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Behavioural Brain Research: Do people with Parkinson’s disease look at 

task relevant stimuli when walking? An exploration of eye movements 
 

Abstract 

Eye movements are impaired by Parkinson’s disease (PD) although limited research has explored if 

PD affects the relevance of visual fixations when walking. Visual fixations may provide crucial 

contextual information for safe navigation and important insights into fall risk. This study aimed to: 

investigate visual fixations made while walking under a range of conditions in PD; identify their task 

relevance; and explore their relationship with clinical features. Thirty-eight people with mild-

moderate PD and forty age-matched control participants completed a straight walk with (i) no 

additional stimuli and (ii) with additional stimuli (visual cues or a high contrast obstacle), whilst 

wearing a mobile eye-tracker. Fixations were extracted and classified by location and relevance. PD 

participants made proportionally fewer task-relevant fixations (floor, walls and additional stimuli 

ahead), caused by significantly more task-irrelevant fixations (floor, walls and ceiling away from 

waking path) during normal walking (p=0.014). These group differences were not apparent with 

visual cues (p=0.359). During obstacle crossing trials, PD made significantly more task-relevant 

fixations than controls (p=0.007). Reduced bilateral visual acuity was associated with fewer fixations 

in PD.  Our findings suggest that people with PD visually explore complex environments less 

efficiently likely owing to underlying PD pathology. Visual exploration improved with the addition 

of salient stimuli (for example visual cues or an obstacle) and thus developing and optimising visual 

interventions could prove critical to improving locomotor safety and reducing falls risk in home 

environments.  

 

Keywords: Visual Exploration; Eye-Tracking; Gait; Visual cues; Obstacle crossing 

 

  



1. Introduction 

Parkinson’s disease (PD) is a movement disorder with increasingly recognised visual impairments [1]. 

Changes in visual function include: reduced visual acuity and contrast sensitivity due to retinal pathology [2], 

visuospatial impairments due to changes within the dorsal stream of vision [3], and abnormalities in visual 

sampling (decreased saccadic frequency) [4]. Impairment in the acquisition, processing and interpretation of 

incoming visual information has the potential to affect safe locomotion and increase falls risk.  

 

Acquiring information about the visual scene is achieved by a combination of saccades and fixations. Saccades 

are fast eye movements whereby the fovea shifts between different areas of interest, and these are interspersed 

with fixations, in which visual information is gathered from the environment [5]. People with PD display 

abnormalities in saccadic control including deficits in saccade suppression and control of saccade direction 

[6]. A reduced saccadic frequency has also been noted in people with PD when walking, particularly under 

dual (cognitive) task conditions and during the early approach phase of straight walking prior to turning 

compared to age-matched  controls [4,7]. People with PD also require more saccades to complete static 

computer-based trials assessing visuo-cognition [8]. Saccadic deficits in people with PD may influence 

fixations and as a consequence acquisition of contextual information needed for efficient navigation, however 

this is currently unclear. While limited evidence suggests that saccades are slower [9] and fixations are longer 

in people with PD [10], the relevance of the visual information will depend upon fixation location. Moreover, 

disease severity plays a role with fewer fixations observed in people with more severe PD [11]. Considering 

the degenerative influence of PD pathology on attentional capacity, the authors concluded that this reduced 

fixation count was attributed to an attentional overload when navigating complex environments [11].  

 

Visual information is processed and interpreted in pathways radiating from the occipital lobes [12], and these 

are likely to be affected by PD pathology [3]. Interpreting visual information regarding the surrounding 

environment is, in part, dependent on the clarity of the visual information acquired (i.e. acuity and contrast 

sensitivity). In addition, people with PD demonstrate a reduced ability to inhibit irrelevant and prioritise 

important visual information from reflexive saccades which will influence the acquisition of visual information 



[6,13]. Visual interventions for gait impairment in PD, such as visual cues, are prescribed clinically by 

physiotherapists to overcome gait hypokinesia and restore appropriate spatial scaling during walking [14]. The 

mechanism underpinning the response to visual cues in PD is not fully understood. Visual cues appear to 

redirect both vision and attention to relevant environmental stimuli and act as an external visual prompt to 

regulate and improve gait in PD [10]. Visual cues have been reported to increase the total number of fixations 

during walking in people with PD [11], however this study did not include a control group so inferences are 

limited. Interventions to improve locomotor safety are often prescribed to people with PD to overcome 

pathology-associated gait impairment and reduce trips and falls which are common [15]. Improving the 

saliency of ground-based obstacles and other trip hazards may work similarly to visual cues by redirecting 

attention to areas pertinent for safe locomotion. Investigating the contextual relevance of the visual information 

obtained from fixations exhibited during locomotion (i.e. what participants are looking at and its relevance to 

the task) could provide insight into one of the mechanisms underlying gait impairment in PD and may 

contribute to the development of effective interventions to reduce falls risk.  

 

The present study aimed to: 1) identify and classify fixations during walking according to relevance to the task 

(i.e. Task Relevant or Task Irrelevant), 2) examine the effect of visual cues and obstacles on the task relevance 

of fixations when walking, and 3) examine whether clinical outcomes (disease specific, visual and cognitive 

function) are associated with visual exploration in people with PD. We hypothesised that: 1) PD participants 

would make a lower proportion of task relevant fixations when walking (i.e. due to fewer task relevant fixations 

and/or more task irrelevant fixations), 2) visual cues and a salient obstacle would increase the proportion of 

relevant fixations made, and 3) differences in task relevance of fixations would be associated with by visual 

function, global cognition and PD-specific measures. 

  



2. Materials and methods 

 2.1 Participants 

This study included 41 PD and 41 healthy older adult (control) participants. Data were obtained and collated 

from two pre-existing data sets: Study 1 (VFDG ‘Visual function during gait’ [16]) and Study 2 (V-TIME 

‘Virtual-reality treadmill training to improve mobility and reduce falls in the elderly’ [17,18]). The PD cohort 

were recruited through movement disorder clinics, and controls were identified through local community 

partnerships.  NHS ethical approval was granted for both studies (REC Ref: V-TIME: 12/NE/0249, VFDG: 

13/NE/0128), and informed written consent was obtained according to the Declaration of Helsinki [19].  

 

2.2 Inclusion and exclusion criteria 

PD participants were recruited providing that they: had a formal diagnosis of PD (UK Brain Bank Criteria)[20], 

were currently taking antiparkinsonian medication, and were of mild-to-moderate disease severity (Hoehn & 

Yahr stages I-III) [21]. PD and control participants were included in the study provided they were: >50 years 

old, able to ambulate unassisted for at least five minutes, and had stable medication for the month prior to 

assessment. Participants were excluded if they presented with uncorrected visual or auditory deficits and any 

psychiatric or neurological disorder (other than PD). Severe cognitive impairment (i.e. dementia) was screened 

for and excluded using the Mini-Mental State Exam (MMSE) [22] (<24/30 for both groups). PD participants 

were assessed while optimally medicated approximately one hour after taking their antiparkinsonian 

medication. 68% of the PD cohort had experienced at least one fall within the last 12 months (28 of 41) whereas 

none of the control group had fallen.  

 

 2.3 Outcome measures 

Demographic data were collected from participants (age, sex, education) in combination with measures of 

global cognition (MMSE), visual function (visual acuity and contrast sensitivity) and PD disease severity 

(disease duration, Hoehn & Yahr stage [21], Unified Parkinson’s Disease Rating Scale part III (UPDRS-III) 

[23]. Monocular and bilateral visual acuity (LogMAR) and contrast sensitivity (Mars CS, Mars Perceptix, NY) 

were measured following the manufacturers' procedures, using a different chart in each test (three in total) to 



avoid learning effects. Differences in left/right visual acuities may interfere with depth perception during 

navigation [24], so the absolute difference was calculated (left minus right). The modified Falls Efficacy Scale 

(FES-I) was used to assess fear of falling in the PD group only with higher scores indicating a greater fear of 

falling [25]. 

 

2.4 Protocol 

Participants completed two walking conditions at a self-selected pace: (i) walking and (ii) walking with 

additional stimuli (visual cues or an obstacle) (Figure 1A). Both study cohorts completed the straight walking 

trials and only data for this walking condition were combined. For the visual cueing trial (Study 1), five parallel 

lines of black tape were affixed directly onto the light coloured floor surface. The lines were perpendicular to 

the trial pathway and started from 150-cm into the walk separated by 50-cm. For the obstacle crossing trial 

(Study 2), a high contrast (yellow) obstacle (HxWxD 15x60x2cm) was placed half way down the walking 

path. All walking trials were completed over a 10-metre walkway. Trial order was counterbalanced and each 

trial was completed three times. The laboratory was well lit which remained consistent during all testing 

sessions. 



 

Figure 1: Walking protocol (A), extraction (B) and identification (C) of fixation location  

 

  2.5 Equipment and calibration 

Eye movements were tracked using a Dikablis infrared mobile eye-tracker (Ergoneers GmbH, Germany) which 

uses synchronised video footage from two head-mounted cameras sampling at 50Hz. A forward-facing camera 

captured the participant’s visual scene and a monocular infrared camera recorded the movements of the left 



eye (Figure 1B). The manufacturer’s software (Dikablis Recorder v2.5) detected the pupil position using 

inbuilt algorithms relying upon the relative blackness of the pupil. This data was exported as XY co-ordinates. 

System calibration was completed per participant prior to data acquisition to ensure that the camera views had 

been overlaid correctly. 

 

2.6 Data analysis 

Eye-tracking data from the first trial of each condition were analysed as visual exploration was considered 

most natural when participants were naïve to the environmental condition. Raw co-ordinate data were cropped 

to the trial duration (start and end of walking). Frame-by-frame manual interpolation and error correction were 

completed in the Dikablis Analysis software to correct instances in which the eye-tracker failed to locate the 

pupil correctly. The cleaned video files were down-sampled to 25Hz automatically by the Dikablis software 

and were input through a custom algorithm to extract visual fixations using MATLAB® (R2015a, The 

MathWorks Inc., Natick, MA, USA) [26]. The algorithm identified the first frame of a fixation which was 

exported as a static image (.jpeg). The image depicted the participants’ visual scene with the cross-hair 

identifying the pupil location for each fixation.  

 

Fixation locations were defined using our recently published classification scale [26], which are displayed in 

Table 1 and Figure 1C. The relevance of a fixation location was defined by its potential to provide useful visual 

information to enable safe completion of the complex walking task. Fixations were classified as task relevant 

if they were made on areas (i.e. floor, walls and stimuli) ahead of the participant in the trajectory of gait, or as 

task irrelevant if they were made to areas (i.e. floor, walls etc.) not in the participants' forward trajectory.  

  



Table 1: Classification of fixations upon areas of interest[22]  

Fixation Location Definition 

Task Relevant  

Wall Straight The wall in front of the participant 

Near Floor Ahead The floor up to 2 meters ahead of the participant 

Far Floor Ahead The floor over 2 meters ahead of the participant 

Near Cue (Study 1) The cued area within 2 meters from the participant 

Far Cue (Study 1) The cued area beyond 2 meters from the participant 

Obstacle (Study 2) The obstacle 

Task Irrelevant  

Side Wall The walls to either side of the participant 

Side Floor The floor to either side of the participant 

Ceiling The ceiling 
  

The same fixation locations were defined for both studies unless otherwise stated 

2.7 Statistical analysis 

Data were analysed in SPSS (v22, IBM Corp., Armonk, NY, USA) and normality was assessed for each group 

using one-sample Kolmogorov-Smirnov tests. Group means were compared using independent t-tests, analysis 

of variance or Mann-Whitney U tests accordingly, and categorical data was examined using Chi-squared tests. 

Tukey’s test was used to identify outliers for fixation counts, and analysis with and without outliers was 

conducted to determine their influence. Since their inclusion did not yield differing results, outliers remain 

included within the analysis. Negative binomial regression was chosen to account for the over-dispersed count 

data (i.e. the data had more variability than a normal distribution), and was used for comparison of fixation 

counts. The Wald chi squared (χ2) was reported. It was also used in a backwards step wise model to examine 

for factors influencing fixation location when walking (age, sex, time in education, visual acuity and contrast 

sensitivity (binocular, monocular and absolute difference), MMSE total score, PD disease duration, Hoehn & 

Yahr disease stage, UPDRS III score and self-reported fear of falling), with the model’s goodness of fit 

accepted with a Residual Deviance of 0.9-1.1. Factors were removed from the model until the strongest model 

remained. The number of task irrelevant fixations were sufficiently low (<2 excluding outliers for both groups 

under all conditions) that they did not fit the model, and were transformed into a binary data set (no irrelevant 

fixations made, one or more irrelevant fixations made) and subsequently analysed categorically using the 



Pearson chi squared statistic. The Incident-Rate Ratio (IRR) was used to indicate whether more (IRR>1) or 

fewer (IRR<1) fixations were made for any significant associations. Significance was accepted at p<0.05.  

 

3. Results  

 3.1 Participant demographic analysis 

Data from two PD and one control participant were excluded due to equipment failure, whilst an additional 

two PD participants’ data were removed as they were unable to complete the study protocol due to freezing of 

gait. Final analyses included 38 PD and 40 control participants for the straight walking trials. Initial analysis 

of both demographic and fixation location data revealed no significant differences between Study 1 and Study 

2 cohorts for either PD or control groups, so they were collapsed into a single PD and control group for analysis 

of walking (Table 2, PD n=38, Control n=40). The PD and control groups did not significantly differ with 

respect to age (p=0.532) or sex (p=0.350) and thus were not controlled for in the statistical analyses. Those 

with PD had spent significantly less time in education and had poorer global cognition (MMSE, p<0.001). 

Spearman rho correlations were used to further assess whether global cognition or education were significantly 

associated with fixation location (task relevant or task irrelevant). Of the 48 correlations assessed, only one 

reached statistical significance highlighting a correlation between global cognition and task relevant fixations 

during obstacle crossing in the PD group (rho=.495, p<.05). Thus it was concluded that neither variable had a 

significant influence upon fixation location and were not controlled for within our subsequent analysis. 

  



Table 2: Participant Demographics 

Characteristic 
PD 

(n=38) 

Control 

(n=40) 
Statistic P 

Age (years)1 69.6 (8.2) 68.4 (8.8) t76 = -0.627 0.532 

Sex (male/female) 23m / 15f 20m / 20f χ2
1 = 0.873 0.350 

Time in Education (years)2 12.0 (10.0-14.5) 14.0 (12.0-17.0) U = 432.0 0.001* 

MMSE (Score/30)2 28.5 (27.0-29.0) 30.0 (29.0-30.0) U = 361.0 <0.001* 

Bilateral Visual Acuity (LogMAR)1 0.0 (0.2) 0.1 (0.1) t76 = -2.982 0.004* 

Bilateral Contrast Sensitivity (LogCS)1 1.5 (0.2) 1.6 (0.1) t50 = 3.778 <0.001* 

PD Disease Duration (years)1 7.3 (6.7) -  - 

Hoehn & Yahr Disease Stage I (6)  

II (25)  

III (7) 

 

- 

  

- 

UPDRS III (Score/56)1 32.0 (16.2) -  - 

Fear of falling (FES-I; Score/64) 1 31.2 (10.6)    

‘*’ denotes significance (p<0.05), 1 Denotes Mean (SD), 2 denotes Median (IQR). Independent t-tests, chi-squared tests 

and Mann-Whitney U tests were used for between group comparisons of demographic data. 

 

3.2 Fixation Location Analysis 

3.2.1 Location of fixations in PD and controls when walking 

The locations of fixations made in all walking trials are shown in Table 3. In the level walking trials there were 

no significant differences in the total or task relevant fixations between groups, however participants with PD 

made significantly more task irrelevant fixations (p=0.014).  

  



Table 3: Relevance of fixation locations during each of the walking conditions 

Walking without additional stimuli 

Fixation Count PD (n=38) Control (n=40) χ2 P 

Total 3.45 (3.40) 2.40 (1.37) 4.6041 0.032* 

Task Relevant 2.55 (2.00) 2.30 (1.22) 0.4831 0.487 

Task Irrelevant 0.89 (2.50) 0.10 (0.38) 6.0872 0.014* 

Walking with additional stimuli – Study 1: Visual Cueing 

Fixation Count PD (n=20) Control (n=21) χ2 P 

Total 4.75 (2.92) 4.38 (2.42) 0.2131 0.645 

Task Relevant 4.70 (2.94) 4.14 (2.26) 0.5111 0.475 

Task Irrelevant 0.05 (0.22) 0.24 (0.54) 1.7642 0.359 

Walking with additional stimuli – Study 2: Obstacle crossing 

Fixation Count PD (n=18) Control (n=19) χ2 P 

Total 4.22 (2.34) 2.42 (0.90) 8.8641 0.003* 

Task Relevant 3.83 (2.33) 2.26 (0.93) 7.3571 0.007* 

Task Irrelevant 0.39 (1.04) 0.16 (0.37) 0.0042 1.000 

‘*’ denotes significance (p<0.05), 1 Denotes analysis using Wald χ2 (df = 1), 2 denotes analysis using Pearson χ2 (df = 1). 

Data are presented as ‘Mean (SD)’.  

  

3.2.2 Location of fixations in PD and controls when walking with visual cues and salient 

obstacles 

The effect of visual cues and the obstacle on fixation locations are displayed through difference scores 

(fixations made when walking with additional stimuli (i.e., obstacle or cue) – fixations made when walking) 

in Figure 2. When walking with visual cues, more task relevant fixations were made by both groups compared 

to walking. The increased task irrelevant fixations seen in PD during walking were corrected with visual cues 

present. With an obstacle present, PD made significantly more task relevant fixations than controls. Again, the 

previous difference observed in task irrelevant fixations between groups was not observed with the obstacle 

present.  



 

Figure 2: The effect of additional stimuli on the relevance of visual fixations. Difference scores 

(Walking with additional stimuli – walking without additional stimuli) were calculated and displayed 

for task relevant and task irrelevant fixations in PD and control participants.  

 



3.3 Factors underpinning fixation location and relevance 

Table 4 shows the factors significantly influencing the total, task relevant and irrelevant fixations made in 

walking trials (Study 1 and Study 2 groups collapsed). All demographic, visual, cognitive and PD-specific 

outcomes were entered into the negative binomial regression model which assessed the contribution of each 

outcome to the model and included only the outcomes which substantially contributed to the strongest model. 

No significant associations (i.e. no combinations of factors resulted in p<0.05) for the control group. In the PD 

group, a reduction in bilateral visual acuity (increase in LogMAR score) predicted: fewer total fixations 

(χ2=6.238, p=0.013) and fewer task relevant fixations (χ2=3.384, p=0.066). Visual acuity scores increased as 

fixation count decreased, with the IRR indicating reducing fixation counts for those with higher scores and 

therefore poorer visual acuity and contrast sensitivity. Years of education, sex, global cognition (MMSE) or a 

fear of falling (FES-I) did not make a significant contribution to the regression model. 

 

Table 4: Significant factors influencing fixations made in walking trials with no additional stimuli.  

‘*’  

Denotes significance (p<0.05). VA = Visual Acuity, Abs Diff = Absolute difference, Incident-Rate Ratio = IRR. 

 

4. Discussion 

This study explored the location and task relevance of visual fixations during walking in different contexts.  

Novel findings include inefficient visual exploration in people with PD compared to controls which improved 

in the presence of visual cues or a salient obstacle. PD participants who had reduced visual acuity were also 

likely to make fewer fixations whilst walking.  

 Fixation Count Factor(s) Wald χ2 (df = 1) Deviance P IRR 

C
o

n
tr

o
l 

(n
=

4
0

) 

Total Age 2.924 0.643 0.087  

 VA Abs Diff 3.213  0.073  

Task Relevant Age 2.162 0.566 0.141  

 VA Abs Diff 2.280  0.131  

Task Irrelevant Age 1.353 0.326 0.245  

VA Abs Diff 1.808  0.179  

P
D

 (
n

=
3

8
) Total Bilateral VA 6.238 0.954 0.013* 0.102 

Task Relevant Bilateral VA 3.384 1.082 0.066  

Task Irrelevant Disease Duration 2.727 0.699 0.099  



4.1 Mechanisms underpinning inefficient visual exploration in PD 

Inefficient visual exploration in PD when walking may be caused by differences in acquisition of visual 

information leading to difficulties in correctly identifying and recognising task relevant stimuli. Both visual 

acuity and contrast sensitivity were impaired in PD as expected from previous literature [3,27]. Reduced 

inhibition of reflexive eye movements may also have contributed to the inefficiencies observed. Saccades 

towards an area of interest can be characterised as voluntary or reflexive, depending on whether the movement 

was executed deliberately. A failure to inhibit reflexive eye movements which is well documented in PD [6,13], 

may contribute to the increased number of irrelevant fixations. This is supported by the recent characterisation 

of these eye movements in PD due to disease-related pathology in the retino-colliculo-thalamo-amygdala 

pathway [28]. Reduced control of reflexive saccades is associated with disease progression [29] such that 

impairments in visual exploration are likely to be exacerbated in more advanced PD compared to the relatively 

mild group included in the present study. Acquisition of visual information is to some extent under cognitive 

control, therefore impaired cognition could explain inappropriate fixations. The relationship between vision 

and cognition in PD has been described [30,31], especially the mediating role of attention [32]. Attentional 

impairment is common in PD and may therefore increase the proportion of irrelevant fixations. Although we 

didn’t find an association with cognition, this is probably due to the limitations of the cognitive test (MMSE) 

and the relatively mild PD group included in the present study.  Environmental modifications, such as 

improved contrast of ground-based hazards and visual cues, may be useful to guide vision (and thus attention) 

even in the presence of the deficits seen in PD. 

 

4.2 The effect of environmental stimuli  

Visual cues and salient obstacles guided vision towards task relevant areas thus correcting the inefficiencies 

in visual exploration that we observed in people with PD when walking without additional stimuli. This 

enhances our understanding of the mechanisms underpinning their utility. Whilst visual cues have been shown 

to be beneficial for ameliorating gait deficits in people with PD [33-35], their effect on guiding vision during 

cued walking may be of importance. Given that people with PD who have more severe symptoms make a 

greater number of fixations when walking with visual cues [11], they may have greater benefits as the disease 

progresses. In addition, the increase in overall fixation count in obstacle crossing trials suggests that the ability 



to perceive salient stimuli may be impaired in PD and more fixations may be required for sufficient 

understanding of the environment. People with PD often present with impaired visuospatial ability and 

working memory [36] which will likely have influenced the ability to perceive the salient obstacle, meaning 

more fixations were required to acquire and retain sufficient information to traverse it. This has also been 

demonstrated in previous research highlighting that PD are more reliant on visual information during obstacle 

crossing than age-matched controls [37]. It is plausible that people with good peripheral vision may have not 

needed to fixate upon the actual cue or obstacle to obtain sufficient visual information for task completion. 

People with PD experience neurodegeneration to retinal cells [2] and photoreceptors [38] and consequently 

the quality of their peripheral vision may also be adversely affected. Assessment of peripheral and central field 

vision loss during routine clinical assessments with PD would be beneficial. 

 

4.3 Factors influencing visual exploration 

To our knowledge this is the first study to examine the effect of clinical outcomes on the contextual relevance 

of visual exploration.  Reduced bilateral visual acuity predicted fewer total and task relevant fixations when 

walking in PD which may lead to reduced visual exploration. Whilst visual acuity was associated with the 

context of fixations in PD, it must acknowledged that the majority of participants had good visual acuity with 

only four PD participants scoring less than that required for driving. Consequently, further work may consider 

the role of vision and context of visual information acquired during locomotor tasks in individuals with greater 

visual impairments. Contrast sensitivity was not significantly associated with fixation pattern, although it may 

not be challenged adequately in a laboratory environment. Furthermore, the model fit was not as good as for 

other variables, and would likely be improved in future research using a longer walk of greater complexity (i.e. 

cluttered environments).  

 

Global cognition (i.e. MMSE total score) did not significantly influence visual exploration contrary to our 

hypothesis. Although the MMSE is a good screening tool for cognitive impairment, it may not be sensitive to 

milder cognitive impairment in PD with less severe disease [39], and future research would benefit from more 

rigorous cognitive assessment. Furthermore the narrow range of MMSE scores in the entire cohort (27-30) 



likely influenced its utility for predicting fixation outcomes and future research should include a group of PD 

participants with a larger range of cognitive function.  

 

4.4 Implications for Clinical Practice and Future Research 

The present study found differences in visual exploration in PD compared to age-matched controls during 

walking and obstacle crossing. Implementing environmental modifications such as visual cues and improving 

the contrast of ground-based obstacles appears to positively alter visual exploration by reducing the number of 

irrelevant fixations. For practical implementation, visual cues need to be tested over time to understand how 

to optimise cue type to best suit the individual (i.e. location, type, duration, interval, colour-contrast), how to 

vary the cue type to prevent habituation and how visual exploration is modified in response to cue type. Whilst 

the contrast of potential trip hazards (i.e. obstacles) appears to guide vision towards these important areas, 

research exploring a range of obstacle sizes and contrasts may help to determine the optimal way to highlight 

these important environmental features to reduce falls risk. Both potential interventions should also be explored 

in real-world environments to better simulate and evaluate a home-based intervention.  

 

These interventions may provide even further benefit than this exploratory work indicates due to the influence 

of antiparkinsonian medication on vision [40]. As the effect of dopaminergic medication wears off and people 

with PD experience motor fluctuations, visual function (i.e. acuity and contrast sensitivity) and exploration 

(i.e. saccades and fixations) may also become less effective. Consequently, the differences exposed in this 

study may be exacerbated when people with PD are not optimally medicated. As such, these interventions may 

have greater utility for improving visual exploration when dopaminergic medication is not optimal.  Assessing 

the effect of medication on visual exploration during ambulatory tasks is also recommended for future work. 

 

Furthermore, these subsequent studies will benefit from automated area of interest analysis and superior spatial 

resolution of the field camera, as this will allow for accurate and efficient classification of fixations in smaller 

areas of interest within more complex visual environments. Increased temporal resolution of the apparatus to 



at least 200Hz will allow more accurate measurement of the velocity, direction and latency of saccades during 

locomotion[41,42], thereby providing a better understanding of visual exploration.  

 

5. Conclusions 

Reduced efficiency of visual exploration when walking is likely to influence the safety of people with PD 

during locomotor tasks and increase overall disease morbidity. Visual exploration was redirected to relevant 

areas when guided by visual cues or a high contrast obstacle, and as such may prove to be a useful home-based 

modification to improve locomotor safety and reduce falls risk in people with PD. Further research exploring 

how improving the saliency of task relevant stimuli may be optimised to the individual is required so that falls 

interventions may be implemented in the home environments. 
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