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ABSTRACT  

Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a 

computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the 

eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we 

present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension 

of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art 

accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows 

the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. 

We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye 

movements.  
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1. INTRODUCTION  

Eye Tracking is an important application of Human-Computer Interaction [1]. It provides a fast, effortless and non-invasive 

way of communication with computers. The motivation of our work is to provide a low budget, easy to use and wearable 

eye tracker for disabled people, so that they can use computer applications by controlling the cursor through eye 

movements [2].  

Over the years, eye tracking has captured the attention of the researchers but biological characteristics of the eye impose a 

major challenge on real time eye tracking. The complex and saccadic motion of the eye makes real time eye tracking a 

non-trivial task [3]. Eyes perform sudden and fast movements followed by fixation.  

In the literature, feature based and model based tracking techniques have been used for eye tracking [4]. We focus on 

correlation based techniques that uses template matching to track the eye [5]. However, the classic correlation technique 

cannot handle to occlusion and template drift. For example, the correlation based Spatio-Temporal Context Learning (STC) 

approach by  Zhang et al. [6]  is computationally efficient and robust for visual object tracking. However, it fails to capture 

rapid eye movements when used for eye tracking as it does not consider the dynamics of the target. 

We hypothesized that Kalman filter [7] in combination with a correlation based tracker would overcome these 

shortcomings. The Kalman filter can model target dynamics and can predict the location of the eye when the eye is occluded 

due to eye blinking or glare. It can also estimate the correct location of the eye, using raw measurements from the 

correlation based tracker. Based on this idea, we have developed a Kalman Extended Spatio-Temporal Context Learning 

algorithm (KSTC) for tracking. 

 

The organization of the paper is as follows. Section 2 discussed the implementation details as well as the performance 

evaluation method for KSTC. Section 3 presents the result. Conclusion of the paper are presented in section 4. results.  
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2. MATERIAL AND METHODS 

In this section, we discuss the algorithmic details of the proposed method.  

 

2.1 Spatio-Temporal Context Learning  

Our proposed method is based on the Spatio-Temporal Context Learning method [6]. The details of this method are shown 

in figure 1(a).  In this approach the target is identified in the first frame by prior knowledge. A context window surrounding 

the target is then extracted. The context window is twice the size of the target, which reduces the computation cost in 

comparison to using the whole frame and provides a robust template. The context window is multiplied by a spatial weight 

function to obtain a weighted context model. The Spatial weight function emphasizes the location of the target by assigning 

a larger weight to target pixels as compared to other pixels. The Fourier representation the weighted context model for 

frame 𝑡 is denoted by  𝐹𝑡.  A Confidence map indicates the likely location of the target in the weighted context window. 

The Fourier representation of confidence map is denoted by 𝐺𝑡 . The Spatial Context model, 𝐻𝑡  is generated using 

equation 1. The Spatio context model is convoluted with the next frame to obtain the target location by generating Spatio-

Temporal context model ℎ𝑡+1 using equation 2. 

 

Here, σ is the rate of update of the Spatio-Temporal context model. Its value is selected between 0-1. If it is too small, the 

template will update slowly and template update would not be able to incorporate fast appearance changes in the target. If 

σ is large, the new template almost replaces the previous template. This tracking filter is unable to handle occlusion and 

does not model motion dynamics.   

 

2.2 Kalman Extended Spatio-Temporal Context Learning 

To overcome the shortcoming of STC, we have extended it by using a Kalman filter. The Kalman filter incorporates the 

dynamics of the target and helps in predicting the target location in case of occlusion. It can also aid in estimating the 

correct location during rapid eye movements.  

 

The Kalman filter is a linear quadratic estimator that uses a number of previous measurements to determine the next 

possible state of the system [7]. The objective in visual object tracking is to track the target location through consecutive 

frames. If we know the motion dynamics of the target, it is possible to predict the most likely location of the target in the 

next frame, thus narrowing down the search. Kalman filter predicts the location of the target in case of occlusion, resulting 

in robust tracking [8]. For modelling the dynamics, we use the equations of the motion proposed by Ahmad. J [9].  

 

𝐻𝑡 = 𝐹𝑡/𝐺𝑡. 

 

(1) 

ℎ𝑡+1 = 𝐻t + (1 − σ)ℎt. (2) 

 

Figure 1: (a) shows Spatio Temporal Context Learning. (b) shows the prototype of eye tracker. 

(a) (b) 



 

 
 

 

𝑋𝑡 = [ 𝑥𝑡  𝑥𝑡
′ 𝑥𝑡

′′ 𝑦𝑡  𝑦𝑡
′ 𝑦𝑡

′′]𝑇. 

 

(3) 

𝑋𝑘𝑡 = 𝐴𝑋𝑘𝑡−1 + 𝑊𝑘𝑡−1. (4) 

 

𝑍𝑘𝑡 = 𝐻𝑋𝑘𝑡 + 𝑉𝑘𝑡. 
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(6) 

𝑍𝑘𝑡 = [𝑥𝑘𝑡   𝑦𝑘𝑡]
𝑇. 

 

(7) 

𝐻 = [
1 0 0 0 0 0
0 0 0 1 0 0

]. 

 

(8) 

 

𝑋𝑘, given by equation 3, consists of position, velocity and acceleration along x-axis and y-axis. The equation 4 and 5 gives 

the target state and observation equations, respectively. 𝐴 is the transition matrix given by equation 6, which consists of 

equations of motion for position, velocity and acceleration of the target. 𝑍𝑘 is the observation matrix given by 7. 𝐻 is the 

output matrix shown by 8. 𝑊𝑘 and 𝑉𝑘 models the error in the state and output estimates. We use Gaussian random variable 

to model 𝑊𝑘  and 𝑉𝑘 with mean of zero and unity standard deviation. 

  

In our proposed method the location of the target obtained by STC is used as a state vector 𝑋𝑘𝑡  for Kalman Filter. 𝑍𝑘𝑡 is 

the estimated location of the target depending upon number of previous states. The context window of the correlative filters 

is set such that it covers the complete range of eye movements. This helps in reducing the computation cost and also 

provides robust eye tracking. Since the eye does not undergo any major appearance changes, so its template is not updated.  

 

Initialization of the Filter. As the application is developed for people with mobility issues manually selecting the target 

is not possible. To automate the target selection Minimum Output Sum of Square (MOSSE) correlation filter introduced 

by Bolme et al. is used [10]. It uses number of training images and their output target images to generate a filter, which 

when correlated with test image correctly finds the center of the eye. 

 

Hardware Design of Eye Tracker. Figure 1 (b) shows a prototype of the eye tracker. It is a wearable eye tracker that is 

Cost-effective, easy to use and puts no restriction on the user. A4tech PK-520F camera is mounted on the pair of glasses 

with help of adjustable clamp, hence giving flexibility to optimize the camera position. The most significant advantage of 

the prototype is that it provides stability, and can be attached to any pair of glasses. A polarizing filter is placed in front of 

a camera to block polarized light from the computer screen. This is done to reduce screen glare.  

The camera is connected to a computer through a USB port. The cursor control is implemented by mapping the image 

coordinates to the screen coordinates system. The protocol is implemented in python module. Eye ball coordinates are 

translated to pixel coordinates of screen. 

 

Evaluation Measures. 

The performance of Kalman Extended Spatio-Temporal Context Learning is evaluated on two datasets 1) general object 

videos [11] and 2) eye movement videos [12]. There are 6 videos in first dataset. These videos are of general objects which 

contain occlusion, appearance changes, fast movement and illumination variation. The second dataset consists of 4 videos. 

The videos are recorded in infrared spectrum and exhibit occlusion and rapid eye movement. This dataset helps to evaluate 

the performance of Kalman Extended Spatio-Temporal Context Learning. 

 

Apart from the two benchmark data sets, we evaluate the performance of KSTC in real time by performing eye tracking 

on the human test subject. The test subjects used the designed hardware to control the cursor through eye movement. 

 



 

 
 

 

To evaluate the accuracy of different algorithms on the videos in our data set, we have used center location error and Pascal 

score (PS). Center location error (CLE) is the mean of the error between actual center of the target and measured center of 

target. Pascal score measures the degree of overlap of the detected and actual target regions. Its value lies between 0-1. 

Score above 0.5 are good. Both these measures are widely used in the literature for evaluating the performance of tracking 

algorithms [6].     

3. RESULTS AND DISCUSSION 

3.1 Standard Object Tracking and Eye Tracking Results 

The performance of the KSTC is compared with STC on the set of six videos. The quantitative result of the comparison is 

shown in Table 1 (a). On all six videos, KSTC performs better than the STC. STC work well in videos where there is the 

slow movement like in “David” but where there is a fast movement like in “Sylv” it does not track the target efficiently. 

In the case of occlusion for the “Face”, it loses the track of target and focuses on the background. The “Girl” and “Face” 

contains the issue of occlusion. The Pascal score of 0.84 is obtained for the “Girl” and 0.71 in “Face”, which is the 

significant improvement from STC score. Figure 2(a) shows the visual results of a “Girl”. 

 

Table 1 (b) shows the Pascal score and center location error for the STC and KSTC on offline eye movement videos. 

Results show that KSTC provides robust eye tracking as compared to the STC. Figure 2 (b) shows visual results, comparing 

tracking with spatial context learning and Kalman Extended spatial context learning. STC accurately tracks the eye when 

it is moving slowly. However, when it makes rapid movements and gets occluded by eye lid, the tracking is lost. The 

results verify our hypothesis that Kalman filter in combination with spatial-temporal context learning performs better. It 

provides robust tracking in cases of occlusion and fast movement. 

 
Table 1: a) and b) showing quantitative results. 

 

 

3.2 Real Time Eye Tracking  

Kalman Extended Spatio-Temporal Context Learning is tested in real time by using the prototype of the eye tracker. We 

were able to control the cursor through eye movements. It was used to write in a software called "Dasher" [13]. Dasher is 

an interface that helps to write with the mouse, providing disable people to express themselves. In implementing the 

Kalman Extended Spatio-Temporal Context Learning in real time we face challenges like illumination variation and screen 

glare, since the user is controlling the cursor through the eye movements and looking at the screen. The glare of the screen 

makes a bright spot on the eye. This bright spot does not move with the eye movements as the screen is fixed. The tracker 

tracks the bright spot and does not register the eye movements accurately. The glare is removed by using a simple 

Polarizing Filter. 

 

(a) STC KSTC 

 

(b) STC KSTC 

Video PS CLE PS CLE Video PS CLE PS CLE 

David 0.69 7.84 0.74 7.60 Eye 1 0.49 55.4 0.93 18.8 

girl 0.48 15.17 0.84 4.97 Eye 2 0.56 44.5 0.92 20.9 

dog 0.18 10.89 0.21 10.00 Eye 3 0.37 51.9 0.92 19.1 

face Failed Failed 0.71 11.17 Eye 4 0.63 56.1 0.90 21.1 

sylv 0.28 13.65 0.66 7.96 
Note: offline eye tracking 

Panda 0.99 1.20 0.99 0.97 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION  

This paper presents a Visual object tracking application in which cursor control was implemented to track the eye 

movements. A prototype of wearable eye tracker was designed to help disabled people to communicate through their eye 

movement. For real-time eye tracking, we proposed Kalman Extended Spatio-Temporal Context Learning. From the 

experimental results it has been shown that KSTC is fast and better adapted to handle occlusion and template drift. 
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Figure 2: (a) shows tracking result on the "Girl". (b) shows tracking result on the eye video. 

(a) 
(b) 
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