
Hardness Magnification near State-Of-The-Art
Lower Bounds
Igor Carboni Oliveira
Department of Computer Science, University of Oxford, UK
igor.carboni.oliveira@cs.ox.ac.uk

Ján Pich
Department of Computer Science, University of Oxford, UK
jan.pich@cs.ox.ac.uk

Rahul Santhanam
Department of Computer Science, University of Oxford, UK
rahul.santhanam@cs.ox.ac.uk

Abstract
This work continues the development of hardness magnification. The latter proposes a new strategy
for showing strong complexity lower bounds by reducing them to a refined analysis of weaker models,
where combinatorial techniques might be successful.

We consider gap versions of the meta-computational problems MKtP and MCSP, where one
needs to distinguish instances (strings or truth-tables) of complexity ≤ s1(N) from instances of
complexity ≥ s2(N), and N = 2n denotes the input length. In MCSP, complexity is measured by
circuit size, while in MKtP one considers Levin’s notion of time-bounded Kolmogorov complexity. (In
our results, the parameters s1(N) and s2(N) are asymptotically quite close, and the problems almost
coincide with their standard formulations without a gap.) We establish that for Gap-MKtP[s1, s2]
and Gap-MCSP[s1, s2], a marginal improvement over the state-of-the-art in unconditional lower
bounds in a variety of computational models would imply explicit super-polynomial lower bounds.

Theorem. There exists a universal constant c ≥ 1 for which the following hold. If there exists ε > 0
such that for every small enough β > 0
(1) Gap-MCSP[2βn/cn, 2βn] /∈ Circuit[N1+ε], then NP * Circuit[poly].
(2) Gap-MKtP[2βn, 2βn + cn] /∈ TC0[N1+ε], then EXP * TC0[poly].
(3) Gap-MKtP[2βn, 2βn + cn] /∈ B2-Formula[N2+ε], then EXP * Formula[poly].
(4) Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula[N3+ε], then EXP * Formula[poly].
(5) Gap-MKtP[2βn, 2βn + cn] /∈ BP[N2+ε], then EXP * BP[poly].
(6) Gap-MKtP[2βn, 2βn + cn] /∈ (AC0[6])[N1+ε], then EXP * AC0[6].
These results are complemented by lower bounds for Gap-MCSP and Gap-MKtP against different
models. For instance, the lower bound assumed in (1) holds for U2-formulas of near-quadratic size,
and lower bounds similar to (3)-(5) hold for various regimes of parameters.

We also identify a natural computational model under which the hardness magnification threshold
for Gap-MKtP lies below existing lower bounds: U2-formulas that can compute parity functions at
the leaves (instead of just literals). As a consequence, if one managed to adapt the existing lower
bound techniques against such formulas to work with Gap-MKtP, then EXP * NC1 would follow via
hardness magnification.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Circuit Complexity, Minimum Circuit Size Problem, Kolmogorov Complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.27

Related Version A preprint of this work appeared at the Electronic Colloquium on Computational
Complexity (ECCC) as the report TR18-158 and is available at https://eccc.weizmann.ac.il/
report/2018/158/.

© Igor C. Oliveira, Ján Pich, and Rahul Santhanam;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 27; pp. 27:1–27:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/237395891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:igor.carboni.oliveira@cs.ox.ac.uk
mailto:jan.pich@cs.ox.ac.uk
mailto:rahul.santhanam@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://eccc.weizmann.ac.il/report/2018/158/
https://eccc.weizmann.ac.il/report/2018/158/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Hardness Magnification near State-Of-The-Art Lower Bounds

Funding This work was supported in part by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2014)/ERC Grant Agreement no. 615075 and
by the Austrian Science Fund (FWF) under project number P 28699.

Acknowledgements We thank Avishay Tal for bringing [55] to our attention in connection to the
problem of proving lower bounds against U2-Formula-⊕. We are also grateful to Jan Krajíček for
discussions related to hardness magnification.

1 Introduction

1.1 Context
Establishing limits on the efficiency of computations is widely considered to be one of the
most important open problems in computer science and mathematics. Unconditional lower
bounds are known in many restricted computational settings (see e.g. [8, 24]), but progress
in understanding the limitations of more expressive devices has been slow and incremental
(cf. [1] for a recent survey and references). Table 1 summarizes the current landscape of
unconditional lower bounds with respect to general circuits, formulas, branching programs,
bounded-depth threshold circuits, and bounded-depth circuits with modular gates. These
constitute some of the most widely investigated models extending the weak computational
settings for which we already have explicit super-polynomial lower bounds.

Table 1 A summary of several state-of-the-art lower bounds in circuit complexity theory. In our
notation, N denotes input length, and C[s] refers to C-circuits of size ≤ s. Establishing stronger
lower bounds in these different models is open (or non-trivial lower bounds for a function in
E = DTIME[2O(N)] in the case of ACC0

d).

Computational Model Unconditional Lower Bounds Reference(s)

Boolean Circuits; w.r.t. P * Circuit[cN], MA/1 * Circuit[Nk] [23, 14]
different forms of explicitness MAEXP * Circuit[poly] [9, 49]

Formulas over B2 P * B2-Formula[N2−o(1)] [39]

Formulas over U2 P * U2-Formula[N3−o(1)] [16, 54, 13]

Branching programs P * BP[N2−o(1)] [39]

Low-depth threshold circuits P * MAJ ◦ THR ◦ THR[N3/2−o(1)] [27]

Depth-d threshold circuits P * TC0
d[N1+exp(−d)] (wires) [22]

Depth-d circuits with mod gates quasi-NP * ACC0
d[poly] [38]

A conditional explanation has been proposed to address the difficulty of establishing
strong lower bounds in most of these computational settings. The theory of natural proofs [48]
shows that if a computational device can compute pseudorandom functions, then sufficiently
constructive techniques (such as those that have been successful against weaker models)
cannot show lower bounds of the form Nk if k is sufficiently large. This connection has
been quite influential, and subsequent works (see e.g. [36, 7]) have further investigated the
limitations of lower bound techniques from this perspective.

The Razborov-Rudich framework suggests that proving unconditional lower bounds
in stronger computational models might be tightly related to the investigation of meta-
computational problems of a particular form: those referring to the computational complexity

I. C. Oliveira, J. Pich, and R. Santhanam 27:3

of strings or truth-tables. Indeed, it has been subsequently proved that the existence of a
natural property for a class of circuits yields explicit lower bounds against the same class
[20, 60, 40, 19].

Our results describe a striking phenomenon associated to such problems. They show
that in several scenarios, if we could establish slightly stronger lower bounds for them,
i.e., lower bounds that marginally improve the size bounds described in Table 1, then
super-polynomial lower bounds for explicit problems would follow. More specifically, this
phenomenon concerns computational problems where the complexity of strings are measured
according to circuit complexity (often referred to as MCSP; see [26]) or Levin’s time-bounded
Kolmogorov complexity [32] (a problem known as MKtP; see [5]). MCSP and MKtP are
important meta-computational problems with connections to areas such as learning theory,
cryptography, proof complexity, pseudorandomness and circuit complexity (see e.g. [4] and
references therein). We refer to [3] for more discussion about the importance of these and
related complexity measures.

The new results are part of an emerging theory of hardness magnification showing that
weak lower bounds for some problems imply much stronger lower bounds. Several results
of this form have been obtained in different contexts [52, 6, 33, 37, 41], and we refer to [41]
for further discussion. Other forms of hardness magnification are known in settings such as
communication complexity and arithmetic circuit complexity. A recent example phrased in a
way that is closer to our results appears in [11] (see also [18]).

As explained in [6, 41], hardness magnification seems to avoid the natural proofs barrier
of [48]. It is therefore important to understand the role of magnification in connection to
super-polynomial lower bounds, and this work takes another step in this direction. Our main
contributions can be informally described as follows:
(i) We employ new techniques to obtain the first magnification theorem for the worst-case

formulation of the MCSP problem.1
(ii) Our results establish hardness magnification for a natural meta-computational problem

(MKtP) near the lower bound frontiers in several standard circuit models. In addition,
we identify a computational model where hardness magnification for MKtP lies below
existing lower bounds.

(iii) Crucially, our hardness magnification theorems hold for problems for which it is possible
to establish a variety of non-trivial lower bounds.

We believe these results further highlight the relevance of meta-computational problems in
connection to the main open problems in algorithms and complexity theory (see e.g. [59, 12]
for recent breakthroughs), and strongly indicate that the investigation of weak lower bounds
for MKtP and MCSP is a fundamental research direction.

1.2 Results
In this section, we formally state our results. We also briefly discuss some of our techniques,
which are explained in more detail in the main body of the paper. We defer a more elaborate
discussion of some results to Section 1.3.

Notation. We consider formulas over the bases U2 (fan-in two ANDs and ORs), B2 (all
boolean functions over two input bits), and extended U2-formulas where the input leaves
are labelled by literals, constants, or parity functions over the input bits of arbitrary arity.

1 Independently, Dylan McKay, Cody Murray, and Ryan Williams [35] established a magnification theorem
for a worst-case formulation of MCSP with a completely different proof.

CCC 2019

27:4 Hardness Magnification near State-Of-The-Art Lower Bounds

The corresponding classes of formulas of size at most s (measured by the number of leaves)
will be denoted by U2-Formula[s], B2-Formula[s], and U2-Formula-⊕[s], respectively. If we do
not specify the type of formulas, we are referring to De Morgan formulas (i.e., formulas over
U2). We also consider bounded-depth majority circuits, where each internal gate computes a
boolean-valued majority function (MAJ) of the form

∑
i∈S yi ≥? t (the circuit has access to

input literals x1, . . . , xn, x1, . . . , xn). We measure the size of such circuits by the number of
wires in the circuit. Depth-d majority circuits of size s will de denoted by MAJ0

d[s], where
d ≥ 1 is fixed. We also consider threshold circuits whose internal gates compute a threshold
function (THR) of the form

∑
i∈S wi · yi ≥? t, for wi, t ∈ R. We count number of gates in this

case, and let TC0
d[s] denote the corresponding class of circuits. Circuit[s] denotes fan-in two

boolean circuits of size s and of unbounded depth (gate types do not matter in our results).
More generally, for a circuit class C, we use C[s] to denote C-circuits of size ≤ s, where size is
measured by number of gates. Finally, BP[s] denotes deterministic branching programs of
size at most s. We refer to a standard textbook (see e.g. [24]) for more information about
these boolean devices.

Gap-MKtP and lower bounds for EXP. We use N to denote the input length of an instance
of Gap-MKtP[s1, s2] (see Definition 7 below), where we need to distinguish strings of Kt
complexity [32] (a certain time-bounded variant of Kolmogorov complexity) at most s1(N)
from strings of Kt complexity at least s2(N). It is not hard to see that for constructive
bounds s1 < s2, Gap-MKtP[s1, s2] ∈ EXP.

We establish a hardness magnification theorem for Gap-MKtP. (In Section 2, we review
some relations between the complexity classes and boolean devices appearing below.) Let
n = logN .

I Theorem 1 (Hardness magnification for MKtP). There is a universal constant c ≥ 1 for
which the following hold. If there exists ε > 0 such that for every small enough β > 0
1. Gap-MKtP[2βn, 2βn + cn] /∈ Circuit[N1+ε], then EXP * Circuit[poly].
2. Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula-⊕[N1+ε], then EXP * Formula[poly].
3. Gap-MKtP[2βn, 2βn + cn] /∈ AND-THR-THR-XOR[N1+ε], then EXP * TC0

2[poly].
4. Gap-MKtP[2βn, 2βn + cn] /∈ MAJ0

2d′+d+1[N1+(2/d′)+ε], then EXP * MAJ0
d[poly].

5. Gap-MKtP[2βn, 2βn + cn] /∈ B2-Formula[N2+ε], then EXP * Formula[poly].
6. Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula[N3+ε], then EXP * Formula[poly].
7. Gap-MKtP[2βn, 2βn + cn] /∈ BP[N2+ε], then EXP * BP[poly].
8. Gap-MKtP[2βn, 2βn + cn] /∈ (AC0[6])[N1+ε], then EXP * AC0[6].

Interestingly, this result shows the existence of a single meta-computational problem that
is connected to several frontiers in complexity theory.

The proof of Theorem 1 relies on a refinement of some ideas from [41, Section 3.2]. In fact,
item 1 of Theorem 1 is a restatement of [41, Theorem 3]. For a sketch of the argument and
its underlying techniques, we refer to the discussion in Section 3. We mention that crucial in
the proof is the use of error-correcting codes, and that the complexity of computing these
objects using different boolean devices gives rise to the distinct magnification thresholds
observed in Theorem 1. The formal proof of Theorem 1 appears in Sections 3.1 and 3.2.

In contrast, we observe the following unconditional lower bounds.

I Theorem 2 (Strong lower bounds for large parameters). For every ε > 0 there exists δ > 0
for which the following results hold:
1. Gap-MKtP[2(1−δ)n, 2n−1] /∈ U2-Formula[N3−ε].
2. Gap-MKtP[2(1−δ)n, 2n−1] /∈ B2-Formula[N2−ε].
3. Gap-MKtP[2(1−δ)n, 2n−1] /∈ BP[N2−ε].

I. C. Oliveira, J. Pich, and R. Santhanam 27:5

The proof of Theorem 2 is simple, assuming certain results. It relies on the existence of
pseudorandom generators against small formulas and small branching programs [21], together
with an observation from [3]. The argument appears in Appendix A.2.

Note the different regime of parameters for Gap-MKtP[s1, s2] in Theorems 1 and 2.
In order to magnify a weak lower bound using Theorem 1, we need that it holds for
s1 = 2o(n) = No(1). The next result shows that non-trivial unconditional lower bounds can
be obtained in this regime.

I Theorem 3 (A near-quadratic formula lower bound). For every constant 0 < α < 2 there
exists C > 1 such that Gap-MKtP[Cn2, 2(α/2)n−2] /∈ U2-Formula[N2−α].2

The proof of Theorem 3 adapts ideas from [17, Section 4] (see also the exposition in [41,
Appendix C.1]) employed in the context of MCSP for larger parameters. A sketch of the
argument followed by a proof can be found in Appendix A.1.

Gap-MCSP and lower bounds for NP. We use N = 2n to denote the input length of
an instance of Gap-MCSP[s1, s2] (see Definition 9 below), where one needs to distinguish
functions of circuit complexity at most s1 from functions of circuit complexity at least s2. It
is not hard to see that for constructive bounds s1 < s2, Gap-MCSP[s1, s2] ∈ NP.

We establish the following magnification theorem for Gap-MCSP.

I Theorem 4 (Hardness magnification for MCSP). There is a universal constant c ≥ 1 for
which the following holds. If there exists ε > 0 such that for every small enough β > 0
1. Gap-MCSP[2βn/cn, 2βn] /∈ Circuit[N1+ε], then NP * Circuit[poly].

MCSP and MKtP are quite different problems. In our results, an important distinction
is that applying a polynomial-time function to an input of MKtP does not substantially
increase its Kt complexity (cf. Proposition 8), but this is not necessarily true in the context
of circuit complexity, where the input string represents an entire truth-table. For this reason,
the proof of Theorem 4 is completely different from the proof of Theorem 1.

Theorem 4 is our main technical contribution. The argument relies on the notion of anti-
checkers. Roughly speaking, an anti-checker is a bounded collection S of inputs associated
with a hard function f such that any small circuit C differs from f on some input in S.
More precisely, it was established in [34] that any function f : {0, 1}n → {0, 1} that requires
circuits of size s admits a collection Sf containing O(s) strings that is an anti-checker against
circuits of size roughly s/n. Our argument makes crucial use of anti-checkers, and en route
to Theorem 4 we give a more constructive proof of their existence. (While the proof in [34]
uses min-max theory, our proof is combinatorial and self-contained.)

We remark that anti-checkers were first employed for hardness magnification in the
context of proof complexity [37]. However, while the existential result from [34] was sufficient
in that context, this is not the case in circuit complexity, and our argument needs to be more
sophisticated. For the reader interested in learning more about hardness magnification in
proof complexity, how it relates to meta-computational problems such as MCSP, and how
the new results compare with previous work, we refer to Appendix B.

The proof of Theorem 4 is not difficult given a certain lemma about the construction
of anti-checkers (see Section 4.1). The crucial Anti-Checker Lemma (see Lemma 17) says
that NP ⊆ Circuit[poly] implies the existence of circuits of almost linear size which given the

2 The constant C has an exponential dependence on 1/α.

CCC 2019

27:6 Hardness Magnification near State-Of-The-Art Lower Bounds

truth table of a Boolean function f print a corresponding set Sf . The circuits provided by
the Anti-Checker Lemma simulate the alternate proof of the existence of anti-checkers, but
make the involved argument constructive by using approximate counting and the assumption
NP ⊆ Circuit[poly]. The strategy for proving the Anti-Checker Lemma is somewhat similar to
the proof of Sp2 ⊆ ZPPNP [10]. A high-level exposition and the complete proof are described
in Section 4.3

I Remark. Implicit in our proof of Theorem 4 is a Turing kernelization for the parameterized
version of Gap-MCSP which might be of independent interest – there are nearly-linear sized
circuits which solve any instance of Gap-MCSP with parameter s using oracle access to
poly(s)-sized instances of a fixed language in the Polynomial Hierarchy.

We are able to show the following related unconditional lower bound against formulas.

I Theorem 5. For each 0 < α < 2 there exists d > 1 such that Gap-MCSP[nd, 2(α/2−o(1))n] /∈
U2-Formula[N2−α].

Consequently, if one could establish an analogue of Theorem 4 for sub-quadratic formulas,
then NP * Formula[poly]. We explain why the argument behind the proof of Theorem 4 fails
in the case of formulas in Section 4.2.4 The proof of Theorem 5 is similar to the proof of
Theorem 3, and we sketch the necessary modifications in Appendix A.3.

Finally, in Section 4.3 we discuss a certain combinatorial hypothesis (“The Anti-Checker
Hypothesis”) connected to the techniques behind the proof of Theorem 4. If this hypothesis
holds, then NP * Formula[poly]. We observe that the hypothesis does hold in the average-
case, but we are unsure about its plausibility in the worst-case context that is sufficient for
super-polynomial formula lower bounds.

1.3 Discussion
This work is a sequel to an earlier paper of two of the authors [41], in which hardness
magnification was first explored in a systematic way. The results in [41] are for a variety
of problems (including SAT, Vertex Cover and variants of MKtP and MCSP)5 and models
(including formulas, circuits and sublinear-time algorithms). For each (problem, model) pair
considered in [41], it is shown that non-trivial lower bounds for the problem against the
model imply super-polynomial lower bounds for some other explicit problem.

As discussed in [41], there are two natural interpretations of magnification results. The
first, more optimistic, interpretation is that magnification constitutes a new approach to
proving strong lower bounds. If we are able to replicate the non-trivial circuit lower bounds
we can prove against models such as constant-depth circuits (in the worst case) or formulas
(in the average case) for the problems witnessing the magnification phenomenon, then this
would lead to new and powerful lower bounds. There are no well-understood obstacles
to the success of such an approach. In particular, the natural proofs barrier of Razborov
and Rudich [48] does not seem to say anything interesting about the success or failure of
such an approach.

3 We stress that the assumption that NP ⊆ Circuit[poly] allows several computations to be performed
in circuit size O(Nc), where N is the input length. Note however that our requirement is much more
stringent: we need to construct anti-checkers using circuits of size O(N1+ε) instead of O(Nc) for
some c ∈ N.

4 Note that Theorem 4 implies lower bounds for a problem in NP. Theorem 1 only gives lower bounds in
EXP, but its proof extends to several low-complexity settings.

5 The variant of MCSP investigated in [41] is different than the one discussed in this work, and refers to
the average-case circuit complexity of the input truth table.

I. C. Oliveira, J. Pich, and R. Santhanam 27:7

The other, more pessimistic, interpretation of magnification results is that they indicate
that circuit lower bounds might be even harder to achieve than previously thought. Earlier,
super-polynomial lower bounds seemed to be out of reach, but there was no strong reasons to
believe that small fixed polynomial lower bounds or at least barely non-trivial lower bounds
are hard to show. Modulo the belief that super-polynomial circuit lower bounds for explicit
hard problems are hard to show, the magnification phenomenon suggests that for several
natural problems of interest, even non-trivial lower bounds are hard to show.

The results of [41] have drawbacks from the point of view of either interpretation, which
the present work addresses.

For the optimistic interpretation, it would be good to have examples of natural problems
where some magnification phenomenon holds, and where in addition, there are techniques
giving non-trivial lower bounds. In this work, we give magnification results for the Gap-MKtP
and Gap-MCSP problems, for both of which we show that there are non-trivial lower bounds
in the model of Boolean formulas. Thus there is some lower bound technique which works to
give a non-trivial result – the question is “merely” whether it can be strengthened to derive
a lower bound beyond the magnification threshold.

While the pessimistic interpretation might not lead to new lower bounds, it does have
the potential of leading to a better understanding of barriers. From this point of view, [41] is
not particularly sensitive to the specific model being considered. It is clear that some models
are easier to prove lower bounds for than others – indeed we have near-cubic lower bounds
in the De Morgan formula model, near-quadratic lower bounds in the branching program
model, and only trivial lower bounds in the Boolean circuit model. Can magnification be
used to give a new perspective on these differences between models?

We provide a positive answer to this question, by giving different magnification thresholds
for different models. What remains mysterious is why known lower bound techniques fall
short of proving lower bounds required to apply magnification. This suggests that there are
limitations of the known techniques above and beyond those captured by natural proofs – an
important direction for further research.

It is worth emphasizing that there are natural problems for which showing lower bounds
that are weaker than the current state-of-the-art size bounds would also imply super-
polynomial lower bounds [41]. A representative example presented in [41] concerns an
average-case version of MCSP, where the problem refers to the average-case circuit complexity
of the input function. The reason that work does not imply super-polynomial lower bounds
via magnification is that the corresponding unconditional lower bounds and magnification
theorems hold for a different regime of the average-case complexity parameter.6

Our results and techniques were motivated in part by the desire to address this gap. On
the one hand, it seems to be easier to analyse problems that refer to the worst-case complexity
of the input. But on the other hand, our new results indicate that the shift from average-case
to worst-case complexity (in the description of the problem) often increases the magnification
threshold to size bounds that are beyond existing techniques. As a concrete example, if
the formula magnification theorem for the average-case MCSP problem investigated in [41]
could be established for the worst-case variant investigated here, NP * NC1 would follow
via Theorem 5. Another glimpse of the subtle transition between worst-case and average-
case complexity and its role in magnification appears in the discussion of the Anti-Checker
Hypothesis in Section 4.3.

6 In particular, the lower bounds and magnification theorems from [41] do not hold for the same problems.

CCC 2019

27:8 Hardness Magnification near State-Of-The-Art Lower Bounds

Complementing these results, we identify a computational model that has not received
much attention in the literature, and for which the magnification threshold for Gap-MKtP
lies below existing lower bounds. This corresponds to Theorem 4 Item 2, i.e., U2-formulas
augmented with parities in the leaves (our exposition in Section 3 focuses on this model).
Note that, by a straightforward simulation, before breaking the cubic barrier for U2-formulas
or the quadratic barrier for B2-formulas, one needs to show super-linear lower bounds against
U2-Formula-⊕. But a recent result of Tal [55] implies exactly that: the inner product function
over N input bits is not in U2-Formula-⊕[N1.99].

This makes this computational model particularly attractive in connection to hardness
magnification and lower bounds. Indeed, it seems “obvious” that Gap-MKtP[2δn, 2δn + cn] /∈
U2-Formula-⊕[N1.01], given that such formulas cannot compute the much simpler inner
product function, and that standard formulas require at least near-quadratic size (Theorem 3).
Our work shows that if this is the case, then EXP * NC1.

2 Preliminaries

For ` ∈ N, we use [`] to denote the set {1, . . . , `}. The length of a string w will be denoted by
|w|. Our logarithms are in base 2, and we use exp(x) to denote ex. We use boldface symbols
such as i and ρ to denote random variables, and x ∈R S to denote that x is a uniformly
random element from a set S. We often identify n with logN or N with 2n, depending on
the context.

For concreteness, we employ a random-access model to formalize uniform algorithms. The
details of the model are not crucial in our results, and only mildly affect the gap parameters
s1 and s2. We fix some standard encoding of algorithms as strings, and use 〈M〉 to denote the
string encoding the algorithm M . Moreover, we assume for simplicity the following property
of this encoding: if an algorithm C is obtained via the composition of the computations of
algorithms A and B, then |〈C〉| ≤ |〈A〉|+ |〈B〉|+O(1). (Roughly speaking, composing two
codes gives a new valid code.7) The running time of M on x is denoted by tM (x).

We introduce next the notion of Kt complexity. We adopt a formulation that is more
convenient for our purposes. In particular, we avoid the use of universal machines in the
definition given below.8 (Our definition is easily seen to be within at most a logarithmic
additive term of the formulation using universal machines. We stress that our proofs can be
adapted to work with any reasonable definition.)

I Definition 6 (Kt Complexity ([32]; see also [3])). For a string x ∈ {0, 1}∗, Kt(x) denotes
the minimum of |〈M〉|+ |a|+ dlog tM (a)e over pairs (M,a) such that the machine M outputs
x when it computes on the input string a.

I Definition 7 (The Gap-MKtP Problem). We consider the promise problem Gap-MKtP[s1, s2],
where s1, s2 : N→ N and s1(N) < s2(N) for all N ∈ N. For each N ≥ 1, Gap-MKtP[s1, s2]

7 While this holds for instance for programs with relative jump instructions (i.e., goto instructions where
the new line is encoded relative to the number of the current line), we remark this is not true in general.
For instance, composing two Turing Machines might require renaming all states of one machine, which
could result in a new encoding of length (1 + o(1))|〈A〉|+ |〈B〉|. Depending on the computational model,
the results in Theorem 1 might need parameters s2 = (1 + o(1))s1.

8 Universal machines are still needed to upper bound the time complexity of computing Kt complexity.
Moreover, the exact Kt complexity of a string depends on the choice of encoding for algorithms/machines.

I. C. Oliveira, J. Pich, and R. Santhanam 27:9

is defined by the following sets of instances:

YESN
def= {x ∈ {0, 1}N | Kt(x) ≤ s1(N) }, and

NON
def= {x ∈ {0, 1}N | Kt(x) > s2(N) }.

We will need the following simple result.

I Proposition 8 (Kt complexity and composition). Let B be an algorithm that runs in time
at most TB(N) over inputs of length N . Then, for every input w ∈ {0, 1}N , as N grows
we have

Kt(B(w)) ≤ Kt(w) + log(TB(N)) +O(1).

Proof. Let A be a machine and a be a string such that the pair (A, a) witnesses the value
Kt(w). Let C be the composition of machines A and B, i.e., C(y) = B(A(y)). We claim that
the pair (C, a) witnesses the inequality in the conclusion of the proposition. Indeed, since
C(a) = B(A(a)) = B(w), we get

Kt(B(w)) ≤ |〈C〉|+ |a|+ dlog tC(a)e
≤ |〈A〉|+ |〈B〉|+O(1) + |a|+ log(tA(a) + tB(w))
≤ |〈A〉|+ |a|+ log(tA(a)) + log(tB(w)) + |〈B〉|+O(1)
≤ Kt(w) + log(TB(N)) +O(1),

where we have used that |〈B〉| is constant as N grows. J

We also consider a natural formulation of the gap version of the Minimum Circuit Size
Problem (MCSP). The circuit complexity of a boolean function f : {0, 1}n → {0, 1} is denoted
by Size(f). We use the same notation to represent the circuit complexity of the function
encoded by a string x ∈ {0, 1}2n .

IDefinition 9 (The Gap-MCSP Problem). We consider the promise problem Gap-MCSP[s1, s2],
where s1, s2 : N→ N and s1(n) < s2(n) for all n ∈ N. For each n ≥ 1, Gap-MCSP[s1(n), s2(n)]
is defined by the following sets of instances:

YESn
def= {x ∈ {0, 1}2n | Size(x) ≤ s1(n) }, and

NOn
def= {x ∈ {0, 1}2n | Size(x) > s2(n) }.

A brief review of uniform complexity classes and connections to non-uniform devices.
To provide some context for Theorem 1, we remind the reader about the following relations
involving boolean devices and complexity classes. Under an appropriate uniform formulation
of circuit classes, we have the inclusions:

(uniform classes) AC0 ⊆ ACC0 ⊆ MAJ0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ P.

Some of these classes are related in the non-uniform case as follows: NC1 = U2-Formula[poly] =
B2-Formula[poly] = (width 5) BP[poly], L/poly = BP[poly], P/poly = Circuit[poly], and
MAJ0[poly] = TC0[poly]. These equivalences might require a complexity overhead in size or
depth. We refer to [44, 24] for these and other related results.

CCC 2019

27:10 Hardness Magnification near State-Of-The-Art Lower Bounds

3 Hardness Magnification via Error-Correcting Codes

In this section, we prove Theorem 1. First, we provide a high-level exposition of the argument.

Proof Idea. The result is established in the contrapositive. The idea is to reduce Gap-
MKtP[s1, s2] to a problem in EXP over instances of size poly(s1, s2)� N , and to invoke the
assumed complexity collapse to solve Gap-MKtP using very efficient circuits (or other boolean
devices). First, we apply an error-correcting code (ECC) to the input string w ∈ {0, 1}N .
Since this can be done by a uniform polynomial time computation, we are able to show
that ECC(w) ∈ {0, 1}O(N) is a string of Kt complexity ` < s2 if w has Kt complexity ≤ s1.
On the other hand, using an efficient decoder for the ECC, we can show that if w has Kt
complexity ≥ s2, then any string of Kt complexity > ` differs from ECC(w) on a constant
fraction of coordinates. Let z = ECC(w). Given the gap in the input instances of Gap-MKtP,
our task now is to distinguish strings z that have Kt complexity at most ` from strings that
cannot be approximated by strings of Kt complexity at most `, where s1 < ` < s2.

We achieve this by using a random projection of the input z to a string y of size roughly
`� N . The intuition is that if z has Kt complexity at most `, then every projection of z
also agrees with some string (i.e., z) of Kt complexity at most `. However, it is possible to
argue that if z cannot be approximated by a string of Kt complexity at most `, then with
high probability no string of Kt complexity at most ` agrees with the randomly projected
coordinates of z. Checking which case holds when we are given the string y can be done by
an exponential time algorithm. Under the assumption that EXP admits small circuits, we
are able to solve this problem in complexity poly(`)� N .

The reduction sketched above requires (1) the computation of an appropriate ECC, and
(2) is randomized. A careful derandomization and the computation of the ECC in different
models of computation provide the size bounds corresponding to the magnification thresholds
appearing in the statement of Theorem 1.

We start with a detailed proof of Item (2), which covers the more interesting scenario
of formulas with parity leaves. We then discuss how a simple modification of the argument
together with known results imply the other cases.

3.1 Proof of Theorem 1 Case 2 (Magnification for formulas with
parities)

We will need the following explicit construction.

I Theorem 10 (Explicit linear error-correcting codes (cf. [25, 50])). There exists a sequence
{EN}N∈N of error-correcting codes EN : {0, 1}N → {0, 1}M(N) with the following properties:

EN (x) can be computed by a uniform deterministic algorithm running in time poly(N).
M(N) = b ·N for a fixed b ≥ 1.
There exists a constant δ > 0 such that any codeword EN (x) ∈ {0, 1}M(N) that is
corrupted on at most a δ-fraction of coordinates can be uniquely decoded to x by a uniform
deterministic algorithm D running in time poly(M(N)).
Each output bit is computed by a parity function: for each input length N ≥ 1 and for
each coordinate i ∈ [M(N)], there exists a set SN,i ⊆ [N] such that for every x ∈ {0, 1}N ,

EN (x)i =
⊕
j∈SN,i

xj .

I. C. Oliveira, J. Pich, and R. Santhanam 27:11

We proceed with the proof of Theorem 1 Part (2). We establish the contrapositive.
Assume that EXP ⊆ Formula[poly], and recall that N = 2n. For any ε > 0, we prove
that Gap-MKtP[2βn, 2βn + cn] ∈ U2-Formula-⊕[N1+ε] for a sufficiently small β > 0 and a
universal choice of the constant c. The value of c will be specified later in the proof (see
Claim 12 below).

Let EN : {0, 1}N → {0, 1}M be the error-correcting code granted by Theorem 10, where
M(N) = bN . Given an instance w ∈ {0, 1}N of Gap-MKtP[2βn, 2βn + cn], we first apply EN
to w ∈ {0, 1}N to get z = EN (w) ∈ {0, 1}M .

B Claim 11. There exists c0 ≥ 1 such that for every large enough N the following holds. If
Kt(w) ≤ 2βn, then Kt(z) ≤ 2βn + c0n.

Proof. The claim follows immediately from the upper bound on Kt(w), the definition of
z = EN (w), the running time of EN , and Proposition 8. C

B Claim 12. There exist c > c1 > c0 ≥ 1 such that for every large enough N the following
holds. If Kt(w) > 2βn + cn, then Kt(z′) > 2βn + c1n for any z′ ∈ {0, 1}M that disagrees with
z on at most a δ-fraction of coordinates.

Proof. Suppose that a string z′ ∈ {0, 1}M disagrees with z on at most a δ-fraction of
coordinates, and that Kt(z′) ≤ 2βn + c1n for some c1 > c0. We upper bound the Kt
complexity of w by combining a description of z′ with the decoder D provided by Theorem
10. In more detail, assume the pair (F, a) witnesses Kt(z′). Let B be the machine that first
applies the machine F to a (producing z′), then D to z′. It follows from Theorem 10 that
B(a) = D(F (a)) = D(z′) = w. Similarly to the proof of Proposition 8, we also get

Kt(w) ≤ |〈B〉|+ |a|+ dlog tB(a)e
≤ |〈F 〉|+ |〈D〉|+O(1) + |a|+ log(tF (a) + tD(z′))
≤ Kt(z′) + log(tD(z′)) +O(1)
≤ (2βn + c1n) +O(n) +O(1)
≤ 2βn + cn,

if n is large enough and we choose c sufficiently large. C

Next we define an auxiliary language L ∈ EXP, efficiently reduce Gap-MKtP to L, and use
the assumption that EXP has polynomial size formulas to obtain almost-linear size formulas
(of the appropriate kind) for Gap-MKtP. Roughly speaking, we are able to obtain a formula
of non-trivial size for Gap-MKtP because our reduction maps input instances of length N to
instances of L of length No(1) (the o(1) term is captured by the parameter β using n = logN).
As we will see shortly, the reduction is randomized. In order to get the final U2-formula-⊕
computing Gap-MKtP, the argument is derandomized in a straightforward but careful way.
More details follow.

An input string y encoding a tuple (a, 1b, (i1, α1), . . . , (ir, αr)) belongs to L (where a and
b are positive integers, a is encoded in binary, and αj ∈ {0, 1}) if each ij (for 1 ≤ j ≤ r) is a
string of length dlog ae and there is a string z of length a such that Kt(z) ≤ b and for each
index j we have zij = αj .

B Claim 13. L ∈ EXP.

Proof. L is decidable in exponential time as we can exhaustively search all strings of Kt
complexity at most b and length exactly a and check if there is one which has the specified
values at the corresponding bit positions. Indeed, using the definition of Kt complexity and

CCC 2019

27:12 Hardness Magnification near State-Of-The-Art Lower Bounds

an efficient universal machine, a list containing all such strings can be generated in time
poly(2b), which is at most exponential in the input length 1b. In turn, checking that a string
of length a satisfies the requirement takes time at most exponential in the total input length,
since each index ij is a string of length dlog ae. C

Since EXP ⊆ Formula[poly] by assumption, L has polynomial-size formulas. Assume
without loss of generality that L has formulas of size O(`k) for some constant k, where ` is
its total input length. We choose β = ε/100k.

We are ready to describe a low-complexity reduction from Gap-MKtP[2βn, 2βn + cn] to L.
First, we use the error-correcting code to compute z from w, as described above. Then we
apply the following sampling procedure. We sample uniformly and independently r = 22βn

indices i1, . . . , ir ∈R [M], where M = bN . We then form the string y encoding the tuple

(M, 12βn+c1n, (i1, zi1), . . . , (ir, zir)),

where c1 > c0 ≥ 1 is provided by Claim 12. Note that this is a string of length `(N) ≤ Nε/10k.

B Claim 14. The following implications hold:
(a) If w ∈ {0, 1}N is a positive instance of Gap-MKtP[2βn, 2βn + cn], then y ∈ L with

probability 1.
(b) If w ∈ {0, 1}N is a negative instance of Gap-MKtP[2βn, 2βn + cn], then y /∈ L with

probability > 1/2.

Proof. If w is a YES instance, we have by Claim 11 that Kt(z) ≤ 2βn + c0n ≤ 2βn + c1n. In
this case, z is a string of length M that has the specified values at the specified bit positions,
regardless of the random positions that are sampled by the reduction. Consequently, y ∈ L
with probability 1.

For the claim about NO instances, as previously established in Claim 12, we have that
Kt(z′) > 2βn + c1n for any z′ such that |z′| = |z| = M and Pri∈R[M][z′i 6= zi] ≤ δ. Now
consider any string z′′ of length M such that Kt(z′′) ≤ 2βn + c1n. For such a string z′′, for
each j ∈ [r], the probability that the random projection satisfies z′′ij

= zij
(where ij ∈R [M])

is at most 1− δ. Hence the probability that z′′ agrees with z at all the specified bit positions
is at most (1− δ)r ≤ exp(−δr) ≤ exp(−δ22βn). By a union bound over all strings z′′ with
Kt(z′′) ≤ 2βn + c1n, the probability that there exists a string z′′ with Kt complexity at most
2βn + c1n which is consistent with the values at the specified bit positions is exponentially
small in n. Hence with high probability y /∈ L. C

To sum up, there is a randomized reduction from Gap-MKtP[2βn, 2βn + cn] over inputs of
length N to instances of L of length `(N) ≤ Nε/10k. Now let {F`(N)}N≥1 be a sequence of U2-
formulas of size O(`k) for L. Our randomized formulasG(·) for Gap-MKtP compute as follows.

1. G(w) =
∧N
j=1G

(j)(w), where each G(j) is an independent copy.
2. EachG(j)(w) is a randomized formula of the form G(j)(w, i1, . . . , ir) that first computes z

from w, then computes y from z using the (random) input indices i1, . . . , ir ∈ {0, 1}logM ,
and finally applies F` to y.

It follows from Claim 14 using the independence of each G(j) that

Pr[G(w) is incorrect] < 2−N ,

where the probability is taken over the choice of the random input of G. Consequently, by a
union bound there is a fixed choice γ ∈ {0, 1}∗ of the randomness of G (corresponding to
the positions of the different random projections) such that the deterministic formula Gγ
obtained from G and γ is correct on every input string w.

I. C. Oliveira, J. Pich, and R. Santhanam 27:13

B Claim 15. Each deterministic sub-formula G(j)
γ (w) can be computed by a U2-formula

extended with parities at the leaves of size at most O(`(N)k) ≤ Nε/2.

Proof. Note that each bit of z can be computed from the input string w using an appropriate
parity function (as described in Theorem 10). We argue that the leaves of G(j)

γ are precisely
the leaves of the U2-formula F` replaced by appropriate literals, constants, or parities. Recall
that G(j)

γ applies F` to the string y obtained from z. However, since γ is fixed, the positions
of z that are projected in order to compute y are also fixed, and so are the substrings of y
describing the corresponding positions. Consequently, the size (i.e. number of leaves) of each
G

(j)
γ is at most the size of F`, which proves the claim. C

It follows from this claim that Gγ(w) can be computed by a formula containing at most
N1+ε leaves, and hence Gap-MKtP[2βn, 2βn + cn] ∈ U2-Formula-⊕[N1+ε]. (Observe that we
have used in a crucial way that the derandomized sub-formulas do not need to compute
address functions to generate y from z.) This completes the proof of Theorem 1 Part (2).

3.2 Completing the proof of Theorem 1
In this section, we discuss how the argument presented in Section 3.1 can be adapted to
establish the remaining items of Theorem 1.

First, note that Items (5) and (6) immediately follow from Item (2). This is because a
parity gate over at most N input variables can be computed by B2-formulas of size O(N) and
by U2-formulas of size O(N2). Consequently, using that formula size is measured with respect
to the number of leaves, we immediately get U2-Formula-⊕[s(N)] ⊆ B2-Formula[s(N) · N]
and U2-Formula-⊕[s(N)] ⊆ U2-Formula[s(N) ·N2].

In order to get Item (1), it is sufficient to compute an error-correcting code as in Theorem
10 using circuits of (almost) linear size. In other words, we need the entire codeword (and
not just each output bit) to be computable from the input message using a circuit of size
O(N). The existence of such codes is well-known [50, 51]. The rest of the reduction produces
an additive overhead in circuit size of at most N1+ε gates.

Finally, to establish Item (4), we use the following construction from [56].

I Theorem 16 (Computing ECCs in parallel using majorities and few wires [56]). For every
depth d′ ≥ 1 there are constants δ(d′) > 0 and b(d′) ≥ 1 and a sequence {EN}N∈N of
error-correcting codes EN : {0, 1}N → {0, 1}M with the following properties:

EN (x) can be computed by a uniform deterministic algorithm running in time poly(N).
M(N) = b ·N .
Any codeword EN (x) ∈ {0, 1}M that is corrupted on at most a δ-fraction of coordinates
can be uniquely decoded to x by a uniform deterministic algorithm D running in time
poly(M).
EN (x) ∈ {0, 1}M can be computed by a multi-output circuit from MAJ0

2d′ [O(N1+(2/d′))],
where circuit size is measured by number of wires.

Following the steps of the reduction described in Section 3.1, under the assumption that
EXP ⊆ MAJ0

d[poly] the final depth of the circuit solving Gap-MKtP is 2d′ + d+ 1, where the
terms in this sum correspond respectively to the computation of the error-correcting code
(for a choice of d′ ≥ 1), each (circuit) G(j)

α , and the topmost AND gate in Gα (constant bits
can be produced in depth 1 from input literals). Similarly, the overall size (number of wires)
of the circuit is O(N1+(2/d′)) +O(N1+ε) +O(N) ≤ N1+(2/d′)+ε.

Item (3) is established in the obvious way given the previous explanations. Item (8) uses
that parity gates can be simulated using mod 6 gates.

CCC 2019

27:14 Hardness Magnification near State-Of-The-Art Lower Bounds

Finally, we deal with case (7), which refers to branching program complexity. First,
note that the parity of n bits can be computed by a branching program of size O(n). In
addition, if f(x) = g(h1(x), . . . , hk(x)), each hi has a branching program of size s, and g has
a branching program of size t, then f has a branching program of size ` = O(t · s). Finally, a
conjunction of N branching programs of size ` has branching program size at most O(N · `).
Combining these facts in the natural way yields case (7). This completes the proof of all
cases in Theorem 1.

4 Hardness Magnification via Anti-Checkers

4.1 Proof of Theorem 4 (Magnification for MCSP)
In this section, we derive Theorem 4 from Lemma 17, whose proof appears in Section 4.2.
Informally, an anti-checker (cf. [34]) for a function f is a multi-set of input strings such that
any circuit of bounded size that does not compute f is incorrect on at least one of these
strings.

I Lemma 17 (Anti-Checker Lemma). If NP ⊆ Circuit[poly] there is a constant k ∈ N for
which the following hold. For every sufficiently small β > 0, there is a circuit C of size
≤ 2n+kβn that when given as input a truth-table tt(f) ∈ {0, 1}N , where f : {0, 1}n → {0, 1},
outputs t = 210βn strings y1, . . . , yt ∈ {0, 1}n such that if f /∈ Circuit[2βn] then every circuit
of size ≤ s where s = 2βn/10n fails to compute f on at least one of these strings.

The Anti-Checker Lemma is a powerful tool that might be of independent interest. It
says that anti-checkers of bounded size for functions requiring circuits of size 2o(n) can be
produced in time that is almost-linear in the size of the function (viewed as a string), under
the assumption that circuit lower bounds do not hold.9

Proof of Theorem 4. Assume that NP ⊆ Circuit[poly]. We prove that for every given ε > 0
there exists a small enough β > 0 such that Gap-MCSP[2βn/10n, 2βn] ∈ Circuit[N1+ε].

We consider the problem Succinct-MCSP, defined next. Its input instances are of the form
〈1n, 1s, 1t, (x1, b1), . . . , (xt, bt)〉, where xi ∈ {0, 1}n and bi ∈ {0, 1}, i ∈ [t]. Note that each
instance can be encoded by a string of length exactly m = n+ 1 + s+ 1 + t+ 1 + t · (n+ 1).
An input string is a positive instance if and only if it is in the appropriate format and
there exists a circuit D over n input variables and of size at most s such that D(xi) = bi
for all i ∈ [t]. Note that the problem is in NP as a function of its total input length m.
Under the assumption that NP is easy for non-uniform circuits, there exists ` ∈ N such
that Succinct-MCSP can be solved by circuits Em of size m` on every large enough input
length m.

Take β = ε/(100 · ` · k), where k is the constant from Lemma 17. In order to construct
a circuit for Gap-MCSP, first we reduce this problem to an instance of Succinct-MCSP of
length m using Lemma 17, then we invoke the ml-sized circuit for this problem. More
precisely, on an input f : {0, 1}n → {0, 1}, we use the circuit C (as in Lemma 17) to
produce a list of strings y1, . . . , yt ∈ {0, 1}n, generate from this list and f the input instance
z = 〈1n, 1s, 1t, ((y1, f(y1)), . . . , (yt, f(yt))〉, for parameters s = 2βn/10n, t = 210βn, m =
poly(n) · 210βn, and output Em(z).

9 We have made no attempt to optimize the constants in Lemma 17.

I. C. Oliveira, J. Pich, and R. Santhanam 27:15

Correctness follows immediately from Lemma 17 and our choice of parameters. Indeed, if
f ∈ Circuit[2βn/10n] then no matter the choice of y1, . . . , yt the circuit Em accepts z thanks
to our choice of s = 2βn/10n. On the other hand, when f /∈ Circuit[2βn] then by Lemma 17
every circuit of size s fails on some string from the list, and consequently Em(z) = 0.

We upper bound the total circuit size using the choice of β. Circuit C has size at most
2n+kβn ≤ N1+ε/3. In addition, producing the input z can be done from f and y1, . . . , yt by
a circuit of size at most O(t ·N) ≤ N1+ε/3, since each address function can be computed
in linear size O(N) (see e.g. [58]). Finally, Em has size at most m` ≤ N1+ε/3. Overall, it
follows that Gap-MCSP[2βn/10n, 2βn] is computable by circuits of size N1+ε. J

4.2 Proof of Lemma 17 (Anti-Checker Lemma)
This section is dedicated to the proof of Lemma 17. This completes the proof of Theorem 4.
We start with a high-level exposition of the argument.

Proof Idea. We take β → 0, for simplicity of the exposition. In principle, the challenge
is to construct the list of strings from the description of f using a circuit of size N1+o(1),
given that the existence of such strings is guaranteed by the work of [34]. But it is not
clear how to use this existential result and the assumption that NP has polynomial size
circuits to construct almost-linear size circuits for this task. In order to achieve this, we use
a self-contained argument that produces the strings one by one until very few circuits of
bounded size are consistent with the values of f on the partial list of strings. We then find
polynomially many additional strings that eliminate the remaining circuits, completing the
list of strings.10

To produce the i-th string yi ∈ {0, 1}n given y1, . . . , yi−1 ∈ {0, 1}n and f , we estimate
the number of circuits of size ≤ 2βn/10n that agree with f over all strings in {y1, . . . , yi}.
We show that some string yi will reduce the number of consistent circuits from the previous
round by a factor of (roughly) 1−1/n if there are at least (roughly) n2 surviving circuits (this
is a combinatorial existential proof that relies on the lower bound on the circuit complexity
of f). As a consequence, it will be possible to show that at most 2O(βn) = No(1) rounds
suffice to produce the required set of strings (modulo handling the few surviving circuits).
The existence of a good string yi is at the heart of our argument, and we defer the exposition
of this result to the formal proof.

In each round, we exhaustively check each of the N candidate strings yi. As we will
explain soon, estimating the number of surviving circuits after picking a new candidate string
yi can be done by a circuit of size No(1) given access to y1, . . . , yi and to the corresponding
bits f(y1), . . . , f(yi).11 In summary, there are No(1) rounds, and in each one of them we
can find a good string yi using a circuit of size N1+o(1). We remark that it will also be
possible to produce the additional strings in circuit complexity No(1), so that the complete
list y1, . . . , yt can be computed from f by a circuit of size N1+o(1).

It remains to explain how to fix a good string in each round. We simply pick the most
promising string, using that we can upper bound the complexity of estimating the number of
surviving circuits. The latter relies on the assumed inclusion NP ⊆ Circuit[poly]. Indeed, from

10 In particular, our argument implies the worst-case version of the anti-checker result from [34] with
slightly different parameters.

11Technically speaking, projecting f(yi) ∈ {0, 1} from the input string f ∈ {0, 1}N and the address
y ∈ {0, 1}n already takes circuit complexity Ω(N). However, since we are trying all possible strings yi,
the corresponding bit positions of f can be directly hardwired.

CCC 2019

27:16 Hardness Magnification near State-Of-The-Art Lower Bounds

this assumption it follows that the polynomial hierarchy PH ⊆ Circuit[poly], and it is known
that relative approximate counting can be done in the polynomial hierarchy.12 Crucially, as
described in the paragraph above, the input length of each sub-problem that we need to
solve is ≤ No(1) (using that i is at most No(1)), so a polynomial overhead will not be an
issue when solving a sub-task of input length No(1). This completes the sketch of the proof.

We proceed with a formal proof of Lemma 17. Let R be a polynomial-time relation, where
R ⊆

⋃
m{0, 1}m × {0, 1}q(m) for some polynomial q. For every x, we use R#(x) to denote

|{y ∈ {0, 1}q(|x|) : (x, y) ∈ R}|. A randomized algorithm Π is called an (ε, δ)-approximator
for R if for every input x it holds that

Pr
[∣∣Π(x)−R#(x)

∣∣ ≥ ε(|x|) ·R#(x)
]
≤ δ(|x|).

I Theorem 18 (Relative approximate counting in BPPNP ([53]; see e.g. [15, Section 6.2.2])).
For every polynomial-time relation R and every polynomial p, there exists a probabilistic
polynomial-time algorithm A with access to a SAT oracle that is an (1/p(m), 2−p(m))-
approximator for R over inputs x of length m.

I Corollary 19. Assume NP ⊆ Circuit[poly]. For every polynomial-time relation R and for
each m ≥ 1, there is a multi-output circuit CR : {0, 1}m → {0, 1}poly(m) of polynomial size
such that on every input x ∈ {0, 1}m,

(1− 1/m2) ·R#(x) ≤ CR(x) ≤ (1 + 1/m2) ·R#(x).

Proof. This follows from Theorem 18 (using p(m) = m2) by non-uniformly fixing the
randomness of the algorithm, replacing the SAT oracle using the assumption that NP has
small circuits, and translating the resulting deterministic algorithm into a boolean circuit. J

We define a relation Q. The first input x is of the form 〈1n, 1s, 1i, 1t, (z1, b1), . . . , (zi, bi)〉,
where zj ∈ {0, 1}n and bj ∈ {0, 1} for 1 ≤ j ≤ i, and t = 210βn (t is used here to pad the
input appropriately). The second input is a string w of length m1/5 (for m = |x|) that is
interpreted as a boolean circuit Cw over n input variables and of size at most s. We let
(x,w) ∈ Q if and only if Cw(zj) = bj for all j ∈ [i]. Note that Q is a polynomial-time relation.

We employ circuits obtained from Corollary 19 using parameters s = 2βn/10n and
1 ≤ i ≤ t, where t = 210βn. The following result is immediate from Corollary 19 given that
for our choice of parameters m = poly(2βn).

I Proposition 20 (Circuits for approximate counting). There is a constant k1 ∈ N for which
the following holds. For every n ≥ 1, let s = 2βn/10n, t = 210βn, 1 ≤ i ≤ t. Then there is a
multi-output circuit Cn,i of size ≤ 2k1βn that outputs ≤ 2k1βn bits such that on every input
a = ((z1, b1), . . . , (zi, bi)) ∈ {0, 1}i·(n+1),

(1− 1/n10) ·Q#(x) ≤ Cn,i(a) ≤ (1 + 1/n10) ·Q#(x),

where x = x(a) is defined from the string a and from our choice of parameters in the
obvious way.

The next step is to guarantee that once just a few circuits remain consistent with f over
our partial list of strings (as described in the proof sketch above), we can efficiently find a
small number of strings to eliminate all of them.

12 In our formal proof, we take a slightly more direct route to compute the relative approximations.

I. C. Oliveira, J. Pich, and R. Santhanam 27:17

I Lemma 21 (Listing the remaining circuits). Assume NP ⊆ Circuit[poly]. There exists a
constant k2 ∈ N for which the following holds. Let a = ((z1, b1), . . . , (zt′ , bt′)), where t′ ≤ t,
and x = x(a) be the corresponding input of Q. There is a circuit Dn,t′ of size ≤ 2k2βn such
that if Q#(x) ≤ n3, then Dn,t′(a) outputs a string describing all such circuits.

Proof. It follows from NP ⊆ Circuit[poly] using a standard argument that PH ⊆ Circuit[poly].
In addition, it is not hard to define a relation in PH (using a padded input containing the
string 1t) that checks if a given input a satisfies Q#(x(a)) ≤ n3. Consequently, checking if a
string λ describes a list of such circuits for a can be done by a circuit of size at most poly(t).
Using again that NP ⊆ Circuit[poly] and a self-reduction, we obtain circuits Dn,t′ as in the
statement of the lemma. J

I Lemma 22 (Completing the list of strings). There is a constant k3 ∈ N for which the
following holds. For every n ≥ 1 there is a circuit En of size ≤ 2n+k3βn that given access
to a truth-table f ∈ {0, 1}2n and a string w ∈ {0, 1}2βn describing a circuit Cw of size
s ≤ 2βn/10n that does not compute f , En(f, w) outputs a string y such that C(y) 6= f(y).

Proof. First, En evaluates Cw on every string z ∈ {0, 1}n. This can be easily done by a
circuit of size 2n · poly(|w|) under a reasonable encoding of the circuit Cw. Then En inspects
one-by-one each string z and stores the first string where Cw and f differ. Note that a circuit
of size ≤ 2n · poly(n) can print this string from the truth-table of f and Cw. It follows that
the overall complexity of En is 2n+k3βn for some constant k3. J

The previously established results will allow us to find in each round a string yi that
significantly reduces the number of remaining circuits (while at least one such string exists),
and then to complete the list so that no circuit of bounded size is consistent with all strings
in the final list. We show next that if f is hard and a reasonable number of circuits of
bounded size are consistent with the current list of strings, then a good string yi exists.

For convenience, we introduce a function to capture the fraction of strings encoding
circuits that are consistent with a set of inputs and their corresponding labels. Given
a = ((z1, b1), . . . , (zi, bi)), let x = x(a) be the corresponding input to Q under our choice of
parameters. Furthermore, let m = |x|, and recall that Q ⊆

⋃
m≥1{0, 1}m × {0, 1}m

1/5 . In
order to maintain the same underlying domain size when considering the fraction of consistent
circuits, we assume without loss of generality using appropriate padding that the encoding of
x has a fixed length m = m(n) for each choice of n (i.e., the choice of 1 ≤ i ≤ t does not affect
m1/5). In addition, we can take m(n) ≤ 211βn, which will be useful when upper bounding the
number of necessary rounds. We let φ(a) ∈ [0, 1] denote the ratio Q#(x(a))/2m1/5 . (Thus in
our formal argument we count circuits using their descriptions as binary strings.)

I Lemma 23 (Existence of a good string yi). For every integer i ≥ 1 and for every
z1, . . . , zi−1 ∈ {0, 1}n, let a = ((z1, f(z1)), . . . , (zi−1, f(zi−1))). If

f /∈ Circuit[2βn] and Q#(x(a)) ≥ 4n2,

then there is some string yi ∈ {0, 1}n such that if a′ denotes the sequence a augmented with
(yi, f(yi)), then

φ(a′) ≤ φ(a) · (1− 1/2n).

Proof. The argument is inspired by a combinatorial principle discussed in [29]. Consider
the tuple a and the string x = x(a) as in the statement of the lemma. Moreover, let
Q(x) = {w ∈ {0, 1}m1/5 : (x,w) ∈ Q}. For convenience, let r = |Q(x)| = Q#(x) ≥ 4n2, using

CCC 2019

27:18 Hardness Magnification near State-Of-The-Art Lower Bounds

our assumption. Define an auxiliary undirected bipartite graph G = (L,R,E) as follows.
Set L = {0, 1}n, R =

(
Q(x)
n

)
, and (y, {w1, . . . , wn}) ∈ E(G) if and only if for ≤ n/2 of the

circuits Cwi we have f(y) = Cwi(y).
Note that for any right vertex v = (w1, . . . , wn) ∈ R there is a left vertex y ∈ L such that

(y, v) ∈ E. If not, then D = Majorityn(Cw1(x), . . . , Cwn(x)) is a circuit that computes f on
every input string y. The size of D is at most n · (2βn/10n) + 5n ≤ 2βn, using the definition
of Q and that the majority function can be computed (with room to spare) by a circuit of
size at most 5n [58]. This contradicts the hardness of f .

By an averaging argument, there is a left vertex y∗ that is connected to at least |R|/|L| =(
r
n

)
/2n vertices in R. We show below (Claim 24) that for at least r/2n strings w ∈ Q(x), the

corresponding circuit Cw satisfies Cw(y∗) 6= f(w∗). This implies that by taking y∗ as the
string yi described in the statement of the lemma, we get Q#(x(a′)) ≤ r−r/2n = r(1−1/2n),
and consequently

φ(a′) = Q#(x(a′))
2m1/5 ≤ r(1− 1/2n)

2m1/5 = Q#(x(a)) · (1− 1/2n)
2m1/5 = φ(a) · (1− 1/2n).

B Claim 24. Let y∗ ∈ L be a left-vertex connected to at least
(
r
n

)
· 2−n right-vertices in R,

where r ≥ 4n2 and n is sufficiently large. Then, for at least r/2n distinct strings w ∈ Q(x),
we have Cw(y∗) 6= f(y∗).

Proof. The claim follows using a standard counting argument. If the conclusion were false,
the vertex y∗ would be connected to strictly less than (assuming for simplicity that n is even
and r/2n is an integer)

n/2∑
j=0

(
r/2n
n
2 + j

)
·
(

r
n
2 − j

)
≤
(
r

n

)
· 2−n (as upper bounded below)

vertices in R, which is contradictory. It remains to verify this inequality, which can be done
using some careful estimates. First, note that
n/2∑
j=0

(
r/2n
n
2 + j

)(
r

n
2 − j

)
≤

∑
j=0,...,n2 −1

rn/(2n)n2 +j

(n2 + j)!(n2 − j)!
+ rn

n!(2n)n (using
(
n

k

)
≤ nk

k!)

≤
∑

j=0,...,n2 −1

enrn/(2n)n2 +j

e2(n2 + j)n2 +j(n2 − j)
n
2 −j + enrn

enn(2n)n (since e
(
n

e

)n
≤ n!)

≤
∑

j=0,...,n2 −1

enrn/(2n)n2
e2(n2)j(n2 + j)n2 (n2 − j)

n
2

+ enrn

enn(2n)n (∗)

By considering the cases j < n
4 and n

2 > j ≥ n
4 , we get (n2)j((n2)2 − j2)n2 ≥ (n/8)3n/4, so

(∗) ≤
∑

j=0,...,n2−1

enrn

e2(n/8)3n/4(2n)n/2 + enrn

enn(2n)n

≤ nenrn

e2(n/8)3n/4(2n)n/2 ≤
√

2πrn

e2n1/2(2n)n
≤

√
2πrrr1/2

e2(r − n)r−n+1/2nn+1/2 ·
1
2n

≤
(
r

n

)
/2n,

where n is assumed to be sufficiently large, r > n, and the last inequality makes use of
Stirling’s approximation

√
2π(ne)nn1/2 ≤ n! ≤ e(ne)nn1/2. This completes the proof of

Claim 24. C

I. C. Oliveira, J. Pich, and R. Santhanam 27:19

This completes the proof of Lemma 23. J

We are ready to combine these results and define a circuit C of size ≤ 2n+kβn with the
property stated in Lemma 17. This circuit on an input f ∈ {0, 1}N where N = 2n computes
as follows.

1. C sequentially computes the string a(i) = (y1, f(y1)), . . . , (yi, f(yi)) for 1 ≤ i ≤ t′ and
t′ = 210βn − n3.

During stage i, C inspects all strings y ∈ {0, 1}n, using the circuit Cn,i (Proposition 20)
to fix yi as the string that minimizes Cn,i(a(i)).

2. C uses the circuit Dn,t′ (Lemma 21) to print the descriptions of n3 circuits of size at
most s = 2βn/10n.

3. Finally, C invokes n3 copies of the circuit En (Lemma 22) to complete the list y1, . . . , yt
of strings, where t = t′ + n3 = 210βn.

Correctness of the construction follows from the properties of the circuits Cn,i, Dn,t′ ,
and En in combination with Lemma 23. More precisely, if f /∈ Circuit[2βn], then for every
1 ≤ i ≤ t′, either φ(a(i)) ≤ (1− 1/4n)i or Q#(x(a(i−1))) < 4n2. To see this, note that if the
latter condition does not hold, then for some string y∗ as in Lemma 23 we get with respect to
the corresponding extension a(i) that φ(a(i)) ≤ φ(ai−1) · (1− 1/2n). Since C tries all strings
during its computation in step 1 when in stage i, and the relative approximation given by
circuit Cn,i is sufficiently precise, we are guaranteed in this case (using an inductive argument)
to fix a string yi such that φ(a(i)) ≤ φ(ai−1) · (1− 1/4n) ≤ (1− 1/4n)i. On the other hand,
if the condition Q#(x(a(i−1))) < 4n2 holds for some i ≤ t′, then by monotonicity it is
maintained until we reach i = t′. Consequently, using that initially φ(ε) = 1, t′ = 210βn − n3,
m(n) ≤ 211βn, and recalling that the second input of the relation Q has length m1/5 and
that this parameter is related to the definition of φ, when C reaches i = t′ at the end of step
1 we have

Q#(x(a(t′))) ≤ max {4n2, (1− 1/4n)t
′
· 2m

1/5
}

≤ n3.

This implies using Lemmas 21 and 22 and the description of C that if f /∈ Circuit[2βn]
then every circuit of size at most s = 2βn/10n disagrees with f on some input string
among y1, . . . , yt.

Finally, we upper bound the circuit size of C. For every i ≤ t′ in step 1 and each
string y ∈ {0, 1}n, C feeds Cn,i with the appropriate bit in the input string f and the
previously computed string a(i−1). This produces an estimate vy ∈ N represented as a string
of length 2O(βn) that is stored as a pair (y, vi). Using Proposition 20, all pairs (y, vy) can be
simultaneously computed by a circuit of size at most 2n · 2O(βn). By inspecting each such
pair in sequence, C can pick the string yi ∈ {0, 1}n minimizing vi using a sub-circuit of size
2n · poly(2O(βn)). Also note that the bit f(yi) can be easily computed from yi and f by a
circuit of size O(N logN). Therefore, each stage i can be done by a circuit of size at most
2n+O(βn), and since there are t′ ≤ 210βn stages, the computation in step 1. can be done
by a circuit of size 2n+O(βn). Lastly, steps 2 and 3 can be each implemented by a circuit
of size at most 2O(βn) using the upper bounds on circuit size provided by Lemmas 21 and
22, respectively, and the description of C. It follows that the overall circuit size of C is at
most 2n+kβn, where k is a constant that only depends on the circuits provided by the initial
assumption that NP ⊆ Circuit[poly].

CCC 2019

27:20 Hardness Magnification near State-Of-The-Art Lower Bounds

A remark on formulas vs. circuits. An obstacle to producing the anti-checker using formulas
of size N1+o(1) under the assumption that NP ⊆ Formula[poly] comes from the sequential
aspect of the construction. A string yj produced after the j-th round is inspected during
each subsequent round of the construction. In the case of formulas, the corresponding bits
need to be recomputed each time, and the overall complexity becomes prohibitive. (There
are other intermediate computations that one may not be able to simulate so easily with
sub-quadratic formulas, such as selecting the best string yi during each round.)

4.3 The Anti-Checker Hypothesis
The existence of anti-checkers of bounded size witnessing the hardness of Boolean functions
is far from obvious. In this section, we explore consequences of a hypothetical phenomenon
manifesting on a higher level: the existence of a small collection of anti-checker sets witnessing
hardness of all hard functions. We show that a certain formulation of this Anti-Checker
Hypothesis (AH) implies unconditional lower bounds. Complementing this result, we prove
unconditionally that (AH) holds for functions that are hard in the average case.

For simplicity, we adopt a concrete setting of parameters for the hypothesis and in the
results presented in this section. Understanding the validity of (AH) with respect to other
non-trivial setting of parameters would also be interesting.

I The Anti-Checker Hypothesis (AH). For every λ ∈ (0, 1), there are ε > 0 and a collection
Y = {Y1, . . . , Y`} of sets Yi ⊆ {0, 1}n, where ` = 2(2−ε)n and each |Yi| = 2n1−ε , for which the
following holds.

If f : {0, 1}n → {0, 1} and f /∈ Circuit[2nλ], then some set Y ∈ Y forms an anti-checker
for f : For each circuit C of size 2nλ/10n, there is an input y ∈ Y such that C(y) 6= f(y).

The Anti-Checker Hypothesis can be shown to imply the hardness of a specific meta-
computational problem in NP (which is not necessarily NP-complete).

I Definition 25 (Succinct MCSP). Let s, t : N → N be functions. The Succinct Minimum
Circuit Size Problem with parameters s and t, abbreviated Succinct-MCSP(s, t), is the problem
of deciding given a list of t(n) pairs (yi, bi), where yi ∈ {0, 1}n and bi ∈ {0, 1}, if there exists
a circuit C of size s(n) computing the partial function defined by these pairs, i.e., C(yi) = bi
for every i ∈ [t].

Note that Succinct-MCSP(s, t) ∈ NP whenever s and t are constructive functions.

I Theorem 26. Assume (AH) holds, and let ε = ε(λ) > 0 be the corresponding constant
for λ = 1/2. Then Succinct-MCSP(2n1/2

/10n, 2n1−ε) /∈ Formula[poly]. In particular, NP *
Formula[poly].

Proof. The proof is by contradiction. Take λ = 1/2 in the Anti-Checker Hypothesis, and
let ε = ε(λ) > 0 be the given constant. In addition, let Fm : {0, 1}N → {0, 1} be a formula
of size mk for Succinct-MCSP(2n1/2

/10n, 2n1−ε), where m ≤ poly(n) · 2n1−ε is the total input
length for this problem. We argue below that from these assumptions it follows that Gap-
MCSP[2n1/3

, 2n2/3] ∈ Formula[N2−δ] for some δ > 0. This contradicts Theorem 5 if α is taken
to be a sufficiently small constant, which completes the proof.

We define a formula E : {0, 1}N → {0, 1} that solves Gap-MCSP[2n1/3
, 2n2/3]. It projects

the appropriate bits of the input f to produce T = 2(2−ε)n instances of the problem
Succinct-MCSP(2n1/2

/10n, 2n1−ε) obtained from f and from the collection Y in the natural
way. The formula E is defined as the conjunction of T independent copies of the formula Fm
from above. Note that E has at most T ·mk ≤ N2−δ leaves, where δ = δ(ε) > 0. Finally, it is
easy to see that it correctly solves Gap-MCSP using our choice of parameters and (AH). J

I. C. Oliveira, J. Pich, and R. Santhanam 27:21

We say that a Boolean function f with n inputs is hard on average for circuits of size s if
every circuit of size s fails to compute f on at least 1/s fraction of all inputs.

I Proposition 27 (Average-Case AH). For every λ ∈ (0, 1) there is ε > 0 such that for every
large enough n ∈ N there is a collection Y = {Y1, . . . , Y`} of ` = 2n sets Yi ⊆ {0, 1}n of size
2n1−ε for which the following holds. If f : {0, 1}n → {0, 1} is hard on average for circuits of
size 2nλ , then some set Y ∈ Y constitutes an anti-checker for f : For each circuit C of size
2nλ there is a string y ∈ Y such that C(y) 6= f(y).

Proof. Let H be the set of all Boolean functions f over n inputs that are hard on average
for circuits of size s = 2nλ . Then we can generate anti-checkers for f ∈ H by choosing n-bit
strings uniformly at random: for each i ∈ [2n], we let Yi be the set obtained by sampling
with repetition 2n1−ε random strings in {0, 1}n, where 1 − ε > λ. Then, for every large
enough n, for each circuit C of size at most 2nλ and for each f ∈ H,

Pr[C|Yi
≡ f |Yi

] ≤ (1− 1/2n
λ

)2n
1−ε

≤ exp(−2n
1−ε
/2n

λ

).

Now by a union bound over all such circuits, for a fixed f ∈ H we get

Pr[Yi is not an anti-checker set for f] ≤ exp(O(n · 2n
λ

)) · exp(−2n
1−ε
/2n

λ

) < 1/4,

where the last inequality used our choice of ε. Finally,

Pr[∃f ∈ H s.t. none of Y1, . . . ,Y2n is an anti-checker set for f] ≤ 22n · (1/4)2n < 1.

There is therefore a collection Y with the desired properties. J

Theorem 26 and Proposition 27 show a connection between establishing super-polynomial
formula size lower bounds for NP and understanding the difference between worst-case and
average-case collections of anti-checkers.

References

1 Scott Aaronson. P=? NP. Electronic Colloquium on Computational Complexity (ECCC), 24:4,
2017. URL: https://eccc.weizmann.ac.il/report/2017/004.

2 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudoran-
dom generators in propositional proof complexity. SIAM Journal of Computing, 34(1):67–88,
2004.

3 Eric Allender. When Worlds Collide: Derandomization, Lower Bounds, and Kolmogorov Com-
plexity. In Foundations of Software Technology and Theoretical Computer Science FSTTCS,
pages 1–15, 2001. doi:10.1007/3-540-45294-X_1.

4 Eric Allender. The Complexity of Complexity. In Computability and Complexity - Essays
Dedicated to Rodney G. Downey on the Occasion of His 60th Birthday, pages 79–94, 2017.

5 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.
Power from Random Strings. SIAM J. Comput., 35(6):1467–1493, 2006.

6 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

7 Andrej Bogdanov. Small-bias require large formulas. In International Colloquium on Automata,
Languages, and Programming (ICALP), 2018.

8 Ravi B. Boppana and Michael Sipser. The Complexity of Finite Functions. In Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity, pages 757–804. The
MIT Press/Elsevier, 1990.

CCC 2019

https://eccc.weizmann.ac.il/report/2017/004
https://doi.org/10.1007/3-540-45294-X_1

27:22 Hardness Magnification near State-Of-The-Art Lower Bounds

9 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing Separations. In
Conference on Computational Complexity (CCC), pages 8–12, 1998. doi:10.1109/CCC.1998.
694585.

10 Jin-yi Cai. Sp2 is subset of ZPPNP. J. Comput. Syst. Sci., 73(1):25–35, 2007. doi:10.1016/j.
jcss.2003.07.015.

11 Marco Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness Ampli-
fication for Non-Commutative Arithmetic Circuits. In Computational Complexity Conference
(CCC), 2018.

12 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning Algorithms from Natural Proofs. In Conference on Computational Complexity (CCC),
pages 10:1–10:24, 2016. doi:10.4230/LIPIcs.CCC.2016.10.

13 Irit Dinur and Or Meir. Toward the KRW Composition Conjecture: Cubic Formula Lower
Bounds via Communication Complexity. In Conference on Computational Complexity (CCC),
pages 3:1–3:51, 2016. doi:10.4230/LIPIcs.CCC.2016.3.

14 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov.
A Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit Function. In
Symposium on Foundations of Computer Science (FOCS), pages 89–98, 2016.

15 Oded Goldreich. Computational Complexity - A Conceptual Perspective. Cambridge University
Press, 2008.

16 Johan Håstad. The Shrinkage Exponent of de Morgan Formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. doi:10.1137/S0097539794261556.

17 Shuichi Hirahara and Rahul Santhanam. On the Average-Case Complexity of MCSP and Its
Variants. In Computational Complexity Conference (CCC), pages 7:1–7:20, 2017.

18 Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the
sum-of-squares problem. Journal of the American Mathematical Society, 24(3):871–898, 2011.

19 Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural properties
as oracles. In Computational Complexity Conference (CCC), 2018.

20 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.
doi:10.1016/S0022-0000(02)00024-7.

21 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from Shrinkage.
In Symposium on Foundations of Computer Science (FOCS), pages 111–119, 2012.

22 Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-Depth Tradeoffs
for Threshold Circuits. SIAM J. Comput., 26(3):693–707, 1997. doi:10.1137/
S0097539792282965.

23 Kazuo Iwama and Hiroki Morizumi. An Explicit Lower Bound of 5n − o(n) for Boolean
Circuits. In Symposium on Mathematical Foundations of Computer Science (MFCS), pages
353–364, 2002.

24 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer, 2012.
25 Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans.

Information Theory, 18(5):652–656, 1972. doi:10.1109/TIT.1972.1054893.
26 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Symposium on Theory

of Computing (STOC), pages 73–79, 2000. doi:10.1145/335305.335314.
27 Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds

for depth-two and depth-three threshold circuits. In Symposium on Theory of Computing
(STOC), pages 633–643, 2016. doi:10.1145/2897518.2897636.

28 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved Average-Case Lower Bounds for De
Morgan Formula Size: Matching Worst-Case Lower Bound. SIAM J. Comput., 46(1):37–57,
2017. doi:10.1137/15M1048045.

29 Jan Krajíček. Extensions of models of PV. In ASL/Springer Series – Lecture Notes in Logic –
Proceedings of the Logic Colloquium, 1995.

https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1016/j.jcss.2003.07.015
https://doi.org/10.1016/j.jcss.2003.07.015
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.3
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1137/S0097539792282965
https://doi.org/10.1137/S0097539792282965
https://doi.org/10.1109/TIT.1972.1054893
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/2897518.2897636
https://doi.org/10.1137/15M1048045

I. C. Oliveira, J. Pich, and R. Santhanam 27:23

30 Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-3):123–140,
2001.

31 Jan Krajíček. Dual weak pigeonhole principle, pseudo-surjective functions, and provability of
circuit lower bounds. Journal of Symbolic Logic, 69(1):265–286, 2004.

32 Leonid Levin. Randomness Conservation Inequalities; Information and Independence in
Mathematical Theories. Information and Control, 61:15–37, 1984.

33 Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against polynomial
time, with applications. Computational Complexity, 22(2):311–343, 2013.

34 Richard J. Lipton and Neal E. Young. Simple strategies for large zero-sum games with
applications to complexity theory. In Symposium on Theory of Computing (STOC), pages
734–740, 1994. doi:10.1145/195058.195447.

35 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak Lower Bounds on Resource-
Bounded Compression Imply Strong Separations of Complexity Classes. In Symposium on
Theory of Computing (STOC), 2019.

36 Eric Miles and Emanuele Viola. Substitution-Permutation Networks, Pseudorandom Functions,
and Natural Proofs. J. ACM, 62(6):46:1–46:29, 2015.

37 Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower bounds.
Electronic Colloquium on Computational Complexity (ECCC), 24:144, 2017.

38 Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for NP and NQP. In Symposium on Theory of Computing (STOC),
pages 890–901, 2018. doi:10.1145/3188745.3188910.

39 È. Nec̆iporuk. On a boolean function. Doklady of the Academy of the USSR, 169(4):765–766,
1966.

40 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies Between Learning Algorithms,
Circuit Lower Bounds, and Pseudorandomness. In Computational Complexity Conference
(CCC), pages 18:1–18:49, 2017. doi:10.4230/LIPIcs.CCC.2017.18.

41 Igor Carboni Oliveira and Rahul Santhanam. Hardness Magnification for Natural Problems. In
Symposium on Foundations of Computer Science (FOCS), pages 65–76, 2018. doi:10.1109/
FOCS.2018.00016.

42 Ján Pich. Complexity Theory in Feasible Mathematics. PhD thesis, Charles University in
Prague, 2014.

43 Ján Pich. Circuit lower bounds in bounded arithmetics. Annals of Pure and Applied Logic,
166(1), 2015.

44 Alexander A. Razborov. Lower Bounds for Deterministic and Nondeterministic Branching
Programs. In Symposium on Fundamentals of Computation Theory (FCT), pages 47–60, 1991.

45 Alexander A. Razborov. On provably disjoint NP-pairs. Basic Research in Computer Science
Center, 1994.

46 Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya of Russian Academy of Science,, 59:201–224, 1995.

47 Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial
calculus. Annals of Mathematics, 182(2):415–472, 2015.

48 Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997.

49 Rahul Santhanam. Circuit Lower Bounds for Merlin–Arthur Classes. SIAM J. Comput.,
39(3):1038–1061, 2009. doi:10.1137/070702680.

50 Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Information Theory,
42(6):1710–1722, 1996. doi:10.1109/18.556667.

51 Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Trans.
Information Theory, 42(6):1723–1731, 1996. doi:10.1109/18.556668.

52 Aravind Srinivasan. On the approximability of clique and related maximization problems. J.
Comput. Syst. Sci., 67(3):633–651, 2003.

CCC 2019

https://doi.org/10.1145/195058.195447
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.1137/070702680
https://doi.org/10.1109/18.556667
https://doi.org/10.1109/18.556668

27:24 Hardness Magnification near State-Of-The-Art Lower Bounds

53 Larry J. Stockmeyer. The Complexity of Approximate Counting (Preliminary Version). In
Symposium on Theory of Computing (STOC), pages 118–126, 1983.

54 Avishay Tal. Shrinkage of De Morgan Formulae by Spectral Techniques. In Symposium on
Foundations of Computer Science (FOCS), pages 551–560, 2014.

55 Avishay Tal. The Bipartite Formula Complexity of Inner-Product is Quadratic. Electronic
Colloquium on Computational Complexity (ECCC), 23:181, 2016.

56 Roei Tell. Quantified Derandomization of Linear Threshold Circuits. In Symposium on Theory
of Computing (STOC), 2018.

57 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

58 Ingo Wegener. The complexity of Boolean functions. Wiley, 1987.
59 Ryan Williams. Nonuniform ACC Circuit Lower Bounds. J. ACM, 61(1):2:1–2:32, 2014.

doi:10.1145/2559903.
60 Ryan Williams. Natural Proofs versus Derandomization. SIAM J. Comput., 45(2):497–529,

2016. doi:10.1137/130938219.

A Unconditional Lower Bounds for Gap-MKtP and Gap-MCSP

A.1 MKtP – A near-quadratic lower bound against U2-formulas
In this section, we provide the proof of Theorem 3.

Proof Idea. We employ the technique of random restrictions to show that Gap-MKtP
requires near-quadratic size formulas. The idea is that, with high probability, a formula
F of sub-quadratic size simplifies under a random restriction ρ : [N]→ {0, 1, ∗}. This will
allow us to complete a fixed restriction ρ either to a string wy of Kt complexity ≤ s1, or to a
string wn of Kt complexity ≥ s2. Because the simplified formula F �ρ depends on few input
variables in ρ−1(∗), if we define wy and wn appropriately F �ρ won’t be able to distinguish
the two instances. Consequently, F does not compute Gap-MKtP[s1, s2].

In order for this idea to work, we cannot use a truly random restriction. This is because
our restrictions will set most of the variables indexed in [N] to simplify a near-quadratic
size formula, and a typical random restriction cannot be completed to a string of low Kt
complexity. We use instead pseudorandom restrictions, which can be computed from a much
smaller number of random bits. Previous work established that such restrictions also simplify
sub-quadratic size formulas. As a consequence, we are able to extend any restriction in the
support of a pseudorandom distribution of restrictions to either an “easy” or a “hard” string,
as explained in the paragraph above. (We remark that in order to improve our parameter s1
in Gap-MKtP[s1, s2], it is useful to compose a sequence of pseudodeterministic restrictions.)

We proceed with the technical details. Let ρ : [N] → {0, 1, ∗} be a restriction, and ρ
be a random restriction, i.e., a distribution of restrictions. We say that ρ is p-regular if
Pr[ρ(i) = ∗] = p and Pr[ρ(i) = 0] = Pr[ρ(i) = 1] = (1− p)/2 for every i ∈ [N]. In addition,
ρ is k-wise independent if any k coordinates of ρ are independent.

I Lemma 28 (cf. [21, 57]). There exist q-regular k-wise independent random restrictions ρ
distributed over ρ : [N] → {0, 1, ∗} samplable with O(k log(N) log(1/q)) bits. Furthermore,
each output coordinate of the random restriction can be computed in time polynomial in the
number of random bits.

As a consequence, we get p-regular k-wise independent random restrictions where each
restriction in the support has bounded Kt complexity. In order to define the Kt complexity of

https://doi.org/10.1145/2559903
https://doi.org/10.1137/130938219

I. C. Oliveira, J. Pich, and R. Santhanam 27:25

a restriction ρ : [N]→ {0, 1, ∗}, we view it as a 2N -bit string encoding(ρ) where each symbol
in {0, 1, ∗} is encoded by an element in {0, 1}2. We abuse notation and write Kt(ρ) to denote
Kt(encoding(ρ)).

I Proposition 29. There is a distribution Dq,k of q-regular k-wise independent restric-
tions such that each restriction ρ : [N] → {0, 1, ∗} in the support of Dq,k satisfies Kt(ρ) =
O(k log(N) log(1/q)). Furthermore, this is witnessed by a pair (M,wρ) where the machine
M does not depend on ρ.

Proof. By Lemma 28, each output coordinate of ρ can be computed in time poly(`) from a
seed wρ of length ` = O(k log(N) log(1/q)). Therefore, the binary string describing ρ can be
computed in time O(N · poly(`)) from a string wρ with Kt(wρ) = O(k log(N) log(1/q)). It
follows from Proposition 8 that Kt(ρ) = O(k log(N) log(1/q)). The furthermore part follows
from the fact that the machine M is obtained from the generator provided by Lemma 28,
i.e., in order to produce different restrictions one only needs to modify the input seeds, which
are encoded in wρ. J

Let N = 2n. Given a function F : {0, 1}N → {0, 1} and a restriction ρ : [N]→ {0, 1, ∗},
we let F �ρ be the function in {0, 1}ρ−1(∗) → {0, 1} obtained in the natural way from F and ρ.
In this section, we use L(F) to denote the size (number of leaves) of the smallest U2-formula
that computes a function F .

The next result allows us to shrink the size of a formula using a pseudorandom restriction.
This restriction can be obtained by a composition of restrictions. This reduces the amount
of randomness and the corresponding complexity of the restriction.

I Lemma 30 (Shrinkage from pseudorandom restrictions ([17, Theorem 28]; cf. [21, 28])). Let
F : {0, 1}N → {0, 1}, q = p1/r for an integer r ≥ 1, and L(F) · p2 ≥ 1. Moreover, let Rrp,k
be a distribution obtained by the composition of r independent q-regular k-wise independent
random restrictions supported over [N] → {0, 1, ∗}, where k = q−2. Finally, assume that
q ≤ 10−3. Then,13

Eρ∈RRrp,k [L(F �ρ)] ≤ crp2L(F),

where c ≥ 1 is an absolute constant.

I Proposition 31. There is a (p-regular k-wise independent) distribution Rrp,k obtained by the
composition of r independent q-regular k-wise independent random restrictions supported over
[N]→ {0, 1, ∗}, where k = q−2 and q = p1/r, such that each restriction ρ : [N]→ {0, 1, ∗} in
the support of Rrp,k satisfies Kt(ρ) = O(rk log(N) log(1/q)).

Proof. We use the distribution Dq,k of restrictions provided by Proposition 29. A restriction ρ
in the support ofRrp,k is therefore obtained through the composition of r restrictions ρ1, . . . , ρr
in the support of Dq,k. For each i ∈ [r], Kt(ρr) = O(k log(N) log(1/q)). Moreover, each Kt

13The assumption that q ≤ 10−3 does not appear in [17, Theorem 28]. The proof sketch appearing there
does not seem to address the cases where pΓL(ψ) < 1 in their analyses of formula shrinkage in Lemma
27 and Theorem 28. This can be easily fixed using appropriate expressions of the form 1 + p2L(ψ).
Lemma 27 is only affected by a constant factor. Then, proceeding by induction as in the proof of
their Theorem 28 but also addressing this possibility, one gets instead an upper bound of the form
1 + cqΓ(1 + cqΓ(. . .)), which translates to 1 + (cqΓ) + (cqΓ)2 + . . .+ (cqΓ)r−1 + (cqΓ)rL(f). This can
still be upper bounded by crp2L(F) (for a different universal constant c as in the statement of Lemma
30) using that q is sufficiently small and therefore cqΓ ≤ 1/2 (note that Γ = 2 and c ≤ 500 in [17]).

CCC 2019

27:26 Hardness Magnification near State-Of-The-Art Lower Bounds

upper bound is witnessed by a pair (M,wi), whereM can be taken to be the same machine for
all i ∈ [r]. It is not hard to see that for the string w = 1|w1|0w11|w2|0w2 . . . 1|wr|0wr there is a
machine M ′ satisfying |〈M ′〉| ≤ |〈M〉|+O(1) and running in time tM ′(w) ≤ r ·maxi tM (wi)+
poly(rN) such that the pair (M ′, w) witnesses that Kt(ρ) = O(rk log(N) log(1/q)). J

We will also need the following simple proposition, which holds even with respect to
Kolmogorov complexity instead of Kt complexity.

I Proposition 32. Let S ⊆ [N] be a set of size at least two. There exists a function
h : S → {0, 1} such that for every string w ∈ {0, 1}N , if w agrees with h over S then
Kt(w) ≥ |S| − 5 log |S|.

Proof. It is easy to encode a pair (M,a) (as in Definition 6) satisfying |〈M〉| + |a| <
|S| − 5 log |S| by a binary string of length at most 2 log |S|+ 2 + |〈M〉|+ |a| < |S|. Since each
pair (M,a) outputs at most one binary string of length N , it follows by a counting argument
that for some choice of h : S → {0, 1}, no string w of length N that agrees with h over S has
Kt(w) < |S| − 5 log |S|. J

The next lemma describes the high-level strategy of the lower bound proof.

I Lemma 33 (Adaptation of Lemma 27 from [17]). There exists a constant a ≥ 1 such
that the following holds. Let ρ : [N] → {0, 1, ∗} be a restriction, V = ρ−1(∗), and let
F : {0, 1}N → {0, 1} be a function such that L(F �ρ) ≤M . If

Kt(ρ) + a · n ≤ s1(n) and (|V | −M)− 5 log(|V | −M) ≥ s2(n) and |V | ≥M + a,

then F does not compute Gap-MKtP[s1(n), s2(n)], where n = logN .

Proof. Under these assumptions, we define a positive instance wy ∈ YESN and a negative
instance wn ∈ NON such that F (wy) = F (wn).

wy ∈ {0, 1}N is obtained from ρ by additionally setting each ∗-coordinate of this
restriction to 0. Note that, given the 2N -bit binary string encoding ρ, wy can be computed
in time polynomial in N . It follows from Proposition 8 that Kt(wy) ≤ Kt(ρ) + a · n,
for some universal constant a ≥ 1. Since this bound is at most s1(n), we get that
wy ∈ YESN .
wn ∈ {0, 1}N is defined as follows. Since L(F �ρ) ≤M , F �ρ depends on at most M input
coordinates (indexed by elements in V). Let W ⊆ V ⊆ [N] be this set of coordinates.
Moreover, let S = V \W . The string wy ∈ {0, 1}N is obtained from ρ by additionally
setting each ∗-coordinate of this restriction in W to 0, and then setting each remaining
∗-coordinate in S to agree with the function h : S → {0, 1} provided by Proposition 32.
Since |S| ≥ |V | −M and the real-valued function φ(x) = x − 5 log x is non-decreasing
if x ≥ a for a large enough constant a, our assumptions and Proposition 32 imply that
Kt(wn) ≥ s2(n). Consequently, yn ∈ NON .

Using that F restricted to ρ depends only on variables from W ⊆ ρ−1(∗), and that the
strings wy and wn agree over coordinates in ρ−1({0, 1})∪W , it follows that F (wy) = F (wn).
Since wy is a positive instance while yn is a negative instance, F does not compute Gap-
MKtP[s1(n), s2(n)]. J

We are now ready to set parameters in order to complete the proof of Theorem 3. For a
sufficiently large constant C ′ ≥ 1, let

I. C. Oliveira, J. Pich, and R. Santhanam 27:27

n
def= logN, p

def= N−1+α/2, r
def= n/C ′, q

def= p1/r, k
def= q−2,

and assume that N is sufficiently large. Note that, under this choice of parameters, q =
2C′(−1+α/2) = Ω(1) and q ≤ 10−3.

I Proposition 34 (Concentration Bound for |ρ−1(∗)|). For ρ ∼ Rrp,k with parameters as
above, we have Pr[|ρ−1(∗)| ≥ pN/2] ≥ 1/2.

Proof. Note that ρ is p-regular and pairwise independent (i.e., k ≥ 2 for our choice of
parameters). The result then follows from Chebyshev’s inequality using mean µ = pN ,
variance σ2 = Np(1− p), and the value of p. J

Using Proposition 31, we can sample a random restriction ρ ∈R Rrp,k as described in the
statement of Lemma 30 such that each ρ : [N]→ {0, 1, ∗} in the support of Rrp,k satisfies

Kt(ρ) = O(rk log(N) log(1/q)) = O((n/C ′)q−2n log(1/q)) ≤ (C/2)n2,

if C is a sufficiently large constant.
Toward a contradiction, let F : {0, 1}N → {0, 1} be a formula of size L(f) that supposedly

computes Gap-MKtP[Cn2, 2(α/2)n−2], where p2L(F) = 1 (note that L(F) = N2−α), and let

M
def= 10 · crp2L(F) = 10 · cr ≤ 2(α/4)n,

for a constant c ≥ 1 as in Lemma 30, and using that C ′ = C ′(α) is large enough in the
definition of r.

Invoking Lemma 30 and Markov’s inequality, Proposition 34, and a union bound, there is
a fixed restriction ρ : [N]→ {0, 1, ∗} for which the following holds:

For V def= ρ−1(∗), we have |V | ≥ pN/2 = 2(α/2)n/2;
Kt(ρ) ≤ (C/2)n2.
L(F �ρ) ≤ M ≤ 2(α/4)n.

Using these parameters in the statement of Lemma 33, it is easy to check that its hypotheses
are satisfied given our choices of s1(n) = Cn2 and s2(n) = 2(α/2)n−2. This is a contradiction
to our assumption that F computes Gap-MKtP for these parameters, which completes
the proof.

A.2 MKtP – Stronger lower bounds for large parameters
The goal of this section is to prove Theorem 2. First, we need a definition. We say that a
generator G : {0, 1}r → {0, 1}N δ-fools a function f : {0, 1}N → {0, 1} if∣∣∣ Pr

x∈R{0,1}N
[f(x) = 1]− Pr

y∈R{0,1}r
[f(G(y)) = 1]

∣∣∣ ≤ δ.

Similarly, G δ-fools a class of functions F if G δ-fools every function f ∈ F . The parameter
r is called the seed-length of G. We say that G is explicit if it can be uniformly computed in
time poly(N, 1/δ).

I Theorem 35 ([21]). Let c > 0 be an arbitrary constant. The following hold:
1. There is an explicit generator GU2 : {0, 1}r → {0, 1}N using a seed of length r = s1/3+o(1)

that s−c-fools the class U2-Formula[s(N)] of formulas on N input variables.

CCC 2019

27:28 Hardness Magnification near State-Of-The-Art Lower Bounds

2. There is an explicit generator GB2 : {0, 1}r → {0, 1}N using a seed of length r = s1/2+o(1)

that s−c-fools the class B2-Formula[s(N)] of formulas on N input variables.
3. There is an explicit generator GBP : {0, 1}r → {0, 1}N using a seed of length r = s1/2+o(1)

that s−c-fools the class BP[s(N)] of branching programs on N input variables.

We now prove Theorem 2 (Part 1). The other cases are similar. We instantiate GU2 with
s(N) = N3−ε and c = 1. Then GU2 : {0, 1}N1−δ′ → {0, 1}N for some δ′ = δ′(ε) > 0.

I Proposition 36. For every string w ∈ {0, 1}N1−δ′ , let GU2(w) ∈ {0, 1}N be the N-bit
output of GU2 on w. Then

Kt(GU2(w)) ≤ 2(1−δ′/2)n

for every large enough n = logN .

Proof. This follows from Proposition 8 using that GU2 is explicit and therefore runs in time
poly(N) under our choice of parameters. J

As a consequence of Proposition 36, every output of GU2 is always an N -bit string of Kt
complexity at most 2(1−δ)n, for a fixed δ > 0. On the other hand, it is well-known that a
random N -bit string (where N = 2n) has Kolmogorov complexity (and thus Kt complexity) at
least 2n−1 with high probability. It follows that Gap-MKtP[2(1−δ)n, 2n−1] /∈ U2-Formula[N3−ε],
since otherwise this would violate the security of the generator GU2 against formulas of this
type and size.

A.3 MCSP – A similar near-quadratic lower bound against U2-formulas
In this section, we sketch the proof of Theorem 5, which is the analogue of Theorem 3 in
the context of MCSP. More precisely, we explain why the argument carries over when we
measure the complexity of a string by circuit size instead of via Kt complexity, modulo small
changes to the involved parameters.

As explained in Section A.1, the crucial idea in the proof of Theorem 3 is that a
pseudorandom restriction simplifies a U2-formula of bounded size. For technical reasons, we
employ a composition of restrictions of small complexity, so that the overall complexity of
the combined restriction is bounded. This allows us to trivialize any small formula F using a
fixed restriction ρ of bounded complexity, where |ρ−1(∗)| is sufficiently large compared to
other relevant parameters of the argument. Then, Lemma 33 employs a counting argument
(via Proposition 32) to extend this restriction to a positive instance wy and to a negative
instance wn such that F (wy) = F (wn). This can be used to show that no small formula
correctly computes Gap-MKtP for our choice of parameters.

In order to establish Theorem 5, we make two observations. Firstly, Lemma 28 already
gives individual restrictions of low circuit complexity instead of low Kt complexity. Secondly,
the counting argument used to extend ρ to a negative instance wn works for most complexity
measures including circuit size, Kolmogorov complexity, etc.

Using these two observations, the proof goes through under minor adjustments of the rel-
evant parameters. We remark that one obtains a lower bound for Gap-MCSP[nd, 2(α/2−o(1))n]
instead of Gap-MCSP[Cn2, 2(α/2)n−2] because of a polynomial circuit complexity overhead
in the argument, which is not present in the case of Kt complexity since there one takes
the logarithmic of the running time when measuring complexity, and because the circuit
complexity (measured by number of gates) of a random string can be slightly smaller than
its Kt complexity.

I. C. Oliveira, J. Pich, and R. Santhanam 27:29

B Hardness Magnification and Proof Complexity

The initial instance of hardness magnification from [41] says that if an average-case version of
MCSP (with inputs being truth tables of Boolean functions) is worst-case hard for formulas
of super-linear size, then its succinct version (with inputs being lists of input-output tuples
representing partial Boolean functions) is hard for NC1 (cf. [41, Theorem 1]).

Hardness magnification forMCSP thus attacks strong circuit lower bounds by 1. employing
the natural proofs barrier which states a conditional hardness of MCSP, and 2. exploiting
the difference between feasible (succinct) and infeasible (uncompressed) formulations of a
meta-computational problem like MCSP.

This strategy has a history in proof complexity. The work of Razborov [45, 46] and
Krajíček [31] formulated the natural proofs barrier as a conditional proof complexity lower
bound expressing hardness of tautologies encoding circuit lower bounds. This idea was
further developed in the theory of proof complexity generators [30, 2]. It has led, in
particular, to Razborov’s conjecture [47] about hardness of Nisan-Wigderson generators for
strong proof systems. Razborov’s conjecture is designed to imply hardness of circuit lower
bounds formalized in a way so that the whole truth table of the hard function is hardwired
into the formula.

The realization that a feasible formulation of circuit lower bounds should be much harder
than the infeasible truth table formulas inspired the result about unprovability of circuit
lower bounds in theories of bounded arithmetic such as VNC1, cf. [43], and the proposal
[42, 0.1 Circuit lower bounds and Complexity-Theoretic tautologies] to study exponentially
harder lb formulas. Once the definitions are given, it is for example clear that polynomial-size
proofs of the lb formulas transform into almost linear-size proofs of the truth table formulas.
Another instance of this phenomena says that:

If the truth table formulas encoding a polynomial circuit lower bound require superlinear-
size proofs in AC0-Frege systems, then lb formulas encoding the same polynomial circuit
lower bound require (NC1)-Frege proofs of super-polynomial size (implicit in the proof of [37,
Proposition 4.14]).

Since AC0-Frege lower bounds are known, this suggests a way for attacking Frege lower bounds.
([41] established analogous results in circuit complexity, where it might be easier to prove lower
bounds. However, their version of the MCSP problem refers to the average-case complexity
of truth-tables, which seems harder to analyse. We refer to [41] for further discussion.)

The lb formulas result from the feasible witnessing of circuit lower bounds. In [37], the
witnessing was provided by a theorem of Lipton and Young [34] establishing the existence of
anti-checkers, described in Section 1.2. This allows to express the hardness of f without using
its whole truth table. The present paper extends the idea of anti-checkers into the context of
hardness magnification in circuit complexity for the standard worst-case formulation of MCSP.

CCC 2019

	Introduction
	Context
	Results
	Discussion

	Preliminaries
	Hardness Magnification via Error-Correcting Codes
	Proof of Theorem 1 Case 2 (Magnification for formulas with parities)
	Completing the proof of Theorem 1

	Hardness Magnification via Anti-Checkers
	Proof of Theorem 4 (Magnification for MCSP)
	Proof of Lemma 18 (Anti-Checker Lemma)
	The Anti-Checker Hypothesis

	Unconditional Lower Bounds for Gap-MKtP and Gap-MCSP
	MKtP – A near-quadratic lower bound against U_2-formulas
	MKtP – Stronger lower bounds for large parameters
	MCSP – A similar near-quadratic lower bound against U_2-formulas

	Hardness Magnification and Proof Complexity

