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Abstract I survey and illustrate the main time series models that Mandelbrot introduced into time
series analysis in the 1960s and 1970s. I focus particularly on the members of the additive fractional stable
family including Lévy flights and fractional Brownian motion (fBm), noting some of the less well-known
aspects of this family, such as the cases when the self-similarity exponent H and the Hurst exponent J
differ. I briefly discuss the role of multiplicative models in modeling the physics of cascades. I then recount
the still little-known story of Mandelbrot's work on fractional renewal models in the late 1960s, explaining
how these differ from their more familiar fBm counterpart and form a “missing link” between fBm and
the problem of random change points. I conclude by highlighting the frontier problem of damped
fractional models.

1. Mandelbrot and the Geosciences
Benoit Mandelbrot, the “father of fractals” (Giles, 2004) was the first person to deliver the AGU's Lorenz
Lecture in 2001. His title, “Fractals as a measure of roughness in Earth sciences,” captures the essential
unifying role fractality has played in the geosciences; allowing us to describe nature's roughness realisti-
cally by expanding the notion of dimensionality to fractional cases (Feder, 1988; Mandelbrot, 1982). Fractals,
which he did so much to communicate, develop, and apply, have influenced nonlinear geophysics and,
more broadly, all the Earth and space sciences in many ways. Their diverse impact on nonlinear geo-
physics alone can be appreciated just by noting the breadth of the research topics of many of the subsequent
Lorenz lectures in which fractals were featured, including climate (Lovejoy & Schertzer, 2013), hydrology
(Koutsoyiannis, 2013; Kondrashov et al., 2005), meteorology and atmospheric science (Osso et al., 2010),
solid earth geophysics (Mandal et al., 2005; Rundle & Klein, 1993; Sornette, 2003; Turcotte, 1997), and space
plasma physics (Sharma, 1995).

My own short article in this special issue cannot span this breadth, but instead has a narrower aim: to
extract the essence of Mandelbrot's cross-disciplinary contribution to the modeling of stochastic time series,
drawing on several previous surveys of this aspect of the history of complexity science (Graves et al., 2017;
Watkins, 2013, 2017a, 2017b; Watkins et al., 2016).

I will focus on several effects that Mandelbrot drew attention to and sought to model: heavy-tailed ampli-
tude distributions (the Noah effect) in section 2.2; long-range temporal dependence (the Joseph effect), in
section 2.3; their combination in section 2.4; multiplicative processes and multifractals in section 3; and
heavy-tailed waiting times in section 4. I will conclude in section 5 by examining models which combine
long-range dependence (LRD) with the mean reversion necessary to describe the dissipation of energy, thus
uniting fractals with more familiar tools like the archetypal Markovian short-ranged memory model, the
AutoRegressive process of order 1, AR(1) (Brockwell & Davis, 2016).

To put the models in their motivating context I will now briefly summarize the types of roughness in geo-
physical phenomena, which inspired fractal and multifractal modeling. They can be organized into four
overlapping threads:

1. Roughness in real spatial patterns: The fractal morphology of natural forms such as clouds, coastlines,
and riverbeds (Feder, 1988; Mandelbrot, 1982, 2002; Turcotte, 1997). This research has not only given
quantitative answers to Richardson's question “how long is the coast of Britain” but also led to energy
optimization principles for evolving riverbeds (Rodríguez-Iturbe & Rinaldo, 1997). In most cases these
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forms are slowly evolving compared to the sampling time scale, and so the focus, initially at least, has
been on their static properties or on quasi-static snapshots of their evolution, even in the pioneering study
of the fractal shapes of clouds by Lovejoy (1982).

2. Roughness in abstract spatial patterns: The objects traced out over time by low dimensional dynamical sys-
tems as they explore phase space (Mandelbrot, 2004). A famous example is the relevance to meteorological
forecasting of the noninteger dimension of attractors (Baker & Gollub, 1990) in deterministic dissipative
chaotic systems such as the model that (Lorenz, 1963) abstracted from atmospheric circulation. The com-
plex structure of the attractor means that very closely separated initial conditions will diverge rapidly.
Another example is the role of fractal structures in the phase space of nondissipative, Hamiltonian chaos
(Zaslavsky, 2002). These create regions that can temporarily trap particles, giving rise to anomalously slow
(“sub”) diffusion when compared to ordinary Brownian motion, with applications including transport in
oceanography and laboratory fluid experiments (Klafter et al., 1996). This research thread has given rise
both to models of how the fractal dynamical structures arise and to models of how diffusion of test parti-
cles is affected by such structures, including the heavy-tailed waiting times seen in the modified random
walks (Kutner & Masoliver, 2017; Watkins, 2017b) discussed in section 4.

3. Roughness in noisy time series: The use of additive fractal stochastic processes to describe time series (Man-
delbrot, 2002) drawn from natural systems, such as the water level of the Nile, which exhibit “anomalous”
properties, such as the Hurst effect, when compared to Brownian motion. Characteristically, Mandelbrot's
eye for similarities in geometry enabled him to use the same fractional Gaussian and Brownian models to
describe aspects of both quasi-static coastlines and statistically stationary time series. In section 2 I will
describe the key properties of these models.

4. Roughness in fluid turbulence: The use of stochastic multifractal models (Mandelbrot, 2004; Schmitt &
Huang, 2016), which have a continuous range of scaling exponents rather than just one, as models of
the intermittency of time series (Mandelbrot, 1999) such as those arising from energy dissipation on the
complex spatiotemporal structures observed in fluid turbulence. Multiplicative models are the subject of
section 3.

It is important to recognize that Mandelbrot's research was intrinsically interdisciplinary and that he was
continuously borrowing tools and observations from one area to illuminate aspects of another. Some of
the models I describe thus owe more to his pioneering investigations in describing financial markets
(Mandelbrot, 1997; Mandelbrot & Hudson, 1998) than to the geosciences.

As well as the intrinsic interest of fractals in mathematics education (e.g., Falconer, 2003), the static and
dynamic models of fractal structures used in the first two threads were quite rapidly integrated into the
curriculum of physicists and geoscientists, at least at the graduate level. They have thus long been served by
dedicated surveys (e.g., Baker & Gollub, 1990; Rodríguez-Iturbe & Rinaldo, 1997; Turcotte, 1997) and reprint
selections (e.g., Cvitanovic, 1984).

In contrast, it has been my experience that even 50 years on, the geoscience community is less clear about
why stochastic fractals and multifractal time series models are central in the last two threads, and why
heavy-tailed waiting times appear in the anomalous diffusion models in the second thread. This is despite the
wealth of excellent geophysically relevant tutorial material, which has appeared since the late 1980s (Feder,
1988), and continues to develop in sophistication (Lovejoy & Schertzer, 2013; Turcotte, 1997; Schmitt &
Huang, 2016; Sornette, 2003), supplemented by workshops, short courses at meetings such as The European
Geosciences Union, and so on.

I think three factors may have contributed to this: (i) The underlying physics may seem less directly coupled
to the measured fractal properties, and thus less easily pictured; (ii) it is hard to disentangle the proposed
underlying physical origin of fractals from the fractal properties themselves and the measurement algo-
rithms used to quantify them; and (iii) there is also the notoriety (Watkins et al., 2016) of the most ambitious
proposed “universal” mechanism for spatiotemporal fractals, self-organized criticality (Bak & Chen, 1989;
Watkins et al., 2016). I think these are all genuine problems and have struggled with them myself. They
relate to active research frontiers and are far from fully settled.

I do not, unfortunately, believe that I can solve all these problems by means of this article. What I have tried
to do instead, as my contribution to this AGU anniversary special issue, is seek to clarify how Mandelbrot's
various theoretical models differ from each other. I thus give a bird's eye view of the key models he introduced
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Figure 1. A time series of discrete Brownian motion Y t formed by summing (inset) discrete white N(0,1) Gaussian
noise Xt .

or popularized and a very brief sketch of a new direction, fractal mean-reverting models, to which they have
now led.

2. Noises With Random Phases and Additive Monofractal Walks
I first consider the simplest stochastic models, which are derived by modifying random phase white noise,
and Brownian motion. They are called additive because randomness is added to the time series model at
each point along its time evolution. For each case considered I will refer to the continuous stationary noise
process X(t), the continuous nonstationary motion Y (t) formed by integrating X , and the corresponding
discrete processes Xt,Y t produced by sampling X and Y at discrete time intervals t,t+Δt,t+2Δt, etc.

2.1. The iid Gaussian Family
Stationary white (d=0) Gaussian (𝛼=2) noise: Shown in the inset of Figure 1 is the simplest case, an inde-
pendent and identically distributed (iid), sequence Xt of discrete white Gaussian noise. This, and all other
simulations shown in Figures 1 to 8, was produced using the fftlfsn algorithm of Stoev and Taqqu (2004).
In all simulations shown Δt is set to 1 and 1,047,976 points have been generated. Here the probability
distribution function (pdf) of amplitudes is Gaussian,

p(X) = 1
𝜎
√

2𝜋
e−(x−𝜇)2∕2𝜎2 (1)

and is thus specified entirely by its first two moments, the mean 𝜇 and the variance 𝜎2, which are constant in
such a stationary time series. The absence of time correlations means that fluctuations are very short-lived,
quantified by the autocorrelation function (ACF)

R(𝜏) =< X(t)X(t + 𝜏) >= 𝜎2𝛿(𝜏) (2)

which is a delta function. The theoretical power spectral density (PSD) is thus a constant

S(𝑓 ) = ∫ d𝜏R(𝜏) exp(2𝜋i𝑓𝜏) = 𝜎2 (3)

and flat, with no excess at high or low frequencies, giving the name “white” noise. Inspection of the inset
to Figure 1 shows that its values nearly all lie within ±3 𝜎 as expected for the N(0,1) Gaussian distribution.
The Fourier transform P(k) of the Gaussian pdf is itself a Gaussian function of k, P(k) ∼ exp(−k2), and is
known as the characteristic function.

Self-similar H=1/2 Brownian motion: Integrated white noise X(t) is Brownian motion Y (t), for which a dis-
crete sequence Y t is shown in the main panel of Figure 1. This is usually described as self-similar (although
Mandelbrot preferred the more precise term self-affine, see p. 157 of Mandelbrot, 2002 and p. ix of Embrechts
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Figure 2. For the Brownian motion Y (t) in Figure 1, this figure shows scaling collapse of the probability distribution
functions (pdfs) P(ΔY R,𝜏) of ΔY R(𝜏) = (ΔY − �̂�(ΔY ))∕�̂�(ΔY ), where the differencing lags were 𝜏=1,5,10,50, and 100.
The left inset shows P(0,𝜏) versus 𝜏 and the right inset shows sample standard deviation �̂� versus 𝜏.

& Maejima, 2003), a property quantified by the self-similarity or Holder exponent H. This describes how
such a nonstationary motion traces out a curve which is in a precise sense a statistically rescalable copy of
itself as the length of the time series increases. Embrechts and Maejima (2003) give rigorous definitions of
self-similarity and H: (i) An Rd-valued stochastic process is said to be “self-similar” with exponent H if for
any a>0, there exists b>0 such that {X(at)}=d{bX(t)}; (ii) if {X(t),t ≥ 0} is nontrivial, stochastically continu-
ous at t=0 and self-similar, then there exists a unique H ≥ 0 such that b can be expressed as aH . In the case
of Brownian motion H is 1/2.

To illustrate the self-similarity of the discrete sample of Brownian motion from Figure 1 one first calculates
the pdf P(ΔY ,𝜏) of ΔY (𝜏) differenced at lags 𝜏 of 1,5, 10, 50, and 100. The left inset of Figure 2 shows that
the peak of this pdf, P(0,𝜏) is a decaying function of lag 𝜏. The scaling exponent of this power law decay is
−H and found to be −0.5017, again very close to the theoretical value of −1/2 (Chapman et al., 2005). If one
now calculates a rescaled ΔR(𝜏) by first subtracting the sample means �̂� of the set of ΔY (𝜏) for a given lag 𝜏

and then dividing by the corresponding sample standard deviation 𝜎(ΔY (𝜏)), one can plot the pdfs of ΔY (𝜏),
which collapse onto each other, as seen in the main panel of Figure 2.

Figure 3. Stable motion Y t with 𝛼=1.8 and (inset) stable noise Xt . Note the infrequent but large “spiky” excursions in
Xt and the consequent abrupt steps in Y t .
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Figure 4. The main panel shows rescaled pdfs P(ΔY R,𝜏) of ΔY R(𝜏) = (ΔY − �̂�(ΔY ))∕(ΔY )1∕𝛼 , for positive ΔY R, where
the differencing lags were 𝜏=1,5,10,50, and 100 for an 𝛼-stable motion with 𝛼=1.8. The left inset shows P(0,𝜏) versus 𝜏
and the right inset shows sample standard deviation �̂� versus 𝜏.

There is a second important exponent, for which Mandelbrot advocated the term Joseph exponent J (p. 157
of Mandelbrot, 2002). The best known context in which J appears is as the exponent measured by Mandel-
brot's diagnostic for LRD (“The Joseph effect”) in time series, the rescaled range or R/S method originally
employed by Hurst, which we will describe in more detail in section 2.3. J appears in various other places,
one of which is as the exponent of the power law which quantifies the rate of growth of the sample standard
deviation of the differences of Brownian motion ΔY (𝜏)=Y t+𝜏−Y t as a function of the differencing scale 𝜏,
that is, �̂�(ΔY (𝜏)) ∼ 𝜏J , For the sample series of Figure 1 this is plotted in the inset of Figure 2, and J is found
to be +0.5011, again very close to its theoretical value of 1/2 (Mandelbrot, 2002).

A great deal of confusion has resulted from the fact that in the original Gaussian processes where H and
J were first studied, such as the fractional Brownian motion of section 2.3, variances are well behaved and
H and J always take the same values as each other. Understandably, after its early coinage by Mandelbrot
in the Gaussian context, the term Hurst exponent has been used by various authors to refer to either H or
J, adding to the continuing confusion; indeed, Mandelbrot (2002) ruefully noted that “the letter H became
overloaded with a host of conflicting meanings.” We will thus follow his recommendation that “… in the
general R/S context it is best to replace ‘the old H’ by the letter J, called [the] ‘Joseph exponent”’ and will not

Figure 5. Simulated series of (inset) long-range dependent discrete fractional Gaussian noise Xt with d=0.3, and (main
panel) fractional Brownian motion with H=1/2+d=0.5+0.3=0.8.
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Figure 6. For the fractional Brownian motion Y (t) in Figure 5, this figure shows scaling collapse of the probability
distribution functions (pdfs) P(ΔY R,𝜏) of ΔY R(𝜏) = (ΔY − �̂�(ΔY ))∕𝜏1∕H , where the differencing lags were 𝜏=1,5,10,50,
and 100. The left inset shows P(0,𝜏) versus 𝜏 and the right inset shows sample standard deviation �̂�(ΔY ) versus 𝜏, with
exponents close to −0.8 and +0.8, respectively.

use the term Hurst exponent further. We will illustrate this admittedly subtle, but nonetheless important,
point in sections 2.2 and 2.4 by showing examples of processes where H≠J.

The stationary (white noise) increments of self-similar classical Brownian motion form the reference against
which Mandelbrot defined two kinds of anomalous behavior, which Mandelbrot and Wallis (1968) named
the Noah effect (heavy tailed pdfs) and the Joseph effect (LRD in time). We will now examine these two
effects, allowing first the pdf and then the ACF to have decaying power law tails, and then combining both
effects.

2.2. The Noah Effect and the iid 𝜶-Stable Family: “Lévy Flights”
Stationary white d=0, stable 𝛼≠2, noise: If one relaxes the intuitive assumption that the theoretical variance
of the random process must be finite, a broader class of “𝛼-stable” probability distributions is generated
by generalizing the characteristic function to a stretched or compressed exponential ∼ exp(−k𝛼) with 𝛼

lying in the range 0≤ 𝛼<2. Unlike the Gaussian, most of these distributions do not have a known analytic
form, with rare exceptions like the 𝛼=1 (Cauchy) distribution (Sornette, 2003). However asymptotically, as

Figure 7. Simulated series of (inset) long-range dependent and heavy tailed discrete fractional stable noise Xt with
d=0.3 and 𝛼=1.8, and (main panel) linear fractional stable motion Y t with H=1/𝛼+d=1/1.8+0.3=0.8556.
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Figure 8. The main panel shows rescaled probability distribution functions (pdfs) P(ΔY R,𝜏) of ΔY R(𝜏) = (ΔY − �̂�(ΔY ))
∕(ΔY )1∕𝛼 , for positive ΔY R, where the differencing lags were 𝜏=1,5,10,50, and 100 for linear fractional stable motion
with 𝛼=1.8 and d=0.3. The left inset shows P(0,𝜏) decaying with 𝜏−H , while the right inset shows sample standard
deviation �̂� growing with 𝜏J .

x→∞ they all share power law tail behavior, with P(x)∼x−(1+𝛼). Such 𝛼-stable noise is still stationary in the
sense that its variance is theoretically constant (as is its mean in the 𝛼>1 case), but the infinite variance has
many consequences, very strong fluctuations of the observed sample mean, and the “spiky“ and “stepped”
appearance of the Xt and Y t time series, respectively, seen in the inset and main panel of Figure 3, where
𝛼=1.8. Inspired by the work of Paul Lévy, Mandelbrot (1963) introduced this model into econometrics as a
description of fluctuations in the log differences of cotton prices.

Self-similar H=1/𝛼 stable motion: When integrated, the 𝛼-stable noise X(t) becomes 𝛼-stable motion Y (t).
This is still self-similar but H is now 1/𝛼 rather than 2, illustrated in the left-hand inset of Figure 4 where
P(0,𝜏) is seen to decay with an exponent of −0.5573, close to its theoretical value of 1/1.8=0.556. Measures
of the Hurst exponent J still, however, return J=1/2, illustrated in the right-hand inset of Figure 4, where
𝜎 scales with 𝜏J with a scaling exponent of +0.4993. The pdfs P(ΔY R) still collapse onto each other if the
rescaling operation used in the Gaussian case replaces division by �̂� with division by 𝜏1/𝛼 , confirming that
this is the appropriate H. A doubly logarithmic plot is used to make the asymptotic power law tails of P(𝛥Y R

) easier to see in Figure 4.

2.3. The Joseph Effect and the Fractional Gaussian Family
Stationary fractional (d≠0), Gaussian (𝛼=2), noise: If instead of a delta function one allows the ACF R(𝜏) of
the model noise X(t) to have a power law tail at large 𝜏 values, R(𝜏)∼|𝜏|2d−1 the noise time series is found
to acquire the property of LRD, when 0<d<1/2. Because X(t) has the weak time stationarity needed to
make the two-time ACF into a function depending only on the lag 𝜏 between the two times, the PSD is also
well-defined (Brockwell & Davis, 2016), and so one can apply the Wiener-Khinchine theorem which relates
the Fourier transform of the ACF to the PSD. One then finds a power law PSD S(f )∼f −2d as f→0 (a precise
formulation is given in Beran et al., 2013). If we also assume a Gaussian amplitude distribution and random
phase the resulting model is essentially the fractional Gaussian noise (fGn), originally introduced by Kol-
mogorov, and studied by Mandelbrot, Wallis, and Van Ness in the late 1960s (Mandelbrot, 2002). The fGn
with positive d is said to be persistent because a value of a given sign will tend to be followed by another of
the same sign. It has not always been appreciated, including by me (Watkins, 2017a), that fGn with nega-
tive d, which corresponds to antipersistence, is not LRD and does not have a power law ACF. For detailed
discussions of this point see Beran et al. (2013) and Raymond et al. (2003).

The pioneering application of fGn was to hydrology in a series of papers beginning with Mandelbrot and
Wallis (1968) about Hurst's Nile river height data set (Graves et al., 2017; Mandelbrot, 2002), for which the
rescaled adjusted range, or R/S, diagnostic was developed. The link between R/S and the concept of an ideal
water reservoir is described in detail by Feder (1988). The procedure to calculate it is defined, for example,
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by Embrechts and Maejima (2003): If {Xi} is a sequence of random variables, and Yn =
∑n

i=1 Xi is their
cumulative sum, one can explore how Y n fluctuates by defining the “adjusted range” R(l,k), where

R(l, k) = max
1≤i≤k

(
Yl+i − Yl −

i
k
(

Yl+k − Yl
))

− min
1≤i≤k

(
Yl+i − Yl −

i
k
(

Yl+k − Yl
))

(4)

and a standard deviation S(l,k) by

S(l, k) =

(
1
k

l+k∑
i=l+1

(Xi − X̄l,k)2

)1∕2

(5)

where X̄l,k = k−1 ∑l+k
i=l+1 Xi. The rescaled adjusted range, or R/S is given by Q(l,k)=R(l,k)/S(l,k) and can be

used to estimate J from a log Q versus log k plot, though more accurate diagnostics are now available (Beran
et al., 2013). The observed departure of J from 1/2 in several natural time series including Nile river minima
was the famous “Hurst effect” (Feder, 1988).

Many applications of fBm and fGn have followed (Beran et al., 2013; Graves et al., 2017), and very recently
the prediction of time-averaged temperature series with the StocSIPS technique (Del Rio Amador, 2019;
Lovejoy et al., 2018) has used an fGn model. It is important to realize, however, that if there is actually any
nonrandom phase structure in a real data,set, the fGn model, by construction, will be blind to it.

Fractional (H=d+1/2) Brownian motion: When integrated, the fGn X(t) gives fractional Brownian motion
(fBm) Y (t). Confusion sometimes arises about the difference between stationary fGn (parameterized by the
memory parameter d, which runs between −1/2 and 1/2) and self-similar but nonstationary fBm (parame-
terized by the self-similarity parameter H, which runs from 0 to 1). The two parameters are linked in these
models by H=d+1/2 and in this Gaussian special case H is additionally equal to J. Figure 5 shows how X
and Y differ, with the inset showing an fGn time series Xt, for d=0.3, which retains the bounded appearance
of white noise, due to its stationarity and Gaussian distribution, but which shows slow trend-like fluctua-
tions arising from the presence of LRD. The main panel of Figure 5 shows a time series of fBm where H=0.8,
while the left and right panels of Figure 6 illustrate the equivalence, in this case, of H and J, with the mea-
sured values being H=0.7819 and J=0.7878, respectively. The main panel of Figure 6 shows that a good
scaling collapse of the rescaled pdfs P(ΔY R) is obtained when the rescaling operation used in the Gaussian
case has division by the sample standard deviation replaced with division by 𝜏H , confirming that this is the
appropriate self-similarity exponent. I have used a semilog plot rather than a log-log plot here because of
the Gaussian shape of the pdfs.

2.4. The Noah and Joseph Effects Combined in the Fractional 𝜶-Stable Family
Stationary, fractional (d≠0), stable (𝛼≠2), noise: Combining both heavy tails and memory gives fractional sta-
ble noise, a two-parameter (𝛼, d) stationary model. The time series of discrete fractional stable noise Xt illus-
trated in the inset of Figure 7, combines the “spikiness” present in the heavy-tailed simulation of section 2.2,
with the same 𝛼=1.8, and the slow trend-like fluctuations from LRD seen in the fractional Gaussian noise
simulation of section 2.3, with the same d=0.3. However, as in the iid 𝛼-stable model the theoretical vari-
ance is infinite, which complicates the use of the many variance-based diagnostics such as R/S that have
typically been used to infer and quantify LRD in fGn and other Gaussian models (Mandelbrot, 2002).

Linear fractional (H=d+1/𝛼) stable motion: When fractional stable noise is integrated, linear fractional stable
motion (LFSM) is obtained, illustrated in Figure 7. When applied to LFSM the well-known diagnostics of
the Joseph exponent like the original R/S method continue to measure J, not H. In this non-Gaussian case
the self-similarity exponent H is no longer the same as J; instead, H=1/𝛼+d, while J remains 1/2+d as it
would be for fBm. We can see this in the left and right insets to Figure 8, where P(0) decays with exponent
−0.8307, close to −H=−0.8556, while 𝜎(ΔY ) grows with exponent 0.7895, close to 0.8. Mandelbrot himself
had noted this effect as early as 1969 but unfortunately chose to present it (Mandelbrot & Wallis, 1969)
as the “robustness of R/S” as a measure of LRD, rather than pointing out that J and H need not always
be the same. Although this remains a frequently overlooked problem in applications of the Holder and
Joseph exponents, good discussions of it now exist in the literature, notably Mercik et al. (2003), which
will aid the reader considerably when approaching Mandelbrot's frequently inaccessible original papers
(Mandelbrot, 2002).
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Figure 9. Time series, semilog probability distribution function (pdf) and loglog pdf calculated using the multiplicative
rainfall model of (Wilson & Toumi, 2005), 𝜎1=1,𝜎2=5, and 𝜎3=10.

3. Multiplicative Models and Turbulent Cascades
We now shift perspective from the typically one-dimensional time series models of the previous sections, to
macroscopic fields, for which examples might be a global circulation model or spatial data from a geostation-
ary observation satellite. The atmosphere would then be represented by a set of n-dimensional fields, which,
at least theoretically, have time-evolving phases and amplitudes specified everywhere. The phase is no longer
random but carries important information about coherent structures resulting from fluid physics. In such a
system the spatial and temporal aspects of a pattern would not be presumed to be separate but rather entan-
gled, as noted vividly for clouds by Bak and Chen (1989): “ … it is hard to believe that long-range spatial
and temporal correlations can exist independently. A local signal cannot be ‘robust’ and remain coherent
over long times in the presence of any amount of noise, unless stabilized by the interactions with its envi-
ronment. And a large, coherent spatial structure cannot disappear (or be created) instantly. [...] think of the
temporal distribution of sunshine, which must be correlated with the spatial distribution of clouds, through
the dynamics of meteorology.”

Perhaps the richest geophysically relevant example of such a field is fluid turbulence (Frisch, 1995). Fully
developed turbulence is notable for the complex structures it gives rise to in three-dimensional real space,
famously drawn by da Vinci, and for its accompanying k space forward cascade, in which energy, injected
at long wavelengths 𝜆, cascades down the inertial range toward short wavelengths (or equivalently high
wave numbers, k(=2𝜋/𝜆)) where it is dissipated. To study the interplay of real space and k space in such a
system using time series analysis, even in a controlled system like a wind tunnel one ideally wants several
measurement sites. This is even more true for uncontrolled natural systems—one reason why network sci-
ence is now so topical in geoscience (Donner et al., 2017). If limited to just one time series, then one will at
least need to ensure that one uses a model capable of capturing the complicated phase and amplitude infor-
mation in such a series. The well-known phenomenological models (Frisch, 1995) of the turbulent cascade
are multiplicative by construction, as they capture the way in which energy in the inertial range at a given
wavelength E(k) is subdivided in a stochastic way to give that at the next level down E(k−Δk).

Lovejoy and Schertzer (2013) have argued cogently that in such cases a multifractal picture will usually
be the most natural model, where the single scaling exponents H and J are replaced by a continuum of
exponents, the “multifractal spectrum.” The concept of multifractality derives from the work of Mandelbrot
(1999, 2004) and others (see, e.g., Chapter 17 of Falconer, 2003). A brief introduction, developing the multi-
fractal concept after summarizing the additive models is given by Schmitt and Huang (2016), and a detailed
discussion of the relevance to atmospheric science can be found in Lovejoy and Schertzer (2013).

Even without considering phase effects, though, one can begin to see how different multiplicative models are
from additive ones, but how their phenomenology can still at first glance resemble some additive cases, in an
even simpler example, studied by Wilson and Toumi (2005). Here just three Gaussian random variables are
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multiplied, representing mass flux, specific humidity, and the precipitation efficiency in an extreme rainfall
model. In the time series plotted in the left inset of Figure 9 the random numbers all had zero mean, but
standard deviations of 1, 5, and 10, and the series is seen to fluctuate much more than a white noise would.
The central panel shows that the resulting pdf has tails that are heavier than Gaussian, though fitted well
by stretched exponentials, not power laws (Wilson & Toumi, 2005). The right-hand inset shows the same
pdf in log-log axes and illustrates the by now well-recognized point (Sornette, 2003) that the ever-present
temptation to infer a rolled off power law by eye should be resisted!

4. “1/f” Noise From Changes in Signal Level
Despite its theoretical elegance, it should be remembered that Mandelbrot's fBm was not the first explanation
given for the Hurst effect, as recounted by Graves et al. (2017). A popular alternative view has been that
the effect is usually preasymptotic and arises from processes with correlation times that are of the order of
the observation length. The earliest attempt to mimic this, Hurst's own investigation of card-cutting models
with a finite correlation length (Feder, 1988), remains instructive. The J exponent was seen to fall to 0.5 as
the minimum lag used to fit an R/S versus lag plot was increased (see Figure 8.9 of Feder, 1988), an effect
that would presumably not be seen with a true LRD signal like fBm.

The presence of breakpoints, for example, those arising from changed instrumentation, complicates the
inference of trends, especially in data sets taken from uncontrolled natural systems. The problem of how best
to distinguish between trends, shifts, and short-term memory of the AR(1), or more generally the Autore-
gressive Moving Average (ARMA) types, remains an active topic in the recent climate statistics literature
(e.g., Beaulieu & Killick, 2018; Poppick et al., 2017).

Even a single change point poses a problem for the inference of LRD (e.g., Katsev & L'Heureux, 2003). Con-
sider a monofractal signal, with an expected J less than 1/2, say 1/3, “contaminated” by sharp jumps of the
type seen in many natural time series, such as those caused by sector boundaries in the solar wind. The
effective measured J can be raised toward 1/2 by this extra source of “roughness” in the time series. By
separating such breakouts and examining their power spectrum, Borovsky (2010) was able to show their
effect on the inferred power spectrum of solar wind turbulence. Unfortunately, though, change points can-
not always be detected using a priori knowledge, and as Rooch et al. (2019) recently put it in their Working
Paper: “...Conventional estimators of [J] easily lead to spurious detection of long memory if the time series
includes a shift in the mean. This defect has fatal consequences in change-point problems: Tests for a level
shift rely on [J], which needs to be estimated before, but this estimation is distorted by the level shift.” In
consequence, the problem of detecting LRD in the presence of breaks has become an active area in statis-
tics in recent decades (e.g., Betken, 2016; Sibbertsen, 2004). In their recent work Rooch et al. (2019) propose
an estimator for the J of a length n series based on averaging estimates from overlapping blocks of length
(approximately a multiple of

√
n ), but they note that a minimum of 100 observations per block should be

available in the ARFIMA case.

The problem can be turned on its head, however, and particular models with power law distributions of
the waiting times between change points can themselves be studied as models of 1/f noise. Because of the
attention received by fGn it has very rarely been noticed that Mandelbrot proposed and published a series
of three papers (Mandelbrot, 1999) on exactly this latter class of models in parallel with it, culminating in
Mandelbrot (1967). These models, chronicled by Watkins (2017b) were very different from fGn, being, in
an important sense, nonstationary. Mandelbrot described a stochastic process intended to caricature the
observed intermittency in systems such as telephone line traffic, or fluid turbulence, and rather than the
more familiar short-tailed distributions of the waiting times between transitions between discrete states of
activity, he proposed long-tailed power laws. His key finding, in Mandelbrot (1967), was that traditional time
series analysis techniques like the PSD and ACF would return a “1/f” spectrum for this model, but that the
PSD S(f ) could be decomposed into a stationary part, and a random prefactor dependent on the observed
time series' length. In this paper he pointed out that this resolved the so-called “1/f paradox”; the fact that
a low-frequency cutoff would be needed to make such a power spectrum integrable, but was frequently not
observed. (Mandelbrot, 1999) returned to the topic, arguing that rather than representing a true singularity
in power at the lowest frequencies, the infrared catastrophe in the power spectral density seen in this model
was a “mirage” resulting from the fact that the moments of the model varied in time in a step-like fashion,
which he called “conditional covariance stationarity.”
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Unfortunately, Mandelbrot (1967) received far less contemporary attention than his papers on heavy tails
in finance (Mandelbrot, 1963, 1997) or the series with Van Ness and Wallis in 1968–1969 on stationary
fractional Gaussian models for LRD (Mandelbrot, 2002), gaining only about 20 citations in its first 20 years.
It still seems to be little known, being, for example, not cited by the otherwise exhaustively detailed Beran
et al. (2013), which nonetheless refers to newer work on this class of model under the name of “long-range
count dependence” (LRcD). Although he revisited the papers with new commentaries in the volume of his
Selecta (Mandelbrot, 1999) on multifractals and “1/f” noise, Mandelbrot himself neglected to mention them
explicitly in his popular and historical account of the genesis of LRD in Mandelbrot and Hudson (1998).
He clearly saw them as comprising a different strand of his work to that on fractional Brownian motion
collected in another Selecta volume (Mandelbrot, 2002).

Since the 1960s, however, as described by Watkins (2017b) and Beran et al. (2013) fractional renewal models
of the LRcD type, as well as the continuous time random walk (CTRW) with heavy-tailed waiting times
(Kutner & Masoliver, 2017), both structurally very similar to Mandelbrot (1967, 1999) have subsequently
been studied extensively by many authors. Applications have included computer science and internet traffic,
and physics where they are now being actively considered as solutions to the “1/f” paradox, in the context of
blinking quantum dots. In this latter context the time dependence of the random prefactor to “1/f” spectra is
receiving renewed attention (e.g., Niemann et al., 2016), being related to the physical phenomenon of weak
ergodicity breaking.

With the advantage of historical distance one can see the importance of both nonstationary fractional
renewal models and stationary Gaussian fGn. In the valedictory essays of his Selecta N volume, Mandelbrot
(1999) argued that this kind of structured nonstationarity as a mechanism for 1/f noise was an intermediate
step between stationary LRD and more unstructured and arbitrary forms of nonstationarity and explicitly
stated that it was a key step in his development toward the multifractal idea.

5. Beyond Mandelbrot's Walks and Noises: Mean Reverting Models for
Dissipative Time Series
Mandelbrot's additive models extended two basic processes: (i) stationary white noise Xt+1=𝜎𝜂t, where at
each time step the value of the discrete time series is drawn from a normal distribution of variance 𝜎2,
preserving no information about the previous state, and (ii) nonstationary Brownian motion Xt=Xt−1+𝜎𝜂t
which adds a random variable at each time step to the previous Xt value, thus making full use of the value
of the previous state of the system. Many physical and economic systems, however, require a model that
lies between these two extremes, because they show a tendency for fluctuations to be damped out over
time so that the time series reverts to a mean value. The classic way to achieve this in discrete models is
via the AR(1) model's 𝜙1 parameter, which lies in the range |𝜙|<1, so that Xt=𝜙1Xt−1+𝜎𝜂t. AR(1) has a
continuous counterpart, the Langevin equation in physics (Coffey & Kalmykov, 2017) for the velocity of a
damped Brownian particle, whose solution has been studied extensively as the Ornstein-Uhlenbeck (OU)
process, also known as continuous AR(1) or CAR(1) (Brockwell & Davis, 2016; Coffey & Kalmykov, 2017).

Extension of the AR(1) model to pth order, so that Xt=𝜙1Xt−1+𝜙2Xt−2 …+𝜙pXt−p+𝜎𝜂t (Brockwell & Davis,
2016) allowed non-Markovian memory to be considered and fostered a useful continuing dialogue between
users of such AR(p) models and advocates of Mandelbrot's proposal of LRD, which effectively replaced the
need for an AR(∞) model (Brockwell & Davis, 2016; Graves et al., 2017) with a single parameter d. The
eventual introduction of the ARFIMA(p,d,q) (Brockwell & Davis, 2016; Graves et al., 2017) model allowed
Mandelbrot's d to be incorporated into flexible models which also incorporated shorter-ranged correla-
tions via pth order autoregression and qth order moving average terms. Despite Mandelbrot's expressed
distaste for the ARFIMA model (Graves et al., 2017), it has become the standard way to incorporate LRD
into time series modeling in many communities, notably statistics and econometrics (Brockwell & Davis,
2016). Recent progress has been made in the continuous counterpart, the CARFIMA(p,d,q) model by Tsai
(2009), and considerable rigor has now been attained (Kubilius et al., 2017) in the study of the fractional
Ornstein-Uhlenbeck process, that is, OU driven by a fractional noise. However, I have previously argued
(Watkins, 2013, 2017a) that the fractal extension of the Langevin equation of most potential interest to
geoscience is the fractional Langevin equation (Coffey & Kalmykov, 2017), which as well as having a frac-
tional noise term replaces the constant damping term in the Langevin equation by an integral over a
time-dependent memory kernel, which is then taken to have a power law decay. Investigation of equations

WATKINS 11



Earth and Space Science 10.1029/2019EA000598

of the fractional Langevin type in the global temperature modeling context has now begun (Lovejoy et al.,
2018; Watkins et al., in preparation) as well as other closely related models (Rypdal & Rypdal, 2014).

In closing I would note that Nature, of course, is not compelled to actually follow any of these models closely,
or at all, but evidence is accumulating that many of them are surprisingly effective. Whatever the final verdict
on Mandelbrot's fractal time series models, I would argue that they have greatly expanded the quantitative
descriptive palette available to geophysics.

Data Statement:
The short Matlab simulation and data analysis codes used to generate the figures are available from the
author. Readers seeking best practice in code design and algorithms are however directed to a better resource
such as the codes available at https://github.com/lanlankai for the book by Schmitt and Huang (2016).
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