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Abstract

The failure history of pre-existing systems can inform a reliability assessment of a new system. Such assessments – consist-
ing of arguments based on evidence from older systems – are attractive and have been used for quite some time for, typically,
mechanical/hardware-only systems. But their application to software-based systems brings some challenges. In this paper, we
present a conservative, Bayesian approach to software reliability assessment – one that combines reliability evidence from an old
system with an assessor’s confidence in a newer system being an improved replacement for the old one. We demonstrate, via
different scenarios, what a thought-to-be-better replacement formally means in practice, and what it allows one to believe about
actual reliability improvement. The results can be used directly in a reliability assessment, or to caution system stakeholders and
industry regulators against using other models that give optimistic assessments. For instance, even if one is certain that some new
software must be more reliable than an old product, using the reliability distribution for the old software as a prior distribution when
assessing the new system gives optimistic, not conservative, predictions for the posterior reliability of the new system after seeing
operational testing evidence.

Keywords: software reliability, safety-critical software, reliability assessment, similarity arguments, conservative Bayesian
inference, software re-use, globally at least equivalent.

1. Introduction

Assessing the reliability of software-based systems can be
challenging, particularly for systems with very stringent reli-
ability requirements [1, 2]. For instance, such systems can
require infeasible amounts of operational testing in order to
demonstrate that they are sufficiently reliable. Faced with such
difficulties, an assessor might turn to using their extensive expe-
rience with older “similar” systems, to support any operational
testing evidence when assessing a new system. Informally, they
may justify this as follows: “Our wealth of experience with
good development processes – as evidenced by many (similar)
reliable systems that have been built, with lots of operational
exposure and very few failures – makes us confident that the
new system is also very reliable.”

Such arguments certainly have an informal appeal – by com-
bining operational testing of the “new” with extensive reliabil-
ity evidence from the “old”, the new system could be justifiably
claimed to be very reliable. Statistical approaches for com-
bining reliability evidence have been employed. For instance,
two-stage Bayesian models [3] have been advocated for the as-
sessment of safety-critical systems (e.g. in the nuclear industry
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[4–6]). The basic idea, depicted in Fig. 1, is as follows. The
old and new systems are considered similar, perhaps because
of similar design, processes and techniques used in their fab-
rication/construction. However, their failure rates (i.e. Λi) are
unknown. Conceptually, this uncertainty in failure rates is cap-
tured by some probability distribution over the possible values
for the failure rates, where this distribution, itself, has an un-
certain shape determined by an unknown hyper-parameter Q.
So, the failure rates of the systems are assumed statistically in-
dependent and identically distributed (i.i.d.), with each of these
rates distributed according to the same, hyper-parameter depen-
dent, prior distribution. And the hyper-parameter is, in turn, de-
termined by some hyper-distribution (i.e. the hyper-prior PQ(q)).

Figure 1: A two-stage Bayesian hierarchical model used in [5].

Thus, Bayesian inference for the hyper-distribution, using
failure data from different pre-existing systems, reveals how
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good the commonly adopted development process for the sys-
tems is. And any new system should also possess a failure rate
that is statistically independent, and distributed according to
the same inferred failure rate distribution for the older systems
(with the same associated hyper-parameter hyper-distribution).
In this way, the failure track-record of pre-existing systems is
(indirectly) integrated into the reliability assessment of a new
system [7].

But this form of (Bayesian) reliability assessment has two
main drawbacks. First, as an application of Bayesian inference,
an assessor is required (compelled?) to specify a suitable prob-
ability distribution representing their prior beliefs about every
possible hyper-parameter value. This is difficult enough when
the assessment involves reliability evidence from only one sys-
tem. When assessment involves evidence from two or more
systems, the troubles only worsen. How can an assessor, real-
istically, characterise their beliefs about all of the possible re-
lationships between the reliabilities of multiple systems? Sec-
ondly, experience gained from pre-existing systems must be en-
tirely appropriate for making claims about a new system. This
is the case for nominally identical systems operating in identical
environments. However, it is often hard to adequately demon-
strate such similarity in practice, especially for software-based
systems. For example, manufacturers’ evidence from the use
of similar control or safety protection systems in different in-
dustries may differ in significant ways, thus undermining the
assumption of sufficient similarity amongst these systems.

One common case where systems are, arguably, appropri-
ately similar, is when a single bespoke system is replaced by
a new, supposedly improved one, but the required functional-
ity and operational environment remain unchanged (e.g. it is
typical in the nuclear industry that a safety protection system –
of a bespoke design for a given power plant – is replaced by a
similarly bespoke system).

Intuitively, one might expect reliability evidence from a sin-
gle precursor to only provide weak support for claims about a
new system’s reliability. However, an important consideration
is an assessor’s confidence that a new system is not worse than
the existing system (NWTES). Informal NWTES notions are
invoked by practitioners in different industries using different
terminology. But, surprisingly, none of these notions appear to
have been characterised formally, and their implications for as-
sessment have not been studied. For example, under the U.S.
Food and Drug Administration’s (FDA) 510(k) “premarket no-
tification” process for simplified approval of new medical de-
vices, the new device must be demonstrated to be Substantially
Equivalent (SE) to a device already on the market [8]. And
the “globally at least equivalent” (GALE) requirement – e.g.
in French law for railway safety [9, 10] – requires that sys-
tem changes produce a safety level “at least equivalent” to that
which existed before the change.

Usually, an assessor does not know if an NWTES claim
does, in fact, hold – i.e. prior to testing a new system, an as-
sessor has some confidence that this system is an improvement,
based in part on their detailed knowledge of an older system.
And such prior confidence, when suitably formalised in statis-
tical terms, should influence the impact of operational testing

evidence when assessing the new system. The question is “how
much” prior confidence in NWTES is sufficient, to support re-
liability claims for a new system that is subjected to testing?

By addressing all of the foregoing, this paper makes a num-
ber of contributions to both (software) reliability theory and
assessment practice. Upon formalising intuitive NWTES no-
tions used by practitioners, we present a statistically principled
approach to reliability assessment – one that results in conser-
vative assessments for a new system (subjected to operational
testing), while also incorporating additional reliability evidence
from an older system. We show what various levels of confi-
dence in NWTES, and failure-free testing evidence, allow one
to claim for the reliability of a new system. And we determine
how much confidence in NWTES, or testing evidence, is re-
quired to claim a certain level of reliability. Also, we give some
indications about quantifying NWTES beliefs in practice.

While our assessment approach is Bayesian, it is applicable
even when an assessor can (justifiably) specify only some be-
liefs about how the reliabilities of the old and new systems are
related – this alleviates much of the burden of having to fully
specify prior probability distributions. Moreover, the approach
produces conservative assessments, as it is a novel extension of
what we call conservative Bayesian inference (CBI) [11–17] –
in this paper, for the first time, CBI is used to combine reliabil-
ity evidence from multiple systems.

This work continues the authors’ recent research into ways
that practitioners’ plausible intuitions about the assessment of
critical software-based systems can be made rigorous in sup-
port of quantitative claims about reliability and safety. Our CBI
methods help to check whether apparently “obviously plausi-
ble” claims can be trusted – revealing situations where such
trust is inappropriate, and providing ways forward for these.

The outline of the paper is as follows. An overview of pre-
vious CBI applications is given next, in section 2, followed in
section 3 by a description of the basic set-up for the CBI model
developed in this paper. In section 4, four detailed scenarios
with numerical examples show the implications of this model.
Section 5 discusses practical considerations, modelling results,
various contexts in which these results apply, and future work.
Finally, the paper concludes with section 6.

2. A Review of CBI

The primary measure of reliability in this paper is the prob-
ability of a system failing on a random demand it receives from
its environment (pfd). For sufficiently sophisticated software,
an assessor is uncertain about the value of the pfd, and their
uncertainty is formalised as a suitable prior probability distri-
bution over all possible pfd values. In a Bayesian reliability
assessment, the assessor updates their beliefs – i.e. this prior
distribution – using evidence in the form of the observed failure
(or lack thereof) of the software during operational testing.

The essential idea of CBI is that, instead of requiring an as-
sessor specify a complete prior distribution, one considers the
set of all prior distributions compatible with only partial prior
knowledge specified by the assessor. This partial prior knowl-
edge should be relatively easy for assessors to both state and
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justify with great confidence. And it will typically be much
simpler than specifying an entire probability distribution. An
instance, a confidence bound on system pfd. So, for instance,
rather than convincing oneself1 that the prior distribution of the
software’s pfd – prior to any operational testing – is precisely a
Beta distribution with parameters a = 1, b = 1000, an assessor
might only need much simpler prior knowledge like “the prob-
ability of p f d < 10−3 is at least 80%”. Building arguments
to support the latter is a much easier task than the former. In
this way, CBI allows for inference to proceed without having to
fully specify a prior distribution for model parameters.

Then, depending on the specific posterior reliability pre-
diction of interest (e.g. expected posterior pfd, the example
we focus on in this paper), CBI determines a prior – out of
all prior distributions satisfying the partial prior knowledge –
whose posterior predicts the worst reliability.

The initial CBI idea published in [12] concerned the pos-
terior expected pfd of software that passes n operational tests.
Indeed, if one has a complete prior distribution of pfd, F say,
then typical Bayesian inference gives2:

E[p f d | pass n tests] =

∫
[0,1] x(1 − x)n dF(x)∫
[0,1](1 − x)n dF(x)

(1)

3However, normally, one does not have a sound argument
for adopting a specific F; instead, one has something much
more limited, like a confidence bound on pfd:

P(p f d 6 y) = 1 − α (2)

Such limited partial prior knowledge could be supported by
evidence generated from the development process of some soft-
ware, e.g. formal-technique-based program analysis, or pre-
scriptive standard-based practice. For instance, one might claim
P(p f d 6 10−4) = 90% on the basis of evidence that the soft-
ware is strictly developed against IEC 61508 SIL-4 [18].4 It
was shown in [12] that, among all possible prior distributions F
that satisfy (2), the two-point distribution shown in Fig. 2 gives
the most conservative5 posterior mean pfd, i.e. maximises (1).
It has 1 − α probability mass at pfd = y and α probability mass
at an optimality achieving point pfd = z – where z, being a func-
tion of n, can be calculated numerically. Using this prior as our
F in (1) results in the conservative upper-bound (3).

E[p f d | pass n tests] 6
y(1 − y)n(1 − α) + z(1 − z)nα

(1 − y)n(1 − α) + (1 − z)nα
(3)

As illustrated, CBI starts from limited partial prior knowledge,

1Or industry regulators when submitting a safety case
2With standard assumptions, like the testing regime being a series of in-

dependent, identically distributed, Bernoulli trials, and the test inputs being
statistically representative of operational use, e.t.c.

3These integrals are Lebesgue-Stieltjes integrals, defined with respect to the
probability measure induced by the distribution function F. Such integrals are
valid for all the distributions in this paper.

4This is just an example of a form of reasoning we have come across; we
are not advocating it as a sound argument.

5We shall refer to such priors as being “the most conservative”, but this is
not meant to imply that they are unique. There may be other priors that give
results that are equally conservative, but none give more conservative results.

Figure 2: The most conservative prior distribution: one that maximises (1)
while satisfying the partial prior knowledge (2).

resulting in an attainable upper-bound at the price of being con-
servative. To limit the conservatism, more partial prior knowl-
edge can be elicited and used in CBI, e.g. a prior confidence in
the perfection of the software is used in [12] to improve bound
(3). And, the more partial prior knowledge an assessor incorpo-
rates into the assessment, the less conservative the CBI bound
becomes. With a tension between the conservatism of CBI and
one’s burden in forming partial prior knowledge, an assessor
must find a happy medium in practice.

CBI is applicable in many contexts and scenarios. For in-
stance, CBI may be used with the following typical forms of
partial prior knowledge (either solely or in combination):

• E[p f d] 6 m: the prior mean pfd cannot be worse than a
stated value;

• P(p f d < p) = 1 − α: a prior confidence-bound on pfd;

• P(p f d = 0) = θ: prior confidence in the perfection of the
software;

• E[(1 − p f d)n] > γ: prior confidence in the reliability of
passing n tests;

• P((1 − p f d) > k
n ) = 1 − α: a prior confidence-bound on

the expected number n(1− p f d) of successes for a system
subjected to n i.i.d. tests.

And, CBI has been investigated for various objective functions,
each with a “posterior” flavour:

• E[p f d | pass n tests]: the posterior expected pfd [12];

• P(p f d 6 ε | pass n tests): a posterior confidence bound
on pfd. The ε normally represents a very small pfd of in-
terest, such as that stipulated by some higher level system
requirements [15];

• P(p f d = 0 | pass n tests): the posterior probability of
perfection [14];

• E[(1 − p f d)t | pass n tests]: the posterior probability of
the software passing the next t demands [13].

The CBI model in this paper is a novel extension of the
CBI ideas in [12, 13] to a multivariate prior distribution case,
with partial prior constraints on the relationship between the
unknown pfds of an old and a new system.
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3. The Basic Model

Our CBI model will characterise what one can expect the
pfd of a new software-based system B to be, given beliefs (sup-
ported by testing evidence) about the pfd of an older software-
based system A. Such a model would be useful if, say, one were
considering the probability of a replacement, emergency-trip
system failing to shut down a reactor when a sensor correctly
detects a dangerous event, such as the temperature in a reactor
reaching some threshold. Assume two systems are built to the
same engineering requirements, where system A is old and has
been in operation for some years, while system B is new. So:

1. p f dA, p f dB are the unknown pfds of the pre-existing A
system and the new B system;

2. There is a joint distribution F over all possible pairs of
values for the A and B system pfds – a distribution over
the unit square [0, 1] × [0, 1]. F captures an assessor’s
beliefs about the possible pfd values;

3. The marginal distributions for p f dA and p f dB are

FA(x) =

∫
[1,0]×[1,0]

1u∈[0,x]1v∈[0,1] dF(u, v) ,

FB(y) =

∫
[1,0]×[1,0]

1u∈[0,1]1v∈[0,y] dF(u, v) ,

where 1S is an indicator function – it equals 1 when pred-
icate S is true, and 0 otherwise;

4. We formulate the NWTES belief as the requirement:∫
[0,1]×[0,1]

1v6u dF(u, v) = P(p f dB 6 p f dA) = c (4)

That is, “I am (c×100)% confident that the new system’s
pfd is better than the older system’s”.

The NWTES formulation (4) is relatively simple and con-
sistent with the notion of a diminished failure rate (e.g. due
to fixing software bugs found in the software, without introduc-
ing new bugs) [19]. One could consider other forms of NWTES
beliefs based on specific supporting evidence derived from a di-
rect comparison of the two systems. For example, conditional
on both systems’ pfds being better than 10−3, some stated con-
fidence that p f dB is smaller than p f dA. Or, another example,
the marginal pfd distributions are stochastically ordered, i.e. the
Cumulative Distribution Function (CDF) curve of p f dA is be-
lieved to lie, everywhere, below that for p f dB. In this paper we
focus on the NWTES formulation (4), for its relative simplicity
and the insight it brings concerning assessment challenges. We
leave other NWTES forms for future work.

For the new B system, assume the assessor only has (4)
as prior knowledge whilst, due to system A’s age, the asses-
sor can possess various forms of prior knowledge about system
A. In section 4, scenarios with different forms of (partial) prior
knowledge for system A are considered:

• Scenario 1: The assessor knows the old system’s pfd with
certainty, i.e. p f dA is a known constant;

• Scenario 2: the assessor cautiously expresses a confi-
dence bound, e.g.“I am 99% sure the pfd of the old sys-
tem A is less than 0.001”;

• Scenario 3: the assessor, armed with convincing verifi-
cation evidence for system A and evidence of its oper-
ating without failure, expresses beliefs about how likely
p f dA = 0 is (i.e. system A is “perfect”), along with a
confidence bound on p f dA if not zero [15, 20];

• Scenario 4: two cases where the assessor’s evidence sup-
ports a complete, marginal prior distribution for the A-
system pfd – with, and without, a probability of the old
system being perfect.

Apart from scenario 1, for scenarios 2 through 4, marginal
prior knowledge of the old system A is progressively modelled
from very modest (i.e. only a confidence bound) to very de-
tailed (i.e. an entire marginal distribution); and the added im-
pact of failure-free evidence from operational testing is anal-
ysed. In section 4, we examine these scenarios in turn. Note
that, in Bayesian terms, mathematical forms of prior knowledge
constrain an assessor’s candidate prior distributions, so we will
use the phrase “prior constraints” instead of partial prior knowl-
edge in discussing the models and their implications.

4. Implications of Various Forms of Prior Constraints On
the Old System

4.1. A Known pfd for the Old System
To begin, consider the extreme (but simple) situation where

the old A-system’s pfd is known to be pA. Together with the
NWTES belief (4), these constrain the largest value for the ex-
pected pfd for the new B system:

E[p f dB]
= cE[p f dB | p f dB 6 pA] + (1 − c)E[p f dB | p f dB > pA]
6 1 − (1 − pA)c (5)

So, if one is certain that the new system is no worse than the
old system (i.e. c = 1), the worst-case value for the expected B-
system pfd is the known pfd value, pA, from the old A-system.
In other words, to make a conservative assessment, one must
claim that the new system is just as reliable as the old one, even
when the new system is known to be no worse. On the other
hand, if the new system is known to be worse than the old one
(i.e. c = 0), then the worst-case expected pfd value for the
new system is 1 – i.e. expected to fail on every demand. This
illustrates how extreme conservatism can result, even with an
unrealistic amount of prior knowledge (i.e. being certain) about
the old system A. Are the results less extreme if our assessor
expresses more uncertainty about the A-system pfd?

4.2. A Confidence Bound on the Old System’s pfd
Assume our assessor has a more modest form of belief about

the old system’s reliability, such as when only a confidence
bound can be inferred from the history of the old A system:

P(p f dA 6 pA) = 1 − αA (6)
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The assessor’s confidence in the upper confidence bound pA

is 1−αA or, equivalently, their doubt about the bound is αA. To-
gether with the NWTES belief (4), any prior distribution F sat-
isfying these two constraints must allocate probability masses
to events accordingly, as illustrated in Fig. 3. There, the set of
all possible pairs of pfd values – for the A and B systems – is
the region defined by the unit square. Let Mi be the probabil-
ity, according to F, that the pair of pfds for the systems is some
point in the region i. Then the two constraints, (4) and (6), may
be restated as M4 + M3 = c and M2 + M3 = αA, respectively. Of
course, by definition, M1+M2+M3+M4 = 1. In some sense, re-
gion 4 contains the most desirable pairs of pfds for the systems
– those for which the old system is very good (i.e. p f dA 6 pA)
and the new system is possibly even better (i.e. p f dB 6 p f dA).
Contrastingly, region 2 contains the least desirable pairs.

Figure 3: Any joint prior distribution F must satisfy M2 + M3 = αA and M4 +

M3 = c, where F assigns probability Mi to region i.

Fig. 3 does not uniquely define a prior distribution F, but
rather a whole collection of distributions. So we may ask “what
are the implications of our assessor’s relatively weak beliefs for
conservative assessment”? Our assessor’s objective function –
the expected value of p f dB – can be written as:

E[p f dB] =

4∑
i=1

E[p f dB|region i]Mi =

4∑
i=1

piMi (7)

where pi := E[p f dB|region i]. Being conservative would mean
identifying a prior distribution that maximises E[p f dB]. Since
pA 6 p2 6 1 and 0 6 p4 6 pA, we must have

E[p f dB] 6 1 · M1 + 1 · M2 + 1 · M3 + pA · M4

= 1 − M4(1 − pA) (8)

This is a more general form of (5). Notice that the r.h.s. of
(8) is a linearly decreasing function of M4. Consequently, the
maximum value of E[p f dB], denoted S ∗, occurs at the small-
est values for M4. This makes sense – conservatism dictates
that as little confidence as possible be placed in the new system
1) being better than the old system, and 2) having a pfd better
than pA. In Appendix A, our assessor’s beliefs force M4 to be
bounded below as M4 > max(0, c−αA). So, there are two cases
to consider, depending on how confident our assessor is in the
new system (i.e. the value c) or how doubtful of the old system
they are (i.e. the value αA):

• if M4 = 0 (the worst case if the assessor believes c < αA),
the assessor is not excluding the new system having a
pfd no better than pA. And, without any contrary testing
evidence, the worst-case expected pfd is S ∗ = 1. Clearly,
this is too conservative;

• if, instead, M4 = c − αA, the assessor can be fairly con-
fident in both systems (i.e. c > αA). Despite this confi-
dence, the worst-case expected pfd is still rather conser-
vative (Table 1) at S ∗ = 1 − (c − αA)(1 − pA).

In fact, these two cases can be stated together as

S ∗ = 1 − (c − αA)(1 − pA)1c>αA (9)

where 1S is the indicator function6 for the logical predicate S.
Clearly, the worst-case (5) in subsection 4.1 is a special “best”
case of (9) when the assessor has complete confidence in the
old system pfd being better than pA (so αA = 0). It seems our
assessor is paying the price for more uncertainty about the old
system with even more conservative bounds. Prior distributions
attaining the worst-case (9) are depicted in Fig.s 4 and 5 as the
asymptotic limits of joint distributions which satisfy the asses-
sor’s beliefs7.

Figure 4: A joint distribution that attains the bound (9) when c > αA. A
probability mass of 1 − c is assigned uniformly to the p f dB = 1 horizontal
line-segment in region 1. The mass c − αA is assigned to the point (pA, pA) in
region 4, while the mass αA is assigned to the point (1, 1) in region 3, with zero
mass for region 2.

In both Table 1 and (9), as our assessor’s doubt decreases,
the worst-case S ∗ decreases. But, its value cannot be smaller
than pA. In fact, as one’s beliefs tend to certainty (i.e. αA →

0 and c → 1), we find S ∗ −→ pA from above. However, so
far we have not been “Bayesian” – i.e. reliability evidence has
not altered our beliefs. With such evidence – e.g. the new B
system passing n tests – can the S ∗ bound improve beyond this
pA “floor”?

Rather than the expected B-system pfd, we now seek the
posterior expected pfd, E[p f dB | B passes n tests]. However, we
are not looking for the posterior value given a specific prior
distribution, but for the worst-case posterior value, S ∗, given a

6The function 1S has value 1 if S is true, and zero otherwise.
7These priors that attain the worst-case value for the posterior expected B-

system pfd are not unique: for all CBI most conservative priors in this pa-
per, there are other worst-case achieving joint priors that differ from these on
(Lebesgue) null subsets of the unit square.
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Figure 5: A joint distribution that attains the bound (9) when c < αA. A prob-
ability mass of 1 − αA is assigned uniformly to the p f dB = 1 horizontal line-
segment in region 1. The mass αA − c is uniformly assigned to the p f dB = 1
line-segment in region 2, while the mass c is assigned to (1, 1) in region 3, with
zero mass for region 4.

Table 1: Numerical examples for the worst-case bound S ∗ in (9) when c > αA

pA αA c S ∗

0.001 0.01 0.9 0.11089
0.001 0.01 1 0.01099
0.001 0 0.9 0.1009
0.001 0 1 0.001

range of prior distributions. Appendix B shows that S ∗ satisfies
E[p f dB | B passes n tests] 6 S ∗, where

S ∗ = 1 −
(1 − pz)n+1(1 − M4) + (1 − pA)n+1M4

(1 − pz)n(1 − M4) + (1 − pA)nM4
(10)

and M1, . . . ,M4 satisfy (4) and (6), while pz is the unique B-
system pfd that satisfies both pA < pz 6 1 and

pz = 1 −
n

n + 1
(1 − S ∗) (11)

Figure 6: A prior distribution F∗ that achieves the bound S ∗ in (10). Probability
masses M1,M2 and M3 are uniformly assigned, within their respective regions
of the unit square, to the horizontal pz-line (see (11)), where pz must lie in the
range pA 6 pz 6 1. The mass M4 is assigned to the closest point to the pz-line
within the region, (pA, pA). See Appendix B for details.

An immediate consequence of (11) is that the inclusion of
failure-free evidence in the assessment has not eliminated the
“floor” imposed by conservatism on the worst-case bound S ∗.
Indeed, (11) implies that as failure-free evidence increases (so

n → ∞), S ∗ will equal pz at best. Our assessor remains un-
convinced of the expected pfd being better than some value
pz, no matter how much evidence they observe to the contrary.
Conservatism always allows for the (unlikely) possibility that
a fairly unreliable system successfully executes a large number
of test inputs.

On the other hand, the distribution F∗ in Fig. 6 achieves
the worst-case S ∗, and illustrates how mounting failure-free ev-
idence forces our conservative assessor to rule out the most un-
reliable pfd values for the B system. Unlike the beliefs in Fig.s
4 and 5, in the present case, the expected B-system pfd can be
significantly better than 1.

So, being Bayesian has improved the S ∗ bound, but the un-
desirable lower bound on S ∗ (due to conservatism) remains.
While failure-free evidence may be convincing enough to im-
prove our expectations of how reliable the new B system is, it
is not enough to overcome our skepticism about how reliable
the old A system is, and therefore our skepticism about whether
the new system can be any better. Perhaps a more explicit form
for S ∗ might reveal how S ∗’s value depends on both operational
evidence and our assessor’s skepticism. To obtain such a form,
note that the largest value of S ∗ occurs at the smallest value of
M4 (see Appendix C). And, similar to (9), the smallest value
for M4 occurs either when M4 = c − αA (for c > αA) or when
M4 = 0 (for αA > c). That is,

S ∗ = 1 −
(1 − pz)n+1(1 − c + αA) + (1 − pA)n+1(c − αA)

(1 − pz)n(1 − c + αA) + (1 − pA)n(c − αA)
1c>αA (12)

Unsurprisingly, the special case when n = 0, i.e. no failure-
free evidence, reduces (12) to (9). And, like (9), we see a clear
dependence of S ∗ (and, therefore, pz) on αA, c and pA. For in-
stance, it is curious that the model suggests the following. If it
happened that our doubt in the old system’s reliability is equal
to our confidence in the new system being better than the old
one (i.e. c = αA), then we could always expect the worst re-
liability (S ∗ = 1) for the new system, even if it is much better
than the old one. So, for useful bounds S ∗, one must simulta-
neously have a lot of confidence in the old system, and in the
improvement the new system brings. In fact, due to S ∗ being a
decreasing function of M4, the smallest value of S ∗ achievable
with an arbitrary amount of failure-free evidence occurs when
the assessor has no doubts: i.e., as c −→ 1 and αA −→ 0, we have
pz → pA and S ∗ −→ pA from above, just as before. This lower
bound on both S ∗ and pz is further illustrated by the examples
in Table 2 using (11) and (12).

Table 2 illustrates two lessons. The good news: in these
scenarios – with strong confidence in a very reliable old sys-
tem A and an even better new system B – failure-free evidence
quickly yields an S ∗ (i.e. our conservative posterior claim for
p f dB) of the same order of magnitude as our prior confidence
bound in p f dA, that is pA. In some practical situations, this
will be sufficient to satisfy the reliability requirements. How-
ever, there is also some bad news: S ∗ cannot have a value better
than pA. CBI utilises all forms of doubt expressed. So, even if
there is a slim chance that the new system is worse than the old,
and that the old system has pfd worse than pA, this chance is
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Table 2: Numerical examples for the worst-case bound S ∗ in (12)

pA αA c n pz S ∗

10 0.0956 0.00513
0.001 0.01 0.9 1000 0.002 0.00104

10000 0.0011 0.001

10 0.0925 0.00171
0.001 0.01 0.99 1000 0.002 0.00101

10000 0.0011 0.001

10 0.0921 0.00135
0.001 0.01 1 1000 0.002 0.001

10000 0.0011 0.001

an opportunity to be conservative. So, the only way for testing
evidence to have a better impact on our bounds is if pA is very
small. And how small the S ∗ bound is shown to be in practice
– particularly when assessing systems with ultra-high reliabil-
ity requirements – must depend on how reasonable/feasible it
is to make confidence statements using very small pA values.
It is quite convenient, then, that in a number of practical situ-
ations, some confidence in the perfection of the old A system
(so pA = 0) can be justified [13, 20–23]. The following section
considers the benefit such claims about perfection can bring.

4.3. With Confidence in the Perfection of the Old System

So, in addition to (4) and (6), consider an assessor’s belief
in the possible perfection of the old A system,

P(p f dA = 0) = θA (13)

for some θA. That is, there is an expressed belief in the per-
fection of the old system, as well as a belief in the old sys-
tem being better than some pA. In Fig. 7 we depict an alloca-
tion of probabilities Mi for any joint density function that sat-
isfies the constraints (4), (6), and (13). Appendix D shows that

Figure 7: An allocation of probabilities for any prior distribution that satisfies
(4), (6) and (13). That is, M5 + M4 + M3 = c, M3 + M2 = αA, and M5 + M0 = θA,
where Mi is the probability associated with the depicted i-th subset of the unit
square. Note, the mass M5 is assigned to (0, 0), while M0 is assigned to the
segment {(0, y) | 0 < y 6 1}.

E[p f dB | B passes n tests] 6 S ∗pp, where

S ∗pp = S ∗ppLHS
1pz>pA + S ∗ppRHS

1pz6pA (14)

for which

S ∗ppLHS
:= 1 −

(1 − pz)n+1(1 − M4 − M5) + (1 − pA)n+1M4 + M5

(1 − pz)n(1 − M4 − M5) + (1 − pA)nM4 + M5
,

S ∗ppRHS
:= 1 −

(1 − pz)n+1(1 − M2 − M5) + (1 − pA)n+1M2 + M5

(1 − pz)n(1 − M2 − M5) + (1 − pA)nM2 + M5
,

the masses M0, . . . ,M5 are given, they satisfy the constraints,
and pz is the unique pfd value that satisfies

pz = 1 −
n

n + 1
(1 − S ∗pp) (15)

The forms of the bounds S ∗ppRHS and S ∗ppLHS are consistent
with the story so far, with pA playing an explicit role in control-
ling the size of the bounds. However, unlike previous S ∗ forms,
the bounds now contain the probability M5 of both systems be-
ing perfect. The conservative prior distributions that, together,
result in (14) and (15) are shown in Fig. 8. The value of S ∗pp
depends on whether pz > pA or pz 6 pA, and which of these
holds depends on the value of pz (itself, a function of the Mis).
Therefore, to determine how large S ∗pp can get, one determines
those values of Mi that achieve this.

Our bound S ∗ppRHS
(and, therefore, S ∗pp) can now fall below

pA, but only when both systems can be perfect! That is, we need
M5 > 0. In practice, this will be a requirement of an assessor
who expresses some confidence in NWTES and the possible
perfection of the old A system. Otherwise, even if the A-system
could be perfect, failure-free evidence will not convince them
of the expected reliability of the new system beyond some value
pA. But with M5 > 0, Appendix E and Appendix F show that
when αA 6 1− θA 6 c, then the probability masses (consistent
with this ordering of the constraint parameters) that give the
largest S ∗ppRHS value are {M2 = 0, M4 = 1 − θA − αA, M5 =

c − 1 + θA}. And the bounds in (14) become

S ∗ppLHS
= 1 −

(1 − pz)n+1(1 − c + αA) + (1 − pA)n+1(1 − θA − αA) + c − 1 + θA

(1 − pz)n(1 − c + αA) + (1 − pA)n(1 − θA − αA) + c − 1 + θA
,

S ∗ppRHS
= 1 −

(1 − pz)n+1(2 − c − θA) + c − 1 + θA

(1 − pz)n(2 − c − θA) + c − 1 + θA
. (16)

In particular, (16) implies that S ∗pp
n→∞
−−−−→ 0. So now, our asses-

sor is forced to accept that the old system might be perfect. And
therefore, via NWTES, that failure-free evidence suggests the
new system might be perfect too! So the more failure-free runs
that are observed, the more likely this perfect pair becomes, and
the smaller our conditional worst-case expected pfd is. Table 3
illustrates this when pz 6 pA occurs, with pz approaching 0 as
n grows.

4.4. Fully Specified Prior Knowledge for the Old System
The combination of a claim about the perfection of both sys-

tems (even if made implicitly as in the previous section), and
NWTES, allows failure-free evidence to “save” our conserva-
tive bounds from extreme conservatism. We now see why the
first scenario in section 4.1 had shortcomings – the assessor’s
confidence in the value of the old system’s pfd may have been
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Figure 8: Two joint prior distributions that, together, achieve the bound S ∗pp in (14). When pz > pA, the distribution (a) achieves S ∗ppLHS , while (b) achieves S ∗ppRHS
for pz 6 pA. Within each depicted subset of the unit square, probability masses are assigned to be as close as possible to, or uniformly assigned on, the horizontal
pz-line (see (15) for pz). When necessary, to satisfy constraints, masses are assigned to points, such as M0 assigned to the point (0, pz) or M5 to (0, 0). See Appendix
D for details.

Table 3: Numerical examples for the worst-case bound S ∗pp in (14)

θA pA αA c n pz S ∗pp Prior

10 0.0952 0.0047 LHS
0.5 0.001 0.01 0.9 1000 0.0014 0.00036 LHS

10000 0.00014 0.000037 RHS

10 0.0947 0.0042 LHS
0.95 0.001 0.01 0.9 1000 0.00106 0.000061 LHS

10000 0.00011 0.0000061 RHS

10 0.09201 0.00121 LHS
0.5 0.001 0.01 0.99 1000 0.0013 0.00028 LHS

10000 0.00013 0.000029 RHS

10 0.09159 0.00075 LHS
0.95 0.001 0.01 0.99 1000 0.001 0.000023 LHS

10000 0.0001 0.0000023 RHS

10 0.0917 0.00085 LHS
0.5 0.001 0.01 1 1000 0.00127 0.00027 LHS

10000 0.00013 0.000028 RHS

10 0.0913 0.00039 LHS
0.95 0.001 0.01 1 1000 0.001 0.000019 LHS

10000 0.0001 0.0000019 RHS

extreme (i.e. a certainty in pfd pA), but the pfd value itself was
not (i.e. pA , 0). Their bounds would have been better, had
they spread out their beliefs a bit more to allow the possibility
of the old system being much better than could be confidently
claimed. So, suppose the assessor has enough information to
specify a complete marginal prior distribution, i.e. some den-
sity function fA for a continuous distribution over [0, 1]. This
distribution and the confidence bound (4), together, constrain
the worst-case, conditional expected pfd for the new B-system,
having observed n failure-free runs. Appendix G shows that
E[p f dB | B passes n tests] 6 S ∗cmplt, where

1 − S ∗cmplt =
(1 − pz)n+1(1 − c +

∫ 1
pz

fA(x) dx) +
∫ pz

p1−c
(1 − x)n+1 fA(x) dx

(1 − pz)n(1 − c +
∫ 1

pz
fA(x) dx) +

∫ pz
p1−c

(1 − x)n fA(x) dx
(17)

for the unique pfd value p1−c that satisfies
∫ p1−c

0 fA(x) dx = 1−c,
and pz is the unique pfd value that satisfies

pz = 1 −
n

n + 1
(1 − S ∗cmplt) (18)

Table 4: Numerical examples for the worst-case bound S ∗cmplt in (17)

fbeta(x; a, b) c p1−c n pz S ∗cmplt

0 1 0.201
1000 1.67e−3 6.73e−4

0.9 1.05e−4
a = 1 10000 3.6e−4 2.61e−4

b = 1000 100000 1.45e−4 1.35e−4

E[X]=9.99e−4 0 1 1.11e−1
σ2 = 9.96e−7 1000 1.5e−3 5.38e−4

0.99 1.01e−5
10000 2.6e−4 1.6e−4
100000 4.92e−5 3.92e−5

0 1 2.0e−1
1000 1.64e−3 6.45e−4

0.9 8.58e−5
a = 0.9 10000 3.37e−4 2.37e−4
b = 900 100000 1.24e−4 1.14e−4

E[X]=9.99e−4 0 1 9.99e−4
σ2 = 1.11e−6 1000 1.498e−3 4.997e−4

1 0
10000 2.38e−4 1.38e−4

100000 3.63e−5 2.63e−5

The joint distribution F∗ that achieves this worst-case pos-
terior value is schematically depicted8 in Fig. 9.

To illustrate (17) and (18), Table 4 contains numerical ex-
amples using a beta-density fbeta(x; a, b) for the marginal fA(x).
Some observations from Table 4 are:

• if one doubts an NWTES assumption, so that c , 1, then
as the number of failure-free test runs increases, the value
of S ∗cmplt tends to its smallest value p1−c, but no smaller –
a result of no probability mass lying below p f dB = p1−c

in Fig. 9. This agrees with all of our earlier results ( e.g.
lim
n→∞

S ∗ = pA in (12));

8F∗ is not absolutely continuous with respect to the Lebesgue measure over
the unit square – e.g. F∗ assigns non-zero probability to line segments. So, F∗

is not characterised solely by a joint density function.
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Figure 9: This schematically depicts a conservative joint prior distribution F∗

that achieves the worst-case posterior expected pfd for the B system (17), given
fA – a completely specified, continuous marginal density for p f dA. The bold
line-segments have the indicated probability masses, c and 1 − c, assigned to
them by F∗. F∗ is the limit of a weakly convergent sequence of conservative
joint prior distributions. See Appendix G for details.

• when the new system cannot be worse than the old one
(c = 1), S ∗cmplt is arbitrarily small for large n;

• when c , 1 and n = 0, S ∗cmplt is much larger than the
mean p f dA, E[p f dA]. Intuitively, without any failure-
free evidence from the new system, although the assessor
is almost certain (e.g. c = 0.99) that the new system has a
smaller pfd than the old system, CBI utilizes whatever lit-
tle doubt the assessor has, to specify a joint prior distribu-
tion with a larger mean pfd for the new system, E[p f dB].
However, with a large enough c, such overly pessimistic
results are easily overcome with a modest number n of
observed failure-free runs, e.g. n = 1000;

• when c = 1 and n = 0, we have S ∗cmplt = E[p f dA]. So,
even when one is certain the new system is better than the
old, conservatism forces one to assume the expected pfd
of the new system is the same as that of the old system;

• when n , 0 and c = 1, by the definition of S ∗cmplt we have
(see Fig. 10):

S ∗cmplt > E[ p f dB | B passes n tests]

in particular
=

∫ 1
0 x(1 − x)n fA(x) dx∫ 1
0 (1 − x)n fA(x) dx

(19)

In essence, (19) says, even when one is certain the B sys-
tem is better than the old A system (i.e. c = 1), S ∗cmplt will
still not be better than it would be if the Bayesian infer-
ence for the B-system pfd distribution utilised the contin-
uous marginal distribution of p f dA as the prior distribu-
tion of p f dB. However, on the other hand, this unpleasant
result also provides an important warning against naively
using the old system’s pfd distribution – in a bid to be
conservative – as the prior distribution for the new one.
Doing this might not be conservative at all, and may in
fact be too optimistic. This, even when one is certain the
new system is better than the old one.

It is worth mentioning that, when a marginal prior distribution
of old system A’s pfd (with some prior confidence in A being

Figure 10: With continuous marginal density fA for p f dA, the conservative
joint prior distribution in (a) achieves the worst-case S ∗cmplt when c = 1 (this
is a special case of F∗ in Fig. 9). Any other similarly constrained joint prior
distribution – such as that in (b) with a marginal B-system pfd density equal to
fA – must give a posterior expected p f dB smaller than S ∗cmplt (i.e. inequality
(19) holds, with its r.h.s. expression given by using density fA in (1)). The
B-system pfd distributions in (a) and (b) are also depicted in Fig. 12.

Figure 11: A conservative joint prior distribution that achieves the worst-case
posterior bound S ∗cmplt , and has a fully specified marginal distribution for p f dA,
FA – with θA prior confidence in the A-system being perfect. In this example,
it is assumed that θA > 1 − c.

perfect) is fully specified, CBI gives arbitrarily small worst-case
posteriors from mounting failure-free evidence. For example,
assume there is a θA probability mass at the origin of a marginal
prior distribution FA for p f dA, and in the range of x ∈ (0, 1], FA

takes the form of a scaled Beta distribution – with parameters
a, b and density (1 − θA) fbeta(x; a, b). That is, for 0 6 x 6 1,

P(p f dA 6 x) = FA(x) := θA + (1− θA)
∫ x

0
fbeta(u; a, b) du (20)

Given such prior knowledge of the old A-system, there are
two cases to consider:

• When θA 6 1 − c, the worst-case joint prior is still the
one in Fig. 9, exemplified in table 4;

• When θA > 1 − c, similar to how the joint prior for Fig. 9
is derived, one obtains a conservative joint prior distribu-
tion by first ensuring that as much of the NWTES mass,
c, as is possible, lies beneath the diagonal and on the
far right in the unit square (while satisfying constraints
on the mass. See Appendix H for a detailed argument).
Upon doing this, we must have p1−c = 0, because the
inequality θA > 1 − c implies there must still be some
probability mass at the origin no matter how much mass
one relocates from the origin elsewhere within the unit
square. This generalises the simpler case in section 4.3,
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which also had a probability of the A-system being per-
fect (and a mass-moving argument for that case is given
in Appendix E). Consequently, by following near iden-
tical arguments to those given in Appendix G, one de-
duces the conservative joint prior distribution depicted in
Fig. 11. And given the FA and NWTES constraints, this
distribution attains the largest value for the posterior ex-
pected B-system pfd, S ∗cmplt,

1 − S ∗cmplt =
Nu1 + Nu2

De1 + De2
(21)

where

Nu1 = (1 − pz)n+1
(
1 − c + (1 − θA)

∫ 1

pz

fbeta(x; a, b) dx
)

Nu2 = θA − 1 + c + (1 − θA)
∫ pz

0
(1 − x)n+1fbeta(x; a, b) dx

De1 = (1 − pz)n

(
1 − c + (1 − θA)

∫ 1

pz

fbeta(x; a, b) dx
)

De2 = θA − 1 + c + (1 − θA)
∫ pz

0
(1 − x)n fbeta(x; a, b) dx

with an associated, unique pfd value pz that satisfies

pz = 1 −
n

n + 1
(1 − S ∗cmplt) (22)

Table 5 gives numerical examples in which we observe 2-
3 orders of magnitude improvement, compared with the
results in Table 4, thanks to both the prior confidence in
the perfection of the old A-system and strong confidence
in an NWTES assumption.

Table 5: Numerical examples for the worst-case bound S ∗cmplt in (21) resulting
from a joint prior distribution with the complete marginal prior distribution FA
given in (20)

θA a b c n pz S ∗cmplt

10e3 1.25e−3 2.52e−4
0.5 1 1000 0.9 10e4 1.28e−4 2.79e−5

10e5 1.36e−5 3.76e−6

10e3 1.05e−3 5.58e−5
0.95 1 1000 0.9 10e4 1.06e−4 6.04e−6

10e5 1.06e−5 6.10e−7

5. Discussion

5.1. Conservatism in Reliability Assessment
Conservatism in reliability assessment is a fine balancing

act. On the one hand, in being conservative, one seeks to “err
on the side of caution” by coming up with reliability estimates
that indicate worse reliability than the actual unknown value
of the system reliability. On the other hand, one also wants
the weight of evidence to drive assessments, and alter them in
principled ways. Tip the scales too far to the left and our es-
timates are doomed to be too conservative to be meaningful.

Too far to the right, and we risk being unpleasantly surprised
by failure events that, otherwise, would not have been surpris-
ing (as these events would have been judged, conservatively,
to be unacceptably likely). Finding that useful middle ground
is a judgement call an assessor makes, typically (necessarily?)
on a case-by-case basis, by a combination of formal and infor-
mal reasoning. Reasoning that, when formalised in probabilis-
tic terms, requires that one’s uncertainty about uncertainties be
adequately expressed9 – a nesting of uncertainties. Quite of-
ten, such reasoning is difficult, more so when it involves prob-
abilities of rare failure events. And these difficulties are only
compounded when one tries to use failure evidence from the as-
sessment of one system in the assessment of another. For while
Bayesian inference provides a principled approach to evidence-
based reliability assessment, we are sympathetic to the plight of
an assessor faced with the challenge of coming up with a suit-
ably rich prior probability distribution that captures their prior
beliefs about the system having any stated plausible reliability
level. So, to the assessor seeking that conservative, yet useful,
middle ground, we say “be Bayesian, but be conservative in
how you go about being Bayesian”.

5.2. CBI Applied to “Not Worse than the Existing System” Ar-
guments

This is where CBI enters into the picture. Since the publi-
cation of [12], a number of CBI applications have been stud-
ied, inferring the reliabilities of software-based systems [13–
15]. The key novelty of CBI is, instead of assuming a complete
prior distribution, only partial prior knowledge of the distribu-
tion is required. This knowledge defines a constrained set of
prior distributions, each compatible with the specified partial
prior knowledge, from which one chooses a “most conserva-
tive” prior distribution – i.e. a prior distribution that produces
the “most conservative” value for a posterior estimate of inter-
est. Precisely which prior is “most conservative” will depend
on which posterior estimate is of interest. For example, the
constrained prior distribution that minimises the probability of
perfection [14] is different from the constrained prior that max-
imises the expected pfd [12]. With CBI, one avoids much of the
difficulty in eliciting a complete prior distribution when apply-
ing Bayesian inference in practice.

Perhaps the very act of not having to articulate an entire
prior probability distribution over the possible pfd values is, it-
self, a “conservative” act. In articulating only partial knowledge
about a suitable prior, one is not compelled to possibly claim
more than one can reasonably justify. And yet, such minimalist
beliefs can be used to identify a suitable prior – one guaranteed
to lead to conservative posterior estimates.

We have extended CBI from previous applications to the
present context – that of assessing a new system, where the as-
sessment is based, in part, on an assessment of an older system.
Here, a multivariate prior distribution is sought for the infer-
ence. Clearly, in most cases, fully specifying a joint-distribution

9e.g. in the form of a distribution of system pfd.
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is infeasible; the assessor would normally only have sparse in-
formation of the new system, relatively rich knowledge of the
old one, and evidence prior to operational testing to suggest that
the new system is probably better than the old one. Hence, to
begin with, they may assume nothing, marginally, about the sta-
tistical properties of the new system’s pfd, but have some partial
knowledge of the old system’s pfd distribution and some confi-
dence in an NWTES claim (see (4)). Altogether, these constrain
the unknown joint prior in an application of our CBI extension.

With these prior constraints, CBI gives conservative poste-
rior reliability estimates; in this paper, the estimate of interest
is a posterior expected pfd for the new system. But recall our
earlier conservatism “balancing act”: when are these estimates
not too conservative, and to what extent can evidence temper
healthy skepticism? Indeed, the analyses and examples in sec-
tion 4 show that NWTES-based models can produce results that
are too conservative, either suggesting the new system will fail
on every input it executes on, or suggesting that the new sys-
tem can only be as reliable as the old one, but no better. And
all of this despite failure-free evidence to the contrary. For in-
stance, the worst-case reliabilities in Table 1 and Table 2 are
each worse than some “floor” – a lower non-zero limit, de-
spite having 100% confidence in NWTES and infinitely many
observed failure-free runs of the new system!

But these shortcomings come as no surprise. There are 2
influences on claims about the new B-system’s reliability that,
together, provide the means for extreme conservatism to occur.
These influences are “confidence in p f dA” and “confidence in
NWTES”. These are formalised as probabilities of “less than or
equal to” events. For example, an assessor is (1 − αA)% confi-
dent that p f dA6 pA, or is c% confident that p f dB 6 p f dA. So,
to be conservative, CBI exploits the “equals to” possibilities in
both of these. That is, to be conservative, the new system can
only be “as good as” the old system, but no better, and the old
system can only be “as good as” having the pfd value pA, but
no better. These assertions may still be held, even when faced
with vast amounts of failure-free evidence, ceteris paribus. Be-
cause, for any finite number of failure-free tests, there is a non-
zero probability that the p f dB value is consistent with these as-
sertions and, nevertheless, the new system survives that many
tests. In this sense, these 2 influences on B-system claims are
considered “weak”; allowing an assessor to be unreasonably
conservative, and yet be formally consistent in their conser-
vatism. Failure-free evidence from the B system can only, at
best, convince one that the B system is “as good as” the best
pfd value believed for the old system – the value pA. Yes, this
is clearly an unhelpfully bullish way to be cautious.

The solution is clear: if “worst-case” reasoning requires we
be resolute in our conservative beliefs – that the new system can
only be as good as the old system, but no better, and that the old
system can, at best, have pfd pA – then we should express be-
liefs about the old system being, possibly, very reliable indeed.
We should articulate how (un)certain we are that the old system
has a pfd value much better than pA. This might require collect-
ing extra evidence or analysing more in-depth the available ev-
idence for system A. In fact, in a number of practical contexts,
one can “go all the way” and articulate a probability that the old

system is altogether fault-free/perfect. And, due to the NWTES
assumption, this implies a non-zero probability that the new
system is fault-free too. In Table 3, the worst-case expected
pfds improve in response to testing evidence, with no limits on
the reliability that can be suggested by these estimates. And Ta-
ble 4 shows such improvement does not need perfection beliefs
– our worst-case estimates also improve, with increasing confi-
dence in an NWTES assumption, when a complete marginal pfd
distribution of the old system is used without some confidence
in the perfection of the old system. Of course, things only get
better when a complete marginal distribution with a probability
mass for perfection is specified (see Table 5).

The redeeming role of “probability of perfection”, and ap-
proximations of this, is in line with the findings of previous
CBI applications [11–13, 21, 22]. The smaller the pfd pA in our
CBI model, the lower our worst-case expected pfd can become
with increasing failure-free evidence. “Perfection” or “fault-
freeness” can be seen as the special case when pA = 0. How
best to learn about the probability that a pre-existing system is
fault-free remains an open question, and an active research area.
Work in [14] explores statistical inference using evidence of a
good operational history, and [11] uses statistical evidence gar-
nered from other products – but still in the same product line –
to infer the probability of perfection.

Of course, depending on how confident an assessor is in
NWTES, the amount of failure-free evidence required for a cer-
tain reliability claim can vary quite a bit. Consider that a “clas-
sical” estimate for how many failure-free runs n are needed, to
claim a new system pfd “pfdclaim” with a confidence level of
99%, is given by [24]:

P(surviving n tests) = (1 − pfdclaim)n = 1 − 0.99 (23)

We can compare the n suggested10 by (23) with the number of
runs stipulated by our CBI:

• Using the fifth entry from the bottom in Table 4, with an
NWTES confidence of 90%, to claim the new system pfd
is 1.14e−4 requires 105 runs. This is significantly more
than the 40394 runs suggested by (23);

• In the last entry in Table 4, with 99% or more confidence
in NWTES, to claim a 2.63e−5 pfd requires 105 runs.
This is just over half of the number of runs, 1.75e5, ob-
tained from (23).

So, less confidence in NWTES can result in significantly more
convincing needed from successful test executions.

We do not want to give the impression that conservative es-
timates will always be preferred to more optimistic ones. The
practical dictates of a given situation might mean our CBI esti-
mates are simply too conservative to be used directly in building
arguments in safety cases. So, an assessor might have to turn to
other more optimistic models – ones that also incorporate the
history of an old system’s development and its operation. Such
models could be based on informal or less rigorous reasoning,

10Strictly speaking, n is the smallest integer larger than the solution to (23).
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and may contain within them implicit assumptions. But, recall
that useful “middle ground” an assessor needs to find. By per-
forming what-if calculations using the CBI/NWTES model, our
assessor is armed with an estimate of how optimistic an alterna-
tive model to CBI actually is. Such perspective can give pause,
and provide useful caution against an over-reliance on opti-
mistic results. For instance, they could determine the required
model-input values for the NWTES model that give match-
ing results between it and a more optimistic alternative model.
Would such an alternative (implicitly?) require very high con-
fidence in NWTES? And/or ideal knowledge of the old system
(e.g. a high probability of perfection)? Perhaps such knowl-
edge is clearly unsupported in a given context, in which case
this should cast doubt on optimistic reliability claims made with
the alternative. The works reported in [25, 26] are in this spirit,
where caution is given against misleading, optimistic models
being used in system-safety claims, arguments and regulations.

Even without contrasting against alternative models, CBI
reveals a counter-intuitive case that serves as an admonition to
assessors/regulators. This is in the last few entries of Table 4,
where the confidence in NWTES is c = 1 and a completely
specified pfd distribution of the old system is given. An asses-
sor might be tempted to reason as follows: “Since I am 100%
certain the new system is better, I will be conservative by using
the pfd distribution for the old one as the prior pfd distribution
for the new system, in a Bayesian assessment with testing ev-
idence from the new system.” And doing this might seem to
be both conservative and convenient – the old system distribu-
tion is known, trusted, and using it avoids grappling with multi-
dimensional priors. However, (19) shows this to be optimistic.

But why is there this lack of conservatism resulting from us-
ing the old system’s marginal pfd distribution as a prior? Well,
initially, there isn’t. Note that complete confidence in NWTES
means that, without seeing any failure-free evidence, it is con-
servative to assume that the new system’s pfd distribution is the
same as the old system’s. So, the expected pfd for the new sys-
tem is the same as that of the old system. However, once we
begin to observe failure-free evidence from the new system, at
some point, we are forced to accept that the new system cannot
be that bad. But (being conservative) we nevertheless maintain
that if the old system is very reliable, the new system is no bet-
ter. So, the prior distribution for the new system is identical to
that of the old one at first. Then evidence begins to alter it, but
conservatively – beliefs about the new system not being very
reliable are slowly changed by the gathering failure-free evi-
dence, but beliefs about the new system being very reliable are
still, conservatively, identical to those for the old system (see
Fig. 12). Even ardent skeptics can change their minds, but only
with a lot of convincing. Possibly much more convincing than
that required to change the old system’s distribution when not
being conservative. The result is that our conservative posterior
expected pfd for the B system does improve with evidence, but
(much) more slowly than it would when not being conservative.

5.3. Obtaining Confidence in an NWTES Assumption
Our objective in this paper is to present details of our new

CBI/NWTES model. To aid readers’ understanding we have

Figure 12: The worst-case achieving prior distribution for p f dB in the NWTES
model (l.h.s) and the optimistic model of using the A-system’s distribution as
the B-system’s prior (r.h.s). See related joint distributions in Fig. 10.

presented various numerical examples, but we must emphasise
that these have been chosen arbitrarily to represent scenarios in
which we envisage this kind of reasoning being used. We do not
claim that the actual numbers used in these examples are real-
istic for actual scenarios. Despite informal NWTES reasoning
being used in practice, we are not aware of cases where a be-
lief, c, in NWTES has been expressed quantitatively. Neverthe-
less, we believe that this may be feasible in some real cases. In
what follows we discuss, informally, some situations in which
NWTES beliefs would be natural, and where confidence, c, in
NWTES would be less than 1.

• In a bug-fixing scenario, new software is essentially a
modification of older, faulty software. One’s confidence
in perfect debugging leads to the NWTES belief of (4).
Empirical evidence could be used to quantify such a be-
lief, e.g. since the programmer intends to decrease the
failure rate by their debugging actions [19], and empiri-
cally we know they are more likely to succeed rather than
make things worse (implying c > 0.5 in (4)), one may
choose c = 0.5 which, by a simple monotonicity analysis
of our CBI results, gives conservative estimates.

• It may seem obvious that replacing a component of a
software-based system with a more reliable one produces
an upgraded new system that is at least as reliable as the
old one. But there are exceptions e.g. if the new com-
ponent introduces a system design fault [27, pp. 43–46],
that is, the specification used for building the component
is a misrepresentation of the behaviour actually required
from it by the system [28]. The new component could
be shown to be more reliable than the old one according
to its explicit specification, and yet make the system less
reliable. So, one’s confidence in the absence of system
design faults forms a belief in NWTES.

• Information about system architecture can provide clues
to inform one’s confidence in an NWTES assumption.
For example, the new system could be obtained by aug-
menting the old system with additional runtime checks,
safety checks, or monitoring channels [18, 29] so that
some situations that would cause the old system to fail
are tolerated by the new (augmented) system. Then, there
will be strong confidence of the new system being more
reliable than the old one (with respect to the kinds of fail-
ures mitigated), although c might not be 1 because of the
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small risk of having introduced system design faults.

• Advanced program analysis techniques can be used, e.g.
“probabilistic symbolic execution” [30] can check a mas-
sive number of execution paths, symbolically, against a
formal specification to estimate bounds on reliability. If
one assumes such formal analysis is correct and can check
all execution traces, and the results for the old and new
software happen to show that the pfd of the new one is
better, then one might claim 100% confidence in NWTES.
However, due to inevitable uncertainties in any formal
method for sufficiently complex software [31], instead of
being certain, one may quantify one’s confidence in the
formal analysis, on the basis e.g., of statistics of the ef-
fectiveness of the verification tools [32].

Admittedly, quantifying NWTES beliefs can be an involved
task, and it requires further study of rigorous probabilistic ap-
proaches to it. However, even when numbers are hard to come
by, it might still be practical, and easier, to argue qualitatively
for certainty in an NWTES assumption. Our NWTES model
is suited for such situations (cf. the numerical examples when
c = 1), and allows one to check the sensitivity of the reliabil-
ity claim to the value of c, to avoid making wildly optimistic
reliability claims on the basis of informal reasoning.

In passing, we note that the CBI worst-case achieving joint
prior distributions all have the property that they produce pos-
terior confidence in NWTES that is no worse than prior confi-
dence in NWTES. And, the posterior confidence increases with
increasing failure-free evidence11. Indeed, the “good news” of
seeing the new system behave so well increases one’s confi-
dence that it is, at least, as reliable as the old one.

5.4. Future Work, including a Mathematical Dual with Appli-
cations to Software re-use

As indicated in our CBI review (section 2), there is a great
deal of flexibility in both the beliefs that may be expressed, and
the worst-case posterior estimates that may be sought, using
CBI. We will explore many of these in future work, all within
the “two-system” context presented in this paper. In general,

11Proof : for non-negative integers n, k, we wish to show that

P(p f dB 6 p f dA | B passes n + k tests)

> P(p f dB 6 p f dA | B passes n tests) ,

which holds iff
E[(1−Y)n+k1Y6X ]

E[(1−Y)n+k]
>

E[(1−Y)n1Y6X ]
E[(1−Y)n] holds for random probabilities

X and Y . Simplifying this by using the identity E[(1−Y)r] = E[(1−Y)r1Y6X] +

E[(1 − Y)r1Y>X] with r = n, n + k, one obtains

E[(1 − Y)n+k1Y6X]
E[(1 − Y)n1Y6X]

>
E[(1 − Y)n+k1Y>X]
E[(1 − Y)n1Y>X]

which is the identity

E[(1 − Y)k |Y 6 X & B passes n tests] >

E[(1 − Y)k |Y > X & B passes n tests] ,

which is self-evidently true, since the function (1 − x)k is a monotonically de-
creasing function on [0, 1]. �

we expect different combinations of beliefs and posterior esti-
mates to “pick out” different worst-case priors, and show how
being conservative can (significantly) change from situation to
situation. For instance, if our CBI extension is to be used in the
assessment framework proposed in [11, 15], then the posterior
estimate of interest for the new B system becomes the probabil-
ity of perfection given n failure-free executions by the system.

One might envisage multi-criterion optimisation, where mul-
tiple posterior estimates are simultaneously optimised for the
new B system. For instance, how would one conservatively
expect the new B system to have both a low pfd and a high
probability of surviving t future executions?

So far, our work has focused on using knowledge about a
single, older system; this can be extended to multiple older,
similar systems. Or multiple past versions of the same soft-
ware, each bringing valuable reliability information to bear on
the new system’s assessment. In fact, even older systems with
multiversion architectures may be included in the assessment,
likewise CBI could be used when upgrading one of the diverse
software-channels in such a fault-tolerant architecture.

At present, CBI lacks explicit feedback mechanisms. But
we know, just as older software can inform a reliability assess-
ment of newer software, the reverse is true – evidence about
(un)reliability in a newer system might cause an assessor to
re-think conclusions made for an older system. Or additional
(un)reliability evidence from the old system can arise, if the
old system hasn’t actually been replaced but is still in opera-
tion elsewhere. Moreover, beliefs expressed for these systems
– such as the NWTES belief – should be amenable to change
and updated over time. Especially if both systems are run side-
by-side, and assessment is continuous and ongoing.

We will also explore other types of NWTES assumption.
One possible alternative is that of stochastically ordered pfd
distributions, analogous to how ordered distributions of failure
rates were used in [19] to model the effects of imperfect bug-
fixing. Indeed, if the new software is produced and verified
using a new and improved development process – one which
is likely to result in software with fewer faults across all fault
types – then the cumulative distribution of the new system’s pfd
may be characterised as lying, everywhere, above that for the
old one. Will this NWTES alternative overcome the shortcom-
ings of NWTES as used in this paper? Or, do alternative forms
of NWTES simply have their pros and cons, with no clear pref-
erence amongst them? In which case, one might consider using
an ensemble of CBI models employing these NWTES alterna-
tives, and developing techniques to evaluate how “good” the pfd
estimates/forecasts coming from these models are. Such tech-
niques, using the principles of prequential statistics, have been
successfully developed in other contexts [33].

Our notion in this paper of two versions of a software-based
system operating in a single environment is reminiscent of the
probabilistic models for multiversion software in fault-tolerant
systems, of some years ago. In [34] for example, several the-
orems are proved about the efficacy of such multiversion soft-
ware architectures in delivering high reliability. These theorems
exhibit a mathematical duality between the situation where many
versions operate in a single environment, and the situation where
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a single version operates in many environments. These are for-
mally “dual”, in the sense that for every theorem in the first
model there is an exactly corresponding theorem in the second
model – as if, for every scientific paper about the first model,
there is another paper about the dual model that “writes itself”.

Such a duality exists here too. Our CBI model concerns
a single operational environment, and two programs/systems,
one of which is believed to be no worse than the first. The
dual situation would concern a single program/system, and two
operational environments (one environment is believed to be no
more “stressful” than the other). This situation does arise, we
think, in some cases of software re-use: when a pre-existing
system is re-used in a new environment that is believed to be
no more stressful than the old one. We call this NWTEE (No
Worse Than Existing Environment), to correspond to NWTES
in the dual model in the current paper. A famous example of
re-use concerned the inertial platform of the Ariane IV launch
vehicle, which was re-used some years ago in the new Ariane V.
It turned out that, for this inertial platform, the belief that Ariane
V was NWTEE compared with Ariane IV was misplaced [28].

We believe that the mathematical results in the current pa-
per apply directly to this dual situation of software re-use. Be-
cause of the ubiquity and importance of software re-use, and the
widespread use of off-the-shelf components, these ideas seem
worthy of further investigation.

In section 5.2 we showed why using the old system’s pfd
distribution as a prior for the new system’s pfd is not being
conservative. This warning, viewed through the dual NWTEE
“lens”, also shows why assuming that a changing environment
has no significant effect on one’s beliefs about a program’s pfd
can result in very optimistic posterior pfd estimates for the pro-
gram’s pfd in its new environment.

6. Conclusions

It is easy to see why using the historical development and
operation of a pre-existing system, in the reliability assessment
of a new system, is attractive – if little is known of the new
system, this brings to bear the wealth of experience/evidence
gained from a similar, pre-existing system.

But this comes with challenges, especially when trying to
do this in a statistically principled way. For instance, Bayesian
methods necessitate that an assessor adequately express their
beliefs about the reliabilities of the old and new system, and
how these reliabilities might be related. Not an easy thing to do,
since such beliefs express uncertainty about unknown reliability
measures, like the probability of a system failing on a random
demand it receives from its environment (pfd).

In this regard, we present a novel extension of conservative
Bayesian inference methods, here applied to this “two-system”
assessment problem. Successfully used in “single-system” as-
sessment work, CBI provides worst-case reliability estimates
based on minimalist sets of beliefs expressed. As in previ-
ous CBI applications, we help assessors reason conservatively
about the implications of their prior beliefs, using only par-
tial prior knowledge of an old system’s pfd distribution rather

than fully specified priors. In particular, we study the implica-
tions of expressing a belief that the new system is “not worse
than the existing system” (NWTES), and identify those beliefs
that, when expressed together with NWTES, result in useful
worst-case posterior estimates of the new system’s reliability.
We highlight the important role of failure-free testing evidence
from the new system, and the need to express beliefs about the
old system possibly being very reliable – or fault-free even – in
order to gain useful conservative reliability estimates.

This work continues the authors’ recent research [11–17],
which has looked at ways that practitioners’ plausible intuitions
about the assessment of critical software-based systems can be
formalised, and made more rigorous in support of quantitative
claims about reliability and safety. Our CBI methods provide
checks on whether apparently “obviously plausible” claims
about system dependability can indeed be trusted. Our approach
reveals circumstances in which such trust is inappropriate, and
we provide ways forward for these cases. In summary, this pa-
per makes the following contributions:

1. we formalise intuitive NWTES notions used by assessors
in practice, and demonstrate the consequences of these
for conservative reliability assessment;

2. we illustrate the conservative assessment of a software-
based system subjected to operational testing, using a sta-
tistically principled incorporation of reliability evidence
from a pre-existing, similar system;

3. we demonstrate how, with a justifiable (minimal) set of
expressed prior beliefs, an assessor can use a conservative
Bayesian approach to reliability assessment;

4. we extend CBI beyond previous ”single system” applica-
tions;

5. we show how confidence in NWTES and claims about
an older system’s reliability severely limit, or strengthen,
the impact of operational testing evidence on conserva-
tive posterior estimates of reliability;

6. we outline how these results may also be applied to the
conservative reliability assessment of a system subject to
a changing operational environment;

7. the work re-affirms the important role of claims about
software perfection/fault-freeness to conservative assess-
ment, found in previous CBI applictaions;

8. we demonstrate how CBI may be used to identify danger-
ously optimistic assessments. This includes seemingly
reasonable, but ultimately naive, attempts at conservative
reliability assessment.

Finally, whilst we have used the language of software faults
in this paper, the results here, and in previous CBI work we
have cited, may apply more widely to general design faults –
for example, faults in the design of complex hardware/software
systems. Our notions of fault-freeness, and thus “perfection”,
for example, seem equally applicable in these wider cases.
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Appendix A.

From Fig. 3, we know M4 = c − M3 = c − (αA − M2) =

M2 + c − αA. And, we know 0 6 M2 6 min{αA, 1 − c}. So, the
range of M4 is max{0, c − αA} 6 M4 6 min{c, 1 − αA}.

Appendix B.

Problem 1. Consider the set D of all probability distributions
over the unit square, each distribution representing a potential
joint prior distribution of pfds for the A and B systems. Con-
strain the members of D as follows. Partition the unit square
into four convex regions with known non-zero probabilities Mi :=
P(region i) for i = 1, . . . , 4 , as shown in Fig. 3, such that
M2 + M3 = αA and M4 + M3 = c are required to hold for
known αA, c. We seek to12

maximise
F∈D

E[ p f dB | B passes n tests]

subject to P(region i) =

∫
region i

dF = Mi, i = 1, . . . , 4

Solution: A prior F∗ ∈D maximises the objective function
(see Fig. 6) and has an associated pfd value pz satisfying (11).
With F∗, the posterior expected B-system pfd (after observing
n failure-free tests) is the upper bound S ∗ in (10).

Proof. The proof will progress in three stages:

1. First, the feasible set for the optimisation can be restricted
fromD to a smaller subset,D∗ ⊂ D, of joint prior distri-
butions that have discrete marginal distributions for the
B system. Over D∗, the optimisation becomes a con-
strained minimisation of Φ(w1,w2,w3,w4) – a rational
function;

2. Secondly, with respect to each non-empty subset W of
the variables w1, . . . ,w4, the function Φ is continuously
differentiable and has a global minimum at the unique
stationary point with respect to the variables inW;

3. Lastly, from stages 1 and 2 we deduce a prior F∗ that, in
terms of a unique pfd pz, maximises the objective func-
tion at the value S ∗.

Let us proceed:
stage 1) Let Y be the unknown pfd for the B system. For any

joint distribution in D, the objective function can be written in
terms of a quotient of expectations. By first expanding these
expectations as conditional expectations – each conditional on

12The integral in the constraints is with respect to a Lebesgue-Stieltjes mea-
sure defined over Borel sets of the unit square – each F ∈ D induces a
Lebesgue-Steiltjes measure over the unit square.

one of the 4 regions of the unit square – and, then, bounding
those conditional expectations in the numerator of the quotient,

E[ p f dB | B passes n tests] = 1 −
E[(1 − Y)n+1]
E[(1 − Y)n]

= 1 −
∑

i E[(1 − Y)n+1 | i ]Mi∑
i E[(1 − Y)n | i ]Mi

6 1 − Φ (w1, . . . ,w4) (B.1)

where Φ (w1, . . . ,w4) :=
(

w
n+1

n
1 M1+...+w

n+1
n

4 M4

w1 M1+...+w4 M4

)
, in which wi :=

E
[
(1 − Y)n | i

]
is the probability of the B system surviving n

tests, when the B-system pfd is some value from a point in the i-
th region. The inequality in (B.1) follows from the relationship

E[(1 − Y)n+1 | i ] > (E[(1 − Y)n | i ])
n+1

n (B.2)

that holds for each region i. This is an application of either
Jensen’s inequality or the monotonicity of Lp norms13.

Note that wi, as a conditional expectation of a continuous
random variable, satisfies14 wi = (1 − yi)n for some point (x, yi)
in the region i, with yi being unique. This allows us to define,
for any given F ∈ D, a related joint distribution that is also
in D but with a discrete marginal distribution for the pfd of
the B system15, and the yis are the possible pfd values for Y .
Moreover, this related distribution, when used as a joint prior,
gives a value for the objective function that is at least as bad as
that resulting from F. Consequently, our optimisation task may
now proceed by considering only those distributions in D that
are of this kind – this is a subset ofD we denote byD∗. So, we
will minimise Φ in (B.1) overD∗.

stage 2) Now consider a non-empty subset W of the vari-
ables w1, . . . ,w4 and fix the values of those wi that are not in
W. With respect to the wi in W, Φ is a rational function of
continuously differentiable functions of these wi. Therefore, Φ

is continuously differentiable and its partial derivatives deter-
mine how Φ changes with respect to each wi ∈ W at an arbi-
trary feasible “point”. With respect to each variable wi ∈ W,
the partial derivative of Φ is

∂Φ

∂wi
=

Mi

(
n+1

n w
1
n
i − Φ

)
w1 M1 + . . . + w4 M4

, (B.3)

13For each prior distribution F ∈D and the Borel sigma-algebra B on the
unit square, consider the probability space ([0, 1]×[0, 1], B, F). Then, for any
random variable X: [0, 1]×[0, 1] → R and 1 6 p < ∞, one may compute the
conditional expectation E[ |X|p | i ], conditional on region i of the unit square.

Let us denote the Lp-norm of X, E[ |X|p | i ]
1
p , by ‖X‖p for short. The

monotonocity of Lp norms is the guarantee that, for 1 6 r < q < ∞, we
have ‖X‖q > ‖X‖r (see [35], page 463). In particular, for r = n, q = n + 1 and
X := (1 − Y), one has (as claimed in (B.2))

‖(1 − Y)‖n+1 > ‖(1 − Y)‖n .

14“Satisfies”, because the intermediate value theorem applied over each con-
vex region means the bounded, continuous function (1 − y)n takes on all values
between its maximum and minimum on each region, and the properties of ex-
pectations then imply that this bounded function must attain its expected value.

15This marginal distribution is P(Y = y) =
∑4

i=1 Mi1y=yi

16

https://books.google.co.uk/books?id=g8bKuQEACAAJ


so that the sign of ∂Φ
∂wi

is completely determined by the sign of

( n+1
n w

1
n
i − Φ). That is, the sign of the numerator in (B.3) is

a rule for how to change wi in order to minimise Φ, and this
rule is in terms of an explicit relationship between a feasible
“point” (w1, . . . ,w4) and the value of the objective function at
that point, Φ (w1, . . . ,w4). At any given “point”, there are three
possible directions for changing wi ∈ W, resulting from the
sign of ∂Φ

∂wi
:

1. Φ decreases with decreasing wi if, and only if,

w
1
n
i >

n
n + 1

Φ (w1, . . . ,w4) ;

2. Φ decreases with increasing wi if, and only if,

w
1
n
i <

n
n + 1

Φ (w1, . . . ,w4) ;

3. Φ is stationary if, and only if,

w
1
n
i =

n
n + 1

Φ (w1, . . . ,w4) .

We restate these possibilities in terms of B-system pfds as
follows. Since, for each i, we have wi = (1 − yi)n for some
unique pfd yi, the possibilities become:

1. Φ decreases with increasing pfd yi if, and only if,

yi < 1 −
n

n + 1
Φ̃ (y1, . . . , y4) ;

2. Φ decreases with decreasing pfd yi if, and only if,

yi > 1 −
n

n + 1
Φ̃ (y1, . . . , y4) ;

3. Φ is stationary if, and only if,

yi = 1 −
n

n + 1
Φ̃ (y1, . . . , y4) ;

where, for notational convenience,

Φ̃ (y1, . . . , y4) := Φ ((1 − y1)n , . . . , (1 − y4)n) (B.4)

The existence of stationary points of Φ (with respect to the
W variables) follows from the existence of zeroes of the ra-
tional functions ∂Φ

∂wi
. Rational functions have a finite number

of zeroes and, consequently, Φ has at most a finite number of
isolated stationary points. The convexity of Φ with respect to
W follows from Φ having a unique stationary point at which
it attains a global minimum; this fact can be deduced from the
properties of Φ’s Hessian matrix of second-order partial deriva-
tives. At a stationary point, the Hessian for Φ is necessarily a

diagonal matrix diag( (n+1)w1/n
i Mi

n2wi
∑

j w j M j
), where wi ∈ W. Clearly, this

matrix is positive-definite for all reasonable wi (and associated
pfds yi)16, since all the diagonal entries are positive and the off-
diagonal entries are zero. So Φ must be a local minimum at

16“Unreasonable” is a pfd of 1 – i.e. the software always fails.

each isolated stationary point. But isolated stationary points are
not possible since, if we assume that there is more than one iso-
lated local minimum, then any path between these local minima
must pass through a stationary point at which the Hessian is not
positive-definite; a contradiction. Hence, there are no isolated
stationary points, and Φ has a global minimum at the unique
stationary point with respect to the W variables. This shows
Φ is convex with respect toW. And thus, to minimise Φ, one
picks an arbitrary feasible “point” and changes the wi ∈ W in
the direction of the global Φ minimum; a direction indicated by
the signs of the partial derivatives ∂Φ

∂wi
given in (B.3).

In particular, the minimum value of Φ is obtained at a feasi-
ble “point”

((
1 − ŷ1

)n , . . . ,
(
1 − ŷ4

)n) such that: 1) each ŷi satis-
fies one of the partial derivative relationships, 2) moving away
from this “point” increases Φ and, 3) at a unique pfd value pz,
achieved by some ŷi,

pz = 1 −
n

n + 1
(1 − S ∗) (B.5)

where S ∗ is the maximum value of the objective function.
stage 3) Since S ∗ must satisfy 0 6 S ∗ 6 1, (B.5) implies

that 0 6 pz 6 1. So, there is a line segment in the unit square
such that Φ is at a minimum when each ŷi either equals pz, or is
as close to pz as constraints in regions 1, . . . , 4 will allow.

Clearly (see Fig. B.13), both ŷ1 and ŷ3 can assume the value
pz. However, depending on the value of pz and pA, only one of
ŷ2 or ŷ4 can reach the value pz, while the other must take the
value pA since the point (pA, pA) will be the closest reachable
point to the pz-line. These two possibilities, shown in Fig. B.13,
are two possible forms for a “most conservative” joint prior dis-
tribution F∗. And the corresponding two S ∗s are

S ∗LHS = 1 −
(1 − pz)n+1 (M1 + M2 + M3) + (1 − pA)n+1 M4

(1 − pz)n (M1 + M2 + M3) + (1 − pA)n M4
1pz>pA

S ∗RHS = 1 −
(1 − pz)n+1 (M1 + M4 + M3) + (1 − pA)n+1 M2

(1 − pz)n (M1 + M4 + M3) + (1 − pA)n M2
1pz<pA

(B.6)

However, the following argument shows that the “RHS”
case is impossible. Using S ∗ = S ∗RHS and pz = 1− n

n+1

(
1 − S ∗RHS

)
(by (B.5)), we have:

n + 1
n

=
(1 − pz)n+1 (1 − M2) + (1 − pA)n+1 M2

(1 − pz)n+1 (1 − M2) + (1 − pA)n (1 − pz) M2
(B.7)

Since n+1
n > 1, the r.h.s. of (B.7) is also bigger than 1. This

inequality implies that pz > pA – a contradiction, since the con-
dition (pz < pA) must hold for S ∗ = S ∗RHS . Consequently, the
only valid form for F∗ is that in Fig. B.13 (a). �

Some Remarks: This proof readily extends to any finite partition
of the unit square into convex sets, and any finite number of pre-
existing systems.

Appendix C.

Lemma 1. Let the Mi, pA, and pz, be defined/constrained as in
Appendix B. Then, pz is a decreasing function of M4.
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Figure B.13: Two potential forms for a “most conservative” joint prior F∗. When pz > pA, our choice of F∗ takes the form (a) and gives a posterior value S ∗LHS .
Otherwise, for pz < pA, we have the form (b) instead, with posterior value S ∗RHS . The probability mass in region i, i.e. Mi, concentrates uniformly on the portion of
the pz-line within the region, or at the point closest to the pz-line within the region. Case (b) can be shown to be impossible, so our F∗ must take the form (a).

Proof. Appendix B shows pz > pA. Define (for n > 1)

Nu := (1 − pz)n+1(1 − M4) + (1 − pA)n+1M4

De := (1 − pz)n(1 − M4) + (1 − pA)nM4

so that, using these definitions, (10) and (11) imply

n + 1
n

(1 − pz) =
Nu
De

(C.1)

Note, by Appendix B, the identity (C.1) holds for any set of Mi

masses and their associated pz value, where the Mis satisfy the
“αA” and “c” sum constraints.

Now, by the implicit function theorem, pz is a continuously
differentiable function of M4 for De > 0. So, differentiating
(C.1) w.r.t. M4 gives

n + 1
n

(
−
∂pz

∂M4

)
=

1
De

(
∂Nu
∂M4

−
Nu
De

∂De
∂M4

)
(C.2)

Since the Mi are constrained to ensure De > 0, (C.2) shows
that the sign of the derivative ∂pz

∂M4
is the “negative” of the sign

of ∂Nu
∂M4
− Nu

De
∂De
∂M4

. To determine the sign of the r.h.s. of (C.2),
observe that ∂Nu

∂M4
and ∂De

∂M4
evaluate as

∂Nu
∂M4

= (n + 1)
(
−
∂pz

∂M4

)
(1 − M4)(1 − pz)n + (1 − pA)n+1 − (1 − pz)n+1

∂De
∂M4

= n
(
−
∂pz

∂M4

)
(1 − M4)(1 − pz)n−1 + (1 − pA)n − (1 − pz)n

With these partial derivatives of Nu, De, and the relationship
(C.1), we may expand the expression within the brackets on the
r.h.s. of (C.2) to obtain

∂Nu
∂M4

−
Nu
De

∂De
∂M4

= − (1 − pz)n

(
(1 − pz) −

n + 1
n

(1 − pz)
)

+ (1 − pA)n

(
(1 − pA) −

n + 1
n

(1 − pz)
)

= − g(pz) + g(pA) (C.3)

where g : [0, 1]→ [−1, 1] is an auxilliary function defined as

g(x) = (1 − x)n
(
(1 − x) −

n + 1
n

(1 − pz)
)

(C.4)

Figure C.14: The g function.

for fixed pz.
The properties of g determine the sign we seek. In fact,

g monotonically decreases to a stationary point over the range
0 6 x 6 pz and then monotonically increases over the range
pz 6 x 6 1 (see Fig. C.14). This is because g is continuously
differentiable over (0, 1), and its derivative

g′(x) = (n + 1)(1 − x)n−1(x − pz) (C.5)

implies g’s stated monotonic behaviours and unique minimum
at pz. Moreover, g(S ∗) = 0, g(1) = 0, and g(0) = 1 − n+1

n (1 −
pz) = S ∗ > 0, where this inequality must hold in Appendix B
for all worst-case priors17. Consequently,

∂Nu
∂M4

−
Nu
De

∂De
∂M4

= g(pA) − g(pz) > 0

which implies, from (C.2), that ∂pz
∂M4
6 0. That is, pz is a de-

creasing function of M4. �

A Remark: The proof can be viewed as an argument that
moves probability mass from M4 (and consequently, M2) to M1

17Note that, since the objective function in the optimisation problem of Ap-
pendix B is an expected probability (so it must lie between 0 and 1), any
worst-case prior distribution F∗ (for consistent Mi) must give a worst-case
value for the objective function, S ∗, that satisfies 0 6 1 − S ∗ 6 1. And
therefore, 0 6 Nu

De 6 1 and 0 6 n+1
n (1 − pz) 6 1 must also hold, since

1 − S ∗ = Nu
De = n+1

n (1 − pz) by (10) and (C.1).
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Figure C.15: For the worst-case prior from Appendix B, the constrained move-
ment of probability mass – from M4 (and consequently, M2) to M1 and M3 –
increases the mass lying on the pz-line, while reducing the mass that does not.
Hence, pz should increase since, in this worst-case assignment of probability
masses w.r.t pz, the B-system has only become more likely to be less reliable.

and M3 in a constrained manner (see Fig. C.15). Given that the
closer the probability masses over the unit square are to lying on
the horizontal line segment defined by pz, the greater the value
of pz becomes18, one can see that pz must be a decreasing func-
tion of M4. Because, reducing M4 results in all of the probabil-
ity mass over the unit square either being as close, or closer, to
the pz-line, than the masses were before the M4 reduction. That
is, reducing M4 must increase M1 (because M1 + M4 = 1−αA),
must increase M3 (because M3 + M4 = c), and must reduce M2
(because M2 + M3 = αA). Consequently, more of the probabil-
ity masses from the various regions are closer to lying on the
pz-line segment.

Appendix D.

Problem 2. Consider the set D of all probability distributions
over the unit square, each distribution representing a potential
joint prior distribution of pfds for the A and B systems. Con-
strain the members of D as follows. Partition the unit square
into 6 sets: the origin and five convex regions, including the
line segment {(0, y) : 0 6 y 6 1}. Let these sets have known
non-zero probabilities Mi := P(set i) for i = 0, . . . , 5 , as shown
in Fig. 7. We require M3 + M2 = αA, M5 + M0 = θA and
M5 + M4 + M3 = c to hold for known αA, c, θA. We seek to

maximise
F∈D

E[ p f dB | B passes n tests]

subject to P(set i) =

∫
set i

dF = Mi, i = 0, . . . , 5

Solution: There is a prior F∗ ∈D that maximises the objec-
tive function. It is illustrated in Fig. 8, where the value of pz

satisfies (15). Upon using this prior F∗, the posterior expected
B-system pfd (after observing n failure-free tests) achieves the
upper bound S ∗pp in (14).

18 pz should increase since, if it doesn’t, this implies that the B-system has
only become more likely to be less reliable, but without an increase in S ∗LHS –
the worst-case posterior expected pfd upon observing no failures in n tests.

Proof. The proof follows an almost identical development to
that given in Appendix B. However, now, the feasible priors
F assign probability mass to the origin and the 1-dimensional
convex set that is {(0, y) | 0 < y 6 1} (see Fig. 7). So, the
objective function is bounded as follows:

E[ p f dB | B passes n tests] = 1 −
E[(1 − Y)n+1]
E[(1 − Y)n]

= 1 −
∑4

i=0 E[(1 − Y)n+1 | i ]Mi + M5∑4
i=0 E[(1 − Y)n | i ]Mi + M5

6 1 − Φ (w1, . . . ,w4)

where Φ (w1, . . . ,w4) :=
(∑4

i=0 w
n+1

n
i Mi+M5∑4

i=0 wi Mi+M5

)
and wi := E

[
(1 − Y)n | i

]
is the probability of the B system surviving n tests, when the B-
system pfd is some value from a point in the i-th set. The rest
of the proof is identical19 to that given in Appendix B.

Notice, from the definition of the wi and the maximum ver-
tical ranges in the various convex sets, we must have

0 < y0 6 1, 0 < y1 6 1, 0 6 y3 6 1,
0 6 y4 6 pA < y2 6 1 (D.1)

so y0, y1 and y3 can all reach the value pz of (15) within their
range, but only one of y2 or y4 can reach pz in any given case.
The two possible cases, shown in Fig. 8, have corresponding
bounds (14) on the objective function. �

Appendix E.

Lemma 2. Let the Mi, pA, and pz, be defined and constrained
as in Appendix D. Then, pz is a decreasing function of M5, for
either fixed M4 (when pz > pA) or fixed M2 (when pz < pA).

Proof. The proof is similar to that of Appendix C, but there
are now two cases to consider. We show ∂pz

∂M5
6 0 in the first of

these two cases – that of pz > pA with a fixed M4. The proof for
the second case, that of a fixed M2 and pz < pA, is essentially
identical but with M4 replaced by M2.

To begin, define (for n > 1)

Nu := (1 − pz)n+1(1 − M4 − M5) + (1 − pA)n+1M4 + M5

De := (1 − pz)n(1 − M4 − M5) + (1 − pA)nM4 + M5

so that, by using (14) and (15) together, we have

n + 1
n

(1 − pz) =
Nu
De

(E.1)

As in Appendix C, the identity (E.1) holds for any set of Mi

masses and their associated pz(> pA) value, where the Mi sat-
isfy the “αA”, “c” and “θA” sum constraints. And, similar to

19Note, the “w5” coefficients of M5 are fixed at 1. Consequently, the function
Φ is constant w.r.t. “w5”, so the M5 terms in Φ add no further complications in
using the arguments of Appendix B here.
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Appendix C, the implicit function theorem implies pz is contin-
uously differentiable w.r.t. M5 for De > 0. So, differentiating
(E.1) w.r.t. M5 gives

n + 1
n

(
−
∂pz

∂M5

)
=

1
De

(
∂Nu
∂M5

−
Nu
De

∂De
∂M5

)
(E.2)

Since the Mi are feasible and constrained to ensure De > 0,
(E.2) shows that the sign of ∂pz

∂M5
is the “negative” of the sign

of ∂Nu
∂M5
− Nu

De
∂De
∂M5

. To determine the sign of the r.h.s. of (E.2),
observe that ∂Nu

∂M5
and ∂De

∂M5
evaluate as

∂Nu
∂M5

= (n + 1)
(
−
∂pz

∂M5

)
(1 − M4 − M5)(1 − pz)n + 1 − (1 − pz)n+1

∂De
∂M5

= n
(
−
∂pz

∂M5

)
(1 − M4 − M5)(1 − pz)n−1 + 1 − (1 − pz)n

With these partial derivatives of Nu, De, and the relationship
(E.1), we can rewrite the expression within the brackets on the
r.h.s. of (E.2) to obtain

∂Nu
∂M5

−
Nu
De

∂De
∂M5

= − g(pz) + g(0)

where g is the auxilliary function defined in (C.4). From the
properties of g, g(0) − g(pz) > 0 (see Fig. C.14, with S ∗ re-
placed by S ∗pp). So, by (E.2), ∂pz

∂M5
6 0; i.e. pz decreases as M5

increases.
The proof for the second case, where pz < pA with fixed

M2, follows an identical argument. Define (for n > 1)

Nu := (1 − pz)n+1(1 − M2 − M5) + (1 − pA)n+1M2 + M5

De := (1 − pz)n(1 − M2 − M5) + (1 − pA)nM2 + M5

And, upon using these definitions with (14) and (15), the proof
proceeds like before to show that ∂pz

∂M5
6 0. �

Figure E.16: For a worst-case prior from Appendix D, the constrained move-
ment of probability mass – from M5 (and consequently, M2) to M0 and M3 –
increases the mass lying on the pz-line, while reducing the mass that does not.
Hence, pz should increase, since the B-system is now only more likely to be less
reliable with the same pz. Shown here is the worst-case prior when pz > pA.

Some Remarks:

1. The proof, e.g. when pz > pA and M4 is fixed, can be
viewed as an argument that moves probability mass from
M5 (and consequently, M2) to M0 and M3 in a constrained

manner (see Fig. E.16), analogous to Appendix C. Like
there, here, reducing M5 increases the probability mass
lying on the pz-line while reducing the mass not touching
the line. That is, reducing M5 must increase M0 (because
M5 + M0 = θA), must increase M3 (because M3 + M4 +

M5 = c), and must reduce M2 (because M2 + M3 = αA).
And, since M1 is fixed (because M4 is, and M1 + M4 =

1 − θA − αA), more of the probability masses from the
various regions are closer to lying on the pz-line segment.
So, pz should increase, because the B-system is now only
more likely to be less reliable with the same pz, so that
the worst-case posterior expectation of it failing should
increase. And, by (15), so too should pz;

2. This “mass moving” viewpoint generalises (Appendix G),
giving the sign of ∂pz

∂Mi
for any Mi. In fact, the proof above

mirrors that in Appendix C as follows. The vertical “line”
on the left edge of the unit square in Fig. E.16 – i.e. the
union of region 0 (with mass M0) and point “5” (with
mass M5) – is analogous to the vertical “strip” in Fig.
C.15 comprised of region “2” (with mass M2) and re-
gion “3” (with mass M3). Referring to both of these as
“strips”, each strip has a fixed total mass (θA and 1 − αA,
respectively). And, mass from the lower half of each strip
is either moved to the upper half of the strip (regions “0”
and “1”, respectively) or to the lower half of another strip
lying to the right (region “3” in both cases). So, both
∂pz
∂M4
6 0 and ∂pz

∂M5
6 0 hold for nearly identical reasons.

Appendix F.

For fixed, constrained Mi, Appendix B and Appendix D
give the forms of the worst-case posterior expected B-system
pfd, and the discrete priors that ensure the attainment of these.
But some Mi give worse (i.e. larger) posterior expected pfds
than others, even when these Mi are subject to the same con-
straints. In this appendix, we illustrate how to find those Mi

values that give the worst value for S ∗pp. By considering the or-
dering αA 6 1 − θA 6 c amongst the constraint parameters αA,
c and θA, we give the form for the value of the largest S ∗pp and
its related Mi, all in terms of these parameters.

Lemmas 1 and 2 of Appendix C and Appendix E – and the
constrained “probability-mass moving” operations that underlie
them – are particular examples of a more general lemma that
shows how to move probability mass between regions in the
unit square to increase pz. And, thereby, increase S ∗pp too, since
1 − pz = n

n+1 (1 − S ∗pp) by (15). The general lemma proved
in Appendix H, a fortiori, gives stronger justification for what
we present here. However, for now, using the arguments and
intuition from Appendix C and Appendix E, we will construct
“worst-case achieving” Mi, starting from any initial feasible Mi.

In what follows we require 1 − θA > αA for the joint prior
distributions to be consistent, since P(p f dA > pA) = αA must
be smaller than P(p f dA > 0) = 1 − θA.

So, consider any feasible Mis constrained as in Appendix
D, with an associated pz value satisfying pz > pA (so the S ∗pp
for these Mi is given by (14) and (15) together). Also, suppose
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Figure F.17: Given αA, θA and c, that satsify αA 6 1 − θA 6 c, depicted here is a sequence of constrained probability mass movements to determine those values of
M0, . . . ,M5 that give the largest value for posterior, expected B-system pfd S ∗pp. Begin with (a) an arbitrary collection of consistent probability masses M0, . . . ,M5,
and their related worst-case prior distribution. Next, (b) transfer probability mass from M5 and M2 to M0 and M3 in a constrained manner. Then, once M3 = αA,
(c) transfer mass from M5 and M1 to M0 and M4 in a constrained manner, until M4 = 1 − θA − αA, resulting in the most conservative prior distribution (d).

that αA 6 1− θA 6 c. This requirement forces M5 > c− 1 + θA

since, otherwise, the parameters do not define consistent prob-
abilities20. Now, if M5 > c − 1 + θA then, by the reasoning of
lemma 2, we may increase pz by moving probability mass from
M5 to either M4 (if M4 < 1 − θA − αA) or M3 (if M3 < αA); at
least one of these mass movements must be possible since, oth-
erwise, the parameters do not define consistent probabilities21.
We move all of the mass we can from M5 until M5 = c− 1 + θA,
at which point we must have M3 = αA and M4 = 1 − θA − αA,
otherwise, the parameters do not define consistent probabili-
ties22. Fig. F.17 shows a sequence of mass moving operations
from M5, resulting in the worst-case S ∗pp, and the masses Mi

that achieve it, as:

S ∗ppLHS
= 1 −

(1 − pz)n+1(1 − c + αA) + (1 − pA)n+1(1 − θA − αA) + c − 1 + θA

(1 − pz)n(1 − c + αA) + (1 − pA)n(1 − θA − αA) + c − 1 + θA
(F.1)

where this form of S ∗pp is given by using (14) (when pz > pA)
with probability masses

M0 = 1 − c , M1 = 0 , M2 = 0 ,

M3 = αA , M4 = 1 − θA − αA , M5 = c − 1 + θA (F.2)

20Proof : If M5 < c−1+θA is possible, then c = M3 + M4 + M5 < M3 + M4 +

c−1+θA, so that 1−θA < M3+M4. But this, in turn, implies 1−θA < M3+M4 6
M1 + M2 + M3 + M4 = 1 − θA. So, 1 − θA < 1 − θA; a contradiction. �

21Proof : Suppose M5 > c − 1 + θA. And, by the constraints on the Mi, both
M3 6 αA and M4 6 1 − θA − αA hold. So, in particular, if both M3 = αA
and M4 = 1 − θA − αA hold, then c = M3 + M4 + M5 = 1 − θA + M5 >
1 − θA + c − 1 + θA = c. That is, c > c; a contradiction. �

22Proof : Suppose M5 = c − 1 + θA. If either M4 < 1 − θA − αA or M3 < αA,
then 1 − θA = αA + 1 − θA − αA > M3 + M4 = c − M5 = 1 − θA. That is,
1 − θA > 1 − θA; a contradiction. �

Similar mass-moving arguments apply, if the initial Mis im-
plied pz < pA instead. The resulting worst-case Mis would still
be (F.2). And, if these masses still implied pz < pA, then S ∗pp
would now take the alternative form

S ∗ppRHS
= 1 −

(1 − pz)n+1(2 − c − θA) + c − 1 + θA

(1 − pz)n(2 − c − θA) + c − 1 + θA
(F.3)

obtained from (14) for the case when pz < pA. If (F.3) holds
then it implies that S ∗ppRHS

n→∞
−−−−→ 0.23 That is, the more failure-

free runs are observed, the smaller the worst-case, conditional
expected B-system pfd becomes. Table 3 illustrates this with
examples where pz 6 pA and pz approaches 0 for ever larger n.

Appendix G.

Problem 3. Consider the set D of all probability distributions
over the unit square – each distribution is a joint prior distribu-
tion of pfds for the A and B systems. Constrain members of D
as follows. F ∈ D has the continuous, marginal distribution for
the A-system, denoted fA, and F satisfies P(p f dB 6 p f dA) =∫

y6x dF = c for given c. We seek to

maximise
F∈D

E[ p f dB | B passes n tests]

Solution: A prior F∗ ∈D maximises the objective function.
Upon using F∗, the posterior expected B-system pfd (after ob-
serving n failure-free tests) achieves the upper bound S ∗cmplt in
(17) with an associated, unique, pz-value satisfying (18).

23This limiting behaviour may also occur if (F.1) holds: note that (F.1) “be-
comes” (F.3) when pz = pA

21



Figure F.18: A sequence of partitions of [0, 1] consisting of dyadic rationals. Given the continuous marginal density for the A-system pfd, fA, and the NWTES

constraint parameter c, the value p1−c is defined as the unique pfd value that satisfies 1 − c =

p1−c∫
0

fA(x)dx.

Proof. By considering a sequence of partition refinements over
the interval [0, 1], with their mesh sizes tending to zero24, the
proof involves a number of convergence arguments to deduce
S ∗cmplt and pz, deduce the forms (17) and (18), and deduce a joint
prior F∗ that achieves these. The stages for these arguments are:

1. First, for each partition k, the unit square is partitioned
into equal vertical “strips”, each strip having an associ-
ated probability mass defined by fA. For any given collec-
tion M of probability masses over these “strips” – where
the masses M are consistent with the fA and NWTES
constraints – there is a worst-case posterior expected pfd
S ∗k,M with a unique, associated pfd value pz,k,M;

2. For each partition k, there is a worst-case achieving prior
F∗k with associated S ∗k (> S ∗k,M) and pz,k (> pz,k,M) for
all consistent collections of probability masses M;

3. Finally, since fA and (1 − x)n are continuous functions
over the compact set [0, 1], and since the endpoints of the
intervals in the dyadic partitions form a dense subset of
[0, 1], we prove the following:

(a) the existence of pz and pz,k
k→∞
−→ pz;

(b) the existence of S ∗cmplt and S ∗k
k→∞
−→ S ∗cmplt;

(c) the aforementioned limits prove (17) and (18);

24The mesh size, of a partition of [0, 1] into sub-intervals, is the length of the
largest of these sub-intervals.

(d) with a guessed, feasible pre-(probability)measure
F∗ defined on the semi-algebra of half-open rect-
angles on the unit square (denoted R), we show that

F∗k (R)
k→∞
−→ F∗(R) for R ∈ R. That is, the limit of

the sequence of conservative priors F∗k agrees with
the pre-measure F∗ on R. Therefore, such agree-
ment in the limit also holds – between the limit of
the conservative priors and the unique extension of
F∗ – on the Borel sigma-algebra generated by R,
σ(R). Existence and uniqueness25 of F∗’s exten-
sion is guaranteed by Carathéodory’s extension the-
orem, and shows the weak convergence of the prior
probability measures F∗k to the unique prior proba-
bility measure inD that is the extension of F∗. This
prior satisfies the constraints on members ofD.

Let us proceed:
stage 1) First, some preliminaries. Consider a sequence of

dyadic partitions of the horizontal axis of p f dA-values in the
unit square. The k-th dyadic partition divides the axis into 2k

intervals of equal length 1/2k (see Fig. F.18). This induces a
partition of the unit square into 2k vertical “strips”26. For any

25A clarification on uniqueness. F∗’s extension to σ(R) is unique – any other
prior distribution in D that agrees with F∗ on R must also agree with F∗ on
σ(R). However, F∗ is not unique as a “worst-case achieving” prior distribution
– other priors that differ from F∗ on (Lebesgue) null sets also achieve S ∗cmplt .

26Our use of dyadic partitions is w.l.o.g. – any sequence of partition refine-
ments over [0, 1] with mesh sizes tending to zero will do. However, dyadic
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feasible prior in D, the masses associated with these strips are
constrained in the following two ways:

Figure G.19: The k-th dyadic partition of the p f dA-axis into 2k intervals of
length 1

2k . A joint prior distribution will associate probabilities Mu
r and Ml

r
with the upper and lower parts, respectively, within the vertical rectangular strip
associated with the rth interval of the partition. The total probability for the r-th

strip is Mr :=
r/2k∫

(r−1)/2k

fA(x)dx; that is, Mr = Mu
r + Ml

r . Also shown are the ranges

of values for yu
r and yl

r in the r-th strip (see (G.3)).

1. the continuous, marginal A-system pfd distribution, fA,
implies that interval r must have an associated probability
mass (see Fig. G.19)

Mr =

∫ r/2k

(r−1)/2k
fA(x)dx (G.1)

Given each Mr, a feasible F ∈ D allocates mass Mu
r to

the region of the strip above the primary diagonal of the
unit square, and mass Ml

r below the diagonal, and these
satisfy Mr = Ml

r + Mu
r . Of course,

∑2k

i=1 Mi = 1 holds;

2. the NWTES assumption implies that a total probability
mass c must be associated with the region below the pri-
mary diagonal of the unit square. Note that there exists a
unique pfd value p1−c satisfying

1 − c =

∫ p1−c

0
fA(x)dx (G.2)

Now p1−c lies in one of the 2k intervals of the k-th partition,
denoted interval k1−c. But which interval it lies in, i.e. what the
value of k1−c is, depends on k. This is because the (k+1)-th par-
tition is a refinement of the k-th partition – it has intervals with

partitions have the added notational convenience that by stating “let k → ∞”
one invokes a countable sequence of partition refinements, as well as indicating
that these refinements have mesh sizes 1

2k exponentially tending to zero.

Figure G.20: Each dyadic partition has an associated worst-case joint prior
distribution, with mass allocation given by 1) first, moving all of the NWTES
probability mass c (assigned to the area underneath the diagonal) to lie on the
right. And then, 2) ensuring that all of the mass in each vertical strip lies as
close as possible to, or uniformly on, the pz,k-line. The r-th strip is constrained
by (G.1) to have associated mass Mr . Note that interval k1−c is defined to
contain the pfd value p1−c. The mass for the k1−c-th strip is split – some mass
is allocated to the diagonal to ensure the mass for the region underneath the
diagonal equals c, and the remaining mass for this strip is allocated to the area
above the diagonal (still within the k1−c strip and to the left of the p1−c vertical
line) to lie uniformly on the pz,k-line. Also depicted is the interval kz which, for
the k-th partition, is defined to contain the pfd value pz,k .

endpoints that consist of all of the endpoints of the intervals in
the k-th partition, as well as the midpoints between them. A
changing k1−c is illustrated in Fig. G.21, where k1−c = r for the
k-th partition, and k1−c = 2r − 1 for the (k + 1)-th partition.

The optimisation can now begin. For the k-th partition,
choose an arbitrary feasible prior F ∈ D, and its allocation of
constrained masses Mi,Mu

i ,M
l
i (for 1 6 i 6 2k) to the strips of

the partition. Using identical arguments to those in Appendix
B and Appendix D, restrict the optimisation from D to a sub-
setD∗ (of discrete marginal p f dB distributions), and bound the
objective function overD∗ as follows:

E[p f dB | B passes n tests] 6 1 −

∑2k

i=1

[(
1 − yu

i

)n+1
Mu

i +
(
1 − yl

i

)n+1
Ml

i

]
∑2k

i=1

[(
1 − yu

i

)n
Mu

i +
(
1 − yl

i

)n
Ml

i

]
(G.3)

where yu
i lies in the maximum vertical range above the unit-

square diagonal and within the rectangular strip for the ith in-
terval. The range for yl

i is similarly defined (see Fig. G.19).
The aim now is to bound the r.h.s. of (G.3). As in previous

appendices27, convexity analysis reveals the maximum poste-
rior expected pfd S ∗k,M , as well as a conservative prior distri-
bution F∗k,M ∈ D

∗ that attains it, and an associated unique pfd
value pz,k,M , all of which satisfy

27The symbols k and M in the subscripts of S ∗k,M , F
∗
k,M and pz,k,M remind the

reader that the arguments from previous appendices apply here to each partition
k, and for each suitably constrained initial collection M of probability masses.
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Figure G.21: Refinements of partitions can only reduce the value pz,k . A refinement of (a) the k-th partition forces (b) more probability mass to lie further below
the pz,k-line. For example, the refinement forces part of the Mr mass – i.e. M2r−1 – to lie further below the pz,k-line. Thus, as the dyadic partitions are refined
(as k → ∞), the pz,k-line moves downwards, because with each refinement the unknown B-system pfd becomes only more likely to be more reliable. And the
completeness of the real numbers guarantees that this bounded monotonically reducing sequence of probabilities pz,k converge to some pz. That is, pz,k → pz, and
the horizontal pz,k-line tends to the horizontal pz-line.

pz,k,M = 1 −
n

n + 1

(
1 − S ∗k,M

)
(G.4)

1 − S ∗k,M =
Φ(pz,k,M , n + 1) + Ψ(pz,k,M , n + 1)

Φ(pz,k,M , n) + Ψ(pz,k,M , n)
(G.5)

where

Φ(p, n) :=
kz∑

i=1

[
(1 − p)n Mu

i + (1 − yi)n Ml
i

]
,

Ψ(p, n) :=
2k∑

i=kz+1

[
(1 − yi)n Mu

i + (1 − p)n Ml
i

]
,

yi is the B-system pfd value closest to pz,k,M , on the diagonal
in the i-th strip. In fact, yi = i

2k when 1 6 i 6 kz and yi = i−1
2k

when kz + 1 6 i 6 2k. And the kz-th interval contains pz,k,M .
stage 2) Now, F∗k,M gives a worse posterior expected B-

system pfd than our initial choice of prior F, while having the
same upper (i.e. Mu

i ) and lower (i.e. Ml
i) mass allocations as F

for each strip. We now seek a most conservative prior amongst
all F∗k,M conservative priors – one that remains consistent with
the allocation of masses Mi for the strips of the k-th dyadic par-
tition. Appendix H proves that, given any two distinct intervals
of the partition, a and b say (a < b), the constrained movement
of mass allocated by a feasible prior distribution F∗k,M – from
Ml

a,M
u
b to Mu

a ,M
l
b while keeping all other probability masses

fixed – increases pz,k,M . And, by (G.4), increases S ∗k,M as well.
This is true for any such conservative prior F∗k.M . Consequently,
by the constrained movement to the right, of all of the prob-
ability mass c below the unit-square diagonal, one constructs
the most conservative prior F∗k consistent with the k-th partition
(see Fig. G.20). F∗k has an associated unique pfd value pz,k and
maximum posterior expected pfd, S ∗k , that satisfy

pz,k = 1 −
n

n + 1
(
1 − S ∗k

)
(G.6)

1 − S ∗k =
Φ(pz,k, n + 1) + Ψ(pz,k, n + 1)

Φ(pz,k, n) + Ψ(pz,k, n)
(G.7)

where

Mu
k1−c

:= 1 − c −
k1−c−1∑

i=1

Mi ,

Φ(p, n) :=
k1−c−1∑

i=1

(1 − p)n Mi + (1 − p)n Mu
k1−c

,

Ψ(p, n) :=
kz−1∑

i=k1−c+1

(1 − i/2k)n Mi +

2k∑
i=kz

(1 − p)n Mi

+ (1 − k1−c/2k)n
(
Mk1−c − Mu

k1−c

)
, (G.8)

and the k1−c-th interval of the k-th partition contains the pfd
p1−c, while the kz-th interval contains pz,k. Note that, like k1−c,
the value of kz varies between partitions.

stage 3) Using this sequence of priors F∗k (i.e. one such prior
for each partition), what follows are convergence arguments to
obtain the worst-case posterior expected pfd S ∗cmplt, its associ-
ated pz, and the prior F∗ that attains it, all in the limit as k → ∞.

3.a) The following observations will be useful for the con-
vergence arguments. These observations are a consequence of
the dyadic rationals in [0, 1] being a dense subset.

• As k → ∞, the width of successive intervals k1−c tend to
zero. That is, the sequence of left endpoints tends to the
sequence of right endpoints – sandwiching the value p1−c

inbetween them (see Fig. G.22).

k1−c − 1
2k −→ p1−c ←−

k1−c

2k (as k → ∞) (G.9)

• A partition refinement from k to k + 1 does not change
the amount of probability mass allocated to the horizon-
tal pz,k-line. It does, however, move some mass on the di-
agonal further away from that line (see Fig. G.21). This
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Figure G.22: As the partitions get refined from (a) through to (c), the endpoints of the k1−c intervals tend to one another, sandwiching p1−c inbetween them. Thus,
k1−c−1

2k −→ p1−c ←−
k1−c
2k (as k → ∞). The value of k1−c varies across partitions, as implied by these pictures.

makes the B-system only more likely to be more reliable,
but with the same pz,k. Therefore, the expected B-system
pfd reduces, thus reducing the posterior expectation S ∗k,z
of the B-system failing28. And hence, by (G.6), pz,k must
reduce. Since the monotonically reducing sequence of
probabilities pz,k cannot be smaller than zero, by the com-
pleteness of the real numbers there is a limiting probabil-
ity pz that, itself, cannot be smaller than zero. That is,

pz,k
k→∞
−→ pz. (G.10)

Moreover, interval widths uniformly tend to zero as k →
∞, so the two sequences of endpoints of the kz-th inter-
vals tend to one another, sandwiching the converging pz,k

inbetween them. From (G.10),

kz − 1
2k −→ pz ←−

kz

2k (as k → ∞) (G.11)

We now proceed with the main convergence arguments.

3.b) We show that S ∗cmplt exists and S ∗k
k→∞
−→ S ∗cmplt. Consider

each partition k. By the mean value theorem for integrals, the
continuity of fA on [0, 1] implies

Mi =

i/2k∫
(i−1)/2k

fA(x)dx =
1
2k fA(x∗)

for some x∗ ∈ [(i − 1)/2k, i/2k]. The continuity of fA implies it is
bounded on each interval [(i − 1)/2k, i/2k] of the partition and attains

28Claim:
E[ p f dB| B passes n tests] 6 E[p f dB]

Proof : Apply Jensen’s inequality twice to the convex function f , defined
over [0, 1] as f (x) = xr (for r > 1), as follows:

E[ p f dB| B passes n tests] =
E[Y(1 − Y)n]
E[(1 − Y)n]

= 1 −
E[(1 − Y)n+1]
E[(1 − Y)n]

= 1 −
E[((1 − Y)n)

n+1
n ]

E[(1 − Y)n]
6 1 −

(E[(1 − Y)n])1+ 1
n

E[(1 − Y)n]

= 1 −
(
E[(1 − Y)n]

) 1
n 6 1 −

(
(E[1 − Y])n) 1

n

= 1 − (1 − E[Y]) = E[Y] = E[p f dB] �

its lower and upper bounds, fA(xi
min) and fA(xi

max) say, for some
xi

min, x
i
max ∈ [(i − 1)/2k, i/2k] so that

1
2k fA(xi

min) 6
1
2k fA(x∗) 6

1
2k fA(xi

max) (G.12)

Similarly, the continuous function (1 − x)n fA(x) over [0, 1] is
bounded and attains its bounds, (1 − xi

min)n fA(xi
min) and (1 −

xi
max)n fA(xi

max) say29, on interval i of the partition.
So, consider the following upper bounds on (G.8),

Φu(p, n) :=
k1−c−1∑

i=1

(1 − p)n 1
2k fA(xi

max) + (1 − p)n Mu
k1−c

Ψu(p, n) :=
kz−1∑

i=k1−c+1

(
1 − xi

max

)n 1
2k fA(xi

max) +

2k∑
i=kz

(1 − p)n 1
2k fA(xi

max)

+
(
1 − xk1−c

max

)n
(

1
2k fA(xk1−c

max ) − Mu
k1−c

)
(G.13)

and lower bounds,

Φl(p, n) :=
k1−c−1∑

i=1

(1 − p)n 1
2k fA(xi

min) + (1 − p)n Mu
k1−c

Ψl(p, n) :=
kz−1∑

i=k1−c+1

(
1 − xi

min

)n 1
2k fA(xi

min) +

2k∑
i=kz

(1 − p)n 1
2k fA(xi

min)

+
(
1 − xk1−c

min

)n
(

1
2k fA(xk1−c

min ) − Mu
k1−c

)
(G.14)

Using these bounds we may bound (G.7) for each partition, and
take limits as k → ∞, so

lim
k→∞

Φl(pz,k, n + 1) + Ψl(pz,k, n + 1)
Φu(pz,k, n) + Ψu(pz,k, n)

6 lim
k→∞

1 − S ∗k

6 lim
k→∞

Φu(pz,k, n + 1) + Ψu(pz,k, n + 1)
Φl(pz,k, n) + Ψl(pz,k, n)

(G.15)

Each of the limits in the bounds in (G.15) converge:

29These xi
min and xi

max are not, in general, the ones in (G.12), nor do they nec-
essarily minimise/maximise the function (1 − x)n+1 fA(x) over [0, 1]. However,
it is notationally convenient to use these symbols to indicate those pfd values at
which the respective continuous functions they appear in attain their extrema.
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• Mu
k1−c

k→∞
−→ 0, since 0 6 Mu

k1−c
6 1

2k fA(xk1−c
max) and, by (G.9),

xk1−c
max

k→∞
−→ p1−c;

• the integrability of fA, the continuity of (1 − x)n, (G.9)
and (G.10), altogether imply that

(
1 − pz,k

)n
k1−c−1∑

i=1

1
2k fA(xi

min)
k→∞
−→ (1 − pz)n

∫ p1−c

0
fA(x)dx

And
(
1 − pz,k

)n∑k1−c−1
i=1

1
2k fA(xi

max) also tends to the same
limit30. Similarly,

(
1 − pz,k

)n
2k∑

i=kz

1
2k fA(xi

min)
k→∞
−→ (1 − pz)n

∫ 1

pz

fA(x)dx ,

and
(
1 − pz,k

)n∑2k

i=kz

1
2k fA(xi

max) has the same limit;

• the continuity of (1 − x)n fA(x) over [0, 1] and (G.11), to-
gether ensure the convergence

kz−1∑
i=k1−c

(
1 − xi

min

)n 1
2k fA(xi

min)
k→∞
−→

∫ pz

p1−c

(1 − x)n fA(x)dx ,

and that
∑kz−1

i=k1−c

(
1 − xi

max

)n 1
2k fA(xi

max) has the same limit;

• since xk1−c
min ∈ [(k1−c − 1)/2k, k1−c/2k] then (G.9) justifies both

xk1−c
min

k→∞
−→ p1−c and (1 − xk1−c

min )n k→∞
−→ (1 − p1−c)n.

The limit (1 − xk1−c
max)n k→∞

−→ (1 − p1−c)n also holds.

Consequently, using all of these limits in (G.15), the lower and
upper bounds both converge to the limit 1 − S ∗cmplt, defined as

(1 − pz)n+1(1 − c +
∫ 1

pz
fA(x) dx) +

∫ pz

p1−c
(1 − x)n+1 fA(x) dx

(1 − pz)n(1 − c +
∫ 1

pz
fA(x) dx) +

∫ pz

p1−c
(1 − x)n fA(x) dx

(G.16)

This proves S ∗cmplt exists and S ∗k
k→∞
−→ S ∗cmplt.

3.c) Notice that (17) holds, from (G.16). Also, by taking the
limits of both sides of (G.6) and using the convergence of both
S ∗k and pz,k, we have

pz
k→∞
←− pz,k = 1 −

n
n + 1

(
1 − S ∗k

) k→∞
−→ 1 −

n
n + 1

(
1 − S ∗cmplt

)
(G.17)

That is, pz = 1 − n
n+1

(
1 − S ∗cmplt

)
, so (18) holds.

3.d) The final convergence argument we outline shows the
existence and uniqueness of a limiting prior distribution F∗ that
attains the worst-case posterior expected B-system pfd S ∗cmplt.
The argument relies on results from measure theory. Consider
the measurable space consisting of the unit square and the Borel
sigma-algebra, σ(R), generated by the half-open rectangles31

of the unit square, R. All distributions in D are defined with

30Since
∫ p1−c

0 fA(x)dx = 1 − c, this limit is simply (1 − pz)n(1 − c).
31A half-open rectangle is (a, b] × (c, d] where a < b, c < d.

respect to this measurable space32. If, on R, the sequence of
conservative priors F∗k has a limit that agrees with an identi-
fied pre-(probability)measure F∗, then Carathéodory’s exten-
sion theorem ([37], pages 39–40, Theorem 6.1) guarantees F∗

can be extended to a unique33 probability measure on σ(R).
F∗’s extension lies inD and is the conservative prior we seek.

Figure G.23: Half-open rectangles and the three regions defined by Lz,c. The
probability that F∗ – a pre-(probability)measure – assigns to a half-open rectan-
gle, is computed by summing the probability contributions from the rectangle’s
intersection with each of regions I, II, III and Lz,c. On each rectangle, the dif-
ference between F∗k and F∗ can be made vanishingly small as k → ∞. We show
that this convergence is uniform on the set R of half-open rectangles.

To show this, begin by defining a candidate F∗ on R as fol-
lows. Appreciate that the unit square consists of three regions,
I, II and III, each defined by the pfd values pz and p1−c (see Fig.
G.23). Region I contains the horizontal line-segment LI

z,c, of
points (p f dA, p f dB) such that p f dA ∈ [0, p1−c) and p f dB = pz.
Region II contains the diagonal line-segment LII

z,c, of points with
p f dA = p f dB and p f dA ∈ [p1−c, pz). And, region III contains
the horizontal line-segment LIII

z,c , of points with p f dA ∈ [pz, 1]
and p f dB = pz. Together, we denote these 3 line-segments
as the set Lz,c. This is a Borel set (i.e. it is in σ(R)), since
it is the countable limit of set operations involving open sets
on the unit square. So, the intersection of Lz,c with any half-
open rectangle R is also Borel. Denote the projection of such
an intersection onto the horizontal axis of the unit square as
πA(Lz,c ∩ R). The measurable projection theorem ([39], page
498, Theorem 13.2.7) guarantees this projection is a Lebesgue
measurable set. Hence, using the (Lebesgue) integrability of
fA, define a pre-(probability)measure F∗:

F∗(R) :=
∫

[0,1]
1πA(Lz,c∩R) fA(x)dx for R ∈ R

By the disjoint union Lz,c = LI
z,c ∪ LII

z,c ∪ LIII
z,c , and the non-

32One may distinguish between the distribution (function) F, typically de-
fined on a semi-algebra (R, in the present case), and its unique extension µF ,
where µF is a probability measure defined on the sigma-algebra generated by
R, denoted σ(R). However, we will blur this distinction and write F for both
notions. Which of these is meant will be clear from the context.

33So, the limit of the conservative priors F∗k on σ(R) must also agree with
this unique extension of F∗. That the priors F∗k converge weakly to a limiting
probability measure on σ(R) follows from an argument given by Prokhorov
(e.g. see [38], page 64, corollary 2.4.5)
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overlapping of the projections involved, we expand F∗(R) as

F∗(R) =

∫
[0,1]

1πA(LI
z,c∩R) fA(x)dx +

∫
[0,1]

1πA(LII
z,c∩R) fA(x)dx

+

∫
[0,1]

1πA(LIII
z,c∩R) fA(x)dx (G.18)

Appendix I shows F∗ is a pre-(probability)measure. Notice,
F∗ satisfies the NWTES and fA constraints on the probability
masses it allocates to rectangles. So its unique extension to
σ(R) – also denoted F∗ – necessarily satisfies the constraints as
well. Moreover, this unique extension is a prior distribution that
attains the worst-case posterior expected B-system pfd S ∗cmplt.

34

The restriction of each F∗k to the set R may be similarly de-
fined. Let k∗ denote the interval in the k-th partition containing
pz. Using F∗k ’s associated pz,k, define the following 4 sets of
(p f dA, p f dB) points in regions I, II and III, analogous to the
line-segments in the Lz,c set:

(a) the horizontal line-segment where p f dA ∈ [0, 1/2k) ∪ . . . ∪
[ (k1−c−1)

2k , p1−c) and p f dB = pz,k – a subset of region I;

(b) the set of points where p f dA = p f dB and p f dB ∈ {
k1−c/2k,

(k1−c + 1)/2k, . . . , (k∗ − 1)/2k} – a subset of region II;

(c) the set of points where p f dA = p f dB and p f dB ∈ {
k∗/2k,

(k∗ + 1)/2k, . . . , (kz − 1)/2k}, as well as the horizontal line-segment
that is p f dA ∈ (pz,k, kz/2k] ∪ . . . ∪ ( 2k−1

2k , 1] and p f dB = pz,k –
altogether, a subset of region III.

Denote these 4 sets as LI
z,c,k, LII

z,c,k, LIII,1
z,c,k and LIII,2

z,c,k respec-
tively, and collectively as Lz,c,k. Examples of Lz,c,k are depicted
as horizontal bars on the pz,k-line and dots on the diagonal in
Fig.s G.21 and G.24. For any R ∈ R, we have (see Fig. G.20)

F∗k (R) =

k1−c−1∑
i=1

2k Mk,i

∫
[0,1]

1[
i−1
2k ,

i
2k

)⋂
πA(LI

z,c,k∩R)dx

+
Mk1−c−Mk,k1−c

p1−c −
k1−c−1

2k

∫
[0,1]

1[ k1−c−1

2k , p1−c

)⋂
πA(LI

z,c,k∩R)dx

34This follows by definition since, from (G.16), the prior F∗ gives:

1 − E[p f dB | B passes n tests] =

∫
[0,1]×[0,1](1 − p f dB)n+1dF∗∫

[0,1]×[0,1](1 − p f dB)ndF∗

=

(1 − pz)n+1
[
F∗(LI

z,c) + F∗(LIII
z,c )

]
+

∫
u∈LII

z,c

(1 − πB(u))n+1dF∗(u)

(1 − pz)n
[
F∗(LI

z,c) + F∗(LIII
z,c )

]
+

∫
u∈LII

z,c

(1 − πB(u))ndF∗(u)

=
(1 − pz)n+1(1 − c +

∫ 1
pz

fA(x) dx) +
∫ pz

p1−c
(1 − x)n+1 fA(x) dx

(1 − pz)n(1 − c +
∫ 1

pz
fA(x) dx) +

∫ pz
p1−c

(1 − x)n fA(x) dx

= 1 − S ∗cmplt .

Note, as countable intersections of open rectangles, LI
z,c, L

II
z,c and LIII

z,c are con-
tained in σ(R). Consequently, the extension of F∗ to σ(R) is defined on them,
with definition given by (G.18) and use of the monotone convergence theorem.

Figure G.24: Focusing on regions I and III, while the half-open rectangle R
intersects the horizontal pz,k-line for some k, it does not intersect any part of
the horizontal pz-line in either region I or III. Consequently, since pz,k → pz as
k → ∞ (i.e. over a countable number of partition refinements), the probability
of the intersection of the rectangle with either region I or III tends to zero.

+
∑

i/2k∈πA(LII
z,c,k∩R)

Mk,i +
∑

i/2k∈πA(LIII,1
z,c,k ∩R)

Mk,i

+
Mk,kz

kz/2k − pz,k

∫
[0,1]

1(
pz,k ,

kz
2k

]⋂
πA(LIII,2

z,c,k ∩R)dx

+

2k∑
i=kz

2k Mk,i

∫
[0,1]

1(
i−1
2k ,

i
2k

]⋂
πA(LIII,2

z,c,k ∩R)dx (G.19)

where i in “Mk,i” denotes an interval in the k-th partition that
contains points in either πA(LII

z,c,k ∩ R) or πA(LIII,1
z,c,k ∩ R). And

Mk,i is the mass Mi that fA assigns to these intervals (see (G.1)),
with one exception: i = k1−c has Mk,k1−c := c −

∑2k

j=k1−c+1M j,
because F∗k splits the mass for the k1−c interval (see Fig. G.20).

We can now show that the sequence {F∗k }k>1 converges to

F∗ uniformly on R. That is, sup
R∈R

∣∣∣F∗k (R) − F∗(R)
∣∣∣ k→∞
−→ 0.

For an arbitrarily chosen rectangle R, Fig. G.23 illustrates
how the rectangle can either intersect Lz,c or not. Suppose R
does not intersect Lz,c, for instance as depicted in Fig. G.24.
Then there exists some K > 0 such that no intersections Lz,c,k∩R
occur for all partitions with k > K. That this must be true, in
particular for the pz,k horizontal line-segments in Lz,c,k, follows
from the convergence of pz,k to pz (and, therefore, their respec-
tive line-segments converge) and our assumption that R does
not intersect Lz,c. Also, no intersections occur between R and
any of the diagonal points of Lz,c,k for k greater than suitably
large K; again, due to the convergence of pz,k, and the fact that
if the pz,k horizontal line-segment falls below the points in R
for some K > 0, then so do any points on the diagonal of Lz,c,k

for all k > K (because the largest of the p f dB values for these
points, (kz − 1)/2k, itself, converges to pz by (G.11)). Conse-
quently, from (G.18) and (G.19), F∗k (R) = 0 = F∗(R) for all
k > K. This shows the convergence of the F∗k to F∗ on those
R such that Lz,c ∩ R = ∅. That is, for these R and all k large
enough, ∣∣∣F∗k (R) − F∗(R)

∣∣∣ = 0 (G.20)

We now turn our attention to those R that intersect Lz,c. Di-
vide the task of showing convergence on each such R into 3
cases: a) showing convergence on that part of the intersection
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lying in region I (denoted LI
z,c∩R), b) that part lying in region II

(denoted LII
z,c∩R), and c) the part in region III (denoted LIII

z,c ∩R).
a) Consider region I and the subset LI

z,c ∩ R (as exemplified
in Fig. G.25). Since pz,k tends to pz, this implies LI

z,c,k tends to
LI

z,c. So, if R intersects LI
z,c, then R intersects LI

z,c,k as well, for
all sufficiently large k. Suppose this for the k-th partition, and
let l and r denote, respectively, the left-most and right-most of
those intervals of [0, 1] whose vertical strips contain R ∩ LI

z,c.
The vertical strip for interval l has associated probability mass
Ml, as determined by fA (recall (G.1)). And probability Mr is
associated with the strip for interval r. So, by the definitions of
F∗ and F∗k on R (see (G.18) and (G.19)), bound the difference
between F∗k (R) and F∗(R) in region I as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1−c−1∑
i=1

2k Mk,i

∫
[0,1]

1[
i−1
2k ,

i
2k

)⋂
πA(LI

z,c,k∩R)
dx

+
Mk1−c−Mk,k1−c

p1−c −
k1−c−1

2k

∫
[0,1]

1[
k1−c−1

2k , p1−c

)⋂
πA(LI

z,c,k∩R)
dx

−

∫
[0,1]

1πA(LI
z,c∩R) fA(x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< Ml + Mr

(G.21)

Additionally, because fA attains all the values between its bounds
on intervals l and r, and fA attains its maximum on [0, 1] (all due
to fA being continuous on [0, 1]), the mean value theorem for
integrals applied to (G.1) justifies

Ml + Mr6
1
2k

 max
x∈[ l−1

2k ,
l

2k ]
fA(x) + max

x∈[ r−1
2k ,

r
2k ]

fA(x)

 6 1
2k−1 max

x∈[0,1]
fA(x)

So, the bound (G.21) becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1−c−1∑
i=1

2k Mk,i

∫
[0,1]

1[
i−1
2k ,

i
2k

)⋂
πA(LI

z,c,k∩R)
dx

+
Mk1−c−Mk,k1−c

p1−c −
k1−c−1

2k

∫
[0,1]

1[
k1−c−1

2k , p1−c

)⋂
πA(LI

z,c,k∩R)
dx

−

∫
[0,1]

1πA(LI
z,c∩R) fA(x)dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
<

1
2k−1 max

x∈[0,1]
fA(x)

(G.22)

We will use this bound shortly.
b) Next, consider region II with its subset LII

z,c∩R (exempli-
fied in Fig. G.26). Since the mesh sizes of the partitions tend
to zero, if R intersects LII

z,c then it intersects LII
z,c,k for all suffi-

ciently large k (e.g. for all k such that 1/2k is smaller than the size
of the interval πA(LII

z,c ∩ R)). Let the intervals l and r be defined
in a similar fashion to what was done for the region I case. So,
l denotes the interval for the leftmost of the strips that contain
LII

z,c ∩ R, and r the rightmost of these intervals. Again, using
identical arguments given for region I, we obtain the following

bound on the difference between F∗k (R) and F∗(R) in region II:∣∣∣∣∣∣∣∣∣
∑

i/2k∈πA(R∩LII
z,c,k)

Mk,i −

∫
[0,1]

1πA(LII
z,c∩R) fA(x)dx

∣∣∣∣∣∣∣∣∣ <
1

2k−1 max
x∈[0,1]

fA(x)

(G.23)

We will use this bound shortly.
c) The final consideration is for region III, and its subsets

LIII,1
z,c ∩ R and LIII,2

z,c ∩ R. Once again, the convergence of pz,k

implies that LIII,2
z,c,k tends to LIII

z,c , but also that LIII,1
z,c,k tends to the

point (pz, pz). So, if R intersects LIII
z,c , then R intersects LIII,2

z,c,k

(and possibly LIII,1
z,c,k ) for all sufficiently large k. The leftmost

and rightmost of those intervals with strips containing LIII
z,c ∩ R

are denoted l and r, as before. And the following bound can
be deduced, as was done for the other regions, by bounding the
difference between F∗k (R) and F∗(R) in region III with Ml + Mr:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i/2k∈πA(LIII,1

z,c,k ∩R)

Mk,i −

∫
[0,1]

1πA(LIII
z,c ∩R) fA(x)dx

+
Mk,kz

kz/2k − pz,k

∫
[0,1]

1(
pz,k ,

kz
2k

]⋂
πA(LIII,2

z,c,k ∩R)
dx

+

2k∑
i=kz

2k Mk,i

∫
[0,1]

1(
i−1
2k ,

i
2k

]⋂
πA(LIII,2

z,c,k ∩R)
dx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
<

1
2k−1 max

x∈[0,1]
fA(x)

(G.24)

So, using (G.18) and (G.19), the bounds (G.22), (G.23) and
(G.24) imply the following uniform bound, valid for sufficiently
large k and all R ∈ R that intersect Lz,c:

0 <
∣∣∣F∗k (R) − F∗(R)

∣∣∣ < 3
2k−1 max

x∈[0,1]
fA(x) (G.25)

Together, (G.20) and (G.25) show that for all large k,

0 < sup
R∈R

∣∣∣F∗k (R) − F∗(R)
∣∣∣ < 3

2k−1 max
x∈[0,1]

fA(x) (G.26)

That is, sup
R∈R

∣∣∣F∗k (R) − F∗(R)
∣∣∣ k→∞
−→ 0. So the sequence of proba-

bility measures {F∗k }k>1 converges uniformly to F∗ on R. With
this, Carathéodory’s extension theorem guarantees both the ex-
istence and uniqueness of F∗’s extension to σ(R). And this ex-
tension must agree with the F∗k on σ(R), in the limit of large k.
Hence, this F∗ extension lies inD, it satisfies both the NWTES
and fA constraints on its probability masses, and it attains the
worst-case posterior expected B-system pfd, S ∗cmplt. This com-
pletes stage 3 of the proof, and thus completes the proof. �

A Remark: Can pz < p1−c for the conservative prior F∗

(as in Fig. G.27)? Such a measure appears consistent with the
NWTES and fA constraints, and consistent with our optimisa-
tions through the constrained movement of probability mass.
However, it is in fact inconsistent, since this F∗ satisfies both

1 − S ∗cmplt =
(1 − pz)n+1(c +

∫ pz

0
fA(x) dx) +

∫ p1−c

pz
(1 − x)n+1 fA(x) dx

(1 − pz)n(1 − c +
∫ 1

pz
fA(x) dx) +

∫ pz

p1−c
(1 − x)n fA(x) dx
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Figure G.25: For all large enough k, the difference between F∗k and F∗ on that
part of rectangle R in region I is smaller than Ml + Mr .

Figure G.26: For all large enough k, the difference between F∗k and F∗ on that
part of rectangle R in region II is smaller than Ml + Mr .

and pz = 1 − n
n+1 (1 − S ∗cmplt). Together, these imply

n + 1
n

(1 − pz) =

(1 − pz)n+1(c +
∫ pz

0
fA(x) dx) +

∫ p1−c

pz
(1 − x)n+1 fA(x) dx

(1 − pz)n(1 − c +
∫ 1

pz
fA(x) dx) +

∫ pz

p1−c
(1 − x)n fA(x) dx

Hence, since n+1
n > 1, we must have

(1 − pz)n+1(c +
∫ pz

0
fA(x) dx) +

∫ p1−c

pz
(1 − x)n+1 fA(x) dx

(1 − pz)n+1(c +
∫ pz

0
fA(x) dx) + (1 − pz)

∫ p1−c

pz
(1 − x)n fA(x) dx

> 1

Or, upon simplifying, we get
∫ p1−c

pz
(1 − x)n(pz − x) fA(x) dx > 0.

This is a contradiction since this integral cannot be positive (i.e.
pz < x for all x ∈ (pz, p1−c], by assumption).

Appendix H.

Lemma 3. Consider the k-th dyadic partition of the unit square,
as in Appendix G, and the masses Mi (for 1 6 i 6 2k) defined

Figure G.27: F∗ with pz < p1−c, as depicted, is inconsistent.

by fA – a continuous marginal distribution for the A-system
pfd. Furthermore, let the Mi,Mu

i ,M
l
i masses, kz, and pz,k,M ,

be defined and constrained as in Appendix G. Then, for a < b,
the constrained movement of probability mass from Ml

a,M
u
b to

Mu
a ,M

l
b – keeping all other masses fixed – increases pz,k,M .

Proof. We will prove this by deducing that, under the con-
straints on the probability masses, pz,k,M is a continuously dif-
ferentiable function of Ml

a and ∂pz,k,M

∂Ml
a
< 0. There are three cases

to consider here: i) a < kz < b, ii) a < b < kz and iii) kz < a < b.
Case (i) : Assume a < kz < b. From Appendix G, note that

the masses satisfy Mi = Mu
i + Ml

i , and (for n > 1)

n + 1
n

(1 − pz,k,M) =
Nu
De

(H.1)

where Nu is defined as

Nu =

kz∑
i=1

i,a,b

[(
1−pz,k,M

)n+1
(
Mi−Ml

i

)
+(1−yi)n+1Ml

i

]
+

2k∑
i=kz+1
i,a,b

[
(1−yi)n+1

(
Mi−Ml

i

)
+
(
1−pz,k,M

)n+1Ml
i

]
+

(
1−pz,k,M

)n+1
(
Ma−Ml

a

)
+(1−ya)n+1Ml

a +

(1−yb)n+1
(
Mb−Ml

b

)
+
(
1−pz,k,M

)n+1Ml
b

and De is similarly defined, but with “n + 1” replaced by “n”.
As in Appendix C and Appendix E, the identity (H.1) holds

for any set of Ml
i masses and their associated pz,k,M value, where

the Ml
i satisfy the constraints of Appendix G. In particular, us-

ing both the NWTES constraint
∑2k

i=1
i,a,b

Ml
i +Ml

a+Ml
b = c and the

constraint
∑2k

i=1 Mi = 1, we can couple the “a” and “b” interval
contributions in (H.1) by eliminating explicit reference to Ml

b
and Mb in the expressions for Nu and De, resulting in

Nu =

kz∑
i=1

i,a,b

[(
1−pz,k,M

)n+1
(
Mi−Ml

i

)
+ (1−yi)n+1Ml

i

]
+

2k∑
i=kz+1
i,a,b

[
(1−yi)n+1

(
Mi−Ml

i

)
+

(
1−pz,k,M

)n+1Ml
i

]
+
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(
1−pz,k,M

)n+1
(
Ma−Ml

a

)
+ (1−ya)n+1Ml

a +

(1−yb)n+1

1 −
2k∑

i=1
i,b

Mi−c +

2k∑
i=1

i,a,b

Ml
i + Ml

a

 +

(
1−pz,k,M

)n+1

c −
2k∑

i=1
i,a,b

Ml
i − Ml

a

 (H.2)

and a similar expression for De, with “n + 1” replaced by “n”.
By the implicit function theorem, pz,k,M is a continuously

differentiable function of Ml
a for De > 0.35 So, differentiating

(H.1) w.r.t. Ml
a gives

n + 1
n

(
−
∂pz,k,M

∂Ml
a

)
=

1
De

(
∂Nu
∂Ml

a
−

Nu
De

∂De
∂Ml

a

)
(H.3)

(H.3) shows that the sign of the derivative ∂pz,k,M

∂Ml
a

is the “nega-

tive” of the sign of ∂Nu
∂Ml

a
− Nu

De
∂De
∂Ml

a
. To determine the sign of the

r.h.s. of (H.3), first observe that, using the expressions in (H.2),
we may evaluate ∂Nu

∂Ml
a

and ∂De
∂Ml

a
as

∂Nu
∂Ml

a
= (n + 1)

(
−
∂pz,k,M

∂Ml
a

)c −
2k∑
i=1

i,a,b

Ml
i − Ml

a

(1 − pz,k,M)n

+ (n + 1)
(
−
∂pz,k,M

∂Ml
a

)(
Ma − Ml

a

)
(1 − pz,k,M)n

+ (1 − ya)n+1 + (1 − yb)n+1

− (1 − pz,k,M)n+1 − (1 − pz,k,M)n+1

and ∂De
∂Ml

a
has a similar expression, but with “n−1” replacing “n”.

Using these partial derivatives and (H.1), we can rewrite the
expression within the brackets on the r.h.s. of (H.3) to obtain

∂Nu
∂Ml

a
−

Nu
De

∂De
∂Ml

a
= g(ya) − g(pz,k,M) + g(yb) − g(pz,k,M)

where g is the auxilliary function defined in (C.4) (with pz,k,M

replacing pz there). From the properties of g (Fig. C.14, with
S ∗k,M replacing S ∗), its global minimum occurs at pz,k,M so that

g(yi) − g(pk,z,M) > 0 for all i , kz.

Hence, ∂Nu
∂Ml

a
− Nu

De
∂De
∂Ml

a
> 0 and, by (H.3), one deduces ∂pz,k,M

∂Ml
a
< 0.

That is, pz,k,M is a decreasing function of Ml
a and Mu

b together36.
This completes the proof for when a < kz < b.

Case (ii) : Assuming a < b < kz, the proof follows an al-
most identical argument to that of case (i). One merely replaces
the “a” and “b” expressions in Nu of (H.2) by

35Note, the feasibility of the prior distributions – that these satisfy the con-
straints on the Mi,Ml

i masses – and the definition of pz,k,M , altogether ensure
De > 0. Otherwise, the optimisation of Appendix G has a possibly unbounded
objective function that is not a posterior, expected probability.

36Because Mu
b increases with Ml

a, since Mu
b = 1−

∑2k

i=1
i,b

Mi−c+
∑2k

i=1
i,a,b

Ml
i +Ml

a

(
1−pz,k,M

)n+1
(
Ma−Ml

a

)
+ (1−ya)n+1 Ml

a + (1−yb)n+1

c −
2k∑
i=1

i,a,b

Ml
i − Ml

a


+

(
1−pz,k,M

)n+1

1 −
2k∑
i=1
i,b

Mi−c +

2k∑
i=1

i,a,b

Ml
i + Ml

a

 (H.4)

and similarly for De. Then, like case (i), ∂pz,k,M

∂Ml
a
< 0 can be

deduced; since ya < yb < pz and, from the properties of the g
function, g(ya)−g(yb) > 0 (this is the sign of the r.h.s. of (H.3)).

Case (iii) : Finally, assume kz < a < b. Then, replace the
“a” and “b” expressions in Nu of (H.2) with

(
1−pz,k,M

)n+1 Ml
a + (1−ya)n+1

(
Ma−Ml

a

)
+

(
1−pz,k,M

)n+1

c −
2k∑
i=1

i,a,b

Ml
i − Ml

a


+ (1−yb)n+1

1 −
2k∑
i=1
i,b

Mi−c +

2k∑
i=1

i,a,b

Ml
i + Ml

a

 (H.5)

and similarly for De. Again, like case (i), one shows ∂pz,k,M

∂Ml
a
< 0;

since pz < ya < yb and, by the properties of the g function,
g(yb) − g(ya) > 0 (this is the sign of the r.h.s. of (H.3)). �

Appendix I.

Claim: F∗ is a pre-(probability)measure on R.

Proof. Note that F∗(∅) = 0 by definition, as the projection of
the empty set is empty. Also by definition of Lz,c, and fA being
a probability density function,

F∗([0, 1] × [0, 1]) =

∫
[0,1]

1πA(Lz,c) fA(x)dx =

∫
[0,1]

fA(x)dx = 1 .

Furthermore, disjoint rectangles R1 and R2 have disjoint
projections πA(Lz,c ∩ R1) and πA(Lz,c ∩ R2); since Lz,c can be
viewed as a function Lz,c : [0, 1] → [0, 1] and, consequently, if
x ∈ πA(Lz,c∩R1) and x ∈ πA(Lz,c∩R2) then (x, Lz,c(x)) ∈ R1 and
(x, Lz,c(x)) ∈ R2, contradicting the disjointness of R1 and R2.

So, if {Ri}i>1 are pair-wise disjoint rectangles, then the mono-
tone convergence theorem and the fact that projection “πA” com-
mutes with countable set unions, justify

F∗(∪∞i=1Ri) =

∫
[0,1]

1πA(Lz,c∩(∪∞i=1Ri)) fA(x)dx

=

∫
[0,1]

1πA(∪∞i=1(Lz,c∩Ri)) fA(x)dx

=

∫
[0,1]

1∪∞i=1πA(Lz,c∩Ri) fA(x)dx

=

∫
[0,1]

∞∑
i=1

1πA(Lz,c∩Ri) fA(x)dx

=

∞∑
i=1

∫
[0,1]

1πA(Lz,c∩Ri) fA(x)dx =

∞∑
i=1

F∗(Ri) .

�
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