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Abstract—Three-dimensional automatic target recognition 

(ATR) has many advantages over its 2D counterpart, but there 

are several constraints in the context of small, low-cost 

unmanned aerial vehicles (UAVs). These limitations include the 

requirement for active rather than passive monitoring, high 

equipment costs, sensor packaging size, and processing burden. 

We therefore propose a new structure from motion (SfM) 3D 

ATR architecture that exploits the UAV’s onboard sensors, i.e. 

the visual band camera, gyroscope and accelerometer, and meets 

the requirements of a small UAV system. We tested the proposed 

3D SfM ATR using simulated UAV reconnaissance scenarios and 

found that the performance was better than classic 3D light 

detection and ranging (LIDAR) ATR, combining the advantages 

of 3D LIDAR ATR and passive 2D ATR. The main advantages of 

the proposed architecture include the rapid processing, target 

pose invariance, small template size, passive scene sensing, and 

inexpensive equipment. We implemented the SfM module under 

two keypoint detection, description and matching schemes, with 

the 3D ATR module exploiting several current techniques. By 

comparing SfM 3D ATR, 3D LIDAR ATR and 2D ATR, we 

confirmed the superior performance of our new architecture. 

 
Index Terms—3D Automatic Target recognition, Passive 

Target Recognition, Structure from Motion, Unmanned Aerial 

Vehicles 

I. INTRODUCTION 

UTOMATIC target recognition (ATR) is an active research 

field for military applications because it can enhance the 

quality of reconnaissance in a hostile environment. Current 

research involves both 2D and 3D data, including solutions 

based on 2D infrared (IR) [1,2], 2D synthetic aperture radar 

(SAR) [3,4] or inverse SAR (ISAR) [5], 2D hyper-spectral 

imagery [6] and 3D light detection and ranging (LIDAR) [7–

11], the latter also including laser-induced fluorescence 

spectroscopy [12]. The military applications of ATR in several 

data domains have been reviewed [13]. 

LIDAR-based 3D target recognition is superior to its 2D 

counterpart because 3D encoding can exploit the geometric 

properties and underlying structure of an object, offering more 

information than 2D encoding. Indeed, features extracted from 

the 3D domain are affected to a lesser extent by illumination 

variation and target pose changes [9,14] and they can operate 

well in the context of a single 3D model template [10,11]. 

Despite these advantages, ATR based on 3D LIDAR also has 
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several drawbacks when used with small, low-cost, time-

critical unmanned aerial vehicles (UAVs) such as the RQ-11 

Raven, including the disproportionate hardware cost of a 

LIDAR device, its large size and power requirements, the low 

data acquisition rate, and most importantly, the computational 

resources required to manipulate 3D data. For military 

applications, LIDAR is an active device which therefore 

reveals the UAV’s location. In contrast, the advantages of 2D 

ATR include the small and inexpensive equipment, short 

processing times, and limited power requirements.  

Here we propose an architecture that combines the 

advantages of 3D and 2D ATR by exploiting a structure from 

motion (SfM) 3D reconstruction concept that relies on a single 

visual band camera placed on a flying UAV platform. This is 

important because we demonstrate that SfM 3D ATR 

preserves the capabilities of 3D ATR, such as pose and 

illumination invariance, revealing the underlying structure of 

the target and relying on a single template. But SfM 3D ATR 

also retains the benefits of 2D ATR, such as the low 

processing burden, inexpensive hardware (camera vs LIDAR), 

faster data acquisition rate, and passive monitoring, the latter 

rendering it undetectable (Table I). 

In the context of SfM based 3D ATR, current literature 

suggests a semantic SfM has been proposed, which 

simultaneously considers the geometric and semantic cues 

provided by 2D images [15]. However, the processing burden 

is 20 min per scene, making it unsuitable for UAV 

applications that require near-real-time processing. Brostow et 

al. [16] have demonstrated the capabilities of object 

recognition using an SfM point cloud, albeit with simple 

objects involving non-real-time 3D reconstruction. Liebe et al. 

[17] propose SfM object recognition based on 2D rather than 

3D data, thus preserving the constraints of 2D ATR [17]. The 

usefulness of SfM has been demonstrated in military 

applications but only preliminary aspects of ATR were 

addressed [18]. Indeed, the applications of SfM have largely 

focused on slow-moving ground platforms rather than ATR 

[19], although one exceptional case (not extended to ATR) 

involved drone navigation [20]. Ultimately, SfM-based 3D 

ATR has not yet received sufficient attention, a challenge we 

address by proposing an innovative architecture.  

The rest of the paper is organized as follows. Section II of 

this paper introduces the SfM 3D ATR architecture, and then 

Section III evaluates our method by testing it against highly 

credible simulated scenarios, challenging a number of current 

3D ATR descriptors. The contents of the paper are  
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TABLE I 

ANALYSIS OF DATA DOMAIN DRIVEN ATR SOLUTIONS 

 3D LIDAR 3D SfM 2D 

Penetration of sparse structures + - - 

Template size + (can use one 3D model) + (can use one 3D model) - (multiple views) 

Target pose invariance + + - 

Target illumination invariance + + - 

ATR based on underlying structure + + - 

ATR based on texture + (during keypoint description) + (during keypoint description) + 

Operating day and night + - - 

Processing time high low low 

Equipment cost - + + 

Equipment size medium / large very small very small 

Power consumption medium very small very small 

Data acquiring rate 
- (scanning LIDAR) 

+ (flash LIDAR) 
+ + 

Maximum operating range ≈100m >100m >100m 

Reveal sensor position Yes (active) No (passive) No (passive) 

 

summarized in Section IV. 

II. SFM 3D ATR ARCHITECTURE 

The proposed ATR architecture extends a previously  

suggested pipeline [10] to generate and utilize a 3D SfM-

based point cloud. The architecture comprises offline and 

online phases. 

A. Offline phase 

During the offline phase, we use the hidden point removal 

(HPR) algorithm [21] to simulate an aerial view Pm of the 

target’s computer-aided design (CAD) model as a template. 

Pm is then uniformly subsampled at 0.3-m resolution and 

described using one of the 3D descriptors presented in Section 

III-B. 

B. Online phase 

This phase comprises the SfM module, which aims to create 

a 3D reconstruction of the scene that can be input into the 

online part of the 3D ATR architecture.  

1) SfM module 

We propose a SfM module that exploits the gyroscope, 

accelerometer and visual band (RGB) camera sensor of a 

flying UAV platform.  

Given two 2D scene images 1 2,I I  of size m n , acquired by 

the same camera positioned on a flying UAV at instances t and 

t+1, we perform keypoint detection and tracking on 1I  and 2I

. Specifically, we detect and describe keypoints 1I

ap , i.e. image 

pixels that are prominent among their surroundings in image 

1I , by applying the good features to track (GFTT) algorithm 

[22] with a minimum corner quality of 10-3 and a 3 x 3 

Gaussian filter. Then we use the Kanade-Lucas-Tomashi 

(KLT) tracker [23] to track these keypoints in 2I , but due to 

the camera’s motion, only the subset 1I

bp  b a  is tracked. For 

KLT, we use a forward-backward error [24] of one pixel, a 

11x11 tracking window over 13 scales, and 10 iterations. 

Finally 1I

bp , 2I

bp  and the camera’s transformation matrix Rcam 

at instance t+1 in relation to t are input into a triangulation 

process to create the 3D reconstruction of the matched 

keypoints 1I

bp  and 2I

bp . 

In contrast to current SfM methods that calculate Rcam based 

on the 
1 2,I I  image correspondences, we calculate the 

camera’s 6D real-world pose shift *

camR  between instances t 

and t+1 by extracting the gyroscope and the accelerometer 

measurements t

camR , 1t

camR   at both instances. Specifically, we 

calculate:  

 * 1 1( )t t

cam cam camR R R    (1) 

where 

 [ ( , , ) | ( , , )]t
X Y ZcamR R u v w T  (2)  

( , , )

cos cos cos sin sin sin cos os sin cos sin sin

sin cos sin sin sin cos cos sin sin cos cos sin

sin cos sin cos cos

R u v w

u v u v w u w c u v w u w

u v u v w u w u v w u w

v v w v w



         
 

         
    

  (3) 

 

1 1 1 1 1 1
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T
t t t t t t

X Y Z x y z

t t t t t t

T a a a

      
    
 
       (4) 

where R is the rotational and T the translational part of the 

transformation matrix t

camR ; u, v and w are the pitch, roll and 

yaw, respectively; and a  is the acceleration per axis on an 

XYZ reference frame set at the UAV’s center of gravity. Fig. 1 

shows an example of SfM 3D reconstruction. For a detailed 

analysis of the standard SfM method the reader is referred to 

[25].  

We also perform SfM 3D reconstruction by exploiting the 

speeded up robust features (SURF) [26] keypoint detection 

and description technique. We apply SURF on images 1I  and 

2I  to extract keypoints 1I

ap  and 2I

ap . SURF is applied over six 

scale levels with a blob threshold of 10-3. The features 1I

af  and 

2I

af of 1I

ap  and 2I

ap  respectively, are then matched based on 

the nearest neighbor distance ratio (NNDR) criterion [27] with 

a threshold empirically set at 0.6. The correspondences 1I

bp  

and 2I

bp  undergo the same process as described for the GFTT/ 

KLT case.  
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Legend:   + keypoints in 1st image  + keypoints in 2nd image   - matched keypoints 

(a) (b) (c) (d) 
Fig. 1. SfM based concept for 3D ATR applications on UAVs (a) image pair acquisition at UAV’s position t and t+1 (b) keypoint detection and description (c) 

keypoint correspondences (d) 3D reconstruction (number of keypoints detected and matched in (b),(c) is reduced for better visualization) 
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Fig. 2. SfM 3D ATR architecture 

 

Despite the availability of several options to improve the 

accuracy of the point cloud reconstructed in 3D by SfM 

methods, these were disregarded because computational 

efficiency is necessary for the UAV applications considered 

here. Although the UAV dynamics are already known from 

the gyroscope and accelerometer readings and can be 

incorporated into the SfM estimation via a KALMAN filtering 

process to verify the matched keypoint correspondences, this 

imposes an additional processing burden and is therefore 

omitted. Similarly, the resulting SfM point cloud is sparse, but 

the additional processing cost to make it dense substantially 

increases the processing time, and given that the performance 

of the ATR is already appealing (Section III), we did not 

attempt to create a dense point cloud. Super-resolution [28] 

can improve 3D reconstruction but the resulting computational 

burden was too great. Finally, we did not use multiple images 

to construct the point cloud, allowing us to investigate the 

limits of SfM for 3D ATR applications. 

2) 3D ATR module 

During the online phase, the scene point cloud P is also 

uniformly subsampled at 0.3-m resolution. P is then refined to 

Pf by filtering its smooth surfaces based on the angular 

variation of the normal that is set on each vertex, compared to 

the normal of its surrounding vertices. Normal estimation 

considers fitting a plane on the six closest neighbors of the 

vertex for which we calculate the normal. Pf is then described 

using the same 3D descriptor as used for Pm. Feature matching 

relies on a k nearest neighbor distance ratio (kNNDR) scheme 

where k=10, whereas the main keypoint matching process 

involves the creation of groups of Pf – Pm keypoint 

correspondences that are geometrically consistent. Each group 

1 2{ , ,..., }gH H H , with g indicating the number of groups, is 

input into a random sample and consensus (RANSAC) 

algorithm using 1000 iterations to define a transformation 

hypothesis between the CAD model Pm and the scene Pf. 

Then, each hypothesis is verified for correctness by applying it 

to Pm followed by alignment with Pf using an iterative closest 

point (ICP) scheme. Finally, the geometrical accuracy of this 

hypothesis is validated if the aligned model and the scene have 

overlapping vertices that exceed a threshold. The proposed 3D 

SfM ATR architecture is presented in Fig. 2. 

III. EXPERIMENTS 

A. Dataset 

Real military datasets are restricted and we therefore used 

OpenFlight [29] to simulate three highly credible air-to-

ground UAV reconnaissance scenarios (Table II). All 

scenarios considered the UAV flying a circular orbit at several 

UAV–target ranges, altitudes and headings, and under various 

t+1 

t 
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TABLE III 

3D DESCRIPTORS USED 

Descriptor Descriptor Length Implementation platform Operating principle 

SHOT 352 
C++ (Matlab Exchange 

(MEX) wrapper) 

Angular variations 

USC 1980 C++ (MEX wrapper) Accumulating points 

HoD / HoD-S 240 / 40 MATLAB / MATLAB L2-norm distances, HoD coarse and fine encryption, HoD-S coarse encryption 

FPFH 33 C++ (MEX wrapper) Angular variations 

3DSC 1980 C++ (MEX wrapper) Accumulating points 

RoPS 135 MATLAB Low order statistics 

 

pitch, roll and yaw angles. Each scenario involved a T-72 

main battle tank (MBT) in an urban environment that included 

clutter (non-target objects) such as buildings and trees. 

Depending on the UAV’s flight parameters, the T-72 target 

might be partially or even completely occluded by clutter. 

Notably, our scenarios simulated not only the size of the 

target, which depends on the UAV–target range, but for the 

LIDAR case they also considered the laser spot size and how 

this affects the LIDAR point cloud. In contrast to previous 

studies [7,30,31], our military scenarios were affected by more 

parameters and are therefore more challenging and realistic. 

For each scene, we generated a 3D LIDAR point cloud and the 

corresponding 2D visual image. Camera intrinsic and extrinsic 

parameters are the ones used while creating the scenarios. 

B. Experimental setup 

We evaluated the effectiveness of the new SfM-based ATR 

using a multi-level scheme, i.e. challenging the effectiveness 

of several current 3D ATR descriptors on SfM point clouds 

compared to LIDAR point clouds as well as classic 2D ATR 

methods based on local features.  

Specifically, for the SfM-based 3D ATR, we exploited the 

ATR pipeline presented in Fig. 2, but for the LIDAR 3D ATR 

we replaced the SfM module with the LIDAR-based point 

cloud. In both cases, we evaluated the following descriptors: 

signature of histograms of orientations (SHOT) [32], 

rotational projections statistics (RoPS) [33], fast point feature 

histograms (FPFH) [34], 3D shape context (3DSC) [35], 

unique shape context (USC) [36], histogram of distances 

(HoD) [37] and histogram of distances – short (HoD-S) [10]. 

The description radius of each 3D descriptor was r  , where 

r  is the average point cloud resolution of the CAD model 

[32,33,38] and   a multiplier as suggested by the authors of 

each descriptor (e.g. for HoD and HoD-S, r  is the scene 

resolution [37]). Table III presents each 3D descriptor and its 

parameters, which were fixed either to those originally 

proposed by their authors or to their point cloud library 

implementation [37,39]. Given that each 3D descriptor was 

applied on a spherical volume V of radius   centered at a 

keypoint p, the operating principle of each 3D descriptor can 

be summarized as follows: 

a. SHOT [32] establishes a local reference frame (LRF) 

on p and divides V into a number of sub-volumes along the 

azimuth, the elevation and the radius. For each sub-volume, 

SHOT encodes the normal variation among p (including its 

neighbouring vertices) with the normal of each sub-volume.  

b. RoPS [33] establishes a LRF on p, then V is rotated 

around each axis of the LRF’s coordinate frame and is finally 

projected on each of the coordinate planes. RoPS encryption 

involves a low-order moment and entropy description of each 

projection, and these are concatenated to formulate a 

histogram. 

c. FPFH [34] establishes a LRF on p, and for each vertex 

belonging to V, FPFH encodes the angular relationship 

between p and its neighbours as provided by the LRF. Finally, 

that angular relationship is transformed into a histogram. 

d. For 3DSC [35], a local reference axis (LRA) is 

established on p, aligned to the normal produced by the 

vertices in V, and V is divided into a number of sub-volumes 

along the azimuth, elevation, and radial dimension. The 3DSC 

descriptor is established by accumulating a weighted sum of 

the points within each sub-volume. Weights are proportional 

to the sub-volume to centre-of-V distance. 3DSC is LRA-

based and compensates for 360° azimuthal rotation by 

describing V in multiple azimuthal orientations. USC [36] is 

identical to 3DSC but the LRA is replaced with an LRF. 

e. HoD [37] calculates the point-pair L2-norm distance 

distributions of the vertices within V. L2-distances are 

encoded in a coarse and a fine manner. HoD-S [10] involves 

only the coarse component of HoD. 

In addition to the 3D SfM vs 3D LIDAR comparison, we 

also compared 3D SfM against classic 2D local feature ATR. 

For that purpose, we used the pipeline presented in Fig. 3 with 

the 2D keypoint descriptors and detectors as shown in Table 

IV. This table also presents the parameters used for each 

keypoint detector and descriptor combination to maximize its 

ATR performance. 

The parameters of each remaining combination were fixed 

to those originally proposed by the author. Feature matching 

was based on the NNDR criterion [27] with a threshold of 0.8 

and the M-estimator sample consensus (MSAC) algorithm 

[40] was used to refine the correspondences. 

 

TABLE II 

SCENARIO PARAMETERS 

Scenario No 1 2 3 

No of runs 4 4 1 

Obliquity (°) 0°–45° per 15° 0°–45° per 15° 30° 

UAV-target (m) 50 100 200 

Resolution (cm) 11 18 30 

Scenes with 

target/out of total 
334/345 327/364 78/78 

 

TABLE II 

SCENARIO PARAMETERS 

Scenario No 1 2 3 

No of runs 4 4 1 

Obliquity (°) 0°–45° per 15° 0°–45° per 15° 30° 

UAV-target (m) 50 100 200 

Resolution (cm) 11 18 30 

Scenes with 

target/out of total 
334/345 327/364 78/78 
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TABLE IV 

2D KEYPOINT DETECTION AND DESCRIPTION COMBINATION USED 

ID Keypoint detector Keypoint descriptor Descriptor length Implementation platform Tuned parameters 

#1 
GFTT 

Fast Retina Keypoint 

(FREAK) 

64 
C++ (MEX wrapper) 

Min corner quality 10-3 

Gaussian filter size 3x3 

#2 SURF SURF 64 C++ (MEX wrapper) Scale levels 6 

#3 Features from 

Accelerated Segment 

Test (FAST) 

Binary Robust Invariant 

Scalable Keypoints 

(BRISK) 

64 C++ (MEX wrapper) Min contrast 10-3 

#4 FAST FREAK 64 C++ (MEX wrapper) Min corner quality 10-3 and Min contrast 10-3 

 

C. Performance metric 

ATR performance was evaluated using the F1 score [10]: 

 
2#

1
2# # #

TP
F score

TP FP FN
 

 
  (5) 

where # denotes the number of the metric that follows, i.e. true 

positive (TP), false positive (FP) and false negative (FN). We 

selected the F1-score metric because it encapsulates the 

classic precision and recall metrics without involving the true 

negative (TN) metric. This is important because in a number of 

runs per scenario the target is always present, i.e. TN=0, and 

thus 1# (# # )recall TP TP TN     would be biased. 

As previously reported [10], these metrics not only compare 

the ATR prediction state with the actual state but also consider 

the Euclidean distance-based translational error Terror between 

the ground truth position of the target in the scene and its 

estimated final position. Hence, for a TP match the algorithm 

provides a transformation hypothesis for a scene where a 

target is present and Terror<2m. For an FP match, the algorithm 

provides a hypothesis for a scene that does not have a target or 

has a target with Terror>2m. This dual constraint, i.e. target 

presence in the scene and target localization accuracy (Terror), 

ensures that the FP match metric is not biased for scenarios in 

which the target is always present. Finally, the FN match case 

occurs if the algorithm does not provide a hypothesis for a 

scene that has a target. For fairness, Terror was also extended to 

facilitate the 2D ATR scheme. 

D. Assessment 

We evaluated the ATR performance in terms of UAV–

target range, obliquity variation, processing time, template 

storage, descriptor compactness, robustness to shot noise, and 

to Gaussian noise. The trials involved a UAV reconnaissance 

application for which we reduced the processing time of the 

3D ATR by exploiting a single CAD model, whereas for the 

2D ATR we minimised the number of templates as suggested 

[1]. Hence, we used 12 images of the target, evenly spaced 

across the 0–360° azimuthal viewing angle, and these images 

were cropped from the first trial of the first scenario. It is 

worth noting that since the templates are cropped from the 

evaluation scenes, the performance of 2D ATR is positively 

biased. To balance this we only exploit image templates from 

a single scenario and run, while the experiments involve nine 

runs in total (Table II). Trials are implemented on an i7 at 

2.6GHz with 16GB RAM. 

1) UAV-target range evaluation 

In this trial, we compared the performance of the 3D 

LIDAR, 3D SfM and 2D ATR in relation to the UAV–target 

distance. Fig. 4a shows that the LIDAR and SfM 3D ATR 

performed equally well at 50 m UAV–target range, and 

outperformed 2D ATR because the SfM point cloud 

preferentially reconstructs the central region of the image 

close to the target, reducing misclassifications. We found that 

GFTT has a small performance advantage over SURF SfM 

that was consistent among all 3D descriptors. Furthermore, 

GFTT outperformed the 2D competitors, but was still inferior 

to both the LIDAR and SfM 3D ATR techniques. 

When the UAV–target distance increased to 100 m (Fig. 

4b), the performance of all three solutions declined. When the 

distance increased to 200 m (Fig. 4c), the 3D SfM achieved 

the best performance and the 2D ATR the worst, as explained 

in more detail below.  

SfM is created by matching 2D keypoints from two images 

at the same range at 100 or 200 m. Hence, 2D features are 

detected within the same scale and can be matched in 

sequential images for 3D SfM reconstruction. Because the 

UAV flies a circular orbit, 3D reconstruction is more accurate 

closer to the center of the orbit. In contrast, 2D ATR encodes 

keypoints from a template presenting the MBT at a range of 

50 m and aims to match these keypoints with those detected 

on a MBT at a different scale. Especially for the 200 m range, 

the MBT in the scene is four times further away than its 

template. That scale difference exceeds the scale invariance of 

all 2D descriptors. In addition, templates are derived from 30° 

obliquity whereas the angles are evaluated in the range 0–45°, 

exceeding the out-of-plane invariance of the 2D descriptors. 

Even though these are acknowledged as problems in 2D ATR, 

we intentionally adopted a small template [1] to demonstrate 

the advantage of SfM 3D ATR under a single-template 

scheme. Increasing the 2D templates to accommodate several 

target poses and scales affects the computational and storage 

requirements, which are not always affordable, especially for 

time-critical applications. An analysis of the processing time 

and storage requirements is presented in Section III-D-3.  

Unsurprisingly the performance of 3D LIDAR ATR 

declined at a range of 200 m because the laser spot size 

increases as the beam propagates through the atmosphere, 

Offline

Online

Template image 2D descriptor

Keypoint description

Scene image 2D descriptor

Keypoint description

FLANN

Feature matching

MSAC

Refine matches

 
Fig. 3. 2D ATR architecture used for comparative purposes 
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(a) (a) 

  
(b) (b) 

  
(c) (c) 

Fig. 4. ATR for 3D LIDAR vs 3D SfM vs 2D ATR in relation to UAV–target 

range. (a) Scenario 1 – 50 m. (b) Scenario 2 – 100 m. (c) Scenario 3 – 200 m 

Fig. 5. ATR for 3D LIDAR vs 3D SfM vs 2D ATR in relation to target 

obliquity over all scenarios. (a) Low – 15°. (b) Medium – 30°. (c) High – 45° 

 

forcing the MBT in the scene to have simultaneously a smaller 

size and a lower resolution. 

2) UAV-target obliquity evaluation 

This trial evaluated robustness in terms of obliquity 

variation but still considered the three UAV–target ranges. 

Even though the trials considered obliquity values of 0–45° in 

increments of 15°, to improve clarity we focus on the ATR 

performance for low, medium and large obliquity angles of  

0°, 30° and 45°, respectively (Fig. 5).  

For the low-angle test, 3D SfM achieved the highest ATR 

performance by a large margin, with recognition rates of 

81.5% for the GFTT with USC, and 76.7% for the SURF with 

HoD-S. The maximum performance of 3D LIDAR was 56% 

with FPFH, whereas 2D ATR achieved only 60%recognition. 

For the medium-angle test, 3D SfM and 3D LIDAR performed 

equally well at all three UAV–target ranges, achieving scores 

of 98% and 99%, respectively. Although 2D ATR fared better 

than in the low-angle test, it was still inferior to the 3D 

solutions, with a 76% recognition rate. The 3D LIDAR ATR 

gained near-perfect scores in the high-angle test, and SURF 

SfM ATR was only mildly less successful, achieving a 96% 

recognition rate. Furthermore, GFTT SfM ATR and 2D ATR 

achieved scores of 90.8% and 72.3%, respectively. The ATR 

performance attained is explained below. 

For the low-angle test, 3D LIDAR suffered from a high rate 

of FP matches, leading to a low F1-score, because LIDAR 

encapsulates a greater part of the scene. In contrast, in the 

context of 3D SfM, the further away a keypoint is from the 

camera’s optical axis, the larger its frame-to-frame motion. If 

this motion exceeds the one-pixel threshold, it is not 

reconstructed. Therefore, the 3D SfM favors 3D 

reconstruction near the camera optical axis and thus achieves a 

better performance than the 3D LIDAR point cloud. Even if 

the two images used for SfM lack a MBT close to the 

camera’s optical axis (such that the target is not reconstructed 

in 3D), the MBT will occupy the center of subsequent images 

as the UAV moves and thus the target will be reconstructed at 

some point. The 2D ATR did not perform well because both 

the distance (scale) and obliquity exceeded the invariance of 

the 2D descriptors. For the medium and high angle tests, more 

of the MBT’s top-view was revealed, which is more 

distinctive than the side-view, favoring ATR. The overall 

performance of each method is shown in Fig. 6, highlighting 

the better performance of SfM 3D ATR compared to 3D 

LIDAR ATR. Fig. 7 shows 3D ATR examples for both 

methods. 

3) Computational and storage requirement analysis 

Recognition performance and computational efficiency are 

equally important for an ATR system. We therefore compared 

the 3D SfM, 3D LIDAR and 2D ATR methods in terms of 

their processing burden (Table V). Although SfM requires the 

scene to be reconstructed in 3D before activating the rest  
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Fig. 7. Examples of 3D ATR with SfM, exploiting only two images from the visual domain 

 

of the pipeline (Fig. 2), 3D SfM is faster than 3D LIDAR 

because the SfM-based point cloud is sparser, speeding up the 

entire recognition process. Indeed, GFTT SfM produces a 

point cloud in the order of 10,000 vertices, whereas the 

equivalent values for SURF SfM and LIDAR are 500 and 

260,000, respectively. A 3D SfM exploiting GFTT keypoints 

combined with the HoD-S descriptor therefore requires only 

0.25 s for completion, whereas the less efficient 3DSC needs 

0.69 s and 3D SfM with SURF features needs up to 0.84 s. In 

contrast, the fastest 3D LIDAR ATR was based on HoD-S 

(1.6 s) and the least efficient was RoPS (14.3 s). It is evident 

that the processing efficiency of the proposed 3D SfM 

architecture is at least one order of magnitude faster than 3D 

LIDAR ATR.  

A detailed processing breakdown is shown in Fig. 8, 

indicating that the 3D description of the SfM point cloud 

vertices is almost eight times faster than the LIDAR-based 

point cloud due to the sparsity of the SfM point cloud. This 

advantage is also evident from the considerably faster 

keypoint matching, correspondence hypothesis evaluation and 

verification achieved by both SfM methods. 

As expected, the shortest processing time was observed for 

2D ATR. Although this is an appealing property, the template 

is reduced to a minimum, so expansion to provide more 

instances of the target at various viewing angles and ranges 

would increase the overall processing time. Furthermore, in 

terms of the storage capacity needed for template features, 

even in this minimal template case, the 2D solutions already 

have greater requirements than their 3D counterparts because 

the 3D template is subsampled and only a few vertices from 

the entire CAD model are encoded. 

4) Matching accuracy 

We also validated the 3D SfM concept by highlighting the 

3D translational error (Terror) of each descriptor. Fig. 9 shows 

the Terror of the three 3D approaches (GFTT SfM, SURF SfM 

and LIDAR) for the UAV–target range of 200 m at 30° 

obliquity. For greater clarity, we evaluated the matching 

accuracy for the third scenario alone, which involves the 

largest UAV–target range among the three scenarios, and 

therefore is the most challenging. 

As anticipated, 3D LIDAR generated the smallest errors 

because the target within the point cloud was more complete 

than its corresponding sparse SfM reconstructions. Even so, 

both SfM solutions still produced low Terror values, confirming 

that the suggested SfM ATR architecture is an appealing 

creates that focuses on the target. For the GFTT SfM method, 

the largest Terror was generated by HoD-S (0.51 m),      
Fig. 6. Overall ATR performance of 3D LIDAR vs 3D SfM vs 2D 
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TABLE V 

REQUIREMENT ANALYSIS 

  3D 2D 

  SHOT USC HoD-S HoD FPFH 3DSC RoPS #1 #2 #3 #4 

Template storage (KB) SfM / LIDAR 2.9 15.9 0.32 1.92 0.26 15.9 1.1 2213 1389 1224 3106 

Processing time / scene (s) 

SfM GFTT 0.42 0.57 0.25 0.26 0.38 0.69 0.30 

0.58 0.05 0.09 0.74 SfM SURF 0.73 0.78 0.54 0.55 0.66 0.84 0.62 

LIDAR 4 11.5 1.6 2.2 2.5 11.1 14.3 

 

  
Fig. 8. Processing time breakdown (CG: correspondence grouping, HEV: 

hypothesis evaluation and verification) 

 
Fig. 9. Translational error evaluation 

 

 

and for SURF SfM the largest value was generated by FPFH 

(0.75 m), but all these values are still very low. Terror 

fluctuations among the descriptors are related to the sparsity of 

the point cloud, whether the 3D descriptor employs an 

LRF/LRA or not, and the concept used to estimate the LRF or 

LRA. 

5) Compactness 

This metric indicates the description power per element of a 

descriptor [10]: 

 
1

#  

F score
compactness

descriptor cardinality


  (6) 

Fig. 10 shows that for both LIDAR and SfM, HoD-S and 

FPFH were the most compact, with 3D GFTT-based SfM 

displaying a minor advantage. The greater compactness of 

HoD-S and FPFH reflect the small feature length/cardinality 

of these descriptors, which in parallel achieve a competitive 

ATR performance. The least compact were USC and 3DSC, 

because despite achieving better ATR performance compared 

to FPFH, their large feature length severely compromised their 

compactness. 

Regarding the 2D descriptors, even though their feature length 

is small, they all have a small compactness value due to their 

relatively poor ATR performance. 

6) Robustness to Shot noise 

We compared the robustness of the proposed and competing 

ATR methods against shot noise by modeling shot noise with 

a Poisson distribution. Shot noise was applied on the core data 

required by each method. Hence, for the SfM 3D ATR and the 

2D ATR tests, we applied shot noise directly to the 2D RGB 

imagery, whereas for the 3D LIDAR ATR test we applied shot 

noise to the vertices of the point cloud.  

Specifically, we independently manipulated each pixel of 

the 2D scene image 1( , )I i j , 1 i m  and 1 j n   according 

to:  

      
1 , 1

1

,
, e

!

I i j I i j
I i j

k


  (7) 

where k   randomly chosen. In the same manner, we 

applied shot noise to 
2I . For the LIDAR 3D ATR test, we 

independently manipulated the z-coordinate of each vertex in 

the LIDAR point cloud P  according to the corresponding 

depth value of the 2D depth image D  that the LIDAR creates: 

      , ,
, , e

!

D ii jj D ii jj
x y z x y

k

 
  
 

P  (8) 

where ii and jj are the pixel coordinates of D. 

Fig. 11 clearly shows that the SfM 3D ATR architecture 

outperforms both competitors regardless of the descriptor. 

This is important because it demonstrates the advantages of 

using SfM rather than LIDAR 3D data. The robustness of SfM 

3D ATR reflects the robustness of the 2D local feature 

methods used in our SfM module, which successfully matched 

the images (corrupted by shot noise) acquired from the UAV’s 

camera in order to create an accurate 3D scene representation. 

As expected, the performance of the 2D ATR pipeline was 

poor for the reasons presented in Sections III-D-1 and III-D-2. 

7) Robustness to Gaussian noise 

We also evaluated the robustness of the proposed ATR 

technique under σ={10,30}cm Gaussian noise levels [10]. 

Similarly to the shot noise trial, we applied noise directly to 

the 2D RGB imagery for both 3D SfM and 2D ATR, whereas 

for the LIDAR 3D ATR the Gaussian noise was applied to the 

vertices of the point cloud. 

Fig. 12a shows that for the σ = 10 cm Gaussian noise test, 

3D SfM ATR achieved a more stable performance, which was 

less dependent on the descriptor. In contrast, even though 3D 

LIDAR ATR combined with the HoD and HoD-S descriptors 

achieved the highest ATR performance, our trials demonstrate 

that the selected descriptor had a substantial impact on the 

ATR performance. 

For the σ = 30 cm Gaussian noise test, 3D SfM ATR 

achieved a higher overall ATR capability (Fig. 12b). This was 

more evident for the GFTT and KLT combination, where the  
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Fig. 10. Compactness Fig. 11. Robustness to shot noise 

  
Fig. 12. Robustness to Gaussian noise with zero mean and (a) σ = 10 cm (b) σ = 30 cm 

 

majority of the descriptors achieved higher recognition rates 

than the best-performing 3D LIDAR descriptor. 

IV. CONCLUSION 

We have developed a passive 3D ATR architecture 

appropriate for small, low-cost UAV platforms. Our 

architecture exploits the UAV’s onboard sensors, i.e. visual 

band camera, gyroscope and accelerometer, in order to create 

passive 3D reconstructions of the UAV’s surroundings. The 

3D scene thus created is input into a 3D ATR pipeline. The 

method is appealing because it combines the advantages of 3D 

and 2D object recognition. Specifically, it combines the 

advantages of 3D object recognition, such as pose and 

illumination invariance, exploiting the underlying structure of 

the target and reducing the template size to a single 3D CAD 

model. In addition, it also preserves the advantages of 2D 

object recognition, resulting in a small processing burden, low 

hardware costs (camera vs LIDAR), faster data acquisition, 

longer operating range, and undetectable passive operation.  

We evaluated the new SfM ATR scheme by exploiting two 

2D keypoint detection and description techniques, i.e. the 

GFTT with a KLT tracker and the SURF with an NNDR 

criterion, and we tested these against classic 3D LIDAR ATR 

and 2D visual ATR. We measured target recognition 

performance over several UAV–target ranges and obliquities, 

as well as evaluating processing efficiency, translational 

matching accuracy, robustness to shot noise and to Gaussian 

noise, confirming its appealing features. One limitation of our 

technique compared to LIDAR 3D is the constraint of 

sufficient lighting conditions, which reflect the camera’s 

limitations. However, in the future we intend to extend the 3D 

SfM ATR concept to operate on low-light visual band cameras 

in order to improve the usability of the suggested architecture 

to include extreme lighting scenarios. 
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