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Abstract

We develop numerical solutions of a theoretical model which has been pro-

posed to explain the formation of subglacial bedforms. The model has been

shown to have the capability of producing bedforms in two dimensions, when

they may be interpreted as ribbed moraine. However, these investigations have

left unanswered the question of whether the theory is capable of producing

fully three-dimensional bedforms such as drumlins. We show that, while the

three-dimensional calculations show realistic quasi-three-dimensional features

such as dislocations in the ribbing pattern, they do not produce genuine three-

dimensional drumlins. We suggest that this inadequacy is due to the treatment

of subglacial drainage in the theory as a passive variable, and thus that the

three-dimensional forms may be associated with conditions of sufficient sub-

glacial water flux.

Keywords: Ribbed moraine, instability model, numerical computation.

1 Introduction

Ice sheets flowing over sedimentary beds often transform what we presume to be
initially fairly flat beds of glacial deposits into organised and regular patterns of un-
dulations, having elevations of the order of ten metres and wavelengths of hundreds
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of metres, that are termed subglacial bedforms. The most numerous of these are
drumlins, which have defied satisfactory quantitative explanation for over one hun-
dred years in spite of much effort. They are elliptically shaped streamlined hills,
usually around 600 metres in length, 200 m wide and less than 10 m in amplitude
(Menzies 1979, Patterson and Hooke 1995, Clark et al. 2009). Possibly genetically
related to drumlins are mega-scale glacial lineations (MSGL) (Clark, 1993, King et

al. 2009) which are ridge–groove corrugations of much greater length (up to 100 km)
than drumlins and with lateral wavelengths of hundreds to thousands of metres, but
again with low amplitude (usually less than 10 m). In contrast to these bedforms
which are longitudinally-aligned with ice flow direction, ribbed moraines (figure 1)
are approximately parallel, fairly closely-spaced ridges formed transverse to ice flow
(Hättestrand and Kleman 1999, Kleman and Hättestrand 1999, Dunlop and Clark,
2006) and appear to resemble large ripples. All three landform types are occasion-
ally found in close proximity to each other and sometimes grade from one type to
another; classically from ribbed moraine to drumlins to MSGL in a downstream di-
rection. For this reason it is attractive to seek a theory for the generation of these
bedforms in which the different shapes are associated with different local ice sheet
conditions; for example, different ice sliding velocities, or (our current preference)
different sub-glacial water fluxes.

The motivation to seek a theoretical explanation for ribbed moraine which will
also, in different parametric circumstances, produce drumlins or MSGL, is apparently
at odds with the alternative view that many different mechanisms may be necessary
to explain these different bedforms, or even subspecies of ribbed moraine (e. g., Möller
2006, Lindén et al. 2008). For example, the transition from ribbed moraine to drum-
lins to lineations is only seen sometimes. More common in Sweden, for example, is
an association of ribs in valleys and drumlins on high ground (Lundqvist 1969).

While this in itself does not argue against a unifying theoretical framework, it is
arguable that the sedimentological characteristics of bedforms may do so. For exam-
ple, Möller (2010) argues from field studies that some south Swedish ribbed moraines
were formed by deposition of melt-out till; Lindén et al. (2008) suggest that some
north Swedish ribbed moraines were formed as a result of subglacial folding, thrust
stacking and lee-side cavity deposition. However, we presume that most subglacial
transverse ribs are actually true bedforms (i. e., yielding a regular patterning) and
might be explained by our theory, but note that some other transverse ribs could be
formed by other mechanisms such as those described by Möller (2010) or Lindén et

al. (2008). If so, then it is of course unfortunate that we all refer to such genetically-
different phenomena by the common name of ribbed moraine, when in fact they might
be different landforms.

The principal feature of subglacial bedforms requiring explanation is the mecha-
nism whereby the undulations, whatever shape they may be, are created and main-
tained. Whether they be initiated by bedrock bumps, melt-out moraines, pull-apart
drift sequences, remoulding of stiff till patches (Boulton 1987), or simply through the
interfacial instability of a flat bed, the bull-dozing effect of an overriding ice sheet
must be counteracted in some way by the combined flows of ice, sediment and water
at the base.
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Figure 1: Ribbed moraine in a digital elevation model of part of Co. Monaghan in
north-east Ireland. Ice flow is from left to right, and the image is approximately 30
km across. These are extremely large ribbed moraines with downstream wavelengths
of around 1 km and ridge lengths of 16 km (Clark and Meehan 2001). More typical
dimensions are wavelengths of 500 m and ridge lengths of 700m.

In this paper we show that numerical solutions of a mathematical model for sub-
glacial bedform production can generate appropriately scaled patterns that appear to
resemble the surface morphology of ribbed moraines. We show that numerical com-
putations can produce realistic ribs which have defects (e. g., planform curvature of
ridges and ridge terminations and bifurcations) similar to those seen in figure 1, and
we then comment on how the theory might be developed in order to explain drumlins
and MSGL within the same model.

Of all the ideas and hypotheses for subglacial bedform formation (e. g., Hättestrand
and Kleman 1999, Lindén et al. 2008, Fisher and Shaw 1972, Sugden and John 1976),
that which has been the most theoretically developed in its formulation as a mathe-
matical model is the mechanism which causes a linear instability in the coupled flow
of sediment (till) and the overlying ice, and which grows relief in the ice-till interface
at preferred wavelengths to yield patterns of landforms (i. e., bedforms). The theory
was originally described by Hindmarsh (1998) and Fowler (2000), and was a two-
dimensional theory, thus actually describing ribbed moraine. Hindmarsh and Fowler
assumed that their theory in its three-dimensional form would produce drumlins, but
Schoof (2007a) suggested that this would not be true, and inferred that the the-
ory was an unlikely candidate for the mechanism whereby subglacial bedforms form.
Schoof’s suggestion has been taken on as a matter of fact by Pelletier (2008), and
this naturally raises the question of whether the model can generate lateral nonlinear
instabilities, even though the linear theory precludes them: can a three-dimensional
implementation of the instability theory model render three-dimensional bedforms?

The development of the instability model, capable of producing waveforms at the

3



ice-sediment interface which morphometrically resemble ribbed moraine, motivated a
comparison of predictions with observations. Dunlop and Clark (2006) had mapped
and measured a large sample (33,000) of ribbed moraine from three different palaeo-
ice sheets and in a range of glaciodynamic contexts, and reported wavelength and
morphological details. These data have now been compared (primarily with regard
to the wavelength, i. e., ridge spacing) with BRIE model predictions (Dunlop et al.
2008) with the conclusion that the extensive suite of observations are consistent with
BRIE predictions and therefore do not falsify the model.

In this paper we develop three-dimensional numerical solutions of the BRIE model
in a version of the theory due to Schoof (2007a,b) and Fowler (2009). In a further de-
velopment of the results of Dunlop et al. (2008), Fowler (2009) showed that amplitudes
of the correct magnitude could also be predicted, but his results were restricted to
purely two-dimensional waveforms. One possibility, suggested by Fowler (2009), was
that the finite amplitude two-dimensional wave forms of the instability theory might
have secondary transverse instabilities, thus forming drumlins. Part of our purpose in
this paper is to examine this question, to establish the degree to which the instability
theory thus far developed is capable of producing three-dimensionality, whether in
the form of fully-formed drumlins, or simply the dislocated two-dimensional shapes
seen in figure 1.

2 Mathematical model

We present here a recent version of the instability theory, based on work by Fowler
(2010b). Earlier versions of the theory represent particular simplifications of this, as
we will try to indicate.

The basic geometry we consider is shown in figure 2. We take coordinates (x, y, z)
with z vertical. The ice upper surface is at z = zi, and slopes gently in the x direction
(hence driving ice flow from left to right, as well as a subglacial water flow, as we
assume the bed is at the melting point, and there is a subglacial melt-produced water
flux). At the origin x = 0, we suppose that the depth is di in the unperturbed state
where ice flows over a flat till sheet. We define N to be the effective normal stress at
the ice base z = s. Fowler (2010b) shows that there is a consequent hydraulic head

ψ = pw + ρwgs− (pa + ρigdi), (2.1)

and when written in terms of the effective stress, this is

ψ = ρig(zi − di) + ∆ρwigs+ Π − τnn −N, (2.2)

where pw is water pressure, ρi is ice density, ∆ρwi = ρw − ρi is the difference between
water and ice densities, Π is the reduced (by subtraction of the cryostatic value)
pressure, and τnn is the deviatoric normal ice stress at the ice base.

When the ice is attached to the till surface, i. e., the water depth h is zero, then
we model the groundwater flow in the till by Darcian flow:

φt =
kp

ηw

∇2ψ, (2.3)
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Figure 2: Basic geometry of the flow. The ice base is at z = s, and this is also the
till surface, unless the ice separates from the bed. If that happens, in a stream or a
cavity, the water depth is h, and the ice base is at z = s and the till surface is at
z = s − h. In the present paper, we suppose that till can be squeezed into cavities,
so that in effect h = 0 everywhere.

where we ignore local melt production. Here φ is the till porosity, kp is the till
permeability of the till, and ηw is the viscosity of water.

The sediment motion is described by the Exner equation

st + ∇.q = 0, (2.4)

where the sediment flux is

q = AV, V = cu − b∇pe, (2.5)

pe is the effective pressure in the till,

pe = N + ρTg(s− z), (2.6)

ρT is the density of till, and the depth of deformable till A is given by

A =
[τ − µN ]+

µ∆ρswg(1 − φ)
, (2.7)

where µ is a coefficient of friction for the sediment, ∆ρsw = ρs−ρw is the difference in
density between sediment and water, and the divergence and gradient operators are
horizontal, i. e., with respect to x and y only. The average till velocity V represents
the motion due both to shearing by the ice velocity u, and squeezing down gradients
in effective pressure.
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We suppose that the porosity of till is described by a dependence on effective

pressure pe, so that φt = φ′(pe)
∂pe

∂t
. Assuming that φ′ < 0 is constant, and that the

aquifer depth, permeability and porosity do not vary significantly, Fowler (2010b)
shows that (2.3) leads to

φ′ [Nt + raρTgst] =
kp

ηw

∇2ψ, (2.8)

where ra ∈ [0, 1] is a parameter which represents an uncertainty in the depth of the
groundwater aquifer. If the aquifer is in the whole sediment column 0 < z < s, then
ra = 1, while if it is confined to a fixed depth of dilatant till beneath the ice/till
interface, then ra = 0.

When the model (2.2), (2.4), (2.5), (2.7) and (2.8) is made dimensionless (Fowler
2010b), we obtain the equations in the form

ψ = −σx+ s− Θ −N,

Nt + r′′st = −Γ∇2ψ,

st + ∇. [A{cūi − β∇(N + r′s)}] = 0,

A =

[

τ

µ
−N

]

+

, τ = f(ū, N). (2.9)

The definition of τ is determined by the sliding law. In addition the ice surface
perturbation H from the constant slope surface is determined by

λHt = Ξ, (2.10)

and the quantities Θ and Ξ are themselves determined in terms of the quantities H,
K and F , where the latter two are defined by

K = αst + ūsx, F = f(ū, N) − 1. (2.11)

The determination of Θ and Ξ is described by Fowler (2010a). The Fourier transforms
of Θ and Ξ are given by linear combinations of those of H, K and F .

The definitions of the parameters in the model are given by Fowler (2010b), along
with typical representative values; these are given in table 1.

A feature of the model is that when N reaches zero, the ice must separate from
the bed, forming a cavity or a stream. Fowler (2010b) describes an appropriate model
for water and sediment transport in this case. Here we adopt the simpler approach
of Fowler (2009), which simply allows A to take any positive value when N = 0.
The extended function A(N) thus defined is then approximated as described below
in determining solutions.

3 Numerical simulations

In this section, we present numerical solutions of two different versions of the model
in (2.9). In earlier work (e. g., Fowler 2010a), the subglacial hydraulic system was
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Symbol Description Parameter value
Physical parameters

β Lateral till flux diffusivity 1.26 × 10−3

r′ 24.1
r′′ ≤ 24.1
θ (static streams) 0.38
θ (dynamic streams) 1
Γ (dynamic streams) 0.073
b Sliding law parameter (< 1 for instability) 0.6
s− Stream level 0
λ Time scale for surface adjustment 0.8 × 10−2

α Deformable till depth parameter 0.1
σ Corrugation 0.2

Numerical parameters

ω Controls slope in A(N) 2.0
δ Controls approach to N = 1 in A(N) 0.1
γ Controls severity near N = 0 in A(N) 2.0
D Filtering coefficient 0.2
m Fourier modes 120
n Grid points 400

Table 1: Typical values of the dimensionless parameters.
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taken to be static, in the following sense. The water pressure at the ice/till interface
was supposed to be hydrostatically linked to a stream system, whose effective pres-
sure was supposed determined independently by a hydraulic model such as that of
Röthlisberger (1972) or Walder and Fowler (1994), which provided a prescription for
the effective pressure near the channel,

Nc = pa + ρig(zi − s−) − pc, (3.1)

where pc is the channel water pressure and s−(t) is its elevation. This led to a
prescription for N in dimensionless form as

N = 1 − s− + s−H − Θ, (3.2)

where the stresses are scaled with Nc, and the ice flow coefficients Θ and Ξ then
depend on the additional parameter

θ =
τb

Nc

. (3.3)

The coefficient 1 in (3.2) indicates the assumption that Nc is constant. In terms of ψ
(as scaled in (2.9), i. e., with the ice sheet basal stress τb (see Fowler 2010b), (3.1) is
equivalent to

ψc = −σx+ s−(t) +H −
1

θ
. (3.4)

Consulting (2.9), we see that the hydrostatic limit corresponds to Γ → ∞, in
which case (with appropriate boundary conditions) we might suppose

ψ = −σx+ s−(t) −A, (3.5)

where A is constant. This can be reconciled with (3.4) if we assume Nc = (A+H)τb,
but in reality we should not worry about any discrepancy, since in the model (2.9),
there is no explicit recognition of a separate stream system. In fact, as we will find
H ∼ 10−3 and A ≈ θ−1 ≈ 2.5, there is very little difference. Thus we will consider the
model in two forms: the first is the static stream system in which we replace the first
two equations in (2.9) by (3.2) (and we have a prescribed constant Nc, and thus the
parameter θ 6= 1); the second, which we call a dynamic stream system, solves (2.9)
with Γ < ∞; there are no explicit streams present, and thus Nc has no meaning. In
terms of the scaled ice model, this means that we choose θ = 1, and the stresses are
scaled with τb.

3.1 Passive stream model

In this section we present a numerical solution to the dimensionless equations govern-
ing the evolution of the ice-till interface s(x, y, t), basal effective pressure N(x, y, t),
and ice surface H(x, y, t). Both the bed s and the upper surface H require initial
conditions, and these are taken to correspond to small amplitude perturbations of
the uniform flat state. Specifically, s is given by a random function of dimensionless
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amplitude ∼ 10−3, while H is taken to be flat, i. e., H = 0. Because the calculation
of the ice flow is done using Fourier transforms (Fowler 2010a), it is particularly con-
venient to use a spectral method. Denoting the transforms by overhats, we take the
Fourier transform of the equations (2.9)3, (2.10) and (3.2) to get

ŝt = ik1cūÂ− βk2N̂ ,

N̂ = 1̂ + ŝ− ŝ− − Ĥ − Θ̂, (3.6)

λĤt = Ξ̂,

where k = (k1, k2) and k = |k|. A further simplification has been made in (3.6)1, in
that the diffusion coefficient βA for N is replaced by the constant β. Here Θ̂ and
Ξ̂ are linear functions of Ĥ, F̂ and K̂, see Fowler (2010a). For convenience we take
ū = 1 and c = 1. To close the system, we first specify the sliding law (as given by the
generalized Weertman law)

f(1, N) = θN b, (3.7)

and secondly, we specify the functional dependence of A(N). Following Fowler (2009)
we approximate A(N) via

A(N) =
[

δ

{

1

Nγ
− 1

}

+Nω(2 −N)
]

+

, (3.8)

for some constants δ, γ and ω.
The computational domain is taken to be a square with periodic boundary condi-

tions, i. e., the variables are taken to be periodic over the domain. Since the domain is
much larger than the waveforms which develop, this is not a constrictive assumption.
Unless otherwise noted, the domain is discretized with a uniform grid of 400 × 400
grids in the physical space and utilize 120 × 120 Fourier modes. As for the initial
conditions, we consider a perturbed ice-till interface with an amplitude of approxi-
mately 10−3 units and a uniform ice surface H. The integration is performed in the
spectral domain and we invert to recover the solution. All of the solutions were per-
formed on a 3GHz, Intel Core 2 Duo CPU, 3.25GB RAM, with a typical run requiring
approximately 12 hours of computation time.

The solution behaved in a way consistent with Fowler’s (2009) observations: there
is an initial phase where N grows in amplitude, oscillating about N = 1 on the
unstable branch of the A(N) curve. However, in the present case these oscillations
are so severe that there is a breakdown in the integration. This suggests taking very
small time steps or using some adaptive time stepping method. Hence in addition to
reducing the time step, we filtered the transforms via pre-multiplication by

r =
1

1 +Dk2
(3.9)

where D is a small filtering coefficient (Fowler 2009). This reduces the oscillations in
N .

The equations are integrated to an approximately stationary state, as shown in
figures 3, 4 and 5. The side profiles are consistent with Fowler’s (2009) filtered two
dimensional simulations. Discussion of these results is given in section 4.
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a. Profile for the ice base, s. b. Profile for the effective basal pressure, N .

Figure 3: Profiles for the ice base and effective pressure for the static stream system,
with all the parameters chosen as in Table 1. Ice flow is from left to right. The
final state was reached at t ≈ 5. The bedforms are essentially two-dimensional, with
numerous dislocations. The blue areas in the right hand figure are cavities, where
N is (close to) zero. The units are dimensionless; thus the horizontal lengths are
measured in units of l ≈ 280 m, while the elevation colour scale is in units of dD ≈ 12
m. These scales themselves depend on ice flow properties, and will not necessarily
always take these values. Thus in the figures here, the total elevation of the bedforms
is about 5 m, while their period is about 620 m.
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a. Profile for the ice base, s. b. Profile for the effective basal pressure, N .

Figure 4: Side-view profiles corresponding to Fig. 3 taken at y = 0.
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a. Profile for the ice surface, H. b. Side-view profile for the ice surface at y = 0.

Figure 5: Profiles for the ice surface. Units scaled up by 103. The final state was
reached at t ≈ 5.

3.2 Active stream model

In this section we present numerical solutions of the dynamic stream model (2.9). We
put

ψ = −σx+ Ψ, (3.10)

and then take Fourier transforms to find (again taking constant diffusivity for N)

N̂t + r′′ŝt = Γk2Ψ̂,

ŝt = ik1cūÂ− βk2(N̂ + r′ŝ), (3.11)

Ψ̂ = ŝ− Θ̂ − N̂ ,

where all the parameters are chosen as in Fowler (2010b).
Here we consider a computational domain of size 10 dimensionless units in each

direction. The domain is discretized on a uniform mesh with 200 grid points and 60
Fourier modes in each direction. The numerical simulations are presented in figures
6, 7 and 8.

While the numerical computations for the passive case seemed relatively benign,
this was less true of the active case. There was a numerically suspicious tendency to
form ‘boomerangs’, which are manifested as fairly sudden right-angled turns in the
topographic contours. Figure 6 is a fairly typical example, where a typical boomerang
can be seen at (6.5, 5.5) and (7, 7), for example. These boomerangs tend to propagate
through the pattern, suggesting that, if real, they may be transient effects.

The main distinction in the active case is that the ribs now move in the direction
of ice flow, and are no longer stationary features. In addition, the ribs coarsen as
they develop, in keeping with models of other similar phenomena, for example desert
dunes.
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a. Profile for ice base, s. b. Profile for effective basal pressure, N .

Figure 6: Computations of the dynamic stream system on a 10× 10 domain: profiles
for the ice base and effective pressure with all the parameters chosen as in table 1,
except that σ = 0.28 and α = 0.086, and we take r′′ = r′. The steady state was
reached at t ≈ 2.
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a. Profile for ice base, s. b. Profile for effective basal pressure, N .

Figure 7: Computations on a 10×10 domain of the dynamic stream system: side-view
profiles for figure 6 taken at y = 0.
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a. Profile for the ice surface, H. b. Side-view profile for the ice surface at y = 0.

Figure 8: Profiles for the ice surface. Units scaled up by 103.

3.3 Numerical diagnostics

To ensure our numerical algorithm is computing a consistent solution, several numer-
ical experiments were performed.

To investigate the accuracy and efficiency of the numerical algorithm, different
methods were used to integrate the resulting Fourier discretizations. These include
the forward Euler (FE) method, the modified Euler (ME) (or Crank-Nicolson) method
and the classical fourth order Runge Kutta (RK4) method. However, finally we
resorted to the built-in MATLAB ODE solvers because of their simplicity and adaptive
time step capability. In particular, we encountered stability problems using the FE
method and simulations with ME or RK4 were only possible with time steps as low
as 10−5. We emphasise that we observed no differences in the resulting solutions from
all four methods considered.

To investigate the effects of the initial condition on the final state profile, we ran
the simulations with different initial conditions. For example, we used the final state
solution as our initial condition but with double the number of Fourier modes. A
related test involved integrating the equations over a larger time domain. In all cases
there were no observed discrepancies in the final solution profile.

A particular question of interest involved the effect of varying the ice thickness
through the parameter σ. Results (not shown here) indicate that the wavelength of
the ribs is larger for deeper ice (smaller σ).

4 Discussion

We have considered a spectral method to solve a theoretical model of ribbed moraine
formation in three dimensions. The challenge of using spectral approximations to
solve equations that exhibit piecewise smooth solutions has been encountered else-
where (Fowler 2009, Canuto et al. 2007) and is well known in the spectral methods
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community. In most cases some smoothing mechanism has be implemented. In the
present case, the computations break down if the time step is too large, as in that case
N takes negative values. Thus a filtering procedure was applied at every time step
to dampen the spurious high frequency oscillations which occur because of Gibbs’
phenomena. Different filtering coefficients were used to test the converged numer-
ical solution and in all cases there was no discernible difference in the solutions so
obtained.

The theoretical model is a generalisation of that of Fowler (2009), in which it
was assumed that the basal water in the till was in hydraulic equilibrium, and where
cavities produced by the flow of ice over the developing topography were supposed to
be in-filled by sediment, in the manner of crag and tails. This assumption leads to a
formulation in which the deformable till thickness A(N) takes on arbitrary (positive)
values if N reaches zero, and in the numerical implementation this formulation is
approximated by taking the function A(N) to be as defined in (3.8).

Additional developments in the model are consideration of finite depth of ice,
which allows a prescription for the perturbation to the ice upper surface, the incorpo-
ration of a term which describes the squeezing of till down effective pressure gradients,
which leads to a diffusive term ∇2N in the Exner equation, and an allowance for non-
equilibrium hydraulic potential, which leads to a diffusive equation for the hydraulic
potential ψ, with a diffusional coefficient Γ. The equilibrium limit, in which Γ → ∞,
is termed the static stream model, while that in which Γ is finite is termed the dy-
namic stream model. Both models are able to produce rib-like formations, but over
similar time scales these have distinct forms.

The static stream model ribs (Γ = ∞) reach an apparent steady state on a time
scale of O(1), dimensionally corresponding to thirty years. The ribs are characterised
by regular waveforms (figure 3) in which dislocations occur through the branching
and coalescence of individual ridges. The waveforms (figure 4) are unrealistic, having
sharp jumps at peak and trough, associated with the end points of the cavities.
Mathematically, the reason for this is that where N jumps rapidly (at the end points
of cavities) the term ∇N in (2.9)3 becomes large, and so ∇s has to jump rapidly
also.

The corresponding perturbation to the ice surface is shown in figure 5. It is
noticeable that the rib wavelength is more or less absent in the surface perturbation,
and also that the amplitude is of O(10−2); the scale for this is diS, where di is the
ice depth and S is the ice surface slope. With di = 1,000 m and S = 10−3, the ice
surface perturbation scale is one metre, so that figure 5 suggests surface perturbations
of order one centimetre: essentially nothing.

The corresponding contour plots for s and N in the dynamic stream model with
Γ = 0.073 at a similar time (t = 2, corresponding to sixty years) are shown in figure
6. These ribs are much more reminiscent of real ribbed moraine, both in planform
and in profile (figure 7), and this can be emphasised by plotting the elevation data
as if it were a digital elevation model, as shown in figure 9. However, there is a
caveat. It can be seen that their amplitude is much smaller (corresponding to about
a metre), and in addition they migrate downstream, becoming coarser as they do so.
Our inference is that this is due to the fact that Γ is small in (3.11), which has the

14



Figure 9: The surface topography of ribs from the model run of figure 6, with a solar-
shaded rendition typically applied to digital elevation models of real landscapes. The
modelled ribs have the appearance of ribbed moraine when seen in digital elevation
models (e. g., figure 1).The appearance of channel-like forms breaching some of the
ribs should not be taken seriously as they are likely artefacts; the model does not
resolve water routing at this scale.

effect of allowing the hydraulic potential to evolve over the longer time scale O
(

1

Γ

)

,

which corresponds to about four hundred years. Indeed, the steady state solutions
shown in figure 3 are also solutions of the dynamic stream model, although it is not
obvious that they will be stable. To examine this, we ran the dynamic stream model
to a dimensionless time t = 30. It is found that the ribs continue to propagate and
coarsen, suggesting that the statically determined ribs in figure 3 are unstable.

Although the ribs in figure 6 are very suggestive of real ribs, one must be cir-
cumspect about the model that has been used to produce them. Both the dynamic
and static stream theories assume a background hydraulic system with, in effect, very
little water flux. Fowler (2010b) shows that for a subglacial system with no explicitly
separated water flow (i. e., h = 0 everywhere), a typical steady state value of the di-
mensionless hydraulic gradient would be −ψx = Ω ∼ 106, assuming till permeability
of 10−15 m2. Such a large value of the hydraulic gradient is not consistent with the
present model, although excavation of fines near the ice/till interface can effectively
increase the permeability while still allowing ice to maintain contact with the coarser
sediments (Creyts and Schoof 2009). Even in this case, however, we would expect
water to be concentrated in the cavitated (blue) regions in figure 6b, and it is evident
from this figure that the ribs themselves provide an effective barrier to downstream
water flow. This suggests that if the magnitude of the water flux is incorporated into
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the model, it will alter the morphology of the ribs; another way of putting this is to
say that we would only expect figures such as those in figure 6 to occur where the
subglacial water flux is small: this would be near divides, or near regions where the
basal ice is sub-temperate (i. e., at the melting point, but with no net production of
water).

A further point is that the time scale for evolution of the ribs in figure 6 is so
long that it is reasonable to suppose that changes in ice flow or thermal régime will
effectively cause the boundary conditions for the dynamic stream model to vary on

the time scale O
(

1

Γ

)

, so that transient solutions such as that in figure 6 would indeed

be realistic.
The instability theory, in as far as we have developed it, does not yet say anything

about the sub-surface sediment architecture. Our aim has been to use a physically
based theory to explain the surface undulations that comprise ribbed moraine, be-
cause we regard this to be the primary characteristic of such landforms. The classical
sedimentological approach tends to take a different view, arguing that the nature
and disposition of the internal sediments is the primary characteristic, and concep-
tual models are then built to explain these (e. g., Möller 2010, Lindèn et al. 2008),
but thus far they appear unable to explain the regular patterning of ribbed moraine.
Clearly at some point, both approaches need also to attempt to explain the other as-
pect. How the instability theory might explain sediment architecture will be reported
in forthcoming publications.

5 Conclusions

Three-dimensional calculations of two versions of the instability theory of drumlin
formation suggest that the segmented ridge pattern which is typically observed can
be well simulated by the model. However, no genuine three-dimensional bedforms
(drumlins) are produced. In both versions of the model presented here, it is essentially
assumed that hydraulic drainage occurs through a passive stream system which does
not interact with the ice flow. Two versions of this theory are studied: a static
one, where water is everywhere in hydraulic equilibrium, and a dynamic one, where
transient effects due to groundwater flow are included. Elsewhere (Fowler 2010b), we
have shown that if an active stream flow model is included, then rilling instabilities
occur which cause the formation of down-ice water streams separated (at scales of
hundreds of metres) by elevated lineations. It is therefore natural to expect that if an
active stream system is included in the model, then the ribbing and rilling instabilities
will combine to form genuine three-dimensional bedforms, and it is also natural to
suppose that the particular shape of these will be determined by the size of the basal
water flux through the system. A systematic investigation of this awaits further work.
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