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Abstract: The automated recognition of facial expressions has been actively researched due to its wide-
ranging applications. The recent advances in deep learning have improved the performance facial 
expression recognition (FER) methods. In this paper, we propose a framework that combines 
discriminative features learned using convolutional neural networks and handcrafted features that 
include shape- and appearance-based features to further improve the robustness and accuracy of FER. 
In addition, texture information is extracted from facial patches to enhance the discriminative power of 
the extracted textures. By encoding shape, appearance, and deep dynamic information, the proposed 
framework provides high performance and outperforms state-of-the-art FER methods on the CK+ 
dataset.	 
Keywords: Convolutional neural network; facial expression recognition; feature extraction. 
 
1. Introduction 

 The research field of automated facial expression recognition (FER) has attracted increasing attention 

due to its wide-ranging applications such as healthcare monitoring, assisted driving or human computer 

interaction [1], [2] and [3], [40], [41]. The classical model for describing facial expressions was first 

proposed by Ekman et al. [4]. It includes six basic facial expressions, i.e., anger, disgust, fear, happiness, 

sadness and surprise. This model has inspired numerous FER methods [5], [6], [7], [8] and [9] that have 

mainly focused on handcrafted features to represent the different facial expressions. Nevertheless, since 

facial expressions are subtle, complex and variable, accurate FER still poses a challenging problem [10] 

and [11]. In recent years, due to the advances of deep learning methods, more and more studies [12], 

[13] and [14] have focused on employing deep neural networks in the recognition of facial expressions, 

and have demonstrated promising results. Although deep-learning-based methods are capable of 

extracting varied features, including high level salient information, they might overlook coarse texture 

and geometric properties that can be well represented using handcrafted features. Thus, handcrafted 

features and deep learned features are considered complementary. 

Facial expressions require dynamic processes. Consequently, dynamic information may represent a 

facial expression more effectively than static features. Thus, for FER applications dynamic information 

should be captured for the entire duration of a face video. Inspired by the numerous successful 

applications of convolutional neural networks (CNN) in pattern recognition [15] and [16], we propose 

the application of CNNs to FER by learning dynamic information using texture features of deep 

convolutional layers. By exploiting these dynamics from the convolutional layers, the proposed deep 



descriptor is better qualified for the capturing of motion patterns in subtle texture level information, and 

thus, in distinguishing the subtle motion difference in different facial expressions. A CNN, pre-trained 

on the ImageNet dataset [17], is primarily meant for the differentiation of generic objects. Thus, not all 

feature channels from the convolutional outputs are useful for FER applications; they might even be 

regarded as noise. To improve the discriminative information for FER, we introduce a constraint which 

enhances the channel-discriminability for the dynamic texture extracted. In addition, as handcrafted 

features contain valuable information such as texture and shape which describe facial expressions, we 

propose to combine shape and appearance handcrafted features to obtain a mixed handcrafted feature. 

We further fuse the mixed handcrafted feature and dynamic deep convolutional features to obtain the 

final characteristic feature of a facial expression. These proposed features are capable of extracting not 

only the texture and shape, but also the dynamic information associated with facial expressions. 

The main contributions in this paper are as follows: (1) We propose to learn dynamic deep texture 

information from deep feature channels, which captures facial motion among different facial 

expressions. (2) We introduce a constraint to adaptively weight the different channels based on their 

discriminative ability. (3) We integrate the deep dynamic features with handcrafted features to enhance 

the spatial information locally. 

The remainder of paper is organized as follows: Section 2 presents a brief survey of related work. 

The proposed FER method - including the extraction of deep dynamic discriminative features, the 

combined handcrafted features, the descriptor fusion, and the FER framework – is introduced in Section 

3. The experimental results are presented in Section 4, Section 5 concludes the paper. 

2. Related work 
Conventional features from facial images can be divided into geometric-based and appearance-based 

[5] and [18] features. The geometric-based features aim to detect and locate facial landmarks or specific 

shapes to obtain features representing the facial geometry [19,20], and [21]. Appearance-based features 

are low level features, which capture texture and appearance information of the face. Gabor wavelets 

[19] and local binary patterns (LBPs) [22] are the two appearance-based methods that are most widely 

used to describe facial expressions using local appearance information. Gabor features are obtained 

through the convolution of a face image with a group of filters. They are robust to misalignment. Local 

binary patterns analyse the contrast within sub-regions of an image. In the standard configuration a pixel 

is compared with the eight neighbouring pixels. This yields a binary pattern of 8 bit. The LBP descriptor 

can be stored as a histogram. Each bin of the histogram corresponds to one binary pattern configuration 

that represents a facial feature. In this way, a 256-dimensional descriptor is obtained. A generalize of 

appearance features across different persons is not trivial. This is one of the major drawbacks of 

appearance-based approaches. The histogram of gradients (HOG) [23] was originally developed for 

object recognition and as approach for pedestrian detection. Lazebnik et al., [24] apply HOG descriptors 



 

for face recognition and extracted HOG features from face images using a dense grid. PHOG proposed 

by Bosch et al., [8] is an extension of the HOG descriptor that can be used to represent the shape of a 

facial region.  

Due to the success in the field of computer vision, deep learning methods have been applied in FER 

as well [12,25,14] and Li et al., 2017). Some of the studies [14] and Li et al., 2017) proposed to train an 

ensemble of CNNs to improve the recognition performance, while others [27] and [28] proposed to fuse 

deep features with handcrafted features, e.g., SIFT (Lowe et al., 2014) and HOG. Due to the dynamic 

nature of facial expressions, some researchers also considered video data instead of static images for 

FER [13] and [28]. Mohammad et al., [13] presented a network structure that includes 3D convolutional 

layers followed by a Long-Short Term Memory (LSTM) unit, which extracts both spatial 

correspondence in face images and temporal information between two consecutive image frames of a 

video. Hamester et al. [30] proposed a 2-channel CNN (i.e., a standard CNN and a channel that uses 

pre-trained parameters), which was achieved by a convolutional auto- encoder (CAE) FER. Previous 

research that comes closest to the FER method proposed in this paper is presented in [27] and [28]. Both 

approaches combine deep features and handcrafted features. However, they extract deep features from 

static images, thus neglecting the dynamic information in facial expressions. For this reason, we propose 

to extract dynamic deep convolutional features, and to combine them with two handcrafted descriptors 

which include appearance and shape features. The proposed method not only exploits spatial 

information, but also captures dynamic information. 

3. Proposed FER method 
The proposed framework combines learned features and handcrafted features to compose a robust 

and accurate method for FER.  

3.1 Deep discriminative descriptor 
Training samples for FER are of limited availability. For this reason, we employ a pre-trained CNN 

model to estimate subtle facial motions that are caused by different facial expressions. On the basis of 

an aligned face video, we regard each of its image frames as input for a pre-trained CNN. As a next 

step, we extract the feature channels (maps) of the con3-3 layer (representing texture pat- terns [31] and 

[32] for each frame. A set of convolutional feature channels is obtained from an input video denoted as 

{𝑋#}#%&' , where 𝑋# ∈ ℝ*×,×-, and 𝑊, 𝐻 are the height and the width of a channel, 𝑘 = 1, 2, … ,𝐾 is the 

channel index in a convolutional layer and 𝑡 = 1, 2,… , 𝑇 is the frame index of a video. 

According to Zeiler et al., [31] and Cimpoi et al., [32], the feature channels of convolutional layers 

extract fine-grained texture information. The motion patterns within the fine-grained texture 

information capture the dynamic information of subtle facial expression. To track this dynamic 

information, we use the optical flow. More specifically, we decompose each original input video is into 

K convolutional channel time sequences referred to as {𝐶-}:%&-  , where 𝐶: ∈ ℝ*×,×' . For each 



sequence 𝐶:, we extract the dynamic motion of the deep convolutional texture using the optical flow 

approach. We assume brightness constancy and spatial smoothness and thus determine the optical flow 

of consecutive frames by solving the optical flow constraint equation, i.e., 
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 are the spatiotemporal image brightness derivatives in the x, y and t dimensions, 

respectively. 𝑢 and 𝑣 are the optical flow in the horizontal and vertical dimensions, describing a local 

pixel translation. The Lucas-Kanade optical flow algorithm [33] is applied for our proposed FER 

method to estimate the optical flow vector with components 𝑢 and 𝑣. We use the magnitude of the 

vector, i.e., √𝑢E + 𝑣E, to represent the dynamic information for computational efficiency. 

    Once the optical flow vectors of each video sample and for all K convolutional channel time 

sequences are estimated, we average the vectors to obtain a deep convolutional dynamic texture feature, 

which is denoted as 𝑉 ∈ ℝ-×G . Given the feature set 𝑉 ∈ ℝ-×G  from each input subject, which 

represents the facial motion of different facial expressions, we aim to learn the discriminative deep 

convolutional dynamic texture which integrates fine-grained dynamic information. Our experiments 

show that certain channels of the convolutional feature are unable to incur strong responses for all facial 

expressions. This could cause inaccurate motion estimation and diminish the performance. The features 

based on these irrelevant channels might be ambiguous for FER, thus degrading the discriminative 

properties of the classification approach. To this end, we introduce the channel discriminative constraint 

for the proposed method to adaptively weight the discriminative property of feature channels in the 

learning process. These weights strengthen the impact of relevant feature channels. For each input, the 

joint learning framework for the texture and discriminative constraint is formulated as 

max
K,LM

&
E
∑ ‖𝐷𝑉Q − 𝑈Qx‖EG
Q%& 	        𝑠. 𝑡. ‖𝐷‖E = 1 ,                                                 (2) 

where 𝑁 = 𝑊 ×𝐻, 𝑉Q ∈ 	ℝ-×& denotes the l-th column of the deep convolutional texture set V , Ul 

denotes the l-th column of the deep convolutional texture vector 𝑈 ∈ 	ℝ&×G, and 𝐷 ∈	ℝ&×- represents 

the channel-discriminability constraint, which is used to weight different feature channels while 

extracting the texture feature. It can be shown that feature vector Eq. (2) aims to approximate the 

weighted aggregation of fine-grained texture features of different channels under a certain distance 

metric. For simplicity reasons, the Euclidean distance metric is employed in our approach. 

The constraint D in Eq. (2) is trained with only one sample and is thus not capable of capturing 

discriminative information of all training samples. To create a more discriminative constraint vec- tor, 

we introduce a proper prior to learn the vector D from all training samples. In particular, we employ the 

metric based on the intra-class and inter-class variance to enhance the discriminability of channels. Our 

procedure is based on the assumption that more discriminative channels have smaller intra-class 



 

variance but larger inter-class variance. For this purpose, we employ the Fisher criteria [ref] to measure 

the discriminative characteristics of each channel. 

Given M training videos, there are Mi samples for each class i, where i denotes the class of a facial 

expression. From each video, we select the first frame for the channel-discriminability constraint 

learning. The feature channels are then selected using the pre-train CNN model. The related feature 

channels of Mi samples of class i are denoted as W𝐹&Y(𝑘), 𝐹EY(𝑘),… , 𝐹\]
Y (𝑘)^, where 𝐹\]

Y (𝑘) ∈ ℝG×&, 𝑁 =

𝑊 ×𝐻. 

For the k-th channel, the prior probability of class i is estimated by 𝑃Y(𝑘) =
\]

∑ \]
`
]ab

 with class mean 

𝜇de (𝑘) = 	
&
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\]
f%&                                                            (3) 

and gross mean  

𝜇̂(𝑘) = ∑ 𝑃Y(𝑘)h
Y%& 𝜇de (𝑘).                                                      (4) 

Therefore, we estimate the sample covariance matrix 𝑆jY(𝑘) of class i as  

𝑆jY(𝑘) =
&
\]
∑ k𝐹fY(𝑘) − 𝜇̂Y(𝑘)lk𝐹fY(𝑘) − 𝜇̂Y(𝑘)l

'\]
f%& .                               (5) 

The intra-class scatter matrix and inter-class scatter matrix are then estimated as  

𝑆m(𝑘) = ∑ 𝑃Y(𝑘)𝑆jY(𝑘)h
Y%&  ,                                                      (6) 

𝑆n(𝑘) = ∑ 𝑃Y(𝑘)(𝜇̂Yh
Y%& (𝑘) − 𝜇̂(𝑘))(𝜇̂Y(k) − µq(𝑘))' .                             (7) 

   As the final step, we consider k-th component of vector D to measure the k-th channel-

discriminability, i.e., 

𝐷(𝑘) = 𝑡𝑟𝑎𝑐𝑒k𝑆mv&(𝑘)𝑆n(𝑘)l, 𝑘 = 1,2,… , 𝐾 .                                (8) 

After measuring the discriminability of all channels, we obtain the constraint vector 𝐷 ∈ ℝ&×- . 

Within the scope of our approach, we choose the 30 largest components in D and set the remaining 

components to zero, to reduce the negative effects irrelevant texture information channels may have on 

the classification performance. The final deep convolutional dynamic texture feature is learned as 

𝑈Q = 𝐷𝑉Q, 𝑙 = 1,2,… , 𝑁	.                                                      (9) 

3.2 Handcrafted descriptors 

A shape descriptor is a feature based on geometry, which can be defined on the basis of the locations 

of facial landmarks such as eyes, mouth or eyebrows. In contrast, appearance features describe facial 

deformations such as wrinkles or the nasolabial furrow that are caused by facial expressions. Thus, by 

combining shape and appearance features we capture the local facial properties and can improve the 

performance of a FER system.  

In our proposed FER system, we start with the pre-processing of the face image using the OpenFace 

toolkit [34] to extract hand- crafted features. For geometric features, several metrics are extracted from 



the facial points related to the eyes, the nose, and the mouth to obtain a 120-dimensional (120D) feature 

vectors as a shape descriptor,  𝑓yz{|} . The metrics are estimated for each frame as follows: (1) We 

measure the Euclidean distances between consecutive facial points of the eyes and the associated 

eyebrow (20D); (2) we select the tip of the nose as well as the corners of the eyes as stable points as 

they do not move during facial expressions, and measure the Euclidean distances between median of 

these stable points and each of the facial points (49D); (3) we measure the magnitude of the angle 

between three consecutive points along the eyes and the associated eyebrow (18D); and (4) we mea- 

sure the magnitude of the angle between three consecutive points along the mouth (16D). 

The PHOG descriptor was first proposed for object classification [8]. It is inspired by HOG [23], and 

uses edge information in com- bination with information about the spatial layout of a local shape on the 

basis of image pyramids [24]. In particular, edges within an image are extracted at different levels of 

the image pyramid, thus at different levels of resolution. We then count the occurrences of certain 

gradient orientations of edges and obtain a gradient histogram in this way [8]. To construct the final 

PHOG descriptor, we concatenated the histograms of the individual pyramid levels. 

We compute the PHOG descriptor (as illustrated in Figure 1) in every single image from a video, i.e., 

along the temporal axis as follows. We obtain the edge information using the Canny edge detector. The 

image region is then divided on the basis of gradually smaller grids. For this purpose, each cell of the 

previous grid is divided into two cells along each axis in the subsequent step. the grid at resolution level 

𝑙 has 2Q cells along each dimension. 

 
 
 
 
 
 
 
 
 

 
Figure 1. Generation of PHOG from a face image [9]. 

The PHOG is normalized to sum to unity. As a result, K-vector corresponding to K histogram bins 

represents level 0, while level 1 is represented by a 4K-vector. The normalized PHOG descriptor of the 

entire sequence is the following vector to which we refer to as appearance descriptor, i.e., 

						fAppearance=
∑ PHOG::

𝑘
(10)	 

with dimensionality  
Dim=@ = 𝐾∑ 4QQ∈� , (11)  



 

where L denotes the number of levels. We set L to 2 to avoid over fitting of the edge contours within 

the grids.  

Bosch et al. studied which facial patches are active for certain facial expressions [8]. They observed 

that some facial patches show activity in all basic expressions, while some are only active for very 

specific expressions. The common facial patches, located below the eyes, in between the eyebrows, and 

around the nose and mouth corners, play vital roles in aiding FER. Naturally, patches that show high 

variation are more discriminative. Thus, we propose to extract the PHOG feature using these active 

patches to improve the recognition performance. The final PHOG features are obtained by con- 

catenating the PHOG features from each active patch. Unlike other, related methods that concatenate 

all facial features, thus, generating a feature vector of high dimensionality, we only concatenate features 

from a few facial patches. In this way, we reduce the feature vector dimensionality while preserving the 

recognition accuracy.   

We further combine shape features and the patch based PHOG features to obtain the final mixed 

handcrafted feature referred to as 𝑓z{����{�#}� . 

3.3 Descriptor Fusion 

We utilize the VGG net [42] deep convolutional network pre- trained on the ImageNet dataset to 

extract our deep feature as follows: Diverse fine-grained texture information is extracted from the 

channels of the conv3-3 layer of VGG net. The handcrafted features include shape and appearance 

features that are extracted using the procedure described in Section 3.2. The deep feature and the 

handcrafted feature are concatenated to form the fused descriptor. 

3.4. Framework for Facial Expression Recognition 
Our proposed FER framework consists of three steps: the pre- processing, the feature extraction and 

the classification. The complete framework is illustrated in Fig. 2. The pre-processing includes facial 

landmark detection and face alignment, to avoid artefacts due to changes in the head pose and the 

illumination. The OpenFace toolkit [34] is used to detect 68 facial landmarks in the first frame of the 

face video. These landmarks are then tracked over the subsequent frames. The locations of the selected 

landmarks (i.e., two eyes and nose) are used for face alignment to address in-plane facial motion. 

 
 
 

 

 
 

Figure 2. Framework for the facial expression recognition. 
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The feature extraction step involves the construction of the fused features using the handcrafted and 

the deep dynamic features (see Section 3.3). A support vector machine (SVM) with a lin- ear kernel is 

employed in the classification step. 

4. Experiments 
4.1 Facial expression datasets  

The Extended CK+ dataset (CK+) [36] is the most popular publicly available benchmark dataset to 

evaluate the performance of FER methods. The CK+ dataset consists of 593 sequences that capture 

seven basic facial expressions that were performed by 120 subjects. In our experiments, 327 sequences 

of CK+ are used to evaluate the performance of the proposed FER approach. 

4.2 Experiment results 
To compare the performance of our proposed FER method with state-of-the-art approaches we 

employ a leave-one-out cross-validation scheme as follows: We select one of the video sequences for 

testing, and use the remaining video sequences for the training. This ensures that the testing sequence 

is not part of the training set, and is thus independent from the training data. 

Our first set of experiments focuses on the weighting strategy used in the deep dynamic feature and 

investigates its effectiveness. We perform leave-one-out cross-validation 327 times, thus for all 327 

video sequences in our dataset. Table 1, Table 2 and Table 3 show the recognition rates for the deep 

dynamic discriminative feature, the handcrafted feature and the proposed FER method with feature 

fusion, respectively, where the bold values denote the correct classification. The proposed framework 

using the feature fusion achieves better overall performance than the other methods. Both the deep 

dynamic discriminative feature and the handcrafted feature are outperformed by the feature fusion 

approach for all facial expressions except for fear. This traces back to the fusion of the deep dynamic 

feature and the handcrafted feature that enhances dynamic and discriminative information, while 

retaining texture information. 

Table 1. Confusion matrix of the deep dynamic feature on classification of seven facial expressions of 
the CK+ dataset.  

 A D F H Sa Su C 
Anger(A) 88.9 0 2.2 0 6.7 0 2.2 
Disgust(D) 1.7 94.9 0 0 0 1.7 1.7 
Fear(F) 4.0 0 88.0 0 4.0 0 4.0 
Happiness (Sa) 1.4 1.4 0 97.1 0 0 0 
Sadness (Sa) 3.6 3.6 3.6 0 85.7 0 3.6 
Surprise (Su) 0 0 0 0 0 100 0 
Contempt (C) 11.1 11.1 0 0 0 0 77.8 

 
 
 



 

 
Table 2. Confusion matrix of the handcrafted feature on classification of seven facial expressions of 
the CK+ dataset. 

 A D F H Sa Su C 
Anger (A) 82.2 2.2 6.7 0 6.7 0 2.2 
Disgust (D) 0 84.7 5.2 0 0 0 0 
Fear (F) 0 4.0 84.0 8.0 8.0 0 0 
Happiness(Sa) 0 1.4 1.4 95.7 0 0 1.4 
Sadness (Sa) 7.2 7.2 3.6 0 78.6 0 3.6 
Surprise (Su) 0 0 1.2 2.4 2.4 94.0 0 
Contempt (C) 16.7 11.1 5.6 0 5.6 0 61.1 

 

Table 3. Confusion matrix of the propose feature on classification of seven facial expressions of the 
CK+ dataset. 

 A D F H Sa Su C 
Anger (A) 91.1 0 2.2 0 2.2 4.4 0 
Disgust (D) 0 100 0 0 0 0 0 
Fear(F) 0 4.0 88.0 4.0 0 0 4.0 
Happiness(Sa) 0 1.4 2.9 95.7 0 0 0 
Sadness (Sa) 7.1 0 0 3.6 89.3 0 0 
Surprise (Su) 0 0 0 0 0 100 0 
Contempt (C) 5.6 0 5.6 0 5.6 0 83.3 

 

To compare with other methods, we utilized the same leave-one-out cross-validation strategy as it is 

used in the work of Eskil and Benli [37], Lucey et al. [36], and Li and Lam [38]. We compare the 

proposed framework with these three methods. The proposed framework for all seven facial expressions 

in average achieves a recognition rate of 92.5% and outperforms the other methods. We thus conclude 

that the proposed method that involves the fusion of deep dynamic features and handcrafted features 

improves the recognition performance (see Table 4). 

Table 4. Comparative evaluation of the proposed method with 3 methods using leave-subject-out cross-

validation. 

Study Methododogy Recognition Rate 
Esil and Benli  (2014) SVM 

Adaboost 
76.8 
76.3 

 
Lucey et al., (2010) 

SVM(shape) 
SVM(Appearance) 

SVM(Combined) 

50.4 
66.7 
83.3 

Li and Lam (2015) DBM + SVM 86.8 

Proposed method with 
feature fusion 

SVM 92.5 



5. Conclusion  
This paper proposes the fusion of deep dynamic convolutional features and handcrafted features to 

obtain a novel feature for FER. The FER framework on the basis of this fused feature achieves a higher 

recognition rate than three classical methods and deep-learning based methods on the CK+ dataset. The 

proposed framework thus proves suitable for an application in FER. Investigating the generalization 

ability and robustness of the proposed feature by employing more datasets will be part of our future 

work. 
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