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The study of protein-protein interactions (PPIs) between host and pathogen proteins is important for 

understanding the underlying mechanism of infectious diseases and for developing novel therapeutic 

solutions. Wet-lab techniques cannot be used for large scale studies of PPIs as such methods are 

expensive and time consuming. Machine learning is one of the computational approaches that can be 

used to assist biologists by predicting promising PPIs. A number of machine learning based methods 

for predicting host-pathogen interactions (HPIs) have been proposed in the literature. The techniques 

used for assessing the accuracy of such predictors are of critical importance in this domain. Most 

methods use K-fold cross validation for this purpose. In this paper, we question the effectiveness of 

K-fold cross validation for estimating the generalization performance of a HPIs predictor. K-fold cross 

validation does not prevent redundancy in training and test data especially in case of host-pathogen 

PPIs where a pair is involved as training example. We hypothesized that this redundancy in training 

and test data overestimates the generalization power of the predictors. We have successfully tested 

this hypothesis through simulation over a case study of HIV and Human proteins. We also propose an 

alternative evaluation scheme called Leave One Pathogen Protein out (LOPO) cross-validation which 

is more effective in modeling the real world use of such predictors, specifically for cases in which no 

information about the interacting partners of a pathogen protein is available during training. We also 

point out that currently used metrics such as areas under the precision-recall or receiver operating 

characteristic curves are not intuitive to a biologist in experimental design and propose simpler and 

more directly interpretable metrics for this purpose. 

Keywords: performance evaluation; host-pathogen interactions; protein-protein interactions; machine 

learning; cross validation. 

1.   Introduction 

Invasion of a host organism by pathogens like viruses or bacteria, their duplication, and the 

reactions of host and toxins produced is known as infection.1 According to the World 

Health Organization (WHO), infectious diseases, such as Tuberculosis, Hepatitis, AIDS, 

and Typhoid etc., are among the major causes of deaths in the world. It is estimated that 

infections are involved in approximately 20% of all deaths across the globe.2 Infections 

occur through interactions between proteins of the host and the pathogens.3 Therefore, to 
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understand the underlying mechanism of infectious diseases, it is crucial to gain an insight 

in host-pathogen protein-protein interactions (PPIs).4 

Experimental methods for studying PPIs are often time-consuming and expensive, 

making it difficult to investigate all possible host-pathogen interactions (HPIs). For 

instance, the bacterium B. anthracis has 2,321 proteins,5 which when paired with the 80,000 

or so human proteins6 gives more than a billion protein pairs to test experimentally. It is 

not practically feasible to test all possible interactions experimentally. Therefore, there is 

an utmost need for computational approaches to support wet-lab methods by predicting 

promising PPIs. Such computational approaches can assist biologists to focus on fewer 

interactions and ruling out the vast majority of improbable ones.7 

Among computational approaches, application of machine learning techniques to 

bioinformatics for PPI predictions is a well-accepted idea.5,7–10 In such methods, a pair of 

proteins, one each from the host and the pathogen, is considered as a learning example. In 

machine learning based HPI predictors, experimentally discovered interactions are used as 

positive examples in training.7 Negative or non-interacting examples are usually generated 

by pairing host-pathogen proteins randomly11 or using one-class SVM.1 To produce good 

classifiers, a considerable number of interacting and non-interacting pairs are typically 

needed. 

Predictive features are derived for each example using various attributes of the two 

proteins such as k-mer counts of protein sequences,13,14 protein domain information,3 gene 

expression,5 gene ontology (GO),5, 10 network characteristics,5, 9 etc. A general framework of 

machine learning techniques in host-pathogen PPIs prediction is shown in Fig. 1. This 

framework shows how the classifier is trained on training data and consequently used to 

predict the label of a novel example. 

With the growth in proteome data of different organisms, there is a pressing need for 

accurate HPI predictors. A number of such predictors exist in the literature.5,9,10,15–18 

Fig. 1. Framework of machine learning techniques in host-pathogen protein-protein interactions (PPIs) prediction. 
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However, our primary focus in this paper is the evaluation of accuracy of these predictors. 

In every machine learning setting, it is important to consider the nature of the problem, 

available data and intended use of the system while designing the classifier, its evaluation 

protocols and performance metrics.19–21 However, in comparison to other application areas, 

this requirement is very stringent in bioinformatics because of its role as a tool for 

biological discovery and is implications on advancement of science. Specifically, in the 

domain of host pathogen interaction prediction, it is important to be cognizant of the 

underlying biological implications in designing the machine learning system and its 

evaluation protocol to assess the generalization performance of the predictor in practical 

use.  

Most existing HPIs predictors use a very simple K-fold cross-validation (CV) scheme 

for performance evaluation.22 In K-fold cross-validation, the original dataset is randomly 

partitioned into K equal sized subsets. Of the K subsets, K-1 sets are used as training and 

the remaining data is used for testing. This process is repeated K times to compute K 

performance measures which are then combined to produce a single accuracy metric.22 This 

approach works very well in a general machine learning setting. However, for HPI 

prediction a more elaborate analysis is required. This is because simple K-fold cross 

validation does not take the biological nature of the problem into account. It does not 

prevent similarity or redundancy between training and testing examples and can lead to 

inflated accuracy values. Typically, a biologist is interested in finding interactions between 

proteins which may be very dissimilar in their sequence from the proteins used in training. 

However, in simple K-fold cross validation, close sequence homologs of a test protein pair 

can appear in training. This issue is further complicated by the fact that in HPI prediction, 

the classification example is a pair of proteins and in simple K-fold cross validation a 

protein in a test pair can also occur as part of some training examples. We hypothesize that 

this produces a disparity between the evaluated accuracy of the classifier and its true 

generalization performance.  

This study is designed to test this hypothesis rigorously by carefully performing an 

experiment related to training and evaluation of HPIs predictors. We have also proposed a 

protein specific cross validation scheme specifically tuned for HPI predictors.  

In this paper, we also point out another issue in the evaluation of HPI predictors. 

Accuracy measures, such as area under the precision-recall curve (AUC-PR),23 area under 

receiver operating characteristic curve (AUC-ROC),23 accuracy and F1 score,5 are typically 

used in the area of machine learning and for presenting the results for an HPI predictor. 

However, these measures, though important in machine learning analysis, are not intuitive 

to a biologist.24 Therefore, we proposed three new domain specific metrics in this paper 

called true hit ratio (THR), false hit ratio (FHR) and median rank of the first positive 

prediction (MRFPP).  

2.   Methods 

To test our hypothesis and proposed evaluation scheme, the experimental design of our 

study is as follows. 
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2.1.   Dataset and preprocessing 

We collected a representative dataset of 632 unique PPIs of human–HIV (isolate HXB2 

group M subtype B) from NCBI.25 These interactions are considered as positive examples 

in the evaluation process. This interaction set includes 513 human and 17 HIV proteins. 

The proteins in the interaction set are non-redundant with less than 80% sequence identity 

between them. We generated negative examples by randomly pairing these 513 human and 

17 HIV proteins in such a way that no randomly generated protein pair was already in our 

positive set.11 The total number of negative examples thus obtained is 8, 089. It must be 

noted here that we purposefully did not take the whole human proteome in consideration 

as it would have complicated our evaluation without affecting the outcome. 

2.2.    Support Vector Machines for HPIs prediction 

In this work we have used a support vector machine classifier to illustrate the impact of 

different cross-validation schemes on generalization performance. This choice is motivated 

by the use of SVMs in a variety of HPI predictors as well as in other applications of 

machine learning in bioinformatics.9,18,24,26,27 We expect that our observations can be 

replicated in principle using any other classification scheme. 

In HPIs prediction, our dataset 𝑆 consists of examples (𝒙𝑖 , 𝑦𝑖)  ∈ 𝑆. Here, 𝒙𝑖 is a feature 

vector for the 𝑖th example involving human protein ℎ𝑖 and pathogen protein 𝑝𝑖  to form the 

pair (ℎ𝑖 , 𝑝𝑖). 𝑦𝑖 ∈ {+1, −1} is the corresponding label for this example. Based on this 

notation, we can describe a HPI predictor as the SVM optimization problem given below: 

𝑚𝑖𝑛𝒘,𝑏,𝝃

1

2
𝒘𝑇𝒘 + 𝐶 ∑ ξ𝑖

|𝑆|

𝑖=1

 (1) 

Subject to 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, ∀𝑖  

 

Here, 
1

2
𝒘𝑇𝒘 is the margin maximization term, 𝜉𝑖 is the extent of margin violation for 

a given example and 𝐶 is the penalty of such violations.28 The discriminant function 

𝑓(𝒙𝒊) = 𝒘𝑇𝒙𝒊 + 𝑏 discriminates interacting and non-interacting pairs by assigning a score 

to the given feature vector.  

2.3.   Feature extraction 

We used protein sequence k-mer composition as features in this study. In line with the 

method of Dyer et al.,9 these features are extracted by grouping the twenty naturally 

occurring amino acids into seven groups on the basis of their hydrophobic and electrostatic 

properties.22 We used the counts of occurrences of k-mer of these groups in the protein 

sequence as features with value of k ranging from 2 to 4. In this way, each protein is 

represented in the form of feature vector of length 7𝑘, i.e., 49, 343, and 2401 for 𝑘 = 2, 3, 4, 

respectively. These features vectors have been normalized to unit norm. For each host–

pathogen protein pair, feature vectors of the individual proteins have been concatenated. 
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2.4.    Model evaluation 

To test the proposed hypothesis, we used 17-fold cross validation as our baseline. Here the 

reason to use 17-fold cross validation is to keep performance results comparable with our 

proposed evaluation protocol which involves hold out cross validation of 17 pathogen 

proteins. We compare the results of 17-fold cross validation with our proposed cross-

validation strategy which prevents redundancy or overlap between training and testing 

data. Details of both techniques are given below. 

In 17-fold cross validation, we divided the whole dataset into 17 folds. Then we used 

repeatedly one fold for testing and other sixteen for training the model as shown in Fig. 2. 

Redundancy in training and test data can be seen in Fig. 2 with respect to both host and 

pathogen proteins. 

 We have also proposed another evaluation methodology for HPIs predictors called 

leave one pathogen protein out (LOPO) cross validation. In LOPO cross validation, we 

used protein pairs of one pathogen protein in testing while all the remaining pairs for 

training as depicted in Fig. 2. In this case where we have 17 virus proteins, we get 17 

measures of each metric to average. As all the protein pairs belonging to a specific pathogen 

protein were taken out for testing, therefore this pathogen protein does not participate in 

Fig. 2. Evaluation methodologies for host-pathogen protein interactions (HPIs) predictors. In K-fold cross 

validation, we have separated our data into as many folds as the number of pathogen proteins. Then, one fold is 

taken for testing and all other folds are used for training. Redundancy with respect to both host and pathogen 

proteins can be seen. For example, proteins 𝒑𝟏and 𝒉𝟏 occur in both training and test sets in each fold. In leave 

one pathogen protein out (LOPO) cross validation, protein pairs with respect to one pathogen protein involved 

in interactions are taken out for testing and remaining pairs are used for training. Number of folds in this case 

will be equal to the number of pathogen proteins involved in interactions. Redundancy with respect to pathogen 

protein is eliminated in this evaluation protocol.  
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training. In this way, any overlap of the same pathogen protein pairs in training and testing 

is avoided.  

2.5.   Performance metrics 

We used the following metrics to evaluate and compare the performance of the trained 

models based on their usage in most of the studies involving host-pathogen PPIs prediction. 

These metrics are widely used in the evaluation of numerous HPI predictors. 

2.5.1.   Area under the ROC curve (AUC-ROC) 

The area under Receiver Operating Characteristic (AUC-ROC) curve was obtained 

by plotting the false and true positive rates.23 An ideal predictor will score an AUC-

ROC of 1, while random guessing will score around 0.5. 

2.5.2.    Area under the precision-recall curve (AUC-PR) 

The scores produced by the predictor and the known labels for each example were 

used to plot precision-recall curve.23 The area, expressed as a percentage, under the 

precision-recall curve (AUC-PR), has been used as the performance metric. Unlike 

AUC-ROC, this metric is sensitive to false positives. 

In this work, we propose the use of the following metrics for host-pathogen PPIs 

predictors. We are of the opinion that these metrics provide the biologist with a more 

intuitive understanding in the interpretation of results of HPI predictors in comparison to 

AUC-ROC and AUC-PR for use in designing lab experiments to screen or test potential 

interactions. These metrics have previously been used in our work on identifying interfaces 

and binding sites in proteins.23, 25  

2.5.3.   True Hit Ratio (THR) 

When testing the examples involving a held out pathogen protein in LOPO cross 

validation, we define a true hit to occur when the highest scoring example, amongst 

all the given examples, is a true positive. The percentage of true hits across all 

interacting pathogen proteins is called true hit ratio. For an ideal classifier, 𝑇𝐻 =

100%. Intuitively, the THR tells a biologist how often the top scoring example 

involving a pathogen protein can be expected to be a true positive. 

2.5.4.   False Hit Ratio (FHR) 

For a held out pathogen protein in LOPO cross validation, this metric represents the 

percentage of negative examples involving that pathogen protein that score higher 

than its top scoring positive examples. For an ideal classifier, 𝐹𝐻 = 0%. This metric 

tells the biologist the expected number of false positives of a protein that score higher 

than a true positive. This can be very useful in experimental design to screen for 

potential interaction partners of a protein in the wet-lab. 
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2.5.5.   Median Rank of the first positive prediction (MRFPP) 

This metric gives an intuitive idea of the distribution of false negatives in comparison 

to the top scoring true positive in evaluation. This metric can be defined as 𝑀𝑅𝐹𝑃𝑃 =

𝑞, if at least 50% of pathogen proteins in LOPO cross validation have at least one true 

positive among their𝑞 top scoring examples. An ideal predictor should have 

𝑀𝑅𝐹𝑃𝑃 = 1, i.e., for at least 50% pathogen proteins, the top scoring prediction by the 

predictor is a true positive.26 In comparison to AUC-PR, this measure is more intuitive 

to biologist as it reveals directly how often the top scoring predictions can be expected 

to be a an interacting pair. 

2.6.   Model selection 

Value of 𝐶 parameter in SVM has been varied from 2−5 to 217. Scores are computed at a 

coarsely optimized value of 𝐶. 

3.   Results 

3.1.   Analysis of evaluation methodologies 

The average values of area under the precision-recall (AUC-PR) and ROC (AUC-ROC) 

curves for 2-mer, 3-mer and 4-mer feature vectors for 17-fold and LOPO cross validation 

are shown in Fig. 3. With 17 fold cross validation, we obtained AUC-PR scores of 20%, 

Fig. 3. Precision-recall (top, a) and receiver operating characteristic (ROC) (bottom, b) graphs of 17-fold 

and LOPO cross validation. Area under the curve is shown in parenthesis. 
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18% and 12% with 2,3 and 4-mer feature vectors, respectively. The corresponding values 

for AUC-ROC are 77%, 77% and 69%. 

With LOPO cross validation, we noticed a consistent decrease in AUC-PR scores in 

comparison to those from 17-fold cross validation as shown in Fig. 3(a). We can see a 

similar drastic decrease in the evaluated AUC-ROC scores as well. We discuss the 

conclusions from these results in the section 4. 

3.2.   Metrics for HPIs predictors 

We have also computed true hit ratio (THR), false hit ratio (FHR) and median rank of the 

first positive prediction (MRFPP) against each pathogen protein using LOPO cross 

validation as shown in Table 1. THR of ~18% indicates that the top scoring example 

involving a held out pathogen protein is a true positive for ~18% of pathogen proteins. A 

FHR of ~4% means that, on average, ~4% false positives rank higher than the top scoring 

true positive for any pathogen protein. Similarly, MRFPP of 6 reveals that for 50% of the 

test proteins, a true positive occurs within the top 6 predictions. 

Here, in this study these metrics are not used as performance measures to compare 

predictive power of the classifiers but to give an idea that how these measures can be 

computed and further used instinctively. We have not attempted to optimize these 

performance metrics. 

 

Table 1. Proposed metrics computed using LOPO cross validation 

 

Features THR FHR MRFPP 

2-mer 12 4 11 

3-mer 18 4 6 

4-mer 12 4 9 

4.   Discussion 

The results presented in previous section lend support to our hypothesis that redundancy 

between training and testing data of the predictor as consequence of K-fold cross validation 

can lead to inflated accuracy values. The predictor which was behaving quite well in 17-

fold cross validation setting is behaving no better than a random classifier in LOPO cross 

validation setting. This is just because of controlling ~50% redundancy at pathogen protein 

level during training and testing. 

K-fold cross validation is completely ineffective to control redundancy in training and 

test data for host-pathogen PPIs predictor. In K-fold cross validation, there is an underlying 

assumption that interactions of both host and pathogen proteins involved in test pair are 

known during training as pointed out by Hamp and Rost.29 This assumption is not practical 

in most interaction studies. The predictor optimized on the basis of this assumption will 

perform poorly while predicting the interaction of a novel host-pathogen protein pair. 

In LOPO cross validation, we have controlled the redundancy at pathogen protein level 

in training and test data. This can also be used with respect to host proteins but in this case 
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we used it at pathogen protein level because there are less pathogen proteins involved in 

the interactions compared to host proteins. The results through LOPO cross validation 

show a significant reduction in the performance of our trained predictors in comparison to 

K-fold cross validation. Optimized predictors through this evaluation scheme can be 

expected to have higher generalization compared to K-fold cross validation.  

We used linear SVM and a simple feature representation in this study to test our 

hypothesis. However, this idea can be extended to any model formulated specifically for 

host-pathogen PPIs prediction and to any complex feature representation. As the problem 

of redundancy in train and test data will remain there due to involvement of protein pair as 

learning example.  

Most of the existing studies in literature involving host-pathogen PPIs predictions used 

K-fold cross validation as evaluation scheme. Therefore, results from existing techniques 

may be misleading and should be considered with a grain of salt. 

5.   Conclusions 

We investigated the effect of evaluation methodologies on the performance of the 

predictors built for host-pathogen protein-protein interactions (PPIs) prediction. Through 

a carefully designed experiment, we showed that the results of K-fold cross validation, 

which is typically employed for performance evaluation of such predictors, are 

overestimates of the generalization performance. We strongly advocate the use of leave 

one protein out evaluation for this purpose. 
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