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Abstract

This paper is concerned with a late stage of lymphangiogenesis in the trunk of the

zebrafish embryo. At 48 hours post-fertilisation (HPF), a pool of parachordal lym-

phangioblasts (PLs) lies in the horizontal myoseptum. Between 48 and 168 HPF, the

PLs spread from the horizontal myoseptum to form the thoracic duct, dorsal longitu-

dinal lymphatic vessel, and parachordal lymphatic vessel. This paper deals with the

potential of vascular endothelial growth factor C (VEGFC) to guide the differentiation

of PLs into the mature lymphatic endothelial cells that form the vessels. We built a

mathematical model to describe the biochemical interactions between VEGFC, colla-

gen I, and matrix metalloproteinase 2 (MMP2). We also carried out a linear stability

analysis of the model and computer simulations of VEGFC patterning. The results

suggest that VEGFC can form Turing patterns due to its relations with MMP2 and

collagen I, but the zebrafish embryo needs a separate control mechanism to create the

right physiological conditions. Furthermore, this control mechanism must ensure that

the VEGFC patterns are useful for lymphangiogenesis: stationary, steep gradients, and

reasonably fast forming. Generally, the combination of a patterning species, a matrix

protein, and a remodelling species is a new patterning mechanism.

Keywords Reaction–diffusion models · Turing patterns · Lymphangiogenesis ·

Zebrafish · VEGFC · MMP2 · Collagen I

1 Introduction

We have previously proposed a mathematical model about lymphangiogenesis in the

zebrafish embryo’s trunk (Wertheim and Roose 2017); it describes the biochemistry
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1202 K. Y. Wertheim, T. Roose

of the process. Specifically, the concentration dynamics of the vascular endothelial

growth factor C (VEGFC), matrix metalloproteinase 2 (MMP2), tissue inhibitor of

metalloproteinases 2 (TIMP2), and collagen I are described. These dynamics are

related to the lymphangiogenic events between 36 and 48 hours post-fertilisation

(HPF). These developmental events are illustrated in Fig. 1a, b. In that period, the

progenitors of lymphatic endothelial cells (LECs), represented by the green cross

in Fig. 1a, exit the posterior cardinal vein (PCV), represented by the blue circle in

Fig. 1a, and migrate dorsally to form a pool of parachordal lymphangioblasts (PLs) in

the horizontal myoseptum, represented by the black crosses in Fig. 1b. The histolog-

ical sections in Fig. 2, especially Fig. 2f, help us visualise this sequence of events in

the embryo.

This paper is concerned with what happens afterwards. After 48 HPF, the PLs

represented by the black crosses in Fig. 1b exit the horizontal myoseptum and migrate

both ventrally and dorsally along the intersegmental arteries (aISVs), represented by

the red line in Fig. 1b. Before 120 HPF, they form the thoracic duct (TD) and dorsal

longitudinal lymphatic vessel (DLLV), represented in Fig. 1c by the dark and light

green circles, respectively. As reviewed by Mulligan and Weinstein (2014), some

LECs leave the intersegmental lymphatic vessels (ISLVs), represented by the black

curve in Fig. 1c. These LECs migrate anteriorly and posteriorly along the horizontal

myoseptum to form the parachordal lymphatic vessel (PLV) by 168 HPF; this vessel

is represented by the black circle in Fig. 1d.

We speculate that the lymphatic endothelial cells (LECs) in the lymphatic vessels

shown in Fig. 1d (dark green, light green, and black circles) have different properties

from the parachordal lymphangioblasts (PLs) shown in Fig. 1b (black crosses). First,

the LECs can organise into well-defined vessels at their destinations (Coffindaffer-

Wilson et al. 2011), as opposed to the transient, nonlumenised string of PLs in the

horizontal myoseptum (Hermans et al. 2010). Second, the same pool of PLs leads

to at least three different vessels. Functionally, this pool is equivalent to the plexus

in the mouse embryo, an initially homogeneous structure which differentiates into

lymphatic capillaries, precollectors, and collecting lymphatic vessels (Schulte-Merker

et al. 2011).

In summary, the time frame this paper considers is between 48 and 168 HPF. We are

interested in what guides the differentiation of the PLs in the horizontal myoseptum

into the mature LECs in the TD, DLLV, and PLV.

We hypothesise that VEGFC can form Turing patterns to regulate this process.

This classic patterning mechanism was proposed by Turing (1952) and can be defined

as follows. When two chemical species with different diffusion rates react with each

other, a homogeneous steady state (HSS) may become unstable and give rise to a

spatial pattern.

In the next section, we will describe a simplified version of our previous model. After

that, we will present a linear stability analysis of the model, focussing on the Turing

space; it is the part of the model’s parametric space where Turing’s mechanism is

expected to work. Then, we will determine the factors that favour Turing’s mechanism.

After analysing computer simulations of the emergence of VEGFC patterns, we will

end the paper by relating them to lymphangiogenesis. Due to the large number of

abbreviations in this paper, a nomenclature is provided in Table 1.
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Can VEGFC Form Turing Patterns in the Zebrafish Embryo? 1203

Fig. 1 Developmental steps that generate the lymphatic system in the zebrafish embryo’s trunk (Wertheim

and Roose 2017); reproduced and modified with permission by the Creative Commons Attribution License.

(a–d) show a slice of the trunk cut along the ventral–dorsal axis; they depict the developmental events

with a frontal view (along the anterior–posterior axis). This slice has a pair of intersegmental arteries

(aISVs) and a pair of lymphatic sprouts, one of which fuses with an aISV to form an intersegmental vein

(vISV). There are 30 slices like this one in the trunk. (a) Under the influence of the vascular endothelial

growth factor C (VEGFC), lymphatic progenitor cells exit the posterior cardinal vein. (b) They migrate

into the horizontal myoseptum to form a pool of parachordal lymphangioblasts (PLs). Eventually, the PLs

exit the horizontal myoseptum and migrate along the aISVs. (c) When the PLs reach where the thoracic

duct and dorsal longitudinal lymphatic vessel lie, they migrate anteriorly and posteriorly to connect with

the PLs from the other slices. (d) Some lymphatic endothelial cells (resulting from the PLs) leave the

intersegmental lymphatic vessel, migrate anteriorly and posteriorly along the horizontal myoseptum, and

form the parachordal lymphatic vessel. HPF abbreviates hours post-fertilisation (Color figure online)
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1204 K. Y. Wertheim, T. Roose

Fig. 2 Vascular system in the zebrafish embryo at 60 hours post-fertilisation (Schuermann et al. 2014).

Reproduced with permission by a licence provided by Elsevier and Copyright Clearance Center (licence

number: 4414440737864, 22/08/2018). The vasculature is shown in green; blood cells, red. a Lateral

view of the entire vasculature. Magnified versions of the boxed sections are shown in the corresponding

subfigures. b Lateral view of the aortic arches. c Lateral view of the caudal vessels. d Bird’s-eye view

of the central arteries. e Lateral view of the common cardinal vein. f Lateral view of a dorsal longitudinal

anastomotic vessel (DLAV), an intersegmental vein (vISV or SeV), an intersegmental artery (aISV or SeA),

the parachordal vessel (PAV, a pool of parachordal lymphangioblasts in the horizontal myoseptum, not to be

confused with the parachordal lymphatic vessel or PLV), the dorsal aorta (DA), and the posterior cardinal

vein (PCV) (Color figure online)

2 Mathematical Model

We will begin this section by describing and justifying the geometry of our model. Our

geometry is a line spanning the ‘height’ of the zebrafish trunk. As a first approximation,

we decided to consider one dimension only; we could perform a linear stability analysis

in one dimension. To keep our model simple, we built it on the ventral–dorsal axis

of the zebrafish embryo’s trunk. We made a reasonable approximation because the

lymphatic ducts are distributed along that axis and the biochemical gradients in the

trunk are along the ventral–dorsal axis (Wertheim and Roose 2017).

Regarding the biochemistry, we drew on our previous work (Wertheim and Roose

2017). In that study, we concluded that VEGFC, MMP2, and collagen I form the axis

of the biochemistry underlying lymphangiogenesis. VEGFC is the key regulator of

the process; it is the growth factor, and potentially the morphogen and chemotactic

factor, for the LECs and their progenitors in the trunk. Collagen I is the major structural

component of the trunk; VEGFC binds to it reversibly. MMP2 controls the biophysical
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Table 1 Nomenclature

Abbreviations Meanings

aISV Intersegmental artery

BDF Backward differentiation formula

CCBE1 Collagen and calcium-binding EGF domain-containing protein 1

C1 Collagen I

DA Dorsal aorta

DLAV Dorsal longitudinal anastomotic vessel

DLLV Dorsal longitudinal lymphatic vessel

HPF Hours post-fertilisation

HSS Homogeneous steady state

ISLV Intersegmental lymphatic vessel

LEC Lymphatic endothelial cell

MMP2 Matrix metalloproteinase 2

MT1-MMP Membrane type I matrix metalloproteinase

ODE Ordinary differential equation

PCV Posterior cardinal vein

PL Parachordal lymphangioblast

PLV Parachordal lymphatic Vein

proMMP2 Precursor of MMP2

TD Thoracic duct

TIMP2 Tissue inhibitor of metalloproteinases 2

VEGFC Vascular endothelial growth factor C

vISV Intersegmental vein

properties of the trunk by degrading collagen I. Although TIMP2 binds to MMP2, it

only changes the baseline concentration of the latter, not its spatial profile. Therefore,

we ignored TIMP2 when we built the model. We also ignored the biochemistry inside

the LECs and their progenitors because we were interested in the emergence of VEGFC

patterns on the tissue level. In summary, the system is a mass of collagen I bathed

in interstitial fluid. Collectively, the mass and fluid constitute the interstitial space;

VEGFC and MMP2 are solutes in the interstitial fluid and react with collagen I. VEGFC

is the proposed patterning molecule, collagen I controls the transport of VEGFC in

the trunk, and MMP2 degrades collagen I.

Regarding the biophysics, we did not model convection because diffusion is the

dominant transport phenomenon in the trunk. This is supported by the Péclet number

calculated in our previous work: for the diffusivity of VEGFC, the maximum Péclet

number is 0.14909 (Wertheim and Roose 2017). VEGFC and MMP2 can diffuse in

the interstitial space, but their diffusion rates depend on the abundance of collagen I

(Lutter and Makinen 2014). The model describes collagen I as immobile because it is

the structural component of this idealised system.
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2.1 Model Equations

Inspired by our previous model (Wertheim and Roose 2017), we decided to use a

set of reaction–diffusion equations to model the aforementioned biochemical and

biophysical events.

In the interstitial space, along the ventral–dorsal axis,

∂CM2

∂t
=

∂

∂x

[

D
e f f

M2

∂

∂x

(CM2

ω

)]

+
PM2CV C CC1

CV C,sCC1,s

− k
deg

M2 CM2, (1)

∂CV C

∂t
=

∂

∂x

[

D
e f f

V C

∂

∂x

(CV C

ω

)]

+
PV C CC1

CC1,s

− k
deg

V C CV C

− kon
V C,C1CV C CC1 + k

of f

V C,C1CV C ·C1, (2)

∂CC1

∂t
= PC1 − kcat

M2,C1CM2 − kon
V C,C1CV C CC1 + k

of f

V C,C1CV C ·C1, and (3)

∂CV C ·C1

∂t
= kon

V C,C1CV C CC1 − k
of f

V C,C1CV C ·C1, (4)

where CM2 (M) represents the concentration of MMP2; CV C (M) is the concentration

of VEGFC; CC1 (M) is the concentration of free collagen I; CV C ·C1 (M) is the con-

centration of VEGFC-bound collagen I; t (s) is time; x (µm) is the spatial coordinate

along the ventral–dorsal axis; D
e f f

i (µm2 s−1) is the effective diffusivity of species i;

ω is the volume fraction of the interstitial space where diffusion occurs; Pi (M s−1)

is the production rate of species i; Ci,s (M) is the concentration scale of species i;

k
deg

i (s−1) is the degradation rate constant of species i; kon
V C,C1 (M−1 s−1) is the bind-

ing rate constant of VEGFC and collagen I; k
of f

V C,C1 (s−1) is the unbinding rate constant

of VEGFC and collagen I; and kcat
M2,C1 (s−1) is the MMP2-induced degradation rate

constant of collagen I.

In the following subsections, we will explain each term in these equations.

2.2 Diffusion Terms

The diffusion rates of VEGFC and MMP2 are controlled by the abundance of collagen

I (Lutter and Makinen 2014). Specifically, they decrease with an increasing concen-

tration of collagen I. This link between transport and kinetics can be found in a paper

authored by Ogston et al. (1973):

D
e f f

i = D∞
i exp

(

−kB T

6πμD∞
i r f

√

vC1 MC1CC1 + vC1 MC1CV C ·C1

)

, (5)

where D∞
i (µm2 s−1) represents the diffusivity of species i in pure interstitial fluid; kB

(1.380648813×10−23 J K −1) is the Boltzmann constant; T (K) is the temperature in

the embryo; μ (cP) is the dynamic viscosity of interstitial fluid; r f (µm) is the radius

of a collagen I fibril; and vC1 (cm3g−1) is the partial specific volume of dry collagen I.
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The volume fraction (ω) where diffusion occurs also depends on the abundance of

collagen I (Levick 1987):

ω = 1 − vC1h MC1CC1 − vC1h MC1CV C ·C1, (6)

where vC1h (cm3 g−1) represents the partial specific volume of hydrated collagen I

and MC1 (kg mol−1) is the molar mass of collagen I.

Overall, the diffusive flux of species i is in the entire interstitial space, but Ci

ω

equals its concentration in the fluid phase only. The effective diffusivity provided by

Ogston et al. (1973) converts a concentration gradient in the fluid phase to a flux in

the interstitial space.

2.3 Reaction Terms: MMP2

In our idealised system, MMP2 is produced throughout the interstitial space rather than

by discrete cells. This simplification is justified because at the developmental stage of

interest, the MMP2-producing LECs are scattered around the embryo (Mulligan and

Weinstein 2014).

MMP2 is produced inside each LEC by a mechanism that involves the membrane

type I matrix metalloproteinase (MT1-MMP), the precursor of MMP2 (proMMP2),

and TIMP2 (Karagiannis and Popel 2004). There is evidence of a positive correlation

between CV C and CM2 (Huang and Sui 2012). There is also evidence that VEGFC

increases the level of MT1-MMP (Bauer et al. 2005). Integrating both sources, we

speculated that VEGFC upregulates MT1-MMP in order to boost the production of

MMP2. Furthermore, there is evidence that collagen I brings MT1-MMP, proMMP2,

and TIMP2 closer together (Maquoi et al. 2000), thus boosting MMP2 activation.

Integrating these pieces of evidence, we set the production rate of MMP2 to a term

proportional to CV C CC1.

This production term reflects that VEGFC and collagen I favour MMP2 production

through the same mechanism. PM2 is the maximum production rate of MMP2; it is

achieved when CV C and CC1 take their maximum values (their scales). It is possible

for collagen I to saturate MT1-MMP when the former is in excess, thereby shutting

down MMP2 activation. When we chose this production term, we assumed that the

embryo is far from this state.

MMP2 undergoes natural degradation too, hence the degradation term.

2.4 Reaction Terms: VEGFC

In our model, VEGFC is also produced everywhere in the interstitial space. This is

justified by the presence of VEGFC-producing aISVs which extend from the dorsal

aorta (DA) to the dorsal longitudinal anastomotic vessels (DLAVs) (van Impel and

Schulte-Merker 2014).

According to Jeltsch et al. (2014), collagen and calcium-binding EGF domain-

containing protein 1 (CCBE1) enhances the secretion and proteolytic cleavage of

VEGFC. According to Bos et al. (2011), CCBE1 is likely to act by binding to extra-
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1208 K. Y. Wertheim, T. Roose

cellular matrix components like collagen I. The mechanistic details of this process are

unclear. Our production term reflects the little that we do know: collagen I favours

VEGFC production. PV C is the maximum production rate of VEGFC. It is achieved

when CC1 is at its maximum value (its scale).

Similar to MMP2, VEGFC undergoes natural degradation, hence the degradation

term.

As we have demonstrated (Wertheim and Roose 2017), the reversible binding

between VEGFC and collagen I is an important patterning mechanism for VEGFC.

2.5 Reaction Terms: Collagen I

In our earlier study (Wertheim and Roose 2017), we neglected collagen I production

altogether. In that study, we were interested in the transient dynamics of lymphatic

development between 36 and 48 HPF. We also assumed that the normal CC1 is estab-

lished prior to that time window. During that window, the migrating LEC progenitors

release MMP2 to lower CC1 in the embryo.

We built the model presented in this paper in order to study a later developmental

stage, specifically the HSS of this stage. As the migration of PLs nears completion,

CC1 probably rises to its ‘normal’ level. The constant production term models the

recovery in CC1 and allows a biologically relevant steady state: CC1 > 0 (Swartz and

Fleury 2007; Prockop and Kivirikko 1995).

The collagen I degradation term is linear in this model, but we must note that

collagen I degradation by MMP2 is enzymatic in nature (Karagiannis and Popel

2004). In our previous study (Wertheim and Roose 2017), we gave this term the

form −
−kcat

M2,C1CM2CC1

K
M2,C1
M +CC1

, where K
M2,C1
M = 8.50 × 10−6 M. When we decided to lin-

earise this term, we assumed that CC1 ≫ K
M2,C1
M . According to our previous results

(Wertheim and Roose 2017), diffusion is dominant in the zebrafish embryo when

CC1 + CV C ·C1 > 1 × 10−4 M; also, CC1 ≫ CV C ·C1. In other words, our assumption

is valid as long as diffusion is dominant, i.e. CC1 > 1 × 10−4 M.

We chose not to model collagen I degradation by natural means because its degra-

dation by MMP2 is enzymatic. We assumed that natural degradation is relatively

insignificant.

2.6 Reaction Terms: VEGFC-Bound Collagen I

We decided not to model the degradation of VEGFC-bound collagen I, by either

MMP2 or natural means.

Although we could find no evidence that MMP2 does not degrade VEGFC-bound

collagen I, we decided not to model the degradation of the latter. First, due to steric

effects, MMP2 is likely to target free collagen I fibrils over those obstructed by VEGFC.

Second, we wanted to keep the mathematics as simple as possible. Third, our model

does describe the MMP2-induced degradation dynamics of VEGFC-bound collagen I

indirectly. According to the model, when the concentration of collagen I decreases, the

production term for VEGFC-bound collagen I will decrease, thus increasing the net
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dissociation rate of VEGFC-bound collagen I. Once released, collagen I and VEGFC

can degrade through MMP2 and natural means, respectively.

With respect to natural degradation, the reasoning is along the same lines. First,

when VEGFC is sequestered by collagen I, it is less exposed to the molecular

species involved in its natural degradation. Second, when the concentration of VEGFC

decreases due to natural degradation, the production term for VEGFC-bound collagen

I will go down, and the net dissociation rate of VEGFC-bound collagen I will go up.

Once released, VEGFC can degrade naturally.

2.7 Boundary and Initial Conditions

We denote the embryo’s height by L (µm). The boundary conditions where x = 0 and

x = L are given by the following no-flux boundary conditions:

∂

∂x

(

CM2

ω

)

= 0 and (7)

∂

∂x

(

CV C

ω

)

= 0. (8)

We wanted to study the behaviour of the HSS in the presence of thermal noises.

Therefore, we set each initial concentration to the HSS concentration plus a stochastic

term.

2.8 Parametrisation and Nondimensionalisation

Most of the parametric values can be found in our previous study (Wertheim and Roose

2017). However, three parameters require special attention.

For PM2, we chose the rate of proMMP2 production by lymphatic progenitors

(2.64 × 10−8 M s−1) from our previous study (Wertheim and Roose 2017; Vem-

pati et al. 2010). The current model does not consider the intracellular activation of

proMMP2, so in choosing to adopt the proMMP2 value, we assumed that the rate of

proMMP2 production is equal to the rate of MMP2 activation. Clearly, in doing so,

we ignored many intermediate steps. However, we chose a reasonable starting point

at which a sensitivity analysis was carried out (discussed in Sect. 4.5); it is the upper

limit of PM2.

For PV C , we chose the rate of VEGFC production on the dorsal aorta surface

(1.65 × 10−17 mol dm−2 s−1) from our previous study (Wertheim and Roose 2017;

Hashambhoy et al. 2011). In the current model, VEGFC is produced throughout the

embryo and not just on the dorsal aorta surface. Assuming a cell diameter of 10 µm,

we converted it to 9.90 × 10−13 M s−1. Once again, this is a crude estimate. As we

will discuss in Sect. 4.5, we performed a sensitivity analysis on this parameter.

We calculated the value of PC1 by nondimensionalising the model because this

parameter depends on the scale of CC1.

The length scale is the height of the trunk because our geometry is a cutline along

the ventral–dorsal axis, so L = 434 µm (McGee et al. 2012). We picked a timescale (τ )

of 10000 s, the timescale of natural degradation of VEGFC and MMP2. As explained
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Table 2 Characteristic scales of the model

Scale Description Value

CC1,s Concentration scale for C1 5.29 × 10−4 M

CM2,s Concentration scale for M2 2.64 × 10−4 M

CV C,s Concentration scale for VC 9.90 × 10−9 M

CV C ·C1,s Concentration scale for VC·C1 5.24 × 10−5 M

L Length scale 434 µm

τ Timescale 10,000 s

M2 abbreviates MMP2; VC, VEGFC; C1, collagen I

at the beginning of this section, our concern was the diffusion-dominant regime and

we had established that diffusion dominates convection when CC1 = 5.29 × 10−4 M

(Wertheim and Roose 2017). We chose this value for CC1,s .

We determined the remaining concentration scales (Ci,s’s) and PC1 by finding the

HSS where CC1 = CC1,s . Neglecting the spatial and temporal variations modelled by

Eqs. (1)–(4), we obtained the HSS in terms of a set of algebraic equations. We solved

them for the concentration scales and PC1. The results are as follows:

CM2,s =
PM2

k
deg

M2

, (9)

CV C,s =
PV C

k
deg

V C

, (10)

PC1 = kcat
M2,C1CM2,s, and (11)

CV C ·C1,s =
kon

V C,C1CV C,sCC1,s

k
of f

V C,C1

. (12)

Numerically, CV C,s = 9.90 × 10−9 M, CM2,s = 2.64 × 10−4 M, PC1 = 1.19 ×

10−6 M s−1, and CV C ·C1,s = 5.24 × 10−5 M. The characteristic scales of the model

are summarised in Table 2. We set PC1 at 6×10−7 M s−1. As a result, CC1 stays within

its scale at the HSS. Because the production rates of VEGFC and MMP2 scale linearly

with CC1, the other concentrations (CV C , CM2, and CV C ·C1) should stay within their

scales at the HSS too.

We nondimensionalised equations (1)–(4) using the established length, time, and

concentration scales, i.e. L = 434 µm, τ = 10000 s, CC1,s = 5.29 × 10−4 M,

CV C,s = 9.90 × 10−9 M, CM2,s = 2.64 × 10−4 M, and CV C ·C1,s = 5.24 × 10−5 M.

The nondimensionalised model is as follows:

∂C̃M2

∂ t̃
=

∂

∂ x̃

[

a1,M2 exp

(

−a2,M2

√

a3C̃C1 +
a3b4

b5

C̃V C ·C1

)

∂

∂ x̃

(

C̃M2

1 − a4C̃C1 −
a4b4
b5

C̃V C ·C1

)]

+ C̃V C C̃C1 − C̃M2, (13)
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∂C̃V C

∂ t̃
=

∂

∂ x̃

[

a1,V C exp

(

−a2,V C

√

a3C̃C1 +
a3b4

b5

C̃V C ·C1

)

∂

∂ x̃

(

C̃V C

1 − a4C̃C1 −
a4b4
b5

C̃V C ·C1

)]

+ C̃C1 − C̃V C − b1(C̃V C C̃C1 − C̃V C ·C1), (14)

∂C̃C1

∂ t̃
= b2 − b3C̃M2 − b4(C̃V C C̃C1 − C̃V C ·C1), and (15)

∂C̃V C ·C1

∂ t̃
= b5(C̃V C C̃C1 − C̃V C ·C1). (16)

The boundary conditions where x̃ = 0 and x̃ = 1 are given by the equations,

∂

∂ x̃

(

C̃M2

1 − a4C̃C1 −
a4b4
b5

C̃V C ·C1

)

= 0 and (17)

∂

∂ x̃

(

C̃V C

1 − a4C̃C1 −
a4b4
b5

C̃V C ·C1

)

= 0. (18)

There are fewer dimensionless kinetic parameters than dimensional ones. It is

because we have chosen the scales such that k
deg

M2 τ = k
deg

V C τ = 1. The dimensionless

parameters (ai ’s and bi ’s) are summarised in Table 3, while the dimensional parame-

ters that constitute them are summarised in Table 4. Mathematically, a1,M2 =
D∞

M2τ

L2 ,

a1,V C =
D∞

V C τ

L2 , a2,M2 =
kB T

6πμD∞
M2r f

, a2,V C =
kB T

6πμD∞
V C r f

, a3 = vC1 MC1CC1,s , a4 =

vC1h MC1CC1,s , b1 = kon
V C,C1τCC1,s , b2 =

PC1τ
CC1,s

, b3 =
kcat

M2,C1τ PM2

k
deg
M2 CC1,s

, b4 =
kon

V C,C1τ PV C

k
deg
V C

,

b5 = k
of f

V C,C1τ . In addition, a variable with a tilde is nondimensionalised. Therefore,

x̃ is x
L

or the nondimensionalised length in the x-direction; t̃ is t
τ

or the nondi-

mensionalised t ; C̃C1 is CC1

CC1,s
or the nondimensionalised CC1; C̃M2 is CM2

CM2,s
or the

nondimensionalised CM2; C̃V C is CV C

CV C,s
or the nondimensionalised CV C ; C̃V C ·C1 is

CV C ·C1

CV C ·C1,s
or the nondimensionalised CV C ·C1.

3 Linear Stability Analysis

The model presented in this paper differs from the classic instance of Turing’s mech-

anism (Gierer and Meinhardt 1972) in three ways. First, VEGFC and MMP2 do not

form a self-activator-self-inhibitor pair as defined by Gierer and Meinhardt (1972).

While VEGFC stimulates MMP2 production, it does not stimulate its own production.

MMP2 does not inhibit VEGFC production either. However, MMP2 degrades colla-

gen I, thereby inhibiting the production of both species indirectly. Second, VEGFC
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Table 3 Dimensionless

parameters in the

nondimensionalised model

Parameter Form Value

b1 kon
V C,C1

τCC1,s 1.90 × 105

b2
PC1τ
CC1,s

1.13 × 101

b3

kcat
M2,C1

τ PM2

k
deg
M2

CC1,s

2.25 × 101

b4

kon
V C,C1

τ PV C

k
deg
V C

3.56

b5 k
of f
V C,C1τ 3.60 × 101

a1,M2
D∞

M2
τ

L2 4.51

a1,V C
D∞

V C
τ

L2 2.66

a2,M2
kB T

6πμD∞
M2

r f
1.07

a2,V C
kB T

6πμD∞
V C

r f
1.81

a3 vC1 MC1CC1,s 1.19 × 10−1

a4 vC1h MC1CC1,s 3.00 × 10−1

M2 abbreviates MMP2; VC, VEGFC; C1, collagen I

Table 4 Dimensional parameters that constitute the dimensionless parameters in the nondimensionalised

model

Parameter Definition Value

PC1 Production rate of C1 6.00 × 10−7 M s−1

PM2 Production rate of M2 2.64 × 10−8 M s−1

PV C Production rate of VC 9.90 × 10−13 M s−1

kon
V C,C1 Binding rate constant of VC and C1 3.60 × 104 M−1 s−1

k
of f
V C,C1

Unbinding rate constant of VC and C1 3.60 × 10−3 s−1

kcat
M2,C1

Turnover number in the degradation of C1 by M2 4.50 × 10−3 s−1

k
deg
M2 Degradation rate constant of M2 1.00 × 10−4 s−1

k
deg
V C

Degradation rate constant of VC 1.00 × 10−4 s−1

D∞
M2

Diffusivity of M2 8.50 × 10−7 cm2 s−1

D∞
V C

Diffusivity of VC 5.01 × 10−7 cm2 s−1

MC1 Molecular weight of a collagen I fibril 300 kg mol−1

r f Radius of a C1 fibril 2 nm

vC1 Specific volume of dry C1 0.75 cm3 g−1

vC1h Specific volume of hydrated C1 1.89 cm3 g−1

kB Boltzmann constant 1.38 × 10−23 J K−1

T Temperature 298 K

μ Dynamic viscosity of interstitial fluid 1.20 cP

M2 abbreviates MMP2; VC, VEGFC; C1, collagen I
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binds to an immobile substrate (collagen I) reversibly. Third, the diffusion rates of

both VEGFC and MMP2 depend on the concentration of collagen I. This section is

concerned with the criteria for Turing’s mechanism to work in this atypical system.

3.1 Homogeneous Steady State

A Turing pattern emerges from a homogeneous steady state (HSS) by definition. Of

course, a genuine steady state is impossible due to thermal noises. Nonetheless, we

argue that the biochemical profile of the zebrafish trunk is sufficiently close to a HSS

in our time frame of interest. First, at this late developmental stage, the cells producing

MMP2 are scattered around the embryo. Second, the VEGFC-producing aISVs span

the embryo along its ventral–dorsal axis. Third, diffusion dominates convection in this

model.

After building and nondimensionalising the model, our first step was to determine

its HSS. We set the derivatives in Eqs. (13)–(16) to zero, thereby obtaining a set of

algebraic equations. Denoting the steady-state concentration of species i by C̃i,ss , we

can write down the algebraic equations,

0 = C̃V C,ssC̃C1,ss − C̃M2,ss, (19)

0 = C̃C1,ss − C̃V C,ss − b1(C̃V C,ssC̃C1,ss − C̃V C ·C1,ss), (20)

0 = b2 − b3C̃M2,ss − b4(C̃V C,ssC̃C1,ss − C̃V C ·C1,ss), and (21)

0 = C̃V C,ssC̃C1,ss − C̃V C ·C1,ss . (22)

Their solution gives the following: C̃M2,ss =
b2
b3

, C̃V C,ss =

√

b2
b3

, C̃C1,ss =

√

b2
b3

,

and C̃V C ·C1,ss =
b2
b3

. Since b2 and b3 are positive, the steady-state concentrations

are positive and physical. However, the model must satisfy two conditions. First,

C̃C1,ss > 1.89×10−1 M, so the HSS stays in the diffusion-dominant regime. Second,

b2 must be smaller than b3 to ensure that the concentrations are between 0 and 1.

3.2 Homogeneous Perturbation

Turing’s mechanism relies on diffusion-driven instability (Turing 1952). A HSS must

be stable in response to small perturbations in time only. When spatial perturbations

are present, diffusion amplifies certain components of the perturbations to create a

pattern.

To check the stability of the HSS without diffusion, we neglected the diffusion terms

in Eqs. (13)–(16). Then, we performed a linear stability analysis on the remaining

ordinary differential equations (ODEs). In other words, we expanded the right-hand

side of each ODE as a Taylor series at the HSS and neglected the nonlinear, higher-order

terms. We will denote the perturbation to C̃i,ss by �C̃i such that C̃i = C̃i,ss + �C̃i .

After the said expansion and elimination, we obtained the following system of ODEs:
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Fig. 3 Linearised interaction map representing the relations between VEGFC, MMP2, collagen I, and

VEGFC-bound collagen I. A pointy edge means an activating relation; for example, VEGFC activates

MMP2. A blunt edge means an inhibitory relation; for example, MMP2 inhibits collagen I. The blue

interactions are all related to the reversible binding reaction between VEGFC and collagen I. The red

ones are related to the production of MMP2 to degrade collagen I. The green ones are natural degradation

reactions. VEGFC stands for vascular endothelial growth factor C; MMP2, matrix metalloproteinase 2

(Color figure online)

∂

∂ t̃

⎛

⎜

⎜

⎝

�C̃M2

�C̃V C

�C̃C1

�C̃V C ·C1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−1 C̃C1,ss C̃V C,ss 0

0 −1 − b1C̃C1,ss 1 − b1C̃V C,ss b1

−b3 −b4C̃C1,ss −b4C̃V C,ss b4

0 b5C̃C1,ss b5C̃V C,ss −b5

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�C̃M2

�C̃V C

�C̃C1

�C̃V C ·C1

⎞

⎟

⎟

⎠

.

(23)

We will name the square matrix in Eq. (23) A and its eigenvalues σ ’s. The eigen-

values are the solutions of this equation:
∣

∣A − σ I
∣

∣ = 0 (I is the identity matrix). This

quartic equation has four solutions. If all four eigenvalues have negative real parts,

�C̃i ’s approach zero as t̃ approaches infinity, meaning the HSS is stable to noises in

the absence of diffusion.

Therefore, the third constraint the model must satisfy is this: the eigenvalues of the

square matrix A must have negative real parts.

Before we continue, it is worth visualising the linearised interactions represented

by A. They are plotted in Fig. 3. Each edge represents a term in A, wherein two matrix

elements have two terms apiece. First, according to Fig. 3, VEGFC inhibits itself in

two ways; it degrades naturally and complexes with collagen I. Second, collagen I

stimulates VEGFC production and complexes with it, so there are two terms in the

matrix element about the influence of collagen I on VEGFC.

There are two control loops in Fig. 3. In the model, there is a constant supply of

collagen I, which stimulates VEGFC production; once produced, VEGFC and colla-

gen I bind to prevent degradation, while more collagen I and VEGFC are produced;

meanwhile, VEGFC-bound collagen I dissociates to increase the supply of both. This
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positive feedback loop raises the production rate of VEGFC over time. It is balanced

by a negative feedback loop. VEGFC stimulates the production of MMP2, which

degrades collagen I to suppress the positive feedback loop.

3.3 Heterogeneous Perturbation

Next, we studied the HSS’s stability in the presence of random noises and diffusion.

First, we linearised the diffusion terms in Eqs. (13) and (14). They have the form
∂
∂ x̃

[

a1,i exp
(

−a2,i

√

a3C̃C1 +
a3b4
b5

C̃V C ·C1

)

∂
∂ x̃

(

C̃i

1−a4C̃C1−
a4b4

b5
C̃V C ·C1

)]

. As in the last

subsection, we will denote the perturbation to C̃i,ss by �C̃i such that C̃i = C̃i,ss+�C̃i .

We expanded a1,i exp
(

−a2,i

√

a3C̃C1 +
a3b4
b5

C̃V C ·C1

)

at the HSS to obtain a Taylor

series, truncated the series, and obtained this approximation:

a1,i exp

(

−a2,i

√

a3C̃C1 +
a3b4

b5
C̃V C ·C1

)

≈ a1,i exp

(

−a2,i

√

a3C̃C1,ss +
a3b4

b5
C̃V C ·C1,ss

)

+ a1,i exp

(

−a2,i

√

a3C̃C1,ss +
a3b4

b5
C̃V C ·C1,ss

)

⎡

⎣

−a2,i a3

2

√

a3C̃C1,ss +
a3b4

b5
C̃V C ·C1,ss

⎤

⎦�C̃C1

+ a1,i exp

(

−a2,i

√

a3C̃C1,ss +
a3b4

b5
C̃V C ·C1,ss

)

⎡

⎣

−a2,i a3b4

2b5

√

a3C̃C1,ss +
a3b4

b5
C̃V C ·C1,ss

⎤

⎦ �C̃V C ·C1. (24)

Doing the same for C̃i

1−a4C̃C1−
a4b4

b5
C̃V C ·C1

, we arrived at the following:

C̃i

1 − a4C̃C1 −
a4b4
b5

C̃V C ·C1

≈
C̃i,ss

1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss

+
�C̃i

1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss

+
C̃i,ssa4�C̃C1

(1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss)
2

+
C̃i,ssa4b4�C̃V C ·C1

b5(1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss)
2
. (25)

Substituting these two series into the general diffusion term, ∂
∂ x̃

[

a1,i exp
(

−

a2,i

√

a3C̃C1 +
a3b4
b5

C̃V C ·C1

)

∂
∂ x̃

(

C̃i

1−a4C̃C1−
a4b4

b5
C̃V C ·C1

)]

, ignoring the nonlinear terms,

we obtained the following results for the diffusion term:
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∂

∂ x̃

[

a1,i exp

(

−a2,i

√

a3C̃C1 +
a3b4

b5

C̃V C ·C1

)

∂

∂ x̃

(

C̃i

1 − a4C̃C1 −
a4b4
b5

C̃V C ·C1

)]

≈

a1,i exp
(

−a2,i

√

a3C̃C1,ss +
a3b4
b5

C̃V C ·C1,ss

)

1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss

∂2�C̃i

∂ x̃2

+

a1,i exp
(

−a2,i

√

a3C̃C1,ss +
a3b4
b5

C̃V C ·C1,ss

)

a4C̃i,ss

(1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss)
2

∂2�C̃C1

∂ x̃2

+

a1,i exp
(

−a2,i

√

a3C̃C1,ss +
a3b4
b5

C̃V C ·C1,ss

)

a4b4C̃i,ss

(1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss)
2b5

∂2�C̃V C ·C1

∂ x̃2
. (26)

Equation (26) has a simpler form in terms of the following definitions:

d1,i =

a1,i exp
(

− a2,i

√

a3C̃C1,ss +
a3b4
b5

C̃V C ·C1,ss

)

1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss

, (27)

d2,i =

a1,i exp
(

− a2,i

√

a3C̃C1,ss +
a3b4
b5

C̃V C ·C1,ss

)

a4C̃i,ss

(1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss)
2

, and (28)

d3,i =

a1,i exp
(

− a2,i

√

a3C̃C1,ss +
a3b4
b5

C̃V C ·C1,ss

)

a4b4C̃i,ss

(1 − a4C̃C1,ss −
a4b4
b5

C̃V C ·C1,ss)
2b5

. (29)

We added Eq. (26) to the right-hand side of Eq. (23), leading to the following matrix

equation:

∂

∂ t̃

⎛

⎜

⎜

⎝

�C̃M2

�C̃V C

�C̃C1

�C̃V C ·C1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

d1,M2 0 d2,M2 d3,M2

0 d1,V C d2,V C d3,V C

0 0 0 0

0 0 0 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

∂2�C̃M2

∂ x̃2

∂2�C̃V C

∂ x̃2

∂2�C̃C1

∂ x̃2

∂2�C̃V C ·C1

∂ x̃2

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

−1 C̃C1,ss C̃V C,ss 0

0 −1 − b1C̃C1,ss 1 − b1C̃V C,ss b1

−b3 −b4C̃C1,ss −b4C̃V C,ss b4

0 b5C̃C1,ss b5C̃V C,ss −b5

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�C̃M2

�C̃V C

�C̃C1

�C̃V C ·C1

⎞

⎟

⎟

⎠

. (30)

The spatial eigenvalue problem associated with Eq. (30) is satisfied by a Fourier

series:
∑

n∈Z

[

c
c
n cos(nπ x̃) + c

s
n sin(nπ x̃)

]

, where c
c
n’s and c

s
n’s are constant vec-

tors. This solution must satisfy the linearised boundary conditions. At the HSS,
∣

∣

∣
a4C̃C1 +

a4b4
b5

C̃V C ·C1

∣

∣

∣
≪ 1, so C̃i

(

1 − a4C̃C1 −
a4b4
b5

C̃V C ·C1

)−1
≈ C̃i

(

1 + a4C̃C1 +
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a4b4
b5

C̃V C ·C1 + · · ·
)

. We applied this result to Eqs. (17) and (18) and ignored the non-

linear terms. As a result, ∂C̃i

∂ x̃
= 0 where x̃ = 0 and x̃ = 1. Only the cosine terms

satisfy the linearised boundary conditions, so the solution is
∑

n∈Z
c

c
n cos(nπ x̃).

The solution of Eq. (30) is the product of the Fourier cosine series and an expo-

nential term:
∑

n∈Z
c

c
neσn t̃ cos(nπ x̃), where σn is an eigenvalue associated with the

nth wavenumber. We can abbreviate the solution by defining that wn = c
c
n cos(nπ x̃).

Each instance of wn is a Fourier mode with the wavenumber: k = nπ .

We substituted the solution into Eq. (30), leading to the following:

(

B − σn I
)

wn = 0. (31)

B is a square matrix:

B =

⎛

⎜

⎜

⎝

−1 − k2d1,M2 C̃C1,ss C̃V C,ss − k2d2,M2 −k2d3,M2

0 −1 − b1C̃C1,ss − k2d1,V C 1 − b1C̃V C,ss − k2d2,V C b1 − k2d3,V C

−b3 −b4C̃C1,ss −b4C̃V C,ss b4

0 b5C̃C1,ss b5C̃V C,ss −b5

⎞

⎟

⎟

⎠

.

(32)

If the solution of Eq. (30) is nontrivial,
∣

∣B − σn I
∣

∣ = 0 for each value of n and

hence k. It is a quartic equation for σn , the eigenvalue of B; its four solutions give σn

in terms of k2. At each k value, if at least one of the four eigenvalues has a positive

real part, that Fourier mode grows with time, making it an unstable noise component

for the HSS. Because the eigenvalues are expressed in terms of n2, negative values of

n are redundant and trivial.

To conclude, the fourth constraint on the Turing space is as follows. At least one

eigenvalue of B must have a positive real part at at least one k value.

3.4 Dispersion Relation

At each point in the parametric space, the four eigenvalues of the matrix B vary with

k (k = nπ ). At each value of k, the real part of one eigenvalue is larger than or equal

to the other three. The relation between this maximum real part, Re(σn,max), and k is

the dispersion relation for that point in the parametric space.

If Turing’s mechanism works at that point in the parametric space, the dispersion

relation must peak in a relevant range of finite Fourier modes. The Fourier mode at the

peak grows faster than the other noise components, leading to a periodic pattern with

a wavelength of 2π
k

. The nondimensionalised length of our domain is 1, so a visible

pattern must have a smaller wavelength. On the other hand, the LEC diameter is 10 µm

or 0.023 after nondimensionalisation, so a pattern with a smaller wavelength cannot

be resolved by an LEC.

The fifth constraint on the Turing space follows from the reasoning in the previous

paragraph, i.e. the maximum of a dispersion relation must be in the relevant range of

Fourier modes, 0.023 < 2π
k

< 1. This constraint ensures that the resulting pattern is

visible in the zebrafish embryo and can be resolved by an LEC.
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In general, if Turing’s mechanism works, only a finite number of Fourier modes can

be unstable. Otherwise, the result will be noises rather than a pattern. The constraints

we have discussed so far ensure that a qualifying dispersion relation is negative when

n = 0 and turns positive to reach its peak. To ensure a finite band of unstable Fourier

modes in a qualifying dispersion relation, we now stipulate that the dispersion relation

must turn negative again after its peak.

The sixth constraint on the Turing space is therefore as follows: a dispersion relation

must cross the x-axis to the right of its maximum.

3.5 Summary

The Turing space of our model is the region of its parametric space where Turing’s

mechanism is expected to work. Each point in the Turing space is called a Turing

point in this paper. Integrating our findings in this section, we summarise below the

constraints which must be satisfied by a Turing point.

1. CC1,ss > 1 × 10−4 M. This inequality ensures that there is sufficient collagen I

to justify our model assumptions. In particular, it makes sure the HSS is in the

diffusion-dominant regime.

2. b2 < b3. This inequality ensures the HSS concentrations are scaled properly, i.e.

the nondimensionalised concentrations stay between 0 and 1.

3. The eigenvalues of A must have negative real parts to ensure that the HSS is stable

in response to homogeneous perturbations.

4. At least one of the eigenvalues of B must have a positive real part at at least one k

value. This constraint ensures that the HSS is unstable in response to heterogeneous

perturbations.

5. The dispersion relation of the Turing point peaks in the relevant range of Fourier

modes (2 < n < 87). It means one Fourier mode dominates the other and its

wavelength is smaller than the domain size, but larger than the LEC diameter.

6. The dispersion relation must turn negative after reaching the maximum. As a result,

only a finite number of Fourier modes are unstable.

4 Turing Space

We applied the results of our linear stability analysis to find the Turing space. In this

section, we describe the steps we took and the outcome we obtained.

4.1 Turing Point Candidates

Our model is analytically intractable. We circumvented the problem by exploring the

parametric space one point at a time. Before we did so, we had to come up with a

sample of parametric combinations for screening.

The parametric combination summarised in Table 3 is based on experimental results,

so the region of the parametric space around this reference point is physically relevant.

On this basis, we decided to sample in the vicinity of the reference point.
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We were dealing with an eight-dimensional problem. The five kinetic parame-

ters, bi ’s, can be varied independently; a1, j ’s and a2, j ’s depend on three-dimensional

parameters, D∞
M2, D∞

V C , and μ, only; a3 and a4 are fixed. In total, there are eight

independent dimensions in which variations are possible. We sampled in all eight

dimensions combinatorially.

Finally, we had to decide on the sample size. To ensure a broad coverage, we

considered five orders of magnitude in each dimension. To save computational cost,

we sampled on a logarithmic scale.

For example, we considered b1 at 1.90 × 103, 1.90 × 104, 1.90 × 105 (reference

point), 1.90 × 106, and 1.90 × 107. In the sample we obtained, each of these b1 values

is paired with every permissible combination of the remaining seven parameters, each

of which has five permissible values.

Following these steps, we generated a sample of 59 or 1,953,125 parametric combi-

nations, which will be called Turing point candidates henceforth. We did not generate

a larger sample because of the higher computational cost.

4.2 Screening for Turing Points

Using a Python program, we tested each candidate against the six constraints sum-

marised in Sect. 3.5. The aim was to screen the candidates for Turing points. However,

when we consider the results, we must be wary of our method’s limitations.

First, due to the analytically intractable nature of our model, we could only assess

a finite number of Fourier modes. We assessed n in the range of 0–87. Therefore, we

missed any dispersion relations which are negative in the assessed range, but which

turn positive beyond it. However, as discussed in Sect. 3, the Fourier modes beyond

this range are not relevant to the present problem anyway because their wavelengths

are smaller than an LEC.

Second, even if a dispersion relation is positive in parts of the assessed range, it may

peak beyond the range. The predicted wavelength at such a Turing point is wrong.

Third, a dispersion relation may peak, drop to a negative value, and then turn positive

again. This type of dispersion relation may have an infinite number of unstable Fourier

modes.

Fourth, a dispersion relation may decrease from its maximum and cross the x-axis

outside the assessed range. This case is similar to the first one and such a dispersion

relation is a false negative, but the Fourier modes beyond the assessed range are not

relevant to the present problem.

Fifth, there may be two or more identical maxima in a dispersion relation. Multiple

wavelengths will be predicted at such a Turing point.

4.3 Parametric Distributions

Out of the 1,953,125 Turing point candidates, we have found 94 Turing points: a

sample of the Turing space. On this basis, we argue that VEGFC can form Turing

patterns in the zebrafish embryo. More precisely, we mean its functional relations
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Fig. 4 Parametric distributions in a sample of 94 Turing points. The parameters are defined as follows:

b1 = kon
V C,C1

τCC1,s , b2 =
PC1τ
CC1,s

, b3 =
kcat

M2,C1
τ PM2

k
deg
M2

CC1,s

, b4 =
kon

V C,C1
τ PV C

k
deg
V C

, and b5 = k
of f
V C,C1

τ

with MMP2 and collagen I support Turing pattern formation; they are wired in the

right way.

Whether VEGFC does form Turing patterns is another question and one dependent

on the physiological conditions. Fewer than 0.01% of the candidates are Turing points,

so the embryo needs a control mechanism to create the conditions at the Turing points.

For example, the zebrafish may be genetically programmed to produce VEGFC and

MMP2 at specific rates in the time frame of interest. We now turn our attention to

what this control mechanism, if it exists, entails.

We cannot draw definitive conclusions from a finite number of Turing points, but

they offer insights into the Turing space. Figure 4 shows the parametric distributions in

this sample. The transport parameters are not shown because they are not independent

of each other; no insights can be gained from their independent distributions.
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Small values of b1 are common in the sample, suggesting a smaller-than-estimated

kon
V C,C1 favours Turing’s mechanism. The b2 distribution is biased towards the two

largest values, suggesting a larger-than-estimated PC1 favours Turing’s mechanism.

The b3 distribution is dominated by the largest value, suggesting a higher-than-

estimated kcat
M2,C1 or PM2 is favourable. All five values of b4 are evenly represented

in the sample; b4 is controlled by kon
V C,C1 and PV C , while a smaller-than-estimated

kon
V C,C1 seems to favour Turing’s mechanism, so the mechanism seems to be insensi-

tive to PV C . The b5 distribution is dominated by the reference value and contains its

two adjacent values, suggesting that the estimated k
of f

V C,C1 is favourable for Turing’s

mechanism.

Figure 4 tells us nothing about the correlations between the five kinetic parameters.

For example, if a Turing point has a b1 value of 1900, its b3 may always be 22.5.

Furthermore, we are still ignorant of how the form of a dispersion relation varies in

the Turing space. We will discuss the final issue in the next subsection.

4.4 Dispersion Relations

Our 94 Turing points lie at different distances from the reference point. The reference

point has its basis in the literature, so the Turing points closest to it deserve special

attention.

Let us label the distance between a Turing point and the reference point by S. Let

us also label the parametric values at the reference point by are f ’s and bre f ’s. Using

these notations, we can write down the equation for the relative distance between a

Turing point and the reference point:

S2
=

(

b1 − b
re f
1

b
re f
1

)2

+

(

b2 − b
re f
2

b
re f
2

)2

+

(

b3 − b
re f
3

b
re f
3

)2

+
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b4 − b
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4

b
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4
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+
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+
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)2

. (33)

We calculated S for each of the 94 Turing points and selected the ten points with

the smallest S values. The results are given in Table 5.

The first commonality of these ten Turing points is that VEGFC always diffuses

faster than MMP2.

The second feature is illustrated in Fig. 5. It shows the comparison between three

pairs of dispersion relations from Table 5: 2 and 3, 4 and 9, and 6 and 8. In each pair,

only the a1, j ’s differ. The a2, j ’s determine any volume exclusion effects. It follows that

in each selected pair, only the diffusion rates in pure interstitial fluid change. According

to Fig. 5, faster diffusion leads to a more ‘compressed’ dispersion relation. Physically,

it means fewer unstable noise components and these components have longer wave-
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Table 5 The ten Turing points closest to the reference point in the parametric space

b1 b2 b3 b4 b5 a1,M2 a1,V C a2,M2 a2,V C S λ

1.9 × 106 1.13 22.5 35.6 3.6 0.0451 2.66 107 1.81 99.83 0.400

1.9 × 106 1.13 22.5 35.6 3.6 0.451 2.66 107 18.1 100.23 0.038

1.9 × 106 1.13 22.5 35.6 3.6 4.51 26.6 107 18.1 100.63 0.125

1.9 × 105 1.13 22.5 356 36 0.451 2.66 107 18.1 140.30 0.111

1.9 × 106 1.13 22.5 356 36 0.0451 2.66 107 1.81 140.30 0.400

1.9 × 104 1.13 22.5 356 36 0.451 2.66 107 18.1 140.30 0.400

1.9 × 107 1.13 22.5 35.6 3.6 0.0451 2.66 107 1.81 140.31 0.133

1.9 × 104 1.13 22.5 356 36 0.0451 0.266 107 18.1 140.31 0.125

1.9 × 105 1.13 22.5 356 36 4.51 26.6 107 18.1 140.59 0.333

1.9 × 103 113 2250 3.56 36 0.451 2.66 107 18.1 140.59 0.250

The parameters are defined as follows: b1 = kon
V C,C1

τCC1,s , b2 =
PC1τ
CC1,s

, b3 =
kcat

M2,C1
τ PM2

k
deg
M2

CC1,s

, b4 =

kon
V C,C1

τ PV C

k
deg
V C

, b5 = k
of f
V C,C1τ , a1,M2 =

D∞
M2

τ

L2 , a1,V C =
D∞

V C
τ

L2 , a2,M2 =
kB T

6πμD∞
M2

r f
, and a2,V C =

kB T

6πμD∞
V C

r f
. S is the distance between a Turing point and the reference point. The last column gives the

wavelength (λ) of the fastest growing noise component (Fourier mode) at each Turing point

lengths. Biologically, faster diffusion is favourable for Turing’s mechanism because

when fewer noise components are unstable, the pattern is more regular.

The dispersion relations at the remaining Turing points in Table 5 are plotted in

Fig. 6.

4.5 Bifurcation

When we discussed the model parameters, we commented on the uncertainty of PM2

and PV C . Since they control b3 and b4, respectively, we perturbed b3 and b4 indepen-

dently. In other words, they were used as bifurcation parameters.

We had to pick a reference Turing point for our bifurcation analysis. The dispersion

relations in the last subsection are numerical results, so they contain rounding errors.

In a dispersion relation like the one in Fig. 6a, the smallness of the eigenvalues means

they are highly sensitive to these errors; the predicted dominant Fourier mode may

thus be inaccurate. By contrast, the dispersion relation in Fig. 6d has the sharpest peak

out of the ten dispersion relations plotted in Figs. 5 and 6. The large eigenvalues mean

the trends shown by this dispersion relation are likely to be less sensitive to rounding

errors. Therefore, we performed our bifurcation analysis around its corresponding

Turing point, the final one in Table 5.

Figure 7 shows the dispersion relations at different b3 values. In Fig. 7a, the trends

are inconsistent, so our only conclusion is that b3 is a very sensitive parameter. We note

that b3 =
kcat

M2,C1τ PM2

k
deg
M2 CC1,s

. Because kcat
M2,C1 and PM2 both parametrise the MMP2-catalysed

degradation of collagen I, it may explain the sensitivity of b3: its change affects both
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Fig. 5 Comparison plots of the dispersion relations at selected Turing points. They are among the ten Turing

points closest to the reference point (b1 = 1.90 × 105, b2 = 1.13 × 101, b3 = 2.25 × 101, b4 = 3.56,

b5 = 3.60 × 101, a1,M2 = 4.51, a1,V C = 2.66, a2,M2 = 1.07, and a2,V C = 1.81). The plots on the right

are magnified versions of their counterparts on the left. On the x-axes, n is the integer in the wavenumber

(k = nπ ). For a and b, b1 = 1.9 × 106, b2 = 1.13, b3 = 22.5, b4 = 35.6, b5 = 3.6, a2,M2 = 107,

and a2,V C = 18.1; for the blue trend and small dots, a1,M2 = 0.451 and a1,V C = 2.66; for the red trend

and big dots, a1,M2 = 4.51 and a1,V C = 26.6. For c and d, b1 = 1.9 × 105, b2 = 1.13, b3 = 22.5,

b4 = 356, b5 = 36, a2,M2 = 107, and a2,V C = 18.1; for the blue trend and small dots, a1,M2 = 0.451 and

a1,V C = 2.66; for the red trend and big dots, a1,M2 = 4.51 and a1,V C = 26.6. For e and f, b1 = 1.9×104,

b2 = 1.13, b3 = 22.5, b4 = 356, b5 = 36, a2,M2 = 107, and a2,V C = 18.1; for the blue trend and small

dots, a1,M2 = 0.0451 and a1,V C = 0.266; for the red trend and big dots, a1,M2 = 0.451 and a1,V C = 2.66

(Color figure online)
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Fig. 6 Dispersion relations at selected Turing points. They are among the ten Turing points closest to the

reference point (b1 = 1.90 × 105, b2 = 1.13 × 101, b3 = 2.25 × 101, b4 = 3.56, b5 = 3.60 × 101,

a1,M2 = 4.51, a1,V C = 2.66, a2,M2 = 1.07, and a2,V C = 1.81). On the x-axes, n is the integer in

the wavenumber (k = nπ ). For a, b1 = 1.9 × 106, b2 = 1.13, b3 = 22.5, b4 = 35.6, b5 = 3.6,

a1,M2 = 0.0451, a1,V C = 2.66, a2,M2 = 107, and a2,V C = 1.81. For b, b1 = 1.9 × 106, b2 = 1.13,

b3 = 22.5, b4 = 356, b5 = 36, a1,M2 = 0.0451, a1,V C = 2.66, a2,M2 = 107, and a2,V C = 1.81.

For c, b1 = 1.9 × 107, b2 = 1.13, b3 = 22.5, b4 = 35.6, b5 = 3.6, a1,M2 = 0.0451, a1,V C = 2.66,

a2,M2 = 107, and a2,V C = 1.81. For d, b1 = 1.9 × 103, b2 = 113, b3 = 2250, b4 = 3.56, b5 = 36,

a1,M2 = 0.451, a1,V C = 2.66, a2,M2 = 107, and a2,V C = 18.1

MMP2 production and action. Out of the five dispersion relations in Fig. 7a, only the

one with the largest b3 meets all the criteria of a Turing point. When we noticed this

result, we repeated the bifurcation analysis around it, considering a narrower range of

b3. Figure 7b shows the results. An increase in b3 leads to a smaller eigenvalue when

n = 0, stabilising the HSS with respect to homogeneous perturbations; it also leads to

fewer unstable Fourier modes (hence a more regular spatial pattern) and these modes

have smaller wavenumbers (longer wavelengths).

Figure 8 shows the dispersion relations at different b4 values. They all satisfy the

six criteria, so the HSS is less sensitive to b4 than b3. The trends are opposite to those

in Fig. 7: a decrease in b4 results in fewer unstable Fourier modes and these modes

have smaller wavenumbers (longer wavelengths).
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Fig. 7 Bifurcation analysis of a selected Turing point with respect to b3. It is one of the ten Turing points

closest to the reference point (b1 = 1.90 × 105, b2 = 1.13 × 101, b3 = 2.25 × 101, b4 = 3.56,

b5 = 3.60 × 101, a1,M2 = 4.51, a1,V C = 2.66, a2,M2 = 1.07, and a2,V C = 1.81). At this Turing

point, b1 = 1.9 × 103, b2 = 113, b3 =
kcat

M2,C1
τ PM2

k
deg
M2

CC1,s

= 2250, b4 = 3.56, b5 = 36, a1,M2 = 0.451,

a1,V C = 2.66, a2,M2 = 107, and a2,V C = 18.1. On the x-axes, n is the integer in the wavenumber

(k = nπ ). a considers a wider range of b3 than b

4.6 PatterningMechanism

So far in this section, we have considered the structure of an unchanging Turing space.

Before we summarise our findings, we will take a step back, analyse the patterning

mechanism itself, and explain how the Turing space changes if the patterning mecha-

nism is tweaked.

At the beginning of Sect. 3, we discussed the three differences between our model

and the classic instance of Turing’s mechanism (Gierer and Meinhardt 1972). First,
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Fig. 8 Bifurcation analysis of a selected Turing point with respect to b4. It is one of the ten Turing points

closest to the reference point (b1 = 1.90 × 105, b2 = 1.13 × 101, b3 = 2.25 × 101, b4 = 3.56,

b5 = 3.60 × 101, a1,M2 = 4.51, a1,V C = 2.66, a2,M2 = 1.07, and a2,V C = 1.81). At this Turing

point, b1 = 1.9 × 103, b2 = 113, b3 = 2250, b4 =
kon

V C,C1
τ PV C

k
deg
V C

= 3.56, b5 = 36, a1,M2 = 0.451,

a1,V C = 2.66, a2,M2 = 107, and a2,V C = 18.1. On the x-axes, n is the integer in the wavenumber

(k = nπ ). a considers a wider range of b4 than b

VEGFC and MMP2 do not form a self-activator-self-inhibitor pair. Specifically,

VEGFC does not stimulate its own production and MMP2 does not inhibit VEGFC

production. Second, VEGFC binds to an immobile substrate (collagen I) reversibly.

After examining Fig. 3, we came to a conclusion. The second and third differ-

ences may cancel each other out, reducing our model to the classic instance. The

positive feedback loop involving VEGFC, collagen I, and VEGFC-bound collagen I

allows VEGFC to stimulate its own production. The negative feedback loop involv-

ing VEGFC, MMP2, and collagen I allows MMP2 to inhibit VEGFC production by

degrading collagen I, thus shutting down the positive feedback loop.
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To test our hypothesis, we switched off the linearised interaction between VEGFC

and MMP2, leading to new A and B:

A =

⎛

⎜

⎜

⎝

−1 0 C̃V C,ss 0

0 −1 − b1C̃C1,ss 1 − b1C̃V C,ss b1

−b3 −b4C̃C1,ss −b4C̃V C,ss b4

0 b5C̃C1,ss b5C̃V C,ss −b5

⎞

⎟

⎟

⎠

and (34)

B =

⎛

⎜

⎜

⎝

−1 − k2d1,M2 0 C̃V C,ss − k2d2,M2 −k2d3,M2

0 −1 − b1C̃C1,ss − k2d1,V C 1 − b1C̃V C,ss − k2d2,V C b1 − k2d3,V C

−b3 −b4C̃C1,ss −b4C̃V C,ss b4

0 b5C̃C1,ss b5C̃V C,ss −b5

⎞

⎟

⎟

⎠

.

(35)

We repeated the screening procedure using Eqs. (34) and (35). We failed to find any

Turing points among the same 1,953,125 candidates. The Turing space’s disappearance

implies that the negative feedback loop is indispensable for the patterning mechanism.

Then, we turned to the positive feedback loop. We set b1, b4, and b5 to zero before

repeating the screening test. Once again, we failed to find any Turing points among

the same 1,953,125 candidates. The positive feedback loop is indispensable for the

patterning mechanism too.

The third difference between our model and the classic instance lies in volume

exclusion, a feature not in the classic instance. In our model, collagen I takes away

space wherein VEGFC and MMP2 can diffuse. This general property affects both

mobile species, so it does not change their relative diffusion rates. We suspected that

it may not contribute to the proposed patterning mechanism. Therefore, we set d2,i

and d3,i to zero in Eqs. (28) and (29) before repeating the screening procedure. This

time, we found 184 Turing points among the same 1,953,125 candidates; 88 of them

are among the 94 Turing points found after the original screening. That we found a

larger Turing space after switching off volume exclusion means volume exclusion is

a thorn in the patterning mechanism.

4.7 Summary

We now know that VEGFC can form Turing patterns due to its functional relations

with MMP2 and collagen I. The responsible patterning mechanism has two indis-

pensable components. First, reversible binding between VEGFC and collagen I leads

to a positive feedback loop for VEGFC production. Second, VEGFC stimulates the

production of MMP2, which degrades collagen I to shut down the first component.

We also know that some modelled relations are not important to this patterning mech-

anism. For example, volume exclusion by collagen I actually makes the mechanism

less potent.

However, because only 94 of the 1,953,125 candidates are Turing points, the

zebrafish embryo needs a control mechanism to create the physiological conditions

where VEGFC does form Turing patterns. Based on the sample of 94 Turing points,

we obtained new insights into the Turing space of our model, insights pointing to what
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the control mechanism must accomplish. They are summarised below. It is important

to note that they are relative to the reference point defined in Table 3. Furthermore,

they are based on a small sample, so they are only preliminary results about the Turing

space, not definitive conclusions.

1. Weak VEGFC–collagen I binding favours Turing’s mechanism.

2. A high turnover of collagen I favours Turing’s mechanism. Collagen I degradation

by MMP2 stabilises the HSS with respect to homogeneous perturbations; it also

reduces the number of unstable noise components.

3. Turing’s mechanism is not very sensitive to the production rate of VEGFC. How-

ever, a low production rate means fewer unstable noise components.

4. Fast diffusion of VEGFC and MMP2 favours Turing’s mechanism by creating

fewer unstable noise components. A high diffusion rate of VEGFC relative to that

of MMP2 also favours Turing’s mechanism.

5 Computer Simulations

As discussed in the previous section, we predicted the existence of a Turing space

for our model. In order to support our claim, we simulated the formation of VEGFC

patterns in the trunk. In particular, the method used to find the Turing space has

several limitations as explained earlier. If a Turing point is a false positive due to

these limitations, it can be spotted in the simulation results. We were looking for an

agreement between the predicted and simulated wavelengths at a Turing point.

We ran our simulations at one of the ten Turing points given in Table 5. Although

the last Turing point has the sharpest dispersion relation (Fig. 6d), it also has more than

40 unstable Fourier modes. It means a noisy and irregular pattern is likely to emerge at

this point. The dispersion relations at the fifth and ninth Turing points from Table 5 are

plotted in Fig. 9. They have fewer than ten unstable Fourier modes each. We simulated

at the ninth point because the difference between the two diffusion rates is smaller; the

ninth point is physically more likely. Therefore, the selected Turing point is defined

as follows: b1 = 1.9 × 105, b2 = 1.13, b3 = 22.5, b4 = 356, b5 = 36, a1,M2 = 4.51,

a1,V C = 26.6, a2,M2 = 107, and a2,V C = 18.1.

We used COMSOL Multiphysics version 5.2, the finite element method software

package, for our simulations. The finite element method involves discretising non-

linear differential equations and solving the resulting nonlinear algebraic equations

numerically. We ran the simulations on a desktop computer with an Intel(R) Core(TM)

i5-3570 CPU at 3.40 GHz and 16 GB of RAM. We adopted a fully coupled approach

to solve Eqs. (13)–(18) simultaneously. We used the ‘constant (Newton)’ solver with a

constant damping factor of 0.9. We specified that the algorithm had to terminate when

the estimated relative error was less than 0.01, but we also set the maximum number

of iterations in both space and time at 8. We allowed COMSOL to use the ‘PARDISO’

solver with a pivoting perturbation of 1×10−8 for linear problems; this solver tackles

linear equations directly rather than iteratively.

In each simulation, we used the HSS concentrations plus noises as the initial con-

centrations. We used a random function to model these noises. It varies with the spatial
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Fig. 9 Dispersion relations at two Turing points. They are among the ten Turing points closest to the

reference point (b1 = 1.90 × 105, b2 = 1.13 × 101, b3 = 2.25 × 101, b4 = 3.56, b5 = 3.60 × 101,

a1,M2 = 4.51, a1,V C = 2.66, a2,M2 = 1.07, and a2,V C = 1.81). At point 5, b1 = 1.9 × 106, b2 = 1.13,

b3 = 22.5, b4 = 356, b5 = 36, a1,M2 = 0.0451, a1,V C = 2.66, a2,M2 = 107, and a2,V C = 1.81. At

point 9, b1 = 1.9 × 105, b2 = 1.13, b3 = 22.5, b4 = 356, b5 = 36, a1,M2 = 4.51, a1,V C = 26.6,

a2,M2 = 107, and a2,V C = 18.1. On the x-axes, n is the integer in the wavenumber (k = nπ ). b is a

magnified version of a

coordinates, the number of which agrees with the number of dimensions; it is centred

at 0 with an amplitude of 0.001. In a mesh, the function is evaluated at each node

according to a uniform distribution. It means that a fine mesh mimics the randomness

of noises more accurately than a coarse one. This feature prompted us to choose the

‘extremely fine’ mesh setting. It is the finest mesh setting available in COMSOL Mul-

tiphysics version 5.2: a nondimensionalised length of 1 is divided into 101 grid points

and 100 even intervals.

In each simulation, we solved the model for t̃ ranging from 0 to 100. We used the

BDF (backward differentiation formula) method to determine the time steps adaptively.
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In general, at each time point, this algorithm estimates the time derivatives of the next

time step based on the solutions from the previous one or two time steps, and it

determines the step size based on the derivatives’ stability. If the derivatives change

drastically over the preceding time steps, the algorithm will recommend a small step.

In our specific case of using the BDF method, we divided the t̃ range into 10,000 equal

intervals and chose the ‘strict’ setting. The ‘strict’ setting means that a time step must

end before or at the end of the interval it starts in. In our case, by using this setting,

we effectively set a maximum time step of 0.01.

5.1 One Dimension

Figures 10, 11, and 12 illustrate the spatiotemporal dynamics of VEGFC concentration

in one spatial dimension. Figure 13 shows the same dynamics in three-dimensional

plots.

Most noise components decay quickly. In Fig. 10, the third profile (t̃ = 5) is

considerably smoother than the first two profiles (t̃ = 0 and t̃ = 1); the fluctuations

present in the first profile are largely absent in the third.

On the other hand, the unstable components grow to broaden the concentration

range. In Fig. 10, the concentration range in the final profile (t̃ = 30) is an order of

magnitude wider than that in the first profile (t̃ = 0). The range in the final profile

(t̃ = 90) in Fig. 11 is even wider: twice the range in the case where t̃ = 30.

Eventually, three peaks emerge and vanish in an oscillatory manner, each time

forming a more regular and clearer pattern. They first appear, albeit vaguely, in the

second profile (t̃ = 50) in Fig. 11. They vanish in the next two profiles (t̃ = 60 and

t̃ = 70) before reappearing, more prominently this time, in the last two profiles (t̃ = 80

and t̃ = 90). This trend continues in Fig. 12. We note that in the fourth profile (t̃ = 96)

there, the peaks become closer in size than they are in the first profile (t̃ = 92): a more

regular pattern.

According to our prediction in the last section, the fastest growing Fourier mode

at this Turing point has a wavelength of 0.333 (Table 5). The presence of three peaks

is consistent because the domain size is 1. We tested our prediction more rigourously

using the discrete Fourier transform in MATLAB R2012a. The transformed profile

for the case where t̃ = 96 confirms our prediction.

To explain the oscillatory behaviour and growing concentration range, we must

consider the eigenvalues of B more carefully. At the chosen Turing point and dominant

wavenumber (k = 6π ), they are −4.2756×104, −1.1887, 1.0570×10−2 −0.4510 j ,

and 1.0570 × 10−2 + 0.4510 j . The two eigenvalues with positive real parts are a pair

of complex conjugates, hence the oscillations and growing concentration range.

When the three peaks are present, they have different widths and heights. There are

two reasons. First, there is more than one unstable Fourier mode; they are interruptions

to the dominant one. Second, we only carried out a linear stability analysis; we cannot

predict the peak amplitudes without considering the nonlinear dynamics.

In summary, Turing’s mechanism does work at the Turing point considered in the

simulation. However, if we take the purist’s perspective and insist that Turing patterns

are stationary, nonlinear, and spatially periodic, the simulated VEGFC patterns are
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Fig. 10 Spatiotemporal dynamics of VEGFC in one dimension (part 1). In this simulation, b1 = 1.9×105,

b2 = 1.13, b3 = 22.5, b4 = 356, b5 = 36, a1,M2 = 4.51, a1,V C = 26.6, a2,M2 = 107, and a2,V C = 18.1.

VEGFC stands for vascular endothelial growth factor C

not Turing patterns. The aforementioned control mechanism must not only create the

physiological conditions at the Turing points as defined in Sect. 3.5, but also select

the conditions compatible with stationary patterns.

5.2 Two Dimensions

Clearly, the zebrafish is not a line. The geometry we used in our previous study has

an aspect ratio around 10 (Wertheim and Roose 2017). We repeated the simulation

presented in the last subsection in a rectangle with an aspect ratio of 10. To extend

our model to two dimensions, we replaced each spatial derivative with respect to x̃
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Fig. 11 Spatiotemporal dynamics of VEGFC in one dimension (part 2). In this simulation, b1 = 1.9×105,

b2 = 1.13, b3 = 22.5, b4 = 356, b5 = 36, a1,M2 = 4.51, a1,V C = 26.6, a2,M2 = 107, and a2,V C = 18.1.

VEGFC stands for vascular endothelial growth factor C

with the gradient operator (∇). The results are not shown because they are equivalent

to those in the last subsection: as time passes, three VEGFC-rich regions emerge and

vanish in an oscillatory manner.

We ended this study by experimenting with the boundary conditions. We replaced

the no-flux boundary conditions with periodic boundary conditions. The geometry has

two pairs of opposing boundaries, so we made each pair periodic. The amended model

is different in two ways. First, each concentration on a boundary mirrors its counterpart

on the opposite boundary. Second, an influx of VEGFC or MMP2 through a boundary

is balanced by an outflux through the opposite boundary. With the new boundary

conditions in place, the solution to Eq. (30) is proportional to
∑∞

n=0 eσn t̃
[

cos(kx̃) +
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Fig. 12 Spatiotemporal dynamics of VEGFC in one dimension (part 3). In this simulation, b1 = 1.9×105,

b2 = 1.13, b3 = 22.5, b4 = 356, b5 = 36, a1,M2 = 4.51, a1,V C = 26.6, a2,M2 = 107, and a2,V C = 18.1.

VEGFC stands for vascular endothelial growth factor C

sin(kx̃)

]

. However, the dispersion relations remain the same, meaning the results

presented in the last two sections are still valid. The simulation results obtained with

periodic boundary conditions are illustrated in Fig. 14. Figure 14 has two notable

features. First, the distribution of VEGFC is very regular in Fig. 14. Second, the

concentration range in Fig. 14 is narrower than those in Figs. 10, 11, and 12. The

increased regularity is consistent with the use of periodic boundary conditions, while

diffusion in two dimensions leads to flatter concentration gradients than it does in one

dimension. These two features aside, the comments on the other two simulations apply

to Fig. 14 too.

Clearly, the outer boundaries of the trunk are physical barriers and the trunk is not

periodic in the two modelled directions. The system with periodic boundary conditions
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Fig. 13 Spatiotemporal dynamics of VEGFC in one dimension (parts 1, 2, and 3). The four subfigures show

the same results from different angles. In this simulation, b1 = 1.9×105, b2 = 1.13, b3 = 22.5, b4 = 356,

b5 = 36, a1,M2 = 4.51, a1,V C = 26.6, a2,M2 = 107, and a2,V C = 18.1. VEGFC stands for vascular

endothelial growth factor C

represents a portion of the trunk, far from and not influenced by the boundaries.

Therefore, this patterning mechanism is versatile.

6 Discussion

At the start of this study, we wondered what guides the differentiation of PLs into

the mature LECs that form the TD, DLLV, and PLV. We wondered whether VEGFC,

MMP2, and collagen I can interact to generate Turing patterns of VEGFC. We have

shown that the answer is ‘yes’ and analysed the patterning mechanism (Sect. 4). On

the other hand, only 94 of the 1,953,125 Turing point candidates are Turing points. It

is obvious that the zebrafish embryo needs a separate control mechanism to create the

supporting physiological conditions. We found out the factors that may favour Turing’s

mechanism, insights into what the control mechanism needs to achieve (Sect. 4).

Finally, we buttressed our predictions with computer simulations (Sect. 5). To end this

paper, we will link the proposed patterning mechanism to lymphangiogenesis.

The patterning mechanism requires a HSS. The embryo is closer to a HSS after

the migration of MMP2-producing PLs is over. On this basis, we argue that the PLs

from the horizontal myoseptum migrate to where the vessels lie before differentiating

into mature LECs. In other words, the TD, DLLV, and PLV form and then mature. It
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Fig. 14 Spatiotemporal dynamics of VEGFC in two dimensions and with periodic boundary conditions. In

this simulation, b1 = 1.9 × 105, b2 = 1.13, b3 = 22.5, b4 = 356, b5 = 36, a1,M2 = 4.51, a1,V C = 26.6,

a2,M2 = 107, and a2,V C = 18.1. Vertically, the spatial coordinate ỹ goes from 0 to 1; horizontally, the

spatial coordinate x̃ goes from 0 to 0.1. VEGFC stands for vascular endothelial growth factor C

follows that the differentiation/maturation step, regulated by the proposed patterning

mechanism, occurs at the tail end of the time frame, closer to 168 HPF than 48 HPF.

However, it is premature to relate this patterning mechanism to the maturation

of the three lymphatic vessels. First, the peaks of VEGFC concentration may not

coincide with the vessels. Second, if VEGFC demonstrates the oscillatory behaviour

present in the simulations, it will be an inconsistent signal. Third, in the simulation

results, the concentration range of VEGFC is less than threefold, the prerequisite of

a morphogen gradient according to a rule of thumb (Gurdon and Bourillot 2001).

Fourth, the nondimensionalised time range in our simulations corresponds to almost

12 days. Considering the zebrafish reaches sexual maturity at roughly 3 months post-

fertilisation (Nasiadka and Clark 2012), the simulated dynamics may be too slow.
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We need more information to forge the links. First, we must explain what makes the

vessels lie at the peaks of a VEGFC pattern. It is possible that the constituent cells are

drawn there by chemotaxis. Although we express scepticism about this scenario in our

earlier paper (Wertheim and Roose 2017), the study reported in that paper was about an

earlier stage of lymphangiogenesis. Besides, that argument rests on the distribution of

VEGFC in the trunk, not its intrinsic ability to chemoattract LECs or their progenitors.

Second, we must explore the parametric space more selectively. We should only pick

the parametric combinations whose dominant Fourier modes have real and sufficiently

large eigenvalues. At these Turing points, stationary VEGFC patterns reach a sufficient

size within a reasonable time frame. Biologically, it means the aforementioned control

mechanism must be selective enough to pick the physiological conditions representing

these Turing points over those representing the other Turing points.

Focussing on the study itself, we can make certain improvements. The most obvious

criticism pertains to the aforementioned control mechanism. While we have shown

that VEGFC can form Turing patterns, it is of no use to the zebrafish embryo unless

this ability is exercised. The patterning mechanism needs the control mechanism.

Therefore, we must explain how the embryo finds the ‘right’ parameters by carrying

out a more extensive and sophisticated search of the parametric space. For example,

an adaptive Monte Carlo algorithm can mimic how the embryo may find the right

parameters by trial and error. Then, using a larger sample of Turing points, we can

look for correlations between the 11 parameters to infer a mechanism. A fundamental

assumption is the existence of a HSS. To provide evidence for it, we must track the

biochemical profile in the zebrafish embryo over time. The MMP2 and VEGFC pro-

duction terms are essential to Turing’s mechanism. In order to address the uncertainties

in these terms, we must perform experimental studies.

However, even before we find the missing links or improve the study, our results are

novel and useful. Although Turing’s mechanism was first proposed decades ago, our

biochemical system is an atypical instance due to the production terms, the interactions

of VEGFC with an immobile substrate, and the dependence of diffusion rates on the

abundance of immobile substrate. To the best of our knowledge, no one has performed

a linear stability analysis on this type of biochemical system before. Therefore, we

have proposed a new patterning mechanism. It has two indispensable components:

reversible binding between VEGFC and collagen I (positive feedback for VEGFC)

and VEGFC-enhanced production of MMP2, which degrades collagen I (negative

feedback for VEGFC). We also know that volume exclusion by collagen I hinders

rather than promotes pattern formation. We have shown that the mechanism works for

both periodic and no-flux boundary conditions. Therefore, it can be applied to other

natural and synthetic biological systems.
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