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Abstract

The Abeles model of cortical activity assumes that in absence of stimula-

tion neural activity in zero order can be described by a Poisson process. Here

the model is extended to describe information processing by synfire chains

within a network of activity uncorrelated to the synfire chain. A quantitative

derivation of the transfer function from this concept is given.

Two seminal concepts were introduced by Abeles [1, 2, 3]: A quantitative model
for uncorrelated activity in the cortex in absence of external stimulation, and the
concept of the synfire chain, a spatiotemporal pattern of synchroneous activity of
neurons being active in the same cortical task.

Synchroneous spiking, as a refinement of averaged firing rates, has been used
as an equivalent mathematical basis for neural models [4, 5]. The experimental
and theoretical aspects of synfire chains remain a field of active research [6, 7] and
also provide a conceptual basis for neural computing architectures [8]. This paper
analyzes the extension to formulate processing and propagation of information in
such a network.

1 The Abeles model of cortical activity

The model of uncorrelated cortical activity given by Abeles [1], here referred to
as Abeles Model, is a direct approach to understand why randomly firing by self-
excitation can be a stationary and robust firing mode in a neural network. The
underlying experiments are interpreted in the following way: Even if the cortex is
not excited by sensory input, the neurons are firing randomly (Poisson process)
and excite each other. Obviously, this is to be interpreted as a “ground state” of
the cortical network. An interesting question is whether random firing is a stable
mode of a network or not. Because 99% of the inputs to the cortex are coming
from the same or other cortical areas [9], we shall at first neglect the 1% (sensory)
input and therefore consider a network with 100% feedback.
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2 Definition of the Abeles model

The defining assumptions to the Abeles Model are [1]:

(i) Each postsynaptic potential has the shape of a falling exponential (for t ≥ 0):

(+A)e−t/τ for excitatory inputs,

or,

(−A)e−t/τ for inhibitory inputs.

This assumption does not only include an idealization of the waveform, it
also includes that the values of synaptic strength A and the time constants
τ are the same for all neurons.

(ii) All postsynaptic potentials sum up in a linear fashion giving the intracellular
potential; the neuron generates a spike if the intracellular potential reaches
a threshold T .

(iii) All neurons are firing independently. This, however, is eqivalent to: No in-
formation is processed.

(iv) Each neuron has N synaptic inputs which can be excitatory or inhibitory in
any proportion.

(v) The neurons fire at an average rate of λ spikes per second.

3 The self-consistence equation for the average

firing rate

For high rates of inputs, the input spikes add up to nearly random fluctuations
of the intracellular potential; the probability density of the intracellular poten-
tial therefore is Gaussian. This means: The firing rate of a cell is proportional to
the probability for the intracellular potential to be above threshold:

λ =
1

σ
· K√

2π
·
∫ ∞

T

e−
x2

σ2 dx =
K√
2π

·
∫ ∞

T
σ

e−y2

dy (1)

where K is an unknown constant and σ2 is the variance of the intracellular poten-
tial, which can be calculated as follows:

Each postsynaptic potential contributes a variance of
∫ ∞

0

((±A)e−t/τ )2dt = A2 τ

2
.

Nota bene, excitatory and inhibitory connections here contribute equally.
The independent linear superposition of N · λ spikes (per second) gives the

total variance

σ2 = (Nλ) · (A2 τ

2
),
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or

σ

A
=

√

Nλ
τ

2
. (2)

This means: For random firing at a constant average firing rate we have to satisfy
a self-consistence-equation

λ =
K√
2π

·
∫ ∞

T

A
√

Nλτ
2

e−y2

dy (3)

which still hasK and T/A as free parameters to be fitted to the experimental data.
Abeles’ estimation for T/σ is as follows: If the neuron fires at a rate λ and each
spike is generated if the membrane potential is approximately 1ms (≈ 0.4τ) above
threshold, the probability of the intracellular potential for being above threshold
is approximately λ · 1ms = 0.005, which is numerically equivalent to T/σ being
2.58. Therefore only one parameter (K) is free, it can be evaluated by solving
equation (3) for K.

The main results of the Abeles Model are quantitative estimations of network
parameters from realistic neurophysiological properties. Using N = 20000, λ =
5s−1, τ = 2.5ms, K = 1000s−1, one obtains [2]:

(i) σ/A =
√
125 ∼= 11: The variance of the intracellular potential is 11 times

bigger than the amplitude of a single spike.

(ii) T/A = T/σ · σ/A ∼= 2.58 · 11 ∼= 29: Only 29 synchroneous excitatory spikes
will lift the membrane potential to threshold. (This is a small value com-
pared with Nλ = 100000 spikes that every cell receives per second.)

(iii) A single spike has no detectable effect on the output rate: The firing rate
increases from 5 per second to 6.4 per second, but relaxes back to 5 per
second with the time constant τ . This causes only 0.003 extra output spikes.

To conclude, synaptic strength seems weak for detecting a single spike, but fairly
strong for detecting coincidence inputs. This is a consequence of the highly non-
linear error function, which determines by (1) the firing rate λ. As analyzed in
the appendix, below a critical firing rate λc random firing is unstable, so that a
certain level of activity is required to transmit information.

4 How can we describe processing of information?

– Extension of the Abeles model

As one of the fundamental assumptions of the Abeles model is the randomly firing
of all neurons, which means that all spikes are completely uncorrelated, it is a

priori unable to describe information transfer.
If the number of spikes carrying the information is much less than the number

of random spikes (N · λ ≈ 100000), the probability density of the intracellular
potential can be assumed to be approximately Gaussian, so that the mechanism
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is still the same: The fluctuations converging to each neuron raise the intracellular
potential to threshold. Remarkably this condition does not explicitely restrict
the correlated activity of a single neuron, so it can be involved constantly in
information processing.

How can we understand simple processing of information in a real network,
whose ‘ground state’ is randomly firing at a rather low rate? The concept given by
Abeles is the ‘synfire chain’: Groups of synchroneously firing neurons are carrying
the information; their number must be sufficiently high (at least 10–20) to excite
the following neurons.

A possible quantitative description of processing of information within this
concept is given by the model described in the remainder of this paper. The basic
properties of the extended model [10] are defined as follows:

(i) All input spikes –same as in the Abeles model– are assumed to share the
common waveform of a falling exponential,
xi(t) = Aie

−(t−t0)/τ (for t ≥ 0), which may idealize the signal through the
axon.

(ii) The synaptic strength, which was a constant A in the Abeles model, may be
inhibitory (Ai < 0) or excitatory (Ai > 0), and is assumed to have different
values for each neuron. In general, we may assume the synaptic weights also
to be time-dependent, so that synaptic plasticity can be described. However,
this time-dependence takes place on a much larger time-scale than the spike
dynamic.

(iii) All postsynaptic (episynaptic) potentials are assumed to sum up to the intra-
cellular potential:

I(t) =
∑

i

Aixi(t). (4)

(iv) In addition to the Abeles Model we consider synchroneous and random inputs
seperately:

I(t) =
∑

i(sync)

Aixi(t) +
∑

i(async)

Aixi(t). (5)

As the number of randomly firing inputs is large, the difference in synaptic
strength will not disturb the Gaussian distribution, and we can write for the
second sum

Ā
∑

i(async)

xi(t). (6)

This is the same property as in the Abeles Model, although the firing rate
may have a slightly different value.

For the synchroneous inputs, we now only consider one group of firing neurons,
so all these inputs have the same t0, so we can assume t0 = 0, and we have, writing
xi(t) = Xi · e−t/τ :

∑

i(sync)

Aixi(t) =
∑

i(sync)

AiXi · e−t/τ = e−(t−t0)/τ
∑

i(sync)

AiXi, (7)
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where the Xi are ‘digital’ values (0 for no spike, 1 for a spike correlated with the
synfire chain). Hence we can interprete the synchroneous inputs converging to the
cell as a time-dependent lowering of the potential threshold T :

I(t)− e−t/τ
∑

i(sync)

AiXi = Ā
∑

i(async)

xi(t). (8)

Therefore, the firing rate is given by (all sums in the following text are sums only
over the synfire chain inputs):

λ(t) =
K√
2π

∫ ∞

(T−

∑

Aixi(t))

σ

e−y2

dy, (9)

where xi(t) = Xi · e−t/τ . We shall write for the input sum:

X :=
∑

AiXi. (10)

If we ask: What is the total number of extra spikes, generated by an input
X 6= 0, i.e., ∆λ(t) := λX 6=0(t)− λX=0(t)? – We have to integrate the firing rate,

∫ ∞

0

∆λ(t)dt=
K√
2π

∫ ∞

0

dt

[

∫ ∞

(T−

∑

Aixi(t))

σ

dye−y2−
∫ ∞

T
σ

dye−y2

]

, (11)

but this expression counts all extra spikes from t = 0 to t = ∞. However, if the
output shows too much time delay, it will not be correlated to the synfire chain
any more. As the time constant of the exponential is τ, we only take into account
the outputs between t = 0 and t = ∆t, where ∆t is a time constant which may
have a similar or smaller value than τ.
So the average number of correlated output spikes 〈Y〉 to a given input X is given
by:

〈Y(X )〉 = K√
2π

∫ ∆t

0

dt

∫ ∞

T−Xe−t/τ

σ

dye−y2

. (12)

Here we have not subtracted the accidental output spikes, for their value is finite
and rather small in this short time interval. For X → (−∞) the average output
vanishes, which is the limit of strong inhibitory inputs. For X → (+∞), which is
equivalent to strong excitation, we obtain:

lim
X→∞

〈Y(X )〉 =
K√
2π

∫ ∆t

0

dt

∫ ∞

−∞
dye−y2

=
K√
2π

∫ ∆t

0

dt
√
π =

K√
2
·∆t. (13)

If we choose our free parameter ∆t :=
√
2/K, the function f(x) := 〈Y(X )〉, as

defined by equation (12), is a function of sigmoid type and describes the probability
that an output spike is generated. For X = 0 we have the probability of 0.005,
which is the probability of accidental output spikes.
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We recognize this result as the McCulloch-and-Pitts [11] Neuron Model, but
in a fairly new light: Patterns of synchroneously firing neurons can be transferred
and processed in a quasi-digital manner even in a randomly firing network, and the
fluctuations are necessary to understand the sigmoidal character of the response
function.

5 Conclusions and Outlook

Within the framework based on the activity model [2] and the concept of synfire
chains, it has been shown how processing of information can be described quanti-
tatively. Considering correlated and uncorrelated neural activity seperately, it is
possible to describe information processing by synfire chains through a network of
(in ground state) randomly firing neurons in a quantitative manner.

The crudest idealizations concern the waveform of the spikes. The stochas-
tic description of the firing process and the representation of ‘one bit’ by more
than one neuron are essential in the network for error-tolerance and the ability to
generalization.

For synchroneously firing groups of neurons the ‘quasi-digital’ McCulloch-and-
Pitts neuron Model is valid; the fluctuations of the other neurons determine the
input-output characteristic to be sigmoidal.

The extended model can be generalized in a straightforward manner to describe
also inhibitiory synapses and spatio-temporal aspects of real networks by use of
(on larger time-scales) time-dependent values Ai(t) of synaptic strength.

Acknowledgment: The author gratefully acknowledges partial financial support by
Deutsche Forschungsgemeinschaft (DFG) within SFB 654.
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Appendix: Stability analysis of the Abeles model

We now investigate whether the fixed point satisfying the self-consistence-equation
(3) is stable or instable. Although we do not know the exact dynamical properties
of the network, we can answer this question. A small change in λ will lead to a
change in σ, the variance of the intracellular potential, where σ(λ(t), t) is given by
(2). The changed variance of the intracellular potential will cause a change in the
firing rate, given by (1). However, this will need a certain delay ∆t, so that the
stationary equation (1) has to be modified to the iterative expression

λ(σ(t), t +∆t) =
K√
2π

·
∫ ∞

T
σ(t)

e−y2

dy. (14)

Therefore we can approximate the real dynamics by the iteration

λ(λ(t), t +∆t) =
K√
2π

·
∫ ∞

T

A
√

Nλ(t)τ/2

e−y2

dy (15)

and we obtain the answer to an increase of λ by the amount of ∆λ :

∆λ(t+∆t) = λ(σ(λ(t) + ∆λ), t+∆t)− λ(σ(λ(t)), t)

=
∂λ(σ(λ(t)), t)

∂σ(t)
· ∂σ(λ(t), t)

∂λ(t)
·∆λ(t),

which means that every iteration stretches ∆λ by the factor

α(λ) =
∆λ(t+∆t)

∆λ(t)
=

∂λ(σ(λ(t)), t)

∂σ(t)
· ∂σ(λ(t), t)

∂λ(t)
. (16)

Since
∂
∂λ(A

√

Nλτ/2) = σ
2λ , and

∂

∂σ
(

K√
2π

∫ ∞

T
σ(t)

e−y2

dy) =
K√
2π

(−e−(T/σ)2) · (− T

σ2
),

we obtain
α =

K

λ

1

2
√
2π

T

σ
e−(T/σ)2 . (17)

For sufficiently small ∆λ the iteration values λi are close to the start value λ0, so
that the Liapunov exponent of the iteration is given by L = ln|α(λ0)|. Obviously



J. C. Claussen Processing of information in synfire chains 717

the fixed point, which is assumed to represent a ‘ground state’ of randomly firing,
is a stable one if and only if the Liapunov exponent is negative, which means
that |α| < 1. Using the experimental values given by Abeles for the cortex of the
cat, T/σ = 2.58, K = 1000s−1, and λ = 5s−1, we obtain the Liapunov exponent
L = −2.02 or α = 0.13, which is much less than 1. In this fixed point the network
gives strong damping to both fluctuations and external stimulus. This includes
also sufficient stability of the ‘Randomly Firing Mode’: Neither a fade-out nor a
collective ‘explosion’ of the firing can be generated by small perturbations. To
understand the effects of strong perturbations, we will take a short view on the
stability function α(T/σ). Using equation (17), we have to remember that λ/K is
a function of T/σ, so that we can use the expression (x := T/σ) :

α(x) =
x
2 e

−x2

∫∞
x e−y2dy

. (18)

Two limiting cases can be considered: For x → 0, which is the limes of very
high firing rates, α(x) is asymptotic to x/

√
π, so that α(x) decreases to zero.

This expresses the damping of avalanche effects. For x → ∞, which is the limes
of very low firing rates, the integral is asymptotic to 1

2xe
−x2

, therefore α(x) is
asymptotic to x2. As α(x) is continuous, there must exist a critical firing rate
λc, where α(λc) = 1. It is the point where the Liapunov exponent changes its
sign. If the firing rate is higher than λc, we still have damping, same as in the
ground state itself. If the firing rate is lower than the critical value, the cortical
feedback amplifies any fluctuations of the firing rate, so that the fluctuations lead
to a fade-out of the network. To conclude, if the firing rate is lower than a critical
firing rate λc, randomly firing cannot be a stable mode of a neural network.
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