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Abstract: 

 

We surveyed 14 individuals of Tylosurus crocodilus Péron & Lesueur 1821 (Belonidae) collected from 

the waters around Lizard Island and Heron Island, Great Barrier Reef, Queensland, Australia, and the 

waters around Moorea, French Polynesia. We describe two new species of bucephaline trematodes 

from them, Prosorhynchoides galaktionovi n. sp. and P. kohnae n. sp. They are morphologically 

distinct from existing Prosorhynchoides spp., with molecular data from 28S and ITS-2 ribosomal DNA, 

as well as cox1 mitochondrial DNA, further supporting our morphological findings. Neither species 

has been observed in other belonid fishes. The new species fall into the clade of species of 

Prosorhynchoides from belonids previously identified in Australian waters. These findings strengthen 

the observation that groups of bucephaline species have radiated, at least in part, in tight 

association with host taxa. There are now five species of Prosorhynchoides known from two belonid 

species in Australian waters. We, therefore, predict further richness in the nine other belonid species 

present. 
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1. Introduction 

 

Hammond, et al. [1] showed that a single species of the Belonidae, Tylosurus gavialoides (Castelnau), 

collected from Moreton Bay in southern Queensland, has three morphologically and genetically 

distinct species of bucephalid trematodes from the genus Prosorhynchoides [1]. It is presently the 

only belonid species from which bucephalids have been described in Australian waters. 
 

The Bucephalidae are trematodes found within the gastrointestinal tract of piscivorous fishes. They 

have been reported from marine, freshwater and brackish environments. Bucephalids differ from 
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typical trematodes by their anterior sucker being adapted for attachment, known as a rhynchus, 

rather than being associated with the digestive system, with their ventral sucker being associated, 

containing a muscular pharynx, and by their distinctive, posteriorly opening terminal genitalia [2]. 
 

Here, we explore the bucephalid fauna of Tylosurus crocodilus Péron & Lesueur. This species is found 

in tropical to subtropical waters of the Atlantic and Pacific oceans. In Australia, they occur along the 

northern coast of Australia, from south-west Western Australia and extending north and east around 

to northern New South Wales [3]. Four species of bucephalids have previously been described from 

this fish, three species of Prosorhynchoides (P. fijiensis (Manter, 1963), P. southwelli (Nagaty, 1937) 

and P. tylosuris (Ozaki & Ozaki, 1952)) and Skrjabiniella uniporus (Ozaki, 1924) [4-7]. 
 

For this study, we collected individuals of T. crocodilus from GBR, from the waters around Lizard 

Island and Heron Island; one individual was collected from the waters around Moorea in French 

Polynesia. We report two new species of bucephalids, described using a combined morphological 

and multiple molecular marker approach, and compare them with previously described species of 

Prosorhynchoides from belonids found in Australian waters and elsewhere. 
 
 
 

2. Materials and methods 
 

2.1. Sample collection 
 

Specimens of Tylosurus crocodilus were collected from waters around three locations; Lizard Island 

(GBR, 14° 40’ 0”S, 145° 28’ 0”E), Heron Island (GBR, 23° 27’ 0”S, 151° 55’ 0”E) and Moorea (French 

Polynesia, 17° 32' 25" S 149° 50' 0"W). Hosts were collected via line, spear fishing, and seine net. 
 

For each specimen, the digestive tract was isolated, opened and observed in vertebrate saline, and 

then put through a gut wash, as described by Cribb and Bray [8]. Trematodes were fixed in near- 

boiling saline, preserved in 70% ethanol, and put into -20°C storage. 
 
 
 

2.2. Morphological analysis 
 

Specimens for staining and mounting were washed twice in tap water for 30 min, then stained in 

Mayer’s Haematoxylin for 30 min, destained with a 1% HCl solution, and neutralised with a 1% 

ammonia solution. They were then dehydrated using a graded series of ethanol solutions (50%, 70%, 

90%, 96% and 100%). Each step was approximately 20–30 min, and the 100% step was repeated. 

Once dehydrated, they were cleared using methyl salicylate, first in a 50% solution, then in 100% for 

approximately 30 min each, and then mounted onto slides using Canada Balsam. 
 

Trematodes were observed using a Leica DM 2500 light microscope, a Leica DFC310 FX camera (Leica 

Microsystems Ltd., Switzerland) and the program Leica Application Suite (LAS) (Leica Microsystems 

Ltd., Switzerland, ver. 4. 3. 0). Measurements of morphological features were made using the LAS 

software. All measurements are in micrometres. Holotypes and paratypes have been submitted to 

the Queensland Museum (QM), Brisbane, Australia. 
 
 
 

2.3. Molecular analysis 



 

 

 
Molecular and phylogenetic analyses are based on worms from T. crocodilus caught from the waters 

around Lizard Island. 
 

DNA extractions were carried out on individual trematodes using an Isolate II Genomic DNA kit, 

according to the manufacturer’s protocol (Bioline (Aust) Pty Ltd, Alexandria, NSW). Polymerase 

Chain Reaction (PCR) amplifications were then performed on extracted samples. For this study, two 

ribosomal DNA (rDNA) markers, 28S and ITS-2, and one mitochondrial DNA (mtDNA) marker, 

mitochondrial cytochrome c oxidase 1 (cox1), were amplified. The 28S (1241–1267 nucleotides), ITS- 

2 (555–562 nucleotides) and the cox1 (488–509 nucleotides) sequences were amplified using the 

oligonucleotide primers; LSU5 and 1500R [9, 10], GA1 and ITS2.2 [11, 12], and Dig_cox1Fa and 

Dig_cox1R [13], respectively. The 28S and cox1 markers were amplified using the AmpliTaq Gold® 

DNA Polymerase kit [Applied Biosystems Inc., Foster City, California, USA], with ITS-2 amplified using 

MyTaq™ DNA Polymerase kit [Bioline (Aust) PTY LTD]. For 28S and cox1 markers, 50 µl PCR reactions 

were set up following Applied Biosystems Inc.’s instructions, with 25 µl of polymerase with buffer, 1 

µl of GC enhancer, 1 µl of each primer (10 µM) and 17 µl of autoclaved, Millipore water used, with 5 

µl of sample per tube. The PCR cycle for the 28S amplification used the setup as follows; 95°C for 10 

min, followed by 35 cycles of 95°C for 30 s, 58°C for 30 s and 72°C for 1 min, and a final step of 72°C 

for 10 min. The PCR cycle for the cox1 amplification used the setup as follows; 95°C for 10 min, 

followed by 35 cycles of; 95°C for 30 s, 45°C for 30 s and 72°C for 1 min, and a final step of 72°C for 

10 min. For the ITS-2 marker, fifty µl PCR reactions were set up following Bioline’s® instructions, with 

10 µl of buffer, 0.25 µl of polymerase, 1 µl of each primer (10 µM) and 32.75 µl of autoclaved, 

Millipore water used, with 5 µl of sample per tube. The PCR cycle for ITS-2 amplification used the 

setup as follows; 95°C for 1 min, followed by 30 cycles of 95°C for 15 s, 56°C for 15 s and 72°C for 15 

s, and a final step of 72°C for 5 min. PCR amplifications were performed on a C1000 Touch™ Thermal 

Cycler (Bio-Rad, Hercules, California, U.S.A). 
 

Samples that were successfully amplified were then purified using an Isolate II PCR and Gel kit, 

according to the manufacturer’s protocol [Bioline (Aust) PTY LTD]. Samples were then sequenced at 

the Australian Genome Research Facility (AGRF), in Melbourne, Australia, in both the forward and 

reverse directions. 
 
 
 

2.4. Phylogenetic analysis, inter- and intraspecific variation 
 

All sequences were compared for inter- and intraspecific variation within each marker. ITS-2 

sequences were compared using three sequences of worms for both species, cox1 sequences were 

compared using three sequences of Prosorhynchoides kohnae n. sp. and two sequences of P. 

galaktionovi n. sp. We also explored the interspecific variation, using cox1 sequences, of these two 

species and the three other species of Prosorhynchoides described from belonids in Australian 

waters; P. moretonensis, P. waeschenbachae and P. cutmorei Hammond, Cribb and Bott [1]. 
 

Sequencher™ (GeneCodes Corp., Ann Arbor, Michigan, U.S.A, ver. 5.2.4) was used to produce 

consensus sequences from the forward and reverse sequences that were generated. For 28S 

analysis, all available sequences of bucephalines were obtained from GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/). For ITS-2, similar sequences were obtained from 

GenBank. Sequences from GenBank used for the phylogenetic analyses are listed in Table 2. 

Sequence sets were aligned using the ClustalX [14] accessory application in Bioedit® [15]. Alignments 

http://www.ncbi.nlm.nih.gov/genbank/)


 

 

 
were trimmed to a point where most of the sequences had started and finished. Bayesian Inference 

analyses of sequence alignments were conducted using; MrBayes® ver. 3.2.2 [16] and the 

parameters specified by Aiken, et al. [17], but with five million generations run instead of two 

million. 
 
 
 

3. Results 
 

3.1. Samples 
 

In total, 14 individuals of Tylosurus crocodilus were collected, of which 11 were infected with adult 

bucephalids. Infections of adult bucephalids were found in all eight Tylosurus crocodilus collected 

from Lizard Island, two of five from Heron Island, and the single individual from Moorea was also 

infected. Two new species of bucephalid trematodes, with morphological characteristics consistent 

with the diagnosis of Prosorhynchoides, were recognised and are described below. All specimens 

found in the study can be recognised as one of these two species. 
 
 
 

3.2. Morphology 
 

Family Bucephalidae Poche, 1907 
 

Subfamily Bucephalinae Poche, 1907 
 

Genus Prosorhynchoides Dollfus, 1929 
 
 

 
3.3 Prosorhynchoides galaktionovi n. sp. 

 
 

 
3.3.1 Material studied 

 
Type-host: Tylosurus crocodilus (Péron & Lesueur, 1821), Hound needlefish (Belonidae) 

Type-locality: Lizard Island (GBR, 14° 40’ 0”S, 145° 28’ 0”E) 

Other localities: Heron Island (GBR, 23° 27’ 0”S, 151° 55’ 0”E), Moorea (French Polynesia, 17° 32' 25" 

S 149° 50' 0"W) 
 

Site and prevalence: Intestine of 9 out of 14 hosts: Lizard Island: 6 of 8, Heron Island: 2 of 5, Moorea: 

1 of 1. 
 

Etymology: Named for Dr Kiril Galaktionov for his substantial contributions to trematodology. 

Measurements: See Table 1 

Specimen lodgement: QM Holotype: QM G237899 Paratypes: QM G237900-G237907 
 

GenBank accession numbers: 28S MN310395 and MN310396, ITS-2 MN310393, cox1 MN308456 and 

MN308457 



 

 

 
ZooBank Life Science Identifier: act:28C4214A-20A2-4F75-BCB5-2CE691B0EDF4 

 
 

 
3.3.2 Description (Based on nine whole-mounted gravid specimens) 

 
Body small, elongate, widest between one third to half of total body length from anterior end. 

Tegument spiny throughout. Rhynchus ovoid, a simple sucker, of variable size relative to total body 

length, with shortest length being approximately one eighth of total body length and longest being 

approximately one fifth. Pharynx elliptical, muscular, in posterior half of body, usually posterior to 

posterior testis (drawn specimen exceptional in this respect). Oesophagus approximately one-fifth to 

one-eighth of total body length, narrow, running anteriorly from pharynx. Caecum short, sac-like, 

running anterior from pharynx to parallel or anterior to anterior testis or ovary. 
 

Testes two, ovoid, tandem to oblique, sometimes contiguous, dextral. Anterior testis parallel or 

posterior to caecum, ventral to caecum and posterior testis, dorsal or ventral to ovary. Posterior 

testis dorsal to pharynx and cirrus-sac. Cirrus-sac elongate, not thick-walled, extends anteriorly for 

variable length, between level of posterior testis and level of ovary. Seminal vesicle elliptical, 

centrally aligned in anterior end of cirrus-sac. Pars prostatica straight to slightly curved, glandular. 

Genital atrium small, ovoid. Form of terminal genitalia could not be discerned. 
 

Ovary ovoid, dextral, anterior to and contiguous with anterior testis, dorsal or ventral to caecum, 

anterior testis and vitelline follicles. Vitelline follicles in two lateral clusters, with their lengths 

approximately equal to or greater than their widths, extending anteriorly from ovary to between 

halfway between ovary and rhynchus to posterior margin of rhynchus. Laurer’s canal and Mehlis’ 

gland not seen. Uterus coiled, extends anteriorly, but does not exceed vitelline follicles, dorsal to 

pharynx, dorsal and ventral to caecum, posterior testis, cirrus-sac, ovary and vitelline follicles, 

ventral to anterior testis when it overlaps. Eggs small, tanned, ovoid. Excretory pore terminal; 

anterior extent of excretory vesicle not detected. 
 
 
 

3.4 Prosorhynchoides kohnae n. sp. 
 
 

 
3.4.1 Material studied 

 
Type-host: Tylosurus crocodilus (Péron & Lesueur, 1821), Hound needlefish (Belonidae) 

Type-locality: Lizard Island (GBR, 14° 40’ 0”S, 145° 28’ 0”E) 

Other localities: Heron Island (GBR, 23° 27’ 0”S, 151° 55’ 0”E), Moorea (French Polynesia, 17° 32' 25" 

S 149° 50' 0"W) 
 

Site and prevalence: Intestine of 9 out of 14 hosts: Lizard Island: 7 of 8, Heron Island: 1 of 5, Moorea: 

1 of 1. 
 

Etymology: Named for Dr Anna Kohn for her substantial contributions to trematodology. 

Measurements: See Table 1 

Specimen lodgement: QM Holotype: QM G237908 Paratypes: QM G237909-G237913 



 

 

 
GenBank accession numbers: 28S MN310397, ITS-2 MN310394, cox1 MN308458-MN308460 

 
ZooBank Life Science Identifier: act:111322DC-054B-4DF0-8FA1-1782AF31AEA2 

 
 

 
3.4.2 Description (Based on six whole-mounted gravid specimens) 

 
Body small, elongate, widest between one third to half of total body length from anterior end. 

Tegument spiny throughout. Rhynchus ovoid, a simple sucker. Pharynx elliptical, muscular, in 

posterior half of body, parallel or posterior of posterior testis. Oesophagus approximately one-fourth 

to one-seventh of total body length, narrow, running anteriorly from pharynx. Caecum short, sac- like, 

running anterior from pharynx to level of anterior testis or ovary. 
 

Testes two, ovoid, tandem to oblique, sometimes contiguous, dextral. Anterior testis parallel or 

posterior to caecum, dorsal or ventral to caecum, posterior testis and ovary, dorsal to cirrus-sac when 

they overlap. Posterior testis dorsal to pharynx, ventral to caecum when they overlap. Cirrus- sac 

elongate, not thick-walled, extends anteriorly for variable length, between level of anterior testis and 

level of ovary. Seminal vesicle elliptical, centrally aligned in anterior end of cirrus-sac. Pars prostatica 

straight to curved, glandular. Genital atrium small, ovoid. Form of terminal genitalia could not be 

discerned. 
 

Ovary ovoid, dextral, anterior to and contiguous with anterior testis, dorsal or ventral to caecum and 

anterior testis, ventral to vitelline follicles. Vitelline follicles in two lateral clusters, with their widths 

approximately equal to or greater than their lengths, extending anteriorly from ovary to between 

posterior margin of rhynchus and posterior half of rhynchus. Laurer’s canal and Mehlis’ gland not 

seen. Uterus coiled, extends anteriorly, but does not exceed vitelline follicles, dorsal to pharynx, 

dorsal and ventral to caecum, testes, cirrus-sac and ovary, ventral to vitelline follicles. Eggs small, 

tanned, ovoid. Excretory pore terminal; anterior extent of excretory vesicle not detected. 
 
 
 

3.5 Molecular analysis 
 

3.5.1 Species identification and variation 
 

The intraspecific variation for 28S rDNA, ITS-2 rDNA, and cox1 mtDNA sequences for the two species 

was low. The 28S sequences differed by one base among the three replicates of P. galaktionovi n. sp. 

and identical sequences for the three replicates of P. kohnae n. sp. The ITS-2 sequences were 

identical for both sets of three specimens. The cox1 sequences differed by seven bases between the 

two sequences of P. galaktionovi n. sp. and identical sequences for the three sequences of P. kohnae 

n. sp. 
 

The interspecific variation between the two species was eight bases for 28S sequences, 12 bases for 

ITS-2 sequences and 71–75 bases for cox1 sequences. Compared with cox1 sequences from 

Hammond, et al. [1], P. galaktionovi n. sp. differed by 91 bases from P. moretonensis, 87–92 bases 

from P. waeschenbachae, and 83–85 bases from P. cutmorei. Prosorhynchoides kohnae n. sp. 

differed by 87 bases from P. moretonensis, 86-88 bases from P. waeschenbachae, and 77–79 bases 

from P. cutmorei. 



 

 

 
3.5.2 Phylogeny 

 
The 28S rDNA analysis resulted in a sequence alignment of 1342 nucleotides used for the Bayesian 

analysis and subsequent phylogram (Fig. 3). The two new species described here form a strongly 

supported clade (node support 100%). They form part of a larger clade of five species of 

Prosorhynchoides from belonid fishes, which is also highly supported (node support 100%). The 

closest sequence to the two newly described species is P. cutmorei Hammond, Cribb and Bott, 2018. 

The sister taxa to this clade are P. ovatus (Linton, 1900), P. paralichthydis (Corkum, 1961), and 

Bucephalus gorgon (Linton, 1905). Overall, there is strong support within this tree, with only three 

clades having less than 89% node support. The topology of the tree is almost identical to that of 

Hammond, et al. [1], and the same issues surrounding polyphyly are observed. 
 

The ITS-2 rDNA analysis resulted in a sequence alignment of 610 nucleotides used for Bayesian 

analysis (Fig. 4). The two new species form a strongly supported clade with P. cutmorei (node 

support 99%), but the clade containing P. galaktionovi n. sp. and P. cutmorei has weak support (node 

support 64%). Overall, there is also strong support within this tree, with only three clades having less 

than 99% node support. The sister taxa to the clade containing Prosorhynchoides from belonids 

include two species of Prosorhynchoides, P. ovatus and P. paralichthydis, and Rhipidocotyle 

transversalis Chandler, 1935. 
 
 
 

4. Discussion 
 

4.1 Two species from Tylosurus crocodilus 
 

The two species reported here are highly similar morphologically. They have small, elongate bodies, 

widest between one third to half of the total body length from the anterior end. Their pharynges are 

in the posterior half of the body, variably positioned relative to the posterior testis. Their caeca are 

anterior to the pharynx and can be parallel to the anterior testis or ovary. Their testes are ovoid, 

tandem to oblique, and sometimes contiguous. Their cirrus-sacs extend anteriorly as far as parallel 

to the ovary. Their uteri extend anteriorly but do not exceed the vitelline follicles. These similarities, 

together with their similar dimensions for several features (Table 1), render the two as almost 

morphologically cryptic species. However, the form of the vitelline follicles in the two species is a 

clear distinguishing feature, with the lengths of the clusters being greater than the widths for P. 

galaktionovi n. sp. and the widths of the clusters being greater than the lengths for P. kohnae n. sp. 

For each species, we added the widths of the two vitelline clusters, and compared these to their total 

widths, resulting in means of 0.52 for P. galaktionovi n. sp. and 0.65 for P. kohnae n. sp. The vitelline 

follicles extend anteriorly from the ovary of P. galaktionovi n. sp. to between halfway to the 

rhynchus at its shortest, to the posterior margin of the rhynchus at its longest, while the vitelline 

follicles of P. kohnae n. sp. extend anteriorly from the ovary to between the posterior margin of the 

rhynchus at its shortest, and the posterior half of the rhynchus at its longest. 
 

Despite the close morphological similarity of these two species, the molecular differences in all three 

markers make it clear that two species are present. It was thanks to mounted specimens with 

matching catalogued sequences that we were able to identify the two different species. 



 

 

 
4.2 Comparison with previously described species of Prosorhynchoides 

 
Prior to the present work, Prosorhynchoides was already a large genus comprising 77 accepted 

species according to WoRMS [18]. The morphological similarity of the two species distinguished here 

means that great care needs to be taken in considering their status relative to previously described 

species. Our approach here is to compare them first with species previously reported from T. 

crocodilus and then with species reported from other belonids. We see no evidence that bucephalids 

from belonids ever infect non-belonid fishes. 
 
 
 

4.2.1 Species from Tylosurus crocodilus 
 

Three species of Prosorhynchoides have been reported from Tylosurus crocodilus: P. fijiensis, P. 

southwelli, and P. tylosuris. 
 

Prosorhynchoides fijiensis was reported from a single specimen found in a host obtained from a fish 

market in Fiji by Manter [5]. Based on the original and only description, it is immediately 

distinguishable from the present species by having the pharynx positioned posterior to the posterior 

testis and unusually close to the posterior extremity. However, it is highly intriguing that we have 

not encountered this species ourselves, given that its type locality, Fiji, is between the Great Barrier 

Reef and French Polynesia. Our total sample of T. crocodilus (14) is not large so that we may have 

missed it. 
 

Prosorhynchoides southwelli was initially described by Nagaty from Strongylura strongylura (van 

Hasselt, 1823) from the Red Sea [6]. It was subsequently reported from T. crocodilus collected from 

either the Red Sea or the Gulf of Aden by Parukhin [19]. As originally described, this species exceeds 

1 mm in length, and the ovary is always distinctly separated from the anterior testis. These 

characters appear to distinguish it from the present forms. 
 

Prosorhynchoides tylosuris was described from a host collected from the Pacific waters of Japan by 

Ozaki & Ozaki [4]. It was considered a synonym of P. karvei by Machida & Kuramochi [20]. It appears 

immediately distinguishable from the present species in reportedly reaching 1400–2250 µm in body 

length, whereas none of the present specimens exceeds 900 µm. Although the figured specimen of 

P. tylosuris was evidently flattened slightly, it appears to be far longer than the present two species. 
 
 
 

4.2.2 Species from other Australian belonids 
 

Three species of Prosorhynchoides have been described from Tylosurus gavialoides from Moreton 

Bay [1], to the south of the collections sites reported here. All three molecular markers show 

unambiguously that the three T. gavialoides species are distinct from the two from T. crocodilus. In 

terms of morphology, P. waeschenbachae is an elongate species easily distinguished from all the 

other forms. Prosorhynchoides moretonensis and P. cutmorei both generally resemble the present 

species in body form. However, P. moretonensis has relatively long and straight vitelline fields which 

immediately distinguish it, and P. cutmorei is similarly distinguished by very small and compact 

vitelline fields, unlike those seen in P. galaktionovi n. sp. and P. kohnae n. sp. 



 

 

 
4.3 Comparison with other previously described species 

 
For morphological comparisons of the species described here with other previously described 

species, we have restricted the remaining comparisons to the other eight species of 

Prosorhynchoides described from belonids. This is based on the arguments outlined by Hammond, et 

al. [1], regarding host specificity and reliable reports of Prosorhynchoides from belonids. 
 

Of the remaining eight species, some can be quickly excluded from possible identity with the present 

samples. Prosorhynchoides ablennus (Gu & Shen, 1976) and P. obpyriformis (Gu & Shen, 1976), while 

morphologically similar to P. galaktionovi n. sp. and P. kohnae n. sp., have larger bodies, with lengths 

exceeding 1000 µm and widths exceeding 500 µm, and are larger in almost all internal structures, 

with the main exceptions being the rhynchus and eggs. Regarding other morphological differences, P. 

ablennus differs from P. galaktionovi n. sp. and P. kohnae n. sp. by having a spindle-shaped, rather 

than elongate, body, the pharynx is in the centre of the body, rather than in the posterior half, and 

the sinistral vitelline follicles are in a lateral field, rather than clustered. Prosorhynchoides 

obpyriformis differs from both P. galaktionovi n. sp. and P. kohnae n. sp. by having irregularly shaped 

testes, rather than ovoid, and the cirrus-sac extends anteriorly to the level of the pharynx, rather 

than at the level of the ovary. 
 

Prosorhynchoides belonea (Srivastava, 1938) is described as having a body length of at least 1680 

µm, vitelline follicles in lateral fields, and large eggs between 34 and 36 µm long. Prosorhynchoides 

bennetti (Hopkins and Sparks, 1958) is described as having a caecum dorsal to the pharynx, a cirrus- 

sac that does not extend anteriorly beyond the posterior testis, and the ovary parallel to the 

pharynx. Prosorhynchoides strongylurae (Hopkins, 1954) is described as having a body length of at 

least 2000 µm, and the pharynx variably positioned relative to the ovary, and the caecum dorsal or 

posterior to the pharynx. 
 

The remaining three species resemble P. galaktionovi n. sp. and P. kohnae n. sp. This group 

comprises P. karvei (as described by Bhalerao, 1937), P. lenti (Nagaty, 1937), and P. megacetabulus 

(Nagaty, 1937). All five species have somewhat elongate bodies, a pharynx variably positioned 

relative to the posterior testis, the caecum anterior to the pharynx, the cirrus-sac extending 

anteriorly to at least the anterior extremity of the posterior testis, and vitelline follicles in clusters. 
 

We base our comparisons relative to Prosorhynchoides karvei on the original description by Bhalerao 

[21]. It is our view that the description by Machida and Kuramochi [20], which synonymised species 

that have morphological features that are quite different to the original description, to be potentially 

too sweeping given the broad morphologies synonymised. The morphological comparisons of P. 

galaktionovi n. sp. and P. kohnae n. sp. to P. karvei, P. lenti and P. megacetabulus are outlined 

below. 
 
 

 
4.3.1 Prosorhynchoides karvei 

 
Prosorhynchoides galaktionovi n. sp. differs from P. karvei by having a smaller rhynchus (mean 

dimensions of 119 x 140, compared with 160–246 x 142–227), the cirrus-sac is less than half the 

length of the body, and does not extend anteriorly beyond the caecum, and it has shorter eggs 

(longest recorded egg was 18.16 with the range for P. karvei at 18–21.5). 



 

 

 
Prosorhynchoides kohnae n. sp. differs from P. karvei by having a smaller rhynchus (mean 

dimensions of 135 x 149 compared with 160–246 x 142–227), the cirrus-sac is less than half the 

length of the body and does not extend anteriorly beyond the caecum, and the vitelline follicles are 

in clusters with their widths approximately equal or greater than their lengths. 
 
 
 

4.3.2 Prosorhynchoides lenti 
 

Prosorhynchoides galaktionovi n. sp. differs from P. lenti by having vitelline follicles extending 

anteriorly from the ovary (posterior margin of sinistral group for P. lenti is parallel to the ovary), 

vitelline follicles in clusters (sinistral group for P. lenti elongated), and having smaller eggs (mean 

dimensions of 15.8 x 9.9 µm compared with 29 x 17 µm for P. lenti). 
 

Prosorhynchoides kohnae n. sp. differs from P. lenti by having a smaller body (longest P. kohnae n. 

sp. is 716 µm, shortest P. lenti is 765 µm), vitelline follicles extending anteriorly from the ovary 

(posterior margin of sinistral group for P. lenti is parallel to ovary), vitelline follicles in clusters 

(sinistral group for P. lenti elongated) and having smaller eggs (mean dimensions of 17.3 x 10.1 µm 

compared with 29 x 17 µm for P. lenti). The vitelline follicle clusters in P. kohnae n. sp. also have 

widths that are approximately equal to or greater than their lengths. 
 
 
 

4.3.3 Prosorhynchus megacetabulus 
 

Prosorhynchoides galaktionovi n. sp. differs from P. megacetabulus by having the cirrus-sac extending 

anteriorly for variable length, with the shortest being at the anterior extremity of the posterior testis 

and the longest being parallel to the ovary, whilst it does not exceed the posterior testis for P. 

megacetabulus. The vitelline follicles are in clusters for P. galaktionovi n. sp. (the sinistral group for P. 

megacetabulus is elongated), the uterus does not exceed the vitelline follicles anteriorly, and it has 

smaller eggs (mean dimensions of 15.8 x 9.9 µm compared to 21 x 17 µm for P. megacetabulus). 
 

Prosorhynchoides kohnae n. sp. differs from P. megacetabulus by having a marginally smaller body 

(longest P. kohnae n. sp. is 716 µm, shortest P. megacetabulus is 723 µm, with the longest being 910 

µm), a cirrus-sac that extends anteriorly for variable length, with shortest being parallel to the 

anterior testis and longest being parallel to the ovary, whilst it does not exceed the posterior testis 

for P. megacetabulus. Vitelline follicles in clusters (the sinistral group for P. megacetabulus is 

elongated), with their widths approximately equal to or greater than their lengths. The uterus does 

not exceed the vitelline follicles anteriorly, and it has smaller eggs (mean dimensions of 17.3 x 10.1 

µm compared to 21 x 17 µm for P. megacetabulus). 
 
 

 
4.4 Morphological conclusions 

 
In our view, a generally robust case can be made for the distinction of the two species described 

here from all previously described species of Prosorhynchoides. However, we freely acknowledge 

that for several comparisons, the case is not strong. The weakness relates to a combination of 

factors. The present work shows that distinct species of this genus may be highly similar 



 

 

 
morphologically. We have no true understanding of the overall pattern of biogeographical 

distribution of these species (although the present work suggests that they may indeed be 

widespread) or the extent to which they are shared between belonid species. Finally, many 

descriptions lack sufficient detail, and some were based on meagre samples. Thus, the taxonomy of 

this genus is very-much a best estimate, requiring improvement. We think that a true sense of the 

status of the taxonomy of this genus now depends on the generation of molecular data. We expect 

extensive modification of our understanding of the taxonomy of this genus to emerge as these data 

become available. 
 
 
 

4.5 Molecular species recognition 
 

All three genetic markers used here appear effective for the task of species delineation in this group. 

As expected, the level of base pair distinction was greatest for cox1 mtDNA, followed by ITS2 rDNA 

and smallest for 28S rDNA. Blasco-Costa, et al. [22] recommended that the sequencing of newly 

described species should use at least two independent loci. Given that most sequences of 

bucephalids relate to ribosomal DNA, another marker should be considered for species delineation. 

The mitochondrial cox1 marker appears suitable for this role, even though few sequences are 

available. Bray, et al. [23] used morphological comparisons, host distributions and sequences from 

ribosomal (28S and ITS-2) and mitochondrial (cox1) markers, to identify ten species of Lepotrema 

(Lepocreadiidae), including eight new species. The cox1 sequences helped delineate species 

boundaries, with some combinations of species having no differences in 28S sequences and only one 

base difference in ITS-2 sequences. Besprozvannykh, et al. [24] used cox1 sequences, together with 

morphological information, to describe a new species of Metorchis (Trematoda: Opisthorchiidae). In 

that study, ITS-2 was not able to distinguish the new species from one that had previously been 

described and sequenced. Here ITS-2 and cox1 both showed unambiguous species-level differences. 
 

It is important to note that the sequences produced in this study were from bucephalids obtained 

from Lizard Island fishes only. As such, we do not have an understanding of molecular inter- and 

intraspecific variation based on locality. 
 
 
 

4.6 Phylogeny 
 

Phylogenetic analysis of 28S rDNA produced a topology comparable to those produced recently [1, 

25], increasing the representation of the clade of species of Prosorhynchoides infecting belonids. 
 

The essential problem with this group, as first identified by Nolan, et al. [25] remains; species of the 

dominant bucephaline genera Bucephalus von Baer, 1827, Prosorhynchoides, and Rhipidocotyle 

Diesing, 1858, do not form monophyletic clades in phylogenetic trees. In our view, it appears 

inescapable that these genera are thus not reliable concepts. However, despite the increased 

molecular representation of the Bucephalinae, it remains premature to attempt to resolve this issue. 

More sequences from more species are essential. However, we can observe that species of 

Prosorhynchoides from belonid fishes in Australian waters form a well-supported clade. It is 

therefore at least promising that some bucephalids have radiated in association with definitive host 

taxa. The extent to which this pattern is widespread remains to be seen. Whether such groups as the 

Prosorhynchoides species of belonids will ultimately require distinct genera remains to be 



 

 

 
considered and would require identification of a morphological basis as well as phylogenetic 

distinction. 
 

Despite the variability of ITS-2, the topology of its tree has many similarities to that of the 28S tree. 

Both contain a clade for Prosorhynchoides from belonids, with species such as P. ovatus and P. 

paralichthydis being sister taxa to the clade. There are also clades containing P. caecorum and P. 

megacirrus, and Rhipidocotyle campanula (Dujardin, 1845) and Bucephalus polymorphus von Baer, 

1827. The topologies are more similar in this study than those from Hammond, et al. [1], with the 

species of Prosorhynchoides from belonids forming a clade to the exclusion of all other Bucephaline 

sequences, instead of being basal to the other sequences. It is interesting that, for both ITS-2 trees, 

P. paralichthydis, P. ovatus and R. transversalis formed a clade with node support of one, despite 

being from different genera and different host families. The ITS-2 tree generated in this study 

suggests that this marker has utility for phylogenetic studies in this family. 
 
 
 

4.7 Bucephalid diversity 
 

When assessed relative to the findings of three related species of Prosorhynchoides in Tylosurus 

gavialoides [1], the identification of two further species here allows some general inferences for the 

bucephalid fauna of belonids as a whole. First, the present study suggests that these parasite species 

are capable of being widespread with their hosts, from at least the Great Barrier Reef to French 

Polynesia (although we acknowledge that they have both been sequenced from only one locality). 

Second, although sampling of T. gavialoides and T. crocodilus was at non-overlapping localities, we 

infer that these species show strong signs of strict (oioxenous) specificity. 
 

Given that both new species of Prosorhynchoides were found from all three locations at which we 

have examined T. crocodilus, we predict that these two species are the most abundant bucephalids 

in this species, at least within Australian waters. Prosorhynchoides fijiensis and P. southwelli have 

also been described from T. crocodilus, from Fiji and either the Red Sea or the Gulf of Aden, 

respectively [5, 6]. We are aware of the range over which the host species can be found, but there 

have been no studies on the range for individuals [3]. If individuals of T. crocodilus are able to move 

vast distances, such as from Fiji to GBR, then it is possible that P. fijiensis will also be found in 

Australian waters, and taking a snapshot collection of a host/locality combination is unlikely to give 

us an accurate representation of the true parasite assemblage for that host/location. Further 

research into individual host ranges and the intermediate hosts for the bucephalids that infect them 

is required. 
 

There have been 44 species of bucephalids described from Australian waters, with 23 species 

reported from the GBR [1, 25-37]. These have been reported from fish hosts from the families 

Apogonidae, Belonidae, Bleniidae, Carangidae, Labridae, Muraenidae, Scombridae, and Serranidae. 

To date, none of the previously reported species has been found in more than one family of hosts. 

This level of host specificity indicates that species found within a newly surveyed family of hosts are 

likely to have not been previously described from GBR. However, it is difficult to confirm this without 

surveying enough hosts from every species of potential hosts, which was estimated to equate to the 

examination of approximately 60,000 individual fishes [26]. 



 

 

 
Another group of fishes found in Australian waters that are exceptional hosts for bucephalids is the 

Serranidae. The species richness of Tylosurus, with five species of Prosorhynchoides reported from 

two host species, appears to be comparable to that of Plectropomus (Serranidae), which have had 

ten species of bucephalids (two genera) reported from four host species [38]. Four other species of 

epinepheline serranids have a further six bucephalid species [39]. At least 40 species of bucephalids 

reported from serranids globally [38-40]. Further exploration of piscivorous fish, from these groups 

and others, may uncover further bucephalid species richness. 
 

In combination, the levels of richness (two or three species per host) and host-specificity of species 

of Prosorhynchoides in belonids reported from Australia so far, might suggest that a great deal of 

richness remains to be detected in the belonids yet to be examined (nine species). According to our 

records, there are reports of 21 species bucephalids from 14 of the 34 belonid species known 

globally [3-6, 19, 21, 41-48], although the bucephalid Neidhartia neidharti Nagaty, 1937 was 

reported from a species of Belone, but the host was not identified to species level [41]. These 

reported species of bucephalids include species from four other genera (Neidhartia Nagaty, 1937, 

Pseuobucephalopsis Long & Lee, 1964, Rhipidocotyle, and Skrjabiniella Issaitschikow, 1928). None of 

these genera has been detected in either T. crocodilus or T. gavialoides. The pattern of exploitation 

of belonids is intricate, relating to more genera than just Prosorhynchoides, and will require 

substantial further sampling and (especially) molecular characterisation for it to be satisfactorily 

understood. 
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Table 1. Measurements of P. galaktionovi n. sp. and P. kohnae n. sp. Mean measurement with the 

range in parentheses (all measurements in µm). 



 

 

 
P. galaktionovi n. sp. (n = 9) P.kohnae n. sp. (n = 6) 

Length 712 (526–874) 686 (647–716) 

Width 256 (200–318) 276 (252–312) 

Length/Width 2.8 (2.53–3.12) 2.5 (2.12–2.63) 

Rhynchus length 119 (89–166) 135 (120–155) 

Rhynchus width 140 (122–176) 149 (140–168) 

Rhynchus length/Length 0.17 (0.13–0.2) 0.2 (0.19–0.22) 

Pharynx length 58 (44–66) 59 (55–61) 

Pharynx width 71 (62–81) 71 (66–76) 

Oesophagus length 127 (89–160) 125 (108–138) 

Caecum length 109 (80–161) 107 (82–126) 

Caecum width 83 (53–114) 85 (64–124) 

Anterior testis length 93 (73–140) 97 (57–113) 

Anterior testis width 81 (54–122) 94 (85–108) 

Posterior testis length 84 (59–140) 91 (81–109) 

Posterior testis width 91 (61–134) 94 (81–106) 

Cirrus-sac length 262 (199–353) 260 (231–287) 

Cirrus-sac width 65 (48–79) 71 (60–89) 

Seminal vesicle length 50 (28–105) 52 (27–67) 

Seminal vesicle width 37 (25–48) 44 (30–62) 

Pars prostatica length 227 (165–274) 214 (201–225) 

Pars prostatica width 27 (20–39) 30 (18–40) 

Genital atrium length 78 (57–100) 98 (72–124) 

Genital atrium width 67 (47–94) 70 (64–81) 

Genital lobe length 65 (44–84) 78 (51–103) 

Genital lobe width 56 (40–82) 60 (54–65) 

Ovary length 90 (60–162) 85 (74–110) 

Ovary width 72 (54–122) 82 (73–86) 

Dextral vitelline field 104 x 62 (78–172 x 44–85) 87 x 78 (78–103 x 60–92) 

Sinistral vitelline field 131 x 71 (104–224 x 51–89) 86 x 100 (76–96 x 80–123) 

Uterus 444 (308–591) 400 (356–455) 

Uterus/Length 0.62 (0.54–0.68) 0.58 (0.52–0.64) 

Eggs 15.8 x 9.9 (12.6–18.2 x 7.4– 

12.8) 

17.3 x 10.1 (15–21.6 x 7.6– 

13) 

Distance to pharynx                          405 (334–510)                                    401 (376–442) 

Distance to caecum                           257 (215–347)                                    249 (222–314) 

Distance to anterior testis                302 (236–379)                                    289 (257–300) 

Distance to cirrus-sac                        337 (222–449)                                    316 (241–377) 

Distance to ovary                               234 (186–305)                                    234 (201–264) 

Distance to closest vitelline field    130 (106–155)                                    124 (101–144) 

Distance to uterus                             147 (130–166)                                    161 (124–213) 



 
 

 
 
 
 

Table 2. Sequences used for phylogenetic analyses. References in parentheses after accession 

numbers. 
 

 

Taxon 28S ITS-2 Cox1 

Bucephalus cynoscion 

Bucephalus gorgon 

Bucephalus margaritae 

Bucephalus minimus 
 

 
Bucephalus polymorphus 

Dollfustrema hefeiensis (Outgroup) 

Parabucephalopsis parasiluri 

Paurorhynchus hiodontis 

Prosorhynchoides apogonis 

Prosorhynchoides caecorum 

Prosorhynchoides cutmorei 
 
 
 

Prosorhynchoides gracilescens 

Prosorhynchoides longoviferus 

Prosorhynchoides megacirrus 

Prosorhynchoides moretonensis 

Prosorhynchoides ovatus 

Prosorhynchoides ozakii 

Prosorhynchoides paralichthydis 

Prosorhynchoides scomberomorus 

Prosorhynchoides waeschenbachae 
 
 
 
 
 
 

Rhipidocotyle angusticolle 

Rhipidocotyle campanula 

Rhipidocotyle fennica 

Rhipidocotyle galeata 

Rhipidocotyle lepisostei 

Rhipidocotyle sp. 

Rhipidocotyle transversalis 

Rhipidocotyle tridecapapillata 

Telorhynchus arripidis (Outgroup) 

KT273397.1 [25] 

KT273400.1 [25] 

KT273395.1 [25] 

- 
 

 
AY289238.1 [50] 

KT273386.1 [25] 

AB640884.1 [51] 

KT273401.1 [25] 

KT213576.1 [25] 

KT273393.1 [25] 

MG953232.1 [1] 
 
 
 

AY222224.1 [52] 

KT273387.1 [25] 

KT273391.1 [25] 

MG953230.1 [1] 

KT273399.1 [25] 

AB640885.1 [51] 

KT273398.1 [25] 

KT273389.1 [25] 

MG953231.1 [1] 
 
 
 
 
 
 

KT273383.1 [25] 

KF184355.1 [53] 

KF184361.1 [53] 

AY222225.1 [52] 

KT273390.1 [25] 

- 

KT273394.1 [25] 

KT273384.1 [25] 

- 

- 

- 

- 

- 
 

 
AY289239.1 [50] 

KT273386.1 [25] 

- 

- 

- 

KT273392.1 [25] 

MG953235.1 [1] 
 
 
 

- 

- 

KT273391.1 [25] 

MG953233.1 [1] 

KT273399.1 [25] 

- 

KT273398.1 [25] 

- 

MG953234.1 [1] 
 
 
 
 
 
 

- 

KF184360.1 [53] 

- 

- 

- 

- 

KT273394.1 [25] 

- 

- 

- 

- 

- 

KF880428.1, 

KF880479.1 [49] 

- 

- 

- 

- 

- 

- 

MG953242.1, 

MG953243.1, 

MG953244.1 [1] 

- 

- 

- 

MG953236.1 [1] 

- 

- 

- 

- 

MG953237.1, 

MG953238.1, 

MG953239.1, 

MG953240.1, 

MG953241.1 [1] 

- 

- 

- 

- 

- 

KM538111.1 [54] 

- 

- 

AY504854.1 [55] 
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Figure 1. Prosorhynchoides galaktionovi n. sp., ventral view (terminal genitalia could not be 

discerned). Scale bar 200 µm. 
 

Figure 2. Prosorhynchoides kohnae n. sp., ventral view (terminal genitalia could not be discerned). 

Scale bar 200 µm. 

 

Figure 3. Bayesian inference analysis of bucephaline 28S rDNA. Host family in 

parentheses, *denotes bivalve host. Functional outgroup is Dollfustrema hefeiensis. 

 

Figure 4. Bayesian inference analysis of bucephaline ITS-2 rDNA. Host family in parentheses, 

*denotes bivalve host. Functional outgroup is Dollfustrema hefeiensis. 
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Prosorhynchoides galaktionov i n. sp. (Belonidae) 

Prosorhynchoides kohnae n. sp. (Belonidae) 

Prosorhynchoides cutmorei (Belonidae) 

Prosorhynchoides moretonensis (Belonidae) 

Prosorhynchoides waeschenbachae {Belonidae} 

Prosorhynchoides ovatus (Lobotidae) 

Bucephalus gorgon (Carangidae) 

Prosorhynchoides paralichthydis (Paralichthyidae) 

Bucephalus cynoscion (Sciaenidae) 

Prosorhynchoides gracilescens (Lophiidae) 

Bucephalus margaritae (Carangidae) 

Rhipidocotyle transversalis (Belonidae) 

Paurorhynchus hiodontis (Hiodontidae) 

Rhipidocotyle tridecapapil/ata (Centrarchidae) 

Rhipidocotyle campanula (Unionidae*) 

Prosorhynchoides apogonis (Apogonidae) 

Rhipidocotyle fennica {Esocidae) 

Bucephalus polymorphus (Oreissenidae*) 

Prosorhynchoides caecorum (Sciaenidae) 

Prosorhynchoides megacirrus (Sciaenidae) 

Rhipidocotyle galeata (Triglidae) 

Parabucephalopsis parasiluri (Siluridae) 

Prosorhynchoides ozakii (Siluridae) 

Rhipidocotyle lepisostei (Lepisosteidae) 

Prosorhynchoides scomberomorus (Scombridae) 

Prosorhynchoides longviferus (Sphyraenidae) 

Rhipidocotyle angusticolle (Scombridae) 

Dollfustrema hefeiensis (Gobiidae) 



Figure 4 

 

 

Prosorhynchoides galaktionovi n. sp. (Belonidae) 

Prosorhynchoides cutmorei (Belonidae) 

Prosorhynchoides kohnae n. sp. (Belonidae) 

Prosorhynchoides moretonensis (Belonidae) 

Prosorhynchoides waeschenbachae (Belonidae) 

.-------------Prosorhynchoides ovatus (Lobotidae) 

 
Rhipidocotyle transversalis (Belonidae) 

 

 
Prosorhynchoides paralichthydis (Paralichthyidae) 

 
 

100 

Bucephalus  polymorphus (Dreissenidae*) 

Rhipidocoty/e campanula (Unionidae*) 

Prosorhynchoides caecorum (Sciaenidae) 

Prosorhynchoides megacirrus (Sciaenidae) 

Dollfustrema hefeiensis (Gobiidae) 

 
0.07 


