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Local vibrations in real crystals with combined defects
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The conditions of formation and the main characteristics of local vibrations due to the presence
of light impurities Al, Mg, and Mn in the bulk and on the close-packed �111� surface of the fcc
crystal lattice of silver are investigated. The influence of surface roughness is analyzed. Analyti-
cal approximations are obtained which describe the frequency and intensity of the local vibra-
tions at the impurity atom and its nearest neighborhood to high accuracy. The proposed analyti-
cal approximations provide a practical way of determining the parameters of the defect structure
and the interatomic interactions from the experimentally determined characteristics of the local
vibrations. © 2008 American Institute of Physics. �DOI: 10.1063/1.2834262�

INTRODUCTION

Local vibrations, which are discrete vibrational levels
lying outside the bands of the quasi-continuous spectrum of a
crystal containing lighter or more strongly coupled impurity
atoms, have been known for more than sixty years.1–3 The
amplitudes of these vibrations fall off rapidly with distance
from the defect. At distances from the impurity atom much
greater than the characteristic radius of the interatomic inter-
action in the lattice, the fall-off can be considered exponen-
tial. Since that time, these local vibrations �LVs� have been
investigated both theoretically and experimentally �see, e.g.,
Refs. 1–15 �. The results obtained in this field of research
have been set forth in monographs on crystal lattice dynam-
ics �Refs. 16–20 and others�.

Local vibrations are determined as well-defined reso-
nance levels by optical methods, by the method of point-
contact spectroscopy, and in scattering experiments with neu-
trons, helium nuclei, etc. However, they are practically never
used as a source of information about the defect structure and
force interactions in real crystals, although such information
can be obtained from an analysis of the main characteristics
of the LVs. One of the main reasons for this is the difficulty
of carrying out an effective comparison of the theory with
experiment. Calculation of the frequencies and intensities
and investigation of the conditions of formation and the char-
acter of the damping of LVs near a defect by conventional
methods meet with great computational difficulties. There-
fore, such calculations have been done only for extremely
simplified models, which give only a qualitative description
of LVs in real systems, or on the basis of numerical simula-
tions. In the latter case one can make a quantitative compari-
son with experiment, but it is extremely difficult to extract
information about the interatomic interaction and defect
structure of the lattice from an analysis of the characteristics
of the LVs.

Progress in the description of LVs has been furthered
significantly by the development of the Jacobian, or J matrix
method �Refs. 21–23; see also Ref. 24�. Rapid convergence
of the local frequencies in the basis adopted in that method
has been shown, and a simple numerical algorithm for its

implementation has been proposed.25 The Jacobian matrix
method has opened up possibilities for calculating the char-
acteristics of LVs due to combined defects. The first numeri-
cal analysis of the influence of a surface on LVs due to point
defects was given in Ref. 26. However, for obtaining infor-
mation about the parameters of the defects and the host lat-
tice from experimentally measured characteristics of the LVs
it is extremely desirable to have analytical expressions relat-
ing the given characteristics with the desired parameters.
Such expressions for frequencies lying outside the bands of
the continuous spectrum were obtained in Ref. 27. The ana-
lytical approximation of Ref. 27 is based on the rapid con-
vergence of Green functions in the basis adopted in the Jaco-
bian matrix method for frequencies lying outside the quasi-
continuous spectrum.

The present paper is devoted to investigation of LVs due
to the presence of a combined defect — an impurity plus the
surface of the sample — and to investigate the influence of
surface roughness on these characteristics. Calculations are
carried out on the basis of the analytical approach of Ref. 27.
It is shown that measurements of the characteristics of LVs
can be used to obtain information about the force interactions
in crystals containing an impurity.

ANALYTICAL DESCRIPTION OF THE CHARACTERISTICS
OF LOCAL VIBRATIONS

The analytical approach27 that we have adopted for de-
scribing the frequencies and other characteristics of LVs
makes use of the basis adopted in the J-matrix method.21–24

That basis, �h�n�n=0
� , is obtained by orthonormalization of the

sequence

�L̂nh�0�n=0
� = h�0,L̂h�0,L̂2h�0, . . . ,L̂nh�0, . . . , �1�

where L̂� L̂�r ,r��=�̂�r ,r�� /�m�r�m�r�� is an operator de-

scribing the lattice vibrations, �̂�r ,r�� is the matrix of force
constants16–20 describing the interaction of the atoms in po-
sitions r and r�, and m�r� and m�r�� are the masses of those
atoms. The equation of the crystal lattice vibrations can be

written as �L̂−�2Î��� =0, where � is the eigenfrequency of
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the vibrations, and Î is the unit operator. The operator L̂
operates in the 3N-dimensional space H of displacements of
the lattice atoms �N is the number of atoms in the system�.
The vectors of this space, e.g., an eigenvector �� �H or basis

vectors h�n�H �we use an arrow above a symbol to distin-
guish it from the usual three-dimensional vectors, which are
shown in boldface type�.

The rapid convergence of the Green function in the basis

�h�n�n=0
� for any frequency interval is evidence of localization

of the corresponding vibrations.

The basis �h�n�n=0
� is defined by the choice of generating

vector h�0 and selects from the space of displacements H a

certain subspace H�h�0�, which is invariant with respect to the

operator L̂, which is a linear shell stretched onto the basis

�h�n�n=0
� . If the generating vectors are transformed via irreduc-

ible representations of the symmetry group of the system,
then the subspace generated by them will be orthogonal, and
in each of them only one local vibration can arise. The op-

erator induced by the operator L̂ in each of these subspaces,

in the basis �h�n�n=0
� , is described in the form of a tridiagonal

J matrix L̂=Lmn=an�mn+bn��m,n+1+�m+1,n�, which has a
simple spectrum. The nondegeneracy of the spectrum of op-

erators induced by the operator L̂ in each of the subspaces

H�h�0� allows one to obtain rather simple analytical approxi-
mations for the local Green functions of the system G��2�. In
other words, the matrix elements G00��2� of the operator

Ĝ��2�= ��2Î− L̂�−1 can be approximated by an analytical
function �Refs. 23 and 24; see also Ref. 27�. If the band
of the quasi-continuous spectrum is singly connected,
�� �0;�m�, the matrix elements an and bn obey the follow-
ing relations:

lim
n→�

an = 2 lim
n→�

bn =
�m

2

2
, �2�

and this, in particular, ensures the presence of square-root
singularities of the spectral densities at the edges of the
quasi-continuous spectrum. The analytical approximation,
normalized to unity by the spectral density ���2�
=�−1 Im G��2�, is the so-called “regular” or “elliptical” dis-
tribution of the squares of frequencies often used in approxi-
mate calculations �see, e.g., Ref. 19�, modulated by a certain
polynomial of degree 2n.

The analytical approximation of the real and imaginary
parts of the Green function cannot be exact in the band of the
continuous spectrum, where neither its real nor its imaginary
part is an analytical function. However, outside the band of
the continuous spectrum the local Green function �LGF� is
an analytical function that converges very rapidly with in-
creasing n. As was shown in Ref. 27, the analytical approxi-
mations for n=1, G�1���2�, and for large n, G�n�1���2�, coin-
cide to high accuracy. In the next Section we shall illustrate
this for the example of the LGF of silver atoms located both
in the bulk and on the surface of the sample. Therefore, using
the LGF G�1���2�, one can obtain a completely satisfactory
description of the characteristics of the local vibrations.
Their frequencies are solutions of the Lifshits equation,1–4,6

which can be written in the form

G��2� 	 G�1���2� = S��2,�̂�; � 	 �m. �3�

The function S��2 , �̂� describes the influence of the de-
fect and depends on the corresponding parameters of the per-

turbation operator �̂. In the case of a degenerate regular
perturbation1–4,6 one can always obtain an exact expression
for this function. Thus for an isotopic impurity of substitu-
tion

S��2,�̂� � S��2,
� = −
1

�2

, �4�

where 
��m̃−m� /m is the mass defect of the impurity, m̃ is
the mass of the impurity, and m is the mass of an atom of the
host lattice. We note that one can practically always obtain
uncomplicated analytical expressions for the first matrix el-
ements a0 and b0 of the J matrix and, hence, for the function
G�1����.

In many cases a constructive alternative to solution of
the Lifshits equation can be taken to find directly the poles of

the LGF of the perturbed system G̃��2�= �h�0 , ��2Î− L̂0

− �̂�−1ĥ0� with the use of the J matrix of the perturbed op-

erator L̂= L̂0+ �̂. This method is also convenient for deter-
mining the local vibrations due to a nondegenerate perturba-
tion operator. If such a perturbation does not affect the width
of the continuous spectrum or, hence, the limiting values of
the J matrix, then it can be considered “asymptotically de-
generate.”

The poles of the Green function �d
2 determine discrete

frequencies, in particular, the local frequencies �l, and the
residues at the poles, �0

�d�� res�=�d
G00��2�, and the intensi-

ties, which characterize the value of the amplitude of the
oscillations at discrete frequencies in the subspace of a cer-

tain vector h0
� . The temperature dependence of the mean-

square displacement of the impurity atom 
ũi
2�T�� has the

form


ũi
2�T�� =



2m̃�0

�m
2

��z�
�z

coth��z

2kT
�dz

+
�0

�l�

�l
coth� �l

2kT
�� . �5�

It was shown in Ref. 27 that the square of the frequency of a
local vibration is equal to

�l
2��,�� =

�m
2

4��1 + ���2� − � −�− � +
�� − ��2

1 + �
� , �6�

where the parameters � and � characterize the deviation of
the matrix elements a0 and b0 from the limiting values �2�:

a0 =
�m

2

2
�1 + ��; b0 =

�m
2

4�1 + �
; �,� � �− 1, + � � .

�7�

A local vibration exists for
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�� � −
3

4
;

� � �− 1, + � �; �� 	 −
3

4
;

� � �*��� � −
1 + 2�

3 + 4�
.

�8�

If conditions �8� are satisfied and a local vibration exists, its
intensity will have the form

�0 =

� + �1 + 2���− � +
�� − ��2

1 + �

2��− � +
�� − ��2

1 + �

. �9�

Substitution of Eq. �6� into the Lifshits equation �3� shows
that �l�� ,�� satisfies this equation when conditions �8� are
met.

After determining the functions ��
� and ��
� for spe-
cific crystallographic structures containing various defect
configurations and substituting them into Eqs. �6�, �8�, and
�9�, one can obtain the dependence of the conditions for for-
mation and the dynamical characteristics of the local vibra-
tions on the parameters characterizing the defect or configu-
ration of defects.

LOCAL VIBRATIONS DUE TO A SUBSTITUTIONAL
IMPURITY FOUND IN THE BULK AND NEAR AN ATOMICALLY
SMOOTH SURFACE

In the description of the interatomic interaction in the fcc
crystal lattices of certain metals such as Ag, Cu, and Al and
solidified rare gases Ar, Kr, and Xe, one can limit consider-
ation to the interaction of nearest neighbors.19,28 The corre-
sponding matrices of force constants have the form29

�ik�r,r + �a

2
;
a

2
;0�� = − �� � 0

� � 0

0 0 �
� . �10�

For the other nearest neighbors, the coordinates of which are
specified by a vector ��0, the matrices of force constants
�ik�r ,r+�� are obtained from Eq. �10� with the aid of the
symmetry operations of the point group Oh. The condition of
translational invariance implies that the self-effect matrix has
the form

�ik�r,r� = − �
�

�ik�r,r + �� = �8� + 4���ik. �11�

For a sufficiently large sample of an ideal crystal the LGFs
of the bulk atoms are identical for all displacement directions
and coincide with the total Green function

G�n���2� = lim
N→�

�3N�−1�
i=1

3

�
n=0

N−1

�h�n
�i�,Ĝh�n

�i�� .

As we see in Fig. 1, the real parts of the Green function
G�n�����2�G�n���2�, and the corresponding spectral densi-
ties ����=�−1 Im G��� of the fcc crystal lattice of silver for
n=1 and n=76 differ noticeably for �� �0,�m�. However,
for �	�m, except for a very narrow region near the bound-
aries of the band of the continuous spectrum, the curves cor-
responding to the real part of the Green function practically
coincide. The force constants of Ag were determined in Ref.
30: �	1.3432, �	−0.2994, and �	1.5162 �105 dyn /cm�.

In the same figure we show examples of the graphical
solution of the Lifshits equation �3� for the cases of light
isolated substitutional impurities of Al, Mg, and Mn in silver.
Such impurities can be considered as isotopic to extremely
high accuracy. As a parameter characterizing the deviation
from isotopicity one can take the relative difference of the
volume of the substitutional impurity, equal to −0.09 for Al,
0.07 for Mg, and 0.001 for Mn in Ag.19 Curves 3–5 of this
same figure correspond to the functions S�� ,
�=−2 / ��
�,
where 
=−0.7499 for Al �curve 3�, 
=−0.7747 for Mg
�curve 4�, and 
=−0.4907 for Mn �curve 5�. The values of
the corresponding local frequencies � at which these curves
intersect the curves G�76���� and G�1���� coincide to an accu-
racy as good as �10−4. In the “isotopic approximation” we
have adopted, the impurities mentioned above in Ag generate
LVs with frequencies �l�	7.7518 THz for Al, �l�
	8.1172 THz for Mg, and �l�=5.8986 THz for Mn �here
���� /2��.

To investigate the deviation from isotopicity of an impu-
rity in a host lattice one can refine the interaction constants
of the impurity and lattice using the frequencies and intensi-
ties of the LVs, expressed with the aid of Eqs. �6� and �9�, in
which we set

���
,�̃,�̃,�̃� =

 − 1

2
+

�̃�1 + 
�

2�̃ + �̃
;

��
,�̃,�̃,�̃� =
− 4��̃ − �̃�2 + �̃�4�̃ + 4�̃ − 3�̃� + 
�2��̃ + �̃� + �̃�2

4�2��̃2 + �̃2� + �̃2�
,

�12�

where the force constants with tildes describe the interaction
of an impurity with the atoms of the host lattice. The substi-
tution of �12� into �6� and �9� leads to extremely awkward
expressions that will not be written out here.

We consider the close-packed �111� surface of the fcc
silver crystal. Here the change of the force interaction be-

tween the surface atoms themselves can be neglected. For Ag
the stress in the crystal lattice, which for the interaction of
nearest neighbors can be characterized by the values of the
deviations ��−�� /� and � /�, is small, and that was the rea-
son we chose this crystal for our studies. It can be assumed
to rather good accuracy that the relaxation of the stress oc-
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curs in the first coordination sphere of the surface atoms, and
we assume that the interaction of the surface atoms �S� with
the subsurface layer �US� is a central one,

�ik
�S��r�S�,r�S� + ��US�� = �0 ·

�i
�US��k

�US�

���US��2
,

and we neglect the change of the interaction between the
remaining atoms.

The local spectral density and real parts of the LGFs of
the surface atoms for displacements along and normal to the
surface are presented in Fig. 2, where we have used the same
notation as in Fig. 1. The values of the parameter �0=1.0
�105 and 1.8�105 dyn /cm correspond approximately to
the limiting values of this parameter. The approximation of
complete stress relaxation in the first coordination sphere of
the surface atoms should hold in the interval of �0 values
considered. Near the frequencies of the local vibrations due
to Al and Mg impurities, the real parts of G�n���� for n=1
and n=76 coincide to high accuracy, and, just as for atoms
found in the bulk of the crystal, the conditions of formation
and the characteristics of the LVs can be described in the
framework of approximations �6�, �8�, and �9�. For the
heavier manganese impurity the frequency of the LV due to
vibrations of the impurity atom along the surface for �0

=105 dyn /cm is close to �m. The values of �l calculated
according to Eq. �6� with the aid of the J matrix of rank n
=76 differ by�1%.

The deviations � and � of the first elements of the J
matrix from the limiting values �2� have the following form:
for displacements of a surface atom along the normal to the
surface

���
,�0� =
4� − 2�0 + 
�2�� + �� + ��

2�� + �0 − �� + �
;

��
,�0� =
16�� + 4��� + �� − �2 − 8�0

2 + 
�2�� + �� + ��2

2�2�� − ��2 + �2 + 4�0
2�

;

�13�

and for displacements of this atom along the surface

���
,�0� =
2� − �0 + 2
�2�� + �� + ��

4� + 2� + 2� + �0
;

��
,�0� =
4��� + �� + ��� − �2 − 2�0

2 + 
�2�� + �� + ��2

2��� + ��2 + �2 + �2 + �2 + �0
2�

;

�14�

for displacements of a subsurface atom along the normal to the surface

���
,�0� =
− 2� − � + 6� − 4�0 + 2
�2�� + �� + ��

6� + 3� − 2� + 4�0
;

��
,�0� =
4��� + ��� + 6�� − 2��2 + �2 + �2 + 4�0

2� + 
�2�� + �� + ��2

2�� − ��2 + 4�2 + 3�2 + 4�2 + 8�0
2 ;

�15�

and for its displacement along the surface

���
,�0� =
− 2� − � + 3� − �0 + 2
�2�� + �� + ��

6� + 3� + � + �0
;

��
,�0� =
2�2�� + 3�� + 2��� − 2��2 + �2 + �2 + �0

2� + 
�2�� + �� + ��2

2�� − ��2 + �� + ��2 + 5��2 + ��2 + 3�2 + 2�0
2

. �16�

FIG. 1. Spectral densities �curves 1 and 1�� and the real parts of the Green
functions of the fcc crystal lattice of silver �curves 2 and 2��. The solid
curves 1 and 2 correspond to n=76, and the dashed curves 1� and 2� to n
=1. A graphical solution of the Lifshits equation for a local vibration due to
light isotopic impurities is shown: the function S�� ,
� for Al �curve 3�, for
Mg �curve 4�, and for Mn �curve 5�.
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By substituting these expressions into Eq. �8�, one can deter-
mine the values of the defect parameters �0 and 
 for which
LVs exist. The points ��0 ;
� at which LVs exist lie above the
corresponding curves shown in Fig. 3. The vertical lines on
the figure indicate the values of the mass defect of alumi-
num, magnesium, and manganese and also the value 
*	
−0.2771, which is the threshold mass defect for the forma-
tion of LVs in the bulk of Ag. The horizontal straight lines
correspond to the values of the force constants � and � for
silver and the limiting values of the parameter �0.

Impurities of Al and Mg in Ag, treated here as isotopic
�Fig. 3�, can give rise to LVs in all four cases considered
�displacements of an impurity atom found in the surface and
subsurface layers in the directions along the surface and per-

pendicular to it�. Only for displacements of an impurity on
the surface in the direction normal to it is the threshold value
�

0
* somewhat in excess of 105 dyn /cm. An Mn impurity is

approximately twice as heavy as Al or Mg. If such an impu-
rity is found at the surface, then in the interval of �0 values
from 1.0�105 to 1.8�105 dyn /cm it forms LVs only on
account of displacements along the surface.

For all the cases considered, Fig. 4 shows the depen-
dence of the LV frequencies �l� /�m� ��m� 	5.5367 THz�30 on
the parameter �0, their intensities at the impurity atom, �0,
and on its first coordination sphere, �1, for impurities whose
mass defects correspond to Al, Mg, and Mn. Also shown in
the figure are lines representing the calculations according to
formulas �6� and �9� with the values from �13�–�16� substi-
tuted in. The symbols correspond to calculations of the poles

of the functions G̃�76��� ,�0 ,
� and the residues at those
poles. The good agreement of the data of both calculations
indicates the real possibility of recovering the parameters of
the lattice and defect from experimental measurements of the
frequencies and other characteristics of the local vibrations.

INFLUENCE OF SURFACE ROUGHNESS ON THE
CHARACTERISTICS OF THE LOCAL VIBRATIONS

If the surface is not atomically smooth but has some
roughness, the frequency spectrum of an impurity found near
roughness will differ from the spectrum of an impurity on the
atomically smooth surface or in the bulk of the crystal. The
differences can be substantial. Accordingly, both the condi-
tions of formation and the characteristics of the LVs vary.

In the framework of the model considered in this study,
the change of the force constants of an atom at the edge of a
“crater” on the surface of the crystal can be described exactly
in the same way as the change of the force interaction upon

FIG. 2. Real parts of the local Green functions of surface atoms and the corresponding spectral densities ����=�−1 Im G��� for displacements along and
normal to the �111� Ag surface. The notation is the same as in Fig. 1.

FIG. 3. Existence regions of local vibrations for different displacements of
an impurity lying on the surface and in the subsurface layer. The values of
the parameters �0 and the mass defect 
 at which the local vibrations form
lie above the respective curves. Curves 1 and 1� correspond to surface atoms
and curves 2 and 2� correspond to subsurface atoms; 1 and 2 are for dis-
placement of the impurity normal to the surface; 1� and 2� to displacement
along the surface.
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the formation of a surface. We shall assume that if some
atom with radius vector r is missing nearest neighbors at
radius vectors r+��p�, then the interaction with atoms found
at the points r−��p� is central, �ik�r−��p��=�0�i

�p��k
�p� /�2,

and the interaction with the remaining atoms �10� does not
change.

The possibility of describing to high accuracy the condi-
tions of formation and the characteristics of LVs with the aid
of the approximate formulas �6�, �8�, and �9� means that the
given quantities are determined almost entirely by the first
two moments of the spectral density.27 Since the first two
moments of the spectral density generated by the displace-
ment of an isotopic impurity are influenced only by atoms
that interact directly with it,21 a substantial difference in the
behavior of the characteristics of the LVs from those consid-
ered in the preceding paragraph should be expected only for
impurities located at the edge of some “crater” on the sur-

face. The size of the “crater” does not affect the first two
moments of the spectral density, and it suffices to consider
only the following configurations:

— an impurity found on the surface is missing one of the
nearest neighbors lying on the surface;

— an impurity is located at the edge of a “crater,” i.e., it is
missing two nearest neighbors on the surface which in
turn are nearest neighbors of each other;

— an impurity located at the vertex of a “crater” and is
missing three or four nearest neighbors lying on the
surface.

For the first configuration, upon a displacement of the
impurity in the direction normal to the surface �n� the values
of � and � are equal to

�17�

for the displacement of the impurity in the plane of the surface in the direction of the vacancy �l�

FIG. 4. Dependence of the frequencies and intensities of local vibrations on the parameter �0 for Al �solid curves�, Mn �dashed curves�, and Mg �dot-and-dash
curves�. Local vibrations are generated by displacements of the surface atom along the �111� surface �a� and normal to the surface �b�. Analogous displace-
ments of a subsurface atom �c� and �d�, respectively. The symbols are the characteristics calculated according to a J matrix of rank n=76: Al ���, Mg ���,
Mn ���; the analytical approximation is shown by the solid curves.
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�18�

for displacements of the impurity in the plane of the surface in the direction perpendicular to the direction to the vacancy ���

�19�

The dependence on �0 of the frequency of the LV and also the intensities at the impurity itself and at its nearest neighbors,
calculated according to formulas �6� and �9� for an isotopic impurity of aluminum, are presented in Fig. 5a. We see that in this
case one isotopic impurity generates three local vibrations, the conditions of formation and characteristics of which are
substantially different.

If the impurity is located at the edge of a “crater” on the surface, then for a displacement along this edge �l�

�20�

for a displacement of the impurity in the direction of the normal to the surface �n�

�21�

and for a displacement of the impurity in the plane of the layer in the direction perpendicular to the edge ���

�22�

The corresponding curves of the characteristics of the LVs
for an Al impurity are shown in Fig. 5b. For the case l the
threshold of formation of a local vibration is substantially
lower, and the local frequencies and degree of localization of
the vibrations is significantly higher than for the cases n and
�. The curves for n and � practically coincide. Moreover, the
local frequencies in the direction l are noticeably smaller
than for the analogous vibrations in the previous configura-
tion. This provides every justification for assuming that the
LVs due to a light impurity on a rough surface can be reli-
ably identified, making it possible to determine the defect
structure and force interactions from experimental data.

For an impurity located at the vertex of a “crater,” there
are two possible cases. If the edges forming this vertex cross
at an obtuse angle �three nearest neighbors located alongside
are missing�, for all directions of displacement of the impu-
rity the parameters � and � coincide:

���
,�0� =
�2� + � + 2���1 + 
� − 2�0

2�0
;

��
,�0� =
�2� + � + 2��2�1 + 
� − 8�0

2

8�0
2 .

�23�

In this case all the characteristics of the LVs coincide for all
directions also �see curves 1 in Fig. 5c�.

In the second case the vertex is formed by edges that
intersect at an acute angle, i.e., an impurity found on the
surface is missing four nearest-neighbor surface atoms. Here
the values of the parameters � and � for displacements of the
impurity along the normal to the surface and along the bisec-
tor of the angle between the edges remain the same as in the
previous case. And for a displacement of the impurity in the
direction � perpendicular to these two directions, the param-
eters � and � are equal to
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���
,�0� =
�2� + � + 2���1 + 
� − �0

�0
;

��
,�0� =
�2� + � + 2��2�1 + 
� − 4�0

2

4�0
2 .

�24�

Vibrations in this direction have very low frequencies, in
agreement with the results of Refs. 31 and 32. The charac-
teristics of such LVs are given by curves 2 in Fig. 5c. We
note that in this case the formation of LVs is hindered.

It should be noted that for displacements of the impurity
along the normal to the surface, with a decrease of the num-
ber of surface atoms that are nearest neighbors with an im-
purity the threshold values �

0
* decrease, and the frequencies

and degree of localization of the LVs increase �Fig. 4c and

Fig. 5�. This is explained by the fact that for silver, the force
constant � that determines the restoring force exerted on the
atom by the other surface atoms is negative.

CONCLUSION

In this paper we have shown that the method of con-
structing analytical approximations for the main characteris-
tics of local vibrations, proposed in Ref. 27, can be employed
successfully for calculating the frequencies and intensities of
the LVs due to complex defects, in particular, impurities lo-
cated near an atomically smooth or a rough surface. The
analytical approximations obtained enable one quite easily to
extract information about the parameters of the host crystal
and its defect structure from experimental data on the fre-
quencies and other characteristics of the LVs. In an analo-
gous way one can obtain analytical approximations for LVs
due to impurities near other boundaries of the sample, e.g.,
surfaces of different orientation, various edges and vertices,
which are their intersections, and also, when the LVs are
generated by impurities found next to vacancies, as takes
place in solutions of hydrogen and deuterium in palladium.33

Our assumption of complete stress relaxation on the first
coordination sphere of surface atoms is completely justified
for the �111� surface of silver, considered here. This is due to
the low stress of the crystal lattice. The same model of the
surface can be used, although with somewhat lower accu-
racy, in the case of copper and gold.

For more highly stressed lattices, such as aluminum, and
also for planes that are not close-packed, the relaxation can
be more complicated and involve a greater number of coor-
dination spheres. One can arrive at an analogous problem
when considering substantially nonisotopic impurities, the
force interaction of which with atoms of the host lattice dif-
fers significantly from the interaction in the lattice. However,
in these cases also it is possible to use the proposed analyti-
cal approximation to obtain the characteristics of LVs whose
frequencies are sufficiently well split off from the upper
boundaries of the spectrum of the host lattice. The large
number of additional parameters and the extraordinary awk-
wardness of the expressions obtained for such systems makes
it possible to calculate the characteristics of LVs and to re-
cover from them the parameters characterizing the defect
structure only by making use of the corresponding experi-
mental data. Therefore, one of our goals in this paper is to
call the attention of experimenters to measurement of the
main characteristics of local vibrations as an important
source of information about the interatomic interactions in
real crystals and the relaxation of the force interactions at the
boundary of the sample.
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