

City, University of London Institutional Repository

Citation: Pinkel, C., Binnig, C., Jimenez-Ruiz, E. ORCID: 0000-0002-9083-4599,
Kharlamov, E., Nikolov, A., Schwarte, A., Heupel, C. and Kraska, T. (2017). INCMap: A
Journey towards ontology-based data integration. Lecture Notes in Informatics (LNI),
Proceedings - Series of the Gesellschaft fur Informatik (GI), 265, pp. 145-164.

This is the published version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/id/eprint/23182/

Link to published version:

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/237395021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

B. Mitschang et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2017),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 145

IncMap: A Journey towards

Ontology-based Data Integration

Christoph Pinkel1, Carsten Binnig2, Ernesto Jimenez-Ruiz3, Evgeny Kharlamov3,

Andriy Nikolov1, Andreas Schwarte1, Christian Heupel1, Tim Kraska 2

Abstract: Ontology-based data integration (OBDI) allows users to federate over heterogeneous data
sources using a semantic rich conceptual data model. An important challenge in ODBI is the curation
of mappings between the data sources and the global ontology. In the last years, we have built IncMap,
a system to semi-automatically create mappings between relational data sources and a global ontology.
IncMap has since been put into practice, both for academic and in industrial applications. Based on the
experience of the last years, we have extended the original version of IncMap in several dimensions
to enhance the mapping quality: (1) IncMap can detect and leverage semantic-rich patterns in the
relational data sources such as inheritance for the mapping creation. (2) IncMap is able to leverage
reasoning rules in the ontology to overcome structural differences from the relational data sources.
(3) IncMap now includes a fully automatic mode that is often necessary to bootstrap mappings for a
new data source. Our experimental evaluation shows that the new version of IncMap outperforms its
previous version as well as other state-of-the-art systems.

1 Introduction

As large volumes of data are being constantly created in a variety of domains, the challenge

of data integration becomes more and more important to get a holistic view on existing

knowledge. Example use cases include web data analysis, the reconciliation of enterprise

internal data, as well as applications in science or medicine. Integrating such data into a

common model allows correlating information and hence discovering new and interesting

patterns [Bh15, DS13].

One recent approach to this problem is ontology-based data integration (OBDI), where data

sources are integrated via a global ontology. The advantage of using an ontology as a global

view is its semantic richness, allowing domain experts to model their information needs

in a conceptual high-level model. However, data in many of today’s applications is still

commonly stored in relational databases. To achieve an integration of these data sources,

the relational database schemata of the sources have to be mapped into the unified global

ontology (called RDB2RDF mappings further on).

Creating such RDB2RDF mappings manually is a time consuming task, which requires

considerable effort and expertise. To minimize the required costs, several different systems

(e.g., [Ji15, Pi13, Kn12, TSM13, Au05]) have recently been proposed that assist users in

1 fluid Operations AG, Walldorf, Germany
2 Brown University, Providence, RI, USA
3 University of Oxford, Oxford, UK

146 Christoph Pinkel et al.

creating these mappings in a semi-automated or even fully automated way. To provide such

assistance, we have previously built semi-automatic system called IncMap [Pi13], which we

have put to use in practice over the last few years in different application domains.

Contributions: The mapping generation in the first version of IncMap [Pi13] was mainly

based on lexical as well as structural similarities between the schema elements of the

relational data source and the target ontology. For example, if an entity Author has a relation

to an entity Paper there should exist similar entities in both the ontology and the relational

schema as well as a path that links both entities.

However, based on the use of IncMap over the last years we have seen that IncMap was

not able to find more complex mappings in many real-world scenarios which had two

main reasons: First, ontologies follow an open-world approach (i.e., not everything must be

explicitly modeled if it can be derived by reasoning) whereas relational schemata follow a

closed-world approach. Second, many of the high-level concepts such as inheritance can

not be directly modeled in a relational schema and are often implemented using different

modeling patterns.

Based on this experience, we have developed a new version of IncMap that tackles these

problems. The main features of the new version that provided most benefits are: (1) As a first

major extension, IncMap is now able to leverage knowledge derived from reasoning over the

input ontology, and (2) at the same time utilizes information about typical design patterns

in relational databases. To the best of our knowledge, IncMap is the only direct system

that combines these two approaches into a mapping system. Both these extensions have

shown to be extremely fruitful and are the main reason why IncMap currently outperforms

other state-of-the-art systems. (3) In comparison with its predecessor, IncMap now also

supports fully automatic mapping generation to bootstrap the mapping for larger data

sources. Moreover, we have also added minor extensions such as a better lexical matching

and a number of engineering improvements.

The contributions of this paper are three-fold: (1) We present all these new features of IncMap

in detail. (2) In order to show the effectiveness of all our extensions, we compare IncMap

against other state-of-the-art systems using our recent benchmark suite for benchmarking

ODBI integration systems, called RODI [Pi15].4 Our results show that IncMap improves

the quality of the generated mappings significantly over its predecessor and typically

outperforms other state-of-the-art systems. (3) In addition, we also present the results of

a user-study. We have built the study on a small, real-world industry mapping problem to

demonstrate the utility of IncMap in practice, independent from any synthetically designed

benchmark.

Outline: The remainder of this paper is organized as follows. First, in Section 2 we

start with an overview of our extended system IncMap that leverages the novel IncGraph+

model to support the before-mentioned extensions. In Section 3, we discuss in detail

4 https://github.com/chrpin/rodi

https://github.com/chrpin/rodi

IncMap: A Journey towards Ontology-based Data Integration 147

the construction of the IncGraph+ model and then elaborate on the role of reasoning in

Section 3.2 and the use typical design patterns in Section 3.3. Afterwards, in Section 4

we explain how the this information is leveraged to generate mappings from the extended

IncGraph+ model. Finally, we present our experimental evaluation in Section 5 and discuss

the results of our user study in Section 6. We conclude with related work in Section 7 and a

summary in Section 8.

2 IncMap Overview

IncMap generates RDB2RDF mappings between a given relational data source and a target

ontology based on the following procedure that operates in five steps: (1) creating source

and target schema graphs from the relational schema and the ontology, (2) use reasoning

and heuristic pattern annotation to infer additional information, (3) apply initial lexical

matching to build a matching score between relation schema and the ontology, (4) refine

matching scores using a fixpoint computation, and (5) generate RDB2RDF mappings.

This procedure can be repeated after the user has verified or rejected individual mappings of

the previous iteration. This allows IncMap to integrate user feedback and create mappings

in an incremental manner.

In the following, we give an overview of all these steps. Details and a more formal explanation

are given afterwards in Section 3 and Section 4.

1. Creating Schema Graphs: As a first step, the source and target schema graphs are

created using our IncGraph+ model. In order to construct the source and target schema, we

iterate over all schema elements in the relational schemata and the ontology and create the

two graphs.

Figure 1 depicts a small example of the schema graph construction from the conference

domain. The relational schema (Figure 1a) and the ontology (Figure 1b) both capture the

same information about persons and papers. In a first step, the relational schema and the

ontology are mapped into the source and target schema graph as shown in Figure 1c and

Figure 1d that consists of typed nodes and labeled edges. A formal definition of the schema

graph will be given in the following section.

While we can see already some clear correspondences between the elements in both schema

graphs that result from lexical and structural similarities (e.g., Papers and their titles),

some other schema elements are harder to match. For example, while Author is a dedicated

concept in the ontology it does not have a direct correspondence in the relational schema.

The reason is that in the relational schema, Authors are modeled as Persons who have

authored at least one paper. This results from a typical modeling pattern of how inheritance

is implemented in a relational schema.

148 Christoph Pinkel et al.

Person'

ID'

...'

Paper'

?tle'

PersID'

(FK)'

...'

(a) Relational Schema R

Author'
domain'

writes' Paper'
range'

Class'

Object'

Property'

type'

Datatype'

Property'

hasTitle'

domain'

type'

type'

subClassOf'

Person'

type'

(b) Ontology O

Person'
ref'

PersID' Paper'
ref'

?tle'

val'

PersID'ID'

val' val'

varchar'
type'

(c) Basic IncGraph+ (R)

Author'
ref'

writes' Paper'
ref'

hasTitle'

val'

Person' string'
type'

subClassOf'

(d) Basic IncGraph+ (O)

Fig. 1: Example: schema and ontology, with basic IncGraph+ representations.

Moreover, there are many more subtle differences: e.g., while on the database side foreign

keys (i.e., referential constraints) model a clear direction and allow to deduce cardinality

constraints, object properties in an ontology are do not yield any cardinality information.

In order to simplify the subsequent matching step (3), we also annotate each node in a

schema graph with a type indicated by the color coding in both figures. For example, the

green-striped nodes in a schema graph represent the data type information. We explain the

different types that we support in IncMap later. Important is that for the matching step (3),

only nodes with the same color need to be considered as potential correspondences.

2. Reasoning and Patterns: As discussed before, there exist several possible distortions

between the schema graph representations of a relational schemata and an ontology.

These distortions have two main causes: First, ontologies typically follow an open-world

approach (i.e., not everything must be explicitly modeled if it can be derived by reasoning)

whereas relational schemata follow a closed-world approach. Second, many of the high-level

concepts such as inheritance can not be directly modeled in a relational schema and are

often implemented using different modeling patterns.

These problems also materialize in Figure 1. Intuitively, the Person class is the most accurate

match for the Person table while the Author class has most probably no match candidate.

This is because the subClassOf connection between Author and Person is not explicit

anymore neither in the schema graph of the relational schema (since it was never modeled)

nor the schema graph of the ontology.

IncMap: A Journey towards Ontology-based Data Integration 149

For this reason, as a second step we apply reasoning techniques on the input ontology

and use heuristics to annotate patterns on the source database. Figure 2 depicts derived

knowledge from reasoning and annotated patterns for the example in Figure 1.

Person'
ref'

PersID' Paper'
ref'

?tle'

val'

PersID'ID'

val' val'

varchar'
type'

mul?Etype'

(a) Full IncGraph+ (R)

Author'
ref'

writes' Paper'
ref'

hasTitle'

val'

Person' string'
type'

subClassOf'

(b) Full IncGraph+ (O)

Fig. 2: Example (ctd.): advanced IncGraph+s.

In Figure 2a, the relational schema graph now annotates the Person node with a pattern,

which heuristically states that this table is very likely to contain individuals of several types

(e.g., using sub classes or sibling classes). This information can now be used to derive a

new correspondences between Author node in the schema graph of the ontology and the

Person node in the schema graph of the relational data source.

Additionally, a new reference edge is added to the ontology schema graph which directly

connects Person and Writes. This knowledge is derived through reasoning and basically

states that some persons in the ontology write papers. In our example this encourages

correspondences between the Person nodes in both schema graphs since they are now not

only lexically similar but also structurally.

3. Matching Step: Based on a source and target schema graph, we next calculate the

initial matching. Figure 3 illustrates a simplified initial matching for the two schema graphs

of the previous example.

For creating the initial matching, each node in the source graph is paired with each node in

the target graph that has the same color (or type) into possible matches. Figure 3a shows the

possible pairs for an excerpt of the schema graphs in Figure 2. Afterwards, only those pairs

in the set of possible matches are kept that have the same set of labeled edges (in the source

and target graph).

Based on the remaining possible matches a so called pairwise connectivity graph (PCG) is

created where each subgraph represents a possible alignment of nodes in the source and

target schema graph. Figure 3b shows the PCG for our example where the upper node in

each subgraph is always from the target schema graph (i.e., the ontology) and the lower

node from the source schema graph (i.e., the relational schema). For each pair of nodes in

the PCG an initial score is calculated using a lexical matcher (e.g., using Jaccard similarity).

4. Fixpoint Computation: In subsequent next steps, IncMap then computes a fixpoint

computation using the PCG. The fixpoint computation serves to refine match scores based

150 Christoph Pinkel et al.

Author'
ref'

writes' Paper'
ref'

val'

…'

Person'
ref'

PersID' Paper'
ref'

val' val'

…'

Target'

Source'

…'

Possible'

Matches'

(a) Source and Target IncGraph+s

Author'

ref'

writes' Paper'

ref'Person' PersID' Paper'

Author'

ref'

writes' Paper'

ref'Paper' PersID' Person'

Paper'

ref'

writes' Author'

ref'Person' PersID' Paper'

1.0$0.1$0.2$

0.1$

0.1$0.5$

0.2$ 0.5$

0.2$

(b) Pairwise Connectivity Graph

Fig. 3: Matching IncGraph+s (Simplified Excerpt)

on the graph structure. The fixpoint computation in IncMap follows the idea of the similarity

flooding algorithm described in [MGMR02]. Intuitively, the process favors nodes in larger

subgraphs over smaller ones and increases the scores of strongly connected nodes.

Different from the original similarity flooding algorithms, however, we introduce modi-

fications for features such as weighted edges and selectively activating edges during the

fixpoint computation (e.g., based on the annotated patterns). Moreover, in order to addi-

tionally support incremental mapping scenarios where user feedback is available, we can

accommodate information on partial mappings. However, IncMap is also able to generate

mappings completely without any user feedback.

5. Mapping Generation: Finally, mappings are generated from the correspondences

resulting from the PCG. Correspondences are selected based on the highest matching scores

of the fixpoint computation to form a consistent alignment interpretation; i.e., each node in

the original target schema graph has maximally one correspondence in the source schema

graph. To enable the mapping generation, we encode provenance information with all nodes

of the PCG to refer back the nodes in the source and target schema graphs.

3 IncGraph+

In this section, we formally define the schema graphs that we create as a first step of

IncMap. The data model used for a schema graph in our recent version of IncMap is called

IncGraph+.

3.1 Basic IncGraph+

An IncGraph+ is defined as a labeled graph G = (V, LblV, E, LblE,WE). It can be used

as input by the matching algorithm of IncMap. V is a set of vertices, E = Ed ∪Eu is a set of

directed Ed and undirected Eu edges, LblV and LblE are the labeling relations for vertices

IncMap: A Journey towards Ontology-based Data Integration 151

(i.e., relating one label to each vertex) and edges (i.e., one label for each edge) respectively,

and WE ⊂ E × [−wmax ;wmax] is a weight assignment relation for edges.5 Label lv is the

label of v ∈ V if (v, lv) ∈ LblV , and represents a name of a schema element. Similarly

le ∈ {“re f ′′, “value′′, “type′′, “pattern′′} is a label of edge e ∈ E if (e, le) ∈ LblE , and

describes the function of the edge.

3.1.1 Basic Graph Construction:

Let R be a relational schema, O an ontology.

Basic nodes (vertices) and edges for IncGraph+ are based on input schema elements, i.e.,

tables and attributes for IncGraph+ (R), or classes and properties for IncGraph+ (O).

Relational Schemata (IncGraph+ (R)): Let T the set of tables (relations) in the schema,

At the set of attribute of table t ∈ T , P ⊂ {(t1, a1, t2, a2)|t1, t2 ∈ T, a1 ∈ At1, a2 ∈ At2 } the

set of non-compound referential constraints between tables in R. Then:

(Table Nodes) t ∈ T → vt ∈ V ∧ vt .type = ”T” ∧ (vt, name(t)) ∈ LblV

(Attribute Nodes) a ∈ At ∧ t ∈ T → va ∈ V ∧ va .type = ”A”

∧(va, name(a)) ∈ LblV ∧ ea = (vt, va) ∈ Ed ∧ (ea, ”val”) ∈ LblE

(Datatype Nodes) va ∈ V ∧ va .type = ”A” → vdt ∈ V ∧ vdt .type = ”D”

∧(vdt, name(dt(va))) ∈ LblV ∧ edt = (va, vdt) ∈ Ed ∧ (edt, ”type”) ∈ LblE

(Reference Nodes) (t1, a1, t2, a2) ∈ P → vp ∈ Vvp .type = ”P”

∧(vp, name(a1)) ∈ LblV ∧ ep1
= (vt1, vp) ∈ Eu ∧ (ep1

, ”re f ”) ∈ LblE
∧ep2

= (vt2, vp) ∈ Eu ∧ (ep2
, ”re f ”) ∈ LblE

Ontologies (IncGraph+ (O)): Let C, DP , OP the set of class axioms, datatype property

axioms and object property axioms in O, respectively, and X be the set of OWL datatypes.

Then:

(Class Nodes) c ∈ C → vc ∈ V ∧ vc .type = ”T” ∧ (vc, name(c)) ∈ LblV

(Datatype Property Nodes) d ∈ D ∧ c = domain(d) ∈ DP

→ vd ∈ V, vd .type = ”A” ∧ (vd, name(d)) ∈ LblV ∧ ed = (vc, vd) ∈ Ed

∧(ed, ”val”) ∈ LblE

(Datatype Range Nodes) vd ∈ V ∧ vd .type = ”A” ∧ r = range(vd) ∈ X

→ vx ∈ V ∧ vx .type = ”D” ∧ (vx, name(r)) ∈ LblV ∧ ex = (vd, vx) ∈ Ed

∧(ex, ”type”) ∈ LblE

5 We denote optional edges with negative weights; they can be activated during matching by multiplying their

weight with −1.

152 Christoph Pinkel et al.

(Object Property Nodes) p ∈ P ∧ d = domain(p) ∧ r = range(p)

→ vp ∈ Vvp .type = ”P” ∧ (vp, name(p)) ∈ LblV ∧ ep1
= (vd, vp) ∈ Eu

∧(ep1
, ”re f ”) ∈ LblE ∧ ep2

= (vr, vp) ∈ Eu ∧ (ep2
, ”re f ”) ∈ LblE

3.2 Reasoning

We extend IncGraph+ using reasoning on O in two ways. First, we assume that a reasoner

infers and materializes relevant axioms prior to IncGraph+ generation (basic reasoning).

Second, we derive implicit information using custom, non-standard reasoning rules and

directly encode consequences into IncGraph+ (O). This concerns aspects that may result in

additional relevant matches with IncGraph+ (R) of a database schema: domains and ranges

of properties other than the ones explicitly asserted, and inverse properties.

3.2.1 Sub Classes/Super Classes:

Domains and ranges are often modeled in a database at a granularity other than the one

expressed in a corresponding ontology. In one case, this may be one or more specific sub

class(es) of the actual domain or range, if the database is designed to accept only information

about those specific sub classes. In another case, however, this can even be a super class of

the domain or range, following the reasoning that some of the individuals of the super class

can have values of that property. Although somewhat less frequent, databases occasionally

happen to model properties in such an overly generic way.

In order to solve this, we add reference edges to the graph to encode all alternative

connections. To express the fact that some cases are less expected, we assign weight factors

to the additional edges:

(Sub Classes) v ∈ V ∧ vd .type ∈ {”A”, ”P”} ∧ e = (v, v′) ∈ Eu ∧ v
′
.type = ”C” :

∀s ∈ C.subClass(class(v), s) → e′ = (v, s) ∈ Eu ∧ (e′, ”re f ”) ∈ LblE

(Super Classes) v ∈ V ∧ vd .type ∈ {”A”, ”P”} ∧ e = (v, v′) ∈ Eu ∧v′.type = ”C” :

∀s ∈ C : superClass(class(v), s) → e′ = (v, s) ∈ Eu ∧ (e′, ”re f ”) ∈ LblE ∧

(e′, 0.5) ∈ WE

3.2.2 Pseudo Equivalence:

While real equivalences can be made explicit by a reasoner in pre-processing, another more

subtle notion of equivalence may apply on IncGraph+ on axioms that are not actually

equivalent in the ontology: pseudo-equivalence. As relations and referential constraints

have no semantic direction and because in IncGraph+ we only model aspects that can find

correspondences, properties also lose their direction in IncGraph+. This means, that inverse

properties become effectively equivalent w.r.t. IncGraph+. However, they are not in the

IncMap: A Journey towards Ontology-based Data Integration 153

underlying ontology and thus are modeled twice during graph construction. Consequently,

they compete for matches and distract structural alignment.

We solve this issue by unifying pseudo-equivalent property axioms into a single node during

IncGraph+ construction, but maintain both labels for alternative lexical matching.

3.3 Patterns and Meta Knowledge

Due to different data modeling approaches, the same information is structured differently

in relational databases and ontologies, and direct correspondences between modeling

constructs are often difficult to establish: e.g., relational database schemata do not model

concept and property hierarchies explicitly, many-to-many relations are expressed using

intermediate tables, etc.: for example, typically three different ways are used in which an

ontological subClassOf relation can be implemented in a relational model (se Fig. 4). In

the database community, research has identified common design patterns for modeling

interrelated data [GMUW08], and the Semantic Web research in turn noted various common

ways for matching these database schema structures with the semantically equivalent

ontology constructs [Se12, HM13].

Such common correspondence patterns provide valuable background knowledge helping to

generate mappings between ontologies and relational databases: a set of initial mappings

can be reinforced if they appear to satisfy a common pattern.

Person

Author Reviewer

name
domain

sub-class

area

domain

e-mail

domain
aid name e-mail

1 Lennon a@b

rid name area

1 Harrison Onto

pid e-mail

1 a@b

pid area

2 Onto

pid name

1 Lennon

2 Harrison

pid name e-mail area type

1 Lennon a@b - author

2 Harrison - Onto reviewer

Ontology

Author Reviewer

Person

Author Reviewer

Person

Relational Schema (Option 1)

Relational Schema (Option 3)

Relational Schema (Option 2)

Fig. 4: Correspondence patterns: class-subclass hierarchy

Based on these common structures, we selected the following patterns, which can directly

be used :

• rdfs:subClassOf relations between classes:

– One common table for all. An example is shown as Option 1 in Fig. 4. Here

one table stores information about all people: both authors and reviewers. The

154 Christoph Pinkel et al.

Author

Organization

Paper

hasAccount

aid login

1 jlennon

oid name

1 UMA

2 fluidOps

aid name affiliated

1 Lennon 1

2 McCartney 1

Ontology

Organization

Paper

Author

Relational Schema (Option 1)

LoginAccount

domain

range

owl:Functional

Property

owl:Inverse

Functional

Property

type

type

affiliatedWith

domain

range

type

writes

domain

range

LoginAccount

aid pid

1 1

1 2

2 1

PaperAuthor pid title

1 OBDA for SW

2 SW for OBDA

keyword
domain

hasTitle

domain

kid pid title

1 1 Ontologies

2 1 OBDA

PaperKeywords

Fig. 5: Correspondence patterns: properties

type column stores the type of the record, and the type-specific fields, such as

e-mail and area receive NULL values if they are not relevant for the record.

– Separate unrelated tables. Option 2 in Fig. 4 provides an illustration: authors

and reviewers are stored in separate tables containing only fields relevant for

the specific type. Common fields such as name are contained in both tables.

– Separate tables linked via a 1:1 foreign key relation. See Option 3 in Fig. 4:

common fields are defined in the Person table which has 1:1 foreign key

relations to both category-specific ones.

• owl:ObjectProperty links:

– 1:1 relation: two tables are connected via their unique keys, similarly to the

relation between the tables Author and LoginAccount in Fig. 5.

– 1:n relation: two tables are connected via a foreign key, which is unique in one

of the tables, as is the Organization table in Fig. 5. The unique key oid of the

Organization table is referenced in the Author table.

– n:m relation: two tables are connected via an intermediate table containing

two foreign key columns. The PaperAuthor table in Fig. 5 is used as such an

intermediary between the Author and Paper tables.

• owl:DatatypeProperty links:

– 1:1 relation: a column in the table directly contains the value of a datatype

functional property (e.g., hasTitle).

– 1:n relation: a separate table is linked via a foreign key to the main table

and contains an additional column for the data values. The example is the

PaperKeywords table in Fig. 5.

IncMap: A Journey towards Ontology-based Data Integration 155

IncMap exploits these patterns in heuristic rules that enrich the schema graphs. When

building a schema graph, these rules add to the graphs special pattern nodes. Such pattern

node represents a specific pattern type (e.g., “class-subClass”) and is connected by edges

to the relevant content nodes (tables and fields for the database schema graph, classes and

properties for the ontology graph). Apparently, while patterns in the database are merely

structural and may or may not represent the assumed semantics, their correspondences on

the ontology side are factual axioms. In addition, some patterns are also ambiguous (e.g.,

1:1 relations vs. the third subClass pattern). Also, a number of patterns cannot even be

identified with certainty, but heuristics apply that result in varying confidence scores. Thus,

on the database side, we employ weighted edges to connect pattern nodes, representing

their detected confidence score. The role of the pattern nodes is to reinforce the connection

between involved nodes on both sides and thus make the fixpoint computation algorithm

more likely to lead to higher similarity scores for pairs of nodes in the neighborhood of

corresponding or aligned pattern node.

Formally, for each supported pattern on relational schema R, there is a pattern qualifier

heuristic H that assigns each subset of schema elements (i.e., each E ∈ P(R)) a score,

denoting the confidence they might form the specified pattern.

Then: H(E) > 0.0 → ∀el ∈ E : vx ∈ V ∧ vx .type = ”X” ∧ e = (vel, vx) ∈ Ed ∧ e =

(vel, vx) ∈ LblV

4 Matching & Mapping

IncMap produces mappings in two main stages: (1) matching, i.e., finding correspondences

between nodes in schema graphs of the relational source and the target ontology, and (2)

mapping generation based on matched correspondences.

4.1 Matching Process

Matching a source and target IncGraph+ starts with calculating the cartesian products

between nodes in the source and target, for each respective node type. Each pair, i.e., each

potential correspondence, is then evaluated by an initial match operator, which calculates

an initial lexical similarity between the nodes based on their labels. The preferred initial

match operator in IncMap is word-bag Jaccard similarity on stemmed, stop-word filtered

tokenizations of the labels. For nodes with no lexical labels, such as pattern nodes, this

operator assigns an initial similarity of 0.5.

Next, paired nodes get reassembled into a new graph, based on common edges that both

paired nodes shared in their respective IncGraph+. This is in preparation of a following

phase, where a fixpoint computation based on the Similarity Flooding algorithm [MGMR02]

refines the initial scores based on structural similarities. In [MGMR02], the reassembled

graph used as input for Similarity Flooding is called a Pairwise Connectivity Graph, (PCG).

Our graph is based on PCG but extended in several ways, primarily to accommodate

156 Christoph Pinkel et al.

a"

a1" a2"

l1" l1"

l2"

p"

l3" 0.5"

(a) Source

b"

b1" b2"

l1" l2"

l2"

p"

l3" 1.0"

(b) Target

a,b"

a1,b1" a2,b1"

a1,b2"

a1,b"

a2,b2"

l1" l1"

l2"

l2"

p,p"

l3" 0.5"

(c) PCG+

Fig. 6: Construction of Extended Pairwise Connectivity Graph (Simplified)

undirected edges, weighted edges and optional edges, which are not supported in the original

PCG. We thus refer to this reassembled graph as Extended Pairwise Connectivity Graph

(PCG+). Figure 6 shows a generic and simplified example of two input graphs and the

resulting PCG+ (Figure 6c). The PCG+ has a node for every pair in the cross products of

nodes from the input graphs, where nodes of some type (or color) in one graph will be paired

only with nodes of the same color in the other. Therefore, in the figure, all combinations

of a, a1, a2, b, b1 and b2 are in the graph, but only one node pairing p1 with p2. Edges are

added to the PCG+ wherever both constituent nodes of a pair had a shared type of edge

in the same direction. For instance, a and b have both an outgoing edge labeled l1, which

lead to a1 and b1, respectively. Therefore, the pair (a, b) in the PCG+ also has an outgoing

edge l1 leading to the pair (a1, b1). In addition, if either edge was weighted, their weights

get multiplied for the PCG+. Unweighted edges are assumed to carry a weight of 1.0. If

either edge is optional, the common edge becomes optional.

The PCG+ is then transformed into the final input for Similarity Flooding by adding inverse

edges to avoid black holes in the fixpoint computation and by (re-)assigning weights to all

edges to balance the score distribution.

Finally, the fixpoint computation will repeatedly distribute scores of matches to neighboring

nodes depending on edge weights, thus refining the score of correspondences structurally.

After each iteration, we check for optional edges supported by a pattern node with a top score,

in which case the edge would be activated for the next iteration. The fixpoint computation

halts if maximum score changes drop below a configurable maximal delta during one

iteration or if a maximum number of iterations has been reached.

4.2 Mapping Generation

IncMap exports mappings based on most likely correspondences calculated during the

fixpoint computation.

Correspondences are selected based on final scores. IncMap supports the interpretation of

several correspondences as 1:1 mappings or n:1 mappings, but not n:1 or n:m mappings.

Thus, intuitively, for each target side node (i.e., each node in the ontology IncGraph+), one

IncMap: A Journey towards Ontology-based Data Integration 157

correspondence should be selected. We refer to this set of correspondences as the target

top-1 set of correspondences.

However, target top-1 correspondences may lead to significant inconsistencies, lowering the

quality of the resulting mappings. For instance, the best match for a property will in some

cases match its range class to a different table key then the one chosen as best match for

the class node of the range. While this might even be correct on occasion – either, because

the range class match is the one, which is incorrect, or because both matched keys define

identical individuals – our general experience is that accepting those inconsistencies lowers

mapping quality on average. Therefore, we do not select target top-1 correspondences but

first choose target top-1 correspondences for classes only and then choose for properties

from a restricted set that interprets domains and ranges consistently with the chosen class

matches.

Finally, for each correspondence, one mapping rule is being generated using R2RML

(RDB to RDF Mapping Language)6 as mapping language. Technically, this is enabled by

provenance information encoded within every node.

5 Experimental Evaluation

While all the extensions of IncMap discussed in this paper were motivated by putting our

system into practice over the last few years in different application domains, we did run

experiments to systematically analyze the impact of each extensions, also in comparison to

other systems.

5.1 Benchmark Suite

We ran experiments using our mapping generation benchmark suite called RODI [Pi15].

RODI was designed to test RDB2RDF mappings in end-to-end mapping scenarios: it

provides an input database and a target ontology and requests complete mappings that enable

to execute queries over the target ontology while retrieving the results from the underlying

source data. The effectiveness of mappings is then judged by a score that mainly represents

the number of query tests that return the expected results on mapped data sources.

While RODI is extensible and can run scenarios in different application domains, it ships

with a set of default scenarios that are designed to test a wide range of fundamental

RDB2RDF mapping challenges in a controlled fashion.

5.2 Benchmark Results

In the following, we discuss the results of evaluating our system IncMap. We test two

versions of IncMap, a basic setup with only basic reasoning (no custom reasoning rules)

6 http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/

158 Christoph Pinkel et al.

and without patterns (IncMap basic), and a complete version with all features combined

(IncMap). We directly compare IncMap to its predecessor (called IncMap 1.0 [Pi13]), as well

as to the best-performing systems from the original RODI benchmark experiments [Pi15],

BootOX [Ji15], and -ontop- [Ro15]. We have also added experiments in a setup with

COMA++ [Au05] as a well-known baseline for generic schema matching.

RODI Scenarios: As a first series of experiments we followed the RODI default scenarios.

Most default scenarios are set in the conference domain, with two additional scenarios; one

in the domain of geographic data as well as another in the oil & gas domain.

The default benchmark scenarios therefore provide nine different relational databases that

are to be mapped to their respective corresponding target ontologies, which are provided

as T-Boxes (i.e., only schema information with no data). Each benchmark scenario (i.e.,

each pair of a source database and a target ontology) is based on an existing pair of an

ontology/database schema (CMT, CONFERENCE, and SIGKDD) as well as variants where

the ontology/database schema was mutated to test a different set of integration challenges.

For example, “adjusted naming” scenarios in the conference domain are closely modeled

after the original ontology, only with adjusted identifier names while the database schema

was normalized to fourth normal form (4NF). “Restructured” scenarios are remodeled from

ground up to follow widely used relational database design patterns, rather than following

closely the patterns used in ontologies. Most significantly, this includes class hierarchies,

resulting in cases where abstract parent classes have no corresponding table in the database,

several sibling classes being jointly represented in a single table, etc. In addition, a selection

of scenarios with advanced modeling patterns also forms part of the default scenarios:

“missing FKs” represents the case of a database with no explicit referential constraints at all,

and “denormalized” scenarios contain some denormalized tables. Finally, in the “Combined

Cases” different mutations are mixed together (e.g., “adjusted naming” and “missing FKs”).

Moreover, all non-conference scenarios use complex real-world relational schemata and

ontologies of significant size.

Each scenario has different test categories that allow to break down results to, e.g., class

mappings vs. property mappings, mappings based on simple 1:1 correspondences vs. more

complex compositions, etc. RODI calculates scores between 0.0 and 1.0, based on the

averages of per-test F-measures for each scenario and test category.

Results: Table 1 shows RODI scores for each default scenario on every tested system.

RODI scores basically indicate the percentage of successfully passed query tests, although

technically defined on the basis of averages of per-query F-measures.

For most scenarios, IncMap outperforms all other systems with varying margins. In

particular, IncMap outperforms its predecessor (IncMap 1.0) by far, improving in all

case and even rising by a factor of 10 and more in some of the more complex cases

(SIGKDD combined, CONFERENCE missing FKs). Numbers also indicate that IncMap

has successfully overcome architectural issues in graph construction that had caused its

IncMap: A Journey towards Ontology-based Data Integration 159

Tab. 1: Average results of all tests per scenarios (scores based on F-measure). Best numbers per

scenario in bold print.

Scenario IncMap 1.0 -ontop- BootOX COMA++ IncMap basic IncMap

Conference adjusted naming

CMT 0.45 0.28 0.76 0.48 0.45 0.66

CONFERENCE 0.26 0.26 0.51 0.36 0.56 0.64

SIGKDD 0.21 0.38 0.86 0.66 0.79 0.90

Conference restructured

CMT 0.38 0.14 0.41 0.38 0.45 0.64

CONFERENCE 0.16 0.13 0.41 0.31 0.46 0.56

SIGKDD 0.11 0.21 0.52 0.41 0.45 0.69

Conference combined case

SIGKDD 0.05 0.21 0.48 0.28 0.45 0.55

Conference missing FKs

CONFERENCE 0.03 - 0.33 0.21 0.41 0.41

Conference denormalized

CMT 0.22 0.20 0.44 - 0.52 0.71

Geodata

Geodata 0.00 - 0.13 - 0.08 0.08

Oil & Gas

Oil & Gas 0.06 0.10 0.14 0.02 0.12 0.17

predecessor to fall way behind the competition in different cases. This mostly affects

scenarios involving ontologies that are rather expressive (CONFERENCE and SIGKDD, as

opposed to CMT).

Between the two versions of IncMap, the basic version and complete IncMap, a positive

impact of the advanced patterns and reasoning in the full version can generally be observed.

The only exception is “CONFERENCE Missing FKs”, which is natural as both reasoning

and patterns rely on referential constraints to produce additional correspondences with the

database.

In general, it can however be observed that IncMap, even while outperforming other

systems, still significantly struggles with the more complex scenarios as well as the two

real-world cases (Geodata and Oil & Gas). The further the database schema deviates from its

corresponding ontology by using traditional relational database design patterns (restructured,

advanced scenarios), the more mapping result quality drops.

6 User Study

Next to systematic experiments with our benchmark suite RODI, we have conducted a

user study to evaluate the merits of IncMap in practice. We have therefore asked a number

of RDB2RDF data integration professionals to perform a small, but real-world, industry

mapping problem with and without automatically bootstrapped mappings, did ask for their

impressions and observed how long the task took them.

160 Christoph Pinkel et al.

6.1 Study Design

We have set the study problem in a commercial application domain that we frequently

see in our everyday consulting practice with customers at fluid Operations: data center

management. The domain comprises information about hardware, software and services in

large data centers, monitoring information etc. As relational data source for the study, we

have used one realistic customer database of advanced complexity, containing 61 tables with

a combined 776 columns. The target ontology was a subset of the enterprise datacenter/cloud

vocabulary that we normally use for commercial data integration projects in this domain.

The full vocabulary is publicly available7. We did limit the mapping task to mapping

information regarding hosts. This limits the actually relevant part of the target ontology

to 3 classes, 8 datatype properties and 4 object properties. While scaled down, this setup

closely resembles our typical real-world data integration projects insofar as it requires to

map parts of a holistic ontology from only a small subset of information in a large source

database. To further specify the task we have provided a set of dashboard queries for which

the participants needed to curate the mapping.

We have asked 7 randomly selected data integration experts to create the required mapping,

either starting with an intial, automatically bootstrapped mapping using IncMap, or from

scratch. We then measured the time taken to complete the mapping to each expert’s

satisfaction in both cases. We asked all users to first perform the task using IncMap

mappings. Note, that this puts IncMap at a disadvantage over the from-scratch case, as any

time taken to get basically familiarized with the source schema would count against the first

task.

Additionally, we did ask users before starting their first task to judge the automatically

generated mappings by their perceived utility without any corrections. We also asked after

the experiments about the preferred approach for future tasks. Specifically, we did ask the

following two questions:

Question 1 (before first task): “When inspecting the initially bootstrapped IncMap map-

pings, how useful do you think they are on a scale from ‘not useful at all’ to ‘highly

useful’?”

Question 2 (after last task): “When performing a similar task again in the future, would

you prefer to work with bootstrapped IncMap mappings or start from scratch?”

6.2 Results and Observations

Figure 7 shows our observations from the user study. First, Figure 7a depicts the times taken

to complete the mapping with and without IncMap bootstrapping for each of the users. The

green line marks the median time taken with IncMap bootstrapping, while the dashed blue

7 http://www.fluidops.com/en/company/training/open_source

http://www.fluidops.com/en/company/training/open_source

IncMap: A Journey towards Ontology-based Data Integration 161

(a) Times taken to complete

(b) Question 1 (before task) (c) Question 2 (after task)

Fig. 7: User Study Results

162 Christoph Pinkel et al.

line marks the median time taken without IncMap. It shows that, although all users did first

perform the task on IncMap bootstrapped mappings and thus were already familiar with

the source schema when trying again from scratch, it took all but two of them less time to

complete the mapping when working with IncMap, with the two exceptions reporting very

small differences. On average, despite this disadvantage for IncMap in the experiment, users

did save 121 seconds (roughly 20%), with a difference of 108 seconds between median

times.

Figure 7b shows the impressions of users regarding the initial automatic mappings: although

some users did acknowledge them to be somewhat useful, results are poor on average. This

is in line with expectations, as fully automatic mappings on relatively large schemata are

known to be generally difficult to use without prior corrections, due to both incomplete

matches and a high number of false positives (e.g., [HQ07]).

Hence, the more relevant question is whether the mappings are useful as a starting point

for manual editing. Besides the obvious indication in this direction from task completion

times, we also did ask users about their subjective judgment, namely which method of

building methods they would prefer next time for a similar task. The responses are depicted

in Figure 7c: a clear majority of 5 out of 7 users would prefer automatically bootstrapped

mappings from IncMap, with another one neutral and only one user leaning slightly against.

7 Related Work

IncMap automatically generates mappings between relational databases and ontologies in

R2RML, a recent W3C recommendation. Our approach builds on top of previous research on

database patterns [Se12, HM13], lexical (e.g., [CH13]) and structural [MGMR02] ontology

matching techniques, and introduces original graph construction algorithms.

A number of other mapping generation systems have been developed or updated to

support R2RML. QODI [TSM13] generates mappings with a rather simple mechanism

but additionally exploits the query workload to improve mappings. The approach of [Ji15]

relies on the ontology alignment tool LogMap [JRG11] after transforming the database

schema into an ontology representation in a naive pre-processing step. Similar setups have

been built in conjunction with -ontop- [Ro15] and MIRROR [de15]. MIRROR generates

specialized mappings that consider relational-to-ontology mapping patterns, but produces a

target-agnostic ontology and thus requires ontology alignment to map to a target ontology.

Karma [Kn12] employs an interactive, semi-automatic approach to produce R2RML

mappings directly from input relational schemata but produces no fully automatic (i.e.,

initial) mappings. [Ne13] also produces R2RML but requires an extreme level of human

interaction and generates only final mappings automatically, after correspondences have

been specified.

Other related systems predate current RDB2RDF approaches as well as the R2RML language.

Most prominently, COMA++ [Au05] was originally designed to match relational schemata

but has evolved to also perform inter-model matchings, although it is not its main focus.

Other previous efforts towards RDB2RDF mapping generation (e.g., [Pa06]) date back to

IncMap: A Journey towards Ontology-based Data Integration 163

the early days of OBDI, and work has since been discontinued. A comprehensive overview

of RDB2RDF efforts, including related approaches of automatic mapping generation, can

be found in the survey of Spanos et al. [SSM12].

To evaluate and compare IncMap, we use RODI [Pi15], a recently released RDB2RDF

benchmark suite. RODI is designed to measure the quality of mapping generation end-to-end

by testing queries on the mapping result, and specifically targets mapping challenges that

arise from the inter-model gap. No other benchmark for this setting exists to the best of

our knowledge. A number of papers discuss related quality aspects from a more general

and theoretic perspective (e.g., [CL14, MC14]). However, theoretical criteria such as

consistency and completeness give no indication of whether mapping results reflect the

expected semantics and lead to useful query results.

8 Conclusion

We have presented IncMap, a system to automatically generate direct mappings between

relational databases and given target ontologies. IncMap is based on an intermediate

internal graph representation that allows the representation of both factual knowledge and

heuristically observed patterns from the input. The graph model supports a combination of

lexical and structural matching for initial alignment.

To evaluate IncMap, we experimentally compared it to other systems using RODI [Pi15], a

recent benchmark for automatically generated RDB2RDF mappings. Results demonstrate

that IncMap does not only improve massively over its predecessor IncMap, but also

outperforms all other tested systems. We have also conducted a user study that demonstrates

IncMap to be useful in practice.

Future work will include support for n-way joins in mapping object properties (for n > 3)

and improved pattern heuristics.

References

[Au05] Aumueller, David; Do, Hong-Hai; Massmann, Sabine; Rahm, Erhard: Schema and
Ontology Matching with COMA++. In: SIGMOD. 2005.

[Bh15] Bhardwaj, Anant P.; Bhattacherjee, Souvik et al.: DataHub: Collaborative Data Science
& Dataset Version Management at Scale. CIDR, 2015.

[CH13] Cheatham, Michelle; Hitzler, Pascal: String Similarity Metrics for Ontology Alignment.
In: ISWC. 2013.

[CL14] Console, Marco; Lenzerini, Maurizio: Data Quality in Ontology-Based Data Access:
The Case of Consistency. In: AAAI. 2014.

[de15] de Medeiros, LF. et al.: MIRROR: Automatic R2RML Mapping Generation from
Relational Databases. In: ICWE. 2015.

[DS13] Dong, Xin Luna; Srivastava, Divesh: Big Data Integration. PVLDB, 6(11):1188–1189,
2013.

164 Christoph Pinkel et al.

[GMUW08] Garcia-Molina, Hector; Ullman, Jeffrey D.; Widom, Jennifer: Database Systems – The
Complete Book. Prentice Hall, 2008.

[HM13] Hornung, Thomas; May, Wolfgang: Experiences from a TBox Reasoning Application:
Deriving a Relational Model by OWL Schema Analysis. In: OWLED Workshop. 2013.

[HQ07] Hu, Wei; Qu, Yuzhong: Discovering Simple Mappings Between Relational Database
Schemas and Ontologies. In: ISWC/ASWC. 2007.

[Ji15] Jiménez-Ruiz, E. et al.: BootOX: Practical Mapping of RDBs to OWL 2. In: ISWC.
2015.

[JRG11] Jiménez-Ruiz, Ernesto; Grau, Bernardo Cuenca: LogMap: Logic-Based and Scalable
Ontology Matching. In: International Semantic Web Conference. 2011.

[Kn12] Knoblock, C. et al.: Semi-Automatically Mapping Structured Sources into the Semantic
Web. In: ESWC. 2012.

[MC14] Mora, Jose; Corcho, Oscar: Towards a Systematic Benchmarking of Ontology-Based
Query Rewriting Systems. In: ISWC. 2014.

[MGMR02] Melnik, Sergey; Garcia-Molina, Hector; Rahm, Erhard: Similarity Flooding: A Versatile
Graph Matching Algorithm and its Application to Schema Matching. In: ICDE. 2002.

[Ne13] Neto, L.E.T. et al.: R2RML by Assertion: A Semi-automatic Tool for Generating
Customised R2RML Mappings. In: ESWC (Satellite Events). 2013.

[Pa06] Papapanagiotou, P. et al.: Ronto: Relational to Ontology Schema Matching. AIS
SIGSEMIS BULLETIN, 2006.

[Pi13] Pinkel, Christoph; Binnig, Carsten; Kharlamov, Evgeny; Haase, Peter: IncMap: Pay-as-
you-go Matching of Relational Schemata to OWL Ontologies. In: OM. 2013.

[Pi15] Pinkel, Christoph; Binnig, Carsten; Jimenez-Ruiz, Ernesto et al.: RODI: A Benchmark
for Automatic Mapping Generation in Relational-to-Ontology Data Integration. In:
ESWC. 2015.

[Ro15] Rodriguez-Muro, M. et al.: Efficient SPARQL-to-SQL with R2RML mappings. Journal
of Web Semantics, 2015.

[Se12] Sequeda, J. et al.: Relational Database to RDF Mapping Patterns. In: WOP. 2012.

[SSM12] Spanos, Dimitrios-Emmanuel; Stavrou, Periklis; Mitrou, Nikolas: Bringing Relational
Databases into the Semantic Web: A Survey. Semantic Web, 3(2), 2012.

[TSM13] Tian, Aibo; Sequeda, Juan F; Miranker, Daniel P: QODI: Query as Context in Automatic
Data Integration. In: ISWC. 2013.

