
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/129369                                                          
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/237395867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/129369
mailto:wrap@warwick.ac.uk


Hardness Magnification for Natural Problems

Igor C. Oliveira
Department of Computer Science

University of Oxford
Oxford, United Kingdom

igor.carboni.oliveira@cs.ox.ac.uk

Rahul Santhanam
Department of Computer Science

University of Oxford
Oxford, United Kingdom

rahul.santhanam@cs.ox.ac.uk

Abstract—We show that for several natural problems of
interest, complexity lower bounds that are barely non-trivial
imply super-polynomial or even exponential lower bounds
in strong computational models. We term this phenomenon
“hardness magnification”. Our examples of hardness magnifi-
cation include:

1) Let MCSP[s] be the decision problem whose YES in-
stances are truth tables of functions with circuit com-
plexity at most s(n). We show that if MCSP[2

√
n]

cannot be solved on average with zero error by formulas
of linear (or even sub-linear) size, then NP does not
have polynomial-size formulas. In contrast, Hirahara
and Santhanam [1] recently showed that MCSP[2

√
n]

cannot be solved in the worst case by formulas of nearly
quadratic size.

2) If there is a c > 0 such that for each positive integer d
there is an ε > 0 such that the problem of checking if an
n-vertex graph in the adjacency matrix representation
has a vertex cover of size (logn)c cannot be solved by
depth-d AC0 circuits of size m1+ε, where m = Θ(n2),
then NP does not have polynomial-size formulas.

3) Let (α, β)-MCSP[s] be the promise problem whose YES
instances are truth tables of functions that are α-
approximable by a circuit of size s(n), and whose NO
instances are truth tables of functions that are not β-
approximable by a circuit of size s(n). We show that for
arbitrary 1/2 < β < α ≤ 1, if (α, β)-MCSP[2

√
n] cannot

be solved by randomized algorithms with random access
to the input running in sublinear time, then NP 6⊆ BPP.

4) If for each probabilistic quasi-linear time machine M
using poly-logarithmic many random bits that is claimed
to solve Satisfiability, there is a deterministic polynomial-
time machine that on infinitely many input lengths n
either identifies a satisfiable instance of bitlength n on
which M does not accept with high probability or an
unsatisfiable instance of bitlength n on which M does
not reject with high probability, then NEXP 6= BPP.

5) Given functions s, c : N→ N where s ≥ c, let MKtP[c, s]
be the promise problem whose YES instances are strings
of Kt complexity [2] at most c(N) and NO instances are
strings of Kt complexity greater than s(N). We show
that if there is a δ > 0 such that for each ε > 0,
MKtP[Nε, Nε + 5 log(N)] requires Boolean circuits of
size N1+δ , then EXP 6⊆ SIZE(poly).

For each of the cases of magnification above, we observe that
standard hardness assumptions imply much stronger lower
bounds for these problems than we require for magnification.

We further explore magnification as an avenue to proving
strong lower bounds, and argue that magnification circumvents
the “natural proofs” barrier of Razborov and Rudich [3].
Examining some standard proof techniques, we find that they
fall just short of proving lower bounds via magnification. As
one of our main open problems, we ask whether there are
other meta-mathematical barriers to proving lower bounds
that rule out approaches combining magnification with known
techniques.

Keywords-computational complexity, lower bounds; cir-
cuit complexity; hardness magnification; minimum circuit
size problem; vertex cover; satisfiability; time-bounded Kol-
mogorov complexity

I. INTRODUCTION
A. Overview

It is a truth universally acknowledged that the state of the
art in complexity lower bounds is very primitive indeed. The
main open problems in complexity theory, such as NP vs. P
and EXP vs. SIZE(poly) ask about super-polynomial lower
bounds against strong computational models. In contrast, the
lower bounds we can actually show for explicit problems are
either for weak models such as constant-depth circuits [4, 5]
and monotone circuits [6], or are weak in magnitude, such
as the 5n circuit size lower bound [7] or sub-cubic formula
size lower bound for Andreev’s function [8]. Despite decades
of effort, the frontier of complexity lower bounds tends to
advance very slowly or not at all. Advances often require
substantially new ideas, such as the algorithmic paradigm
introduced by Williams [9] and used to show [10] that NEXP
does not have polynomial-size constant-depth circuits with
composite modular gates.

Is the lack of progress on lower bounds due to our own
lack of imagination, or is there an inherent difficulty? Some
evidence for the inherent difficulty of the problem is given by
meta-mathematical barriers such as the relativization barrier
[11], natural proofs barrier [3] and algebrization barrier [12].
These barriers seek to understand and explain the limits of
various classes of techniques for proving lower bounds.

The natural proofs barrier, in particular, suggests a certain
dichotomy between “weak” circuit classes such as AC0 cir-
cuits of sub-exponential size, AC0[p] (for prime p) circuits of
sub-exponential size, branching programs of sub-quadratic
size and Boolean formulas of sub-cubic size on the one



hand,1 and “strong” circuit classes such as Boolean circuits
of polynomial size or Boolean formulas of polynomial
size which are believed to be able to implement pseudo-
random functions (see e.g. [14]). For weak circuit classes,
we already have lower bounds via current techniques using
“naturalizing” proofs. For strong circuit classes, which are
the ones that primarily interest us, lower bounds are believed
to be far out of our reach, as there are not even good
candidate techniques for proving such lower bounds. There
are certain liminal classes such as ACC0 and TC0 circuits of
depth 2 which don’t yet fit clearly into this dichotomy, but
by and large the dichotomy seems to capture current beliefs
about the hardness of proving lower bounds.

We argue that this gap between weak and strong classes
is somewhat illusory, or at the very least depends on the
specific problems for which we try to show lower bounds.
For various natural problems of interest, and for a range of
computational models, we show that lower bounds against
weak circuit classes imply lower bounds for strong circuit
classes. We term this phenomenon “hardness magnification”.

Hardness magnification in computational complexity is
related to the somewhat recent work of Allender and Koucký
[15], who showed how to amplify lower bounds for NC1

against constant-depth circuit classes from size n1+ε for
fixed ε > 0 to super-polynomial size using self-reducibility.
However, while their work is focused on lower bounds
for “strongly self-reducible” problems in NC, our results
are much broader, addressing problems such as SAT for
which their techniques do not seem to yield interesting
consequences, and also addressing a greater variety of com-
putational models such as general Boolean circuits, Boolean
formulas, branching programs, sub-linear time algorithms,
etc. Moreover, while the lower bounds they “amplify” are
not known to hold for any explicit problems, the lower
bounds from which we show magnification are in many
cases known for explicit problems – just not for the specific
problems we consider.2 (We discuss additional related work
in Section I-C.)

On the other hand, a form of hardness magnification has
been recently observed by Müller and Pich [17, Proposition
4.14] in the context of proof complexity. In more detail, their
argument establishes that barely non-trivial lower bounds
for bounded-depth Frege systems for certain tautologies of
interest imply super-polynomial lower bounds for Frege
systems.3 The interesting aspect of this result compared
to [15] is that lower bounds against bounded-depth Frege
systems are known (but not for the same tautologies).
Moreover, the tautologies from [17] have been studied in

1We refer to a textbook such as [13] for an exposition of these circuit
classes and corresponding lower bounds.

2Note that some researchers [16] do not see compelling evidence that
the weak lower bounds required by Allender and Koucký [15] hold.

3The result is not stated in this way, but the proof shows that weak lower
bounds are sufficient.

the past, and lower bounds in weaker proof systems have
been obtained for the same class of tautologies. While our
results are incomparable to their work in proof complexity,
it served as a source of inspiration for our investigations.

The general template for our results is as follows. We
consider various natural problems Q that are believed to be
hard. For each such problem Q, we show:

(a) An implication from a weak lower bound for Q (i.e., a
lower bound that is weak in magnitude and/or against
a weak model) to a strong lower bound for a problem
in NP or EXP.

(b) Under a standard hardness hypothesis, the weak lower
bound for Q (and indeed a stronger lower bound)
does hold. Thus magnification is a sound approach to
proving strong lower bounds under standard hardness
hypotheses.

(c) The weak lower bound is “barely non-trivial”, in that a
trivial lower bound that is only slightly smaller can be
shown to hold. Moreover, in several cases, the weak
bound is known for some explicit problem, just not
for the problem Q we consider.

The details of the magnification results depend on the
problems Q we consider and on the involved computational
models. To establish magnification as a fairly general phe-
nomenon, we consider a range of such problems:
• Variants of the Minimum Circuit Size Problem

(MCSP), where the input is the truth table of a Boolean
function and the question is whether the function has
small circuits.

• Variants of the Minimum Kt Complexity Problem
(MKtP), where the input is a string and the question
is if the string has low Kt complexity, where Kt com-
plexity is Levin’s notion of Kolmogorov time bounded
complexity.

• The Vertex Cover problem.
• Satisfiability (3-SAT).
Our most interesting magnification results are for “meta-

computational” problems such as MCSP, MKtP and SAT,
where the instance of the problem itself encodes a com-
putation. This re-inforces the message of several works in
complexity theory (e.g., [18, 3, 9]) that understanding the
complexity of meta-computational problems is closely asso-
ciated with making progress on complexity lower bounds.

Our results can be interpreted in different ways. For an
optimist, they might give hope that strong lower bounds are
achievable. First, the weak lower bounds from which we
magnify are in several cases already known for explicit prob-
lems, so it’s “merely” a question of showing similar lower
bounds for the problems we consider. Second, approaches
via magnification appear to avoid the natural proofs barrier
to proving lower bounds. Recall that the natural proofs
barrier [3] rules out circuit lower bounds given by dense
and constructible properties that are useful against the circuit



class, modulo standard cryptographic assumptions. Even if
the weak lower bound that is required for magnification
is shown via a natural property, the magnification step
seems to destroy the density of the corresponding property,
as magnification only seems to hold for certain special
structured problems and not for generic ones. The argument
here is similar to the argument of Allender and Koucký
[15, Section 8] that “amplifying lower bounds via self-
reducibility” evades the natural proofs barrier.

For the pessimist, magnification might simply be an indi-
cation that natural proofs and other barriers do not capture
all obstacles to proving circuit lower bounds. In this view,
magnification is simply an invitation to refine and extend our
meta-mathematical understanding of circuit lower bounds so
that we have compelling explanations of why lower bounds
via magnification would be hard to achieve.

We see this as a win-win situation: either strong lower
bounds can be shown via magnification, or magnification
and similar phenomena will motivate us to gain a better
understanding of the limitations of lower bound techniques.

B. Results and techniques

This section describes in more detail our main results
and techniques. For the required background in complexity
theory, we refer to standard textbooks such as [13, 19].

We often use a concrete choice of parameters to simplify
the exposition. More general formulations of our statements
and the majority of proofs are deferred to the full version
of the paper [20].

A magnification phenomenon around quasi-linear size
lower bounds. We say that a function f : {0, 1}n → {0, 1}
is γ-approximable by a boolean circuit C if Prx[f(x) =
C(x)] ≥ γ, where x ∼ {0, 1}n. Let (α, β)-MCSP[s] be the
promise problem whose YES instances are truth tables of
functions that are α-approximable by a circuit of size s(n),
and whose NO instances are truth tables of functions that
are not β-approximable by a circuit of size s(n). We use
N = 2n to denote the input length of (α, β)-MCSP[s], and
consider the problem with α = 1 and β = 1 − δ, where
δ = δ(n) > 0 is a parameter that measures the gap between
YES and NO instances of (1, 1− δ)-MCSP[s].

We use Formula[t] to denote the set of functions that can
be computed by Boolean formulas of size at most t. Our
first result can be stated as follows.

Theorem 1. Let δ : N→ R and consider the problem (1, 1−
δ)-MCSP[s]. The following results hold.
(i) Let s(n) = nk and δ(n) = n−k, where k ∈ N.

If (1, 1 − δ)-MCSP[s] /∈ Formula[N · (logN)O(1)]
then there is L ∈ NP over m-bit inputs such that
L /∈ Formula[poly(m)].

(ii) For the same choice of parameters, if (1, 1 − δ)-
MCSP[s] /∈ Formula[N1+ε] for some ε > 0, then there

is L ∈ NP over m-bit inputs and δ > 0 such that
L /∈ Formula[2m

δ

].
(iii) Let s(n) = 2o(n) and δ(n) = 2−o(n). if (1, 1 − δ)-

MCSP[s] /∈ Formula[N1+ε] for some ε > 0, then
there is L ∈ NP over m-bit inputs such that L /∈
Formula[poly(m)].

Theorem 1 is a consequence of a more general result
presented in Section II. It magnifies super-linear size formula
lower bounds between N · poly(logN) and N1+ε to much
stronger lower bounds against formulas for a function in NP.
As a consequence, minor improvements in lower bounds for
(1, 1−δ)-MCSP[s] around the linear-size regime would have
major implications in our understanding of formula lower
bounds for explicit problems.

Note that Theorem 1 asks for barely super-linear formula
size lower bounds. We observe that there are no known
algorithms for (1, 1−δ)-MCSP[s] over N -bit inputs running
in time 2o(s(n)). In particular, for δ > 1/2 it is not known
how to solve this problem in time polynomial over the input
length N for any n � s(n) � 2o(n). Under standard
cryptographic assumptions, it is possible to use the theory of
natural proofs [3] to prove that (1, 1 − δ)-MCSP[s] cannot
be computed by circuits of polynomial size if s(n) = nk

and k is sufficiently large (Proposition 12).
Let AC0

d[t] denote depth-d AC0 circuits of size t. We
establish the following additional hardness magnification
result.

Theorem 2. Suppose there exists k ≥ 1 such that for every
d ≥ 1 there is εd > 0 such that (1, (1 − δ))-MCSP[s] /∈
AC0

d[N
1+εd ], where s(n) = nk and δ(n) = n−k. Then

NP * NC1.

This result can be seen as an analogue in circuit complex-
ity of the hardness magnification phenomenon observed in
proof complexity by Müller and Pich [17, Proposition 4.14].

Perhaps intriguingly, much stronger formula size lower
bounds are known for problems considerably simpler than
(1, 1− δ)-MCSP[s]. For instance, it is well-known that the
parity function over N input variables requires formulas of
size Ω(N2), and there are several techniques able to prove
strong lower bounds against AC0 circuits. Can we use these
existing approaches to establish lower bounds for (1, 1−δ)-
MCSP[s]?

We sketch in the full version of the paper [20] how known
results and techniques imply the following lower bounds. Let
1/2 ≤ γ < 1 be an arbitrary constant. Then, for some choice
of s(n) = 2Θ(nγ) and δ(n) = 2−n+Θ(nγ), we have (1, 1−δ)-
MCSP[s] /∈ Formula[N2−o(1)]. Note that this lower bound is
not good enough for hardness magnification (i.e., Theorem
1) because the parameter δ(n) is not large enough. On the
other hand, we note that if s(n) = nω(1) and δ < 1/2 is
fixed, then for every d ≥ 1 and every ` ≥ 1 we have (1, 1−
δ)-MCSP[s] /∈ AC0

d[N
`]. Observe that this lower bound is



not good enough for hardness magnification (i.e., Theorem
2) because the parameter s(n) is too large.

We briefly discuss the techniques behind the proof of
Theorem 1, which is not technically involved but requires
certain crucial insights. The argument is by contrapositive,
so we assume that every problem in NP on m input bits
has formulas of bounded size. In order to solve (1, 1 − δ)-
MCSP[s] by almost-linear size formulas, we proceed as
follows. We take a projection of the input truth table
on a certain number of random locations, and define a
“compressed” language L in NP over m input bits, where
m ≈ s(n)/δ(n) � N = 2n, which captures a succinct
version of the initial problem. Using the gap parameter δ,
it is possible to show that if the input truth table admits
small circuits, so does its random projection. On the other
hand, a probabilistic argument proves that if the input truth
table cannot be approximated by small circuits, then with
high probability the projected truth table does not admit
small approximating circuits. This allows us to employ small
formulas for L to solve the original problem. However, this
argument is probabilistic, and the reduction sketched before
is randomized. In order to get almost-linear size formulas
for (1, 1−δ)-MCSP[s], we derandomize this construction in
an elementary but careful way using non-uniform formulas.
While the formulas for L have small size as a function of m
when compared to N , the non-constructive derandomization
argument is responsible for the almost-linear size bounds (in
N ) for the formulas obtained for (1, 1− δ)-MCSP[s].

We observe that the argument is inspired in part by
Occam’s Razor, an idea from learning theory (see e.g. [21]).
The details appear in Section II, where the proof of Theorem
2 is also presented.

Results similar to Theorem 1 can be proved with respect
to boolean circuits and indeed for a variety of boolean
devices. The main advantage of presenting these ideas in
the context of formula complexity is because for formulas
there are non-trivial polynomial lower bounds for several
explicit problems, and a large number of techniques have
been developed for establishing such lower bounds (cf. the
discussion in Section I-D).

Kt Complexity and lower bounds for EXP. Note that the
previously considered problem concerns the average-case
complexity of strings, viewed as truth tables. We show next
a magnification result for a computational problem related
to the worst-case complexity of strings.

Let U be a fixed universal machine. For a non-empty
string x ∈ {0, 1}∗, Kt(x) is the minimum over |p|+ log(t)
such that U(p) outputs x within t steps. Given functions
s, c : N → N where s ≥ c, let MKtP[c, s] be the promise
problem over N -bit inputs whose YES instances are strings
of Kt complexity [2] at most c(N) and NO instances are
strings of Kt complexity greater than s(N).

Let SIZE[t] denote the class of boolean circuits of size at

most t. We establish the following result.

Theorem 3. If there is a fixed δ > 0 such that for each
ε > 0, MKtP[Nε, Nε + 5 log(N)] does not have circuits of
size N1+δ , then EXP 6⊆ SIZE(poly).

It is not hard to see that MKtP[Nε, Nε + 5 log(N)] ∈
EXP. Moreover, results from [22] show that this problem is
hard for EXP under non-uniform reductions. In particular,
if EXP does not have polynomial size circuits, neither does
this problem. This allows us to get the following equivalence
as a consequence.

Corollary 4. MKtP[Nε, Nε + 5 log(N)] has polynomial-
size circuits for each ε > 0 iff for all δ > 0 there is an
ε > 0 such that MKtP[Nε, Nε + 5 log(N)] has circuits of
size N1+δ .

In terms of techniques, the proof of Theorem 3 adapts
the ideas behind Theorem 1 and combines them with a
new ingredient: highly efficient error-correcting codes that
can be encoded and decoded by algorithms of quasi-linear
complexity [23]. Such error-correcting codes can be used
together with the notion of Kt complexity to reduce the
proof of Theorem 3 to a scenario that is similar to the
one in the proof of Theorem 1. An important distinction is
that we reduce to a certain compressed language that is in
EXP instead of NP, and the argument uses boolean circuits
instead of boolean formulas.

The proofs of Theorem 3 and Corollary 4 can be found
in the full version of our work [20].

Magnification from sub-linear average-case lower
bounds. The results discussed above require lower bounds
that are super-linear in the number N of input bits. Our next
theorem shows that in some settings hardness magnification
also follows from sub-linear lower bounds.

Let MCSP[s] be the (standard) Minimum Circuit Size
Problem over N -bit inputs whose YES instances are truth
tables of functions with circuit complexity at most s(n). We
consider the most natural notion of average-case complexity
for MCSP over the uniform distribution, as introduced by
[1]. A (zero-error) average-case algorithm or device A for
MCSP[s] is a deterministic procedure that always outputs a
value in {0, 1, “?”}, and that satisfies the following condi-
tions: (1) A is never incorrect; and (2) Prx[A(x) 6= “?”] ≥
1/2. (The constant 1/2 is arbitrary.) In other words, the
procedure provides a 0/1 answer for a non-trivial fraction of
input truth tables, and never makes a mistake.

Theorem 5. If MCSP[2
√
n] on N -bit inputs cannot be

solved on average with zero error by formulas of size o(N),
then NP does not have polynomial size formulas.

It is not hard to show that MCSP[s] is not in
SIZE[poly(N)] on average under standard cryptographic
assumptions. Indeed, as observed in [1], the existence of



average-case algorithms for MCSP is equivalent to the
existence of natural proofs.

This magnification result is in sharp contrast to a recent
lower bound from [1] showing that MCSP[2

√
n] cannot be

solved in the worst case by formulas of nearly quadratic
size. As a consequence, there is a dramatic distinction
between establishing worst-case super-linear lower bounds
and establishing average-case sub-linear lower bounds for
MCSP. Also note that much stronger N3−o(1) average-case
formula size lower bounds are known for explicit problems
[24].

The proof Theorem 5 is elementary, and is reminiscent of
an idea used in the proof of the main result from [3]. Our
new conceptual insight is in exploring this argument from
the perspective of hardness magnification. Details appear in
the full version [20].

Sub-linear randomized lower bounds and NP vs. BPP.
Our next result in the sub-linear regime is with respect
to worst-case probabilistic computations. We say that a
randomized algorithm A computes a function f if on every
input x, Pr[A(x) = f(x)] ≥ 2/3. For the definition of (sub-
linear) randomized computation, we take any uniform model
of computation that allows random-access to the input string.

Recall the definition of the problem (α, β)-MCSP[s] in-
troduced above. We show the following magnification result
in the setting of sub-linear randomized computations.

Theorem 6. Let 1/2 < β < α ≤ 1 be constants, c ∈ N,
and s(n) ≤ 2n

γ

, where γ < 1. If there is ε > 0 such
that (α, β)-MCSP[s] on N -bit inputs cannot be computed by
a (two-sided error) randomized algorithm running in time
2(logN)1−ε

, then NP * BPP.

We note that stronger lower bounds are known against
randomized computations with random-access to the input
string for other (explicit) computational problems. Indeed,
any reasonable model of computation of this form can
be simulated by (non-uniform) randomized branching pro-
grams. If the original randomized algorithm uses time T
and memory S, so does the corresponding distribution of
deterministic branching programs (i.e., the longest path has
length ≤ T and there are ≤ 2S nodes in any branching
program in the support of the distribution). In [25, Corollary
6.7], it is proved that an explicit N -bit boolean function in
P requires two-sided error randomized branching programs
running in super-linear time T (N) = ω(N) if the number of
nodes in the branching program is ≤ 2N

1−Ω(1)

. This lower
bound is much stronger than the one required in Theorem
6.

The proof of Theorem 6 is along the lines of the random
projection argument sketched for the proof of Theorem 1.

Vertex Cover and Magnification. The results discussed be-
fore concerned meta-computational problems such as MCSP

and its variants. We discuss now a hardness magnification
result for Vertex Cover, a well-known graph-theoretic prob-
lem in NP.

Recall that in the Vertex-Cover problem, the input is a
pair (G,w), where G ∈ {0, 1}(

n
2) encodes the adjacency

matrix of an undirected n-vertex graph G = (V,E), and
w ∈ {0, 1}logn encodes in binary an integer parameter k ≥
0. The pair (G,w) is a positive instance of Vertex-Cover if
there exists S ⊆ V , |S| ≤ k, such that every e = {u, v} ∈ E
intersects S. Similarly, for k = k(n) we let k-Vertex-Cover
be the same computational problem with the exception that
the parameter k is fixed in advance and is not part of the
input. We use m = Θ(n2) to denote the total input length
of an instance of k-Vertex-Cover on n-vertex graphs.

Theorem 7. Let k(n) = (logn)C , where C ∈ N is arbitrary.
If for every d ≥ 1 there exists ε > 0 such that k-Vertex-
Cover /∈ AC0

d[m
1+ε], then NP * NC1.

Under ETH, k-Vertex-Cover cannot be solved in time
2o(k) ·poly(m) ([26]; see e.g. [27, Theorem 29.5.9]). There-
fore, it is plausible that k-Vertex-Cover is not in P if
k = ω(log n). Moreover, using the NP-completeness of
Vertex-Cover and a simple translation argument, for any
ε > 0 there is a constant C such that if k = (log n)C , then
k-Vertex-Cover is not in P unless CNF-SAT ∈ DTIME[2n

ε

].
Consequently, while Theorem 7 asks for a barely non-
trivial lower bound in a very weak circuit model, standard
assumptions imply much stronger results.

For larger k(n), we can establish a connection to time-
space trade-off results (see e.g. [28, 29]). The next statement
assumes a model where the algorithm has random-access to
the input string. This is compatible with existing time-space
trade-offs. For concreteness, one can use Turing Machines
with a read-only input tape, a constant number of working
tapes, and a special tape used to address the input string.
Recall that DTISP[t(n), s(n)] denotes the class of languages
that can be decided by an algorithm that simultaneously runs
in time O(t(n)) and space O(s(n)).

Theorem 8. Let k(n) = no(1). If there exists ε > 0 such that
k-Vertex-Cover /∈ DTISP[m1+ε,mo(1)], where the input is
an n-vertex graph represented by an adjacency matrix of bit
length m = Θ(n2), then P 6= NP.

The reader familiar with time-space trade-offs might recall
that it is known unconditionally that the Vertex Cover prob-
lem is not in DTISP[m1.8,mo(1)] (see e.g. [29]). However,
such statement has two important differences in comparison
to Theorem 8. First, the input encoding is different. Existing
lower bounds employ a list of vertices followed by a list of
edges. Secondly, the parameter k(n) is much closer to n.

The techniques employed in the proof of these two results
explore a connection to kernelization, a widely-investigated
method from parameterized complexity (see e.g. [27]). Re-
call that a kernelizable (parameterized) problem can be



reduced in polynomial time to a much smaller instance of
itself, where the new input size m′ can be upper bounded
by a function of k. It is well-known that k-Vertex-Cover is
kernelizable. We explore this idea from the point of view
of hardness magnification. Indeed, while kernelizablity has
been used mainly algorithmically, our insight here is that
an extremely efficient implementation has consequences for
lower bounds.

In order to explain the approach, we sketch some high-
level ideas used in the proof of Theorem 7. The result is
established in the contrapositive. In other words, under the
assumption that NP ⊆ NC1, we must compute k-Vertex-
Cover using almost-linear size constant-depth circuits. Let
T be a kernelization routine for k-Vertex-Cover which maps
inputs represented by m bits and with a parameter k to an
instance of Vertex-Cover whose size is poly(k). Since by
assumption NP is contained in NC1, standard results imply
that NP can be computed by sub-exponential size circuits
of sufficiently large constant depth. Consequently, using that
Vertex-Cover ∈ NP and k(n) = (log n)C , we can solve the
new instance obtained via kernelization by constant-depth
circuits of size at most m (where m = Θ(n2) is the original
input length). Our argument would be complete if we
could also implement the routine T using almost-linear size
AC0 circuits. This part of the argument requires low-level
implementations, and relies on fairly efficient computations
that can be done by such circuits with a sub-linear number
of (unbounded fan-in) gates.

The reader is referred to the full version [20] for proofs
of Theorems 7 and 8.

Nontrivial lower bounds for Satisfiability and NEXP
vs. BPP. Our last hardness magnification example holds for
the standard formulation of the 3-SAT problem. However,
unlike the earlier results which magnify from worst-case or
average-case lower bounds, the main result in this section
magnifies from lower bounds against polynomial-time re-
futers, a notion defined by Kabanets [30].

Intuitively, the theorem says that if any probabilistic quasi-
linear time algorithm for SAT can be efficiently refuted in the
sense that there is a polynomial-time algorithm that infinitely
often produces either YES instances on which the algorithm
does not accept with high probability or NO instances for
which the algorithm does not reject with high probability,
then NEXP is different from BPP. The antecedent here is
a “mild” lower bound against quasi-linear time algorithms,
while the consequent is a more significant lower bound
against any polynomial-time algorithm, but for a larger
class. While the requirement to prove a lower bound against
refuters might appear much stronger than the requirement
to prove a worst-case lower bound, the work of [31] (see
also [32]) shows that these requirements are essentially
equivalent when the refuter has more resources than the
algorithm, as in our case. The reason we are unable to relax

our requirement to a worst-case lower bound is that it is
important in our argument that the refuter is deterministic
while the algorithm is allowed to be randomised.

We use |φ| to denote the bitlength complexity of a 3-SAT
formula φ.

Theorem 9. Suppose that for every probabilistic machine M
that on inputs of length m halts in time m ·polylog(m) and
uses polylog(m) many random bits, there is a deterministic
polynomial-time machine N such that for infinitely many
m, N(1m) outputs a 3-CNF formula φm where |φm| =
m for which either φm is satisfiable and M(φm) rejects
with probability > 1/m or φm is unsatisfiable and M(φm)
accepts with probability > 1/m. Then NEXP * BPP.

Modulo the use of refuters, Theorem 9 provides a bridge
between two frontiers in complexity theory: establishing
non-trivial lower bounds for Satisfiability against unre-
stricted algorithms, and understanding the power of ran-
domness in computation. Note that much stronger running
time lower bounds are know for Satisfiability in the standard
sense (i.e., without refuters), but they only hold under the
assumption that the algorithm uses a sub-linear amount of
memory (see e.g. [28, 29]).

This is our most technically demanding proof. In terms of
results, the argument relies on efficient versions of the PCP
theorem where the reduction runs in quasi-linear time, and
on the Easy Witness Lemma of [33]. Other concepts that
play a role are the notion of Kt complexity discussed above,
a related notion of KT Kolmogorov complexity introduced
by [34], and a random projection of clauses that defines a
randomized reduction to a certain compressed satisfiability
problem. Instead of presenting a high-level exposition of the
proof, we discuss some analogies with the proof of Theorem
1, which motivated our main ideas. (The argument sketched
below assumes background in complexity theory.)

The proof of Theorem 9 is also by contrapositive. Suppose
that NEXP = BPP. Recall that for Theorem 1 we considered
a version of the MCSP problem with a gap between positive
and negative instances. One should think of each clause of
the 3-SAT instance φ as an entry in the input truth table for
(1, 1−δ)-MCSP[s]. If we were able to create a gap between
positive (satisfiable) and negative (unsatisfiable) instances of
3-SAT, we could try to exploit some of the ideas employed
in the MCSP context. Under this analogy, this turns out to
be precisely what is granted by the PCP theorem. (We use a
very efficient version of the PCP theorem that does not affect
our barely super-linear complexity requirements.) Assume
from now on that we need to solve 3-SAT on instances
with a gap: YES instances are satisfiable, while in any NO
instance at most a (1 − ε)-fraction of the clauses can be
simultaneously satisfied.

For the next step of the analogy, the reader should relate
circuits to assignments, and small circuits to assignments
that are encoded by strings of low complexity. From this



perspective, a random projection in the context of (1, 1−δ)-
MCSP[s] corresponds here to a random projection of input
clauses. Similarly to the proof of Theorem 1, we reduce the
problem to a certain compressed language L over smaller
input strings, and use the complexity collapse to solve L
very efficiently. There is however a crucial difference: while
in the (1, 1− δ)-MCSP[s] setting we only had to care about
potential small circuits computing the input truth table, for
3-SAT we care about all possible satisfying assignments,
and not only about those of “low complexity”. In order to
address this, the Easy Witness Lemma and the notion of
refuters play a fundamental role.

The high-level idea is that the refuter either produces
(1) a unsatisfiable formula; (2) a satisfiable formula that
admits a satisfying assignment of low complexity; or (3) a
satisfiable formula such that every satisfying assignment has
high complexity. Since we are arguing in the contrapositive,
we need to claim that no refuter succeeds. By carefully
designing the compressed/sketched version of the 3-SAT
problem used in our reduction, it is possible to rule out
cases (1) and (2) using an analysis that is similar to the
proof of Theorem 1. On the other hand, in the remaining
case (3) we get that the (deterministic) refuter produces a
sequence of infinitely many formulas that are satisfiable but
do not admit satisfying assignments of low-complexity. By
appropriately defining the notions of complexity involved in
the argument, we are able to explore this refuter to define
a language in NEXP that does not admit succinct witnesses
in the sense of [33]. By their Easy Witness Lemma, this
implies (in particular) that NEXP 6= BPP, which contradicts
our initial assumption.

A detailed exposition of the proof of Theorem 9 appears
in Section III.

C. Further remarks and related work
Artificial Constructions. The magnification theorems
presented in the previous section hold for several natural
problems. We note that in the deterministic worst-case
setting more dramatic magnification theorems can be
established for problems that are defined in an artificial
way. In particular, under plausible hardness assumptions,
there are explicit problems over n-bit inputs that are not in
P, but showing that they require circuits of size (1 + ε)n in
the worst-case implies NP * SIZE[2n

o(1)

].4 Unfortunately,
this does not offer a better approach to lower bounds. We
are not aware of a magnification result from C ·n size lower
bounds for problems of practical or theoretical interest,
where C is a constant (in the deterministic worst-case
setting).

Terminology. A few comments on the “magnification”
terminology are in order. As opposed to other similar

4This can be shown, for instance, using a padding argument and assuming
ETH (Exponential Time Hypothesis).

names considered in the literature, we use this notation to
refer to results where a lower bound that is small in value
with respect to a certain measure is magnified to a lower
bound of larger value with respect to the same complexity
measure. In some cases, our results also “escalate” to a
more expressive computational model, such as in Theorems
2 and 7 (this phenomenon is observed in the so-called
“lifting” theorems from communication complexity and
proof complexity). Hardness magnification is in particular
different from standard hardness “amplification” results
such as the well-known XOR Lemma and its variants
(where average-case hardness is amplified, but size bounds
slightly decrease). Due to these distinctions, we believe that
the term “magnification” describes our set of results in a
more appropriate way.

Related work on magnification. In addition to the papers
[15] and [17] mentioned above, we are aware of three other
works showing magnification theorems in our sense.

Srinivasan [35] considered the problem of n1−o(1)-
approximating the size of the maximum clique in a graph,
and showed that barely super-linear lower bounds against
randomized algorithms imply separations such as NP *
BPP. We refer to his work for several variants of this
result. In terms of techniques, Srinivasan’s proof also uses
random projections, though the technical details are different
compared for instance to our Theorem 1. A drawback of his
magnification theorem is that it seems to be very hard to
prove unconditional lower bounds for this approximating
problem, not to mention the difficulty of analysing the
corresponding computational model. To our knowledge, [35]
was the first to show a magnification phenomenon for a
natural problem previously considered in the literature.

Motivated by [15], Lipton and Williams [36] established
a magnification result for the Circuit Evaluation Problem
in the context of almost-linear time and sub-linear space
algorithms (similar in spirit to Theorem 8, but with different
parameters). In contrast, their result offers an approach
to separating P from NC. The proof uses different ideas
compared to our Theorem 8, and we refer to their work for
more details and related results.

More recently, [37] (see also [38]) established a mag-
nification theorem in non-commutative arithmetic circuit
complexity. Interestingly, their results show the existence of
a generic magnification phenomenon in this setting, where
any explicit lower bound can be magnified. The argument
seems to explore non-commutativity in a fundamental way.

D. Directions and open problems

We list below some questions and directions motivated
by our results:

1. Formula lower bounds. There are several techniques
known to yield super-linear size formula lower bounds



(e.g. [39], [40, 41], [13, Chapter 6], [42, Chapter 4], [43,
Chapter 8]), and an obvious direction (see Theorem 1) is to
try to adapt them to (1, 1 − δ)-MCSP[s]. A necessary step
is to use the technique to prove lower bounds against the
standard MCSP[s] problem, as done by [1]. Similarly, one
can try to prove super-linear bounded-depth lower bounds
for (1, 1 − δ)-MCSP[s], a direction motivated by Theorem
2.5 While there are techniques tailored to such results (see
[20] for three examples), it seems unlikely that they can be
combined with magnification without substantial new ideas.

Perhaps a more reasonable goal is to prove super-linear
lower bounds that, while not strong enough for hardness
magnification, are at least compatible with the parameters
s(n) and δ(n) required for magnification. In particular, with
respect to formulas and bounded-depth circuits, we pose the
challenge of establishing a ω(N) lower bound. (Stronger
lower bounds appear in the full version of the paper [20],
but they hold for values of s(n) and δ(n) that do not seem
to be enough for magnification.)

2. Barriers for magnification-based lower bounds? An-
other pressing question is whether there are barriers such as
natural proofs [3] for this technique. A related discussion
appears in [15, Section 8]. It seems that the magnification
approach in its general form is not naturalizable.

3. The complexity of k-Vertex-Cover. Investigate the
computational complexity of this problem in weak circuit
models in the regime where log n ≤ k ≤ poly(log n),
as suggested by Theorem 7. (Note that there has been
progress in understanding the circuit complexity of other
parameterized graph problems such as k-Clique [44], when
k is small.) Another related direction is to improve existing
time-space trade-offs, in connection to Theorem 8.

4. Magnification of existing lower bounds? Our results
follow a general strategy of reducing a problem of size
n to a smaller instance of another explicit problem. The
reduction is computed in a very efficient way, measured
according to the computational model. Can we follow this
strategy to magnify existing lower bounds in computational
models such as formulas and bounded-depth circuits? Note
that compression lower bounds in the sense of [45, 46] can
be interpreted as “barriers” to magnification. But in boolean
devices such as formulas, monotone circuits, and circuits of
linear size compression is less understood, and magnification
of existing lower bounds might perhaps be feasible.

II. MAGNIFICATION FOR (α, β)-MCSP
In this section, we sketch the proof of a generalisation of

Theorem 1 and the proof of Theorem 2. We use number of
leaves to measure formula size, and let Formula[s] denote

5Note however that the regime of s is different in the corresponding
magnification results.

the set of functions computed by formulas of size at most
s. We assume negations appear at the input leaves only, and
that constants 0 and 1 are available in addition to the input
literals. We will need the following standard result.

Proposition 10 (Bound on the Number of Circuits). Let
s ≥ n and n ≥ c, where c is a large enough constant. There
are at most 23s log s different circuits on n input variables
of size at most s.

For string w ∈ {0, 1}N and N = 2n, we use
fn(w) : {0, 1}n → {0, 1} to denote the boolean function
encoded by w.

Lemma 11 (Magnification Lemma for Formulas). Let
s : N → N and δ : N → [0, 1/2) be constructive functions,
where s(n) ≥ n. Consider the promise problem Π[s, δ] =
(1, 1− δ)-MCSP[s], where for every N = 2n,

Πyes
N = {y ∈ {0, 1}N | ∃ circuit of size ≤ s(n) for fn(y)},

Πno
N = {y ∈ {0, 1}N | @ circuit of size ≤ s(n) that

(1− δ(n))-approximates fn(y)}.

Then, for every function ` : N → N, if Π[s, δ] cannot be
computed by formulas of size N · `(n), then there is a
sequence {fm(n)}n≥1 of m(n)-bit functions in NP that
cannot be computed by formulas of size ≤ `(n), where
m(n) = Θ((n · s(n) · log s(n))/δ(n)).

Proof: We consider the computational problem Succinct-
Π[s, t], defined next. The input instances are of the form
〈1n, 1s(n), (x1, b1), . . . , (xt(n), bt(n))〉, where xi ∈ {0, 1}n
and bi ∈ {0, 1}, i ∈ [t(n)]. Any instance of this form
can be encoded by a string of length exactly m(n) =
n+ 1 + s(n) + 1 + t(n) · (n+ 1). The function Succinct-
Π[s, t] : {0, 1}∗ → {0, 1} evaluates to 1 on an input string if
and only if it is of the form above and there exists a circuit
C over n input variables and of size at most s such that
C(xi) = bi for all i ∈ [t(n)]. Note that the problem is in
NP as a function of its total input length m, provided that
s and t are constructive functions.

From now on, let t(n)
def
= (3s(n) log s(n))/δ(n). Assume

there exists a sequence {Fm(n)}n≥1 of formulas of size `(n)
computing Succinct-Π[s, t], where Fm(n) : {0, 1}m(n) →
{0, 1}. Recall that N(n) = 2n. We construct randomized
formulas EN that separate Πyes

N and Πno
N . More precisely,

each formula EN : {0, 1}N × {0, 1}n·t(n) → {0, 1} will
satisfy the following conditions:

If w ∈ Πyes
N =⇒ Pr

y
[EN (w,y) = 1] = 1, (1)

If w ∈ Πno
N =⇒ Pr

y
[EN (w,y) = 1] < 1/2. (2)

Each formula EN computes as follows. It interprets
its random input y as a sequence of t(n) strings
y1, . . . , yt(n) ∈ {0, 1}n. From such strings and the
input string w ∈ {0, 1}N , EN produces an instance



zw,y ∈ {0, 1}m(n) of Succinct-Π[s, t] given by zw,y
def
=

〈1n, 1s(n), (y1, (fn(w))(y1)), . . . , (yt(n), (fn(w))(yt(n)))〉,
where (fn(w))(yi) is the value of the function represented
by w on the input yi, i.e., the bit of w indexed by y1.
Finally, the formula EN outputs Fm(n)(zw,y).

We argue next that conditions (1) and (2) are satisfied by
EN . If w ∈ Πyes

N , then w is computed by some circuit C of
size at most s(n). Consequently, for every choice y of the
random string y, C is also consistent with the input pairs
encoded by zw,y . It follows that EN (w, y) = Fm(n)(zw,y) =
1. On the other hand, let w ∈ Πno

N be a negative instance,
and fix an arbitrary circuit C on n input variables and of
size at most s(n). Since Prx[C(x) 6= (fn(w))(x)] ≥ δ(n),
it follows that the probability that C agrees with fn(w) on
t(n) independent random inputs y1, . . . ,yt(n) is less than
(1 − δ(n))t(n) ≤ e−δ(n)t(n) ≤ e−3s(n) log(s(n)), using our
choice of t(n). Therefore, by a union bound on the number
of circuits of size at most s(n) (Proposition 10), it follows
that condition (2) is also satisfied.

Our next step is a derandomization of the formulas EN
using a standard argument. Let GN be the formula that
computes the conjunction of N independent copies of EN .
In other words, GN : {0, 1}N × ({0, 1}n·t(n))N → {0, 1},
and GN (w, y(1), . . . , y(N))

def
=

∧N
i=1EN (w, y(i)). Clearly,

GN (w, ~y) accepts a string w ∈ Πyes
N with probability 1.

On the other hand, it accepts a string w ∈ Πno
N with

probability strictly less than 2−N . Fix α ∈ {0, 1}N ·(n·t(n))

to be a string that correctly derandomizes GN on inputs from
Πyes
N ∪Πno

N ⊆ {0, 1}N , and let G?N be a formula computing
the corresponding function G?N : {0, 1}N → {0, 1}.

In order to complete the proof, it is enough to upper
bound the formula size of G?N . Recall that Fm(n) has
formula size `(n). Each component EN (w, y(i)) of G?N
has been fixed to EN (w,α(i)), where α(i) ∈ {0, 1}n·t(n)

denotes the i-th section of the string α. Therefore, it
is enough to replace the leaves of the formula Fm(n)

by constants and appropriate literals formed from w
in order to compute EN (w,α(i)). It follows that each
EN (w,α(i)) can be computed by a formula of size at most
`(n). Consequently, G?N can be computed by a formula
containing at most N · `(n) leaves.

Note that Lemma 11 immediately implies Theorem 1.
Let AC0

d[M ] denote the class of unbounded fan-in
depth-d size-M circuits. We can use a similar argument to
establish Theorem 2, as described next.

Proof Sketch: We employ the same approach and notation
of Lemma 11. Suppose that NP ⊆ NC1, and let {Fm} be
a family of polynomial size formulas for the corresponding
problem Succinct-Π[s, t]. Take d′ ∈ N large enough so
that each Fm can be computed by a depth-d′ circuit of size,
say, 2O(

√
n) (this is possible thanks to a folklore simulation

of formulas by bounded-depth circuits; see [20] for details).
Note that a fixed d′ independent of n with this property
must exist, since for our choice of parameters each formula
Fm has poly(n) input variables. Proceeding exactly as in
the proof of Lemma 11 but using bounded-depth circuits
instead of formulas, we get that for some d ∈ N, Π[s, δ]
can be computed by depth-d circuits of size N1+o(1). This
completes the proof.

We note that one can show under standard cryptographic
assumptions and an appropriate choice of parameters that
(1, 1−δ)-MCSP[s] is hard even for polynomial size circuits.
The next proposition follows ideas and notation from [3].

Proposition 12 (Hardness of (1, 1 − δ)-MCSP[s]). Sup-
pose there exists a polynomial time one-way function
f : {0, 1}∗ → {0, 1}∗ secure against circuits of size 2n

ε

,
where ε > 0. Then, if k ∈ N is large enough, (1, 2/3)-
MCSP[nk] cannot be computed by circuits of size NO(1).

III. MAGNIFICATION FOR SATISFIABILITY

In this section, we prove Theorem 9. We fix a compu-
tational model with random-access to the input string. The
particular details of the model are not so relevant, since we
will not distinguish polylogarithmic factors in the context of
uniform computations.

First, we recall some notions of time-bounded Kol-
mogorov complexity needed in the proof (cf. [34]).

Definition 13. Let U be a universal machine. For any string
x ∈ {0, 1}∗, Kt(x) is the minimum over |p| + log(t) such
that U(p) outputs x within t steps.

Definition 14. Let U be a universal machine. For any string
x ∈ {0, 1}∗, KT (x) is the minimum over |p| + t such that
U(p, i) = xi in at most t steps for each i, 1 ≤ i ≤ |x|, and
moreover U(p, i) =⊥ for all i > |x|.

The following inequality is Proposition 1 in [34], where
KT-complexity was introduced.

Proposition 15 ([34]). For all x ∈ {0, 1}∗, Kt(x) ≤
3KT (x).

We will employ an efficient version of the PCP theorem
where the reduction runs in quasi-linear time.

Theorem 16 ([47, 48, 49]). For some constant ε > 0, there
is a function f computable in time O(m polylog(m)) and
a function g computable in polynomial time such that:

1) If φ is a satisfiable 3-CNF, f(φ) is a satisfiable 3-CNF.
2) If φ is an unsatisfiable 3-CNF, then at most a (1− ε)

fraction of clauses of f(φ) are simultaneously satisfi-
able.

3) If φ is a satisfiable 3-CNF and w is a satisfying as-
signment to φ, then g(φ,w) is a satisfying assignment
to f(φ).



Finally, we will need the Easy Witness Lemma of [33].
The lemma is usually stated in terms of witnesses of YES
instances having small circuit complexity when interpreted
as truth tables, but we find it more convenient to use an
equivalent formulation in terms of KT complexity.

Lemma 17 ([33]). Let L ∈ NEXP be any language, and let
R be a polyomial-time computable relation such that x ∈ L
iff there is a string y, |y| = 2|x|

k

such that R(x, y) = 1,
where k is a fixed constant. If NEXP ⊆ SIZE(poly), then
for each x ∈ L, there is y, |y| = 2|x|

k

such that R(x, y) = 1
and KT (y) = poly(|x|).

We are now ready to prove the result, stated again for
convenience of the reader.

Theorem 18 (Magnification for SAT). Suppose that for ev-
ery probabilistic machine M halting in time m polylog(m)
and using polylog(m) many random bits, there is a deter-
ministic polynomial-time machine N such that for infinitely
many m, N(1m) outputs a 3-CNF formula φm, |φm| = m
for which either φm is satisfiable and M(φm) rejects with
probability > 1/m or φm is unsatisfiable and M(φm)
accepts with probability > 1/m. Then NEXP 6= BPP.

Proof: Assume, for the sake of contradiction, that NEXP =
BPP. Let c be a constant such that NTIME(2n) ⊆
BPTIME(nc) – the existence of such a constant c follows
from NEXP = BPP using the fact that there is a language
complete for NTIME(2n) under deterministic linear-time
reductions.

We describe a probabilistic machine M that attempts to
solve 3-SAT, and show that any deterministic polynomial-
time refuter for M yields a contradiction.

Let φ be a 3-CNF formula with |φ| = m (we always use
|φ| to denote the bitlength of φ in a standard representation)
and q variables. Let k = log(m)a, where a is a constant to
be determined later. M behaves as follows on φ. It applies
the reduction f from Theorem 16 to φ to produce a 3-CNF
formula φ′. Since f runs in time O(m polylog(m)), we have
that |φ′| = O(m polylog(m)). M then samples k2 clauses
from φ′ independently and uniformly at random, and forms
their conjunction φ′′. Note that not all variables in φ′ will
appear in φ′′ if k2 is much smaller than q – the variables
retain their original indices in φ′′.

Define an auxiliary language L′ as follows. Consider an
input w = (ψ, 1`, q′), where ψ is a 3-CNF formula such that
all indices of variables appearing in ψ belong to [q′] and `
and q′ are positive integers with ` ≤ q′ ≤ 2`. This string
belongs to L′ if and only if there is a string w′ ∈ {0, 1}q′

such that Kt(w′) ≤ ` and w′ satisfies ψ when interpreted as
a Boolean assignment to variables with indices in [q′]. L′ can
be solved in deterministic time 2O(`)|ψ|polylog(|ψ|) simply
by enumerating all strings of length q′ with Kt complexity
at most `, which can be done in time 2O(`), and checking
for each one if it is a satisfying assignment of ψ. Each such

check can be done in time |ψ|polylog(|ψ|). In particular,
L′ ∈ DTIME(2O(n)), where n is the total length of the
input to L′, and hence by assumption L′ ∈ BPTIME(nc).
Let M ′ be a probabilistic machine deciding L′ with error
2−n.
M simulates M ′ on input (φ′′, 12k, q′), where q′ is the

number of variables in φ′, accepting if M ′ accepts and
rejecting if M ′ rejects. The total time taken by M is
O(m polylog(m)), since applying the reduction f takes time
m polylog(m) and the simulation of the machine M ′ takes
time poly(k) = polylog(m). Thus M is a probabilistic ma-
chine running in time mpolylog(m) that attempts to solve
3-SAT. In addition, it is easy to see that M employs at most
poly-logarithmic many random bits, given our choice of k
and the input length on which the machine M ′ is invoked.
We would like to show that any deterministic polynomial-
time refuter for M , i.e., any deterministic polynomial-time
machine that infinitely often outputs an instance φ on which
M does not give the correct answer with high probability,
can be used to derive a contradiction.

Indeed, suppose there is such a polynomial-time machine
N , that for infinitely many m on input 1m, outputs a formula
φm such that either φm is satisfiable and M rejects φm with
probability > 1/m, or φm is unsatisfiable and M accepts
φm with probability > 1/m.

Note that each formula φm output by N on input 1m has
Kt complexity O(log(m)) (when interpreted as a string).
The reason is that the code for the machine N together with
the standard log(m)-bit description of the number m can be
used as a program p to generate φm; moreover the generation
is accomplished in time t = poly(m). Recall that the Kt
complexity of the string φm is the minimum over |p|+log(t)
such that the universal machine U generates φm from p
within t steps. In our case, we have |p| = O(log(m)) and
t = poly(m), hence the Kt complexity of φm is O(log(m)).

We will argue that for any input φm, |φm| = m such that
Kt(φm) = O(log(m)), the machine M solves φm correctly
if φm is unsatisfiable, and also solves φm correctly if φm
is satisfiable and has a satisfying assignment w such that
Kt(w) ≤ k. We will then use these two facts to derive a
contradiction to the existence of the refuter N .

We first argue that M solves φm correctly if φm is unsat-
isfiable, when |φm| = m and Kt(φm) = O(log(m)). Let φ′

be the 3-CNF produced by M from applying the reduction
f to φm and φ′′ be the 3-CNF produced by then randomly
sampling k2 clauses and taking their conjunction. We argue
that with overwhelmingly high probability, φ′′ does not have
a satisfying assignment w′ such that Kt(w′) ≤ 2k.

Indeed, we have that for any fixed assignment y to the
variables of φ′, y satisfies at most a (1− ε) fraction of the
clauses of φ′, where ε is the constant given by Theorem
16. Thus the probability that y satisfies a randomly sampled
clause is at most (1−ε). It follows that the probability that y
satisfies all k2 randomly sampled clauses occurring in φ′′ is



at most (1− ε)k2

= 2−Ω(k2), since the clauses are sampled
independently and uniformly at random.

Now, by a union bound over all assignments w′ such
that Kt(w′) ≤ 2k, we have that the probability that there
exists such a w′ satisfying all clauses in φ′′ is at most
22k2−Ω(k2) = 2−Ω(k2). Hence with probability at least
1−2−Ω(k2) over the internal randomness of the machine M ,
the formula φ′′ has no satisfying assignment w′ such that
Kt(w′) ≤ 2k. Note that for every such φ′′, by correctness
of the machine M ′, we have that M ′ rejects with probability
at least 1 − 2−n, where n is the length of the input to
M ′. This probability is at least 1 − 2−k, hence by using
Bayes’ theorem, we have that with probability at least
1 − 2−Ω(k) > 1 − 1/m (for a chosen sufficiently large),
M rejects as claimed.

We next argue that M solves φm correctly if φm is
satisfiable and has a satisfying assignment w such that
Kt(w) ≤ k. Consider such a formula φm. The ordered pair
< φm, w > has Kt complexity at most k + O(log(m)) by
sub-additivity of Kt complexity, which is at most 1.5k for
large enough m when a is chosen to be greater than 1.

Now consider the formula φ′ produced by applying the
reduction f to φm. By Theorem 16, g(φm, w) is a satisfying
assignment to φ′. Since (φm, w) has Kt complexity at most
1.5k, and since g runs in poly(m) time, we have that the
Kt complexity of w′ = g(φm, w) is at most 2k, for large
enough m and when a is chosen to be greater than 1. Note
that since w′ satisfies φ′, it also satisfies each sub-sampled
formula φ′′. Hence M ′ is always simulated on a positive
instance of L′, regardless of the internal randomness of L,
and consequently M accepts with probability greater than
1− 1/m, using the correctness of M ′.

Thus the only case where M does not solve φm correctly
with error < 1/m is when φm is satisfiable and does not
have a satisying assignment of Kt complexity at most k. We
will show that this case leads to a contradiction. We sketch
the definition of a relation R(u, y) as follows. The first input
u is viewed as a pair (D,x), where D is a machine, and x is
a number. We assume that the sizes of D and x are roughly
logm, where Θ̃(m) is the total input length expected by
R on a valid input pair (u, y). The relation R accepts its
input pair (u, y) iff D(1x) when executed for mO(logm)

steps outputs a formula φx such that φx(y) = 1. Note that R
is an NEXP-verifier. Consequently, by Lemma 17 and using
the assumption that NEXP = BPP ⊆ SIZE(poly), there is a
constant b such that for every u = (D,x), if D(1x) outputs a
satisfiable formula φx during its computation then there is a
satisfying assignment y for φx such that KT (y) ≤ log(m)b.
But now using Proposition 15 and choosing a > b, if fix the
input D to be the code of the refuter, we have a contradiction
to the assumption that there are infinitely many m for which
φm is satisfiable and does not have a satisfying assignment
of Kt complexity at most k.
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[38] P. Hrubeš, A. Wigderson, and A. Yehudayoff, “Non-
commutative circuits and the sum-of-squares problem,”
Journal of the American Mathematical Society, vol. 24,
no. 3, pp. 871–898, 2011.

[39] A. Tal, “Formula lower bounds via the quantum
method,” in Symposium on Theory of Computing
(STOC), 2017, pp. 1256–1268.

[40] I. Dinur and O. Meir, “Toward the KRW composition
conjecture: Cubic formula lower bounds via commu-
nication complexity,” in Conference on Computational
Complexity (CCC), 2016, pp. 3:1–3:51.

[41] D. Gavinsky, O. Meir, O. Weinstein, and A. Wigderson,
“Toward better formula lower bounds: The composi-
tion of a function and a universal relation,” SIAM J.
Comput., vol. 46, no. 1, pp. 114–131, 2017.

[42] P. E. Dunne, The Complexity of Boolean Networks.
Academic Press, 1988.

[43] I. Wegener, The complexity of Boolean functions. Wi-
ley, 1987.

[44] B. Rossman, “Average-case complexity of detecting
cliques,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2010.

[45] A. Chattopadhyay and R. Santhanam, “Lower bounds
on interactive compressibility by constant-depth cir-
cuits,” in Symposium on Foundations of Computer
Science (FOCS), 2012, pp. 619–628.

[46] I. C. Oliveira and R. Santhanam, “Majority is in-
compressible by AC0[p] circuits,” in Conference on
Computational Complexity (CCC), 2015, pp. 124–157.

[47] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and
S. P. Vadhan, “Robust PCPs of proximity, shorter PCPs,
and applications to coding,” SIAM J. Comput., vol. 36,
no. 4, pp. 889–974, 2006.

[48] E. Ben-Sasson and M. Sudan, “Short PCPs with poly-
log query complexity,” SIAM J. Comput., vol. 38, no. 2,
pp. 551–607, 2008.

[49] I. Dinur, “The PCP theorem by gap amplification,” J.
ACM, vol. 54, no. 3, p. 12, 2007.


