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Abstract

Spatio-temporal processes in the environmental science are usually assumed to fol-

low a Gaussian process, possibly after some transformation. Gaussian processes might

not be appropriate to handle the presence of outlying observations. Our proposal is

based on the idea of modelling the process as a scale mixture between a Gaussian and

log-Gaussian process. And the novelty is to allow the scale process to vary as a function

of covariates. The resultant model has a nonstationary covariance structure in space.

Moreover, the resultant kurtosis varies with location, allowing the time series at each

location to have different distributions with different tail behaviour. Inference proce-

dure is performed under the Bayesian framework. The analysis of an artificial dataset
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illustrates how this proposal is able to capture heterogeneity in space caused by de-

pendence on some spatial covariate or by a transformation of the process of interest.

Furthermore, an application to maximum temperature data observed in the Spanish

Basque country illustrates the effects of altitude in the variability of the process and

how our proposed model identifies this dependence through parameters which can be

interpreted as regression coefficcients in the variance model.

Keywords: Bayesian inference; Heavy-tailed; Non-stationarity; Non-Gaussian process.

1 Introduction

The development of methods for the analysis of spatio-temporal processes has increased

considerably in the recent years due to computational advances which enable analysis of

possibly high-resolution data observed across space and time. The models that describe

these processes incorporate spatial and temporal dependencies among observations in or-

der to better understand the behaviour of the response variable and improve predictions

for future times or unsampled sites. Usually, the models used to describe spatio-temporal

processes are based on Gaussian processes. However, real data distributions often deviate

from Gaussianity, presenting heavy tails or skewness. There are many practical applications

in environmental, hydrological, and ecological studies in which Gaussianity is an unrealistic

assumption. For data sets with non-Gaussian characteristics, a widely used approach is to

find some nonlinear transformation for the data so that the assumption of normality for

the transformed data holds. This approach is commonly known as trans-Gaussian Kriging

(Cressie, 1993) and common transformations include the logarithm and the square-root.

A different approach is used by Higdon (2002) to construct Gaussian processes by con-

volving white noise processes with a spatially varying kernel aiming to accommodate non-

stationarity. Although this proposal could be used to allow for non-Gaussian behaviour in

spatial data, it is computationally intensive and lacks interpretability. Bolin (2014), on the

other hand, proposes a non-Gaussian model with Matérn covariance functions formulated

as a stochastic partial differential equation driven by a non-Gaussian noise. The estimation

procedure proposed by Bolin (2014) is based on the use of the expectation-maximization
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(EM) algorithm. Wallin and Bolin (2015) extend this idea using a Monte Carlo EM algo-

rithm which is useful for practical applications. In this paper we pursue a different direction

by considering scale mixture of Gaussian processes.

We focus on non-Gaussian processes defined through a scale mixture that results in a

Gaussian-log-Gaussian model (GLG). The mixing process in this model formulation is defined

by latent variables which describe the variance of the process under study. The model is able

to accommodate spatial heteroskedasticity and heavier tails than the usual Gaussian process.

The approach considered in this work was initially introduced by Palacios and Steel (2006),

and extended to the context of spatio-temporal processes by Fonseca and Steel (2011). Our

aim is to propose a flexible model for spatio-temporal processes which is able to accommodate

non-Gaussian tail behaviour through the inclusion of covariates in the mixing distribution

specification. It is expected that the use of covariates brings more information about the

variance and the tail behaviour of the process. Different from the Gaussian, Student-t and

Gaussian-log-Gaussian processes, the kurtosis of our proposed model varies with location,

allowing the model to accommodate different distributions across space.

1.1 Including covariates in the covariance function of a process

Recently there has been the discussion of including covariate information in the covariance

function of spatio-temporal processes. The goal is usually to consider more flexible models

for spatial processes when usual setups fail to accommodate heterogeneity. Ver Hoef et al.

(2006) propose a spatial model whose covariance structure incorporates covariates through

spatial moving averages. Cooley et al. (2007) capture non-stationarity by modeling extreme

precipitation as a function of geographical and climatological covariates. Calder (2008)

considers wind direction information in the convolution approach for wind modeling. Schmidt

et al. (2011) propose a model that allows for both spatial coordinates and covariates to

define the latent domain in the deformation approach of Sampson and Guttorp (1992).

Reich et al. (2011) consider a spatial model which is a linear combination of stationary

fields with different covariance functions, such that the weights in the combination depend

on covariates. Viana Neto et al. (2014) present a convolution model which includes wind

direction in the covariance function for the process of interest. Ingebrigtsen et al. (2014)

3



incorporates covariates in stochastic differential equations in a spatial model for precipitation.

The inclusion of covariates in the covariance function may be done implicitly. For in-

stance, the process may be transformed using some Box-Cox transformation (De Oliveira

et al., 1997) and the implied covariance function for the process will depend on the mean

function. For some discussion about this topic see Wallin and Bolin (2015). However, for

transformed fields the modeller has no control on the nonlinear relationship being created

and this relationship between the covariance and mean structure might not capture well the

actual structure of the process.

Different from previous approaches, our proposal models the mixing component of the

process as a function of spatial covariates which results on an anisotropic covariance function,

and marginal kurtorsis at each location that varies across apce. We propose a fully Bayesian

model which incorporates the inherent characteristic of some spatial data analysis, that even

after fitting a mean function depending on covariates, the same covariates might still help

in the explanation of the variance. It is argued in this work that this residual heterogeneity

could be well modeled through the inclusion of covariates in the scale mixing component of

Palacios and Steel (2006) and Fonseca and Steel (2011). We now briefly review the scale

mixing spatio-temporal model as proposed by Fonseca and Steel (2011).

1.2 Brief review of a spatio-temporal scale mixing models

Consider a spatio-temporal process defined by {Z(s, t) : s ∈ D; t ∈ T}, where (s, t)

are spatio-temporal coordinates varying continuously in D × T , D ⊆ Rd, T ⊆ R, d =

1, 2 or 3. In this context, Gaussianity is an usual assumption for the finite dimen-

sional distribution of observations. Let Z(si, tj) be the observations of the process in

locations si (i = 1, . . . , I) and times tj (j = 1, . . . , J), thus under Gaussianity, Z =

(Z(s1, t1), . . . , Z(sI , t1), . . . , Z(s1, tJ), . . . , Z(sI , tJ))′ follows a multivariate Gaussian distri-

bution with covariance matrix Σ with elements Σkl = Cov(Zk, Zl), (k, l = 1, 2, . . . , IJ) and

mean vector m = (m(s1, t1), . . . ,m(sI , tJ))′.

Commonly, in spatial statistics, it is assumed that the process of interest follows a Gaus-

sian process, usually after some suitable transformation. This implies that all finite dimen-

sional distributions defining the spatio-temporal process are Gaussian. The class of Gaussian
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processes is mathematically convenient because it is defined only through its mean and co-

variance functions, all conditional and marginal distributions are known, and predictions

are easily obtained through the properties of the multivariate normal distribution. However,

this assumption might be very restrictive, as the resultant fit might be highly affected by

aberrant observations, or regions with larger variability in space and/or time. In this con-

text, distributions with heavier tails than the Gaussian distribution could provide better fit

and possibly better predictions. Palacios and Steel (2006) define a spatial process through

scale mixing which has heavier tails than the Gaussian process and is able to identify regions

in space with larger variability. Fonseca and Steel (2011) extend this idea for the spatio-

temporal setup and present an extra mixture to accommodate outliers both in space and

time.

Consider a spatio-temporal process defined as a scale mixture as

Z(si, tj) = w(si, tj)
′δ + σ

ε(si, tj)√
λ(si)

, (1)

where ε(si, tj) is a Gaussian process in (si, tj) ∈ D×T , i = 1, . . . , I, j = 1, . . . , J . The process

ε(·, ·) has zero mean and a separable covariance function, such that, C(ds, dt) = C1(ds)C2(dt),

where C1(ds) is a purely spatial correlation function depending on the Euclidean distance

among locations, ds, and C2(dt) is a purely temporal correlation function depending on the

temporal lag, dt, σ > 0 is a scale parameter, w(si, tj) is a vector of p covariates in location si

and time tj and δ is a vector of regression coefficients. Thus, the resultant covariance matrix

for the observed data is Σ = Σ2 ⊗ σ2
[
Λ−1/2 Σ1 Λ−1/2

]
with Σ2,kl = C2(|tk − tl|), k, l =

1, . . . , J , Σ1,mn = C1(||sm − sn||), m,n = 1, . . . , I and Λ = diag(λ), λ = (λ(s1), · · · , λ(sI))
′.

The parameter λ(·) is a latent process, and is responsible for capturing the variance

inflation in the process ε(·, ·) across different locations, allowing for spatial heterogeneity.

Conditional on the latent variable λ(·) the process Z(·, ·) is Gaussian. If the distribution of

Z(·, ·) is integrated out with respect to λ(·) the resultant process is non-Gaussian.

Although λ(s) does not need to be a process to capture dependence in space in Z(s, t),

it is required that

E[λ(s)−1/2λ(s′)−1/2]→ E[λ(s)−1] as s→ s′,

to obtain a process Z(s, t) (unconditional on λ(s)) which is mean squared continuous, just as
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ε(s, t). This result is proved in Palacios and Steel (2006). This is achieved either by defining

λ(s) as constant across space, or as a spatially structured process. Note that the former is

not flexible enough to capture local heteroskedasticity.

Palacios and Steel (2006) and Fonseca and Steel (2011), model the latent variable λ(s),

s ∈ D ⊆ Rd as a stationary log Gaussian process such that ln(λ(·)) is a Gaussian process

with mean function −ν/2 and covariance function νC1(ds). Thus, for locations s1, . . . , sI ,

ln(λ) ∼ NI

(
−ν

2
1I , νΣ1

)
. Note that in their proposal Σ1,kl = C1(||sk − sl||), k, l = 1, . . . , I is

assumed to be the same spatial correlation considered for the process ε(·, ·) in (1). To make

our results comparable to Fonseca and Steel (2011), and for parsimony, we choose the same

covariance structure for the variance process λ(s) and ε(s, t).

Note that the mean function for ln(λ) is constant across space and is given by −ν
2
. As a

result, E[λ(s)] = 1 and V ar[λ(s)] = exp(ν) − 1. Therefore, the parameter ν is responsible

for the inflation in the variance of the process Z(s, t), t ∈ T ⊆ R. Small values of ν indicate

that λ(s) has a distribution concentrated around one, while larger values of ν indicate that

λ(s) tends to zero, inflating the variance of the process Z(s, t). When ν tends to zero the

resulting process tends to a Gaussian process.

We propose a model which allows ln(λ) to have prior mean depending on spatially varying

covariates. As a result, the marginal distributions of λ(s) vary with locations, allowing the

kurtosis of the resultant spatio-temporal process, Z(s, t), to also vary with location. In this

work separability of the space-time covariance structure is assumed for convenience because

the main focus of our paper is on the spatial domain, and for this reason non-separable

models are not explored here. In our applications time is considered so that replicates are

available at each location making it possible to identify different tail behaviours across space.

1.3 Motivation: the non-constant spatial variance problem

In this Section, we motivate the proposed model with an illustrative application to temper-

ature data in which altitude is influential in spatial heterogeneity not only in the mean but

also in the variability of the process. Consider a data set of maximum temperatures recorded

daily in July 2006 at 70 locations within the Spanish Basque country.

The approach proposed in this paper is an extension of Palacios and Steel (2006) and
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Fonseca and Steel (2011) which also analysed this temperature dataset. Palacios and Steel

(2006) considered spatial data without replicates while Fonseca and Steel (2011) considered

space-time data, however, none of them included information of altitude in the scaling mix-

ture process. In that context, in order to allow for model comparison, and to illustrate the

gains of our proposal, we have chosen to illustrate our model with the same dataset. In their

analysis altitude is significant in the mean function. We consider a similar mean structure

given by

w(s, t)′δ = δ0 + latitude(s) δ1 + longitude(s) δ2 + altitude(s) δ3 + t δ4 + t2 δ5. (2)

This is a mountainous region with altitudes varying from 0 to 1188 meters. Exploratory

data analysis suggests that this variation in altitude affects not only the mean, but also the

variance of the maximum temperatures. Altitude is usually included in the mean function

of the process to capture the spatial variability present in the data, with smaller expected

means present in higher altitudes. However, even after considering a mean function that

depends on altitude, some extra variability might be noticeable in the residuals and the

variance of these residuals might be well modeled by a positive process varying in space

(Fonseca and Steel, 2011).

Initially we fit a Gaussian model, that is λ(s) = 1, ∀s, in equation (1), with the compo-

nents of the mean given by (2). Panel (a) of Figure 1 shows the residual empirical variance

observed at each location. Clearly, the estimated variance of the process shows a spatial

pattern that seems to depend on altitude, even after considering altitude in the mean of

the fitted model. Notice that the larger residual variances are observed mainly in the west

and southwest portions of the region. Panel (b) of Figure 1 shows a scatter plot of altitude

versus the estimated variances which suggests a non-linear relationship between the residual

variance and the altitude, with larger residual variances being observed at higher altitudes.

A model for the variance should accommodate this behaviour.Panels (c) and (d) of Figure

1 show the theoretical quantiles for the Gaussian distribution versus the empirical quantiles

based on the residuals from the Gaussian fit for two different sites. The behaviour of the tails

are different for the different sites. These two sites are located at quite different altitudes,

site 11 is at sea level, while site 19 has altitude of 1188m.
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These features often present in spatial data analysis motivate our proposal to include

covariate information in the scaling mixture process proposed by Fonseca and Steel (2011).

The proposed model attempts to capture non-stationarity features not only in the mean but

also in the resultant covariance function.
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(d) Residuals’ qqplot

Figure 1: Residual analysis of the maximum temperature data. Panel (a): empirical variance

across space (the diameter of the circle is proportional to the variance in each location). Panel

(b): empirical variance across space versus altitude.

This paper is organized as follows. Section 2 proposes a model which allows the spatial

process defined for λ(s) in equation (1) to have a mean that depends on spatially varying

covariates. Section 3 describes the inference procedure and discusses prior specification

for the parameters in the model. Next Section describes an analysis of synthetic data,
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and Section 5 analyzes the maximum temperature observed in the Spanish Basque country

introduced in Section 1.3. Finally, Section 6 presents some discussion and possible avenues

for future research.

2 Scale mixture process depending on covariates

Following the spatio-temporal mixture model described in (1), it can be shown that the

resultant kurtosis of the process is equal to 3 exp{ν} (Fonseca and Steel, 2011), indicating

that ν controls the tail behaviour of the process Z(s, t). Our proposal focuses on modelling

ν as a function of spatially varying covariates. More specifically, let ln(λ(s)) be a Gaussian

process with mean function −ν(s)/2 and covariance function Cov[ln(λ(sk)), ln(λ(sl))] =

ν(sk)
1/2ν(sl)

1/2C1(||sk − sl||), sk, sl ∈ D ⊆ Rd, such that for λ = (λ(s1), · · · , λ(sI))
′ at

observed locations s1, . . . , sI , we have

ln(λ) | ν,Σ1 ∼ NI

(
−1

2
ν, diag(

√
ν) Σ1 diag(

√
ν)

)
, (3)

where Σ1,kl = C1(||sk − sl||), k, l = 1, . . . , I and ν = (ν(s1), . . . , ν(sI))
′.

As the parameter ν(s) has to be positive, we propose to model it as a linear function of

spatially varying covariates in the logarithm scale, that is,

ln ν(s) = β0 + β1x1(s) + β2x2(s) + · · ·+ βq−1xq−1(s), (4)

x(s) = (x1(s), x2(s), . . . , xq−1(s))
′ is the vector containing the covariates that are believed to

influence the variance of the process Z(s, t), and β = (β0, β1, . . . , βq−1)
′ is the vector of the

associated regression coefficients.

The mean and variance of λ(s), conditioned on ν(s) are, respectively, given by E[λ(s)|ν(s)] =

1, and V ar[λ(s)|ν(s)] = exp{ν(s)} − 1. Notice further that the variance of λ(s) varies with

s and, therefore, the variance of the resulting process Z(s, t) also varies with spatial loca-

tions. Clearly, our proposed model is able to accommodate spatial heterogeneity present in

the process Z(s, t) when the heterogeneity is caused by some spatial effect either implicitly

or explicitly. It is worth looking at the behaviour of λ(s) for different values of ν(s). If

ν(s) → 0, the variance of λ(s) tends to zero and, the process Z(s, t) tends to the usual
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Gaussian process. When ν(s) increases, the marginal distribution of λ(s) becomes flatter,

inflating the variance of Z(s, t) at location s, and naturally accommodating aberrant or

atypical observations at location s. If the covariates x(s) do not influence ν(s) then our

proposed model has the same structure as that of Fonseca and Steel (2011). Next, we obtain

the resultant covariance and kurtosis of the proposed model.

2.1 Properties of the proposed model

Proposition 2.1 When integrating the distribution of Z(s, t) with respect to λ(s), the re-

sultant covariance function of the process {Z(s, t) : s ∈ D; t ∈ T} defined in (1), with the

mixing latent process as defined in (3), is given by:

Cov[Z(s1, t1), Z(s2, t2)] = σ2C1(ds)C2(dt) exp

{
3

8
[ν(s1) + ν(s2)] +

√
ν(s1)ν(s2)

4
C1(ds)

}
, (5)

(s1, t1), (s2, t2) ∈ D × T , ds = ||s1 − s2||, dt = |t1 − t2|.

Proof: See Appendix A.

Clearly, the resultant marginal covariance function in (5) depends on the values of the

covariates in ν(s). From equation (5), it follows that the marginal variance of the pro-

cess is given by V ar[Z(s, t)] = σ2 exp {ν(s)}, and the marginal correlation function by

Cor[Z(s1, t1), Z(s2, t2)] = C1(ds)C2(dt) exp
{
− [ν(s1) + ν(s2)] /8 +

√
ν(s1)ν(s2)/4 C1(ds)

}
.

Therefore, the proposed model is nonstationary in space, being able to accommodate spatio-

temporal processes whose variances change with spatial location.

Proposition 2.2 The marginal kurtosis (with respect to λ(s)) in each location for the process

{Z(s, t) : s ∈ D; t ∈ T} defined in (1), with mixing latent process as defined in (3) is given

by:

KZ(x(s),β) = 3 exp{exp{β0 + β1x1(s) + . . .+ βq−1xq−1(s)}}, (6)

(s, t) ∈ D × T , x(s) = (x1(s), x2(s), . . . , xq−1(s))
′ and β = (β0, β1, . . . , βq−1)

′.

Proof: See Appendix A.
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The resulting kurtosis changes with spatial location. An important issue is how the

covariates and coefficients in equation (6) influence the kurtosis of Z(s, t). Initially, assume

there are no covariates and we model ν(s) = exp(β0). Table 1 shows the marginal kurtosis

in equation (6) under this scenario. We also present the corresponding degrees of freedom of

a standardized Student-t model with ν0 degrees of freedom. This is to compare the kurtosis

of the scale mixture model with a well known model, which allows for fatter tails through

an easily interpretable parameter ν0. When β0 is positive the kurtosis gets very large, with

values that do not represent realistic spatial processes. For this reason, we suggest that the

prior specification for β0 is constrained to be negative.

Table 1: Kurtosis for different values of ν0 (Student-t model) and different values of β0

assuming no effect of covariates β1 = 0.

Kurtosis 200 100 50 20 10 8 5 4 3

ν0 4.03 4.06 4.12 4.35 4.86 5.2 7 10 200

β0 1.43 1.25 1.03 0.64 0.18 -0.02 -0.67 -1.24 -16

As an illustration of the covariate effect in the kurtosis we consider an artificial field

with 100 observed locations, which is shown in panels of Figure 2. In the panels we explore

positive and negative values of β1. In each panel, the gray scale represents the values of the

covariate, whereas the diameter of the open circles at each location is proportional to the

resultant marginal kurtosis. For positive β1 (Panel (a)), larger values of the kurtosis (circles)

occur for larger values of the covariate (darker gray squares); whereas for a negative value of

β1 (Panel (b)), larger values of the kurtosis (circles) occur for smaller values of the covariate

(lighter gray squares).

As outlined by Viana Neto et al. (2014), introducing covariates in the covariance structure

of spatial processes seems to provide reasonably flexible models. However, care must be taken

when including covariate information in the covariance structure of spatial processes. It is

important to understand well the process under study such that the inclusion of covariates

in λ(s) are helpful to better explain the second order properties of the process.

In this context, some exploratory data analysis with residuals from fitting a usual Gaus-
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Figure 2: Illustrative example: artificial values of a covariate x1(s), and resultant marginal

kurtosis (3 exp{ν(s)}, with ν(s) = exp{β0 + β1x1(s)}) under two scenarios: (a) β0 = −0.2

and β1 = 0.8, and (b) β0 = −0.2 and β1 = −0.8. The gray scale depicts the values of the

covariate across the lattice, and circles are proportional to the marginal kurtosis.

sian process would indicate possible relations with covariates which might be already in the

mean of the fitted model but could also help in the explanation of the second order spatial

structure. Histograms from residuals at each location could indicate different tail behavior

across space and plot of empirical variances versus covariate could indicate a relationship

between variance and spatially varying covariates. For instance, this was done with our

temperature data example and figure 1 (b) illustrates this relationship between variance and

covariate.

3 Prior specification and inference procedure

The inferential approach adopted here follows the Bayesian paradigm; thus, all inference,

predictions and model comparison are obtained from the posterior distribution of the param-

eters of interest. And the posterior distribution results from updating the prior information

with the data information that comes from the likelihood function. The model specification

follows from equations (1), (3) and (4) and, from the Bayesian point of view, is complete

after assigning the prior distribution for the parameter vector of the model.

For the correlation functions we assume a Cauchy correlation function. This function

allows for smoother processes than induced by the exponential function and adds some

12



flexibility by allowing for the modeling of long-memory dependence and also correlations

at short and intermediate lags. Different from the usual Matérn correlation function, the

Cauchy function does not require estimation of a smoothness parameter which might be

difficult to estimate (Zhang, 2004). Gneiting (2000) and Gneiting and Schlather (2004) give

more details on the properties and power-law behaviours generated by this class of correlation

functions. The covariance function in each dimension is given by Ci(d) =
(

1 +
(
||d||
ai

)αi
)−1

,

i = 1, 2. The parameters a1 and a2 are, respectively, the range parameters and α1 and α2

are shape parameters. The parameter σ2 in equation (1) is a scale parameter. Therefore,

the parameter vector is given by Ψ = (a1, α1, a2, α2, σ
2,β, δ). Following Bayes’ theorem, the

posterior distribution is proportional to

p(λ,Ψ|Z) ∝ |Σ|−1/2 exp

{
−1

2
(Z−wδ)′ Σ−1 (Z−wδ)

}
p(λ|a1, α1,β) p(Ψ),

where Z = (Z(s1, t1), · · · , Z(sI , t1), · · · , Z(s1, tJ), · · · , Z(sI , tJ))′ is the IJ-dimensional vec-

tor of the observations; w is the design matrix containing the covariates for the mean

process, and Σ, the covariance matrix, is given by Σ = Σ2 ⊗ σ2
[
Λ−1/2 Σ1 Λ−1/2

]
, where

Σ2,kl = C2(|tk − tl|), k, l = 1, 2, . . . , J , Σ1,ij = C1(||si − sj||), i, j = 1, 2, . . . , I, Λ =

diag(λ(s1), . . . , λ(sI)) and ⊗ denotes the Kronecker product. A priori, the parameters are

assumed independent. The covariate coefficients (δ) in the mean process are assumed to

follow independent, zero mean normal prior distributions with some large, fixed, variance

which result in a vague prior information for δ. For the range parameters we consider

ai ∼ gamma(aai , bai), whereas for the smoothness parameters we assume an uniform prior

such that αi ∼ Unif [0, 2], i = 1, 2. Finally, for the scale parameter σ2 we assign an inverse

gamma prior such that σ2 ∼ IG(aσ2 , bσ2). Care must be taken when specifying the prior

distribution for the coefficients in ν(s). This is because the prior range of β affects the

range of the kurtosis of the process. Thus, in order to accommodate realistic values for the

kurtosis, we propose two different prior specifications for β. We discuss these proposals in

Subsection 3.1.

Regardless of the prior specification for β, the resulting posterior distribution for (λ,Ψ)

does not have a closed form and inference is based on Markov Chain Monte Carlo (MCMC)

methods. The full posterior conditionals are shown in Appendix B. All the algorithms in
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this paper were implemented using the software R (R Core Team, 2015) and are available

upon request.

3.1 Prior distribution for β

Before discussing the prior specification for β we suggest to standardize the covariates consid-

ered in the model for ν(s). Then, the kurtosis will be less affected by changes in the scale of

the covariates. We suggest the use of medians (med(x)) and interquartile distances (IQ(x))

in order to avoid high influence of extreme values of the covariate in the standardization.

Let x∗j(s) = (xj(s)−med(xj))/IQ(xj), j = 1, . . . , q − 1 be the standardized covariates. The

prior specification for the coefficients β are assigned after this standardization.

Table 1 suggests we should consider negative values of β0 in order to ensure realistic values

of the marginal kurtosis of the process. Furthermore, the values of |βj| should not be very

large. For this reason, the prior specification for β is built in terms of the resultant variation

of the kurtosis of Z(s, t). Without loss of generality, in what follows we discuss the prior

distribution for the case of one covariate in ν(s), that is, we focus on ν(s) = exp{β0+β1x1(s)}.

To depict the effect of modelling ν(s) as a function of covariates in equation (3) we

have performed simulated studies (not detailed here) to understand the different posterior

inference obtained for different specifications of the maximum kurtosis allowed, a priori. We

have found that if the maximum kurtosis is allowed to be too big then the fit is too sensitive

to outliers in the data and the posterior predictive distributions tend to overfit to adapt

to very large observed values. In this context, as follows we present realizations from our

proposed model for some maximum kurtosis which give an indication of how the prior could

be used to truncate the maximum kurtosis and still reflect most of the realistic behaviour

one expects to find in real applications. Panels of Figure 3 show the distribution of partial

realizations of different GP with mean equals 20, and some covariance structure, based on

the same locations of the real data in Section 1.3. We compare the realizations of a GP with

those of NGP.X under different values of x(s) and β1. It is clear that the higher the value

of β1 and x(s) the heavier the tails of the resultant marginal distribution at a particular

location. Also, the values of β1 should not be too high, as depending on the values of the

covariate and β1 we can obtain densities that are quite heavy tailed (see panel (d)). We
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aim at proposing a prior distribution for β0 and β1 that provide realistic realizations of the

process under study. Therefore, some kind of prior constrain should be assumed for β0 and

β1.
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Figure 3: Partial realizations of the process for four different locations and a fixed point in

time, considering log ν(s) = β0 + β1x(s), with different values of x(s), and β1.

Independent prior for β0 and β1 In this specification we assume prior independence

between β0 and β1. In particular, for β0 we assign a truncated normal distribution defined

on R−, whose associated normal has mean a and variance b, that is β0 ∼ TN−(a, b). After

performing a sensitivity study to investigate the values of a and b, we suggest a = 0 and

b = 3 as benchmark values for the prior specification of β0. This distribution is concentrated

around -2.4, leading the prior kurtosis to be concentrated around 3, which is the kurtosis of

a Gaussian process. For β1 we assign an uniform prior over the interval (c, d). The choice

of c and d affects the tails of the kurtosis distribution. Thus, to avoid values of the kurtosis
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that are too large we assign c = −1 and d = 1 in this work. We denote this model as NGP.X

(I).

Conditional prior specification for β0 and β1 In order to avoid unrealistic high values

for the prior distribution of the kurtosis we also propose a conditional prior specification

for (β0, β1), such that π(β0, β1) = π(β1|β0)π(β0). Following the values in table 1, we again

constrain β0 to be negative but we now assign an uniform prior distribution over the interval

(a0, 0), such that β0 ∼ U(a0, 0) , and a0 < 0. The value of a0 = −4 is chosen from table 1

to allow for values of the kurtosis that are close to the Gaussian case. Next, we define an

upper limit, lkurt, for the kurtosis of the process such that 3 ≤ KZ(·, ·) ≤ lkurt. Then we

specify a prior distribution for β1 conditioned on the value of β0. In particular, we propose

an uniform prior such that β1|β0 ∼ U(−L + β0, L− β0) with L = ln(ln(lkurt/3)), a function

of lkurt. We denote this model as NGP.X (D).

Section C of the Appendix describes how to perform spatial interpolation and temporal

prediction under the proposed model.

4 Analysis of a synthetic dataset

In practice, when analyzing spatio-temporal data, it is common to use some nonlinear trans-

formation, e.g. the square root or the log transformations, to attain approximate normality

of the data. Wallin and Bolin (2015) call attention to the fact that in the original scale, the

resultant process is nonstationary if the mean has spatially varying covariates, and there is

a relationship between the mean and the covariance functions, possibly turning interpreta-

tion of the parameters more challenging when nonlinear mean or nonstationary covariance

structures are assumed for the transformed field.

Here we focus on the case of a log-Gaussian process. Assume ln Z(s, t) = w(s)′δ+ε(s, t),

where w(s) is a vector of covariates that vary smoothly across space, and ε(s, t) is a zero mean

Gaussian process with covariance function C(ds, dt) = σ2ρ(ds, dt), where ds, dt represent, re-

spectively, spatial and temporal Euclidian distances, and ρ(·, ·) is a valid correlation function.

In the original scale, the mean of the process is given by E[Z(s, t)] = exp{w(s)′δ + 0.5σ2}
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and the resultant covariance between any two spatiotemporal coordinates (s, t) and (s′, t′) is

Cov[Z(s, t), Z(s′, t′)] =
[
exp{(w(s)′δ + w(s′)′δ) + σ2}

]
[exp{C(ds, dt)} − 1] ,

with ds = ||s− s′||, dt = |t− t′|, resulting in a nonstationary covariance structure for Z(s, t),

as we assume that w(s) contains spatially varying covariates.

Generation of artificial data We generate data from a log-Gaussian spatiotemporal

process as follows. We start by defining I = 66 locations over a region, and J = 30 instants

in time. To depict a realistic region we consider a portion of the Colorado state in the USA,

as altitude shows a strong spatial pattern in the east-west direction. Therefore we consider

altitude in the modelling of ν(s). Panel (a) of Figure 4 shows the spatial coordinates together

with p = 6 locations that are left out from the inference procedure for predictive purposes.

Panel (b) of Figure 4 shows the behaviour of the covariate across the region. The diameter

of the circles are proportional to the value of the covariate at the respective location. The

mean function is given by w(s)′δ = δ0 + δ1 w(s), with δ0 = 0.33 and δ1 = 1.

The covariance structure is assumed to be stationary and separable in the log scale, with

C(ds, dt) = σ2C1(ds)C2(dt) where C1(ds) is the spatial correlation structure and C2(dt) the

temporal one, with ds representing the Euclidean distance in space and dt representing the

difference in time. We assumed a Cauchy correlation function with smoothness parameters

fixed at α1 = α2 = 1.5, and decay parameters equal to a1 = 2.57 and a2 = 1. The scale

parameter was fixed at σ2 = 0.8. These values were fixed to provide reasonable values of

the artificial data. As our proposed model accounts for covariate effect in the covariance

structure of the process, we expect it to better capture the structure in the data when

compared to the NGP.

We fit the following three models, assuming the same mean structure that was used to

generate the dataset,

NGP.X (I) ln ν(s) = β0 + β1 x(s), where x(s) is the artificial covariate, with the

following prior specification β0 ∼ NT−(0, 3) and β1 ∼ U(−1.5, 1.5);

NGP.X (D) ln ν(s) = β0 + β1 x(s) with x(s) as above, and the following prior specifi-

cation β0 ∼ U(−4, 0) e β1|β0 ∼ U(−L+ β0, L− β0) with L = ln(ln(30/3));
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Figure 4: (a) Monitoring locations (gray circles) for the artificial data generated under a

log-Gaussian process. The numbered locations (black squares) are the ones left out from

the inference procedure to check the predictive ability of the different fitted models. (b)

Monitoring locations with diameter of the circles proportional to the covariate value, x1(s),

at each location.

NGP ν(s) = ν for all s ∈ D.

We assume prior independence among the other parameters of the model, and assign the

following prior distributions: a1 ∼ gamma(0.01, 0.01/m), m is the median of the Euclidean

distance among locations; a2 ∼ gamma(0.01, 0.01); αi ∼ U(0, 2), i = 1, 2; σ2 ∼ IG(2.1, 1)

and δ ∼ N2(0, diag(100)).

We run two chains starting from very different initial values and let the MCMC algorithm

run for 50,000 iterations, used 20,000 as burn in and kept every other 30th iteration to avoid

autocorrelation among the sampled values. Convergence of the chains was checked using the

R̂ test of Gelman and Rubin (1992).

Panels of Figure 5 show the posterior distributions of β0 and β1 under models NGP.X

(I) and NGP.X (D), together with their respective prior distributions. There is clear gain

of information when we compare the posterior of β0 and β1 with their respective prior
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distributions. This suggests that there is information in the data to learn about these

parameters. Also, the different prior specifications for β0 and β1 do not lead to very different

posterior distributions for each of the parameters. The coefficient β1 is estimated as strictly

positive suggesting that, as covariate increases, so does the kurtosis of the process.

NGP.X (I)

β0

D
en

si
ty

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

0
5

10
15

Posterior
Prior

NGP.X (D)

β0

D
en

si
ty

−0.5 −0.4 −0.3 −0.2 −0.1 0.0

0
2

4
6

8

β1

−1.5 −0.5 0.5 1.0 1.5

0
1

2
3

4

β1

−1.5 −0.5 0.5 1.0 1.5

0
1

2
3

4
5

Figure 5: Prior (grey lines) and posterior (black lines) distributions of β0 (first column) and

β1 (second column) under models NGP.X (I) (top row) and NGP.X (D) (bottom row) for

the artificial dataset.

Panels of Figure 6 show the summary of the posterior predictive distribution obtained for

locations 4 (first row) and 5 (second row) that were left out from the inference procedure for

predictive purposes (see Figure 4). In general, model NGP provides the widest ranges of the

95% credible intervals. Moreover, for locations 4 and 5 model NGP yielded point estimates

quite far from the actual observations.

In the interest of model comparison we compute the predictive performance using the

interval score criterion (IS)(Gneiting et al., 2007), which compares the predicted value with

the true one, and considers the uncertainty in the predictions such that the model is penalized

if an interval is too narrow and misses the true value. We also compute the log predictive score

(LPS) (Gneiting et al., 2007) which is based on the logarithm of the predictive distribution.
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Figure 6: Posterior predictive distribution (median and 95% credible intervals) versus the

observed values for locations 4 (first row) and 5 (second row) that were left out from the

inference procedure, under the different fitted models (columns) for the artificial dataset.

These comparison criteria are described in Section D of the Appendix. In this example

in particular, our aim is to check which model among NGP.X (I), NGP.X (D), and NGP

leads to values of IS and LPS that are smaller and closer to the one obtained under the

log-Gaussian model, which is the model used to generate the data. Table 2 summarizes the

results. The numbers therein should be compared to the results for IS and LPS obtained

under the log-Gaussian model which are, respectively 1.18, and -245. Clearly, model NGP.X

(D) is the one that leads to closer values of the criteria obtained under the model used to

generate the data.
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Table 2: Interval score (IS) and log predictive score (LPS) under the predicted observations

at the out-of-sample sites under models NGP, NGP.X (I), and NGP.X (D). The log-Gaussian

model used to generate the data results in an IS equal to 1.18 and a LPS equal to -245.

Model NGP NGP.X (I) NGP.X (D)

IS 2.33 1.44 1.32

LPS 16.79 -101.87 -97.89

5 Analysis of maximum temperature at the Spanish

Basque Country

Now, we fit our proposed models to the temperature data presented in Section 1.3. This

data was also analysed in Fonseca and Steel (2011). The maximum temperature data was

observed in 70 locations in the Spanish Basque Country in July 2006 with 67 locations

used for estimation and 3 left out of the analysis for predictive performance assessment.

The coordinates of the locations are considered in utm such that distances in space are in

kilometers.

For the temperature data, altitude seems to influence the variability of the process as

shown in Figure 1 and will be considered in the mean of the latent process ln λ(s). We

compare five model specifications:

GP Gaussian with λ(s) = 1, for all s.

GP.Var.X Gaussian with σ2(s) = exp(β0 + β1x(s)), where x(s) is the standardized

altitude, with the following prior specification β0 ∼ N(0, 10) and β1 ∼ N(0, 10);

NGP ν(s) = ν for all s ∈ D;

NGP.X (I) ln ν(s) = β0 + β1 x(s), where x(s) is the standardized altitude, with the

following prior specification β0 ∼ NT−(0, 3) and β1 ∼ U(−1, 1);
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NGP.X (D) ln ν(s) = β0 + β1 x(s) with x(s) as above, and the following prior specifi-

cation β0 ∼ U(−4, 0) e β1|β0 ∼ U(−L+ β0, L− β0) with L = ln(ln(30/3));

Note that the fitted models grow in complexity with the covariance structure. The first

model, GP, is the one fitted in Section 1. Model GP.Var.X allows the variance of the

Gaussian process to change with location in a deterministic fashion, as a log-linear function

of the standardized altitude of the location. Model NGP assumes a stochastic process for

λ(s) as in Fonseca and Steel (2011), allowing for heavier tails at different locations, whereas

models NGP.X(I) and NGP.X(D) are the ones proposed here. We allow for the prior mean

of λ(s) to be a function of altitude. Therefore, this results in a more flexible structure than

the deterministic structure proposed by model GP.Var.X. The mean function depends on

spatiotemporal covariates and is detailed in Section 1.3.

The prior distributions considered were a1 ∼ gamma(0.01, 0.01/m), with m equals the

median distance among the observed locations; a2 ∼ gamma(0.01, 0.01); αi ∼ U(0, 2),

i = 1, 2; σ2 ∼ IG(2.1, 1) and δ ∼ N6(0, diag(100)). For the NGP.X (I) model, the prior

distributions are β0 ∼ NT−(0, 3) and β1 ∼ U(−1, 1). We run two chains starting from

different initial values and let the MCMC algorithm run for 60,000 iterations, used 20,000

as burn in and kept every other 40th iteration to avoid autocorrelation among the sampled

values. Convergence of the chains was checked using R test of Gelman and Rubin (1992).

Figure 7 shows the posterior marginal densities for the mean parameters δ0, δ1, δ2, δ3,

δ4, δ5. The three models give very similar posterior distributions for these parameters.

The latitude and altitude are significant in all models. The estimated values of δ1 indicate

that latitude positively influences the mean, that is, the higher the latitude the higher the

temperature. The altitude coefficient negatively influences the mean indicating that the

higher the altitude the lower the temperature. On the other hand, the estimated association

between altitude and the mean of lnλ(s) is positive (See Figure 8 for details). That is,

the higher the altitude the higher the variability of the process. Note that the posterior

uncertainty of the coefficients under the mixture models is much smaller than in the Gaussian

case.

Figure 8 shows the prior and posterior distributions for the coefficients in the mean of

ln λ(s), β0 (first column) and β1 (second column) under models NGP.X (I) (top row) and
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Figure 7: Prior (grey lines) and posterior distributions for the parameters (δ0, δ1, δ2, δ3, δ4

and δ5) in the mean function of the maximum temperature dataset, under each of the five

fitted models.

NGP.X (D) (bottom row). These parameters influence directly the marginal kurtosis for

each location. The parameter β1 was significantly different from 0 in both models indicating

that higher altitudes lead to larger variability. In other words, the marginal distribution of

the process has fatter tails at sites located in high altitudes.

We now compare the predictive performance of the five competing models. Data for three

locations were left out of the estimation procedure and predictions were obtained based on

the predictive distribution as described in Section C of the Appendix. Figure 9 shows the

95% credible intervals for out-of-sample observations. As previously mentioned, our goal

is to improve predictions with our proposed model by better modeling the uncertainty in

the variance process. We notice that the credible intervals are narrower under our proposed

model for locations 1 and 3, while it provides wider ranges of the predictive credible interval

for location 2. Notice that for location 2, the other models are not able to accommodate

the larger uncertainty for some extreme observations which presented larger temperature

values. Furthermore, the two prior distributions considered under our proposed models led

to similar predictive distributions.

Like in the previous section we use the Interval Score (IS) and the Log Predictive Score

(LPS) (Gneiting et al., 2007) to compare the different fitted models. The values of the
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Figure 8: Prior (grey lines) and posterior (black lines) distributions of β0 (first column) and

β1 (second column) under models NGP.X (I) (top row) and NGP.X (D) (bottom row) for

the maximum temperature dataset.

criteria are shown in Table 3. Under criterion IS model NGP.X (I) performs best, among

the fitted ones. Under LPS the best model is NGP.X (I) followed by NGP.X(D).
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Figure 9: Posterior summary (median and 95% credible intervals) of the predictive distri-

bution versus the actual observed values of the maximum temperature observed at three

different locations left out from the inference procedure.

25



Table 3: Model comparison based on IS and LPS criteria for the predicted observations

at the out-of-sample sites under each of the fitted models for the maximum temperature

dataset.

Model GP GP.Var.X NGP NGP.X (I) NGP.X (D)

IS 4.51 4.12 4.12 3.59 4.36

LPS 89.90 87.08 61.24 38.31 59.79

6 Discussion

We introduce a new class of non-stationary spatio-temporal geostatistical models by allowing

spatially varying covariates that influence the tail behaviour of the process across space. Un-

derstanding the tail behaviour of spatio-temporal processes is crucial for efficient prediction.

Unexplained large variances may result in large prediction intervals while well modelled vari-

ances will tend to capture the correct amount of uncertainty in the predictive distribution

of the process.

One important aspect of our proposed framework is that the variance process is allowed

to depend on covariates, providing some interpretation about the behaviour of the tail of the

process as a function of a known covariate. For instance, in our synthetic application to the

log-transformed field, it is known that a relationship between the mean and the covariance

is imposed through the log transformation of a Gaussian field. However, our model is able

to identify the dependence on the covariate without requiring any transformation of the

data. Of course the unknown transformation could be estimated from the data, however,

the induced mean-covariance relationship would be nonlinear. The effect of considering the

response in the original scale and estimating the covariance-covariate dependence with our

model led to narrower predictive intervals when compared to the ones obtained by a model

which does not allow for covariance-covariate dependence.

In order to allow for flexible representation of the scale mixture process some caution is
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needed in the prior specification of the coefficients of the covariates in the mean of the log-

scale process. We suggest two different prior specifications as benchmarks for practitioners

and evaluate the impact of these different prior distributions in the resulting inference for

the kurtosis of the process.

Notice that the inclusion of covariates in the scale mixture depends on the choice of

a link function connecting the scale, which is positive, to the covariates. We have chosen

the log link as it is the most often used to transform from positive to real line. However,

other choices of link functions could be considered depending on the application and model

comparison criteria could be used to select the best link function.

In the real data analysis, although altitude is considered in the mean structure of the

process, the inclusion of altitude in the mean of the scale mixing process led to improved

predictions when compared to the NGP model. As already observed in different studies (e.g.

Schmidt et al. (2011), Viana Neto et al. (2014)), the mean of the predicted values under the

different fitted models do not differ much. However, our proposed model seems to perform

better in terms of the uncertainty of the predictions, providing better accommodation of the

outlying observations (see Figure 9).

Overall, the proposed model added flexibility to the class of spatial mixture models

often considered in the literature as an alternative to the Gaussian assumption. A natural

extension of this work is to investigate how this covariance-covariate dependence may be

changing in time. This is a direction we intend to investigate further in future research.

One possibility is to follow the specification in Fonseca and Steel (2011) for a spatiotemporal

process Z(si, tj) = w(si, tj)
′δ + σ

ε(si,tj)√
λ1(si)λ2(tj)

and consider ln(λ1) ∼ NI

(
−ν1

2
1I , ν1Σ1

)
and

ln(λ2) ∼ NJ

(
−ν2

2
1J , ν2Σ2

)
. As in equation (4) the parameter ν1 might depend on spatial

covariates while ν2 might depend on temporal covariates. We believe this extension might

add flexibility in applied data analysis.
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A Proofs to the theorems of Section 2.1

In this Section we prove the results shown in Propositions 3.1 and 3.2. Consider the spatio-

temporal model in equation (1), the mixture process in equation (3) and the parameter ν(s)

as specified in equation (4).

Proof of Proposition 2.1

Cov[Z(s1, t1), Z(s2, t2)] = Cov

[
w(s1, t1)

′δ + σ
ε(s1, t1)√
λ(s1)

, w(s2, t2)
′δ + σ

ε(s2, t2)√
λ(s2)

]

= Cov

[
σ
ε(s1, t1)√
λ(s1)

, σ
ε(s2, t2)√
λ(s2)

]
= σ2 E

[
ε(s1, t1)√
λ(s1)

ε(s2, t2)√
λ(s2)

]
= σ2 E [ε(s1, t1) ε(s2, t2)] E

[
λ(s1)

−1/2 λ(s2)
−1/2]

= σ2 C(ds, dt) E
[
λ(s1)

−1/2 λ(s2)
−1/2]

= σ2 C1(ds)C2(dt) E

[
exp

{
−1

2
ln[λ(s1)]−

1

2
ln[λ(s2)]

}]
= σ2C1(ds)C2(dt) exp

{
3

8
[ν(s1) + ν(s2)] +

√
ν(s1)ν(s2)

4
C1(ds)

}
.

Proof of Proposition 2.2

Let m(s, t) = w(s, t)′δ. As the kurtosis is computed through the fourth central moment of

Z(s, t) scaled by its squared variance, we have that

KZ(x(s),β) = Kurt[Z(s, t)] =
E{[Z(s, t)− E[Z(s, t)]]4}

[V ar[Z(s, t)]]2

=
E[Z(s, t)4]− 4m(s, t)E[Z(s, t)3] + 6m(s, t)2E[Z(s, t)2]− 3m(s, t)4

[σ2 exp {ν(s)}]2

Below we compute each of the expected values in the equation above separately.

E[Z(s, t)4] = E

{
m(s, t)4 + 4m(s, t)3σ

ε(s, t)

λ(s)1/2
+ 4m(s, t)σ3 ε(s, t)

3

λ(s)3/2
+ 6m(s, t)2σ2 ε(s, t)

2

λ(s)
+ σ4 ε(s, t)

4

λ(s)2

}
= m(s, t)4 + 6m(s, t)2σ2E

{
ε(s, t)2

λ(s)

}
+ σ4E

{
ε(s, t)4

λ(s)2

}
= m(s, t)4 + 6m(s, t)2σ2E[ε(s, t)2]E[λ(s)−1] + σ4E[ε(s, t)4]E[λ(s)−2]

= m(s, t)4 + 6m(s, t)2σ2E[exp{−ln(λ(s))}] + 3σ4E[exp{−2ln(λ(s))}]

= m(s, t)4 + 6m(s, t)2σ2eν(s) + 3σ4e3ν(s).
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E[Z(s, t)3] = E

{
m(s, t)3 + 3m(s, t)2σ

ε(s, t)

λ(s)1/2
+ 3m(s, t)σ2 ε(s, t)

2

λ(s)
+ σ3 ε(s, t)

3

λ(s)3/2

}
= m(s, t)3 + 3m(s, t)σ2E

{
ε(s, t)2

λ(s)

}
= m(s, t)3 + 3m(s, t)σ2eν(s).

E[Z(s, t)2] = E

{
m(s, t)2 + 2m(s, t)σ

ε(s, t)

λ(s)1/2
+ σ2 ε(s, t)

2

λ(s)

}
= m(s, t)2 + σ2E

{
ε(s, t)2

λ(s)

}
= m(s, t)2 + σ2eν(s).

Substituing the equalities above into the expression of Kurt[Z(s, t)], we finally get that

Kurt[Z(s, t)] = 3 exp{ν(s)}.

B Posterior full conditionals

In this section we show the resultant full conditional posterior distributions for the param-

eters of the model. Again, assume the spatio-temporal model defined in equations (1), (3)

and (4) then the full conditional posterior distributions are, respectively, given by:

• Full conditional posterior for σ2

p(σ2|·) = IG

(
IJ

2
+ aσ2 ;

[
1

2
(Z−wδ)′ R−1 (Z−wδ)

]
+ bσ2

)
,

where R = Σ2 ⊗
[
Λ−1/2Σ1Λ

−1/2].
• Full conditional posterior for α1, a1

p(α1, a1|·) ∝ |Σ|−1/2 exp

{
−1

2
(Z−wδ)′ Σ−1 (Z−wδ)

}
|W |−1/2

× exp

{
−1

2

[(
ln(λ) +

1

2
ν

)′
W−1

(
ln(λ) +

1

2
ν

)]}
Iα1(0, 2) a

aa1−1
1 exp{−a1ba1},

where W = diag(
√
ν) Σ1 diag(

√
ν). As this kernel does not belong to an known

distribution, we use a Metropolis-Hastings step, with random-walk proposals based

on transformations of the parameters. In particular, the proposed value for a1 was

sampled in the log scale, and for α1 we used the transformation ln (α1/(2− α1)), such

that the back transformation falls within the interval (0, 2).
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• Full conditional posterior for α2, a2

p(α2, a2|·) ∝ |Σ|−1/2 exp

{
−1

2
(Z−wδ)′ Σ−1 (Z−wδ)

}
Iα2(0, 2) a

aa2−1
2 exp{−a2ba2}.

The steps to sample from this full conditional are the same as those for α1 and a1

described above.

• Full conditional posterior for β

p(β|·) ∝ |W |−1/2 exp

{
−1

2

[(
ln(λ) +

1

2
ν

)′
W−1

(
ln(λ) +

1

2
ν

)]}
p(β).

As this is an unknown distribution we use a Metropolis-Hastings step, with proposal

based on random walk proposals for transformations of the parameters. In particular,

for β0 we made proposals for ln(−β0), whereas for β1 the proposal was based on the

transformation ln ((β1 − a.beta1)/(b.beta1 − β1)), where a.beta1 and b.beta1 are the

limits of the uniform conditional prior assigned to β1.

• Full conditional posterior for δ

p(δ|·) = Np(ZΣ−1wD;D),

where D = [w′Σ−1w + [ diag(σ2
δ ) ]−1]

−1
.

• Full conditional posterior for λ

p(λ|·) ∝ |Σ|−1/2 exp

{
−1

2
(Z−wδ)′ Σ−1 (Z−wδ)

}
× exp

{
−1

2

[(
ln(λ) +

1

2
ν

)′
W−1

(
ln(λ) +

1

2
ν

)]}
In this step, we use random walk proposals to generate values of λ considering groups

in space in order to block the sampler for λ (Palacios and Steel, 2006).

C Predictive distribution

Usually, the main aims in spatiotemporal modelling are spatial interpolation and temporal

predictions. Under our proposed model this is easily achieved due to the conditional nature
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of the model specification. Given the mixing latent variables λ(s), the data follows a mul-

tivariate Gaussian distribution and predictions are obtained through the properties of the

multivariate normal distribution.

Specifically, consider an unobserved part of the spatiotemporal process in arbitrary space-

time coordinates (sp1, tp1), . . . (spn, tp1), . . . , (sp1, tpm), . . . (spn, tpm) ∈ D × T . Our goal is to

make conditional inference for Zp = (Z(sp1, tp1), . . . , Z(spn, tp1), . . . , Z(sp1, tpm), . . . , Z(spn, tpm))′,

based on the observed data Z = (Z(s1, t1), . . . , Z(sI , tJ))′. Let θ = (λ,Ψ) ∈ Θ be the un-

known parameters for the proposed model (3), thus the predictive distribution is given by

p(Zp|Z) =
∫
θ p(Zp|λ,Ψ,Z)p(λ|Ψ,Z)p(Ψ|Z) dθ. The latent variable vector is partitioned

according to the respective set of observed and unobserved locations in space, (λ,λp), and

the predictive distribution may be rewritten as

p(Zp|Z) =

∫
θ
p(Zp|λ,Ψ,Z)p(λp|λ,Ψ,Z)p(λ|Ψ,Z)p(Ψ|Z) dθ. (7)

The predictive distribution is then obtained by composition sampling using the parameter

values sampled from the posterior distributions p(Ψ | Z) and p(λ | Ψ,Z) in the MCMC algo-

rithm. The densities p(Zp|λ,Ψ,Z) and p(λp|λ,Ψ,Z) are sampled for each (λ,Ψ) obtained

from the posterior distribution. The covariance matrix for (ln(λ), ln(λp)) and (Z′,Z′p)
′, re-

spectively are partitioned according to

S̃ =

 S Sop

Spo Spp

 , Σ̃ =

 Σ Σop

Σpo Σpp

 .

Define ν = (ν(s1), . . . , ν(sI))
′ and νp = (ν(sp1), . . . , ν(spn))′ thus S̃ is computed according

to the model in (3), so that Skl =
√
ν(sk)ν(sl) C1(||sk − sl||), k, l = 1, . . . , I and Spp,kl =√

ν(spk)ν(spl) C1(||spk − spl||), k, l = 1, . . . , n and Sop,kl =
√
ν(sk)ν(spl) C1(||sk − spl||),

k = 1, . . . , I, l = 1, . . . , n. Notice that the covariate in the covariance model has to be

defined for all spatial locations in the domain of interest. Furthermore, it is desired that the

covariate varies smoothly across space in order to preserve the smoothness properties of the

process Z(·, ·). In addition, Σ̃ is defined from (1) such that Σ = Σ2 ⊗ σ2
[
Λ−1/2 Σ1 Λ−1/2

]
,

and Σpp = Σ2p⊗ σ2
[
Λ
−1/2
p Σ1p Λ

−1/2
p

]
, with Σ1p,kl = C1(||spk− spl||),k, l = 1, . . . , n, Σ2p,kl =

C2(|tpk − tpl|), k, l = 1, . . . ,m and Σop = Σ2op ⊗ σ2
[
Λ−1/2 Σ1op Λ

−1/2
p

]
, with Σ1op,kl =

C1(||sk − spl||),k = 1, . . . , I, l = 1, . . . , n, Σ2op,kl = C2(|tk − tpl|), k = 1, . . . , J, l = 1, . . . ,m.
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Thus, the predictive distribution for ln(λp) is

p(ln(λp)|λ,Ψ) = fm

(
ln(λp);−

νp
2
SpoS

−1
(

ln(λ) +
ν

2

)
, Spp − SpoS−1Sop

)
.

And given the sampled values of (λ,λp), and the desired predictions Zp are obtained from

p(Zp|Z,λ,λp,Ψ) = fN
(
Zp; mp + ΣpoΣ

−1 (Z−m) ,Σpp − ΣpoΣ
−1Σop

)
,

with fK(x; m̃, Σ̃) denoting a K-variate Gaussian distribution with mean function m̃ and

covariance matrix Σ̃, where m = wδ and mp = wpδ are the mean vectors as defined in

Section 3.

D Model comparison criteria

Scoring rules provide summaries for the evaluation of probabilistic forecasts by comparing the

predictive distribution with the actual value which is observed for the process (Gneiting et al.,

2007). We will use scoring rules in a Bayesian context as measures for comparing models

based on their posterior predictive distribution, in particular, we consider the logarithmic

predictive score and the interval score.

Interval score (IS)

Define the (1− α)100% prediction interval by (q1, q2). The interval score is given by

IS(q1, q2; zo) = (q2 − q1) +
2

α
(q1 − zo)I(zo < q1) +

2

α
(zo − q2)I(zo > q2),

where zo is the observed value. The first term refers to the range of prediction interval and

the other terms increments the IS when the interval does not contain the true value. In

general, it is used α = 0, 05 resulting in a range of 95% of credibility.

Logarithmic predictive score (LPS)

Here we use the log predictive score based on the predictive density value at the observed z,

LPS(z) = − ln{p(z|zo)},

where p(z|zo) denotes the posterior predictive density at z of the model under consideration

and zo is the observed value. Consider θj, j = 1, . . . ,M , a sample from the posterior
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distribution of θ. Then, an approximation of ln{p(z|zo)} is

̂ln{p(z|zo)} =
1

M

M∑
j=1

ln{p(z|zo,θj)},

where p(z|zo,θj) denotes the predictive density at the observed value z based on the j-th

sampled value from the posterior distribution of θ.

E Analysis of synthetic data generated from the pro-

posed model

Following Section 2, we generated synthetic data from the proposed spatio-temporal model

defined in equations (1), (3) and (4). Our aim is to check if the procedure of inference is

correct and if all the model parameters are identifiable. Consider the model given by:

Z(si, tj) = δ0 + δ1 w(si) + σ
ε(si, tj)√
λ(si)

, i = 1, . . . , 65, j = 1, . . . , 30.

To depict a realistic region we considered the coordinates of the Colorado state in the USA

for data generation. The process ε(·, ·) has zero mean and covariance function C(ds, dt) =

C1(ds)C2(dt), with ds representing the Euclidean distances in space and dt representing the

difference in time. We assume Ci(d) =
(

1 +
(
||d||
ai

)αi
)−1

, i = 1, 2; w(si) is a coordinate

Y in location si. We consider I = 65 locations and J = 30 instants in time. We assume

ln ν(si) = β0 + β1x1(si) where x1(si) is a standardized altitude in location si. Table 4 shows

the fixed values of the parameters for data simulation. These values were fixed to provide

realistic values of the artificial data. Figure 10 shows the spatial coordinates together with

5 locations that are left out from the inference procedure for predictive purposes.

Table 4: Values of the parameters used create the synthetic data.

Parameter δ0 δ1 σ2 a1 α1 a2 α2 β0 β1

True value 0.6 1.2 0.2 2.57 1.5 1.0 1.5 -0.8 0.5
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Figure 10: Monitoring locations (circles) of the artificial data generated under the proposed

process. The numbered locations (black squares) are the ones left out from the inference

procedure to check the predictive ability of the model.

Next we fitted the following two models:

NGP.X (I) with the following prior specification β0 ∼ NT−(0, 3) and β1 ∼ U(−1, 1)

(Prior 1 in Subsection 3.1);

NGP.X (D) with the following prior specification β0 ∼ U(−4, 0) e β1|β0 ∼ U(−L +

β0, L− β0) with L = ln(ln(30/3)) (Prior 2 in Subsection 3.1);

We assume prior independence among the other parameters of the model, and assign the

following prior distributions: a1 ∼ gamma(0.01, 0.01/m), m is the median of the Euclidean

distance among locations; a2 ∼ gamma(0.01, 0.01); αi ∼ U(0, 2), i = 1, 2; σ2 ∼ IG(2.1, 1)

and δ ∼ N2(0, diag(100)). We run two chains starting from very different initial values and

let the MCMC algorithm run for 30,000 iterations, used 10,000 as burn in and kept every

other 20th iteration to avoid autocorrelation among the sampled values. Convergence of the

chains was checked using R̂ test of Gelman and Rubin (1992).

The panels of Figure 11 show the posterior summary (median and 95% credible intervals)

for all parameters under models NGP.X(I) (black lines) and NGP.X(D) (gray lines). The

symbol ’*’ represents the respective true value of the parameter. Clearly, all posterior credible
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intervals contain the true values of the parameters. Moreover, the point estimates are very

close to the true values.
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Figure 11: Posterior summary (median and 95% credible intervals) for all parameters from

model NGP.X(I) (black line) and NGP.X(D) (gray line). The asterisks represents true value.

The panels of Figure 12 show the summary of the posterior predictive distribution ob-

tained for the five locations that were left out from the inference procedure for predictive

purposes. The proposed models recover quite well these observations.
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Figure 12: Posterior summary (median and 95% credible intervals) for five locations left out

from the inference procedure for the 30 time points.
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