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Abstract  

 

The aim was to go beyond functional connectivity, by measuring in the first large-scale study 

differences in effective, that is directed, connectivity between brain areas in autism compared 

to controls. Resting state fMRI was analyzed from the Autism Brain Imaging Data Exchange 

(ABIDE) dataset in 394 people with autism spectrum disorder and 473 controls, and effective 

connectivity was measured between 94 brain areas. First, in autism the middle temporal gyrus 

and other temporal areas had lower effective connectivities to the precuneus and cuneus, and 

these were correlated with the ADOS total, communication, and social scores. This lower 

effective connectivity from areas implicated in face expression analysis and theory of mind to 

the precuneus and cuneus implicated in the sense of self may relate to the poor understanding 

of the implications of face expression inputs for oneself in autism, and to the reduced theory of 

mind. Second, the hippocampus and amygdala had higher effective connectivity to the middle 

temporal gyrus in autism, and these are thought to be backprojections based on anatomical 

evidence, and are weaker than in the other direction. This may be related to increased retrieval 

of recent and emotional memories in autism. Third, some prefrontal cortex areas had higher 

effective connectivity with each other and with the precuneus and cuneus. Fourth, there was 

decreased effective connectivity from the temporal pole to the ventromedial prefrontal cortex, 

and there was evidence for lower activity in the ventromedial prefrontal cortex, a brain area 

implicated in emotion-related decision-making. 

 

Lay summary 

 

To understand autism spectrum disorders better, it may be helpful to understand whether brain 

systems cause effects on each other differently in people with autism. In this first large scale 

neuroimaging investigation of effective connectivity in people with autism, it is shown that 

parts of the temporal lobe involved in face expression identification and theory of mind have 

weaker effects on the precuneus and cuneus implicated in the sense of self. This may relate to 

the poor understanding of the implications of face expression inputs for oneself in autism, and 

to the reduced theory of mind. 
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Introduction 

 

Autism spectrum disorder (ASD) is a complex developmental disorder that is characterized 

by difficulties in social communication and social interaction; and restricted and repetitive 

behavior, interests, or activities (Lai, Lombardo, & Baron-Cohen, 2014). Recently, a great deal 

of attention has been focused on the delineation of neural systems for brain–behavior 

relationships in ASD given that ~1% of children are being diagnosed with this disorder (Kim 

et al., 2011). At the brain circuit level, resting state fMRI studies are contributing to our 

understanding of brain systems related to autism (Hull et al., 2016; Maximo, Cadena, & Kana, 

2014). These studies have suggested abnormality in connectivity between a group of related 

and partly overlapping brain systems characterized as face processing areas (Cheng, Rolls, Gu, 

Zhang, & Feng, 2015; Koshino et al., 2008), the default mode network (Padmanabhan, Lynch, 

Schaer, & Menon, 2017), social brain circuits (Gotts et al., 2012), theory of mind areas (Cheng 

et al., 2015), self-representation circuitry (Cheng et al., 2015; Lombardo et al., 2010), reward 

circuitry (Dichter et al., 2012), the salience network (Uddin et al., 2013), and a motor control 

network (Kenet et al., 2012). In a recent large-scale study (418 people with autism and 509 

controls), a key system in the middle temporal gyrus / superior temporal sulcus (STS) region 

which is implicated in the face expression processing and theory of mind involved in social 

behavior had reduced functional connectivity with the ventromedial prefrontal cortex which is 

implicated in emotion and social communication (Cheng et al., 2015). A second key system in 

the precuneus / superior parietal lobule region which is implicated in spatial functions including 

of oneself, and of the spatial environment, also had reduced functional connectivity in autism 

(Cheng et al., 2015).   

Resting state functional connectivity, which reflects correlations in the activity between 

brain areas, is widely used to help understand human brain function in health and disease 

(Cheng et al., 2016; Deco & Kringelbach, 2014). Here we go beyond functional connectivity 

to effective connectivity between different brain areas to measure directed influences of human 

brain regions on each other. Effective connectivity is conceptually very different, for it 

measures the effect of one brain region on another in a particular direction, and can in principle 
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therefore provide information more closely related to the causal processes that operate in brain 

function, that is, how one brain region influences another. In the context of disorders of brain 

function, the effective connectivity may provide evidence on which brain regions may have 

altered function, and then influence other brain regions, by comparing effective connectivity in 

individuals with autism and control participants. Effective connectivity is also more powerful, 

in that it provides a generative model for brain dynamics dynamics – a model that can also 

generate functional connectivity data features.   

In this research we utilize an approach to the measurement of effective connectivity in 

which each brain area has a simple dynamical model, and known anatomical connectivity is 

used to provide constraints (Gilson et al., 2018; Gilson, Moreno-Bote, Ponce-Alvarez, Ritter, 

& Deco, 2016; Rolls et al., 2019; Rolls et al., 2018). This helps the approach to measure the 

effective connectivity between the 94 automated anatomical atlas (AAL2) (Rolls, Joliot, & 

Tzourio-Mazoyer, 2015) brain areas using resting state functional magnetic resonance imaging. 

(The names of the AAL2 areas are shown in Table S1, and the areas can be viewed with the 

Mricron viewer.)  For this we used a large number of autistic people and controls, and were 

able to use for this analysis data in a large resting state fMRI dataset, the autism brain imaging 

data exchange (ABIDE http://fcon_1000.projects.nitrc.org/indi/abide/), which has already 

proved useful (Di Martino et al., 2014).  

 

Methods 

Participants 

The Autism Brain Imaging Data Exchange (ABIDE) repository is hosted by the 1000 

Functional Connectome Project/International Neuroimaging Data-sharing Initiative (INDI) 

(http://fcon_1000.projects.nitrc.org), and consists of data sets for 1112 individuals (ABIDE I), 

comprised of 539 individuals with autism and 573 typically developing controls. All data are 

fully anonymized in accordance with Health Insurance Portability and Accountability (HIPAA) 

guidelines. All data released were visually inspected by members of the ABIDE project. Details 

of diagnostic criteria, acquisition, informed consent, and site-specific protocols are available at: 

http://fcon_1000.projects.nitrc.org/indi/abide/
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http://fcon_1000.projects.nitrc.org/indi/abide/.  

The inclusion criteria for sample selection include: (1) functional MRI data were 

successfully preprocessed with manual visual inspection of normalization to MNI space; (2) 

any data with a mean framewise displacement exceeding 0.5mm were excluded; (3) subjects 

were excluded if the percentage of ‘bad’ points (framewise displacement>0.5mm) was over 

0.35 in volume censoring; (4) data collection centres were only included if they have at least 

19 individuals and they have the IQ of the individuals recorded. After quality control, a total of 

867 subjects (394 people with autism, and 473 controls) met all inclusion criteria. The 

demographic and clinical characteristics of participants satisfying the inclusion criteria are 

summarized in Supplementary Table S2. 

 

Effective connectivity measurement 

Neuroimaging preprocessing was performed with standard techniques by the Preprocessed 

Connectomes Project (http://preprocessed-connectomes-project.github.io/abide/index.html). 

No temporal band-pass filtering was applied. This ensures that fast fluctuations in the signal 

remained available for an efficient connectivity analysis (but the linear drifts in the BOLD 

signal timeseries were regressed out to remove any linear trends in the data). After 

preprocessing, the whole brain (gray matter) was parcellated into 94 regions of interest (ROI) 

using the AAL2 atlas (Rolls et al., 2015) which includes a useful parcellation of the 

orbitofrontal cortex. The time series were extracted in each ROI by averaging the signals of all 

voxels within that region. The names of the ROIs are listed in Supplementary Table 1. 

  We used a method that provides efficient calculation of maximum-likelihood 

Effective Connectivity (EC) estimates for a large number (94) of nodes (Gilson et al., 2018; 

Gilson et al., 2016; Rolls et al., 2019; Rolls et al., 2018). The method uses transitions of fMRI 

measurements across successive repetition times (volumes) and takes into account known 

anatomical connections. The effective connectivity model captures and uses this information 

via the covariances with nonzero time shifts. Both the EC in the model and the local input 

variance in a parameter Σ are optimized such that the model best reproduces statistics of the 

http://fcon_1000.projects.nitrc.org/indi/abide/
http://preprocessed-connectomes-project.github.io/abide/index.html


6 
 

observed fMRI signals. The resting state analysis described here can be thought of as probing 

the connectivities between brain regions by analyzing the effects on the system of perturbations 

produced by noise related to the random spiking times of neurons (Rolls & Deco, 2010). A 

description of the EC method follows, and full details of the EC method and statistical analysis 

are provided in the Supplementary Material. 

A classical approach to measuring effective connectivity is dynamic causal modelling (DCM) 

(Bajaj, Adhikari, Friston, & Dhamala, 2016; Friston, 2009; Valdes-Sosa, Roebroeck, Daunizeau, & 

Friston, 2011). DCM is often used with circuits consisting of a-priori selected brain regions to test 

hypotheses on the interactions between the considered regions. Here we instead use a network model 

with simpler assumptions than those typically used in DCM to perform a large scale connectivity 

analysis involving many brain areas (Gilson et al., 2016). This allows for the very efficient 

calculation of maximum-likelihood EC estimates for a large number (94) of nodes, individually for 

a large cohort of participants. In this way we target significant EC differences for all existing 

connections (as determined by DTI) that characterize autism with FDR correction and without 

preliminary knowledge, expecting a distributed pattern of abnormal EC links across the brain. Our 

estimation procedure (Gilson et al., 2016) iteratively optimizes a network model such that it 

reproduces the empirical cross-covariances between ROIs, which are canonically related to the cross 

spectral density used in recent studies that apply DCM to resting state fMRI data (Friston, Kahan, 

Biswal, & Razi, 2014; Razi et al., 2017). Our model uses an exponential approximation of BOLD 

autocovariance (locally over a few TRs) and discards very slow-frequency fluctuations. Because we 

are dealing with broadband (slow) fluctuations in neuronal signals, we can simplify our modelling 

of effective connectivity by using an adiabatic approximation (in which we can ignore the effects of 

the haemodynamic response function) and treat the measured signals as a direct reflection of 

underlying neuronal activity. Finally, we place positivity constraints on extrinsic or between node 

connections - in line with known neuroanatomy and previous modeling studies (Marreiros, Kiebel, 

& Friston, 2008), for the reasons described below. A last simplification compared to DCM includes 

a fixed (but plausible) form of endogenous neuronal fluctuations (Σ – i.e. sigma in our model) that 

were characterized by a single (variance) parameter in each region or node. In spite of these 

differences, we still borrow the term “effective connectivity” from the DCM literature as our 
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connectivity estimates relate to directional interactions between ROIs in the brain network. This 

model-based approach has been successfully applied to identify changes in the cortical coordination 

between rest and movie viewing (Gilson et al., 2018), and to effective connectivity in depression 

(Rolls et al., 2018) and in schizophrenia (Rolls et al., 2019). 

Compared to DCM the new method used here (Gilson et al., 2016) is computationally more 

efficient and thus can analyze larger networks because it limits the degrees of freedom for each brain 

region by utilizing a simpler model of each brain region, and because it uses some structural 

connectivity information from for example diffusion tensor imaging to reduce the number of nodes 

between which effectivity connectivity needs to be computed. Further, the new effective 

connectivity method focuses on transitions between fMRI “activity states” across successive time 

points (Mitra, Snyder, Tagliazucchi, Laufs, & Raichle, 2015) and does not include details about 

hemodynamics like the Balloon model (Friston, Mechelli, Turner, & Price, 2000). The estimated 

effective connectivity measures the strengths of causal interactions from one brain area to another, 

via the proxy of BOLD fluctuations: it provides a single number that lumps together the effects of 

the strength of the synapse, and neurotransmitter release, etc. The synaptic conductivity 

interpretation also relates to our earlier neuron-level models in which the synaptic conductivity 

between modules is a key parameter that specifies how much one module influences another module 

(Rolls, Webb, & Deco, 2012). The new method has the additional advantage that each brain region 

or module has its own Σ parameter which specifies the variance of the module’s activity, which may 

be related to the intrinsic excitability of the region. In relation to our integrate-and-fire models, the 

parameter w+ that defines the strength of the recurrent collateral synapses within the attractor 

network (Rolls, 2016; Rolls & Deco, 2010; Rolls et al., 2012) may relate to the Σ parameter in the 

current effective connectivity approach (Gilson et al., 2016), because the local feedback influenced 

by w+ influences the fluctuations of the activity, for example how readily an area will transition to 

a high firing rate state. That is, Sigma corresponds in the model to the spontaneous activity (its 

variance) of a region, and this propagates via the effective connectivities to the other nodes in the 

recurrent network. A higher value for Sigma relative to controls indicates more fluctuating activity, 

which could reflect an increase of activity. 
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The effective connectivity model and algorithm used here is closely related to the linearized 

version of the dynamic causal model (DCM) that is used for the resting state (Frassle et al., 2017; 

Friston et al., 2014) and for task-related fMRI (Gilson et al., 2018). Although the hemodynamics of 

the filtering is modeled for DCM, the complex nonlinearity is simplified in the effective connectivity 

algorithm used here (Gilson et al., 2016), which enables it to be applied to a whole-brain parcellation 

with many nodes (in this case, the 94 nodes of the AAL2 atlas). Instead of the model comparison 

used by DCM to find the best network topology, the current algorithm uses structural data (from 

DTI) to specify possible connections in the model, thereby simplifying the operation of the model 

because some links with no known anatomical connection are excluded. (However, the algorithm 

settles similarly in practice with typical fMRI data even when these anatomical constraints are 

removed.) The implication is that significant differences of effective connectivity identified with 

this algorithm (here autism versus controls) are expected to reflect significant changes in the 

corresponding DCM. The results were thresholded at p<0.05, correcting multiple comparisons using 

False Discovery Rate (FDR, q<0.05). 

 

Forward vs backward effective connectivity: The connections between adjacent cortical 

areas in a sensory hierarchy can usually be classified as forward (from the sensory input) vs 

backward (from an upper region in the hierarchy to the preceding region) (Rolls, 2016). 

Forward connectivity is often characterized by connections from layer 2-3 pyramidal cells 

forwards to layers 4, and 2 and 3, of the next cortical area. Backprojections between adjacent 

cortical areas in a hierarchy typically arise from the deep layers of the cerebral cortex, mainly 

layer 5, and project back mainly to layer 1 of the preceding cortical area (Markov et al., 2013; 

Markov et al., 2014a; Markov & Kennedy, 2013; Markov et al., 2014b; Rolls, 2016). Given the 

termination on the apical dendrites in layer 1, far from the cell bodies, the backward projections 
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are generally found to be modulatory or weaker, relative to driving forward connections, with 

effects reducing the backprojecting efficacy including shunting on the dendrites produced by 

other inputs to pyramidal cells. It is also crucial for attention and memory recall that the top-

down or backprojections are weaker than the forward connections, so that attentional biasing 

and memory recall does not dominate over bottom-up forward inputs (Deco & Rolls, 2005; 

Fuster, 2015; Rolls, 2016; Rolls & Deco, 2002; Turova & Rolls, 2019). In areas of the brain 

apart from sensory hierarchies there may also be similar asymmetries for systems level 

functional reasons, for example that short term memory processing in prefrontal cortical areas 

does not dominate perceptual processing in the temporal and parietal areas that utilize the 

prefrontal cortex for short-term memory (Goldman-Rakic, 1996). Because this asymmetry of 

the strength of the connectivity between brain regions is so important functionally, and usually 

has an anatomical basis, we conceptualize some of the effective connectivities analyzed in this 

investigation as forward or backward based on the strengths in each direction, as well as 

information about the anatomy of the different brain areas being connected (Rolls, 2016). It is 

at the same time the case that the effective connectivities can change to some extent based on 

whether sensory inputs vs memory recall (for example) is being performed, but nevertheless 

the forward and backward connectivity difference between many brain areas is large (as shown 

in the Results). In this paper, we refer to the strengths of the connectivities in each direction as 

'stronger direction' or 'weaker direction', but the concepts in this paragraph provide some insight 

into how this may relate to cortical structure and function (Rolls, 2016). 

 

Clinical correlates 

We also investigated whether differences in effective connectivity (EC) among individuals 

with autism were correlated with symptoms assessed by the Autism Diagnostic Observational 

Schedule (ADOS) total, communication, social and stereotyped behavior scores. We used the 

Liptak-Stouffer z-score method (Liptak, 1958) to combine the data from the different 

neuroimaging sites for this analysis, for this provides a principled way to take into consideration 

possible differences in these measures between sites. Specifically, we calculated the partial 
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correlation between the normalized effective connectivities and the clinical scores, with head 

motion, age, sex and IQ as covariates so that they did not contribute to the correlation between 

the ECs and the clinical scores, in each individual centre. Then we used the Liptak-Stouffer z-

score method to combine the results from the individual datasets (Liptak, 1958). 

 

Results 

 

Differences of effective connectivity between individuals with autism and controls 

 

Table 1 shows the top 41 links with the most significant differences in effective 

connectivity between individuals with autism and controls. Links are considered here if there 

was a significant difference for a link between individuals with autism and controls using FDR 

correction for multiple comparisons (p<0.05), for which the significance level must be 

p<0.00081. (In addition, to focus on links with a reasonable strength of effective connectivity 

that is likely to be meaningful in value (Rolls et al., 2019; Rolls et al., 2018) as well as 

significantly different in autism, links are shown if their effective connectivity value in either 

direction exceeds the threshold of 0.02 Hz.) Fig. 1 shows similar information in diagrammatic 

form, and includes all links that satisfy the two criteria just described. Fig. 2A shows these links 

between AAL2 nodes shown on views of the brain. Fig. 2B shows the main areas with on 

average increases or decreases in their effective connectivity directed to or from them in autism.  

 

We now describe some of the main changes in effective connectivity in autism, using the 

summaries in Table 2, and also illustrated in Fig. 3. Table 2a summarises links from a brain 

region (region 1) that have different EC in autism, and Table 2b summarises links to a brain 

region (region 2) that have different EC in autism. In addition, in Table 2 we indicate for the 

ECs, the stronger direction as S defined as the direction in which the effective connectivity 

from Region 1 to Region 2 is stronger in the controls; W as the direction in which the EC is 

weaker from region 1 to region 2; and Bid (bidirectional) in which the ECs between Region 1 



11 
 

and Region 2 are similar. We note that all the information in Table 2 is from the 41 links shown 

in Table 1. 

 

First, the middle temporal gyrus (Temporal_Mid) and some other temporal cortical areas 

have lower EC to the precuneus and cuneus in the ASD group, as summarized in Table 2b. 

These effective connectivities are in the stronger direction. In addition, the Temporal Pole has 

lower EC to FrontalMedOrb, which is ventromedial prefrontal cortex (VMPFC) BA 10, and 

these are in the stronger direction. In addition, there is an EC link from the middle temporal 

gyrus to the hippocampus that is increased, and this is the stronger direction (Table 1). Thus the 

pattern for the temporal cortex in autism is decreased effective connectivity to the precuneus 

and cuneus; and to the VMPFC; and increased EC to the hippocampus.  

 

Second, the hippocampus and amygdala have increased effective connectivity to the 

middle temporal gyrus in autism, and this is mainly in the weaker direction (with the macaque 

neuroanatomy providing evidence that these are backprojections (Amaral & Price, 1984; 

Lavenex & Amaral, 2000; Rolls, 2016; Van Hoesen, 1982)), though there is also an increase in 

the stronger direction (Tables 2 and 1). (In addition, the parahippocampal gyrus has decreased 

effective connectivity to early visual cortical areas such as the calcarine cortex in autism.)  

 

Third, some frontal cortical areas (FrontalSup and Supmedial) have increased EC to the 

middle frontal gyrus, and decreased EC to the superior frontal gyrus. 

 

Correlation between the effective connectivities and the autism symptom scores  

 

The correlations of the effective connectivities with the autism symptom scores are shown 

in Tables S5 and S4. The ECs from the middle temporal gyrus to the precuneus were negatively 

correlated with the ADOS total, communication, and social score (Table S5). Thus the weaker 
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this EC value the greater was the autism score, in line with the finding that the ECs from the 

temporal cortex to the precuneus were decreased in autism (Tables 1 and 2).  

 

The ECs from the hippocampus to the temporal cortex were positively correlated with the 

ADOS stereotyped behaviour score (Table S5). Thus the stronger this EC value the greater was 

the autism score, in line with the finding that the ECs from the hippocampus to the temporal 

cortex were increased in autism (Tables 1 and 2).  

  

Differences in Sigma in Autism 

 

Sigma (i.e. Σ – the amplitude of endogenous neuronal fluctuations) was lower in the 

ventromedial prefrontal cortex (BA 10) in the group with autism (z=-4.12, p=3.8e-5). This 

implies less activity in the ventromedial prefrontal cortex in people with autism (see 

Supplementary Material).  

 

Comparison with Functional Connectivity 

 

For completeness, the functional connectivity differences between participants with autism and 

controls found in the same dataset and using the AAL2 parcellation are shown in Table S3. (This is 

different from our previous work, which was a voxel-level study, and was with a somewhat larger 

group of participants (Cheng et al., 2015).) It will be seen that only some of the areas with different 

functional connectivity have significantly different effective connectivity, and this is to be expected, 

as they measure different properties of the connectivity. It is also of interest that all the top 25 

functional connectivities (those significant after Bonferroni correction p<0.05) were lower in 

autism than in controls (Table S3), whereas for the effective connectivities, some higher 

effective connectivities were found (Fig. 1). With FDR correction (p<0.05), 836 functional 

connectivity links were significantly different in autism, and of these 825 were lower in autism. 
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This is of interest, for this elucidates one way in which effective connectivities can provide 

information that is not available from the functional connectivities.  

Robustness of the effective connectivity results 

 The results described here were with a relatively large dataset of 394 people with autism 

spectrum disorder and 473 controls, and should be robust with this sample size. However, as a check 

on whether similar results would be obtained with a smaller sample as a form of internal validation, 

we performed a split data analysis, in which the autism and control group were split into independent 

datasets. From the ABIDE1 dataset from which data from 16 neuroimaging sites were used in the 

main analyses, the data from 8 neuroimaging sites formed one data split, and from the other 8 sites 

the second data split. The numbers of participants in each split were similar. Overall, for the results 

shown in Tables 1 and 2, consistent results were found in each of the two data splits, with the 

correlations with the presented results (of the t values of the differences of all ECs between the 

autism and control groups) 0.83 for the first split, and 0.78 for the second split. Further, most of the 

EC links with significant differences in the whole dataset were also significant (p<0.05) in both of 

the split datasets (67/80). Further, all the significant differences in EC between the autism and 

control groups shown in Fig. 3 were also significant in each of the two data splits, apart from two 

which were significant in one of the data splits. These analyses confirm the robustness of the results 

presented here with the full dataset; but also make the point that large sample sizes are needed for 

resting state connectivity analyses to obtain robust results. 

Discussion 

Figure 3 summarizes some of the differences in effective connectivity in autism found in 

this investigation, with further details in Tables 1 and 2. These differences are discussed next. 

First, the middle temporal gyrus (Temporal_Mid) and some other temporal cortical areas 

have decreased ECs to the precuneus and cuneus (Tables 1 and 2), and these are correlated 

with the ADOS total, communication, and social score (Table S5). These findings are 

supported by the decrease in functional connectivity between these areas described previously 

(Cheng et al., 2015), but the new findings provide evidence on the directionality of the effect, 
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with the effective connectivity in the reverse direction from the precuneus to the temporal 

lobe being both very much weaker, and less significantly differently between people with 

autism and controls (Table 2). This is important new evidence. These temporal lobe areas, 

especially the parts of the middle temporal gyrus identified in the voxel-level functional 

connectivity study, are implicated in face expression analysis and in theory of mind (Cheng et 

al., 2015; Critchley et al., 2000; Hasselmo, Rolls, & Baylis, 1989). Further, in autism poor 

face recognition performance predicted smaller activation in the right anterior temporal lobe 

to faces (Scherf, Elbich, Minshew, & Behrmann, 2015), further implicating these temporal 

lobe areas in the problems in face processing in autism (Deutsch & Raffaele, 2019). The 

precuneus and cuneus region are implicated in the sense of self, in autobiographical memory 

retrieval, and of spatial processing that is relevant to that (Cavanna & Trimble, 2006; Freton 

et al., 2014; Hirshhorn, Grady, Rosenbaum, Winocur, & Moscovitch, 2012). The implication 

of the new effective connectivity results is that the face expression analysis, which is 

important in social interactions, and theory of mind, important in understanding others’ 

behaviour, have reduced effects in autism on parts of the brain involved in representing the 

self in the world. Thus this reduced effective connectivity from temporal cortex areas to the 

precuneus and cuneus may be related to the poor understanding of the implications of face 

expression inputs for oneself in autism. 

Another interesting decreased effective connectivity is from the temporal cortex (Mid-Pole) 

to the ventromedial prefrontal cortex, which latter is implicated in reward evaluation, emotion, 

and decision-making (Du et al., 2019; Rolls, 2014, 2018a, 2019a, 2019b, 2019c). This may be 

related to poor reward and punishment decoding of face expression, and thus to difficulty with 

social behaviour. Interestingly, the sigma value for this ventromedial prefrontal cortex region, 

reflecting in the EC analysis the signal variance value Sigma, was lower for autistic people 

compared to controls. This may reflect reduced processing in the ventromedial prefrontal cortex 

if there is reduced input from face expression and theory of mind middle temporal gyrus areas. 

This ventromedial prefrontal cortex region has been reported to be more active in response to 
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self- compared with other-referential processing, with this difference attenuated in people with 

autism (Lombardo et al., 2010), further implicating this ventromedial prefrontal cortex area in 

autism. 

 

Second, the hippocampus and amygdala have increased effective connectivity to the 

middle temporal gyrus in autism, and this is mainly in the weaker direction (with the macaque 

neuroanatomy providing evidence that these are backprojections (Amaral & Price, 1984; 

Lavenex & Amaral, 2000; Rolls, 2016; Van Hoesen, 1982)), though there is also an increase in 

the stronger direction (Tables 2 and 1), and this increase is positively correlated with the ADOS 

stereotyped behaviour score (Table S5). The usual understanding of the connections from the 

hippocampus back to neocortex is that they are backprojections involved in episodic memory 

retrieval (Kesner & Rolls, 2015; Rolls, 2016, 2018b; Rolls & Wirth, 2018; Treves & Rolls, 

1994). The usual understanding of the connections from the amygdala to the neocortex is that 

they are backprojections (Amaral & Price, 1984), which might be involved in retrieving 

emotion-related memories (Rolls, 2014, 2016). An implication is that the increased effective 

connectivity in these pathways may be related to increased retrieval of recent and emotional 

memories in autism, which may contribute to the state if these are unpleasant memories. In 

addition, the increased top-down effects from the amygdala and hippocampus on the temporal 

cortical areas may contribute to the reduced activations of temporal cortex areas to bottom up 

inputs produced by faces (Hadjikhani, Joseph, Snyder, & Tager-Flusberg, 2007; Koshino et al., 

2008; Pierce, Muller, Ambrose, Allen, & Courchesne, 2001).  

 

Third, some frontal cortical areas (FrontalSup and FrontalSupMedial) have increased EC 

to the middle frontal gyrus, and decreased EC to the superior frontal gyrus. From our functional 

connectivity study, we know that some of these prefrontal cortex areas have increased 

functional connectivity with the precuneus and cuneus (Cheng et al., 2015). Given that the 

prefrontal cortex is implicated in executive functions, working memory, and planning 

(Passingham & Wise, 2012), the alterations in effective connectivity in these prefrontal cortex 
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areas may be related to increased executive function devoted to the precuneus and cuneus in 

trying to make sense of the self in the world. They may also relate to the increased spatial 

processing in which many people with autism excel. Also of potential interest is that activations 

in the precuneus and posterior cingulate cortex were found to be greater to the faces of familiar 

people compared to strangers, and that this activation was reduced in people with autism (Pierce, 

Haist, Sedaghat, & Courchesne, 2004). In the same study, activation to familiar faces was 

reported to be greater in medial prefrontal cortex areas than in people with autism (Pierce et al., 

2004).  

 

We also note that some subcortical effects on cortical areas involved in touch and 

movement are increased, for example from the thalamus and putamen to precentral, post-central, 

and mid-cingulate cortex (Table 1). Autistics are oversensitive to being touched (Lundqvist, 

2015; Riquelme, Hatem, & Montoya, 2016). These increased effective connectivities may be 

related to this. 

 

In the results described, there were 347 males and 47 females in the autistic group (Table 

S2), consistent with the increased prevalence of autism spectrum disorders in males, and the 

effects of sex were regressed out. If the analysis was restricted to only males in the autism and 

control groups, then some of the main differences in effective connectivity described here 

remained, including reduced effective connectivity from the middle temporal gyrus to the 

cuneus and precuneus, and increased effective connectivity from the amygdala and 

hippocampus to the middle temporal gyrus. The female-only groups were insufficiently large 

to obtain FDR-corrected significant differences in effective connectivity. 

 

It would be of interest in future investigations to analyze whether subtypes of EC in autism 

could be found; and to investigate these differences in an even larger group of females and in 

people with a wider range of age. Further, as effective connectivity is an approach to causal 

analysis, it would be of interest in future studies to investigate possible associations between 
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genes and the differences in effective connectivity described here. The present findings make a 

significant step towards causality, by going beyond functional connectivity, which reflects 

correlations, to effective connectivity, which reflects directed effects of one brain region on 

another. 

 

In conclusion, this is the first large-scale study of effective connectivity in people with 

autism. The investigation provided important new evidence on directed connectivity in autism, 

which help to reveal the underlying differences in connectivity in people with autism. One new 

set of findings was that directed connectivity from the middle temporal gyrus areas implicated 

in face expression processing and theory of mind to the precuneus and cuneus implicated in 

processing about the self was reduced; and that connectivity from these middle temporal gyrus 

areas to the ventromedial prefrontal cortex, involved in emotion and emotion-related decision-

making (Rolls, 2019b), was reduced in autism. Another set of findings was that effective 

connectivity from memory and emotion related areas, the hippocampus and amygdala 

respectively, to the middle temporal gyrus was increased in autism. Another set of findings was 

that effective connectivity from the basal ganglia to the pre- and post-central gyrus and 

midcingulate cortex was increased in people with autism.   
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Table 1. Effective connectivity (EC) links that are different between individuals with 

autism and controls. Links are shown if their EC value in either direction exceeds the 

threshold of 0.02 Hz, and if there is a significant difference using FDR correction for 

multiple comparisons between individuals with autism and controls, for which the 

significance level must be p<0.00081. A negative value for z indicates a weaker 

effective connectivity link in individuals with autism. All 41 links with these EC 

differences are shown. (‘*’ indicates this direction is significant; 'Strong/Weak’ 

indicates the ratio of the EC from 1 to 2 in terms of the strong direction / the weak 

direction.)  
Region1 

AAL2 Name 

Region2 

AAL2 Name 

z Value 

(1 to 2) 

p Value 

(1 to 2) 

Z Value 

(2 to 1) 

p Value 

(2 to 1) 

EC in 

HC 

(1 to 2) 

EC in AUT 

(1 to 2) 

EC in HC 

(2 to 1) 

EC in AUT 

(2 to 1) 

EC Ratio in HC 

(Strong / Weak) 

Temporal_ 

Mid_R Cuneus_R (S) -5.556  2.76e-08* -3.222  1.27E-03 0.031  0.029  0.010  0.010  3.077  

Temporal_ 

Mid_L Cuneus_L (S) -5.092  3.54e-07* -3.031  2.44E-03 0.040  0.030  0.011  0.010  3.630  

Paracentral_ 

Lobule_R 

Postcentral_L 

(W) -4.836  1.32e-06* -2.125  3.36E-02 0.027  0.021  0.066  0.070  2.453  

Temporal_ 

Mid_L 

Hippocampus_L 

(S) 4.449  8.65e-06* 4.244  2.20e-05* 0.021  0.029  0.017  0.022  1.228  

Temporal_ 

Mid_L Cuneus_R (S) -4.411  1.03e-05* -3.274  1.06E-03 0.025  0.023  0.009  0.009  2.789  

Temporal_ 

Mid_R Lingual_R (S) -4.327  1.51e-05* -1.738  8.22E-02 0.033  0.028  0.016  0.015  2.142  

Hippocampus_L 

Temporal_ 

Mid_L (W) 4.244  2.20e-05* 4.449  8.65e-06* 0.017  0.022  0.021  0.029  1.228  

Frontal_ 

Sup_Medial_R 

Frontal_ 

Sup_2_L (W) -4.187  2.83e-05* -1.548  1.22E-01 0.033  0.030  0.038  0.036  1.136  

Putamen_R Postcentral_R (S) 4.040  5.35e-05* 1.439  1.50E-01 0.030  0.038  0.016  0.020  1.901  

Paracentral_ 

Lobule_R Precentral_R (W) -4.025  5.71e-05* -1.473  1.41E-01 0.027  0.023  0.085  0.090  3.121  

ParaHippocampal_L Calcarine_L (S) -3.930  8.48e-05* -0.415  6.78E-01 0.041  0.044  0.016  0.015  2.532  

Putamen_R 

Paracentral_ 

Lobule_R (S) 3.865  1.11e-04* 0.997  3.19E-01 0.025  0.033  0.009  0.011  2.671  

Thalamus_L 

Temporal_ 

Sup_L (S) 3.855  1.16e-04* 2.759  5.80E-03 0.022  0.028  0.022  0.027  1.018  

Hippocampus_L 

Temporal_ 

Inf_L (W) 3.822  1.32e-04* 3.004  2.67E-03 0.016  0.023  0.025  0.030  1.603  

Temporal_Mid_L Postcentral_L (S) -3.804  1.42e-04* -1.614  1.07E-01 0.024  0.023  0.020  0.021  1.186  

ParaHippocampal_R Calcarine_R (S) -3.794  1.48e-04* -0.092  9.27E-01 0.033  0.032  0.017  0.021  1.956  

Caudate_L 

Frontal_ 

Inf_Orb_2_L (S) 3.745  1.81e-04* 2.302  2.13E-02 0.023  0.030  0.012  0.014  1.910  

ParaHippocampal_R Lingual_R (S) -3.739  1.85e-04* -1.104  2.70E-01 0.049  0.046  0.018  0.021  2.655  

Frontal_ 

Sup_Medial_L 

Frontal_ 

Mid_2_R (W) 3.709  2.08e-04* 1.960  5.01E-02 0.009  0.014  0.024  0.028  2.744  
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Amygdala_L 

Temporal_ 

Mid_L (W) 3.687  2.27e-04* 3.349  8.10E-04 0.015  0.018  0.034  0.048  2.271  

Temporal_ 

Mid_R Precuneus_L (S) -3.682  2.31e-04* 0.974  3.30E-01 0.059  0.053  0.009  0.010  6.616  

Parietal_ 

Sup_R Cuneus_R (S) -3.645  2.67e-04* -1.079  2.81E-01 0.024  0.027  0.021  0.031  1.146  

Putamen_R Precentral_R (S) 3.627  2.87e-04* -0.013  9.90E-01 0.034  0.043  0.022  0.026  1.511  

Thalamus_R Fusiform_R (W) 3.610  3.06e-04* 1.411  1.58E-01 0.013  0.019  0.026  0.035  1.974  

Precentral_L 

Supp_ 

Motor_Area_L 

(S) -3.608  3.09e-04* -1.287  1.98E-01 0.071  0.069  0.034  0.035  2.101  

Frontal_ 

Sup_2_L 

Frontal_ 

Mid_2_R (W) 3.604  3.14e-04* 2.121  3.39E-02 0.016  0.025  0.023  0.029  1.474  

Temporal_ 

Pole_Mid_R Cuneus_R (S) -3.599  3.20e-04* -2.627  8.61E-03 0.023  0.021  0.008  0.007  2.971  

Paracentral_ 

Lobule_R 

Postcentral_R 

(W) -3.595  3.24e-04* -0.390  6.96E-01 0.031  0.027  0.067  0.072  2.158  

Temporal_ 

Pole_Mid_R 

Frontal_ 

Med_Orb_R (S) -3.576  3.49e-04* -2.003  4.52E-02 0.055  0.049  0.022  0.022  2.439  

Thalamus_L 

Frontal_ 

Inf_Orb_2_L (S) 3.560  3.71e-04* 1.645  1.00E-01 0.020  0.028  0.015  0.017  1.379  

Temporal_ 

Pole_Mid_R Lingual_R (S) -3.556  3.77e-04* -2.004  4.51E-02 0.035  0.031  0.012  0.012  2.863  

Hippocampus_R 

Temporal_ 

Mid_R (W) 3.543  3.96e-04* 1.220  2.23E-01 0.018  0.024  0.020  0.023  1.120  

Pallidum_L Postcentral_L (S) 3.483  4.96e-04* 2.269  2.33E-02 0.020  0.029  0.017  0.022  1.177  

Occipital_ 

Inf_L 

Occipital_ 

Inf_R (S) -3.482  4.98e-04* -1.180  2.38E-01 0.083  0.077  0.065  0.068  1.268  

Temporal_ 

Mid_R Heschl_R (S) -3.447  5.68e-04* -2.057  3.97E-02 0.036  0.030  0.021  0.021  1.691  

Putamen_L 

Cingulate_ 

Mid_R (S) 3.432  6.00e-04* -1.298  1.94E-01 0.028  0.038  0.024  0.025  1.201  

SupraMarginal_L 

SupraMarginal_R 

(S) -3.425  6.15e-04* -2.133  3.30E-02 0.090  0.094  0.081  0.084  1.105  

Frontal_ 

Sup_2_L 

Frontal_ 

Mid_2_L (W) 3.413  6.42e-04* 0.898  3.69E-01 0.054  0.064  0.064  0.069  1.187  

Frontal_ 

Sup_Medial_R Olfactory_R (W) 3.402  6.70e-04* 0.729  4.66E-01 0.016  0.021  0.024  0.025  1.512  

Putamen_L 

Cingulate_ 

Mid_L (S) 3.377  7.34e-04* -0.525  6.00E-01 0.033  0.043  0.020  0.020  1.669  

Putamen_L 

Temporal_ 

Sup_L (S) 3.359  7.82e-04* 1.809  7.05E-02 0.042  0.054  0.020  0.023  2.125  
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Table 2a. Summary of the main differences in Effective Connectivity (EC) from one brain 

region (1) to other brain regions (2) in autism. A positive value for z indicates a higher EC in 

autism (AUT). Each link is followed by S if it is in the Strong direction; by W if it is in the 

Weak direction; and by Bid if the EC is similar in both directions.  

 

Region 1 Region 2 (a set of regions) 

z value 

of region 

1 to 2 EC 

z value 

of region 

2 to 1 EC 

EC of 

region 1 to 

2 in HC 

EC of 

region 1 to 

2 in AUT 

EC of 

region 2 to 

1 in HC 

EC of 

region 2 to 

1 in AUT 

Temporal 

Hippocampus_L (S), 4.448  4.244  0.021  0.029  0.017  0.022  

Heschl_R (Bid), Post_central_L 

(Bid), Cuneus_R (S), Cuneus_L(S), 

Precuneus_L (S), Lingual_R(S),  

Frontal_Med_Orb_R (S), 

-4.105  -2.060  0.036  0.032  0.014  0.014  

Hippocamp

us 

Temporal_Mid_L (Bid), 

Temporal_Mid_R, (Bid)   

Temporal_Inf_L (W) 

3.870  2.891  0.017  0.023  0.022  0.027  

Amygdala Temporal_Mid_L, (W),  3.687  3.349  0.015  0.018  0.034  0.048  

Parahippoca

mpal 

Lingual_R (S), Calcarine_L (S), 

Calcarine_R (S) 
-3.821  -0.537  0.041  0.041  0.017  0.019  

FrontalSup 

and 

SupMedial 

Frontal_Mid_2_L (W), 

Frontal_Mid_2_R (W), 

Olfactory_R (W) 

3.532  1.427  0.023  0.031  0.034  0.038  

Frontal_Sup_2_L (Bid), -4.187  -1.548  0.033  0.030  0.038  0.036  

 

 

Table 2b. Summary of the main differences in Effective Connectivity (EC) to one brain region 

(2) from other brain regions (1) in autism. A positive value for z indicates a higher EC in autism 

(AUT). Entries in Tables 2a and 2b are not mutually exclusive. 

 

Region 1  (a set of regions) Region 2 

z value 

of region 

1 to 2 EC 

z value 

of region 

2 to 1 EC 

EC of 

region 1 to 

2 in HC 

EC of 

region 1 to 

2 in AUT 

EC of 

region 2 to 

1 in HC 

EC of 

region 2 to 

1 in AUT 

Temporal_Mid_L (S),  

Temporal_Mid_R (S),  

Temporal_Pole_Mid_R (S), 

Parietal_Sup_R (Bid) 

Cuneus -4.461  -2.647  0.029  0.026  0.012  0.013  

Caudate_L(S), Thalamus_L(S) 
FrontalInf

Orb_L 
3.652  1.974  0.021  0.029  0.013  0.016  

Temporal_Pole_Mid_R (S) 
FrontalMe

dOr_R 
-3.576  -2.003  0.055  0.049  0.022  0.022  

Frontal_Sup_2_L (W),  

Frontal_Sup_Medial_L (W)  

FrontalMi

d 
3.576  1.660  0.026  0.034  0.037  0.042  

Temporal_Mid_R (S),    Precuneus -3.682  0.974  0.059  0.053  0.009  0.010  

Amygdala_L (W),  Hippocampus 

(Bid),  

Putamen_L (S), Thalamus_L(Bid) 

Temporal 3.752  2.765  0.022  0.028  0.024  0.030  
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Figure Legends 

 

Figure 1. The matrices of differences in effective connectivity between individuals with autism 

and controls. The axes are the AAL2 areas, shown in their numbered order and with their names 

in Table S1. The effective connectivity matrix has the index j for the columns and the index i 

for the rows. The matrix is thus non-symmetric, and the effective connectivity is always from j 

to i. The effective connectivity between any pair of links is shown in one direction in the upper 

right of the matrix, and in the opposite direction in the lower left. The table includes only AAL2 

areas between which there is a significant different in effective connectivity. 
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Figure 2. A) Differences in effective connectivity between individuals with autism and controls. 

The links shown are those with significantly different effective connectivity after FDR p<0.05 

correction. Red indicates that the effective connectivity is increased in individuals with autism, 

and blue that it is decreased. There were 41 such links significant with FDR correction, p<0.05, 

and with effective connectivity values in at least one direction that were greater than 0.02 Hz. 

The glass brains were generated using the BrainNet Viewer (Xia, Wang, & He, 2013). 

B) The AAL2 atlas areas with effective connectivities that were significantly different in 

individuals with autism. An area is shown if it has effective connectivities either from it or to it 

that are different in autism.  

 

  



29 
 

Figure 3. Summary of some of the main changes in Effective Connectivity in autism. The 

increased effective connectivities in autism are shown in red; and decreased in blue. A blue circle 

indicates a decrease in Sigma in autism. For details of the effective connectivities, see Tables 1 

and 2, and Fig. 1. 

  

  

 

 

 

 

 

 

 

 


