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ABSTRACT 

Due to Ca2+ dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, 

identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, 

computational methods for this purpose are crucial to the design of such wet-lab experiments. We 

present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for 

predicting proteins that interact with CaM as well as their binding sites using sequence information 

alone. For CaM interaction prediction, CaMELS uses protein features coupled with a large-margin 

classifier and gives significantly improved prediction accuracy in comparison to existing 

techniques. CaMELS can not only identify whether a protein binds CaM or not, it can also predict 

CaM-binding residues in those proteins. It models the binding site prediction problem using 

multiple instance machine learning with a novel optimization algorithm. In comparison to 

conventional classification techniques, our proposed stochastic sub-gradient solver for multiple 

instance learning allows more effective training with a data set containing imprecisely annotated 

CaM-binding sites. We benchmarked the performance of CaMELS using a non-redundant set of 

binding proteins and binding sites in the CaM target database as well as the A. thaliana proteome. 

As a case study, we have used CaMELS for predicting the binding sites of Adenylyl cyclase 

domain from B. pertussis and have found our sequence-only prediction to be in close agreement 

with the known structure of the protein complex. Our interaction prediction results for the A. 

Thaliana proteome also show a high degree of overlap of gene ontology enrichment with known 

CaM targets. Python code for training and evaluating CaMELS together with a webserver 

implementation is available at the URL:  

http://faculty.pieas.edu.pk/fayyaz/software.html#camels.  
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INTRODUCTION 

Calmodulin (CaM) is a 149 amino acid long multifunctional calcium (Ca2+) binding protein that is 

highly conserved across all eukaryotes.1 CaM mediates many vital processes like immune 

response, muscle contraction, metabolism, nerve growth, and intracellular movement.2 CaM is 

able to do all this by binding various targets in the cell including a large number of enzymes, ion 

channels and other proteins.3, 4 Many CaM binding proteins are mostly unable to bind Ca2+ directly 

and therefore use CaM as a signal transducer and calcium sensor.5, 6 Due to the involvement of 

CaM in different important biological processes, identification of proteins that bind CaM and the 

location of CaM binding sites within a protein can help biologists in elucidating underlying 

biological processes at the molecular level. Due to Ca2+dependent binding and the large sequence 

diversity of its targets, identifying CaM interactions and binding sites in the wet lab is very costly 

and time consuming.7 Therefore, there is an utmost need for computational techniques to support 

wet-lab experiments by predicting CaM binding proteins and their binding sites. This work 

presents a highly accurate in-silico CaM binding site and interaction prediction method that relies 

only on protein sequences. 

A number of algorithms have been proposed for CaM interaction and binding site prediction in the 

literature.8–13 DeGrado et al. suggested an algorithm that finds amphiphilic 𝛼 helix in a peptide 

sequence for CaM binding site prediction.13 Mruk et al. proposed a method called calmodulation 

meta-analysis for CaM binding site prediction by scoring the existence of canonical motifs in a 

given protein sequence.12 Both the methods proposed by DeGrado et al. and Mruk et al. were 

designed using a limited dataset and cannot predict whether a protein will interact with CaM or 

not. Radivojac et al. and Hamilton et al. used a sliding-window classification approach for CaM 

binding site prediction based on the contiguous nature of CaM binding sites.8 These methods use 
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a conventional Support Vector Machine (SVM) classifier and do not explicitly handle imprecisions 

in binding site annotations in the training data. Annotations of CaM binding sites in proteins 

available in the literature typically span more residues than the minimal set of contiguous residues 

responsible for the interaction.10 Such imprecisions result from limitations of experimental 

procedures and time or cost considerations in identifying individual binding residues. Furthermore, 

all annotated binding site residues may not contribute equally to the binding energy. To counter 

such uncertainties, Minhas and Ben-Hur formulated this problem as a Multiple Instance learning 

(MIL) problem.10 Their approach, called MI-1, was designed primarily for CaM binding site 

prediction and offers very good accuracy for this task. However, the accuracy of MI-1 for CaM 

interaction prediction is very low. This is because MI-1 simply uses the predicted score of the most 

likely binding window in a protein as its CaM interaction propensity. However, a putative CaM-

binding sequence in a protein will result in an interaction only if the three dimensional structure 

of the protein allows for it.13 Furthermore, MI-1 uses a heuristics approach to solve the MIL 

problem which may not converge to its optimal solution.  

In this paper, we present CaMELS (CalModulin intEraction Learning System) for machine 

learning based CaM interaction and binding site prediction. CaMELS models interaction and 

binding site prediction as two different classification problems. For CaM interaction prediction, 

we use protein level features instead of window level features used in previous studies.9, 10 This 

led to a large improvement in the accuracy of interaction prediction. The biological significance 

of these results was verified through a Gene Ontology (GO) enrichment analysis of the Arabidopsis 

thaliana proteome.14 For CaM binding site prediction, we developed a stochastic sub-gradient 

optimization method for solving the MIL problem. This led to a substantial improvement in 
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binding site prediction accuracy. An analysis of the trained machine learning model for CaMELS 

revealed a significant correspondence between the model and known CaM binding site motifs.15  

METHODS 

Dataset and Preprocessing 

Binding Site Dataset 

For CaM binding site prediction, our dataset and its pre-processing follows our previous work.10 

A set of 157 CaM binding proteins was taken from the CaM target database.15 Each of these 

proteins has one or more annotated binding sites and a total of 191 binding sites were identified in 

these proteins. These proteins were selected in such a way that no two proteins have more than 

40% sequence identity in overall or in regions annotated as binding sites.  

Interaction Data Set 

For CaM interaction prediction, we used a set of 241 known CaM binding proteins from 

Arabidopsis thaliana as the positive set.16 We used CD-HIT17 to obtain a non-redundant set of 12, 

217 proteins from the Arabidopsis thaliana proteome which is used as the negative set. Keeping 

the sequence diversity of known CaM binding proteins into account, the proteins in the negative 

set share less than 30% sequence similarity with the proteins in the positive set and less than 40% 

among themselves.  

Classifiers 

Binding Site Prediction 

In CaM binding site prediction, the objective is to find the region of a protein that is involved in 

its binding with CaM. For this purpose, we adopt a sliding window approach in which each protein 

sequence is divided into overlapping windows of length 21. We represent the sequence of a 
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window starting at residue 𝑖 in the protein by 𝑥𝑖 and denote its associated label by 𝑦𝑖 ∈ {+1, −1} 

indicating whether 𝑥𝑖 belongs to an annotated binding site (+1) or not (-1). This problem can be 

posed as a classification problem through a discriminant function 𝑓(𝑥) = 𝒘𝑇𝝓(𝑥), where 𝝓(𝑥) 

represents the feature vector of window 𝑥 and 𝒘 is the weight vector that needs to be learned. 

Residues involved in the binding of a protein with CaM can be identified based on the values of 

the discriminant function for the window centered at these residues.  

We have solved this classification problem using a conventional support vector machine (SVM)18 

as well as a multiple instance learning (MIL) framework.19 We use the conventional SVM as a 

baseline for our results by taking the annotated binding site windows in a protein as positive class 

examples and the remaining ones as negatives.9, 10 

• Multiple Instance learning (MIL) 

As discussed in the introduction section, the annotated CaM binding sites in the binding dataset 

are imprecise due to limitations in experimental procedures and include residues that may not be 

involved in binding. A classical supervised classification approach such as an SVM cannot be used 

effectively with such ambiguously labeled training examples.19 To cope with these challenges we 

formulated the binding site prediction problem as a MIL problem.10  

MIL is a generalization of supervised learning where labels are available for bags or sets of 

examples and not for individual examples.19, 20 A bag is labeled −1 if it is known that all instances 

in it are negative. A bag carries a label of +1 if it contains at least one positive instance. The 

remaining instances in a positive bag can be negative. The objective of MIL is to learn a 

discriminant function that discriminates between positive and negative examples using bag level 

labels only. The problem of binding site prediction with our data can be mapped to MIL by defining 
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a positive and a negative bag for every protein. The positive bag contains all annotated binding 

site windows in that protein whereas the negative bag contains all the remaining widows. In case 

of a protein with multiple annotated binding sites, all the windows belonging to those binding sites 

constitute a single positive bag. 

A number of methods for solving the MIL problem exist in the literature.10, 20, 21 Of particular 

interest in this domain are large margin MIL solutions because they can handle high dimensional 

feature spaces and non-linear classification boundaries.10, 20 The formulations use a discriminant 

function of the form 𝑓(𝑥) = 𝒘𝑇𝝓(𝑥) and are inspired from SVM style large margin classification. 

Intuitively, the differences between these approaches lie in the way they enforce classification and 

multiple instance learning constraints. In the mi-SVM technique proposed by Andrews et al., the 

discriminant function is such that at least one example from every positive bag receives a score 

larger than +1 whereas all negative examples have scores less than -1. In contrast, in MI-1 by 

Minhas and Ben-Hur, an example in a positive bag must rank higher than all negative examples 

from the same protein with some margin.10, 20 In this work, we have improved the MI-1 formulation 

further using a stochastic sub-gradient solver. Henceforth, we give the mathematical formulation 

for MI-1 SVM. For this purpose, we denote the positive bag of all windows in the annotated 

binding sites in a protein 𝑝 by 𝐵𝑝. The set of non-binding site windows in the protein is represented 

by 𝑁𝑝. The large margin MIL formulation for the binding site prediction can be written as: 

𝑚𝑖𝑛𝒘,𝝃≥0

λ

2
𝒘𝑇𝒘 +  ∑ 𝜉𝑝

𝑝

  

such that for all proteins 𝑝 in the training set: (1) 
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𝑚𝑎𝑥𝑖∈𝐵𝑝
𝑓(𝑥𝑖) ≥ 𝑚𝑎𝑥𝑗∈𝑁𝑝

𝑓(𝑥𝑗) + 1 − 𝜉𝑝.  

Here, 𝜆 > 0 is the regularization parameter which controls the trade-off between constraint 

violation and margin maximization and 𝜉𝑝 is the extent of margin violation.  

The MI-1 formulation given above is a more concise and direct model of the binding site prediction 

problem in comparison to a conventional classifier such as an SVM or other existing MIL 

solutions. MI-1 also leads to faster training in comparison to previous models. This is because the 

number of slack variables (𝜉𝑝) in MI-1 SVM is equal to the number of proteins and not the number 

of training examples as in previous formulations.  

• Stochastic sub-gradient optimization (SSGO) for MIL 

Unlike a conventional SVM, the MI-1 formulation is combinatorial in nature due to the 𝑚𝑎𝑥 

function in its constraints. As a consequence, a specialized optimization method is needed for its 

solution. Similar to other large margin MIL classifiers such as miSVM, Minhas and Ben-Hur 

solved the optimization problem in Eq. 1 using a heuristic approach based on iterative retraining 

of a conventional SVM.10 Due to its heuristic nature, this approach may not lead to an optimal 

solution. To overcome these issues, we have developed a stochastic sub-gradient algorithm for 

Multiple Instance Learning inspired from the Pegasos solver for conventional binary SVMs by 

Shalev-Shwartz et al.22 Henceforth, we describe the proposed stochastic sub-gradient optimization 

algorithm for MI-1.  

Based on the principal of structured risk minimization, we represent the constrained optimization 

problem in Eq. 1 as an unconstrained one as follows:22, 23 
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𝑚𝑖𝑛𝒘

𝜆

2
𝒘𝑻𝒘 + ∑ 𝑙(𝒘;  𝑝)

𝑝

 (2) 

here, 𝑙(𝒘, 𝑝) is the hinge loss function and can be written as: 

𝑙(𝒘;  𝑝) = 𝑚𝑎𝑥 {0, 1 − (𝑚𝑎𝑥𝑖∈𝐵𝑝
𝑓(𝑥𝑖) − 𝑚𝑎𝑥𝑗∈𝑁𝑝

𝑓(𝑥𝑗))}. (3) 

The stochastic sub-gradient solver for this problem operates iteratively by choosing a protein 𝑝 

randomly in each iteration 𝑡 and estimates the sub-gradient of the objective function given in Eq. 

2 based only on the chosen protein. This sub-gradient can be written as: 

∆𝑡= 𝜆𝒘𝑇 − 𝕀(𝑓(𝑥𝑖∗) − 𝑓(𝑥𝑗∗) < 1) (𝝓(𝑥𝑖∗) − 𝝓(𝑥𝑗∗)) (4) 

Here, 

𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖∈𝐵𝑝 𝑓(𝑥𝑖) 

𝑗∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈𝑁𝑝
𝑓(𝑥𝑗) 

 

and 𝕀(∙) is the indicator function such that 𝕀(∙) = 1 if its argument is true and 0 otherwise. The 

weight vector is updated in a direction opposite to the direction of the sub-gradient by 𝒘𝑡+1 ←

𝒘𝒕 − 𝜇𝑡∆𝑡 using a step size of 𝜇𝑡 =
1

𝜆𝑡
 . The complete optimization algorithm is given in Table 1.  

Interaction Prediction 

In CaM interaction prediction, the objective is to predict whether a given protein interacts with 

CaM or not. For a protein 𝑝 in the interaction dataset, we indicate its associated feature 

representation by 𝝍(𝑝). All proteins in the interaction dataset have binary labels indicating 

whether they interact with CaM (+1) or not (-1). This problem can be posed as a classification 
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problem through a discriminant function 𝑧(𝑝). For CaM interaction prediction, we used the 

following two strategies: 

• Discriminant function scoring (DFS) 

The trained classifier for CaM binding site prediction can be used for CaM interaction prediction. 

This can be done by using the score of the most likely binding site in the protein as the interaction 

propensity of that protein. Mathematically, the CaM interaction score for a protein 𝑝 is given by 

𝑧(𝑝) = 𝑚𝑎𝑥𝑥∈𝑝𝒘𝑇𝝓(𝑥). This approach was used in previous studies to predict CaM interactions 

of proteins in the A. thaliana proteome and is used as a baseline.9, 10 The fundamental assumption 

behind this approach is that the presence of a binding site within a protein is predictive of its 

interaction with CaM.  

• SVM with protein level features 

In this work, we hypothesize that the whole sequence of the protein carries information that can 

be useful for binding prediction. As a consequence, we extracted protein level features, 𝝍(𝑝), of 

a protein and used a standard binary SVM for classification.18 We used SVM with the Gaussian 

kernel, 𝑘(𝑝′, 𝑝) = exp (−𝛾‖𝝍(𝑝′) − 𝝍(𝑝)‖2), here, the parameter 𝛾 controls the spread of the 

Gaussian Kernel.24 We used the Scikit-learn package for implementation of the SVM.25 

Feature Extraction 

We have a number of protein and window level features representation denoted by 𝝍(∙) and 𝝓(∙), 

respectively. All the features are normalized to unit norm. 

Window Level Features 
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For window level features of protein sequences, we sweep a window of length 21 across the entire 

length of the protein and extract features from individual windows.  

• Amino Acid Composition Features (AAC) 

The amino acid composition of a given sequence is a 20 dimensional vector containing the counts 

of occurrences of individual amino acids in it. AAC is used both at the window and protein levels 

for binding site and interaction prediction, respectively. 

• Position Dependent 1-Spectrum Features (PD-1) 

This feature representation captures the position and type information of different amino acids in 

a window. It is a 420 dimensional vector 𝝓(𝑥) such that its component 𝝓𝑎,𝑘(𝑥) is set to one if 

amino acid 𝑎 occurs at position 𝑘 in the window and zero otherwise. 

• Position Dependent BLOSUM-62 Features (PD-Blosum) 

In order to model the substitutions of physio-chemically similar amino acids in proteins sequence, 

we expressed each protein sequence using the BLOSUM-62 substitution matrix.26 The 420-

dimensional PD-Blosum feature vector for a sequence window of 21 residues is obtained by 

stacking the columns of the BLOSUM-62 matrix corresponding to each residue in the window. 

• Propy Features (propy) 

To capture biophysical properties of amino acids and sequence-derived structural features, we used 

a feature extraction package called propy.27 Propy gives a 1,537 dimensional feature 

representation of a window. This representation includes different features such as pseudo-amino 

acid compositions (PseAAC), autocorrelation descriptors, sequence-order-coupling number, 

quasi-sequence-order descriptors, amino acid composition, transition and the distribution of 
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various structural and physicochemical properties.28, 29 This feature representation is also used at 

the protein level for CaM interaction prediction. Each of these features is standardized to have zero 

mean and unit standard deviation across all examples. 

Protein Level Features 

Here, we describe the features extracted using whole protein sequences. 

• Local Alignment Features (SWIPE) 

To capture sequence similarities of a given protein to known CaM binders, we performed local 

sequence alignment of a protein with the 157 proteins in our binding site dataset. This leads to a 

157 dimensional feature vector of alignment scores. Proteins in the binding site dataset share less 

than of 40% sequence identity with CaM binders in the interaction dataset. We used SWIPE30 

with the BLOSUM-62 substitution matrix to perform fast smith-waterman local alignments.31 We 

used gap insertion and extension penalties as 10 and 0.5, respectively.  

• Averaged BLOSUM-62 Features (Blosum) 

This 20 dimensional feature representation is built by averaging the columns of the BLOSUM-62 

matrix26 corresponding to all amino acids occurring in the given protein sequence.  

Performance Evaluation 

Interaction Prediction 

For CaM interaction prediction, we have used 10-fold stratified cross validation.32 The fold-wise 

average of the following metrics has been used to quantify the performance of different models.  

• Area Under ROC Curve (AUC-ROC) 
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The ROC curve is obtained by plotting true positive rate (TPR) against false positive rate (FPR) at 

different thresholds on the output of the classifier.33 The area under the ROC curve (AUC-ROC), 

expressed as a percentage, is reported. 

• Area Under 10% ROC Curve (AUC-ROC0.1) 

AUC-ROC0.1 is obtained by plotting true positive rate (TPR) in ROC curves up to the first 10% 

false positives. This measure gives us a sense of how many true positives are produced at low false 

positive rates. 

• Area Under Precision-recall Curve (AUC-PR) 

The precision-recall (PR) curve is obtained by plotting precision against recall at different 

thresholds for the discriminant function values. The area under the PR curve is a useful metric in 

classification problems involving imbalanced data such as ours.33 

• Tversky Index for GO Enrichment Analysis (GOTI) 

We used the Gorilla tool for Gene Ontology (GO) term enrichment analysis of known CaM binders 

and top scoring A. Thaliana proteins from different interaction prediction methods.34 To quantify 

the degree of correspondence of GO terms between predicted and known CaM binding proteins, 

we used the Tversky Index.35 Tversky Index for GO Enrichment Analysis (GOTI) is computed as 

follows:  

𝐺𝑂𝑇𝐼 =
|𝑀 ∩ 𝑁| 

|𝑀 ∩ 𝑁| + |𝑀 − 𝑁| + |𝑁 − 𝑀|
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Here, 𝑀 and 𝑁 are the sets of GO enrichment terms for known CaM binders in the interaction 

dataset and top 240 predictions, respectively. The proteome of A. thaliana was used as the 

background set except for known CaM binders and their close homologs. 

Binding Site Prediction 

For CaM binding site prediction, we have used Leave One Protein Out (LOPO) cross-validation. 

In this protocol, the classifier is tested on all residue-level windows of a protein after training it on 

the data from all other proteins. This process is repeated for all the proteins in the binding site 

dataset. In addition to AUC-ROC, AUC-ROC0.1, and AUC-PR, we report the following biologist-

centered performance metrics as well.36 

• True Hit Rate (THR) 

The true hit rate is the percentage of proteins in the binding set in which the top scoring residue 

predicted by a classifier lies in an annotated binding site. An ideal classifier would always have 

THR=100%. 

• False Hit Rate (FHR) 

This metric represents the percentage of non-binding site residues that score higher than the highest 

scoring residue in the annotated binding site of a protein. An ideal classifier would always have 

FHR=0%. 

• Median Rank of the First Positive Prediction (MRFPP) 

To get an intuition for of the distribution of false negatives in comparison to the top scoring true 

positive, we used MRFPP. This metric is the median rank of the first true positive prediction across 

all proteins. An ideal predictor should have MRFPP =1, i.e., for at least 50% proteins, the top 
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scoring prediction by the predictor is a true positive.36, 37 In comparison to AUC-PR, this measure 

is more intuitive to biologists as it reveals directly how often the top scoring predictions can be 

expected to be a binding site. 

Model Selection 

We used grid search over training data to find the optimal values of hyper-parameters of different 

classifiers. For SSGO based MIL, the values of 𝜆 was selected from the set {0.1,0.01,0.001} 

with 1000 training epochs using AUC-PR as the metric for selection in LOPO cross-validation. 

For the SVM in interaction prediction, the values of 𝐶 ∈ {0.01,0.1,1,10,100,1000,10000} and 

𝛾 ∈ {0.1,0.25,0.5,2,4,8,16} are used in the grid search. AUC-PR is employed as the performance 

metric in 10 fold cross-validation. 

RESULTS AND DISCUSSION 

In this section, we present and discuss the results and major outcomes of our study. 

Interaction Prediction 

For CaM interaction prediction, we adopted two different approaches: discriminant function 

scoring based on MIL and SVM with protein level features. The results of these two approaches 

across different features are shown in Table 2 and Fig. 1a. DFS gives a maximum AUC-PR of 

6.0% with an AUC-ROC of 74.0%. These results do not show any improvement in predictive 

performance in comparison to the MI-1 method.10 On the other hand, the protein level SVM based 

technique proposed in this work provides a big improvement in prediction performance. The 

maximum AUC-PR and AUC-ROC obtained with this classification scheme are 55% and 86.7%, 

respectively (Table 2; Fig. 1a). A marked increase is also noted in AUC0.1 from 26.0% to 65.1%. 
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The violin plot in Fig. 2 shows the densities of the scores obtained from the DFS and SVM based 

methods for examples from both classes. It can be easily noticed that the degree of overlap between 

distributions of scores of positive and negative class examples is significantly larger for DFS in 

comparison to CaMELS. These results show that the features of the whole protein improve the 

performance of CaM interaction prediction in comparison to features at the window level. This 

can potentially be explained by the fact that the mere presence of a CaM binding site in a protein 

is not predictive of its interaction with CaM.13, 38, 39  

• Analysis of features 

In CaMELS, we have used different protein level feature representations for CaM interaction 

perdition such as propy, SWIPE, AAC and Blosum. We obtained the best performance using propy 

features in comparison to other feature representations (Table 2; Fig. 1a). We expect this to be a 

consequence of incorporating k-mer features and different correlation factors in a protein chain in 

the propy feature representation.27 We tested this hypothesis by taking different combinations of 

propy features. With 20-dimensional amino acid composition and 400-dimensional dipeptide 

frequency features we obtained an AUC-PR of 47.0% whereas the 720-dimensional sequence 

correlation features alone produced an AUC-PR of 52.3%. Please note that using all the 1,537 

propy features results in an AUC-PR of 55.0%. This shows that the auto-correlation features of 

physiochemical properties are responsible for the improvement in prediction accuracy. 

• Performance comparison 

We have also compared the interaction prediction performance of CaMELS with the previous state 

of the art method MI-110 and a general purpose protein interaction predictor called iLoops.40 We 

compared the performance of these techniques using a reduced data set of 5000 randomly sampled 

proteins not in the positive set. This reduction was done due to the limitation of the iLoops server. 



17 
 

The PR curves for this comparison are shown in Fig. 1b. CaMELS gives an AUC-PR of 58.3% 

whereas, the AUC-PR obtained through MI-1 and iLoops are 14.8% and 8.3%, respectively.  

• Biological significance 

We verified the biological relevance of our results by performing gene ontology enrichment 

analysis of the top 240 predictions from CaMELS from the proteome of A. Thaliana. Table 3 

shows the results of this analysis. We observed significant overlap between the GO terms for 

molecular function and biological process ontologies between known and predicted CaM binding 

proteins. The Tversky Indices (GOTI) for these analyses are 68% and 34% for the biological 

process and molecular function ontologies, respectively. GO term enrichment analysis of the top 

predictions from DFS reveals no overlap between the enriched GO terms of the predictions with 

known CaM binders (Table 3). The enriched terms include phosphorylation, signal transduction, 

signaling, kinase activity, etc. and correlate with the known functions of CaM binders. We provide 

the ranked list of the top predictions from CaMELS used in this analysis in the online 

supplementary material. 

Binding Site Prediction 

Table 4 and Fig. 3 show the results of CaMELS for binding site prediction. Table 4 also shows the 

best results of SVM, mi-SVM and MI-1 from our previous study using the same evaluation 

protocol.10 CaMELS gives an AUC-PR of 87.0% with AUC-ROC of 99.2% (Table 4; Fig. 3a). 

The results show a large improvement in the performance of CaMELS in comparison to MI-1 with 

AUC-ROC of 96.9%. (Table 4). A notable increase is also seen in AUC0.1 from 59.0% to 79.0% 

(Table 4; Fig. 3b). True and False hit rates of 77% and 1.0% also show the high prediction accuracy 

of CaMELS. The median rank of the first positive prediction (MRFPP) is 1.0 for all features used 
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with CaMELS. The difference in the prediction accuracy between the conventional SVM and 

multiple instance learning based methods (mi-SVM, MI-1 and CaMELS) shows the effectiveness 

of modeling CaM binding site prediction problem through multiple instance learning. Furthermore, 

the improved in accuracy of CaMELS with respect to other MIL based techniques (MI-1 and mi-

SVM) is a consequence of solving the MIL optimization problem through the proposed stochastic 

sub-gradient optimization (SSGO).  

• Analysis of features 

CaMELS used different window level feature representations for CaM binding site perdition such 

as PD-Blosum, PD-1, AAC, a combination of PD-1 with AAC (AAC+PD-1) and propy. The PD-

Blosum feature representation gives the best results in comparison to other features (Table 4, Fig. 

3a & b). These improvements are due to the use of feature representation which models the 

position-specific substitution behavior of different amino acids within the protein.  

Fig. 4 shows the weight vectors obtained from training CaMELS with the AAC and PD-1 feature 

representations. These weight vectors show the importance of individual amino acids in 

determining CaM binding sites within a protein sequence. The weight vector of AAC feature 

representation, shown in Fig. 4a, depicts large positive weights for positively charged amino acids 

Arginine (R), Lysine (K) and the hydrophobic amino acid Tryptophan (W). Amino acids such as 

Aspartic acid (D), Glutamic acid (E), Proline (P) and Tyrosine (Y) have large negative weights. 

These amino acid propensities in CaM binding sites are in close agreement with previous studies 

and also with known CaM binding motifs.9, 10, 15, 41 

The weight vector of position dependent feature representation, shown in Fig. 4b, illustrates the 

role of different amino acids in binding site prediction with respect to their positions in a given 

window. For example, Lysine (K) shows large positive weights at the end of the window but small 
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in the middle; Arginine (R) shows large positive weights at positions 8 and 18; Tryptophan (W) 

has large positive weights at middle and negative weights at the corner of the window; Aspartic 

acid (D), Glutamic acid (E), Proline (P) show their negative role in CaM binding with large 

negative weights in the middle. This position dependent learning behavior of the classifier is in 

close agreement with known CaM binding motifs and can be used to extract more biologically 

relevant motifs.15 

• Biological significance 

We have also verified the accuracy of binding site prediction of CaMELS by predicting the binding 

site of the Adenylyl cyclase domain from Bordetella pertussis. The crystal structure of this toxin 

in complex with CaM is available in the Protein Data Bank as 1YRT42 and is not part of our training 

set. Fig. 5 shows this structure along with the predicted CaM binding sites from CaMELS. The 

predicted binding site overlaps significantly with the residues of the Adenylyl cyclase that occur 

within 5Å of CaM in the complex structure. The highest scoring region coincides with a 

Tryptophan residue at position 242 in the protein which is known to stabilize this complex.42 

Webserver for CaMELS 

We have developed and deployed a webserver of CaMELS. This webserver takes a query protein 

sequence in plain or fasta format and performs CaM interaction and binding site prediction for it. 

The user interface of the CaMELS webserver is shown in Fig. 6. After the successful submission 

of a protein sequence, the users will be redirected to a page showing CaMELS predicted scores for 

CaM interaction and binding site predictions. For CaM interaction prediction, the predicted score 

shows the interaction propensity of the submitted protein with CaM. Similarly, for CaM binding 

site prediction, residue level scores of all windows are shown. A plot of residue level scores of all 
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windows for binding site prediction with the location of predicted binding site is also shown on 

this page. The webserver is available at the following URL. 

http://faculty.pieas.edu.pk/fayyaz/software.html#camels.  

CONCLUSIONS 

We have presented a set of models for CaM interaction and binding site prediction called CaMELS. 

CaMELS uses protein sequence information only and offers state of the art accuracy both for 

interaction and binding site prediction. For interaction prediction, CaMELS achieved significant 

improvement in performance using protein level features in comparison to earlier methods that 

used information derived only from the most likely CaM binding site in a protein. This shows that 

sequence information of the whole protein is predictive of its interaction with CaM. We have also 

presented a multiple instance learning model for solving the binding site prediction problem. Our 

results show near perfect classification accuracy for this problem with the use of a stochastic 

gradient solver. The proposed suite of algorithms is expected to be very helpful to biologists 

working on analyzing the functions and interaction behavior of CaM and its target proteins.  
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Figure Legends 

Figure 1. (a) Precision-recall curves for interaction prediction across all models; (b) Precision-

recall curves for the comparison of CaMELS with MI-1 and iLoops. The area under the curve is 

shown in parenthesis as mean across different folds. 

Figure 2. Violin plot showing the predictive performance of DFS and CaMELS. Density 

distributions of CaM Interacting (+1) and non-interacting (-1) proteins with respect to DFS and 

CaMELS scores are shown. Dotted lines show the first, second and third quartiles of these 

densities. 

Figure 3. (a) Precision-recall curves for binding site prediction across all models; (b) ROC0.1 

curves for binding site prediction across all models. The area under the curve is shown in 

parenthesis as mean across 

Figure 4. Weight vectors for AAC and PD-1. (a) Weights of different amino acids in the 

(position-independent) AAC feature representation; (b) Heat map of the weights of different amino 

acids against their position from position-dependent 1-spectrum (PD-1) feature representation. 

Figure 5. The 3D Structure (PDB ID: 1YRT) of Adenylyl cyclase (colored in brown) in complex 

with CaM (colored in cyan). The predicted binding site from CaMELS is shown in purple. 

Residues of Adenylyl cyclase within 5Å of CaM are shown in stick form. 

Figure 6. The user interface of the webserver for CaMELS. (a) The user can submit fasta file or 

plain sequence of a protein of interest for CaM interaction and binding site prediction; (b) 

CaMELS prediction scores for CaM interaction and binding site shown on a redirected page.  
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Table 1.  MIL algorithm with SSGO training for CaM binding site prediction 

Inputs: λ, T 

Initialize: set w0 = 0 

For t = 1, 2, ⋯ , T 

 Select a protein p uniformly at random 

 i* = argmaxi∈Bp wt
Tϕ(xi) 

j* = argmaxj∈Np
wt

Tϕ(xj) 

 Set μt =
1

λt
 

 If wt
Tϕ(xi*)-wt

Tϕ(xj*) < 1: 

         Set  wt+1 ← (1- 
1

t
) wt + μt(ϕ(xi*)-ϕ(xj*) ) 

 else: 

         Set  wt+1 ← (1- 
1

t
) wt 

Output: w =  wT+1 
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Table 2. Interaction prediction results for all models. 

Method Features AUC-ROC AUC-ROC0.1 AUC-PR 

C
a
M

E
L

S
 

propy 86.7 65.1 55.0 

SWIPE 78.3 51.9 40.2 

AAC 74.7 40.4 26.8 

Blosum 78.4 32.6 11.4 

PD-Blosum 68.0 18.0 6.0 

D
F

S
 

Blosum 74.0 26.0 4.0 

AAC 72.0 24.0 4.0 

PD-1 69.0 16.6 3.0 

AAC+PD-1 71.0 17.0 2.6 
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Table 3. GO term enrichment analysis results 

Method 

  

GOTI 

Process Function Component 

CaMELS 0.34 0.68 0.40 

DFS 0.01 0.0 0.0 

 

Table 4. Binding site prediction results for all models. AUC-PR and MRFPP were not available 

for MI-1, mi-SVM and SVM. 

Method Features AUC-ROC AUC-ROC0.1 AUC-PR THR FHR 

C
a
M

E
L

S
 

PD-Blosum 99.2 79.0 87.0 77 1.0 

AAC+PD-1 98.9 77.6 85.6 75 1.0 

PD-1 98.4 76.2 84.1 72 2.0 

propy 98.0 74.7 81.2 68 2.0 

AAC 97.9 72.3 80.7 68 2.0 

MI-1 AAC+PD-1 96.9 59.0 -- 75 1.2 

mi-SVM AAC+PD-1 96.2 55.6 -- 68 1.9 

SVM AAC+PD-1 95.9 55.1 -- 65 2.1 
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Figure 1. (a) 
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Figure 1. (b) 
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Figure 2 
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Figure 3. (a) 

 

 

 

 

 

 

 

 



35 
 

 

Figure 3. (b) 
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Figure 4. (a) 
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Figure 4. (b) 
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Figure 5 
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Figure 6. (a) 
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Figure 6. (b) 

 


