perturbations optimised to 
drive convergence in linear consensus. The vertices highlighted by this optimisation are those that can lead the 
network effectively to a new state of consensus, i.e. those with strong local and global network influence, which 
should align with the influential CDI vertices and their communities.

The CDI and k-means clustering algorithms are used as an input to the perturbation optimiser, detailed in the 
Methods section (Algorithm 3). It should be noted that the k-means clustering requires the number of divisions 
to be defined and, hence, is set to detect the same number of communities as found by the CDI algorithm. The 
results of these optimisations are compared with the Communities of Influence (CoI) method31 and a numerical 
optimiser32 in Fig. 2. The CoI method generates optimised perturbations by detecting influence, using the first 
left eigenvector, and investigating how this influence changes when key vertices are removed from the network. 

Figure 1. Communities defined by the CDI method with (a) 1 eigenvector, (b) 2 eigenvectors, (c) 3 
eigenvectors, (d) 4 or 5 eigenvectors, (e) 6 eigenvectors. The network is k-NNR with 100 vertices, where k = 10. 
Communities are denoted by colour according to their influence over the whole network. An optimised 
perturbation using the chosen community detection overlays the network with circles that are proportional to 
the perturbation magnitude.
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This was shown to be effective in k-outdegree networks where the CoI method, using 5 input vectors, produced 
similar results to the output of a numerical optimiser31. In Fig. 2, the CDI optimiser is shown to produce similar 
result in k-outdegree networks to the CoI method, but achieves notably superior results when applied to variable 
k networks. In fact the CoI results are too low to be included for many of the networks sizes reported in Fig. 2c,d. 
The CDI-based optimiser frequently exceeds the results of the numerical optimiser, which struggles to find glob-
ally optimal minima.

The k-means clustering algorithm developed by Ng et al.33. also employs eigenvectors and a form of machine 
learning to define clusters. Figure 2 shows that the k-means clustering algorithm, when provided with the num-
ber of communities found by the CDI algorithm, can often identify the most effective network leaders by placing 
them in separate communities. The main differences between CDI and k-means clustering are seen in the variable 
outdegree k-NNR case, Fig. 2d, where the CDI performs consistently better.

The superiority of CDI in comparison with k-means clustering is made clearer by reducing the weight 
of each edge for a given graph. This alteration constricts the flow of information through the graph, with 
the result that perturbations need to be spread to a greater number of vertices to overcome this restriction. 
This phenomena is seen in Fig. 3a,b for a 100 vertex k-NNR topology with edge weight set at 1 and 0.2 
respectively. If the edge weight was reduced to 0, then the optimal perturbation would provide all vertices 
with the same perturbation, i.e. lead them all individually. By requiring more network leaders, the differ-
ence between CDI and k-means clustering can be seen even for the k-NNR topology, where the methods 
performed similarly in Fig. 2b. Comparing CDI in Fig. 3b with k-means clustering in Fig. 3c shows that the 
clusters generated by both methods are similar. But in the bottom right quadrant of the figures it can be 
seen that CDI detects a division that k-means does not and this results in a faster convergence speed for the 
CDI-based optimisation. These small differences in community designation are also what differentiates the 
methods in Fig. 2d.

Responsive starling flock topology. Starling flocks tend towards a thicknesses of between 0.13 and 0.27, 
where the flock thickness is the ratio of the smallest to largest dimension of an ellipsoid having the same principal 
moments of inertia as the flock22. In Fig. 4, five examples of 1200 bird starling flock networks are presented with a 
thickness of 0.2, where the flock is modelled by randomly distributing birds from a uniform distribution within a 
rectangular prism22. The community distribution and optimised perturbations are shown for these representative 

Figure 2. Consensus Speed Ratio, with reference to a numerical optimiser, for three different optimisations 
with 10 graphs at each vertex size interval. Outdegree is set at k = 10 for (a) Erdös-Rényi random networks and 
(b) k-NNR networks. Outdegree is varied between k = 3 and k = 10 for each vertex, by sampling at random from 
a uniform distribution, for (c) Erdös-Rényi random networks and (d) k-NNR networks.
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examples that employ k-NNR topologies for the following outdegrees; k = 5, 7, 15, 25 and 50. The starling vertices 
remain in the same position for each analysis with the number of nearest neighbours, k, the only change that 
affects the network structure.

What is of particular interest, from these results, is the position of the influential vertices in each example. In 
high k outdegree examples, such as Fig. 4c–e, the influential vertices, associated with the most influential com-
munities, are centrally located. An optimised perturbation (using 3 eigenvector CDI) is shown to align with the 
most influential communities, therefore the perturbations become increasingly centrally located as the outdegree 
increases. For the k = 50 example, in Fig. 4e, these perturbations are primarily located in the centre of the model 
flock. For lower outdegree examples, such as Fig. 4a,b, the influential vertices, especially those associated with 
the most influential communities, are more evenly distributed throughout the flock, aided by the increase in 
the number of CDI present. Considering an actual starling flock where k ≈ 7, the topology makes it more likely, 
in comparison with a higher outdegree scenario, that one of the most influential birds will be near the site of a 
predator attack. Therefore, the low outdegree topology is more likely to have a highly influential bird involved in 
leading a predation avoidance manoeuvre.

Varying the outdegree for the starling flock model, while using the same distribution of 1200 birds, and 
applying an optimised leadership perturbation changes the value of the dominant eigenvalue λ1 of the perturbed 
Laplacian matrix, which represents convergence speed. For outdegrees between k = 5 and k = 50, λ1 results 
roughly conform (R2 = 0.962) to a power law distribution (λ1 = 0.0031k−0.184). A higher convergence speed is 
indicative of a graph that can be more effectively led by key vertices. The highest convergence speeds, therefore, 
usually belong to networks with lower outdegrees. Given that a lower outdegree tends to result in faster pertur-
bation driven consensus, the reason for the outdegree remaining as high as 7 may be due to the requirements of 
maintaining a connected flock. If the outdegree is too low the flock may split whenever a perturbation is applied 
and may not reconnect. Defining a lower bound that ensures connectivity is beyond the scope of this paper, but 

Figure 3. Communities defined by the CDI method with 3 eigenvectors for (a) edge weights of 1, and (b) edge 
weights of 0.2 and in (c) k-means clustering is applied for edge weights of 0.2. The network is k-NNR with 100 
vertices, where the outdegree varies between 3 and 10 by sampling at random from a uniform distribution. 
Communities are denoted by colour according to their influence over the whole network. An optimised 
perturbation using the chosen community detection overlays the network with circles that are proportional to 
the perturbation magnitude.
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lower bounds have been identified for static topologies including k-NNR graphs where the required k increases 
with the number of vertices34.

Brain similarity detection. The CDI method is applied in this section on large-scale human connectomes 
generated by Roncal et al.35 from magnetic resonance imaging (MRI) scans carried out by Landman et al.25 
Landman et al. used 21 healthy volunteers, where each subject was scanned twice with a short break between scan 
and rescan (scan 1 and scan 2 respectively)25. Note that one of the scans, for subject 127, could not be sourced and, 
hence, this article shall consider the remaining 20 volunteers.

The networks generated by Roncal et al. are undirected and the adjacency matrix, rather than the 
Laplacian is used, due to the scale of the network (see Methods section). Therefore, the CDI no longer 
identifies the most effective leaders of system consensus as every vertex both leads and follows equally. This 
makes it impossible to differentiate between important sources and sinks of information in the network. The 
use of the adjacency matrix also means that the communities are ranked by popularity, i.e. the frequency 
with which a random walker would visit each vertex in the graph, rather than effective consensus leadership. 
Therefore, instead of drawing conclusions about a community’s network leadership, the CDI is used as a 
similarity metric by detecting changes in the influential communities (whether sources or sinks) of brain 
connectomes.

In the work by Roncal et al.35, the Frobenius Norm was successfully used to detect the similarity of these 
scan-rescan matrices created from Landman et al.’s study25. The Frobenius Norm is an established matrix dis-
tance measure36, referred to as Frobenius Distance when assessing graph similarity. The result from Roncal et al.’s 
study35 has not proven to be exactly reproducible with the published dataset25, as the scan-rescan comparisons 

Figure 4. Starling communities are denoted by colour according to the CDI method with the three most 
dominant eigenvectors for a 1200 vertex k-NNR starling flock model where (a) k = 5, (b) k = 7, (c) k = 15, (d) 
k = 25 and (e) k = 50. A single influential vertex is displayed for each community with a shaded circle and the 
optimised leadership perturbation using 3 eigenvector CDI is denoted with circles that are proportional to the 
perturbation magnitude.
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do not always produce the lowest values (i.e. greatest similarity). A superior similarity metric for this case was 
identified as Graph Edit Distance (GED), which is an inexact graph matching method defined as the cost of the 
least expensive sequence of edit operations that are needed to transform one graph into another37. Specifically, 
the results of edge GED38 are displayed in Fig. 5a for the scan 1 and 2 (scan and rescan) comparisons. GED has 
been used as an identification method for matching fingerprints37, but it fails to identify subject 113 from their 
scan-rescan comparison. The CDI based comparisons are shown in Fig. 5c,d for three and ten input eigenvec-
tors respectively. The CDI communities with 3 input eigenvectors are also displayed in three-dimensional space 
(Fig. 5d) for subject 113, with the difference in community density providing an insight into why edge GED failed 
but CDI succeeded in recognising subject 113. The paths taken by communities in Fig. 5d are mostly similar with 
one non-matching community present from scan 2. However, the density of these communities are significantly 
different with far more vertices in the scan 1 communities than those from scan 2. This also translates to the 
density of the connectivity network, where scan 1 has 841,097 vertices with a non-zero outdegree and scan 2 only 
has 647,049 vertices for subject 113. This difference of 194,048 vertices is far larger than any other scan-rescan 
comparison, where the next largest difference in 25,554 vertices (mean number of non-zero outdegree vertices 
is 836,699 for the other scans). This difference in graph density appears to prevent edge GED from detecting a 
match.

The CDI community matching, with ten input eigenvectors (Fig. 5c), presents a similar accuracy to edge GED 
(Fig. 5a). But it is notable that 3 eigenvector CDI produces some poor matches in Fig. 5c, such as subject 814 
and 849. This suggests that the most influential communities have changed between scan and rescan for these 
subjects as they are still recognisable when considering the less influential communities detected when using ten 
eigenvectors.

Similar results to Fig. 5c can be obtained by taking an approach based on normalised cut11, where the Fiedler 
vector divides the graph by the sign of the vector’s entries. This spectral bisection approach, as described in the 

Figure 5. Comparison of scan 1 and scan 2 from Landman et al.[25] subjects using (a) edge graph edit distance, 
and themean number of matching communities with CDI using (b) 3 eigenvectors and (c) 10 eigenvectors of 
the adjacency matrix. (d) displays the communities detected by CDI, using 3 eigenvectors, for scan 1 and 2 of 
subject 113 where the vertices are shown on a left lateral angled view of a brain, modelled with outlines from the 
x, y and z planes.
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Methods section, does not manage to clearly identify all subjects when applying the mean number of matching 
communities procedure. It also creates more off-diagonal false matches than Fig. 5c and does not give insight into 
any changes in neuronal influence.

Discussion
In this article a method for detecting Communities of Dynamical Influence (CDI) is proposed that uses the 
relationship between a selection of the most dominant left eigenvectors of the Laplacian to identify network divi-
sions. The communities are shown to be led by the most influential vertices by comparing with a perturbation 
optimiser that maximises the network convergence rate to consensus. CDI defines community divisions that can 
be similar to those detected by k-means clustering, but user selection is required to define k. In contrast, with CDI 
the number of community divisions are a product of the network topology and the number of input eigenvectors. 
Three input eigenvectors are shown to produce consistently good results when using CDI-based consensus opti-
misation, which is used herein as an assessment of the quality of the influential communities that are found. The 
selected number of input eigenvectors is a trade-off, for CDI, as more eigenvectors may highlight more or new 
communities but those communities may no longer represent the communities that form through association 
with an influential leader. There is scope to consider in future work weighting the contribution of less dominant 
eigenvectors to ensure high accuracy community division that is still focused on the most influential leaders.

For a starling flock model, the CDI reveal the benefit to starlings of maintaining a low outdegree. Higher out-
degrees were seen to reduce the responsiveness of the network, in the CDI-based perturbation optimisations, with 
the flock also becoming composed of fewer CDI. It was also seen that the most influential vertices became more 
centrally located within the flock, where they are unlikely to detect an incoming predator. The CDI did not reveal 
any optimality in the chosen starling outdegree, instead it was suggested k = 7 may have emerged as a compromise 
between ensured connectivity and fast response.

In this article a series of human brain networks, around 850,000 vertices in size, were analysed to identify neu-
ronal communities. The identified communities enabled separate MRI scans to be clearly recognised as belonging 
to the same subject, especially when using CDI with ten input eigenvectors. We conjecture that the subjects with 
the lowest mean number of matching communities, when using CDI with the first three eigenvectors, are those 
that display the greatest change in neuronal activity. Since these same subjects are clearly identified when consid-
ering the less influential communities detected by the 10 eigenvector CDI. Edge Graph Edit Distance is shown to 
be highly effective in identifying the scan similarity for the majority of matches with one exception. This excep-
tion highlights the effectiveness of the CDI approach, where pathways/community similarity was still clear even 
when comparing graphs and communities of significantly different sizes.

Methods
A graph is defined as G = (V, E), where there is a set of V vertices and E edges, which are unordered pairs of ele-
ments of V for an undirected graph and ordered pairs for a directed graph.

The adjacency matrix, A, is a square n × n matrix when representing a graph of n vertices. This matrix captures 
the network’s connections where aij > 0 (aij is the ijth entry of the graph’s adjacency matrix) if there exists a 
directed edge from vertex i to j and 0 otherwise. Variable edge weights contain information on the relative 
strength of interactions, whilst uniform edge weighting either only represents the presence of a connection or is a 
result of all the edges having the same information carrying capacity. For an undirected graph, the adjacency 
matrix is symmetric with an edge (i, j) ∈ E resulting in aij = aji > 0. For a directed graph, the indegree is equal to 
the column sum, ∑ ai ij, and outdegree is equal to the row sum, ∑ aj ij.

The Laplacian matrix is defined as L = D − A where the degree matrix, D, is a diagonal matrix and the ith 
diagonal element is equal to the outdegree of vertex i. The first eigenvalue of the adjacency matrix (λ1), referred to 
as the Spectral Radius, is the largest eigenvalue in magnitude and is associated with the Perron vector, which is an 
eigenvector that contains only positive entries. Whereas for the Laplacian matrix the first eigenvalue is associated 
with the eigenvalue λ1 = 026. For a directed graph, the left eigenvectors of the Laplacian matrix, vL, are row vectors 
satisfying vLL = λvL.

Communities of dynamical influence. The Communities of Dynamical Influence (CDI) are found by 
analysing the left eigenvectors of the Laplacian matrix as presented in Algorithm 1. The algorithm defines a coor-
dinate system using only the Real part of the selected eigenvectors for a chosen number of input eigenvectors. 
Hence, if any of the eigenvectors considered form a complex conjugate pair then the algorithm will only ever use 
one vector from the pair and then choose the next dominant eigenvector not in the pair, since the real part of the 
complex conjugates will be identical.

The CDI are based on first identifying the most effective community leaders. These vertices do not "follow" 
nodes with greater community influence, therefore they are identified as those with no outward connections to a 
vertex that is further from the origin in this eigenvector-based coordinate system.

A vertex is assigned to a community when there is a directed path from that vertex to a community leader, 
with each vertex on the path further from the origin of the eigenvector coordinate system than the previous. The 
number of communities is equal to the number of community leaders where a vertex can belong only to one 
community. If a vertex is assigned to multiple communities, then it is kept in the community where it is most 
aligned with the community leader and removed from the others. This alignment is determined by comparing 
the position vector of the vertex with respect to those of the most influential vertices using the scalar product.
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Perturbation driven consensus. The networks considered herein have n agents connected via local com-
munication with a static, time-invariant, topology. A uniform signal u = u[1, 1,…, 1]T ∈ IRn is supplied to all 
agents with different positive gains ci, where i = 1, 2,…, n. The dynamics of this system are defined as

∑= − + −

=

x a x x c u x( ) ( )
(1)

i
j

n

ij j i i i
1

where xi is the state of the ith agent and u is the scalar target value that all agents must achieve. The resource alloca-
tion, ci, ranges from 0 to 1, is globally bounded as ∑ici = 1, and scales the comparison between the uniform input 
signal, u, and the current state xi.

The global dynamics of the network can be expressed with respect to the Laplacian matrix as

= − + − L Cx x u x( ) (2)

where C is the perturbation matrix, C ← diag (c) = diag (c1, …, cp). Spanning trees have been highlighted previ-
ously as a condition for consensus39–41 since for a directed network G, defined by Eq. (2), consensus will eventually 
be achieved if all agents are reachable, via directed edges, from the vertices supplied with perturbation input.

Perturbation optimisation. A perturbation optimisation is presented as a method for validating the CDI 
algorithm’s ability to identify the most influential communities and network leaders. The objective function of this 
optimisation is to maximise the system’s convergence to consensus, by applying a globally bounded perturbation 
to the vertices. It has been demonstrated that, by changing the coordinates, Eq. 2 can be written as

= − + .
d

dt
L C

y
y( )

(3)

where the diagonal elements of C can be optimised to maximise the magnitude of λ1(−(L + C)), which is the 
most dominant (rightmost) eigenvalue (i.e. eigenvalue with the largest real part) of the negated and perturbed 
Laplacian matrix26.

The first step is to optimise a perturbation only applied to most influential vertex from each community, 
according to their vL1 value, as detailed in Algorithm 2. If the optimiser reduces the perturbation applied to the 
influential vertex to less than or equal to zero then the community is discarded from the optimisation. Once the 
optimiser has converged, only the communities associated with influential vertices that still have positive pertur-
bations are included in the next step of the optimisation.

For each of the selected CDI from Algorithm 2, an input vector ωi is created for each CDI with entries pop-
ulated with their vL1 entries if the vertex is in the community and values set to zero otherwise. These vectors are 

Algorithm 1. Detecting Communities of Dynamical Influence (CDI).

https://doi.org/10.1038/s41598-019-53942-4


1 0SCIENTIFIC REPORTS |         (2019) 9:17590  | https://doi.org/10.1038/s41598-019-53942-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

then manipulated, using the Power Optimisation method31 in Algorithm 4, and combined to produce the final 
optimised perturbation, with weighting variables used to determine the ratio of each vector’s contribution in 
Algorithm 3.

The Power Optimisation focuses resources on the most effective leaders by raising an eigenvector to a power, 
ηi, for a given input vector, ωi, according to

ω

ω
=
∑

η

η
p

( ) (4)i
i

i

i

i

where ω
η
i

i indicates an element-wise operation and the denominator ensures that ω∑
η( )i

i . When η → 0 the vector, 
pi, approaches a uniform vector state. As η is increased, the Power Optimisation method iteratively reduces the 
value of the smaller vector elements while increasing the value of the larger elements.

In the following equation t power optimised input vectors, pi, are combined using weighting variables, r = {r1, 
…, rt}, to produce the optimised perturbation vector as follows

=

∑

∑

=

=

c

(5)

j
t

r

j
t

r

p

1

1
1

j

j

j

where the denominator ensures that ∑j(c)j = 1. Also note that C = diag(c) in the −(L = C) system.
Algorithm 3 presents the perturbation optimisation procedure, where Eqs. 4 and 5 are used repeatedly 

with different inputs and constraints. A numerical optimiser, employing a sequential quadratic programming 
method42, is used throughout the algorithm to maximise the dominant eigenvalue by optimising the power, 
η = {η1, …, ηi}, and weighting, r = {η1, …, ηi}, variables for the i input vectors. The algorithm first optimises the 
power variables using the power optimisation method for one input vector. This power is employed for checking 
if adding any more input vectors and numerically optimising only the new weighting variable will increase the 
value of |λ1(−(L + C))|. If the convergence speed is improved then the new selection of input vectors will have 
their power variables numerically optimised, before repeating the search for new input vectors and optimising 
the new weighting variable. Once all input vectors have been checked both the weighting and power variables are 
optimised numerically.

To check that there are not any redundant input vectors, each vector is removed from the optimisation, start-
ing with the first input vector, to check if that removal increases |λ1(−(L + C))|. If removing the vector does not 
improve the performance then it is reintroduced and the process is repeated for the other community’s input 
vectors. The final combination of input vectors (i.e. communities) are optimised numerically by varying their 
weighting and power variables to maximise λ1(−(L + C)).

Matching brain communities. Each brain connectome graph contains 1,827,240 voxels that each repre-
sent a 1 mm3 volume of the brain. The centre of each volume (voxel) forms a three dimensional grid with 1 mm 
spacing between neighbouring voxels. Each edge in the graph is defined as any two vertices that are connected 
by at least a single fibre, where an edge of weight 1 would represent a single fibre connection. This results in an 
undirected network of weighted edges where around half of these voxels have connections in the subjects con-
sidered here.

Algorithm 2. Community Leader Optimisation.
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For the large brain connectome graphs, the adjacency matrix was employed, rather than the Laplacian, to 
identify CDI. This was due to the difficulty that emerged in converging on λ1 = 0 for such large matrices that 
contained more than one near zero eigenvalue. Both adjacency and Laplacian matrices can be used with the 
procedure in Algorithm 1. The left eigenvectors of these matrices are the same in certain cases, including graphs 
with a constant outdegree for each vertex. In other cases the eigenvectors vary but the first eigenvector contains 
all positive entries for both, while the following eigenvectors divide the network in a similar manner. It should 
also be noted that due to the undirected nature of the connectome data, the Laplacian matrix’s ability to highlight 
the imbalance between outdegree and indegree is less relevant. In fact, for an undirected Laplacian matrix the 
first eigenvector is uniform with an imbalance in the indegree and outdegree of vertices required to determine 
influence from this eigenvector.

The vertices included in influential communities from different graphs were compared to determine similarity. 
For this similarity comparison, the CDI were reduced in size by only including vertices with a large eigenvector 
entry. This eigenvector entry threshold was set at 0.01 (i.e. (vA)i > 0.01 where vA is any of the eigenvectors used in 
the CDI coordinate system). The similarity of two graphs was assessed by calculating the number of matching 
communities shared between both graphs. This comparison metric for assessing community matches, developed 
here, considers the shortest distance from all the vertices of one community to the nearest vertex that belongs to 
another. Vertices were considered overlapping if they are from the same voxel or they are in an adjacent voxel (i.e. 
maximum overlapping voxel distance ≈ .3 1 74 mm). The percentage of overlapping vertices are calculated for 
each community comparison to find the highest percentage overlap between two communities in separate scans. 
The communities appear to reveal pathways in the brain as depicted in Fig. 5b. These pathways can sometimes 
vary in density of vertices and in length, which makes an exact match between two communities unlikely. 
Therefore, for a pair of communities to be considered a match their percentage overlap had to exceed a threshold 
value. The mean number of matching communities was determined by taking the mean number of matches from a 
range of threshold values between 50% and 90%, at 10% intervals. Note that any community can only be a mem-
ber of one matching pair, i.e. if a community in one scan 1 matches with multiple communities in another scan 
only one of those matching pairs would be considered for the number of matching communities.

Algorithm 3. Perturbation optimisation using CDI.

https://doi.org/10.1038/s41598-019-53942-4


1 2SCIENTIFIC REPORTS |         (2019) 9:17590  | https://doi.org/10.1038/s41598-019-53942-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Finally, it is worth noting that there are always errors in the images produced from MRI scans, even when 
using the same equipment and procedures, with small errors occurring because of slight changes in image ori-
entation and magnetic field instability43. The mean number of matching communities is, therefore, also able to 
accommodate any small positional errors when detecting overlapping communities.

Spectral bisection. The Fiedler vector is associated with the second smallest eigenvalue of the Laplacian 
matrix but the second eigenvector of the adjacency matrix, used here for the analysis of brain networks, also 
divides the network in a similar manner. These spectral bisections are completed three times to create 8 commu-
nities by first dividing the network according to the second eigenvector, with the sign of its entries determining 
community division. The second eigenvector is then assessed for both of these communities and more divisions 
made. For the final bisection of four communities into eight, the second eigenvector was used unless it did not 
generate two communities with values higher than the threshold used when assessing the mean number of match-
ing communities, described previously. In this case the next eigenvector that divides the community, so that both 
divisions had values above the threshold, is selected. This ensures that all scans have eight eigenvectors with which 
to compare.
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