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Crepant resolutions and open strings
By Andrea Brini at Montpellier, Renzo Cavalieri at Fort Collins and

Dustin Ross at Ann Arbor

Abstract. In the present paper, we formulate a Crepant Resolution Correspondence for
open Gromov–Witten invariants (OCRC) of toric Lagrangian branes inside Calabi–Yau 3-orbi-
folds by encoding the open theories into sections of Givental’s symplectic vector space. The
correspondence can be phrased as the identification of these sections via a linear morphism
of Givental spaces. We deduce from this a Bryan–Graber-type statement for disk invariants,
which we extend to arbitrary topologies in the Hard Lefschetz case. Motivated by ideas of
Iritani, Coates–Corti–Iritani–Tseng and Ruan, we furthermore propose (1) a general form of
the morphism entering the OCRC, which arises from a geometric correspondence between
equivariant K-groups, and (2) an all-genus version of the OCRC for Hard Lefschetz targets.
We provide a complete proof of both statements in the case of minimal resolutions of threefold
An-singularities; as a necessary step of the proof we establish the all-genus closed Crepant
Resolution Conjecture with descendents in its strongest form for this class of examples. Our
methods rely on a new description of the quantum D-modules underlying the equivariant
Gromov–Witten theory of this family of targets.
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2 Brini, Cavalieri and Ross, Crepant resolutions and open strings

1. Introduction

1.1. Summary of results. This paper proposes an approach to the Crepant Resolution
Conjecture for open Gromov–Witten invariants, and supports it with a series of results and
verifications about threefold An-singularities and their resolutions.

Let Z be a smooth toric Calabi–Yau Deligne–Mumford stack of dimension three with
generically trivial stabilizers and semi-projective coarse moduli space, and let L be an
Aganagic–Vafa brane (Section 3.1.1). Fix a Calabi–Yau torus action T on Z and denote by
�Z the free module over H.BT / spanned by the T -equivariant lifts of orbifold cohomology
classes of Chen–Ruan degree at most two. We define (Section 3.1) a family of elements of
Givental space,

Fdisk
L;Z W HT .Z/! HZ D HT .Z/..z�1//;

which we call the winding neutral disk potential. Upon appropriate specializations of the vari-
able z, Fdisk

L;Z
encodes disk invariants of .Z; L/ at any winding d .

Consider a crepant resolution diagram X ! X  Y , where X is the coarse moduli
space of X and Y is a crepant resolution of the singularities of X . A Lagrangian boundary
condition L is chosen on X and we denote by L0 its transform in Y . Our version of the open
crepant resolution conjecture is a comparison of the (restricted) winding neutral disk potentials.

Proposal 1 (The OCRC). There exists a C..z�1//-linear map of Givental spaces
O W HX ! HY and analytic functions hX W �X ! C, hY W �Y ! C such that

h
1
z

Y Fdisk
L;Y

ˇ̌
�Y
D h

1
z

X
O ı Fdisk

L;X

ˇ̌
�X

upon analytic continuation of quantum cohomology parameters.

Further, we conjecture (Conjecture 3.5) that both O and h� are completely determined
by the classical toric geometry of X and Y . In particular, we give a prediction for the transfor-
mation O depending on a choice of identification of the K-theory lattices of X and Y .

When X is a Hard Lefschetz Calabi–Yau orbifold, the OCRC comparison extends to
all of HT .Z/. This, together with ideas of Coates–Iritani–Tseng and Ruan (Conjecture 2.4),
motivates a comparison for potentials encoding invariants of maps with arbitrary topology.

Proposal 2 (The quantum OCRC). Let X ! X  Y be a Hard Lefschetz diagram for
which the OCRC holds. Defining O˝` D O.z1/˝ � � � ˝O.z`/, we have

F
g;`
L0;Y D O˝` ı F

g;`
L;X

;

where the winding neutral open potential Fg;` is the genus-g, `-boundary components analog
of Fdisk defined in Section 3.3.

Consider now the family of threefold An singularities, where X D ŒC2=ZnC1� � C

and Y is its canonical minimal resolution.

Main Theorem. The OCRC, Conjecture 3.5 and the quantum OCRC hold for the

An-singularities for any choice of Aganagic–Vafa brane on X.
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 3

Our verification of the OCRC and Conjecture 3.5 in this family of examples follow from
Proposition 3.6 and Theorem 4.1. The quantum OCRC is a consequence of the closed string
quantum CRC in its strongest version (Conjecture 2.4, Theorem 6.1), which we establish in
Section 6. From this, we deduce a series of comparisons of more classical generating functions
for open invariants, in the spirit of Bryan–Graber’s formulation of the CRC.

In Section 3.2 we define the cohomological disk potential F
disk
L – a cohomology-valued

generating function for disk invariants that “remembers” the twisting and the attaching fixed
point of an orbimap. We also consider the coarser scalar potential (see Section 3.1.1), which
keeps track of the winding of the orbimaps but forgets the twisting and attaching point. There
are essentially two different choices for the Lagrangian boundary condition on X; the simpler
case occurs when L intersects one of the effective legs of the orbifold. In this case we have the
following result.

Theorem 4.4 (Effective leg). Identifying the winding parameters and setting

OZ.1
k/ D P nC1

for every k, we have

F
disk
L0;Y .t; y; Ew/ D OZ ı F

disk
L;X.t; y; Ew/:

It is immediate to observe that the scalar potentials coincide (Corollary 4.5).
The case when L intersects the ineffective leg of the orbifold is more subtle.

Theorem 4.2 (Ineffective leg). We exhibit a matrix OZ of roots of unity and a special-

ization of the winding parameters depending on the equivariant weights such that

F
disk
L0;Y .t; y; Ew/ D OZ ı F

disk
L;X.t; y; Ew/:

The comparison of scalar potentials in this case does not hold anymore. Because of the
special form of the matrix OZ we deduce in Corollary 4.3 that the scalar disk potential for
Y corresponds to the contribution to the potential for X by the untwisted disk maps. Our
proof of the quantum CRC makes it an exercise in book-keeping to extend the statements of
Theorems 4.2 and 4.4 to compare generating functions for open invariants with arbitrary genus
and number of boundary components, even treating all boundary Lagrangian conditions at the
same time. The main tool used in the proof of our main theorem is a new global description
of the gravitational quantum cohomology of the An geometries, which enjoys a number of
remarkable features, and may have an independent interest per se.

Theorem 5.4. By identifying the A-model moduli space with a genus-zero double

Hurwitz space, we construct a global quantum D-module .F�;� ; TF�;� ;r.g;z/;H. � ; � /g/
which is locally isomorphic to QDM.X/ and QDM.Y / in appropriate neighborhoods of the

orbifold and large complex structure points.

1.2. Context, motivation and further discussion. Open Gromov–Witten (GW) theory
intends to study holomorphic maps from bordered Riemann surfaces, where the image of the
boundary is constrained to lie in a Lagrangian submanifold of the target. While some general
foundational work has been done [66,74], at this point most of the results in the theory rely on
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4 Brini, Cavalieri and Ross, Crepant resolutions and open strings

additional structure. In [19, 21] Lagrangian Floer theory is employed to study the case when
the boundary condition is a fiber of the moment map. In the toric context, a mathematical
approach [13, 32, 54, 69] to construct operatively a virtual counting theory of open maps is via
the use of localization.1) A variety of striking relations have been verified connecting open GW
theory and several other types of invariants, including open B-model invariants and matrix
models [3, 4, 8, 40, 60], quantum knot invariants [47, 63], and ordinary Gromov–Witten and
Donaldson–Thomas theory via “gluing along the boundary” [2, 61, 64].

Since Ruan’s influential conjecture [70], an intensely studied problem in Gromov–Witten
theory has been to determine the relation between GW invariants of target spaces related by
a crepant birational transformation (CRC). The most general formulation of the CRC is framed
in terms of Givental formalism ([28]; see also [29] for an expository account); the conjecture
has been proved in a number of examples [23, 24, 28] and has by now gained folklore status,
with a general proof in the toric setting announced for some time [25, 27]. A natural question
one can ask is whether similar relations exist in the context of open Gromov–Witten theory.
Within the toric realm, physics arguments based on open mirror symmetry [8,9,15] have given
strong indications that some version of the Bryan–Graber [17] statement of the crepant res-
olution conjecture should hold at the level of open invariants. This was proven explicitly for
the crepant resolution of the Calabi–Yau orbifold ŒC3=Z2� in [18]. Around the same time, it
was suggested [10, 11] that a general statement of a Crepant Resolution Conjecture for open
invariants should have a natural formulation within Givental’s formalism, as in [24, 28]. Some
implications of this philosophy were verified in [11] for the crepant resolution OP2.�3/ of the
orbifold ŒC3=Z3�.

The OCRC we propose here is a natural extension to open Gromov–Witten theory of
the Coates–Iritani–Tseng approach [28] to Ruan’s conjecture. The observation that the disk
function of [13,69] can be interpreted as an endomorphism of Givental space makes the OCRC
statement follow almost tautologically from the Coates–Iritani–Tseng/Ruan picture of the ordi-
nary CRC via toric mirror symmetry [28]. The more striking aspect of our conjecture is then
that the linear function O comparing the winding neutral disk potentials is considerably simpler
than the symplectomorphism UX;Y

� in the closed CRC and it is characterized in terms of purely

classical data: essentially, the equivariant Chern characters of X and Y . This is intimately
related to Iritani’s equation (2.4) that the analytic continuation for the flat sections of the global
quantumD-module is realized via the composition ofK-theoretic central charges. While Iritani
works non-equivariantly on proper targets, his constructions carry through to the equivariant
setting, and inspire us to make Conjecture 3.5. We point out that our results do not rely on
the validity of Iritani’s proposal, but rather support the fact that an equivariant version of his
proposal should hold.

Iritani’s theory is inspired and consistent with the idea of global mirror symmetry, i.e. that
there exists a global quantum D-module on the A-model moduli space which locally agrees
with the Frobenius structure given by quantum cohomology. In order to verify his proposal
in the equivariant setting relevant for this paper, we give a new construction of this global
structure: motivated by the connection of the Gromov–Witten theory of An-surface singular-
ities to certain integrable systems of Toda type [12], we realize the global A-model quantum
D-module as a system of one-dimensional Euler–Pochhammer hypergeometric periods. This

1) Alternatively, open string invariants in the manifold case can be defined using relative stable mor-
phisms [62].
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 5

mirror picture possesses several remarkable properties which enable us to verify in detail our
proposals for the open CRC, as well as proving along the way various results of indepen-
dent interest on Ruan’s conjecture as well as its refinements (Iritani, Coates–Iritani–Tseng) and
extensions (the higher genus CRC). First off, the computation of the analytic continuation of
flat sections is significantly simplified with respect to the standard toric mirror symmetry meth-
ods based on the Mellin–Barnes integral: in particular, the Hurwitz space picture gives closed-
form expressions for the analytic continuation of flat sections upon crossing a parametrically
large number of walls. A useful consequence for us is Theorem 4.1, which furnishes an explicit
form for the morphism UX;Y

� of Givental’s spaces of [24], as well as a verification of Iritani’s
proposal [50] in the fully equivariant setting. Furthermore, the monodromy action on branes
(and therefore equivariant K-theory) gets identified with the Deligne–Mostow monodromy of
hypergeometric integrals, thereby giving a natural action of the pure braid group with nC 2
strands on the equivariant K-groups of An-resolutions. Finally, proving the strong version of
the quantized Crepant Resolution Conjecture (Conjecture 2.4) is reduced by Theorem 5.4 to
a calculation in Laplace-type asymptotics. To our knowledge, this provides the first example
where a full-descendent version of Ruan’s conjecture is established to all genera.2)

1.3. Relation to ongoing and other work. A proof of the all-genus Ruan’s conjecture
and of the quantum OCRC for the other case of a Hard Lefschetz Crepant Resolution of toric
Calabi–Yau 3-folds – the G-Hilb resolution of ŒC3=G� with G D Z2 � Z2 – will be offered
in the companion paper [14], where the OCRC will also be proven for a family of non-Hard
Lefschetz targets.

In the current form, the winding neutral disk potential, which encodes information about
disk invariants, depends on the choice of an Aganagic-Vafa brane incident to one of the torus
invariant lines. In other words, we have a different object corresponding to each phase of the
open moduli. It would be desirable to have a construction of the winding neutral disk potential
that is independent of the choice of Lagrangian, and to obtain the various boundary conditions
as specializations, so as to witness more explicitly the phase transitions in the open moduli. We
are currently investigating this proposal and have some positive results in the case of target C3.

We have also been made aware of the existence of a number of projects related in various
ways to the subject of this paper. In a forthcoming paper, Coates–Iritani–Jiang will establish
Iritani’s proposal on the relation between the K-group McKay correspondence and the CRC
in the fully equivariant setting for general semi-projective toric varieties. Ke–Zhou [55] have
announced a proof of the quantum McKay correspondence for disk invariants on effective outer
legs for semi-projective toric Calabi–Yau 3-orbifolds using results of [40]; this is the case where
the comparison of cohomological disk potentials of the OCRC is simplified to an identification
of the scalar disk potentials. Very recently, a similar statement for scalar potentials was obtained
by Chan–Cho–Lau–Tseng in [20] as an application of their construction of a class of non-toric
Lagrangian branes inside toric Calabi–Yau 3-orbifolds. This opens up the suggestive hypothesis
that our setup for the OCRC may be generalized beyond the toric setting considered here.

1.4. Organization of the paper. This paper is organized as follows. Section 2 is a pre-
sentation of various versions of the ordinary (closed string) Crepant Resolution Conjecture

2) For non-descendent invariants, an all-genus Bryan–Graber-type statement for An-surface resolutions was
proved by Zhou [80]. In an allied context, Krawitz–Shen [56] have established an all-genus LG/CY correspondence
for elliptic orbifold lines.
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6 Brini, Cavalieri and Ross, Crepant resolutions and open strings

that are addressed in this paper. In Section 3 we present our proposal for the Open Crepant
Resolution Conjecture, whose consequences we analyze in detail in Section 4 for the case of
An-resolutions. Proofs of the statements contained here are offered in Sections 5– 6: Section 5
is devoted to the construction of the Hurwitz-space mirror, which is used to verify our pre-
diction on the form of the morphism O, while in Section 6 the quantum CRC and OCRC are
established by combining the tools of Section 5 with Givental’s quantization formalism. Rel-
evant background material on Gromov–Witten theory and quantum D-modules is reviewed in
Section A, while Section B collects mostly notational material on the toric geometry concern-
ing our examples. A technical result on the analytic continuation of hypergeometric integrals
required in the proof of Theorem 4.1 is discussed in Section C.

Acknowledgement. We would like to thank Hiroshi Iritani, Yunfeng Jiang, Étienne
Mann, Stefano Romano, Ed Segal, Mark Shoemaker, and in particular Tom Coates for useful
discussions, correspondence and/or explanation of their work. We are also grateful to Bohan
Fang, Melissa Liu and Zhenyu Zong for correspondence after the appearance of their work
[41, 81], which led to an improved version of our manuscript in the discussion of Remark 6.2.
This project originated from discussions at the Banff Workshop on “New recursion formulae
and integrability for Calabi–Yau manifolds”, October 2011; we are grateful to the organizers
for the kind invitation and the great scientific atmosphere at BIRS.

2. Gromov–Witten theory and crepant resolutions: Setup and conjectures

This section collects and ties together various incarnations of the CRC that we wish to
focus on. We assume here familiarity with Gromov–Witten theory and Givental’s formalism;
relevant background material is collected in Section A.

Consider a toric Gorenstein orbifold X, and let X  Y be a crepant resolution of its
coarse moduli space. For Z D X; Y , fix an algebraic T ' C� action with zero-dimensional
fixed loci such that the resolution morphism is T -equivariant. The equivariant Chen–Ruan
cohomology ring H.Z/ , H orb

T .Z/ of Z is a rank-NZ , rankCŒ��H.Z/ free module over
H.BT / ' CŒ��, where � D c1.OBT .1// is the equivariant parameter. Note that the genus-zero
Gromov–Witten theory of Z defines a deformation of the ring structure on H.Z/, and equiva-
lently, the existence of a distinguished family of flat structures on its tangent bundle. We shall
fix notation as follows:

� the flat pairing on the space of vector fields X.H.Z// induced
by the Poincaré pairing on Z

(A.1)

ı� the quantum product at � 2 H.Z/ (A.4), (A.6)

r.�;z/ the Dubrovin connection on X.H.Z// (A.7)

QDM.Z/ the quantum D-module structure on X.Z/ induced by .�; ı� / (A.8)

SZ the vector space of horizontal sections of r.�;z/
H. � ; � /Z the canonical pairing on SZ induced by � (A.9)

JZ the big J -function of Z (A.11)

SZ the fundamental solution (S -calibration) of QDM.Z/ (A.10)

HZ Givental’s symplectic vector space of Z (A.17)–(A.18)
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 7

LZ the Lagrangian cone associated to QH.Z/ (A.20)

Sp˙.HZ/ the positive/negative symplectic loop group of HZ Section A.2.1

�Z the free module over CŒ�� spanned by T -equivariant lifts of
orbifold cohomology classes with degCR � 2.

2.1. Quantum D-modules and the CRC. Ruan’s Crepant Resolution Conjecture can
be phrased as the existence of a global quantumD-module underlying the quantumD-modules
of X and Y . This is a 4-tuple .MA; F;r;H. � ; � /F / given by a connected complex analytic
space MA and a holomorphic vector bundle F !MA, endowed with a flat OMA

-connection
r and a non-degenerate r-flat inner product H. � ; � /F 2 End.F /.

Conjecture 2.1 (The Crepant Resolution Conjecture). There exist a global quantum
D-module .MA; F;r;H. � ; � /F / such that for open subsets VX , VY �MA we locally have

.MA; F;r;H. � ; � /F /
ˇ̌
VX
' QDM.X/;(2.1)

.MA; F;r;H. � ; � /F /
ˇ̌
VY
' QDM.Y /:

In particular, any 1-chain � in MA with ends in VX and VY gives an analytic continuation
map of r-flat sections U

X;Y
S;�
W SX ! SY , which is an isometry ofH. � ; � /F and identifies the

quantum D-modules of X and Y .
Even when equation (2.1) holds, there may be an obstruction to extend the isomorphism

of small quantum products to big quantum cohomology which is relevant in our formulation
of the OCRC. Locally around the large radius limit point of X and Y , canonical trivializa-
tions of the global flat connection r are given by a system of flat coordinates for the small
Dubrovin connection. Generically they are not mutually flat: on the overlap VX \ VY , the
relation between the two coordinate systems is typically not affine over C.�/, and as a result
the induced Frobenius structures on H.X/ and H.Y / may be inequivalent. In favorable sit-
uations, for example when the coarse moduli space Z is semi-projective, the two charts are
related by a conformal factor hY h�1

X
for local functions hX 2 OVX

; hY 2 OVY
which are in

turn completely determined by the toric combinatorics defining X and Y as GIT quotients
(equation (A.16)). A sufficient condition [28] for the two Frobenius structures to coincide (i.e.
hX D hY ) is given by the Hard Lefschetz criterion for X,

age.�/ � age.inv��/ D 0;

for any class � 2 H.X/.

2.2. Integral structures and the CRC. In [50], Iritani usesK-groups to define an inte-
gral structure in the quantum D-module associated to the Gromov–Witten theory of a smooth
and proper Deligne–Mumford stack Z; we recall the discussion in [50,51]. WriteK.Z/ for the
Grothendieck group of topological vector bundles V ! Z and consider the map

F W K.Z/! H.Z/˝C..z�1//

given by

F .V / , .2�/�
dim Z

2 z���Z [ .2� i/
deg
2 inv�ch.V /;
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8 Brini, Cavalieri and Ross, Crepant resolutions and open strings

where ch.V / is the orbifold Chern character, [ is the topological cup product on IZ, and

�Z ,
M

v

Y

f

Y

ı

�.1 � f C ı/;(2.2)

� ,

�
1

2
deg.�/ � 3

2

�
�I

the sum in equation (2.2) is over all connected components of the inertia stack, the left product
is over the eigenbundles in a decomposition of the tangent bundle TZ with respect to the
stabilizer action (with f the rational weight of the action on the eigenspace; note that 1 � f
is always strictly positive and hence �Z is an invertible function in a neighborhood of 0),
and the right product is over all of the Chern roots ı of the eigenbundle. Via the fundamental
solution (A.10) this induces a map to the space of flat sections of QDM.Z/; its image is a lattice
[50] in SZ, which Iritani dubs the K-theory integral structure of QH.Z/.

Iritani’s theory has important implications for the Crepant Resolution Conjecture. At
the level of integral structures, the analytic continuation map U

X;Y
S;�

of flat sections should
be induced by an isomorphism UX;Y

K;� W K.Y /! K.X/ at the K-group level. The Crepant
Resolution Conjecture can then be phrased in terms of the existence of an identification of the
integral local systems underlying quantum cohomology, which, according to [50], should take
the shape of a natural geometric correspondence between K-groups.

2.3. The symplectic formalism and the CRC. The symplectic geometry of Frobenius
manifolds gives the Crepant Resolution Conjecture a natural formulation in terms of mor-
phisms of Givental spaces, as pointed out by Coates–Corti–Iritani–Tseng [24, 28] (see also
[29] for a review).

Conjecture 2.2 ([28]). There exists a C..z�1//-linear symplectic isomorphism of
Givental spaces UX;Y

� W HX ! HY ; matching the Lagrangian cones of X and Y upon a suit-
able analytic continuation of small quantum cohomology parameters:

(2.3) UX;Y
� .LX/ D LY :

This version of the CRC is equivalent to the quantum D-module approach via the funda-
mental solutions, which give a canonical z-linear identification

SZ.�; z/ W HZ

Š�! SZ;

translating the analytic continuation map UX;Y
S;�

to a symplectic isomorphism of Givental
spaces UX;Y

� . Iritani’s theory of integral structures proposes that the symplectic isomorphism
UX;Y
� should be induced from a natural equivalence at the level of K lattices of X and Y , as

illustrated in Figure 1:

Proposal 3 ([50]). Inverting the central charge FX , one obtains

(2.4) UX;Y
� D FY ıUX;Y

K;� ıF
�1
X
:

A case of particular interest for us is the following. Suppose that c1.X/ D 0, dimCX D 3
and assume further that the J -functions JZ, for Z either X or Y , and UX;Y

� admit well-defined
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 9

K.X/ K.Y /

HX HY

SX SY

U
X;Y
K;�

//

UX;Y
�

//

FX

��

FY

��

SX.x;z/

��

SY .t;z/

��U
X;Y
S;�

//

Figure 1. Analytic continuation of flat sections, symplectomorphism of Givental spaces and com-
parison of integral structures.

non-equivariant limits,

JZ
n-eq.�; z/ , lim

�!0
JZ.�; z/; UX;Y

�;0 , lim
�!0

UX;Y
� :

By the string equation and dimensional constraints, e��0=zJZ
n-eq.�; z/ is a Laurent polynomial

of the form [30, Section 10.3.2]

JZ
n-eq.�; z/ D e��0=z

 
z C

NZ�1X

iD1

�
� i C fi

Z.�/

z

�
�i C

gZ.�/

z2
1Z

!
;

where fZ.�/ and gZ.�/ are analytic functions around the large radius limit point of Z. Restric-
ting JZ

n-eq.�; z/ to �Z and picking up a branch � of analytic continuation of the quantum
parameters, the vector-valued analytic function I

X;Y
� defined by

�X �Y

HX HY

IX;Y
�

//

JX
n-eqj�X

OO

JY
n-eqj�Y

OO

h
1
z
X

U
X;Y
�;0 h

� 1
z

Y
//

(2.5)

gives an analytic isomorphism3) between neighborhoods VX , VY of the projections of the large
radius points of X and Y to �X and �Y . When X satisfies the Hard–Lefschetz condition, the
coefficients of UX;Y

� contain only non-positive powers of z [28] and the non-equivariant limit
coincides with the z !1 limit; then the isomorphism I

X;Y
� extends to the full cohomology

rings of X and Y , and induces an affine linear change of variables bIX;Y
� , which gives an

isomorphism of Frobenius manifolds.

3) Explicitly, matrix entries .UX;Y
�;0 /ij of UX;Y

�;0 are monomials in z; call uij the coefficient of such mono-
mial. Then (2.5) boils down to the statement that quantum cohomology parameters ��

i in �� for i D 1; : : : ; lY
are identified as

(2.6) �Yi D .IX;Y
� �X/i , ui0 C

lYX

jD1

uij .�
X/j C

NY �1X

kDlY C1

uikfX

k
.�X/:

Since deg.UX;Y
�;0 /ij > 0 for j > lY , in the Hard Lefschetz case the condition that the coefficients of UX;Y

� are
Taylor series in 1

z implies that uik D 0 for k > lY .
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10 Brini, Cavalieri and Ross, Crepant resolutions and open strings

2.4. Quantization and the higher genus CRC. Conjecture 2.2 shapes the genus-zero
CRC as the existence of a classical canonical transformation identifying the Givental phase
spaces of X and Y . As the higher genus theory is obtained from the genus-zero picture by
quantization, it is expected that the full Gromov–Witten partition functions should be identi-
fied, upon analytic continuation, via a quantum canonical transformation identifying the Fock
spaces, and that such quantum transformation is related to the quantization of the symplecto-
morphism UX;Y

� in equation (2.3).

Conjecture 2.3 ([28, 29]). Let UX;Y
� D U�U0UC denote the Birkhoff factorization

of UX;Y
� . Then

(2.7) ZY DbU�cU0bUCZX :

A much stronger statement stems from equation (2.7) in the Hard Lefschetz case, when
UC D 1HX

(cf. [28, Theorem 5.10]).

Conjecture 2.4 (The Hard Lefschetz quantized CRC). Let X ! X  Y be a Hard
Lefschetz crepant resolution diagram. Then

(2.8) ZY D 1
UX;Y
� ZX

By [44, Proposition 5.3], equation (2.8) gives, up to quadratic genus-zero terms,

(2.9) ZY D ZX jtXDŒU�1
X;Y

tY �C
;

where Œf .z/�C denotes the projection Œ � �C W C..z//! CŒŒz��. In other words, Conjecture 2.4
states that the full descendent partition function of Z and Y coincide to all genera, upon analytic
continuation and the identification of the Fock space variables dictated by the classical sym-
plectomorphism (2.3).

3. The open crepant resolution conjecture

3.1. Open string maps and Givental’s formalism.

3.1.1. Open Gromov–Witten theory of toric 3-orbifolds. For a three-dimensional
toric Calabi–Yau variety, open Gromov–Witten invariants are defined “via localization” in
[32, 54]. This theory has been first introduced for orbifold targets in [13] and developed in
full generality in [69] (see also [40] for recent results in this context).

Boundary conditions are given by choosing special type of Lagrangian submanifolds
introduced by Aganagic–Vafa in [4]. These Lagrangians are defined locally in a formal neigh-
borhood of each torus invariant line: in particular if p is a torus fixed point adjacent to the torus
fixed line l , and the local coordinates at p are .z; u; v/, then L is defined to be the fixed points
of the anti-holomorphic involution

.z; u; v/ 7!
�
1
z
; zu; zv

�

defined away from z D 0. Boundary conditions can then be thought of as “formal” ways of
decorating the web diagram of the toric target.
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 11

Loci of fixed maps are described in terms of closed curves mapping to the compact edges
of the web diagram in the usual way and disks mapping rigidly to the torus invariant lines with
Lagrangian conditions. Beside Hodge integrals coming from the contracting curves, the con-
tribution of each fixed locus to the invariants has a factor for each disk, which is constructed as
follows. The map from the disk to a neighborhood of its image is viewed as the quotient via an
involution of a map of a rational curve to a canonical target. The obstruction theory in ordinary
Gromov–Witten theory admits a natural Z2 action, and the equivariant Euler class of the invo-
lution invariant part of the obstruction theory is chosen as the localization contribution from the
disk [13, Section 2.2], [69, Section 2.4]. This construction is encoded via the introduction of
a “disk function”, which we now review in the context of cyclic isotropy (see [69, Section 3.3]
for the general case of finite abelian isotropy groups).

Let Z be a three-dimensional CY toric orbifold, p a fixed point such that a neighborhood
is isomorphic to ŒC3=ZnC1�, with representation weights .m1; m2; m3/ and CY torus weights
.w1; w2; w3/. Fix a Lagrangian boundary condition L which we assume to be on the first
coordinate axis in this local chart. Define ne D .nC 1/=gcd.m1; nC 1/ to be the size of the
effective part of the action along the first coordinate axis. There exist a map from an orbi-
disk mapping to the first coordinate axis with winding d and twisting4) k if the compatibility
condition

(3.1)
d

ne
� km1

nC 1 2 Z

is satisfied. In this case the positively oriented disk function is

DC
k
.d I Ew/ D

�
new1

d

�age.k/�1 ne

d.nC 1/
�
d
ne

˘
Š

�
�
dw2

new1
C
˝
km3

nC1

˛
C d

ne

�

�
�
dw2

new1
�
˝
km2

nC1

˛
C 1

� :

The negatively oriented disk function is obtained by switching the indices 2 and 3. By renaming
the coordinate axes this definition applies to the general boundary condition.

In [69] the disk function is used to construct the GW orbifold topological vertex, a build-
ing block for open and closed GW invariants of Z. The scalar disk potential is expressed in
terms of the disk and of the J function of Z. The fixed point basis for the equivariant Chen
Ruan cohomology of Z has nC 1 classes supported at the fixed point p, corresponding to all
irreducible representations of ZnC1. For k D 1; : : : ; n, denote by 1p;k the fundamental class
of the twisted sector corresponding to the character k; we denote 1p;nC1 the untwisted class of
the fixed point p. Raising indices using the orbifold Poincaré pairing, and extending the disk
function to be a cohomology-valued function

D
C.d I Ew/ D

nC1X

kD1

DC
k
.d I Ew/1k

p ;

the (genus-zero) scalar disk potential is obtained by contraction with the J function:

F disk
L .�; y; Ew/ ,

X

d

yd

dŠ

X

n

1

nŠ
h�; : : : ; �iL;d0;n

D
X

d

yd

dŠ

�
D

C.d I Ew/; JZ

�
�;
new1

d

��

Z

;

4) Here twisting refers to the image of the center of the disk in the evaluation map to the inertia orbifold.
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12 Brini, Cavalieri and Ross, Crepant resolutions and open strings

where we denoted by h�; : : : ; �iL;d0;n the disk invariants with boundary condition L, winding d
and n general cohomological insertions.

Remark 3.1. We may consider the disk potential relative to multiple Lagrangian bound-
ary conditions. In that case, we define the disk function by adding the disk functions for each
Lagrangian, and we introduce a winding variable for each boundary condition. Furthermore, it
is not conceptually difficult (but book-keeping intensive) to express the general open potential
in terms of appropriate contractions of arbitrary copies of these disk functions with the full
descendent Gromov–Witten potential of Z.

3.1.2. The disk function, revisited. We reinterpret the disk function as a symmetric
tensor of Givental space. First we homogenize Iritani’s Gamma class (2.2) and make it of
degree zero:

�Z.z/ , z� 1
2

deg�Z ,
X

�
k

Z1p;k;

where the second equality defines �
k

Z as the 1p;k-coefficient of �Z.z/. With notation as in
Section 3.1.1, we define

(3.2) D
C
Z.zI Ew/.1p;k/ ,

�

w1.nC 1/ sin
�
�
�˝
km3

nC1

˛
� w3

z

��
1

�
k

Z

1k
p :

The dual basis of inertia components diagonalizes the tensor D
C
Z .

Lemma 3.2. The kth coefficient of D
C
Z coincides with DC

k
.d I Ew/ when z D new1

d
and

the winding/twisting compatibility condition is met:

ı
1;exp

�
2�i
�

d
ne

�
km1
nC1

��
�

D
C
Z

�
new1

d
I Ew
�
.1p;k/; 1p;k

�

Z

D DC
k
.d I Ew/

Proof. This formula follows from the explicit expression of �Z in the localization/
inertia basis, manipulated via the identity

�.?/�.1 � ?/ D �

sin.�?/
:

The Calabi–Yau condition w1 C w2 C w3 D 0 is also used. The ı factor encodes the degree/
twisting condition.

3.1.3. Open crepant resolutions. Let X ! X  Y be a diagram of toric Calabi–Yau
threefolds for which the Coates–Iritani–Tseng/Ruan version of the closed crepant resolution
conjecture holds. Choose a Lagrangian boundary condition LX in X and denote by LY the
transform of such condition in Y ; notice that in general this can consist of several Lagrangian
boundary conditions.

Proposition 3.3. There exists a C..z�1//-linear transformation

O W HX ! HY

of Givental spaces such that

D
C
Y ıUX;Y

� D O ıD
C
X :
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 13

This proposition is trivial, as O can be constructed as D
C
Y ıUX;Y

� ı .DC
X/

�1, where
.D

C
X/

�1 denotes the inverse of D
C
X after restricting to the basis of eigenvectors with non-

trivial eigenvalues and O is defined to be 0 away from these vectors. However, we observe
that interesting open crepant resolution statements follow from this simple fact, and that O

is a simpler object than UX;Y
� . For a good reason: the disk function almost completely can-

cels the transcendental part in Iritani’s central charge. We make this precise in the following
observation.

Lemma 3.4. Referring to equations (2.2) and (3.2) for the relevant definitions, we have

‚Z.1p;k/ ,
w1.nC 1/
z

3
2�

D
C
Z.1p;k ˝ z���Z/1

k
p(3.3)

D 1

sin
�
�
�˝
km3

nC1

˛
� w3

z

��1k
p :

Combining Lemma 3.4 with Iritani’s equation (2.4), we obtain the following prediction.

Conjecture 3.5. Choose bases for the equivariant CR cohomologies of X and Y . Con-
sider a set5) W of equivariant bundles on Z that descend bijectively to bases for K.X/˝C

and K.Y /˝C. For � D X; Y , let CH� denote the matrix of Chern characters in the chosen
bases. Denote

CH� D
�
2� i

z

� 1
2

deg

inv�CH�:

With ‚� be as in equation (3.3), we have

O D ‚Y ı CHY ı CH
�1
X ı‚X

�1:

We verify Conjecture 3.5 for the resolution of An singularities in Sections 4 and 5. We
also note that while we are formulating the statement in the case of cyclic isotropy to keep
notation lighter, it is not hard to write an analogous prediction in a completely general toric
setting.

3.2. The OCRC. Having modified our perspective on the disk functions, we also
update our take on open disk invariants to remember the twisting of the map at the origin
of the disk. In correlator notation, denote h�; : : : ; �iL;d;k0;n the disk invariants with Lagrangian
boundary condition L, winding d , twisting k and n cohomology insertions. We then define the
cohomological disk potential as a cohomology-valued function, which is expressed as a com-
position of the J function with the disk function (3.2):

F
disk
L .�; y; Ew/ ,

X

d

yd

dŠ

X

n

1

nŠ
h�; : : : ; �iL;d;k0;n 1k

p ;(3.4)

D
X

d

ı
1;exp

�
2� i
�

d
ne

�
km1
nC1

��yd
dŠ

D
C
Z ı JZ

�
�;
new1

d
; Ew
�
:

5) In [72] such a set is called a grade restriction window. In the hypotheses and notation of Proposition 3.3,
note that X and Y must be related by variation of GIT, and therefore they are quotients of a common space
Z D ClY C3; the grade restriction window may be chosen from the coordinate axes of Z, thought of as topo-
logically trivial, but not equivariantly trivial, line bundles. See also [5] and [48].
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14 Brini, Cavalieri and Ross, Crepant resolutions and open strings

HX

O // HY

HX

UX;Y
�

//

DX

OO

HY

DY

OO

�X

h
1
z
X
JX

ff

h
1
z
X

F
disk
L;X

HH

IX;Y
�

// �Y

h
1
z
Y
eJY

88

h
1
z
Y F

disk
L;Y

VV

Figure 2. Open potential comparison diagram. In the Hard Lefschetz case this same diagram holds
with the h factors omitted, and �� identified with the full cohomologies of either target.

We define a section of Givental space that contains equivalent information to the disk potential:

Fdisk
L .t; z; Ew/ , D

C
Z ı JZ.�; zI Ew/:

We call Fdisk
L .t; z; Ew/ the winding neutral disk potential. For any pair of integers k and

d satisfying (3.1), the twisting k and winding d part of the disk potential is obtained by sub-
stituting z D new1

d
. A general “disk crepant resolution statement” that follows from the closed

CRC is a comparison of winding-neutral potentials, as illustrated in Figure 2.

Proposition 3.6. Let X ! X  Y be a diagram for which the Coates–Iritani–Tseng/

Ruan form of the closed crepant resolution conjecture holds and identify quantum parameters

in �X and �Y via I
X;Y
� as in equation (2.5). Then

h
1
z

Y Fdisk
L;Y

ˇ̌
�Y
D h

1
z

X
O ı Fdisk

L;X

ˇ̌
�X
:

Assume further that X satisfies the Hard Lefschetz condition and identify cohomologies via the

affine linear change of variablesbIX;Y
� . Then

Fdisk
L;Y D O ı Fdisk

L;X :

Here we also understand that the winding-neutral disk potential of Y is analytically con-
tinued appropriately (we suppressed the tilde to avoid excessive proliferation of superscripts).

Remark 3.7. At the level of cohomological disk potentials, the normalization factors
hX and hY enter as a redefinition of the winding number variable y in (3.4) depending on small
quantum cohomology parameters; this is the manifestation of the so-called open mirror map in
the physics literature on open string mirror symmetry [3, 8, 11, 60].

Remark 3.8. The statement of the proposition in principle hinges on the possibility
to identify quantum parameters as in (2.5)–(2.6). Restricting to the coordinate hyperplanes of
the fundamental class insertions, the existence of the non-equivariant limits of UX;Y

� and the
J -functions is guaranteed by the fact that we employ a torus action acting trivially on the
canonical bundle of X and Y ; see e.g. [64].
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 15

3.3. The Hard Lefschetz OCRC. In the Hard Lefschetz case the comparison of disk
potentials naturally extends to the full open potential. We define the genus-g, `-holes winding

neutral potential, a function from the space H.Z/ to the `th tensor power of Givental space
H

˝`
Z
D H.Z/..z�1

1 //˝ � � � ˝H.Z/..z�1
`
//:

F
g;`
Z;L

.�; z1; : : : ; z`; Ew/ , D
C˝`
Z ı JZ

g;`.�; z1; : : : ; z`I Ew/;
where JZ

g;`
encodes genus-g, `-point descendent invariants:

(3.5) JZ

g;`.�; zI Ew/ ,

��
�˛1

z1 �  1
; : : : ;

�˛`

z` �  `

��

g;`

�˛1 ˝ � � � ˝ �˛` :

In (3.5), we denoted z D .z1; : : : ; z`/ and a sum over repeated Greek indices is intended. Just
as in the disk case, one can now define a winding neutral open potential by summing over all
genera g and integers ` and a cohomological open potential by introducing winding variables
and summing over appropriate specializations of the z variables. For a pair of spaces X and Y
in a Hard Lefschetz CRC diagram the respective potentials can be compared as in Section 3.1 –
this all follows from the comparison of the l-hole winding neutral potential, which we now
spell out with care.

Theorem 3.9. Let X ! X  Y be a Hard Lefschetz diagram for which the higher

genus closed Crepant Resolution Conjecture holds (Conjecture 2.4). With all notation as in

Proposition 3.6, and O˝` D O.z1/˝ � � � ˝O.z`/, we have

F
g;`
L0;Y D O˝` ı F

g;`
L;X

:

Proof. The generating function JZ

g;`
is obtained from the genus-g descendent potential

by first ` applications of the total differential d , and then restricting to the small phase space
variables � D ¹�˛º D ¹t˛;0º. Under the natural identification of the i th copy of T �

H
C
Z
Š HZ

with the auxiliary variable zi , we have

(3.6) dt˛;k D �˛

zkC1
:

Conjecture 2.4 gives us the equality of the Gromov–Witten partition functions (2.9) after
a change of variable given by the linear identification

(3.7) �C ıUX;Y
� ı i W HC

X
! H

C
Y :

If we decompose the symplectomorphism UX;Y
� as a series in 1

z
of linear maps, i.e. we have

UX;Y
� ,

P
n�0

1
zn Un, then differentiating the change of variable given by (3.7) gives

(3.8) dt
˛;k
Y D

kX

nD0

Un
˛;�dt

�;kCn
X

;

where we denoted by Un
˛;� the .˛; �/ entry of the matrix representing Un after having chosen

bases for the cohomologies of X and Y . Combining (3.6) and (3.8),

1X

kD0

�˛

zkC1
D

1X

kD0

dt
˛;k
Y D

1X

kD0

kX

nD0

Un
˛;�dt

�;kCn
X

(3.9)

D
1X

kD0

kX

nD0

Un
˛;�

��

zkCnC1
D UX;Y

�

 
1X

kD0

��

zkC1

!
:
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16 Brini, Cavalieri and Ross, Crepant resolutions and open strings

Now we differentiate equation (2.9) ` times, and restrict to primary variables that are identified
via (3.7): such identification reduces tobIX;Y

� . Using (3.9), we obtain

J Yg;` D UX;Y
�

˝` ı JX

g;`:

The statement of the theorem follows by composing by D
C˝`
Y and then using the commutativ-

ity of the diagram in Figure 2.

4. OCRC for An-resolutions

4.1. Equivariant U
X;Y
� and integral structures. For the pairs

.X; Y / D
�
ŒC3=ZnC1�; An

�
;

Proposition 3.6 and Theorem 3.9 imply a Bryan–Graber-type CRC statement comparing the
open GW potentials. Notice that since X is a Hard Lefschetz orbifold, we do not have to deal
with the trivializing scalar factors h�. In Sections 4.2 and 4.3 we study the two essentially
distinct types of Lagrangian boundary conditions.

The reader may find a detailed review of the toric geometry describing our targets in
Section B.1, which is summarized by Figure 6. A generic Calabi–Yau torus action is taken
on X and Y , with weights as in Figure 6. We denote by �j , j D 1; : : : ; n, the duals of the
torus invariant lines Lj 2 H2.Y / and by Pi , i D 1; : : : ; nC 1, the equivariant cohomology
classes concentrated on the torus fixed points of the resolution. On the orbifold, we label by 1k ,
k D 1; : : : ; nC 1, the fundamental classes of the components of the inertia stack IX twisted
by e2� ik=.nC1/. A generic point t 2 H.Y / is written as tnC11Y C

P
j t
j�j ; similarly, we write

x DPnC1
kD1 x

k1k for x 2 H.X/.
Let now Y� be the ball of radius � around the large radius limit point of Y with respect to

the Euclidean metric .ds/2 DPi .deti /2 in exponentiated flat coordinates etj . We define a path
� in Y1,

(4.1) � W Œ0; 1�! Y1; s 7! .�.s//j D s!�j :

as the straight line in the coordinates etj connecting the large radius point LR , ¹etj D 0º of
Y to the one of X, which we denote as OP , ¹etj D !�j º.

Theorem 4.1. Let eJ Y .z/ denote the analytic continuation of J Y along the path � to

the point �.1/ composed with the identification (B.16) of quantum parameters. Then the linear

transformation

(4.2) UX;Y
� 1k D

X

i

Pi
1

.nC 1/
�
i

Y

�
k

X

 
i�1X

jD0

!�jke2� i
j˛1

z C
nX

jDi

!�jke2� i
.nC1�j /˛2

z

!

is an isomorphism of Givental spaces such that

eJ Y D UX;Y
� ı JX :

We prove Theorem 4.1 in the fully equivariant setting in Section 5.3.2 as an application
of the one-dimensional mirror construction of Section 5.2.
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 17

This result is compatible with Iritani’s equation (2.4). We now describe the canonical
identification UX;Y

K;� . Denote by O.�k/ the geometrically trivial line bundle on CnC3 where the
torus .C�/n acts via the kth factor with weight �1 and the torus T acts trivially. We define our
grade restriction window W � K.CnC3/ to be the subgroup generated by the O.�k/. Using
the description of the local coordinates in Section B.1, we compute that the quotient (B.2)
identifies O.�k/ with O�k (with trivial T -action) and the quotient (B.3) identifies O.�k/ with
O.�k/ (with canonical linearization (B.7)). Therefore, we define UX;Y

K;� by identifying

OY $ OX ; O.�k/$ O�k;

where the T -linearizations are trivial on the orbifold and canonical on the resolution.
On the orbifold, all of the bundles Oj are linearized trivially, so the higher Chern classes

vanish. The orbifold Chern characters are

.2� i/
deg
2 inv�ch.Oj / D

nC1X

kD1

!�jk1k :

The � class is

z� 1
2

deg�X D �
�
1C ˛1 C ˛2

z

�" nX

kD1

�

�
1 � k

nC 1 �
˛1

z

�
�

�
k

nC 1 �
˛2

z

�
1k

z

C �
�
1 � ˛1

z

�
�

�
1 � ˛2

z

�
1nC1

#
:

On the resolution, the Chern roots at each Pi are the weights of the action on the fiber
above that point:

.2� i/
deg
2 ch.O.�j // D

jX

iD1

e2� i.nC1�j /˛2Pi C
nC1X

iDjC1

e2� ij˛1Pi

and

.2� i/
deg
2 ch.O/ D

nC1X

iD1

Pi :

The � class is

z� 1
2

deg�Y D �
�
1C ˛1 C ˛2

z

�"nC1X

iD1

�

�
1C wC

i

z

�
�

�
1C w�

i

z

�
Pi

#
:

With this information one can compute the symplectomorphism as in equation (2.4) and obtain
the formula in Theorem 4.1.

We now derive explicit disk potential CRC statements for the two distinct types of
Lagrangian boundary conditions.

4.2. L intersects the ineffective axis. We impose a Lagrangian boundary condition on
the gerby leg of the orbifold (the third coordinate axis – m3 D 0); correspondingly there are
nC 1 boundary conditions L0 on the resolution, intersecting the horizontal torus fixed lines in
Figure 6.
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18 Brini, Cavalieri and Ross, Crepant resolutions and open strings

Theorem 4.2. Consider the cohomological disk potentials F
disk
L0;Y .t;yP 1 ; : : : ; yPnC1 ; Ew/

and F
disk
L;X

.t; y; Ew/. Choosing the dual bases 1k and P i (where k and i both range from 1

to nC 1), define a linear transformation OZ W H.X/! H.Y / by the matrix

OZ
i
k D

´
�!. 1

2
�i/k; k 6D nC 1;

�1; k D nC 1:

After the identification of variables from Theorem B.2, and the specialization of winding

parameters

yP i D e� i
�

w�
i

C.2i�1/˛1

˛1C˛2

�
y

we have

F
disk
L0;Y .t; y; Ew/ D OZ ı F

disk
L;X.t; y; Ew/:

Proof. From equation (3.2), we have

D
C
L;X.zI Ew/.1k/ D

nC1X

kD1

�1k

.nC 1/.˛1 C ˛2/ sin
�
�
�˝

k
nC1

˛
C ˛2

z

��
�
k

X

and

D
C
L0;Y .zI Ew/.Pi / D

nC1X

iD1

�P i

.˛1 C ˛2/ sin
�
�
�
�w

�
i

z

��
�
i

Y

:

The transformation O is now obtained as D
C
Y ıUX;Y

� ı .DC
X
/�1:

O.1k/ D
nC1X

iD1

"
sin
�
�
�˝

k
nC1

˛
C ˛2

z

��

sin
�
�
�
�w

�
i

z

��
 
i�1X

jD0

!�jke2� i
j˛1

z C
nX

jDi

!�jke2� i
.nC1�j /˛2

z

!#
P i :

We now specialize z D ˛1C˛2

d
, for d 2 Z. The i; k coefficient for k ¤ nC 1, after some gym-

nastics with telescoping sums, becomes

Oi
k D .�1/e

d� i
�
n�iC2C.2i�n�2/

˛1
˛1C˛2

�
!

�
1
2

�i
�
k :

For k D nC 1,

Oi
nC1 D .�1/e

d� i
�
n�iC2C.2i�n�2/

˛1
˛1C˛2

�
:

It is now immediate to see that we can incorporate the part of the transformation that depends
multiplicatively on d into a specialization of the winding variables, and that the remaining
linear map is precisely OZ.

From this formulation of the disk CRC one can deduce a statement about scalar disk
potentials which essentially says that the scalar potential of the resolution compares with the
untwisted disk potential on the orbifold.

Corollary 4.3. With all notation as in Theorem 4.2:

 
F

disk
L0;Y .t; y; Ew/;

nC1X

iD1

Pi

!

Y

D � 1

nC 1
�
F

disk
L;X.t; y; Ew/; 1nC1

�
X
:
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Proof. This statement amounts to the fact that the coefficients of all but the last column
of the matrix OZ add to zero.

4.3. L intersects the effective axis. We impose our boundary condition L on the first
coordinate axis, which is an effective quotient of C with representation weight m1 D �1 and
torus weight �˛1. We can obtain results for the boundary condition on the second axis by
switching ˛1 with ˛2, m1 with m2 and C with � in the orientation of the disks. In this case
there is only one corresponding boundary condition L0 on the resolution, which intersects the
(diagonal) non-compact leg incident to PnC1 in Figure 6.

Theorem 4.4. Consider the two cohomological disk potentials F
disk
L0;Y .t; yPnC1

; Ew/ and

F
disk
L;X

.t; y; Ew/. Choosing the bases 1k and P i (where k and i both range from 1 to nC 1),

define OZ.1
k/ D P nC1 for every k. After the identification of variables from Theorem B.2,

and the identification of winding parameters y D yPnC1 we have

F
disk
L0;Y .t; y; Ew/ D OZ ı F

disk
L;X.t; y; Ew/:

We obtain as an immediate corollary a comparison among scalar potentials.

Corollary 4.5. Setting y D yPnC1
, we have

F disk
L0;Y .t; y; Ew/ D F disk

L;X.t; y; Ew/:

Proof. The orbifold disk endomorphism is

D
C
X.zI Ew/.1k/ D

�

�˛1.nC 1/ sin
�
�
�
�˛1C˛2

z

��
�
k

X

1k;

The resolution disk endomorphism is

D
C
X.zI Ew/.Pi / D

�

�.nC 1/˛1 sin
�
�
�
�˛1C˛2

z

��
�
nC1
Y

ıi;nC1P
nC1:

We can now compute O:

O.1k/ D 1

nC 1

 
nX

jD0

!�jke2� i
j˛1

z

!
P nCi :

Specializing z D �.nC1/˛1

d
for any positive integer d , we obtain

OnC1
k
D 1

nC 1
nX

jD0

!�jke2� ij �d
nC1 D ık;�d modnC1;

which implies the statement of the theorem.

5. One-dimensional mirror symmetry

It is known that the quantum D-modules associated to the equivariant Gromov–Witten
theory of the An-singularity X and its resolution Y admit a Landau–Ginzburg description
in terms of n-dimensional oscillating integrals [6, 28, 42, 49]. We provide here an alternative
description via one-dimensional twisted periods of a genus-zero double Hurwitz space F�;� .
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20 Brini, Cavalieri and Ross, Crepant resolutions and open strings

5.1. Weak Frobenius structures on double Hurwitz spaces.

Definition 5.1. Let Ex 2 ZnC3 be a vector of integers adding to 0. The genus-zero
double Hurwitz space HEx , M0.P

1I x/ parameterizes isomorphism classes of covers � of the
projective line by a smooth genus-zero curve C , with marked ramification profile over 0 and
1 specified by Ex. This means that the principal divisor of � is of the form

.�/ D
X

xiqi :

We denote by � and � the universal family and universal map, and by †i the sections marking
the i th point in .�/:

P1

��

�

�

// U

�

��

� // P1

Œ��
�

� pt
//

Pi

CC

HEx.

†i

DD

A genus-zero double Hurwitz space is naturally isomorphic to C? �M0;nC3, and is
therefore an open set in affine space AnC1. The genus-zero case is the only case we consider in
this paper and it may seem overly sophisticated to use the language of moduli spaces to work
on such a simple object: we choose to do so in order to connect to the work of Dubrovin [35,36]
and Romano [67] (after Saito [71]; see also [57]), who studied existence and construction of
Frobenius structures on double Hurwitz spaces for arbitrary genus.

Write supp.�/ D ¹qi 2 C ºi for the set of points .�/ is supported on; let � 2 �1C .log.�//
be a meromorphic one-form having simple poles at supp.�/ with constant residues. We call
.�; �/ respectively the superpotential and the primitive differential of HEx. Borrowing the ter-
minology from [67, 68], we say that an analytic Frobenius manifold structure .F ; ı; �/ on
a complex manifold F is weak if

(1) the ı-multiplication gives a commutative and associative unital O-algebra structure on
the space of holomorphic vector fields on F ,

(2) the metric � provides a flat pairing which is Frobenius with respect to ı,
(3) the algebra structure admits a potential, meaning that the 3-tensor

R.X; Y;Z/ , �.X; Y ıZ/

satisfies the integrability condition

.r.�/R/Œ˛ˇ�
ı D 0:

In particular, this encompasses non-quasihomogeneous solutions of WDVV, and solutions
without a flat identity element.

By choosing the last three sections to be the constant sections 0; 1;1, we can realize
HEx ' C? �M0;nC3 as an open subset of AnC1 and trivialize the universal family. In homo-
geneous coordinates Œu0 W � � � W un� for Pn,

HEx D C? � Pn n discr HEx;(5.1)

discr HEx , Proj
CŒu0; : : : ; un�˝Qn

iD0 ui
Q
j<k.uj � uk/

˛ :
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Theorem 5.1 ([38,67]). For vector fields X , Y , Z 2 X.HEx/, define the non-degenerate

symmetric pairing g and quantum product ? as

g.X; Y / ,
X

P2supp.�/

Res
P

X.log�/Y.log�/

d� log�
�2;(5.2)

g.X; Y ? Z/ ,
X

P2supp.�/

Res
P

X.log�/Y.log�/Z.log�/

d� log�
�2;(5.3)

where d� denotes the relative differential with respect to the universal family (i.e. the differen-

tial in the fiber direction). Then the triple F�;� D .HEx; ?; g/ endows HEx with a holomorphic

weak Frobenius manifold structure. The embedding HEx ,! C? � Pn induces uniquely a mero-

morphic weak Frobenius structure on P1 � Pn.

Equations (5.2)–(5.3) are the Dijkgraaf–Verlinde–Verlinde formulae [33] for a topologi-
cal Landau–Ginzburg model on a sphere with log�.q/ as its superpotential. The case in which
�.q/ itself is used as the superpotential gives rise to a different Frobenius manifold structure,
which is the case originally analyzed by Dubrovin in his study of Frobenius structures on
Hurwitz spaces [36, Lecture 5]; the situation at hand is its dual in the sense of [38], where g
plays the role of the intersection form and ? the dual product, whose poles coincide with the
discriminant ideal in the Zariski closure (5.1) of HEx.

Remark 5.2. Since � is a genus-zero covering map, in an affine chart parametrized by
q 2 C its logarithm takes the form

(5.4) log� D
X

i

xi log.q � qi /C y;

where xi ; y 2 Z. In fact, the existence of the weak Frobenius structure (5.2)–(5.3) carries
through unscathed [68] to the case where d� log� is a meromorphic differential on C upon
identifying supp.�/ D ¹qiº; this in particular encompasses the case where xi ; y 2 C in equa-
tion (5.4). The locations qi of the punctures provide a special type of local coordinates on HEx:
by the general theory of double Hurwitz spaces [67], for suitable choices of � their logarithms
are flat coordinates for the pairing g in equation (5.2).

5.1.1. Twisted homology and the quantum differential equation. Let

C� , C n supp.�/

and denote by � W QC� ! C� its universal covering space. Fix z 2 C and pick the canonical
principal branch for �

1
z D exp.z�1 log�/ in equation (5.4), defined as

�
1
z .q/ D

Y

iD1

jq � qi j�i ei�i argi .q/;

where �i WD xi

z
and argi .q/ 2 Œ0; 2�/ is the angle formed by q � qi with the real axis. Then we

have a monodromy representation

�� W �1.C�/! L� ' C

on the complex line L� parametrized by �
1
z , a simple loop lqi

around qi resulting in multipli-
cation by

qi WD ��.lqi
/ D e2� i

Pi
j D1 �j :
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22 Brini, Cavalieri and Ross, Crepant resolutions and open strings

We denote by H�.C�; L�/ (resp. H �.C�; L�/) the homology (resp. cohomology) groups of
C� twisted by the set of local coefficients determined by qi . Integration over 
 2 H1.C�; L�/
of �

1
z � 2 H 1.C�; L�/ defines the twisted period mapping

(5.5) ��;� W H1.C�; L�/! O.HEx/; 
 7!
Z




�
1
z �:

Let now r.g;z/ W X.HEx/! X.HEx/˝�1.HEx/ be the Dubrovin connection associated to F�;�

(5.6) r.g;z/X .Y; z/ , r.g/X Y C z�1X ? Y

and write Sol�;� for its C.�1; : : : ; �n/-vector space of parallel sections

Sol�;� D ¹s 2 X.HEx/ W r.g;z/s D 0º:
The following statement [38] is a verbatim application of the arguments of [37] for the ordinary
Hurwitz case.

Proposition 5.3. The solution space of the quantum differential equations of F�;� is

generated by gradients of the twisted periods (5.5)

Sol�;� D spanC.a1;:::;an/
¹gradg��;�.
/º
2H1.C�;L�/:

In other words, twisted periods are a flat coordinate frame for the Dubrovin connection
on TF�;� .

5.2. A one-dimensional Landau–Ginzburg mirror. We now fix the ramification pro-
file

Ex D ..nC 1/˛1;�˛1 � ˛2; .nC 1/˛2;�˛1 � ˛2; : : : ;�˛1 � ˛2„ ƒ‚ …
n

/:

Define MA , HEx. We pick global coordinates on it as follows: we write �0 for an (exponen-
tiated-linear) coordinate in the first factor of MA ' C? �M0;nC3, and we pick �i D ui

u0
,

i D 1; : : : ; n, as a set of global coordinates on M0;nC3. As before, we write q to denote an
affine coordinate on the fibers of the universal family. We give MA the structure of a one-
parameter family of double Hurwitz spaces as follows:

�.�0; : : : ; �n; q/ D
nY

jD0

�
˛1

j

q.nC1/˛1

.1 � q/˛1C˛2
Qn
kD1.1 � q�k/˛1C˛2

;(5.7)

�.q/ D 1

˛1 C ˛2
dq

q
:(5.8)

The Frobenius structure on MA determined by equations (5.2), (5.3), (5.7), (5.8) is denoted
by F�;� . By Remark 5.2, and since both the metric and the associative product in equa-
tions (5.2), (5.3), (5.7), (5.8) depend rationally on .˛1; ˛2/, we will in the following consider
them as complex parameters.

We claim that there exist neighborhoods VX ; VY �MA such that F�;� is locally isomor-
phic to the quantum cohomologies of X D ŒC3=ZnC1� and its canonical resolution Y . The
ultimate justification of this statement resides in the relation of the Gromov–Witten theory of
X and Y with integrable systems, and notably the two-dimensional Toda hierarchy; the details
of this connection can be found in [12]. For the purposes of this paper, it is enough to offer
a direct proof of the existence of said local isomorphisms.
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Theorem 5.4. The following statements hold.

(1) With notation as at the beginning of Section 4.1, let

�0 D e
tnC1CıY

˛1 ;(5.9)

�j D
nY

iDj

eti ; 1 � j � n;(5.10)

where ıY is an arbitrary constant. Then, in a neighborhood VY of LR D ¹eti D 0º,
F�;� ' QH.Y /:

(2) Let

�0 D e
xnC1CıX

˛1 ;(5.11)

�j D exp

"
� 2i

nC 1

 
�j C

nX

kD1

e� i�k.j �1/
nC1 sin

�
�jk

nC 1

�
xk

!#
; 1 � k � n;(5.12)

where ıX is an arbitrary constant. Then, in a neighborhood VX of OP D ¹xi D 0º,
F�;� ' QH.X/:

Proof. The proof of the theorem is a direct computation from the Landau–Ginzburg
formulae (5.2)–(5.3).

(i) Consider the three-point correlator R.�iài ; �j àj ; �kàk/, where àk , à
à�k

, and define

R
.l/

i;j;k
, Res
qD��1

l

�i
à ln�
à�i

�j
à ln�
à�j

�k
à ln�
à�k

.˛1 C ˛2/2q à ln�àq
dq

q
:

Inspection shows that R.l/
ijk
D 0 unless l D i D j , l D i D k or l D j D k. Assume without

loss of generality l D j D i , and suppose that i; k > 0. We compute

R
.i/

i;i;k
D �i

�k � �i
C ˛2

˛1 C ˛2
;(5.13)

R
.i/
i;i;i D

.n � 1/˛1 C ˛2
˛1 C ˛2

C
nC1X

l¤i

�l

�i � �l
; R

.i/
0;i;i D �

1

˛1 C ˛2
:(5.14)

Moreover, for all i , j and k we have

R
.0/

i;j;k
, Res
qD0

�i
à ln�
à�i

�j
à ln�
à�j

�k
à ln�
à�k

.˛1 C ˛2/2q à ln�àq
dq

q
D ˛

2�ıi;nC1�ıj;nC1�ık;nC1

1

.nC 1/.˛1 C ˛2/2
;(5.15)

R
.1/

i;j;k
, Res
qD1

�i
à ln�
à�i

�j
à ln�
à�j

�k
à ln�
à�k

.˛1 C ˛2/2q à ln�àq
dq

q
D �.�˛2/

2�ıi;nC1�ıj;nC1�ık;nC1

.nC 1/.˛1 C ˛2/2
:(5.16)

It is immediate to see that (5.13)–(5.14) under the identification (5.10) imply that the quantum
part of the three-point correlator R.àti1àti2àti3 / coincides with that of hh�i1 ; �i2 ; �i3iiY0 in
equation (B.15). A tedious, but straightforward computation shows that (5.13)–(5.16) yield the
expressions (B.10)–(B.13) for the classical triple intersection numbers of Y .
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24 Brini, Cavalieri and Ross, Crepant resolutions and open strings

(ii) This part is obtained by composing the computation above with the Coates–Corti–
Iritani–Tseng isomorphism of quantum cohomologies (Theorem B.2).

Remark 5.5. The freedom of shift by ıX and ıY respectively alongH 0.X/ andH 0.Y /

in equations (5.9) and (5.11) is a consequence of the restriction of the String Axiom to the small
phase space. We set ıX D ıY D 0 throughout this section, but it will be useful to reinstate the
shifts in the computations of Section 5.3.2.

5.3. The global quantum D-module. Theorems 5.4 and 5.3 together imply the exis-
tence of a global quantum D-module .MA; F;r;H. � ; � /g/ interpolating between QDM.X/
and QDM.Y /. Let F , TF�;� be endowed with the family of connections r.g;z/, as in equa-
tion (5.6) and for r.g;z/-flat sections s1, s2 define

H.s1; s2/g D g.s1.�;�z/; s2.�; z//:

With notation as in Section 4.1, let VX and VY be neighborhoods of OP and LR, respectively.
Then Theorems 5.4 and 5.3 imply that

.F�;� ; TF�;� ;r.g;z/;H. � ; � /g/jVX
' QDM.X/;

.F�;� ; TF�;� ;r.g;z/;H. � ; � /g/jVY
' QDM.Y /:

In particular, choosing a basis of integral twisted 1-cycles yields a global flat frame for the
quantum differential equations of X and Y upon analytic continuation in the �-variables, and

(5.17) Sol�;� jVX
D SX ; Sol�;� jVY

D SY :

Representatives of one such integral basis can be constructed as follows. For generic
monodromy weights, the monodromy representation ��.lqi

/ factors through a faithful repre-
sentation Q� W H1.C�;Z/! V�. Then in this case the twisted homology coincides with the
integral homology of the Riemannian covering [78] of C�

H �.C�; L�/ ' H �. QC�=Œ�1.C�/; �1.C�/�/;Z/:

In particular, compact loops in the kernel of the abelianization morphism

h� W �1.C�/! H1.C�;Z/

may have non-trivial lifts to H1.C�; L�/. One such basis is given explicitly [78, 79] by the
Pochhammer double loop contours ¹
iºnC1

iD1 : these are compact loops encircling the points
q D 0 and q D ��1

i , i D 1; : : : ; nC 1, as in Figure 3 (that is 
i D Œl0; l��1
i
�, where the lq are

simple oriented loops around each of the punctures). Then the twisted periods

…i ,
za��;�.
i /

.1 � e2� ia/.1 � e�2� ib/
;(5.18)

where we defined

a ,
.nC 1/˛1

z
; qa , e2� ia;

b ,
˛1 C ˛2

z
; qb , e2� ib;

are a C.qa;qb/-basis of Sol�;� .
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κ
−1

1
κ

−1

2
κ

−1

3
κ

−1

40 1

Figure 3. The double loop contour 
4 for n D 4.

Remark 5.6. We have a natural isomorphism with the homology of the complex line
relative to the punctures

P W H1.C�; L�/ ��! H1.P
1; supp.�//; 
i 7! .1 � qa/.1 � qb/Œ0; �

�1
i �

obtained by associating to any Pochhammer contour the path in C� that it encircles. The choice
of coefficient reflects the existence [79], when Re.a/ > 0, Re.b/ < 1, of an Euler-type integral
representation: namely, a factorization of the period mapping

H1.C�; L�/

H1.P
1; .�// C.qa;qb/

P

��

��;�

''
R
�

1
z �

//

(5.19)

which reduces (5.18) to convergent line integrals of za�
1
z � over the interval P.
i /.

By the above remark, the period integrals of equation (5.18) are a multi-variable general-
ization of the classical Euler representation for the Gauss hypergeometric function. Explicitly,
they take the form [39]

…i .�; z/ D
�.a/�.1 � b/
�.1C a � b/ �

�a
i

nY

jD0

�
˛1
z

j(5.20)

�ˆ.n/
�
a; b; 1C a � bI �1

�i
; : : : ;

�i�1

�i
;
1

�i
;
�iC1

�i
; : : : ;

�n

�i

�

for 1 � i � n and

(5.21) …nC1.�; z/ D
�.a/�.1 � b/
�.1C a � b/

 
nY

jD0

�
˛1
z

j

!
ˆ.n/.a; b; 1C a � bI �1; : : : ; �n/;

where we defined

(5.22) ˆ.m/.a; b; c; w1; : : : ; wm/ , F
.m/
D .aI b; : : : ; bI cIw1; : : : ; wm/;

and F .m/D .aI b1; : : : ; bM I cIw1; : : : ; wm/ in equation (5.22) is the Lauricella function of typeD
(cf. [58]):

(5.23) F
.m/
D .aI b1; : : : ; bmI cIw1; : : : ; wm/ ,

X

i1;:::;im

.a/P
j ij

.c/P
j ij

mY

jD1

.bj /ijw
ij
j

ij Š
:
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26 Brini, Cavalieri and Ross, Crepant resolutions and open strings

In (5.23), we used the Pochhammer symbol .x/m to denote the ratio

.x/m D
�.x Cm/
�.x/

:

5.3.1. Example: n D 1 and the Gauss system. In this case F�;� has dimension 2.
The equations for the flat coordinates Qt .�0; �1; z/ of the Dubrovin connection, equation (5.6),
reduce to the classical Gauss hypergeometric system for a function f .�1; z/ such that

(5.24) Qt .�0; �1; z/ D .�0�1/�
a
2 f .�1; z/;

where

(5.25) �1.� C a/.� C b/f D �.� C a � b/f; � D �1à�1
:

When n D 1, we have from (5.20)–(5.21) that

…1.�; z/ D
�.a/�.1 � b/
�.1C a � b/ �

a
2

0 �
� a

2

1 2F1

�
a; b; 1C a � b; 1

�1

�
;

…2.�; z/ D
�.a/�.1 � b/
�.1C a � b/ .�0�1/

a
2 2F1.a; b; 1C a � b; �1/:

These are immediately seen to satisfy (5.24)–(5.25).

Remark 5.7. Equivariant mirror symmetry for toric Deligne–Mumford stacks implies
that flat sections of QDM.X/ and QDM.Y / take the form of generalized hypergeometric func-
tions in so-called B-model variables; see [24, Appendix A] for the case under study here.
Less expected, however, is the fact that they are hypergeometric functions in exponentiated flat

variables for the Poincaré pairing, that is, in A-model variables. This is a consequence of the
particular form (equations (B.15), (5.13), (5.14)) of the quantum product: its rational depen-
dence6) on the variables � gives the quantum differential (A.8) the form of a generalized hyper-
geometric system in exponentiated flat coordinates. The explicit equivalence between twisted
periods and solutions of the Picard–Fuchs equations of X and Y , which is a consequence
of Theorem 5.4 here and [24, Proposition A.3], should follow by comparing7) the respective
Barnes integral representations [7, 39]. A significant advantage of the Hurwitz-space picture
is that sections of the quantum D-modules have one-dimensional integral representations, as
opposed to the n-fold Mellin–Barnes integrals of [7]; this drastically reduces the complexity
of computing the analytic continuation from the large radius to the orbifold chamber, as we
now show.

We are almost ready to compute the analytic continuation map U
X;Y
� W HX ! HY that

identifies the corresponding flat frames and Lagrangian cones upon analytic continuation along
the path � in (4.1). The main missing technical tool is provided by the following lemma.

6) From the vantage point of mirror symmetry, the rational dependence of the A-model three-point corre-
lators on the quantum parameters is an epiphenomenon of the Hard Lefschetz condition, which ensures that the
inverse mirror map is a rational function of exponentiated A-model variables.

7) Equivalence between the two types of hypergeometric functions can be derived from the quadratic trans-
formations for the Gauss function for n D 1, and from a generalized Bayley identity for n D 2; the higher rank case
appears to be non-trivial.
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Lemma 5.8. In Cm with coordinates .w1; : : : ; wm/, where m � 1, let �i , for every

i D 1; : : : ; m, be any path in Cm n ¹wk ¤ wl ; 0; 1º, up to homotopy, that connects the origin

with the point at infinity W1
i ,

W1
i , .

i�1 times‚ …„ ƒ
0; : : : ; 0;

m�iC1 times‚ …„ ƒ1; : : : ;1/;
and has zero winding number along the hyperplanes wk D wl (k ¤ l) and wk D 0; 1. Denote
Q̂ .m/
i .a; b; cIw1; : : : ; wm/ the analytic continuation of ˆ.m/.a; b; cIw1; : : : ; wm/ in (5.22)

along �i to the neighborhood

jwl j < 1; l < i;(5.26)

jw�1
l j < 1; l D i;

jw�1
l j < 1; jwl j < jwkj; l > k � i;

of W1
i . Then we have

Q̂ .m/
i .a; b; cIw1; : : : ; wm/(5.27)

�
m�iX

jD0

�.c/�.a � jb/�..j C 1/b � a/
�.a/�.b/�.c � a/

�
jY

kD1

.�wm�kC1/
�b.�wm�j /

�aCjb.1CO.w//

C
mY

jDi

.�wj /�b
�.c/�.a � .m � i C 1/b/
�.a/�.c � .m � i C 1/b/.1CO.w//

around W1
i in the region of (5.26).

Proof. The statement of the lemma follows from computing the analytic continuation
along �i of the Lauricella function F .m/D .a; b1; : : : ; bm; c; w1; : : : ; wi�1; w

�1
i ; : : : ; w�1

m / from
an open ball centered on W1

i to the origin W1
mC1 D .0; : : : ; 0/ in the sector where wk � 1

for k < i , wi � 1, wk=wj � 1 for k > j � i . One possible way to do this is to perform
the continuation in each individual variable wj , j > i appearing in equation (5.23) through
an iterated use of Kummer’s identity, equation (C.2). This is done in Section C, to which we
refer the reader for the details of the derivation; the final result is equation (C.5), from which
equation (5.27) follows by equation (5.22).

5.3.2. Proof of Theorem 4.1. We recall here the notation we used in Sections 4.1
and 5.3: we write Pi for the equivariant class concentrated on the i th-fixed point of Y , 1k for
the fundamental class of the kth-twisted sector of X, i; k D 1; : : : ; nC 1, and VY and VX for
the neighborhoods of the large radius point (LR) and the orbifold point (OP), respectively, such
that the isomorphisms of equation (5.17) hold. We also let � be the path inQH.Y / ' QH.X/
connecting the large radius point LR to the orbifold point OP as spelled out in equation (4.1)
and we write

JX.x; z/ D
nC1X

kD1

QJX

k .x; z/1k; J Y .t; z/ D
nC1X

iD1

J Yi .t; z/Pi

for the decomposition of the J -function of the orbifold and the resolution in the bases above.
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28 Brini, Cavalieri and Ross, Crepant resolutions and open strings

The String Equation for X and Y and (A.10)–(A.11) in Section A together imply that
the power series ¹JX

k
ºnC1
kD1, and ¹J Yi ºnC1

iD1 give systems of flat coordinates of r.g;z/ locally
around OP and LR, respectively. Also, by Theorem 5.3 and Theorem 5.4, the twisted periods
¹…j ºnC1

jD1 yield a system of global flat coordinates of r.g;z/; we here single out the principal
branch of (5.20)–(5.21) obtained by analytically continuing along �. This means that, upon
restriction to the neighborhood V�, the gradients of ¹…j ºj and ¹J �

i ºi are a priori different
linear bases of the same vector space. This entails the existence of invertible, CŒŒa; b��-linear
maps A 2 Hom.Sol�;� ;SY /;B 2 Hom.SX ;Sol�;�/,

A grad�Y
��;� jSY

W H1.C�; L�/! Sol�;� jVY
' SY ;(5.28)

B
�1 grad�X

��;� jSX
W H1.C�; L�/! Sol�;� jVX

' SX

such that
A¹…j ºnC1

jD1 D ¹J Yi ºnC1
iD1

and
B¹JX

k ºnC1
kD1 D ¹…j º

nC1
jD1 :

In particular, the sought-for identification of J -functions factorizes as

UX;Y
� D AB:

To compute A, notice that the components J Yi of J Y in the localized basis ¹PiºnC1
iD1 of

H.Y / are eigenvectors of the monodromy around LR (see equation (A.14)), generically with
distinct eigenvalues. A can thus be computed by determining the monodromy decomposition
of the twisted periods, (5.20)–(5.21), from their asymptotic behavior around LR. For each
1 � j � nC 1, consider the principal branch of…j given by the integral expression of (5.18).
The unit polydisk jetl j < 1 centered at LR coincides with the region of (5.26) for the arguments

wk ,

´
�k

�i
; k ¤ i;

��1
i ; k D i;

of (5.20) by virtue of (5.10). This puts squarely the problem of analytic continuation of ¹…j ºj
to LR within the setup of Lemma 5.8: by (5.20) and (5.21), for each 1 � j � n, the analytic
continuation problem of …j .�; z/ to LR along � in the �-variables translates to the analytic
continuation of a generalized hypergeometric function ˆ.n/.a; b; 1C a � b;w1; : : : ; wn/ to
W1
j along �j in the w variables of the lemma. Applying the final result, equation (5.27),

entails (compare with equations (B.8), (B.9) and (A.14))

…i D
nC1X

jD1

A
�1
ij J

Y
j ;

where

(5.29) Aij D

8
ˆ̂̂
<
ˆ̂̂
:

e� i.n�iC1/b z�.1Ca�.n�iC2/b/
�.1�b/�.a�.n�iC1/b/ ; i D j;

e�i�.a�b.2n�2jC3// z sin.�b/�.1�aCb.nC1�i//�.1Ca�b.n�iC2//
��.1�b/ ; j > i;

0; j < i:

Brought to you by | University of Sheffield
Authenticated

Download Date | 9/11/19 9:59 PM



Brini, Cavalieri and Ross, Crepant resolutions and open strings 29

Consider now the situation at the orbifold point OP D ¹�j D !�j º. Since

JX.0; z/ D z10;

àJX

àxk
.0; z/ D 1k;

to compute the operator B in (5.28) it suffices to evaluate the expansion of the Lauricella
functions (5.20)–(5.21) at OP to linear order in xk , k D 0; : : : ; n. A remarkable feature here,
by equations (5.12) and (5.18), is that the Lauricella function of equation (5.22) at these roots
of unity reduces to Euler’s Beta integral, a statement whose easy verification we leave to the
reader. Explicitly,

…j .�; z/jxD0 D !.j� n
2
/a�.a/�.1 � b/
�.1C a � b/ ˆ.a; b; 1C a � bI!; : : : ; !

n/(5.30)

D !.j� n
2
/a

nC 1 B

�
a

nC 1; 1 � b
�

(5.31)

D !.j� n
2
/a

nC 1
�
�
a
nC1

�
�.1 � b/

�
�
1 � b C a

nC1

� ; j D 1; : : : ; nC 1:(5.32)

Similarly, a short computation shows that

�k
à…j
à�k

.0; z/ D b!.j� n
2
/a

nC 1
nX

lD1

!.j�k/lB

�
aC l
nC 1;�b

�
;(5.33)

à…j
àxk

.�; z/

ˇ̌
ˇ̌
xD0

D b!.j� n
2
/a�jkC k

2

nC 1 B

�
1C aC l

nC 1;�b
�

(5.34)

D �!
.j� n

2
/a�jkC k

2

nC 1
�
�
a�k
nC1 C 1

�
�.1 � b/

�
�
a�k
nC1 C 1 � b

� :(5.35)

In matrix form we have

(5.36) … D BJX D D1VD2JX ;

where

.D1/jk D !.j� n
2
/aıjk;(5.37)

.D2/jk D ıjk

8
ˆ̂<
ˆ̂:

�! k
2
�.a�k

nC1
C1/�.1�b/

�.a�k
nC1

C1�b/
for 1 � k � n;

�. a
nC1

/�.1�b/

z�.1�bC a
nC1

/
for k D nC 1;

(5.38)

Vjk D
!�jk

nC 1:(5.39)

Piecing (5.29), (5.36), (5.37), (5.38) and (5.39) together yields8) equation (4.2), up to a scalar
factor of qa. By Remark 5.5, this corresponds to our freedom of a String Equation shift
along either of H 0.X/ and H 0.Y /. Setting ıX � ıY D 2� i˛1 in (5.9) and (5.11) concludes
the proof.

8) This amounts to a rather tedious exercise in telescoping sums and additions of roots of unity. The com-
putation can be made available upon request.
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30 Brini, Cavalieri and Ross, Crepant resolutions and open strings

5.3.3. Monodromy and pure braids. The expression (4.2) for the symplectomorphism
U

X;Y
� was obtained for the analytic continuation path � of equation (4.1). Fixing a reference

pointm0 D .e�1; : : : ; e�n/ 2MA, for a general path � ı � with Œ�� 2 �1.MA; m0/we get a com-
position

UX;Y
�ı� D UX;Y

� M� ;

where

(5.40) M� W �1.MA; m0/! Aut.Sol�;�/

is the monodromy representation of the fundamental group of MA in the space of solutions of
the Lauricella system F

.n/
D .

By definition (5.1), MA is the configuration space of n distinct points in P1 n ¹0; 1;1º.
Therefore, its fundamental group is the pure braid group in nC 2 strands

�1.MA/ ' PBnC2I

with the monodromy action (5.40) given by the reduced Gassner representation (cf. [31, 53])
of PBnC2. Writing e�i D 0; 1;1 for i D nC 1, nC 2 and nC 3, respectively, generators Pij ,
i D 1; : : : ; nC 3, j D 1; : : : ; n, of PBnC2 are in bijection with paths �ij W Œ0; 1�!MA given
by lifts to MA of closed contours in the j th affine coordinate plane that start at �j D e�j , turn
counterclockwise around e�i (and around no other point) and then return to their original posi-
tion, as in Figure 4.

2κ

κ 4

1

κ 30 κ 1

∞

Figure 4. The path �13 in �1.MA/ for n D 4.

The image of the period map (5.5), by Theorem 5.3, is a lattice in Sol�;� :

Sol�;� D r.g/��;�.H1.C�; L�//˝Z.qa;qb/ C.qa;qb/;

and by (5.29), (5.36), (5.37), (5.38) and (5.39) the induced morphism

H1.C�; L�/ ' K.Y /

is a lattice isomorphism. The monodromy action on Sol�;� , at the level of equivariantK-groups,
is given by lattice automorphisms

�1.MA/! AutZ.qa;qb/K.Y /I

this can be verified explicitly from the form of the monodromy matrices in the twisted period
basis [65]. For example, when n D 1, the action onK.Y / is given by the classical monodromy
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LR1

LR2

CPOP ρ

Figure 5. The Kähler moduli space of the A1 singularity in A-model coordinates. LR1 and LR2
indicate the large radius points � D 0;1, respectively, CP is the conifold point, and OP
is the orbifold point. Circuits around LR1-2 and CP generate the monodromy group of the
global quantum D-module. The dashed segment depicts the analytic continuation path �
of Theorems B.2 and 4.1.

of the Gauss system for c D a � b C 1. With reference to Figure 5, we have in the standard
basis ¹OY ;OY .1/º for K.Y /,

MLR1 D
 

e�ia�.e2ia� C e2ib�/ e2ib�

�1 0

!
;

MCP D
 

1 �2ie�i.a�b/� sin.b�/

�2ie�i.aCb/� sin.b�/ 1 � 4e�2ia� sin2.b�/

!
;

MLR2 D
 
2 cos.a�/ 1 � 2iei�.b�2a/ sin.b�/

�1 2ie�i.a�b/� sin.b�/

!
;

for the large radius and the conifold monodromy of QDM.Y /. It is straightforward to check
that they induce symplectic automorphisms of HY .

Remark 5.9. In the non-equivariant setting, representations of the braid group Bn have
a natural place in the derived context where they correspond to elements of Auteq.Db.Y // gen-
erated by spherical twists [73]. From a quantumD-module perspective, the interpretation of flat
sections as B-branes identifies this braid group action with the monodromy action. Recently,
different flavors of braid group actions, including mixed and pure braids, have been shown
to arise upon taking deformations of the Seidel–Thomas setup [34]; the D-module picture of
equations (5.7) and (5.18) indicates that the lift to the equivariant theory should naturally pro-
vide another such extension, whose origin in the derived context would be fascinating to trace
in detail.
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32 Brini, Cavalieri and Ross, Crepant resolutions and open strings

6. Quantization

The goal of this section is to prove the following

Theorem 6.1. The Hard Lefschetz quantized CRC (Conjecture 2.4) holds for the pairs

.X; Y /, where X D ŒC2=ZnC1� �C has the threefold An singularity as a coarse space and

Y is its crepant resolution.

We outline the proof of Theorem 6.1: Givental’s quantization formula (6.1) for X and
Y and the Hard Lefschetz condition are used in Lemma 6.3 to show that Theorem 6.1 follows
from appropriately comparing the canonical R-calibrations for X and Y . The existence of the
canonical R-calibrations is a consequence of Teleman’s reconstruction theorem [75]. Work of
Jarvis–Kimura and the orbifold quantum Riemann–Roch theorem of Tseng (Section 6.1) com-
putes the Gromov–Witten R-calibration for X at the orbifold point. In Section 6.3, we verify
that this agrees with the R-calibration of Y upon analytic continuation, concluding the proof.

Givental’s quantization formalism for semi-simple quantum cohomology [44, 45, 75]
gives an expression for the all-genus GW partition function of a target Z with semi-simple
quantum product of rank NZ as the action of a sequence of differential operators on n-copies
of the partition function of a point. The operators in question are obtained through Weyl-quanti-
zation of infinitesimal symplectomorphisms determined by the genus-zero Gromov–Witten
theory of Z – the S - and R-calibrations of QH.Z/, defined in Sections A.1 and A.2.1, respec-
tively. Here we assume familiarity with this story and standard notation, and review them in
Section A.2.

Givental’s formula at a semi-simple point � 2 QH.Z/ reads

(6.1) ZZ.t� / D eCZ.�/bS�1
Z

b‰Z
bRZecu=z

NZY

iD1

Zpt.q
i /;

where

(6.2) CZ.�/ ,

NZX

iD1

Z
.R
.1/
Z
/ii .�/du

i ; R
.1/
Z
.�/ D àzRZ.�; 0/

and the shifted descendent times t� are defined in equation (A.21). In equation (6.1), SZ and
RZ are the canonical Gromov–Witten S - and R-calibrations ofQH.Z/, viewed as morphisms
of Givental’s symplectic space HZ.

Remark 6.2. The existence of canonical R-calibrations such that equation (6.1) holds
is a consequence of Teleman’s theorem [75, Theorem 2]. In the conformal case, their form is
uniquely determined by homogeneity. In the non-conformal case, the lack of an Euler vector
field constrains the form of asymptotic solutions of the quantum differential equation only
up to right multiplication by a constant diagonal matrix in odd powers of z. Therefore, in
order to verify that a given R-calibration is equal to the canonical R-calibration guaranteed
by Teleman’s theorem, we need only check equation (6.1) at a single semi-simple point. The
specialization of RX to the orbifold point will be the focus of Section 6.1.

Lemma 6.3. Let X ! X  Y be a resolution diagram of Hard Lefschetz targets with

generically semi-simple quantum cohomology. Conjecture 2.4 holds if and only if the canoni-
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cal R-calibrations coincide on the semi-simple locus,

(6.3) RX D RY :

Remark 6.4. The local independence of Givental’s formula on the choice of a base
point [44] implies that it suffices to check equation (6.3) at any given semi-simple point.

Proof. We start by observing that (6.3) implies ZY D 1
U

X;Y
� ZX . It is immediate that

CX D CY . Moreover, equation (6.1) gives

ZY D eCY bS�1
Y
c YbRY ecu=z

NYY

iD1

Zpt;i(6.4)

D eCY bS�1
Y
cU0b X

bRXecu=z
NXY

iD1

Zpt;i

D 1
UX;Y
� eCX bS�1

X
b X

bRXecu=z
NXY

iD1

Zpt;i D 1
UX;Y
� ZX :

We have made essential use of the HL condition twice: to identify S -calibrations via UX;Y
� ,

which is only true if the analytic continuation of the quantum product gives an isomorphism
in big quantum cohomology, and to ensure that no cocyle is generated in the quantization of
products. To see the reverse implication, we note that for the string of equations (6.4) to hold,

(6.5)
�
eCXbRX � eCY bRY

� nC1Y

iD1

Zpt;i D 0:

Equation (6.5) implies

eCXbRX D eCY bRY ebD

for some quantized quadratic Hamiltonian bD such that bD 2Ln
iD1B.Viri /, the Borel sub-

algebra of level k � �1 Virasoro constraints acting on the product of Witten–Kontsevich tau
functions

QnC1
iD1 Zpt;i . Imposing that eD 2 SpC.HY / then sets D D 0 and CX D CY .

6.1. R-calibrations in orbifold Gromov–Witten theory. Equation (6.3) reduces the
quantum CRC to a comparison between asymptotic expression of horizontal sections of the
global quantum D-module, given by the Gromov–Witten R-calibrations of X and Y . In the
context of toric orbifolds, the R-calibration is uniquely constructed [52, 77] in terms of group
theoretic and toric data.

Lemma 6.5. Consider the orbifold X D ŒCm=G� given by a diagonal representation V

of a finite abelian groupG, together with a compatible torus action. Then the canonicalR-cali-

bration RX is uniquely determined locally around the large radius point of X by (6.9).

Proof. Denote by NX the number of elements of G, which is also the rank of the
Chen–Ruan cohomology of X, and by 1g the fundamental class of the component of the
inertia orbifold labeled by g. Jarvis–Kimura [52, Proposition 4.3] establish that the partition
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function ZBG agrees with NX copies of Zpt after a change of variables given by the character
table �G of G, cf. [52, Proposition 4.1]. In operator notation,

ZBG D b��1
G

NXY

iD1

Zpt;i :

On the other hand, the Gromov–Witten theory of X is the twisted Gromov–Witten theory of
BG with twisting class the inverse Euler class of the representation V , thought of as a vector
bundle on the classifying stack. Since the representation is diagonal, V ŠLm

iD1 Vi is the sum
of m orbifold line bundles. Denote by ¹wiºmiD1 the weights of the torus action on each line
bundle. Tseng, in [77], constructs a symplectomorphism DX 2 AutC.HX/ defined by

(6.6) DX1g ,

s
1

eeq.V .0//
exp

 
mX

iD1

X

k�0

si;k
BkC1.li .g/=jgj/

.k C 1/Š zk

!
1g ;

where si;0 D � ln.wi /, si;k D .�wi /
�k.k � 1/Š, V .0/ is the trivial part of the representation V ,

Bk.x/ is the order k-Bernoulli polynomial

exyy

ey � 1 D
X

k�0

Bk.x/y
k

kŠ
;

and the integer li .g/ 2 Œ0; NX � 1� is defined by gvi D e2� ili .g/=jgjvi for vi 2 Vi . The orb-
ifold Quantum Riemann–Roch theorem of [77] then asserts that, upon quantization, bDX acts
on ZBG to return the GW partition function for X, up to a scalar prefactor EX , whose pre-
cise form will not concern us, and a rescaling of the Darboux coordinates by

p
eeq.V .0//,

cf. [77, Section 1.2]. Then,

(6.7) ZX D EX

6�
eeq.V .0//

�� 1
2 bDX

b��1
G

NZY

iD1

Zpt;i :

To compare equation (6.7) with equation (6.1), we fix the integration constant in equation (6.2)
so that EX jOP D eCX ; notice that this is always possible, since OP is a regular point for the
Dubrovin connection of X. Moreover, at the large radius point for X we have

(6.8) .S�1
X
/ˇ˛
ˇ̌
OP D ı

ˇ
˛

in flat coordinates for the orbifold Poincaré pairing of X. Define now RX.�; z/ locally around
OP by parallel transporting the symplectomorphism .eeq.V .0///�

1
2 DX�

�1
G 2 SpC.HX/: in

other words . RX.�; z/e
u
z / j̨ is a matrix whose columns are horizontal sections for the

Dubrovin connection such that

(6.9)  XRX

ˇ̌
OP D

�
eeq.V .0//

�� 1
2 DX�

�1
G :

Altogether, equations (6.9), (6.7) and (6.8) imply that Givental’s formula, equation (6.1), holds
by construction at OP with the R-calibration determined by equation (6.9). This verifies that
RX.�; z/ is the canonical R-calibration guaranteed by Teleman’s theorem.

Remark 6.6. Pinning down the canonicalR-calibration for an arbitrary toric orbifold X

can be achieved by localization. Choose a basis for equivariant cohomology supported on the
fixed points: naturally vectors supported on different fixed points are mutually orthogonal. The
R-calibration is then computed as a block matrix by applying Lemma 6.5 to the local geometry
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of each fixed point. In particular, when X D Y is a toric manifold and denoting by LR the large
radius limit point for Y , equation (6.9) becomes (cf. [44, Theorem 9.1])

(6.10) .RY /ij
ˇ̌
LR D .DY /iıij :

We now turn our attention to the specific geometries we are investigating in depth:
X D ŒC3=ZnC1� and Y its crepant resolution.

6.2. Prolegomena on asymptotics and analytic continuation. In view of (6.3), Con-
jecture 2.4 can be formulated as an identification of bases of horizontal 1-forms of r.g;z/ upon
analytic continuation to some chosen semi-simple point. In our case, the proof of Theorem 4.1
in Section 5.3.2 contains already most of the technical ingredients to compute the analytic con-
tinuation of flat coordinates of r.g;z/ from LR to OP; however, a few substantive details in
the formulation of equation (6.3), particularly in what concerns the continuation of asymptotic
series, are worth spelling out with care.

6.2.1. Global canonical coordinates. First of all, the reasoning leading to (6.3)
assumed implicitly a choice of global canonical coordinates ¹ui 2 O.MA/ºnC1

iD1 on MA – or
at least, two consistent choices of canonical coordinates for both QH.Y / and QH.X/; recall
that two such sets of coordinates may differ by permutations and shifts by constants. A natural
way to fix this ambiguity is to define globally ui as the critical values

(6.11) ui D log�.qcr
i /

of the Hurwitz space superpotential (5.7), where the critical points qcr
i of �.q/ are the roots of

the polynomial equation

(6.12)
a

qcr
i

C b
nC1X

jD1

�j

1 � �j qcr
i

D 0:

The leftover permutation ambiguity is fixed upon ordering the set of critical points such that

(6.13)
à
àui

ˇ̌
ˇ̌
�D0

' Pi

under the identification TLRF�;� ' HT .YT /.

6.2.2. Sectors, thimbles, walls. A second aspect pertains to the nature of R�.�; z/ as
a formal asymptotic series in z (see Section A.2.1). Since z D 0 is an irregular singularity for
the global D-module, asymptotic expansions of components of horizontal 1-forms at z D 0
depend on a choice of Stokes sector, namely, a choice of phase for z, as well as for the other
external parameters ˛1, ˛2 and � in the asymptotic analysis. Picking one such choice poses no
restriction for the purpose of proving equation (6.3): as individual Gromov–Witten correlators
depend analytically on a and b, it is enough for us to prove equation (6.3) in a wedge of
parameter space. A particularly convenient choice is to pick the Stokes sector SC defined by

(6.14) SC ,

²
.a; b; �/ W Re.a/ > 0; Re.b/ < 0; arg.�j / D �

2� ij

nC 1

³

where the phase of the quantum cohomology parameters in equation (6.14) is fixed by our
choice of path � in equation (4.1). This choice turns out to trigger two favorable consequences.

Brought to you by | University of Sheffield
Authenticated

Download Date | 9/11/19 9:59 PM



36 Brini, Cavalieri and Ross, Crepant resolutions and open strings

First off, when .a; b; �/ 2 SC, we can employ the factorization of the twisted period
mapping through the line integral representation (5.19) to obtain an interpretation of the twisted
periods as a sum of steepest descent integrals (see Remark 5.6). In detail, note that through-
out SC the superpotential has algebraic zeroes at q D ¹0; 1º [ ¹��1

i ºniD1. Upon regarding
Re.log�.q// as a perfect Morse function, the Lefschetz thimbles Li emerging from each of
the critical points qcr

i give a canonical basis of the relative homology group H1.P1; .�//, with
the negative infinity of each downward gradient flow coinciding with the log-divergences of
log�.q/ at the zeroes of the superpotential. In this basis, the Laplace expansion at small z
gives asymptotic solutions †i .�; z/ for the flat coordinates of r.g;z/ in the form

(6.15) †i .�; z/ ,

Z

Li

�
1
z � ' e

ui

z Qi .�; z/;

where Qi .�; z/ 2 O.MA/˝CŒŒz��, and the equivalence sign is to be intended in the sense of
classical (Poincaré) asymptotics.

The second useful consequence of the choice of parameters (6.14) relates to the nature
of the canonical R-calibrations as asymptotic series. In light of the representation (6.15) of
R-operators as the (perturbative) Laplace expansion of a steepest descent integral around
a saddle, in proving (6.3) we are supposed to discard any exponentially suppressed (non-
perturbative) contribution from neighboring critical points that may arise in the process of
analytic continuation (see Remark 6.7). Now, throughout SC n ¹j�j D 1º we have

(6.16) Re

�
ui

z

�
> Re

�
uj

z

�
; i < j;

which means that, away from j�j D 1, the i th-saddle is exponentially dominant over saddles
qcr
j with j > i . In the following, we repeatedly exploit the fact that terms of the form

ez
�1Œuj .�.s//�ui .�.s//�; j > i; s 2 Œ0; 1/;

are exponentially suppressed, and therefore invisible, in the classical small z-asymptotics inside
this region.

Remark 6.7. One potential source of such exponential contributions is due to the Stokes
phenomenon. Since we are dealing with the analytic continuation of asymptotic series of the
form (6.15), a complication that may occur when varying (6.15) along MA is given by the pos-
sibility of a non-trivial “monodromy” of the Lefschetz thimbles along the analytic continuation
path � in (4.1): when Im.u

i

z
/ D Im.u

j

z
/ for some j > i , the i th Lefschetz thimble passes

through a sub-dominant saddle point, and in turn an exponentially subleading contribution in
the asymptotic expansion of the i th-period integral appears. Such a jump in the asymptotics
arises across walls – and not just divisors – in moduli space, and it may affect in principle9) the
continuation of (6.15) along the trivial path � in (4.1). The existence of Stokes walls may be all
the more delicate in light of the fact that the orbifold point belongs to the maximal anti-Stokes

9) Generically, there is no Stokes phenomenon for n D 1, where we can compute Im.u1 � u2/ D 2i�˛1
identically in SC. For higher n, however, the possibility of the existence of the Stokes phenomenon can be tested
numerically. A little experimentation shows that � does indeed cross one or more Stokes walls for n > 1 and fairly
generic a, b.
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 37

submanifold ¹p 2MA W Re.u
i .p/
z
/ D Re.u

j .p/
z
/for all .i; j /º – see equation (6.20) below. In

the following, we must be wary of the possible generation of exponentially suppressed terms
generated when crossing a wall, as they are no longer subdominant when they are continued
all the way up to j�j D 1, where their contribution should be included in the asymptotics.10)

6.3. Proof of Theorem 6.1.

6.3.1. R-normalizations for X and Y . Let us first compute from Lemma 6.5 the
canonical R-calibration for X, thought of as an equivariant vector bundle over the classify-
ing stack:

X D O
�˛1

�1 ˚O
�˛2

1 ˚O
˛1C˛2 ! BZnC1

, V1 ˚ V2 ˚ V3 ! BZnC1:

Note that V .0/ is an equivariant vector bundle on the inertia stack; it agrees with the whole
three-dimensional bundle on the component of the identity, and to the line bundle correspond-
ing to the untwisted direction in all twisted sectors. Therefore,

eeq.V .0// D .˛1 C ˛2/
nX

jD1

1j C ˛1˛2.˛1 C ˛2/1nC1:

For i D 1; 2; 3 and j 2 ZnC1, the integers li .j / are .nC 1/ � j; j; 0. Then, using that

Bk.x/ D .�1/kBk.1 � x/; B2kC1 D 0; n > 0;

equation (6.6) gives

DX D
nX

jD1

�
˛2

˛1

� 1
2

� j
nC1

exp

"X

k>0

�
�
BkC1

� j
nC1

�

.�˛1/k
C
BkC1

� j
nC1

�

˛k2
(6.17)

� BkC1

.˛1 C ˛2/k
�

zk

k.k C 1/

#
1j

C exp

�X

k>0

�
1

˛2k�1
1

C 1

˛2k�1
2

� 1

.˛1 C ˛2/2k�1

�
B2kz

2k�1

2k.2k � 1/

�
1nC1:

As far as Y is concerned, by Remark 6.6, we apply Lemma 6.5 to the local geometry of each
fixed point pi . Then, denoting by .w�

i ; w
C
i ; ˛1 C ˛2/ the characters of the torus action on the

tangent space Tpi
at the i th fixed point, as in equation (B.6), we have from equation (6.6) that

(6.18) DY pi D exp

�
�
X

k>0

B2kz
2k�1

2k.2k � 1/
�
.wC
i /
1�2kC.w�

i /
1�2kC.˛1C˛2/1�2k

��
pi :

10) A typical example of this phenomenon the reader may be familiar with is the appearance of subleading
exponentials in the asymptotics of the Airy integral along its anti-Stokes ray, that is, for large negative values of the
argument.
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38 Brini, Cavalieri and Ross, Crepant resolutions and open strings

6.3.2. Analytic continuation. To compare the classical R-operators in equation (6.3),
we avoid troubles with the Stokes phenomenon as follows: we fix the R-calibration first at OP,
where pinning down the contribution of each critical point is potentially delicate, and then com-
pute its continuation to j�j < 1 where the classical asymptotics are controlled by the leading
saddle. Then, equation (6.16) grants us the right to safely ignore any possible issues stemming
from the generation of subleading exponential terms by analytic continuation through a wall
when j�j < 1.

At the orbifold point �j D !�j , equation (6.12) gives

(6.19) qcr
i

ˇ̌
OP D !

�.i/

�
a

a � .1C n/b

� 1
nC1

for some permutation � 2 SnC1, which by continuity is locally constant in .a; b/. Noting that
the roots of (6.12) admit a smooth limit at b D 0, where

qcr
i

ˇ̌
bD0
D ��1

i ;

and comparing to equations (6.11) and (6.13) sets � D id. Therefore,

(6.20) uj jOP D ˛1 log.˛1/C˛2 log.�˛2/� .˛1C˛2/ log.�˛1�˛2/C2i˛1

�
j � n

2

�
:

Note that Re.u
i

z
/jOP D Re.u

j

z
/jOP for all .i; j /, as anticipated in Remark 6.7. Since we have

arg�.q/jOP D ˛1 arg q by (5.7), at the orbifold point the constant phase/steepest descent con-
tour Lj must be contained in the straight line through the origin making an angle of 2�j

nC1 with
the positive semi-axis. In particular, since jqcr

i j < 1 in SC \ OP by equation (6.19), the union of
the downward gradient lines emanating from jqcr

j j < 1 is given by the segment Œ0; !j �. Then,
by equation (5.19), twisted periods coincide with line integrals over steepest descent paths
for �.q/

1
z �jOP, and we have

(6.21) …i .�; z/
ˇ̌
OP D

Z

Li

�
1
z � � e

ui

z :

Now, in flat coordinates x˛ for the orbifold quantum product, the R-calibration must satisfy by
equation (6.21)

(6.22) . XRXe
u
z /˛;idx

˛ D d…iN
X

i

in a neighborhood of OP for some constant normalization factor N
X 2 H.X/˝CŒŒz��. The

left-hand side is uniquely determined by (6.9) and (6.17). For the right-hand side, we have
already computed the differential of the twisted period map at the orbifold point in equa-
tions (5.32)–(5.35). Putting it all together, we obtain11)

(6.23)
nC1X

˛D1

.B�1/i;˛.e
eq.V .0//�

1
2 DX/˛.�

�1/˛;j e
uj

z

ˇ̌
OP ' N

X

i ıij :

11) Notice that this is a severely overconstrained system for the unknown Ni , as is apparent from the fact that
the left-hand side has no a priori reason to be diagonal in the indices i , j (see also Remark 6.2). Existence of solu-
tions is a non-trivial statement about the boundary values at OP of the twisted periods and their derivatives, (5.32)
and (5.35).
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The small jzj-asymptotics of the left-hand side, by (5.31), (5.32) and (5.35), is computed by
the steepest descent asymptotics of the Beta integral in (5.31) and (5.34). With our choice of
sector SC, as all the �-functions appearing in equation (5.38) have arguments with large and
positive real part for small jzj, the latter is determined by the generalized Stirling formula:

(6.24) �.x C y/x�xexx
1
2

�y '
p
2� exp

�X

k>0

BkC1.1 � y/
k.k C 1/ xk

�
; Re.x/� 0:

Keeping track judiciously of the (rather massive) cancellations occurring upon plugging equa-
tions (6.17), (6.24), (6.20), (5.36), (5.37), (5.38) and (5.39) into equation (6.23), we get that
(6.23) admits the unique solution

(6.25) N
X

i D �b�1

r
z

2�
:

Let us now analytically continue (6.22) and (6.25) to LR along �. By (5.28) and (6.16),
� \ .SC n j�j < 1/ does not contain anti-Stokes points. The classical asymptotics around the
i th-saddle of the continuation of equation (6.22) is therefore computed unambiguously as a for-
mal power series in z from the classical asymptotics of e�ui=zd…i . Denote by

.eRX/ij duj 2 �1.MA/ŒŒz��

the formal series obtained for every i D 1; : : : ; n from the analytic continuation along � of the
coefficients of

N
X

i e� ui

z d…i D . XRX/˛;idx
˛

to � � 0. From the discussion above, we isolate for each i the contributions from the leading
saddle to obtain

(6.26) .eRX/ij duj ' e� ui

z A
�1
i i N

X

i dJ Yi .u; z/

as one-form-valued formal series in z; notice that the off-diagonal terms of A
�1
ij have become

invisible in the asymptotics after projecting out subleading exponentials. Expressing the com-
ponents of (6.26) in normalized canonical coordinates and taking the � ! 0 limit, by (6.27)
and (A.14), we have

J Yi .�; z/ D ze
ui

cl
z .1CO.�//;

where uicl are coordinates for the idempotents of the classical T -equivariant cohomology ring
of Y defined by ujclPj , i�j .t

���/ in terms of the localization (B.8)–(B.9) of �� 2 H 2.Y / to
the T -fixed points. Explicitly,

uicl D t0 C ˛2
X

j�i

tj .nC 1 � j /C ˛1
X

j<i

jtj(6.27)

D t0 C z..nC 1 � i/b � a/ ln �i C
za

nC 1
nX

jD1

ln �j � zb
nX

jDiC1

ln �j :

By the discussion of Section 6.2.1 and (6.13), the limit log �i WD lim�!0.u
i � uicl/ must be

finite. A direct calculation from equation (5.7) gives

�
1
z

i D
��wC

i

z

��
w

C
i
z
�
w�
i

z

��
w�

i
z

.�b/�be�i�.nC1�i/b:
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Then

lim
�!0

e� uj

z àiJ Yj D
p
�i .�/

ˇ̌
�D0

�
� 1

z

i ıij D i
q
.˛1 C ˛2/wC

i w
�
i ıij ;

where �i .�/ is the Poincaré square-norm of àui at �, ài , àQui D
p
�iàui , and we pick the

positive determination for the square root for all i . This sets

.eRX/ij
ˇ̌
LR D

s
wC
i w

�
i

2�b

1

�
1
z

i Ai i

:

With our choice (6.14) of Stokes sector, all arguments of the �-functions appearing in the
diagonal of (5.29) have large positive real part for small jzj. Making use again of Stirling’s
formula, equation (6.24), yields

Ai i D ze� i.n�iC1/b �
�
1C w�

i

z

�

�.1 � b/�
�
�w

C

i

z

� '
1

�
1
z

i .DY /i

s
w�
i w

C
i

2�b
;

so that
.eRX/ij

ˇ̌
LR D .DY /iıij

and therefore eRX D RY near LR by equation (6.10), which concludes the proof.

A. Gromov–Witten theory background

This appendix reviews and synthesizes key aspects of Gromov–Witten theory, for the
benefit of the non-expert reader. Let Z be a smooth Deligne–Mumford stack with coarse mod-
uli space Z and suppose that Z carries an algebraic T ' C� action with zero-dimensional
fixed loci. Write IZ for the inertia stack of Z, inv W IZ! IZ for its canonical involution
and i W IZ

T ,! IZ for the inclusion of the T -fixed loci into IZ. The equivariant Chen–Ruan
cohomology ring H.Z/ , H orb

T .Z/ of Z is a finite rank free module over the T -equivariant
cohomology of a point H.BT / ' CŒ��, where � D c1.OBT .1//; we define

NZ , rankCŒ��H.Z/

and denote by�Z the free module over CŒ�� spanned by the T -equivariant lifts of Chen–Ruan
cohomology classes having age-shifted degree at most two. We assume that odd cohomology
groups vanish in all degrees.

A.1. Quantum D-modules in GW theory. The T -action on Z gives a non-degenerate
inner product on H.Z/ via the equivariant orbifold Poincaré pairing

(A.1) �.�1; �2/Z ,

Z

IZT

i�.�1 [ inv��2/

e.NIZT =IZ/
;

and this pairing induces a torus action on the moduli space Mg;n.Z; ˇ/ of degree ˇ twisted
stable maps [1, 22] from genus-g orbicurves to Z. For classes �1; : : : ; �n 2 H.Z/ and integers
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r1; : : : ; rn 2 N, the Gromov–Witten invariants of Z

h�r1
.�1/ : : : �rn

.�n/iZg;n;ˇ ,

Z

ŒMg;n.Z;ˇ/�
vir
T

nY

iD1

ev�
i �i 

ri

i ;(A.2)

h�1 : : : �niZg;n;ˇ , h�0.�1/ : : : �0.�n/iZg;n;ˇ(A.3)

define a sequence of multi-linear functions on H.Z/ with values in the field of fractions C.�/

of H.BT / (the integrals in (A.2) are defined by localization). The correlators (A.3) (respec-
tively, (A.2) with ri > 0) are the primary (respectively, descendent) Gromov–Witten invariants
of Z.

Fix a basis ¹�iºNZ�1
iD0 ofH.Z/ such that �0 D 1Z and �j , 1 � j � b2.Z/, are untwisted

T -equivariant divisors in Z. Denote by ¹�iºNZ�1
iD0 the dual basis with respect to the pairing.

Let � DP � i�i denote a general point of H.Z/. The WDVV equation for primary Gromov–
Witten invariants (A.3) defines a family of associative deformations ı� of the T -equivariant
Chen–Ruan cohomology ring of Z via

(A.4) �.�1 ı� �2; �3/Z , hh�1; �2; �3iiZ0;3 .�/;

where

(A.5) hh�1; : : : ; �kiiZ0;k .�/ ,
X

ˇ

X

n�0

˝
�1; : : : ; �k;

n times‚ …„ ƒ
�; �; : : : ; �

˛Z
0;nCk;ˇ

nŠ
2 C..�//;

and the index ˇ ranges over the semigroup of effective curves Eff.Z/ � H2.Z;Q/; we denote
by lZ , lZ its rank. Applying the Divisor Axiom [1], equation (A.5) can be rewritten as

(A.6) �.�1 ı� �2; �3/Z D
X

ˇ2Eff.Z/;n�0

˝
�1; �2; �3;

n times‚ …„ ƒ
� 0; � 0; : : : ; � 0

˛Z
0;nC3;ˇ

nŠ
e�0;2�ˇ ;

where we have decomposed � DPNZ�1
iD0 � i�i D �0;2 C � 0 as

�0;2 D
lZX

iD1

� i�i ;

� 0 D �01Z C
NZ�1X

iDlZC1

� i�i :

The quantum product (A.6) is a formal Taylor series in .� 0; e�0;2/. Suppose that it is
actually convergent in a contractible open set U 3 .0; 0/; this is the case for many toric orb-
ifolds [26, 43] and for all the examples of Section 4. The quantum product ı� is an analytic
deformation of the Chen–Ruan cup product [CR, to which it reduces in the limit � 0 ! 0,
Re.�0;2/! �1. Thus, the holomorphic family of rings H.Z/ � U ! U , together with the
equivariant Poincaré pairing and the associative product (A.6), gives U the structure of a (non-
conformal) Frobenius manifoldQH.Z/ , .U; �; ı� /, cf. [36]; this is the quantum cohomology

ring of Z. We refer to the Chen–Ruan limit � 0 ! 0, Re.�0;2/! �1 as the large radius limit

point of Z.
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42 Brini, Cavalieri and Ross, Crepant resolutions and open strings

Assigning a Frobenius structure on U amounts to endowing the trivial cohomology
bundle T U ' H.Z/ � U ! U with a flat pencil of affine connections [36, Lecture 6]. Denote
by r.�/ the Levi–Civita connection associated to the Poincaré pairing on H.Z/; in Cartesian
coordinates for U � H.Z/ this reduces to the ordinary de Rham differential r.�/ D d . The
one-parameter family of covariant derivatives on T U

(A.7) r.�;z/X , r.�/X C z�1Xı�
is called the Dubrovin connection. The fact that the quantum product is commutative, associa-
tive and integrable implies that Rr.�;z/ D Tr.�;z/ D 0 identically in z; this statement is equiv-
alent to the WDVV equations for the genus-zero Gromov–Witten potential. The equation for
the horizontal sections of r.�;z/,

(A.8) r.�;z/! D 0;
is a rank-NZ holonomic system of coupled linear PDEs. We denote by SZ the vector space
of solutions of equation (A.8): a C..z//-basis of SZ is by definition given by the gradient of
a flat frame Q�.�; z/ for the deformed connection r.�;z/. The Poincaré pairing induces a non-
degenerate inner product H.s1; s2/Z on SZ via

(A.9) H.s1; s2/Z , �.s1.�;�z/; s2.�; z//Z:
The triple QDM.Z/ , .U;r.�;z/;H. � ; � /Z/ defines a quantum D-module structure on U , and
system (A.8) is the quantum differential equation (in short, QDE) of Z.

Remark A.1. The assumption that the quantum product (A.6) is analytic in .� 0; e�0;2/

around the large radius limit point translates into the statement that the QDE (A.8) has a Fuchs-
ian singularity along

SlZ
iD1¹qi , e�

i D 0º.

In the same way in which the genus-zero primary theory of Z defines a quantumD-mod-
ule structure on H.Z/ � U , the genus-zero gravitational invariants (A.2) furnish a basis of
horizontal sections of r.�;z/, cf. [42]. For every � 2 H.Z/, a flat section of the D-module is
given by an End.H.Z//-valued function SZ.�; z/ W H.Z/! SZ defined as

(A.10) SZ.�; z/� , � �
NZ�1X

kD0

�k
��
�k;

�

z C  

��Z

0;2

.�/;

where  is a cotangent line class and we expand the denominator as a geometric series in � 
z

.
The pair .QDM.Z/; SZ/ is called the S-calibration of the Frobenius structure .U; ı� ; �/.

The flows of coordinate vectors for the flat frame of TH.Z/ induced by SZ.�; z/ give
a basis of flat coordinates of r.�;z/, which is defined uniquely up to an additive z-dependent
constant. A canonical basis is obtained upon applying the String Axiom: define the J -function

JZ.�; z/ W U �C ! H.Z/ by

(A.11) JZ.�; z/ , zSZ.�;�z/�1Z;

where SZ.�; z/
� denotes the adjoint of SZ.�; z/ under �.�;�/Z. Explicitly,

(A.12) JZ.�; z/D .zC�0/1ZC�1�1C� � �C�NZ�NZ
C
NZ�1X

kD0

�k
��

�k

z �  nC1

��Z

0;1

.�/:
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Components of JZ.�;�z/ in the �-basis give flat coordinates of equation (A.7); this is a con-
sequence of equation (A.11) combined with the String Equation. From equation (A.12), the
undeformed flat coordinate system is obtained in the limit z !1 as

lim
z!1

�
JZ.�;�z/C z1Z

�
D �:

By Remark A.1, a loop around the origin in the variables qi D e�
i

gives a non-trivial
monodromy action on the J -function. Setting � 0 D 0 in equation (A.12) and applying the
Divisor Axiom then gives (cf. [30, Proposition 10.2.3])

JZ;sm.�0;2; z/ , JZ.�; z/
ˇ̌
� 0D0

(A.13)

D ze�
1 �1

z : : : e�
lZ

�lZ
z

�
�

1Z C
X

ˇ;k

e�
1ˇ1 : : : e�

lZˇlZ�k
�

�k

z.z �  1/

�Z

0;1;ˇ

�
:

In our situation where the T -action has only zero-dimensional fixed loci ¹PiºNZ

iD1, write

�i !
NZX

jD1

cij .�/Pj ; i D 1; : : : ; lZ;

for the image of ¹�i 2 H 2.Z;C/ºlZiD1 under the Atiyah–Bott isomorphism. The image of each
�i is concentrated on the fixed point cohomology classes with trivial isotropy which are idem-
potents of the classical Chen–Ruan cup product on H.Z/. Therefore, the components of the
J -function in the fixed points basis

JZ;sm.�0;2; z/ DW
NZX

jD1

J
Z;sm
j .�0;2; z/Pj

satisfy

(A.14) J
Z;sm
j .�0;2; z/ D ze

PlZ

iD1
� i

cij
z

�
1CO.e�0;2/

�
;

where the O.e�0;2/ term on the right-hand side is an analytic power series around e�0;2 D 0
by equation (A.13) and the assumption of convergence of the quantum product. The localized
basis ¹Pj ºNZ

jD1 therefore diagonalizes the monodromy around large radius: by (A.14), each
J

Z;sm
j .�0;2; z/ is an eigenvector of the monodromy around a loop in the qi -plane encircling the

large radius limit of Z with eigenvalue e2� icij =z .

A.1.1. Toric data and trivializations. Suppose that c1.Z/ � 0 and that the coarse
moduli space Z is a semi-projective toric variety given by a GIT quotient of Cdim ZCnZ

by .C�/nZ . In this setting, the global quantum D-module arises naturally in the form of the
Picard–Fuchs system associated to Z, cf. [7, 25, 43]. The scaling factor h

1=z
Z

then measures
the discrepancy between the small J -function and the canonical basis-vector of solutions of
the Picard–Fuchs system (the I -function), restricted to zero twisted insertions:12)

(A.15) h
1
z

Z
.�0;2/J

Z;small.�0;2; z/ D IZ.a.�0;2/; z/;

12) See [23] for a discussion of why in equivariant Gromov–Witten theory IZ and JZ;small could a priori
differ, even in the semi-positive case, by a uniquely determined scaling factor induced by the String Equation.
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44 Brini, Cavalieri and Ross, Crepant resolutions and open strings

where a.�0;2/ is the inverse mirror map. As a consequence of equation (A.15), the scaling
factor hZ is determined by the toric data defining Z, cf. [25, 28, 43]. Let „i 2 H 2.Z/ be the
T -equivariant Poincaré dual of the reduction to the quotient of the i th coordinate hyperplane
in Cdim ZCnZ and write �.j /i D Coeff�j

„i 2 CŒ�� for the coefficient of the projection of „i
along �j 2 H.Z/ for j D 0; : : : ; nZ. Defining, for every ˇ,

Di .ˇ/ ,

Z

ˇ

„i

and
J˙
ˇ , ¹j 2 ¹1; : : : ; dim ZC nZº W ˙Dj .ˇ/ > 0º;

we have

� l D log al C
X

ˇ2Eff.Z/

aˇ

Q
j�2J�

ˇ
.�1/Dj� .ˇ/jDj�

.ˇ/jŠ
Q
jC2JC

ˇ

DjC
.ˇ/Š

X

k�2J�
ˇ

��.l/
k�

Dk�
.ˇ/

; l D 1; : : : ; nZ;

and

hZ D exp

" X

ˇ2Eff.Z/

aˇ

Q
j�2J�

ˇ
.�1/Dj� .ˇ/jDj�

.ˇ/jŠ
Q
jC2JC

ˇ

DjC
.ˇ/Š

X

k�2J�
ˇ

��.0/
k�

Dk�
.ˇ/

#
:(A.16)

A.2. Givental’s symplectic structures and quantization. Let .HZ; �Z/ be a pair
given by the infinite-dimensional vector space

(A.17) HZ , H.Z/˝O.C�/

endowed with the symplectic form

(A.18) �Z.f; g/ , Res
zD0

�.f .�z/; g.z//Z:

A general point of HZ can be written in Darboux coordinates for (A.18); as

X

k�0

NZ�1X

˛D0

q˛;k�˛z
k C

X

l�0

NZ�1X

ˇD0

pˇ;l�ˇ .�z/�k�1:

We call H
C
Z

the Lagrangian subspace spanned by q˛;k .
The genus-zero Gromov–Witten theory of Z can be compactly codified through the sym-

plectic geometry of HZ as follows [46]. The generating function of genus-zero descendent
Gromov–Witten invariants of Z,

(A.19) F
Z
0 ,

1X

nD0

X

ˇ2Eff.Z/

X

a1;:::;an
r1:::;rn

Qn
iD1 tai ;ri

nŠ
h�r1

.�a1
/ : : : �rn

.�an
/iZ0;n;ˇ ;

is the germ of an analytic function on H
C
Z

upon identifying t0;1 D q0;1 C 1, t˛;n D q˛;n; under
the assumption of convergence of the quantum product, the coefficients of t˛1;n1 : : : t˛r ;nr with
ni .deg�˛i

� 2/ ¤ 0 are analytic functions of et2;0 in a neighborhood of the origin; the mirror
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Brini, Cavalieri and Ross, Crepant resolutions and open strings 45

theorem of [25] guarantees that this is the case when Z is semi-positive. As is often com-
mon [59], in writing equation (A.19) and in the following we chose to dispose altogether of the
Novikov variables; there is no loss of information however here about the degree of the curves
by virtue of the Divisor Axiom; see e.g. [28, Remarks 5.3 and 5.5] for a discussion of both the
primary and the descendent theory.

The graph LZ of the differential of (A.19),

(A.20) LZ D
²
.q; p/ 2 HZ W pl;ˇ D

àF Z
0

àql;ˇ
³
;

is by design a formal germ of a Lagrangian submanifold. This is a ruled cone [46], as a con-
sequence of the genus-zero Gromov–Witten axioms, depending analytically on the small
quantum cohomology variables t0;2 around the large radius limit point of Z. By the equations
defining the cone, the J -function JZ.�;�z/ yields a family of elements of LZ parameterized
by � 2 H.Z/, which is uniquely determined by its large z asymptotics

J.�;�z/ D �z C � CO.z�1/:

Conversely, the genus-zero topological recursion relations imply that LZ can be reconstructed
entirely from JZ.�; z/.

A.2.1. The R-calibration and quantization. When Z is a manifold, Givental’s theo-
rem for equivariant Gromov–Witten invariants [44, 45] asserts that the higher genus theory
of Z is obtained through Weyl-quantization of a pair .SZ; RZ/ of symplectic automorphisms
of .HZ; �Z/, both of which are determined from genus-zero data alone. More in detail, the
Gromov–Witten canonical S -calibration satisfies

�.SZ.�;�z/�; SZ.�; z/�
0/Z D �.�; � 0/Z

for arbitrary cohomology classes � , � 0 2 H.Z/, as can be readily seen upon differentiating
the left-hand side with respect to � . Allowing � , � 0 to be formal cohomology-valued Laurent
series in z, this implies that for fixed � , SZ.�; z/ belongs to the negative symplectic loop

group Sp�.HZ/ of Z: an element of GL.H.Z//ŒŒz�1�� which is a symplectic automorphism
of .HZ; �Z/.

Notice that theRZ-calibration is instead an element of the positive symplectic loop group
SpC.HZ/ \ GL.H.Z//ŒŒz��, constructed as follows. Let Q� 2 U be such that the Frobenius
algebra on T�H.Z/ is semi-simple for � in a neighborhood VQ� of Q� . Then [36] there exist
local coordinates ¹uiºNZ

iD1 such that their coordinate vector fields àui 2 X.V� / are a basis of
idempotents of ı� . Denoting by�i their squared norm with respect to the flat pairing, we obtain
a normalized orthonormal system Qui , ui=

p
�i of local coordinates. Then an R-calibration

for Z is a choice of a C..z//-basis of horizontal 1-forms on V�

.RZ/
j
i .�; z/e

uj

z d Qui ; i D 1; : : : ; NZ;

where .RZ/
j
i .�; z/ is an asymptotic End.T�H/-valued series in z satisfying

X

j

.RZ/
j
i .�; z/.RZ/

j

k
.�;�z/ D ıji :

If we let ‰ be the differential of Qu, the above implies that ‰ZRZe
u
z is a holomorphic family

of symplectomorphisms parameterized by � 2 VQ� .
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46 Brini, Cavalieri and Ross, Crepant resolutions and open strings

Givental’s quantization formalism assigns quantum operators to the S - and R-calibra-
tions of Z. The Fock space F� of Z at � is the space of functions f .�; t� / of the form

f .�; t� / D
X

g2Z

�g�1fg.t� /;

where in terms of coordinates ¹qi;˛º we define

(A.21) t˛;l� , q˛;l � ıl0�˛ C ıl1ı˛0

and
fg.t� / 2 CŒŒt� ��:

To each symplectomorphism connected with the identity Q 2 Aut0.HZ; �Z/, we associate
a quantized operator bQ acting on F� via

bQ D eblog Q;

where we define the quantization of an infinitesimal symplectomorphism to be the quantization
of its quadratic Hamiltonian with the normal-ordering prescriptions

3p˛;kpˇ;l D �
à2

àq˛;kàqˇ;l
;

3
p˛;kq

ˇ;l D3
qˇ;lp˛;k D qˇ;l

à
àq˛;k

;

3
q˛;kqˇ;l D ��1q˛;kqˇ;l :

Let now ZZ 2 F� be the generating function of disconnected Gromov–Witten invariants
of Z,

ZZ D exp
X

g�0

�g�1
F

Z
g ;

in the shifted variables (A.21), and denote likewise by Zpt 2 .�q1/�1=24CŒ1=q1; qk>1�ŒŒq0��
the generating function of disconnected Gromov–Witten invariants of the point in dilation-
unshifted variables. In the context of fixed point localization for toric orbifolds, knowledge of
the T -action fixes uniquely a canonical choice for the symplectomorphism RZ (cf. [44, 77]),
which we call the Gromov–Witten R-calibration. The Givental–Teleman theorem [44, 45, 75]
then asserts that ZZ can be obtained from Zpt via the action of operatorsbSZ and bRZ obtained
by quantizing the canonical S - and R-calibrations of QH.Z/ at � , giving formula (6.1).

B. An-resolutions

B.1. GIT quotients. Here we review the relevant toric geometry concerning our tar-
gets. Let X , ŒC3=ZnC1� be the 3-fold An singularity and Y its resolution. The toric fan for
X has rays .0; 0; 1/, .1; 0; 0/, and .1; nC 1; 0/, while the fan for Y is obtained by adding the
rays .1; 1; 0/, .1; 2; 0/; : : : ; .1; n; 0/. The divisor class group is described by the short exact
sequence

(B.1) 0 �! Zn
MT

�! ZnC3 N�! Z3 �! 0;
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where

M D

2
66666664

1 �2 1 0 0 : : : 0 0

0 1 �2 1 0 : : : 0 0
:::
: : :

: : :
: : :

: : :
: : :

:::
:::

0 : : : 0 1 �2 1 0 0

0 : : : 0 0 1 �2 1 0

3
77777775
;

N D

2
64
1 1 1 : : : 1 0

0 1 2 : : : nC 1 0

0 0 0 : : : 0 1

3
75 :

Both X and Y are GIT quotients:

X D
�

CnC3 n V.x1 � � � xn/
.C�/n

�
;(B.2)

Y D CnC3 n V.I1; : : : ; InC1/;

.C�/n
;(B.3)

where

Ii D
nC1Y

jD0; j¤i�1;i

xj ;

and the torus action is specified by M . From the quotient (B.2), we can compute coordinates
on the orbifold

(B.4)

2
64
z1

z2

z3

3
75 D

2
664
x0x

n
nC1

1 x
n�1
nC1

2 � � � x
1

nC1
n

x
1

nC1

1 x
2

nC1

2 � � � x
n

nC1
n xnC1

xnC2

3
775 :

These coordinates are only defined up to a choice of .nC 1/st root of unity for each xi . This
accounts for a residual ZnC1 � .C�/n acting with dual representations on the first two coordi-
nates. We identify this residual ZnC1 as the subgroup generated by .!; !2; : : : ; !n/ 2 .C�/n,
where ! D e

2� i
nC1 . This realizes the quotient (B.2) as the 3-fold An singularity where the group

ZnC1 D h!i acts by ! � .z1; z2; z3/ D .!z1; !�1z2; z3/.

Remark B.1. The weights of the ZnC1 action on the corresponding fibers of TX are
inverse to the weights on the local coordinates because a local trivialization of the tangent
bundle is given by ààz˛ , where z˛ are the local coordinates.

The geometry of the space Y is captured by the toric web diagram in Figure 6. In par-
ticular, Y has nC 1 torus fixed points (corresponding to the nC 1 three-dimensional cones
in the fan) and a chain of n torus invariant lines connecting these points. We label the points
p1; : : : ; pnC1, where pi corresponds to the cone spanned by .0; 0; 1/, .1; i � 1; 0/, and .1; i; 0/
and we label the torus invariant lines by L1; : : : ; Ln, where Li connects pi to piC1. We also
denote by L0 and LnC1 the torus invariant (affine) lines corresponding to the two-dimensional
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Y X

α1 + α2

α1 + α2

p3

L3

L4

w
+

4 = −4α1

w
+

3

w
−

3

α1 + α2

α1 + α2

p1

L0

L1

p2

w
−

1 = −4α2

w
+

2

w
−

2

p4

L2

ω

−α2

ω
−1

−α1

α1 + α2

ω
0

w
−

4

w
+

1

Figure 6. The toric web diagrams for Y and X for n D 3. Fixed points and invariants lines are
labelled, together with the relevant torus and representation weights.

cones spanned by the rays .1; 0; 0/; .0; 0; 1/ and .1; n; 0/; .0; 0; 1/, respectively. From the quo-
tient (B.3) we compute homogeneous coordinates on the line Li

(B.5)

"
xi0x

i�1
1 � � � xi�1

xnC1�i
nC1 xn�i

n�1 � � � xiC1

#
;

where pi $ Œ0 W 1� and piC1 $ Œ1 W 0�.
Note that H2.Y / is generated by the torus invariant lines Li . Define �i 2 H 2.Y / to be

dual to Li . The �i form a basis of H 2.Y /; denote the corresponding line bundles by O.�i /.
Note that O.�i / restricts to O.1/ on Li and O on Lj if j ¤ i and this uniquely determines the
line bundle O.�i /. On the orbifold, line bundles correspond to ZnC1 equivariant line bundles
on C3. We denote Ok the line bundle where ZnC1 acts on fibers with weight !k; then, for
example, TX D O�1 ˚O1 ˚O0, where the subscripts are computed modulo nC 1 (cf. (B.1)).

B.2. Classical equivariant geometry. Given that we are working with non-compact
targets, all of our quantum computations utilize Atiyah–Bott localization with respect to an
additional T D C� action on our spaces. Let T act on CnC3 with the following weights:
.˛1; 0; : : : ; 0; ˛2;�˛1 � ˛2/. Then the induced action on the orbifold and resolution can be
read off from the local coordinates in (B.4) and (B.5). In particular, the three weights on
the fibers of TX are �˛1;�˛2; ˛1 C ˛2. As a HT .pt/-module, the T -equivariant Chen–Ruan
cohomology H �.X/ of X is by definition the T -equivariant cohomology of the inertia stack
IX. The latter has components X1; : : : ;Xn;XnC1, the last being the untwisted sector:13)

Xk D ŒC=ZnC1�; 1 � k � n;
XnC1 D ŒC3=ZnC1�:

13) While it is more common to index the untwisted sector by 0, we make this choice of notation for the sake
of the computations of Section 5, where certain matrices are triangular with this ordering.
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Writing 1k , k D 1; : : : ; nC1, for the fundamental class of Xk we obtain a C.�/ basis ofH.X/;
the age-shifted grading assigns degree zero to the fundamental class of the untwisted sector,
and degree one to every twisted sector. The Atiyah–Bott localization isomorphism is trivial,
i.e. the fundamental class on each twisted sector is identified with the unique T -fixed point on
that sector. We abuse notation and use 1k to also denote the fixed point basis. The equivariant
Chen–Ruan pairing in orbifold cohomology is

�.1i ; 1j /X D
ıi;nC1ıj;nC1 C ˛1˛2ıiCj;nC1

˛1˛2.˛1 C ˛2/.nC 1/
:

On the resolution Y , the three weights on the tangent bundle at pi are

(B.6) .w�
i ; w

C
i ; ˛1C˛2/ , ..i�1/˛1C.�nCi�2/˛2;�i˛1C.nC1�i/˛2; ˛1C˛2/:

Moreover, O.�j / is canonically linearized via the homogeneous coordinates in (B.4). The
weight of O.�j / at the fixed point pi is

(B.7)

´
.nC 1 � j /˛2; i � j;
j˛1; i > j:

Denote by ¹PiºnC1
iD1 the equivariant cohomology classes corresponding to the fixed points of Y .

Choosing the canonical linearization given in (B.7), the Atiyah–Bott localization isomorphism
on Y is given by

�j 7!
X

i�j

.nC 1 � j /˛2Pi C
X

i>j

j˛1Pi ; j 6D nC 1;(B.8)

�nC1 7!
nC1X

iD1

Pi :(B.9)

where �nC1 is the fundamental class on Y . Genus zero, degree zero GW invariants are given
by equivariant triple intersections on Y ,

h�i ; �j ; �kiY0;3;0 D
Z

Y

�i [ �j [ �k :

With i � j � k < nC 1, (B.8)–(B.9) yield

h�nC1; �nC1; �nC1iY0;3;0 D
1

.nC 1/˛1˛2.˛1 C ˛2/
;(B.10)

h�nC1; �nC1; �i iY0;3;0 D 0;(B.11)
˝
�nC1; �i ; �j

˛Y
0;3;0
D i.nC 1 � j /
�.nC 1/.˛1 C ˛2/

;(B.12)

˝
�i ; �j ; �k

˛Y
0;3;0
D � ij.nC 1 � k/˛1 C i.nC 1 � j /.nC 1 � k/˛2

.nC 1/.˛1 C ˛2/
:(B.13)

The T -equivariant pairing �.�i ; �j /Y is given by equation (B.12) and diagonalizes in the fixed
point basis:

�.Pi ; Pj /Y D
ıi;j

w�
i w

C
i .˛1 C ˛2/

:
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50 Brini, Cavalieri and Ross, Crepant resolutions and open strings

B.3. Quantum equivariant geometry. We compute the genus-zero GW invariants
of Y via localization (extending the computations of [16, Section 2] to a more general torus
action):

h�i1 ; : : : ; �il i0;l;ˇ(B.14)

D
´
�d l�3 if ˇ D d.Lj C � � � C Lk/ with j � min¹i˛º � max¹i˛º � k;
0 else.

Denote by ˆ DPnC1
iD1 ti�i a general cohomology class ˆ 2 H.Y /. The equivariant three-

point correlators used to define the quantum cohomology can be computed from (B.10), (B.11),
(B.12), (B.13) and (B.14) (with 1 � i � j � k < nC 1):

(B.15) hh�i ; �j ; �kiiY0;3.t/ D
Z

Y

�i [ �j [ �k �
X

l�i�k�m

etl C���Ctm

1 � etl C���Ctm
:

The equivariant quantum cohomology of X can then be computed from the following
result, which is proved in the appendix of [24].

Proposition B.2. Let � W Œ0; 1�! H 2.Y / be as in (4.1). Then upon analytic continua-

tion in the quantum parameters ti along �, the quantum products for X and Y coincide after

the affine-linear change of variables

(B.16) ti D
�bIX;Y
� x

�
i
D

8
<
:
2� i
nC1 C

Pn
kD1

!�ik.!
k
2 �!� k

2 /
nC1 xk; 0 < i < nC 1;

xnC1; i D nC 1;
and the linear isomorphism U

X;Y
�;0 W H.X/! H.Y / given by

1k 7!
nX

iD1

!�ik.!
k
2 � !� k

2 /

nC 1 �i ; 1 � k � n;

1nC1 7! �nC1:

Furthermore, U
X;Y
�;0 preserves the equivariant Poincaré pairings of X and Y .

C. Analytic continuation of Lauricella F
.N /

D

Consider the Lauricella function

F
.MCN/
D .aI b1; : : : ; bMCN I cI z1; : : : ; zM ; w1; : : : ; wN /

around P D .0; 0; : : : ;1; : : : ;1/. We are interested in the leading terms of the asymptotics
of this function in the region �MCN defined as

�MCN , B.P; �/
\

i<j

Hij

given by the intersection of the ball B.P; �/ with the interior of the real hyperquadrics

Hij ,

²
.z; w/ 2 CMCN W

ˇ̌
ˇ̌wi
wj

ˇ̌
ˇ̌ < �

³
:

As our interest is confined to the leading asymptotics only, we can assume without loss of
generality that M D 0.
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Following [39, Chapter 6], start from the power series expression (5.23) and perform the
sum with respect to wN :

F
.N/
D .aI b1; : : : ; bN I cIw1; : : : ; wN /(C.1)

D
X

i1;:::;iN �1

.a/PN �1
j D1 ij

.c/PN �1
j D1 ij

N�1Y

jD1

.bj /ijw
ij
j

ij Š

� 2F1
 
aC

N�1X

jD1

ij ; bN ; c C
N�1X

jD1

ij ; wN

!
:

The main idea then is to apply the connection formula for the inner Gauss function

2F1.a; bI cI z/ D
.�z/�a�.c/�.b � a/ 2F1.a; a � c C 1I a � b C 1I 1z /

�.b/�.c � a/(C.2)

C .�z/�b�.c/�.a � b/ 2F1.b; b � c C 1I �aC b C 1I 1z /
�.a/�.c � b/

to analytically continue it to jzj D jwN j > 1; in doing so, we fix a path of analytic continuation
by choosing the principal branch for both the power functions .�z/�a and .�z/�b in (C.2)
and continue 2F1.a; bI cI z/ to jz > 1j along a path that has winding number zero around
the Fuchsian singularity at z D 1. As a power series in wN the analytic continuation of (C.1)
around wN D1 then reads

F
.N/
D .aI b1; : : : ; bN I cIw1; : : : ; wN /(C.3)

D .�wN /�a�
"
c; bN � a
bN ; c � a

#

� F .N/D

�
aI b1; : : : ; bN�1; 1 � c C aI 1 � bN C a;

w1

wN
; : : : ;

1

wN

�

C .�wN /�bN�

"
c; a � bN
a; c � bN

#

� C .N�1/
N

�
b1; : : : ; bN ; 1 � c C bN I a � bN ;�w1;�w2; : : : ;

1

wN

�
;

where we defined (cf. [39, Chapter 3])

C
.k/
N .b1; : : : ; bN ; aI a0; x1; : : : ; xN / ,

X

i1;:::;iN

.a/
˛

.k/
N .i/

.a0/
�˛.k/

N .i/

NY

jD1

.bj /ijw
ij
j

ij Š

and

˛
.k/
N .i/ ,

NX

jDkC1

ij �
kX

jD1

ij ; �

"
a1; : : : ; am

b1; : : : ; bn

#
,

Qm
iD1 �.ai /Ql
iD1 �.bi /

:

Notice that the function F .N�1/
D on the right-hand side of equation (C.3) is analytic in �N ;

there is nothing more that should be done there. The analytic continuation of the function
C
.N�1/
N is instead much more involved (see [39] for a complete treatment of the case N D 3);
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but as all we are interested in is the leading term of the expansion around P in �N we isolate
the O.1/ term in its 1

wN
expansion to find

C
.N�1/
N

�
b1; : : : ; bN ; 1 � c C bN I a � bN ;�w1;�w2; : : : ;

1

wN

�
(C.4)

D F .N�1/
D

�
a � bN ; b1; : : : ; bN�1; c � bN Iw1; : : : ; wN�1

�
CO

�
1

wN

�
:

We are done: by (C.4), the form of the leading terms in the expansion of F .N/D inside �N can
be found recursively by iterating N times the procedure we have followed in (C.1)–(C.4); as at
each step equations (C.2)–(C.4) generate one additional term, we end up with a sum of N C 1
monomials each having power-like monodromy around P . Explicitly:

F
.N/
D .aI b1; : : : ; bN I cIw1; : : : ; wN /(C.5)

�
N�1X

jD0

�

"
c; a �PN

iDN�jC1 bi ;
PN
iDn�j bi � a

a; bN�j ; c � a

#

�
jY

iD1

.�wN�iC1/
�bN �iC1.�wN�j /

�aC
PN

iDN �j C1 bi

C
NY

iD1

.�wi /�bi�

"
c; a �PN

iD1 bj

a; c �PN
iD1 bj

#
:

Remark C.1. The analytic continuation to some other sectors of the ball B.P; �/ is
straightforward. In particular, we can replace the condition wi

wj
� 0 for j > i by its reciprocal

wj

wi
� 0; this amounts to relabeling bi ! bN�iC1 in equation (C.5).

Remark C.2. When a D �d for d 2 ZC, the function F .N/D reduces to a polynomial
in w1; : : : ; wN . In this case the arguments above reduce to a formula of Toscano [76] for
Lauricella polynomials:

F
.N/
D .�d I b1; : : : ; bN I cIw1; : : : ; wN /

D .�wN /d
.b/d

.c/d
F
.N/
D

�
�d I b1; b2 : : : ; bN�1I 1 � d � c; 1 � d � bN ;

w1

wN
; : : : ;

1

wN

�
:
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