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A statistical theory of rogue waves is proposed and tested against experimental data collected
in a long water tank where random waves with different degrees of nonlinearity are mechanically
generated and free to propagate along the flume. Strong evidence is given that the rogue waves
observed in the tank are hydrodynamic instantons, that is, saddle point configurations of the action
associated with the stochastic model of the wave system. As shown here, these hydrodynamic
instantons are complex spatio-temporal wave field configurations which can be defined using the
mathematical framework of Large Deviation Theory and calculated via tailored numerical methods.
These results indicate that the instantons describe equally well rogue waves that originate from a
simple linear superposition mechanism (in weakly nonlinear conditions) or from a nonlinear focusing
one (in strongly nonlinear conditions), paving the way for the development of a unified explanation
to rogue wave formation.

I. INTRODUCTION

A fascinating phenomenon observed in a wide class of
nonlinear dispersive systems is the occurrence of rogue
waves with abnormally large amplitude; they are found in
sea surface gravity waves [1, 2], nonlinear fiber optics [3],
plasmas [4] and Bose-Einstein condensates. Rogue waves
have received a lot of attention in the past 20 years,
and different mechanisms for their formation have been
put forward, but a definite explanation has yet to be
agreed upon [2, 5–9]. To settle this question, studies
in wave flumes or basins are interesting, because they
permit to create and measure wave states by means of
mechanical wave generators under controlled conditions
meant to mimic (after rescaling) those in the sea. The
water surface in the tank can be monitored accurately
with high space-time resolution, and abundant statis-
tics can be collected. In one-dimensional experiments
that mimic an idealized long-crested rescaled sea, if the
surface is sufficiently energetic, nonlinear focusing effects
take over linear dispersion and are known to be responsi-
ble for increasing the likelihood of the rogue waves. This
leads to non-Gaussian fat-tailed statistics for their am-
plitude [2, 10], as opposed to the Gaussian statistics ob-
served in the dispersive regime.

In the present article, we propose a statistical theory
of rogue waves and test it against experiments performed
in the one-dimensional setting of the wave flume. We
show that, in the full range of experimental conditions
tested, the rogue waves we observe closely resemble hy-
drodynamic instantons [11–16]: these are specific spatio-
temporal configurations of the wave field which we define
within the framework of large deviation theory (LDT)
as the minimizers of an action associated with the ran-
dom wave model used to describe the system; here we fo-

cus on the nonlinear Schrödinger equation (NLSE) with
random initial data but the approach is generalizable to
more complicated models. The finding that instantons
explain experimental rogue waves for a wide range of
surface conditions in the tank is striking because it of-
fers a unified description of these waves. In particular,
our approach encompasses two of the main existing the-
ories for rogue wave creation: (i) the theory of quasi-
determinism [17, 18] which predicts that the rogue wave
is created by linear superposition effects and its shape is
given by the autocorrelation function of the wave field;
(ii) the semi-classical theory [19, 20] which asserts instead
that localized perturbations in the wave field can lead to
the formation of a Peregrine soliton via nonlinear focus-
ing instability. Our approach reconciles these two, appar-
ently incompatible, theories and smoothly interpolates
between them as the experimental control parameters are
varied: when the nonlinear effects are weak, the shape of
the instantons converges to the autocorrelation function
predicted by the theory of quasi-determinism; and when
the nonlinear effects are strong, their shape converges
to that of the Peregrine soliton. Because the instanton
calculus proposed in this paper uses as limiting param-
eter the maximal wave amplitude itself, without condi-
tion on model parameters or regimes in NLSE, it allows
us to assess the validity of the quasi-deterministic and
semi-classical theories by comparing them to the results
of our approach in appropriate regimes. Our approach
could also be useful in the context of other nonlinear
theories for rogue waves based on NLSE, like statistical
approaches based on the Alber and the Wigner equa-
tions [35, 37–41]. We also stress that the method pro-
posed here can be generalized to the full two-dimensional
setting, as well as other relevant physical systems where
an understanding of extreme events is important [21, 22]
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but made challenging by the complexity of the models in-
volved combined with the stochasticity of their evolution
and the uncertainty of their parameters [21, 23–26]. In
this sense our approach adds to other rare events meth-
ods [27–34].

The remainder of this paper is organized as follows:
We introduce the experimental setup in section II. In sec-
tion III, we explain how we extract extreme event data
from the experimental measurements. Our approach
based on large deviation theory is presented in Sec. IV,
where we also describe how we compute the instanton for
the rogue waves. Theory and experiment are then com-
pared in section V, with special focus on the quasi-linear
and highly nonlinear limiting cases. We conclude in sec-
tion VI by discussing the implications of our results in
the context of a unified theory of rogue waves.

II. EXPERIMENTAL SETUP

The experimental data were recorded in the 270m long
wave flume at Marintek (Norway) [36, 42], schematically
represented in Fig. 1. At one end of the tank a plane-wave
generator perturbs the water surface with a predefined
random signal. These perturbations create long-crested
wave trains that propagate along the tank toward the
opposite end, where they eventually break on a smooth
beach that suppresses most of the reflections. The water
surface η(x, t) is measured by probes placed at different
distances from the wave maker (x-coordinate). The sig-
nal at the wave maker η(x = 0, t) ≡ η0(t) is prepared
according to the stationary random-phase statistics with
deterministic spectral amplitudes C(ωj):

ηe0(t) =
N

∑
j=1

√
2C(ωj)δω cos(ωjt + φj). (1)

Here the phases φj ’s are mutually independent ran-
dom variables uniformly distributed on [0,2π], δω = 2π

τ
,

ωj = jδω, and τ is the time-series length. This guaran-
tees that, for N and τ sufficiently large, ηe0(t) is approx-
imately a stationary Gaussian random field with energy
spectrum C(ω) > 0, i.e.

⟨ηe0(t)η
e
0(t

′
)⟩ =

N

∑
j=1

C(ωj)δω cos(ωj(t − t
′
))

∼ ∫

∞

0
C(ω) cos(ω(t − t′))dω,

(2)

where the bracket denotes expectation with respect to
the random phases φj . In the experiment, C(ω) is taken
to be the JONSWAP spectrum [43] of deep water waves
observed in the ocean,

C(ω) =
αg2

ω5
exp [−

5

4
(
ω0

ω
)

4

]γ
exp[− (ω−ω0)

2

2σ2
J
ω2
0

]
. (3)

Here g = 9.81ms−2 is the gravity acceleration, ω0 = 4.19
s−1 is the carrier frequency (spectral peak), and σJ = 0.07

if ω ≤ ω0 and σJ = 0.09 if ω > ω0. These parameters
are fixed for all sea states, and we can use the disper-
sion relation of surface gravity waves in deep water to
obtain the carrier wave number k0 = ω2

0/g = 1.79 m−1.
The remaining parameters α and γ in (3) are dimension-
less and vary according to weather conditions. In the
experiments, α = 0.012 throughout, while the enhance-
ment factor γ ranges from 1 to 6, which is a realistic
range of values for the ocean measurements from calmer
to rougher sea states. In the water waves community, it
is common to introduce the significant wave height Hs,
as a statistical measure of the average wave height, here
defined as

Hs = 4σ = 4(∫

∞

0
C(ω)dω)

1/2
, (4)

where σ = ⟨η2
0⟩

1/2 is the standard deviation of the surface
elevation, which both depend on γ as well as the other
parameters in (3) that we keep fixed as specified above.
We also introduce a characteristic bandwidth Ω of the
JONSWAP spectrum defined as

Ω = width of C(ω) at half height. (5)

Experimental data were collected for three different
regimes: quasi-linear (γ = 1, Hs = 0.11 m), intermedi-
ate (γ = 3.3, Hs = 0.13 m), and highly nonlinear (γ = 6,
Hs = 0.15 m), see Table I. Note that these three regimes
have comparable significant wave heights Hs, but the dif-
ference in their enhancement factors γ has significant dy-
namical consequences, as discussed in Sec. IV where
we introduce and explain the additional parameters ε,
Llin, and LPer listed in the table. Experimental measure-
ments of the spectrum for the three regimes are depicted
in Fig. 2.

For each set, we use data from 5 time series, each of
which is 25 min long. The surface elevation η is measured
simultaneously by 19 probes placed at different locations
along the axes at the center of the tank, recording data
with a rate of 40 measurements per second. At each of
two different positions (x = 75 m and x = 160 m) two
extra probes closer to the sides are used to check that
the wave fronts remain planar.

III. EXTREME-EVENT FILTERING:
EXTRACTING ROGUE WAVES FROM

EXPERIMENTAL DATA

To characterize the dynamics leading to extreme events
of the water surface, we adopt the following procedure:
at a fixed location x = L along the flume, we select small
observation windows around all temporal maxima of η
that exceed a threshold z. The choice of the threshold
z is meant to select extreme events with a similar prob-
ability for all sets: the values of z = Hs = 4σ for the
quasi-linear set, z = 1.1Hs = 4.4σ for the intermediate
set and z = 1.2Hs = 4.8σ for the highly-nonlinear set lead
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FIG. 1. Wave flume experiment. The wave maker generates a random wave field with stationary Gaussian statistics with the
JONSWAP energy spectrum observed in the oceans. The planar wave fronts propagate along the water tank, where the surface
elevation η is measured by vertical probes.
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FIG. 2. JONSWAP spectra from Eq. (3) for the three exper-
imental regimes of table I (lines), compared to experimental
measurements at the x = 10m probe (dots). These spectra
remain roughly constant through the tank, except for small
changes that are the signature of non-Gaussian effects that
develop [42].

respectively to 78, 99 and 88 registered events where the
maximum of the surface elevation exceeds the threshold
at the 45 m probe, η(x = 45 m, t) ≥ z. We track the wave
packet backward in space and look at its shape at earlier
points in the channel. This allows us to build a collec-
tion of extreme events and monitor their precursors. In
Fig. 3a, we show two extreme events at x = 45 m obtained
by this procedure, as well as their precursors at x = 30 m
and x = 10 m. We analyze the statistical properties of
these extreme events by computing their average shape
and the standard deviation around it at the different po-

Regime γ Hs(m) Ω(s−1) ε Llin(m) LPer(m)

quasi-linear 1 0.11 2.12 0.15 8.9 32

intermediate 3.3 0.13 0.90 1.13 46 61

highly nonlinear 6 0.15 0.76 2.23 69 65

TABLE I. The relevant parameters in the three experimental
regimes considered. The parameters γ, Hs, and Ω are used to
characterize the JONSWAP spectrum enforced by the wave
maker. The parameter ε is used to quantify the strength of
nonlinear versus dispersive effects in NLSE and is defined in
Sec. IV A. The two lengths Llin and LPer measure the typi-
cal scales over which these effects occur: they are defined in
Section V C and are useful for the interpretation of Fig. 6

.

sitions along the channel, obtaining the result shown in
Fig. 3b for the highly-nonlinear case.

IV. THEORETICAL DESCRIPTION OF ROGUE
WAVES VIA INSTANTONS OF NLSE

We now explain how rogue waves can, within the
framework of Large Deviation, be described as instan-
tons, that is, the minimizers of an action functional as-
sociated with the nonlinear Schrödinger equation with
random initial data that we will use to describe the sys-
tem’s evolution. In the linear case, as will be discussed
later, this minimization can be done analytically without
much effort. When the nonlinear effects matter, however,
numerical computations are required to perform the min-
imization.
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FIG. 3. (a) Extreme wave event selection. At x = 45 m, we monitor the temporal maximum of the experimental data series
of η, record events reaching above a given threshold, and monitor the evolution of these events at probes located earlier in
the channel. This is done within an observation time window centered at the maximum and following the wave packet with
group velocity cg; we repeat this for the whole time series to build a collection of extreme events and their evolution. (b) Mean
extreme event. The thick line shows the mean extreme event at different points along the channel, the shaded area a 1 standard
deviation range around it. The noise to signal ratio is small in the focusing region, leading naturally to the question: Can we
explain the common pathway by which these rogue waves are most likely to arise?

A. The model

To avoid solving fully nonlinear water wave equations
that are complicated from both theoretical and computa-
tional viewpoints, it is customary to use simplified models
such as the Nonlinear Schrödinger equation (NLSE). If
we exclude very nonlinear initial data, it is known that
NLSE captures the statistical properties of one dimen-
sional wave propagation to a good degree of accuracy
up to a certain time [1, 2, 10, 45–47] and it can be im-
proved upon by using higher order envelope equations
[48, 49]. Because of their simplicity, NLSE and exten-
sions thereof have been successfully used to explain ba-
sics mechanisms such as the modulational instability in
water waves. With the aim of capturing leading order ef-
fects, rather than describing the full wave dynamics, here
we restrict ourselves to the NLSE as a prototype model
for describing the nonlinear and dispersive waves in the
wave flume. Higher order models could in principle im-
prove the agreement between the theoretical instantons
and the experimental ones, but as demonstrated later,
these corrections are negligible in the wave flume exper-
iment.

In the limit of deep-water, small-steepness, and narrow-
band properties, the evolution of the system is described,
to leading order in nonlinearity and dispersion, by the
one-dimensional NLSE:

∂ψ

∂x
+ 2

k0

ω0

∂ψ

∂t
+ i

k0

ω2
0

∂2ψ

∂t2
+ 2ik3

0 ∣ψ∣
2ψ = 0 . (6)

The NLSE describes the change of the complex enve-

lope ψ ≡ ψ(x, t) that relates to the surface elevation via
the Stokes series truncated at second order:

η = ∣ψ∣ cos(θ) + 1
2
k0∣ψ∣

2 cos(2θ) +O(k2
0 ∣ψ∣

3
) , (7)

where θ = k0x − ω0t + β and β is the phase of ψ. In
this expression the second order term can be neglected
when the field amplitude ∣ψ∣ is small—this is the case
near the wave maker at x = 0, where we will specify initial
conditions for the NLSE (6). However, this second order
correction is important when ∣ψ∣ becomes large, i.e. when
rogue waves develop.

The NLSE (6) is written as an evolution equation in
space (rather than in time) in order to facilitate the com-
parison with experimental data which are taken along the
spatial extend of the flume. Consistent with the wave
generator located at x = 0, we specify ψ(x = 0, t) = ψ0(t)
as initial condition for (7), which we take to be a Gaus-
sian random field with a covariance whose Fourier trans-
form is related to the JONSWAP spectrum (3). Specifi-
cally, we set

ψ0(t) = ∫
∞

−∞
eiωtψ̂0(ω)dω (8)

with ψ̂0(ω) Gaussian with mean zero and covariance

⟨ψ̂0(ω)
¯̂
ψ0(ω

′
)⟩ = C(ω − ω0)δ(ω − ω

′
)

⟨ψ̂0(ω)ψ̂0(ω
′
)⟩ = ⟨

¯̂
ψ0(ω)

¯̂
ψ0(ω

′
)⟩ = 0

(9)

where the bar denotes complex conjugation and C(ω) =
C(−ω) is the JONSWAP spectrum defined in (3). Since,
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to first order,

η0(t) =
1
2
(ψ0(t)e

−iω0t + ψ̄0(t)e
iω0t) +O(k0∣ψ0∣

2
) (10)

a direct calculation reported in Appendix A shows that,
to that order, η0(t) is Gaussian with mean zero and co-
variance C(ω). Note that in our setup the initial ψ0(t) is
the only source of randomness in the model. That is, we
evolve ψ0(t) in space by the NLSE, and look for solutions
ψ(x, t) whose elevation η(x, t) exceed the threshold z at
spatial position x = L, i.e. satisfy η(L, t) ≥ z for some
t ≥ 0 (using temporal invariance we will later designate
t = 0 to be the point in time of the extreme event).

The NLSE (6) is Hamilton’s equation
i (∂x + (2k0/ω0)∂t)ψ = δH/δψ̄ associated with the
Hamiltonian H =Hlin +Hnl, with

Hlin = −
k0

ω2
0
∫

∞

−∞
∣∂tψ∣

2dt, Hnl = k
3
0 ∫

∞

−∞
∣ψ∣4dt. (11)

In order to quantify the magnitude of the nonlinearity
of the wavefield, we use the ratio ε between the nonlin-
ear energy Hnl and the free particle linear energy Hlin.
To this end, we use dimensional analysis to estimate
∣∂tψ∣

2 = O(Ω2H2
s ) and ∣ψ∣4 = O(H4

s ), where averaged
wave height Hs and the characteristic frequency Ω are
defined in (4) and (5), respectively . This gives

ε =
Hnl

Hlin
= (

ω0

Ω
k0Hs)

2

. (12)

The values of ε obtained this way are given in Table I for
the three regimes analyzed: quasi-linear, intermediate,
and highly nonlinear. We stress that other definitions
of the nonlinearity parameter are possible, differing by
a constant factor—the important information is the rel-
ative magnitude of ε in the different regimes. We also
stress that the values of ε are used to interpret the re-
sults, but the instanton calculations described next in
Sec. IV B are performed in the same way for all values
of ε.

B. Large Deviation Theory and Instanton Calculus

Our analytical and computational descriptions of rare
events rely on instanton theory. Developed originally in
the context of quantum chromodynamics [13], at its core
lies the realization that the evolution of any stochastic
system, be it quantum and classical, reduces to a well-
defined (semi-classical) limit in the presence of a small
parameter. Concretely, the simultaneous evaluation of
all possible realizations of the system subject to a given
constraint results in a (classical or path-) integral whose
integrand contains an action functional S(ψ). The domi-
nating realization can then be obtained by approximating
the integral by its saddle point approximation, using the
solution to δS(ψ∗)/δψ = 0. This critical point ψ∗ of the
action functional is called the instanton, and it yields the

maximum likelihood realization of the event. This con-
clusion can also be justified mathematically within Large
Deviation Theory.

Specifically, we are interested in the probability

PL(z) ≡ P(η(L,0) ≥ z) (13)

i.e. the probability of the surface elevation at position L
at an arbitrary time t = 0 exceeding a threshold z. This
probability can in principle be obtained by integrating
the distribution of the initial conditions over the set

Λ(z) = {ψ0 ∶ η(L,0)) ≥ z}, (14)

i.e. the set of all initial conditions ψ0 at the wave maker
x = 0 that exceed the threshold z further down the flume
at x = L. Since the initial field ψ0(t) is Gaussian, con-
sistent with (9) the probability (13) can therefore be for-
mally written as the path integral

PL(z) = Z
−1
∫

Λ(z)
exp(− 1

2
∥ψ0∥

2
C)D[ψ0] , (15)

where Z is a normalization constant and we defined

∥ψ0∥
2
C = ∫

∞

−∞
∣ψ̂0(ω)∣

2

C(ω − ω0)
dω (16)

where ψ̂0(ω) = 1/(2π) ∫
∞
−∞ ψ0(t)e

−iωtdt is the Fourier
transform of ψ0(t). The functional integral (15) can be
given a precise mathematical meaning in several ways.
For example, we can project the initial field onto finitely
many modes, in which case (15) reduces to a regular in-
tegral over these modes. However, even if we were to
perform this projection, the integration is hard to per-
form in practice. This is because the set Λ(z) defined
in (14) has a very complicated shape in general, that de-
pends non-trivially on the nonlinear dynamics of (6) since
it involves the field at x = L > 0 down the flume rather
than x = 0. One way around this difficulty is to estimate
the integral (15) via Laplace’s method. This strategy is
the essence of Large deviation theory (LDT), or, equiv-
alently, instanton calculus, and it is justified for large z,
when the probability of the set Λ(z) is dominated by a
single ψ0 contributing most to the integral (see [26, 50]).
The optimal condition leads to the constrained minimiza-
tion problem

1
2

min
ψ0∈Λ(z)

∥ψ0∥
2
C ≡ IL(z) , (17)

and gives the large deviation estimate for Eq. (13),

PL(z) ≍ exp (−IL(z)) . (18)

where the symbol ≍ means asymptotic logarithmic equiv-
alence, i.e. the ratio of the logarithms of the two sides
tends to 1 as z → ∞, or, in other words, the exponen-
tial portion of both sides scales in the same way with z.
Intuitively, the estimate (18) says that, in the limit of
extremely strong (and unlikely) waves, their probability
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is dominated by their least unlikely realization, the in-
stanton.

In practice, the constraint η(L,0) ≥ z can be imposed
by adding a Lagrange multiplier term to Eq. (17), and
it is easier to use this multiplier as control parameter
and simply see a posteriori what value of z it implies.
Concretely, we perform for various values of λ the mini-
mization

min
ψ0

( 1
2
∥ψ0∥

2
C − λη(L,0)) ≡ SL(λ) , (19)

over all the possible realizations of ψ0 (without con-
straint). The minimizer ψ⋆0(λ) of this optimization
problem gives the following parametric representation of
IL(z) versus z:

IL(z(λ)) =
1
2
∥ψ⋆0(λ)∥

2
C ,

z(λ) = η(L,0) = ∣ψ(L,0)∣ (1 + 1
2
k0∣ψ(L,0)∣) ,

(20)

where the last equivalence uses the second order of the
Stokes’ series (7) at θ = 0. It is easy to see from Eqs. (17)
and (19) that SL(λ) is the Legendre transform of IL(z)
since:

SL(λ) = sup
z∈R

(λz − IL(z))

= sup
z∈R

(λz − 1
2

inf
ψ0∈Λ(z)

∥ψ0∥
2
C).

(21)

It is clear from equation (18) that the stochastic sampling
problem is replaced by a deterministic optimization prob-
lem, which we solve numerically as explained next. The
trajectory initiated from the minimizer ψ∗0 of the action
will be referred to as the instanton trajectory, and in the
following we compare it to trajectories obtained from the
experiment.

C. Numerical aspects

In practice, we perform the minimization (19) by nu-
merical gradient descent in the space of the initial con-
dition ψ0, the gradient being computed by the adjoint
formalism. Consequently, for each iteration of the de-
scent, the NLSE (6) needs to be solved up to x = L for
the envelope ψ and its adjoint equation for the adjoint
field ψ̃. The equation is solved in a time domain of width
75 s, much larger than the correlation time of the wave
field (of the order of 10 seconds), with periodic boundary
conditions in time. The domain is discretized on a lat-
tice of 211 equally spaced points. Combined with a cut-off
of the initial spectrum at small amplitude, this leads to
M = 89 modes of the JONSWAP being relevant for the
initial data, as depicted in Fig. 2. Eq. (6) is numeri-
cally integrated in space by means of a pseudo-spectral
exponential time-differencing method ETDRK2, with a
spatial increment of 0.1 m. More details of the numerical
procedure can be found in [26].

The minimizer ψ⋆0 of (19) identifies the most likely
realization over the distribution of wave shapes at the

wave generator which, evolving deterministically via the
NLSE, reaches a size η(L,0) ≥ z. As saddle point ap-
proximation of the corresponding action, ψ⋆(z) can be
considered the instanton of the problem. Here, the large
value of z plays the role of the limiting parameter for the
LDP (18). Thus, the instanton of size z is expected to
represent all of the extreme events η(L,0) ≥ z to leading
order in z. Because of this key property, the instanton is
the natural object for the characterization of the extreme
wave events. Note that the knowledge of the instanton
configuration itself can be used as an ingredient for ad-
vanced rare event sampling techniques, such as impor-
tance sampling and hybrid Monte Carlo approaches [51].
For the purpose of this paper, we restrict our analysis
to the comparison of the instanton to the conditioned
experimental measurements.

V. VALIDATION OF THE INSTANTON
DESCRIPTION

In Fig. 4 we compare the evolution of rogue waves ob-
served in the experiment and averaged over many re-
alizations to that of the instanton, both constrained at
x = 45 m. In all cases the instanton tracks the dynam-
ics of the averaged wave very closely during the whole
evolution. Moreover, in the focusing region the standard
deviation around the mean is small, especially toward
the end of the evolution. This observation in itself is a
statement that indeed all of the rogue waves such that
η(L,0) ≥ z resemble the instanton plus small random
fluctuations. The instanton approximation shows excel-
lent agreement not only across different degrees of non-
linearity (and therefore substantially different physical
mechanisms), but also captures the behavior of precur-
sors earlier along the channel.

In Fig. 5 the envelope evolution of a single realization
of a rogue wave is compared to the instanton evolution
at multiple locations, in the highly-nonlinear case. In the
focusing region the experimental sample shares with the
instanton the same overall structure, needed to allow it
to reach an extreme size.

It is worth stressing that the instanton approach cap-
tures both the linear and the fully nonlinear cases, un-
like previous theories that could describe each of these
regimes individually but not both. To make that point,
in the next two sections we compare the predictions of
our approach to those of the quasi-determinism and semi-
classical theories that hold in the dispersive and nonlinear
regimes, respectively.

A. Comparison to linear theory

In the linear case, i.e. when the field ψ(x, t) is Gaus-
sian and stationary, the shape of an envelope time series
with a large local maximum in t = 0 is expected to be
given by the covariance of the wave field, i.e. the inverse
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FIG. 4. Experimental validation of the instanton. Snapshots of the instanton during its evolution along the channel (black
lines) are compared to the mean and standard deviation of the experimental rogue wave (color lines), for different regimes of
nonlinearity. The instanton prediction agrees with the experimental mean across all regimes, and captures the whole evolution
along the channel. This confirms that typical rogue waves are well represented by instantons, and the typical extreme events
collapse onto this most likely one with only small fluctuations around them.

Fourier transform of the spectrum. This is a well estab-
lished result in probability [17]. In the oceanographic
context, the result was rediscovered in the ′90s [18] and
subsequently tested for some real quasi-Gaussian wave
records in the ocean [52], also accounting for second-order
Stokes’ corrections [53]. A core result of the theory is the
prediction that conditioning the surface elevation to have
a large maximum, the expected shape of the water sur-
face is given by the covariance of the wave field, i.e. the
inverse Fourier transform of the spectrum. The theory
is often referred to as the theory of quasi-determinism,
which hereafter we name the linear theory for simplicity.
In our case, such prediction is justified if the nonlinear
focusing effects are small so that the statistics stay close
to Gaussian along the tank, as in the quasi-linear set.
Then, conditioning on a temporal maximum of η(L,0)
at x = L, we can compute the history of the wave packet
by evolving NLSE backward in space. In Fig. 6a this lin-
ear prediction is plotted in comparison with the envelope
of the averaged rogue wave for the quasi-linear set. A
good agreement is observed at all spatial points consid-

ered. Moreover, the theoretical instanton found through
the optimization procedure reduces perfectly to the lin-
ear prediction, proving that such result is included in the
instanton theory and represents its limiting linear case.

B. Nonlinear regime and Peregrine solitons

At the opposite end, in the nonlinear regime, it was
recently shown [19] that in the zero-dispersion (semi-
classical) regime of the NLSE any single localized pulse
on a vanishing background leads locally to the emergence
of a Peregrine soliton. By scale invariance of the NLSE,
such a regime can be attained whenever an initial con-
dition is characterized by large enough wave groups for
which the nonlinear term dominates over the dispersive
one. In fiber optics [54, 55], emerging Peregrine-like
structures have been observed out of a random back-
ground. For the highly nonlinear case, in Fig. 6b we
compare the instanton and the Peregrine soliton reaching
the same maximal height z at x = 45 m, finding that in
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FIG. 5. Agreement of the instanton with individual extreme
events. The evolution of a single realization of an extreme
wave (red lines) is reasonably approximated by the instan-
ton evolution (black/white surface), here for a sample of the
highly nonlinear data set. In order to capture the focusing
pattern in an essential way, the envelope ∣ψ∣ is plotted in-
stead of the surface elevation η to remove carrier-frequency
oscillations.

the focusing region the two converge to the same shape,
which is also closely followed by the envelope of the ex-
perimental averaged rogue wave. Looking at the event
precursor at earlier x, instead, we notice that the exper-
imental mean wave stays close to the instanton, while
it gradually deviates from the Peregrine soliton. Thus,
it appears that the instanton captures the mechanism
underlying the rogue wave events also when nonlinear-
ity rules over dispersion, tending locally to the Peregrine
soliton around the maximal focusing point, consistently
with the regularization of the gradient catastrophe [19].

C. A unified picture of rogue waves

A useful quantification of the effective mechanisms of
rogue wave creation can be obtained by looking at the
length scales at play. The linear length of dispersion is
given by Llin = ω2

0/(k0Ω2), while the characteristic length
associated with the Peregrine soliton is LPer =

√
LlinLnl

[44], where Lnl = 8/(k3
0H

2
s ) is the nonlinear length of

modulational instability. These length scales are clearly
visible in space-time contours of the amplitude shown
in Fig. 6c, t. In the linear and quasi-linear regimes, the
wave packet has a characteristic length around Llin ≃ 9 m.
Thus, we can state that linear superposition dominates
and the expected mechanism leading to the extreme event
is the linear dispersion of a coherent wave packet. The
quasi-linear instanton evolution is almost indistinguish-
able from the linear approximation. On the other hand,
the extent of the structures in the highly-nonlinear case
agrees with the length LPer ≃ 65 m. The dynamics of
the highly nonlinear instanton clearly converges to the
Peregrine dynamics near the space-time point of maxi-

mal focusing, and reproduces the characteristic isolated
“dips” of the amplitude observed around the extreme
event. Fig. 6c highlights the sharp difference between the
rapidly evanescent linear rogue waves and the more per-
sistent nonlinear ones. Quite strikingly, the instanton is
able to interpolate between those two limiting regimes,
as evidenced by the intermediate instanton in Fig. 6c,
which displays features of both the linear theory and the
Peregrine soliton. Summarizing, the instanton predicts
the shape of rogue waves experimentally observed in the
tank across all parameter regimes.

D. Probability estimates from LDT

The analysis so far has addressed the mechanism of
rogue-wave formation, and compared the most likely evo-
lution into an extreme wave, as predicted by the instan-
ton, to the observed events measured in the experiment.
Since the instanton formalism is based on probability
theory and large deviations, it also allows us to deduce
the tail scaling of the extreme event probability itself
via (18). Indeed, it was shown in [50] that the LDT pre-
diction for the tail of the PDFs match very well those
obtained by brute-force Monte Carlo simulations using
NLSE. In the context of actual experiments, the situa-
tion is more complicated. Despite the large amount of
data collected in the experiments, the far tail of the PDF
of the surface elevation is characterized by a natural cut-
off related to the phenomenon of wave breaking, visu-
ally observed during the experiments in the non linear
regimes. The NLSE itself misses such effect that lowers
the probability to observe rogue wave in experiments, es-
pecially in the highly nonlinear regime. As a result, the
predictions we can make about the PDFs of rogue waves
are less accurate than those about their shape. In Fig. 7
we plot the LDT predictions for the PDF of the surface
elevation, ρL(z) = −P ′

L(z), in the intermediate regime
at three spatial points with L = 10, 30 and 45 m away
from the wave maker, and compare them with the ex-
perimental ones. While the agreement is reasonable past
the height threshold for rogue waves, and confirms the
expected nonlinear tail fattening [36, 42], it is difficult
to quantify how accurate these results are because of the
problems mentioned earlier.

VI. CONCLUSIONS

Starting with the pioneering works in [56–58], it has
been recognized that nonlinear focusing effects may play
an important role in the formation of rogue waves. Since
then, exact solutions of the NLSE, like for example
the Peregrine solution, have been reproduced in con-
trolled lab experiments [47, 59] and by now are con-
sidered as prototypes of rogue waves. In random wave
fields, however, our understanding of the development of
rogue waves remains more limited. In strongly nonlinear



9

0.0

0.1

0.2
|ψ
|/

m

x = 45m

(a) quasi linear

Experiment

Instanton

Peregrine

Linear

0.0

0.1

0.2

|ψ
|/

m

x = 30m

−10 −5 0 5 10

t/s

0.0

0.1

0.2

|ψ
|/

m

x = 10m

0.0

0.1

0.2

|ψ
|/

m

x = 45m

(b) highly nonlinear

Experiment

Instanton

Peregrine

Linear

0.0

0.1

0.2

|ψ
|/

m

x = 30m

−10 −5 0 5 10

t/s

0.0

0.1

0.2

|ψ
|/

m

x = 10m

0 20 40 60 80

x/m

−10

−5

0

5

10

t/
s

(c)
Linear

0 20 40 60 80

x/m

−10

−5

0

5

10

Llin

quasi linear

0 20 40 60 80

x/m

Instanton
intermediate

0 20 40 60 80

x/m

Lper

highly nonlinear

0 20 40 60 80

x/m

−10

−5

0

5

10
Peregrine

FIG. 6. Comparison of the instanton to the predictions of the theory of quasideterminism and the semiclassical theory: (a) The
quasi-linear instanton converges to the linear prediction, correctly reproducing the rogue waves averaged over the experiments.
(b) The highly nonlinear instanton evolution closely follows the averaged rogue wave and converges locally to a Peregrine
soliton around its space-time maximum, as predicted by the semi-classical theory, and reproduced by the instanton. The linear
prediction instead fails, especially around the maximum. (c) The contour plots show agreement with the two limiting theories
and recover the respective dominant length scales. In the linear limit, dominated by dispersion, the rogue waves arise and decay
very rapidly. On the contrary, in the semi-classical limit, where nonlinear effects are prevalent, the Peregrine-like structure
of the extreme event is persistent, with a very slow decay. The rogue waves in intermediate regimes display both linear and
nonlinear features, as shown in the central panel.

conditions (semiclassical limit), assuming a one dimen-
sional propagation described by the NLSE, it has been
shown [20] that a localized initial condition leads to the
development of extreme waves that can be locally fitted
to the Peregrine solution of the NLSE. While this fit may
suggest the internal mechanism leading to rogue waves in
long-crested, narrow-banded deep seas (neglecting other
effects such as bathymetry, interactions with sea currents,
multimodality, etc., which may also play a significant role
in particular situations) it says nothing about their likeli-
hood. Such information is instead intrinsically contained
within the instanton framework, allowing for estimates
such as in Fig. (7). To what extent these nonlinear ef-
fects are at work in real directional sea states is also a

difficult question [8, 9, 60], in part because of the un-
certainty in the measurements of the directional wave
spectrum, especially close to its peak. If the sea state
conditions are not prone for the development of such non-
linear waves, linear dispersion may still be the dominant
one for generating rogue waves [8]. This idea is at the
core of the theory of quasi-determinism (also known as
NewWave theory) that was developed in the early seven-
ties to describe rogue waves in this linear regime [17, 18];
it allows one to determine the shape of the most extreme
wave and relate it to the autocorrelation function. The
two, apparently incompatible, mechanisms of formation
of rogue waves, i.e. the nonlinear focusing and the linear
superposition, have led to many debates among different



10

−0.2 −0.1 0.0 0.1 0.2 0.3

z/m

10−4

10−3

10−2

10−1

100

101

ρ
(z

)
γ = 3.3, Hs = 0.13

0m, LDT

10m, LDT

30m, LDT

45m, LDT

0m (Theory)

10m, Experiment

30m, Experiment

45m, Experiment

Rogue Wave

FIG. 7. Comparison of the PDF of the surface elevation
ρ(z) = −P ′
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of the vertical dashed line, indicating the conventional Rogue
wave threshold z = Hs). The figure refers to the interme-
diate regime. The blue, green and red colors indicate data
collected at the probes 10, 30 and 45 m away from the wave
maker, respectively.

groups of research.
Here we have proposed a unifying framework based on

Large Deviation Theory and Instanton Calculus that is
capable to describe with the same accuracy the shape
of rogue waves that result either from a linear superpo-
sition or a nonlinear focusing mechanism. In the limit
of large nonlinearity, the instantons closely resemble the
Peregrine soliton used e.g. in [19, 20] to describe ex-
treme events, but with the added bonus that our frame-
work predicts their likelihood; in the limit of linear waves,
the instanton reduces to the autocorrelation function as
obtained in [17, 18]. A smooth transition between the
two limiting regimes is also observed, and these predic-
tions are fully supported by experiments performed in

a large wave tank with different degrees of nonlinearity.
These results were obtained for one dimensional propa-
gation, but there are no obstacles to apply the approach
to two horizontal dimensions, which may finally explain
the origin and shape of rogue waves in different setups,
including the ocean.
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Appendix A: Derivation of Eq. (9)

Let

η0(t) =
1
2
(ψ0(t)e

−iω0t + ψ̄0(t)e
iω0t) , (A1)

then, using (8), this can also be written as

η0(t) =
1
2 ∫

∞

−∞
(ψ̂0(ω)e

i(ω−ω0)t + ¯̂
ψ0(ω)e

−i(ω−ω0)t)dω.

(A2)
This implies, using (9), that

⟨η(t)η(t′)⟩ = 1
2 ∫

∞

−∞
C(ω − ω0) cos((ω − ω0)(t − t

′
))dω

= ∫

∞

0
C(ω) cos(ω(t − t′))dω

(A3)
which is consistent with (2).
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