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Abstract

The central goal to engineer feline inmiunodeficiency viral (FIV) vectors into a more modular 

platform for long-term ocular gene therapy was accomplished collaboratively by separating 

envelope, packaging and transfer function, the latter of which I optimized. FIV mediated gene 

transfer to the aqueous humor outflow tract and to the retina was established and long-term 

vector function and biocompatibility were confirmed. Transduction of the outflow tract was 

highly efficient and resulted in genetic modification of nearly the entire trabecular meshwork.

For this purpose, I developed methods for administration and sensitive monitoring of FIV vectors 

in the anterior chamber and a novel subretinal injection teclmique.

Bicistronic FIV vectors generated high levels of two different transgenes eGFP and |3- 

galactosidase, which allowed live m vivo tracking and sensitive yet specific cell labeling in 

tissue specimen, respectively. An integrase mutant control vector that differed in only one amino 

acid resulted in no significant transduction while preserving all other biochemical properties.

I developed a novel protocol for scaled-up production FIV vectors using cell factories and large- 

volume concentration that proved useful in the animal studies of this thesis. Especially the results 

achieved in the larger animal model, the domestic cat, validated the protocol for large-scale 

production. Transient transfection of 10 times lessDNA into 293T cells within high surface area 

cell factories and high volume, fixed-angle ultracentrifugation resulted in liigh titer vectors.
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Hypothesis, Specific Aims

1. Hypothesis

Feline immunodeficiency viral vectors can be engineered into a modular platform that 

allows long-term ocular gene transfer to the ocular outflow tract and the retinal 

pigment epithelium and monitoring of function with standard ophthalmology 

techniques.

1.1.Specific Aims
1.1.1. Refinement of an FIV vector system for ocular gene 

therapy.
An FIV vector system will be engineered that has versatile, exchangeable components 

of envelope, packaging, and transfer, fulfills safety requirements, and allows 

simultaneous delivery o f several transgenes.

1.1.2. Development of scaled-up lentiviral vector production and 
concentration.

Higher titers and larger volumes of vectors are needed for in vivo or ex vivo organ 

culture than for in vitro applications. A method will be developed that allows scaled- 

up and efficient generation of several liters of vector and subsequent large volume 

concentration.

1.1.3. Establishment of in vitro and in vivo FIV-mediated gene 
transfer to the aqueous humor outflow tract with long-term 
assessment of vector function.

Gene delivery to ocular tissue will be established stepwise in vitro, in ex vivo organ

cultures of perfused anterior human eye segments and in the domestic cat. Efficiency

of gene delivery and toxicity will be assessed. Vector long-term function will then be

studied in the outflow tract and retina that constitute the target tissue for gene therapy

of glaucoma and retinal neovascularization, respectively. New techniques will be

developed for the microsurgical delivery of vectors to the anterior chamber and the

subretinal space and for monitoring of transgene expression.

-  8 -



Hypothesis, Specific Aims

1.1.4. Establishment of in vivo FiV-mediated gene transfer to the 
retinai pigment epithelium with long-term assessment of 
vector function.

Gene delivery to ocular tissue will be established stepwise in vitro, in ex vivo organ 

cultures and in animal models. Initial studies will adjust efficiency of gene delivery 

and assess toxicity. Vector long-term function will then be studied in the outflow tract 

and retina that constitute the target tissue for gene therapy of glaucoma and retinal 

neovascularization, respectively. New techniques will be developed for the 

microsurgical delivery of vectors to the anterior chamber and the subretinal space and 

for monitoring of transgene expression.

- 9 -



Table of Figures

2. Table of Figures

Figure 1: Impaired outflow of aqueous humor may result in increased intraocular 

pressure (left) and glaucomatous optic neuropathy (right) (National Eye Institute, 

National Institutes of Health).............................................................................................. - 42

Figure 2: Gradual deterioration o f the visual field from the periphery (A) and 

figurative representation o f the effect on the visual field in a late stage o f glaucoma 

(B) (National Eye Institute, National Institutes of Health)  ................................. -51

Figure 3: Simulation of normal visual field (A) and with diabetic retinopathy (B). 

Neovascularization, exudates and preretinal bleeding can be found in the proliferative 

state of diabetic retinopathy (C). The treatment consists of panretinal laser therapy 

and ablates healthy retina in the periphery (D) (National Eye Institute, National 

Institutes of Health).............................................................................................................. - 55

Figure 4: Normal central fundus (A) and Amsler grid (C) and in wet age-related 

macular degeneration (B and D). Central vision is missing entirely or appears 

distorted (D) (National Eye Institute, National Institutes of Health).............................- 58

Figure 5: Quantification of retinal neovascularization in a model o f oxygen induced 

retinopathy. Flat mounted, stained retina is divided into clock hours and pathological 

vessel buds (arrows) are counted.^^^.................................................................................. -64

Figure 6: Gene types transferred in clinical gene therapy trials (data from the online 

database provided by The Journal of Gene Therapy).......................................................-66

Figure 7: Reverse transcription (after ref."̂ ^̂ , p. 1052)....................................................-79

Figure 8: Lentiviral life cycle with highlighting of several genome 

processing/trafficking events: encapsidation, dimerization and central DNA flap 

formation. Both spliced (subgenomic) and unspliced (genomic) viral mRNAs exist in 

an infected cell, and these in turn represent only a small fraction of the total cellular 

RNA. Proper virion assembly requires a highly discriminating mechanism for 

preferential encapsidation of the full-length genome. The pre-integration complex 

(PIC) is shown with a central DNA flap; proteins know to be associated, e.g., 

integrase, Vpr, MA in HIV-1, are not shown. Drawn by Dyana Saenz, reproduced 

with permission."^^^.................................................................................. ............................. - 80

- 1 0 -



Table of Figures

Figure 9: Gene therapy trials by phases............................................................................ - 96 -

Figure 10: Vector types used in gene therapy clinical trials (data from free online 

database provided by The Journal of Gene Therapy).......................................................-9 1  -

Figure 11: Disease types addressed by gene therapy clinical trials (data from free 

online database provided by The Journal of Gene Therapy)...........................................- 98 -

Figure 12: Genomic structure of FIV and derivative packaging constructs. Top:

Genome of FIV34TF10. LTR is long terminal repeat; U3, 3'-unique region of LTR;

U5, 5'-unique region of LTR; R, repeat element of LTR; SD, major splice donor; Gag, 

group antigen (encodes structural components of virion core particle); Pol encodes a 

polyprotein that is cleaved by the viral protease into the five enzymatic activities: 

reverse transcriptase, integrase, RNAse H, protease, and dUTPase; Vif, virion 

infectivity factor; SU, surface envelope glycoprotein; TM, transmembrane portion of 

the envelope glycoprotein; RRE, rev response element. OrfZ is open reading frame 2.

The OrfZ gene product may have LTR transactivating activity similar to HIV-1 Tat. 

However, 0RF2 is not expressed by FIV 34TF10 because of the illustrated premature 

stop codon, and in any case, the vector system dispenses with the promoter activity of 

the FIV U3 element entirely by using a CMV promoter substitution and fusion at the 

TATA box (explained below). Middle: First generation packaging construct pCFl 

env. Bottom: Second generation packaging construct pFP93. Note deletions of vif,

Orf2, additional env sequences, and removal of all viral sequences upstream of gag. 

Deletions of vif and orf 2 are attenuating to FIV in vivo - 145 -

Figure 13: Class I FIV integrase mutations. The three universally conserved amino 

acids (D64, D116, and E l 52) that are required for function of the integrase catalytic 

center are illustrated. The aspartic acid (D) at position 64 was mutated to valine (V) 

by site-directed mutagenesis. Subsequently, addition of a second mutation (D116A) 

has been shown to preserve class I properties..................................................................- 146 -

Figure 14: Second-generation bicistronic transfer vector. The central DNA flap"̂ ^̂  

and WPRE^^^ have been inserted, and gag has been reduced to 311 nt....................... - 150 -

Figure 15: HIV vector with self-inactivating (SIN) LTR modification (after ref. ^^^).- 151

Figure 16: Hematocytometer counting chamber. Rulings cover 9 square millimeters. 

Boundary lines o f the Neubauer ruling are the center lines of the groups o f three.

(These are indicated in the illustration below.) The central square millimeter is ruled

-11  -



Table of Figures

into 25 groups of 16 small squares, each group separated by triple lines, the middle 

one of which is the boundary. The ruled surface is 0.10mm below the cover glass, so 

that the volume over each of the 16 small squares is .00025 cubic mm.......................- 158

Figure 17: Anterior chamber perfusion model.^^^ Left; Schematic side view. Media 

enteres hemidisected eye centrally and exits following the natural route through the 

TM and episcleral veins collecting in the well surrounding the eye. A pressure 

transducer to measure TOP is also connected to the anterior chamber and enters from 

underneath (not shown). Right: Top view of open culture chamber............................- 168

Figure 18: Vector production, concentration, and injection. Supernatants of 

transfected 293T cells are collected, filtered, and concentrated by ultracentrifugation. 

For a subretinal injection, the needle is inserted through a sclera tunnel with the bevel 

of the needle facing the center of the eye (middle). An intravitreal injection requires a 

steeper angle and the bevel is rotated outwards (right). Injury of the large rodent lens 

must be avoided to prevent cataract formation............................................................... -178

Figure 19: Subretinal injection technique. (A) Size of a 7 day old rat in comparison to 

the tip of a pen. (B) When full anesthesia is reached, lids are spread open with forceps 

and the lateral palpebral fissure is extended by 1 mm. (C) A latex membrane with a 

central cut of 2 mm is placed on top of the eye and the eye prolapsed with curved 

forceps in a backward motion while the slit is stretched open. (D) Creation of a sclera 

tunnel using a 30ga hypodermic needle. (E) Tangential insertion of a 33ga needle 

mounted on a custom made Hamilton syringe through the sclera tunnel. (F) A forming 

retinal detachment can be seen as a translucent crescent in animals without dark 

pigmentation........................................................................................................................- 179

Figure 20: Top view of anesthetized cat on restrainer (A) and side view o f restrainer 

under modified microscope (B). The trabecular meshwork can be seen as a black ring 

in the mirror of the gonioscope that is placed on the cornea (C)..................................- 181

Figure 21: Grading system for p-galactosidase expression. Grades were defined 

prospectively on a scale with a range from 0 to 5. Grade 5 = confluent transduction of 

entire retinal surface area, grade 4 = large confluent areas of at least half of retinal 

surface area, grade 3 = confluent areas with less than half the retinal surface area, 

grade 2 = large areas of non-confluent transduced cells, grade 1 = isolated, discrete 

transduced cells, grade 0 = no detectable p-galactosidase activity...............................- 183

- 1 2 -



Table of Figures

Figure 22: Primary trabecular meshwork cell transduction and effect of growth arrest. 

Cells isolated from human trabecular meshwork and plated in 24-well plates were 

transduced with 300 m\ o f unconcentrated supernatant containing a 2.5 x 10^-TU/ml 

concentration of MuLV vector {top) or FIV lacZ vector {bottom). Growth arrest with 

aphidicolin (15 wg/ml, right-hand side) blocked MuLV but not FIV transduction. 

Percent transduction is shown at the bottom....................................................................- 186

Figure 23: Vector dose escalation experiments, (a) Dose-escalation experiment with 

GINWF in primary cultured human TM cells. Shown are contact-inhibited TM cells 

at 1 month post transduction. The vector encodes enhanced (codon-humanized) green 

fluorescent protein (GFP) under the transcriptional control of the human CMV 

promoter. No toxicity was observed at any dose............................................................. -187

Figure 24: Transduction of human trabecular meshwork. Left. Representative TM 

biopsies obtained on day 3 after transduction. Middle and right. Representative 

chamber angles and histological sections, respectively, from eyes evaluated for 

reporter gene expression 16 days after transduction. TM, Trabecular meshwork; SC, 

Schlemm’s canal...........................................................................................   -189

Figure 25: Fluorophore-labeled anti-p-galactosidase antibody labeling o f the 

trabecular meshwork 16 days after injection of 10  ̂TU of FIV vector (a), 10  ̂TU of 

HIV-1 vector (b), or 10  ̂TU of MuLV vector (c) or mock FIV vector (d). SC,

Schlemm’s canal.......................................    -190

Figure 26: Dose response and trabecular meshwork preservation. Percent 

transduction (a) and total trabecular cells (b) in four eye pairs perfused with the 

indicated doses of vector. A section from each quadrant of an eye was counted and the 

mean was compared with the simultaneously perfused and untransduced fellow eye.

Bars represent the SD. (c and d) TMs from a pair of fellow eyes perfused with 

medium alone (c) or 10  ̂TU of FIV vector (d)............................................................... - 191

Figure 27: (a) Confocal microscopy view with frontal and sagittal view of TM 5 days 

after transduction with GiNWF and the TM in the fellow control eye. Imaging depth 

of 20 pm with wide pinhole, (b) Conventional fluorescence microscopic view. 400x 

magnification........................................................................................................................-193

- 1 3 -



Table of Figures

Figure 28; Chamber angles 5 days after injection of CT26 (a), and CT26.mock vector 

(b). Sections are stained with X-Gal to detect expression of p-galactosidase. SC, 

Schlemm’s canal................................................................................................................. -194

Figure 29; Intraocular pressure, (a) Recording o f eye injected with CT26 and 

CT26.mock vector control, (b) Ratio of outflow facility (1/R) before transduction (Co) 

and at recorded minimum (Cmin) and CO and 72 hours after transduction (C72h). 

Outflow facility ratio of transduced eyes was significantly different from the control 

at the recorded minimum (*P = 0.02), but returned to stable baseline at 72 hours....- 195

Figure 30: Gonioscopic in vivo expression grades. GFP fluorescence in the TM of 

living cats was serially photographed and graded by direct gonioscopy (a cornea- 

shaped lens with a mirror is used to enable visualization of the anterior chamber 

angle). There was a high linear correlation (R^ = 0.9) between expression grade and 

histologic transduction efficiency (grade 1, 2% ± 0.3%; grade 2, 21% ± 1%; grade , 

39% ± 3%; and grade 4, 94% ± 5%)................................................................................ - 196

Figure 31: View of trabecular meshwork in living animal in standard (top and 

bottom) and corresponding UV light gonioscopic views (center). All four quadrants 

from an eye with grade 4 expression after transduction with 10  ̂TU are shown (SN = 

superionasal, IN = inferionasal, IT = inferiotemporal, ST = superiotemporal). 

Transduction was virtually complete and was confined to the TM...............................- 197

Figure 32: Representative examples of reporter gene expression in animals in group 1 

and 2. (a) Renilla GFP (right eye) and GFP (left eye) expression in group 1. (b) Paired 

comparison o f GFP (right eye) and 13-galactosidase expression (left eye) in group 2. 

Shown are photos of TM as seen via UV light gonioscopy (the 13 day B-galactosidase 

eye was fixed and stained with X-gal after sacrifice). Detectable Renilla GFP 

expression was always shorter-lived than that of GFP, while B-galactosidase 

expression persisted longer than GFP only at the highest dose, when over-expression 

toxicity of GFP was observed. ..........................   - 199

Figure 33: Antibody labeling for GFP confirms gonioscopic extent o f transduction.

GFP expression was limited to the TM and collector channels. Comparison DAPI 

staining of transduced TM (left) and control TM (right) demonstrates preserved 

cellularity in GFP-expressing TM. AC = anterior chamber, P = plexus - 200

1 4 -



Table of Figures

Figure 34: Rate of initial GFP accumulation determines whether successful long-term 
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Introduction: Eye Structure and Function

6. Introduction

At the center of this thesis was the realization that the current treatment modalities for 

several chronic eye diseases still resulted in progressive visual loss. These include 

glaucoma in particular and various degenerative but also vasoproliferative disorders 

o f the retina and choroid in general. The knowledge of the genetic defects and 

resulting molecular pathology of these diseases had dramatically increased in the 

preceding years. At the same time new tools had become available to manipulate 

cellular pathology on its most basic level in the form of viral vectors. When in 1998 

Dr. Eric M. Poeschla developed the first non-primate lentiviral vector that promised to 

combine both the power o f permanent genetic modification and safety o f being non- 

pathogenic in humans/ I decided to pursue my idea of lentiviral gene therapy for 

these diseases and moved from Germany to start my studies in Dr. Poeschla’s 

laboratory.

The following will introduce the reader to the structure of the eye, to glaucoma and 

choroidal and retinal diseases and to ocular gene therapy.

6.1.Eye Structure and Function
I will review the eye structure and function that is relevant to this thesis as well as 

diseases affecting them in the following. The ocular outflow tract for which I 

developed genetic long-term modification is situated in the anterior segment o f the 

eye. In contrast, the retinal pigment epithelium is situated in the posterior segment 

underlying the neuroretina. The most applicable diseases that affect these structures 

are glaucoma, a progressive optic neuropathy caused by intraocular pressure that is 

relatively too high for the affected eye, and degenerative as well as vasoproliferative 

diseases of the retina that originate in the retinal pigment epithelium.

Glaucoma is typically caused by a decreased outflow facility in the anterior segment 

but causes degeneration of retinal ganglion cell axons in the posterior segment. 

Degenerative and vasoproliferative eye diseases are for the most part limited to the 

posterior segment but may progress to engulf the anterior segment at advanced stages.
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6.1.1. Overview of the Mammalian Eye Anatomy
6.1.1.1. Tunicas of the Eye

The mammalian eye consists of three separate layers that serve different functions: the 

fibrous tunic, the vascular tunic, and the nervous tunic.

The fibrous tunic is the most outer layer of the globe and consists of cornea and sclera 

giving the eye its rigidity and spherical shape. It is composed of dense connective 

tissue that contains collagen as its main component.

The vascular tunic is the middle layer of the eye and includes the iris, the ciliary body 

and the choroid. The iris regulates the amount of light that enters the eye but is also 

coupled to accommodation to increase depth of field and image quality. As discussed 

in more detail below, the ciliary body produces the aqueous humor and serves 

accommodation by allowing the lens to change shape and. The choroid holds a dense 

vascular network that provides high blood flow to supply the retina with oxygen and 

metabolites but also to maintain a consistent temperature. The choroid has a high 

concentration of melanocytes to minimize light scatter.

The nervous tunic consists of the neuroretina that captures the light with the first 

neuron of the visual pathway, the photoreceptor, processes it as described below and 

further conducts these signals via the second neuron, the bipolar cell and the third 

neuron, the retinal ganglion cell, the axons of which form the optic nerve.

6.1.1.2. Anterior and Posterior Segment
Division of the eye into anterior and posterior segment is somewhat arbitrary but 

provides useful categories in ophthalmology. The anterior segment can be thought of 

as the active part responsible for focusing light and maintaining that function, while 

the posterior segment has a more passive function consisting of receiving and 

processing light.

The anterior third of the eye is called the anterior segment and includes the cornea, 

the anterior chamber, the trabecular meshwork, Schlemm’s canal, the iris, the lens and 

the posterior chamber, a space between the iris and the anterior vitreous face. The air- 

comea interface is the main refi*active part of the eye, while the lens adds to this and 

allows change of focal length by accommodation. The ciliary body and the outflow 

system are discussed in detail below.
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The posterior segment comprises the posterior two-thirds of the eye from the anterior 

hyaloid membrane onward and includes the vitreous, retina, choroid, sclera and optic 

nerve.

6.1.2. Aqueous Humor Production and Outflow
Intraocular pressure is dependent on aqueous humor production and its outflow. 

Aqueous humor is produced by the ciliary body.^ The trabecular meshwork is the 

principal, pressure-dependent path for aqueous egress and represents the structure by 

whose resistance intraocular pressure is maintained. Flow is affected by the 

interaction of the ciliary body and its tendinous connections to the trabecular 

meshwork.

Besides production of aqueous humor other functions of the ciliary body are 

accommodation by interaction with the crystalline lens via zonular fibers 

and alteration of aqueous outflow through the trabecular meshwork.

Anatomically, the ciliary body can be subdivided into the pars plicata and pars plana. 

The pars plicata contains between 70 and 80 major and minor ridges on its inner 

surface that extend into the posterior chamber of the eye by about 1 mm. The pars 

plana has a flat inner surface and the ciliary body is much thinner and less 

vascularized than the pars plicata. Zonulae that hold the crystalline lens originate as a 

continuous layer on the surface of the pars plana and run into the valleys between the 

ciliary processes from where they are directed towards the lens equator where they 

insert directly at, anterior and posterior to it.

The ciliary body possesses ciliary processes with a fibrovascular core that is 

continuous with the ciliary body stroma and covered by a bi-layered epithelium. As a 

result of the invagination of the optic cup during embryogenesis, the ciliary epithelia 

consist of a double layer that is joined apically while the basement membrane of the 

inner, non-pigmented epithelium is facing the posterior chamber. The vasculature is 

connected to the major circle of the iris,^ and served by a set of anterior and posterior 

arterioles'^ which supply the large diameter capillaries (near the crest of the processes) 

and the smaller caliber capillaries deep within each process, respectively. Blood 

flows toward the network of choroidal veins to leave the eye via the vortex veins. A
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Sphincter-like system regulates blood flow that allows adjustment of filtration 

pressure and consequentially, aqueous humor production/'^

As other capillaries from the posterior arterioles, the capillaries o f the ciliary muscle 

are non-fenestrated and impermeable to plasma proteins. However, the capillaries 

from the anterior arteriole in the stromal core o f the ciliary processes lack tight 

junctions and are instead lined by fenestrated endothelial cells, allowing passage of 

macromolecules, ions and water. The ciliary non-pigmented epithelium serves as a 

selective barrier. It forms the blood-aqueous barrier in the ciliary body^ with zonulae 

occludentes, adhérentes and desmosomes.^’  ̂Primarily the epithelium at the tip of the 

ciliary processes contains carbonic anhydrase, a pharmacological target in 

glaucoma^^'^^ and Na-K-ATPase to produce aqueous humor. Aqueous humor is a 

clear, water like fluid to provide good optical properties but it still has to provide 

nutrients to the avascular tissues of the eye. Although the total protein content of 

aqueous humor is less than 1% of that in plasma to prevent light scatter, the free 

amino acid levels are almost equivalent.'^ Disruption o f the junctional complexes that 

form the blood-aqueous barrier in intraocular inflammation results in leaking of 

macro-proteins and flare that can be observed at the slit lamp.'''

Despite the increased leakiness during inflammation, intraocular pressure is usually 

lower, not higher because gap junctions that serve intercellular metabolic and 

electronic coupling of ciliary epithelial cells disappear,'^’ resulting in reduced 

aqueous humor net production and decreased intraocular pressure.'''

Aqueous humor leaves the eye via two routes, the uveoscleral and the conventional 

outflow tract. It is estimated that under normal conditions about 10% of total aqueous 

outflow occurs via the uveoscleral pathway by absorption into uveal tissues'^’ which 

may increase to as much as 60% during intraocular inflammation or 

pharmacologically by analogous substances such as prostaglandins and prostamides. 

Ninety percent pass the trabecular meshwork into the circumferential Schlemm's canal 

and subsequently via circuitous channels toward the surface of the sclera where they 

join the circulation of the episcleral vasculature. Flow through the 

uveoscleral pathway is essentially pressure independent.'^"'^ Flow occurs from the 

posterior chamber through the pupil and anterior chamber directly into the ciliary 

muscle to follow connective tissue fascicles that collect toward the supraciliary space 

which is contiguous with the suprachoroidal space. From here, the aqueous exits the

- 3 0 -



Introduction: Eye Structure and Function

eye either by diffusing through the sclera or through the scleral emissaria o f the vortex 

veins. Prostaglandin analogues in the medical treatment of glaucoma increase the 

uveoscleral outflow through up-regulation of matrix metalloproteinases that break 

down extracellular matrix material facilitating fluid movement through the interstitial 

space of the ciliary muscle.^''’

In conventional outflow, aqueous drains through the trabecular meshwork of the 

iridocorneal angle. Because the flow occurs down a pressure gradient, any obstruction 

at the level of the trabecular meshwork such as blood or lens proteins or further 

downstream obstacles such as 360 degree encircling buckles used for retinal 

detachment repair, intentional episcleral vein cauterization for creation of glaucoma 

models or carotid-cavernous sinus fistulas can lead to increased intraocular pressure 

and glaucoma.

The trabecular meshwork is a wedge-shaped tissue band that bridges the anterior 

chamber angle connecting the peripheral edge of Descemet's membrane of the cornea 

(Schwalbe’s line) anteriorly and the scleral spur, ciliary body and iris stroma 

posteriorly. Iris processes are often seen that attach to the beams of the trabecular 

meshwork. The innermost trabecular meshwork is termed uveoscleral trabecular 

meshwork as its beams project into the stroma of the ciliary body and iris which are 

both part of the uvea. Trabecular meshwork posterior to an imaginative line between 

Schwalbe's line and the scleral spur is called corneoscleral meshwork. Contraction of 

longitudinal meshwork bundles of the ciliary muscle will pull the scleral spur 

posterior and consecutively stretch the uveoscleral and corneoscleral meshwork, a 

mechanism by which miotics can increase conventional outflow.

Cord-like beams of collagen and elastin that branch and connect to each other form 

the backbone of the uveoscleral meshwork and are coated by endothelial cells capable 

of phacocytosis.^^ Similar to the comeal endothelium, these cells are nondividing and 

subject to age related attrition.^^ It is not clear whether this contributes to the 

development of glaucoma.^''’ The larger spaces o f the most inner trabecular 

meshwork become smaller towards Schlemm's canal.^^ The juxtacanalicular 

trabecular meshwork directly overlying Schlemm's canal is fundamentally different 

consisting of an open connective tissue matrix with fibroblast-like cells rather than 

endothelial cells. Despite this difference, tendons from the longitudinal bundle o f the 

ciliary muscle extend also into the juxtacanalicular trabecular meshwork and system
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of elastic fibers that insert into the inner wall of Schlemm's canal termed the cribiform 

plexus/^ The juxtacanalicular meshwork is the main source of outflow resistance/^ 

Past suggestions that increase in outflow resistance in primary open angle glaucoma 

derive from accumulation o f extracellular matrix material in the open spaces of the 

uveal and corneoscleral trabecular meshwork have recently been shown to be 

problematic as the hyaluronans decrease with age and POAG/^'^' Aqueous humor 

passes through the juxtacanalicular trabecular meshwork and the inner wall of 

Schlemm's canal through micropores in unique giant vacuoles that form pressure- 

dependent^^’ and energy independent.

Around 30 external collector channels drain from the outer wall o f Schlemm's canal 

towards the scleral surface into a deep scleral plexus that leads to the deep scleral 

veins and eventually to the episcleral veins. Despite this small caliber vascular 

network and its ability to regulate flow^'' the vast majority of the conventional outflow 

resistance is the trabecular meshwork.^^ Several unique vessels termed the aqueous 

veins of Ascher bypass the deep scleral plexus directly into the episcleral veins that 

can easily identified during slit lamp exam by their dual string of blood and aqueous 

humor that yet has to mix.

6.1.3. Central Fundus and Optic Nerve Head in Glaucoma

The approximately 1 to 1.5 million axons that form the optic nerve from the retinal 

ganglion cells run towards the optic disc in a characteristic pattern. Axons that 

originate nasal from the fovea take a direct course toward the disc, while ones that 

originate more temporal to the fovea arc around the macula and enter the upper and 

lower pole of the optic nerve. The macula axons run directly to the temporal quadrant 

of the disc in the papillomacular bundle. Retinal ganglion cell axons are organized in 

a retinotopic pattern throughout the visual pathway.^^'^^ Axons are grouped together 

by sheets of Muller cells'"'’''̂  which gives the retina a striated pattern''^ during 

funduscopic examination. This striation is most prominent near the nerve fiber layer is 

thickest. This is the most common site of the typical notching when retinal ganglion 

cell loss occurs in glaucoma. The polarizing properties of this striated fiber layer and 

its loss is utilized in nerve fiber analyzer strategies (retinal scanning laser 

polarimetry)."'^’ It can most commonly be observed at the inferior and superior
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arcuate b u n d l e s T h e  reflective properties is determined by the cylindrical nature 

and size of axonal microtubules producing a directional, spectral and polarization 

(retardation)/^’

Localized damage to retinal never fiber bundles or in the optic disc cause well 

circumscribed scotomas, while more diffuse pressure on the posterior optic nerve e.g. 

by a mass lesion or demyelinating disease produces a central scotoma and diffuse 

visual dysfunction of the macula such as impaired color vision and decreased visual 

acuity. Axons exit the eye through a chorioscleral canal that passes through the outer 

retina, the pigment epithelium, Bruch's membrane, the choriocapillaris, the outer 

choroid and the sclera. It is variable in size resulting in a cup-disc ration that is used 

clinically to quantify likeliness of axonal loss. A typical optic disc has a vertical size 

between 1.5 to 2 mm and a cup to disc ration that does not exceed 0.5 but varies 

depending on the relation of size of the chorioscleral canal and space required for 

axons, supporting glial cells and vessels.^^’ To accommodate the greater number of 

axons entering the superior and inferior pole the chorioscleral canal usually is taller 

than wide giving it an oval shape.^'' The neuroretinal rim is usually the greatest 

inferior, superior, nasal and temporal rim which has been termed the "ISNT" rule.^'

Increased intraocular pressure can result in increase of the physiological cupping or 

take on more focal changes at the neuroretinal rim in glaucoma. Conversely, lowering 

intraocular pressure can halt axonal loss^^’ although apoptosis may contribute to 

continuing fiber loss even if the initial trigger is removed.^'' There is considerable 

individual variation between actual height of intraocular pressure and anatomic and 

functional changes typical of glaucoma: while about half of eyes with an lOP greater 

than 35 mm Hg will develop glaucoma, others can suffer degeneration o f the optic 

nerve with lOP in the statistically normal range ("normal tension glaucoma").^^ 

Known risk factors for glaucomatous optic nerve damage include reduced central 

comeal thickness^^, family history of glaucoma and impaired microcirculation.^^'^'' In 

typical glaucoma, damage occurs over a prolonged period of time. Progression can be 

associated with splinter hemorrhages that appear at the optic disc.^'’ Typical axonal 

loss occurs in the upper and lower quadrants resulting in a vertical increase of 

the cup^'' with corresponding arcuate loss of retinal ganglion cells. However, when
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axonal loss is diffuse, the cup expands concentrically,^^ resulting in a generalized 

visual field depression.

In addition to change of visual threshold as measured in standard visual field 

testing, contrast sensitivity, acuity and color sense are among the functions lost.^'' 

Detection is more challenging with diffuse axonal loss unless a baseline has been 

established in that person with prior visual fields. Comparison to the opposite eye 

must take into account that this eye, too, may be affected by glaucoma. In contrast a 

circumscribed axonal loss with a well defined arcuate scotoma may be detected much 

earlier. The combination of visual field testing and funduscopic examination is 

usually able to detect glaucoma at a relatively early stage by corresponding visual 

field loss and cupping, asymmetry of age-adjusted field depression in upper and lower 

fields, asymmetry of cupping and field loss between the two eyes consistent with 

asymmetric intraocular pressure or simply by a change from baseline photography or 

threshold perimetry. Any interpretation must take other causes of visual depression 

into account such as amblyopia and different media clarity (e.g. cataracts), 

anisometropia.

6.1.4. Anatomy, Cell Biology and Function of the Retina
The following describes the anatomy, cell biology and function of the retina relevant 

to the use of lentiviral vectors for transduction of the retinal pigment epithelium and 

retina. This chapter includes the description of the human macula because of its 

relevance in leading causes o f blindness as it is the object of intense focus o f novel 

therapies including gene therapy. However, the murine eye that is used in this thesis 

as a model does not have a macula. The retinal histology is otherwise very similar.

The retina is derived from the optic vesicle that develops from the diencephalon in 

humans around 25 days of fetal development. The optic vesicle then invaginates in the 

fourth week to form a cup resulting in an inner and outer wall. The inner wall further 

differentiates into the multi-layered neurosensory retina, while the outer wall becomes 

the retinal pigment epithelium. The two walls can later separate again creating a 

retinal detachment from various causes such as vitreoretinal traction, subretinal 

exudation or a retinal hole that allows fluid to access this potential space. Surgically,
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this space can be used to subretinally inject vectors/^’ insert implants/^'^^ remove 

neovascular membranes^'' and to facilitate retinal translocation/'’

The retinal pigment epithelium (RPE) is a monolayer o f hexagonal cells that extends 

from the margin of the optic disc to the ora serrata, where it is continuous with the 

pigmented epithelium of the pars plana o f the ciliary body. The RPE cells are 

cuboidal in cross section and joined near their apical margins by junctional complexes 

that include maculae and zonulae adhérentes (intermediate spot and belt junctions, 

respectively), as well as zonulae occludentes (tight junctions). The zonulae 

occludentes between RPE cells form the outer blood-retinal barrier that is 

impermeable to water, ions and proteins. RPE cells are polarized cells that 

phagocytose shed outer segments with their long microvilli and provide the matrix 

surrounding the photoreceptor inner and outer segments. They also participate in the 

vitamin A metabolism and absorb l i g h t . R P E  cells are smaller and contain more 

melanin in the macula and are flatter and about 4 times wider with less pigment in the 

periphery. There is a relatively constant ratio of 45 photoreceptors per RPE cell 

throughout the retina.^''

RPE cells may accumulate lipofuscin granules over times which represent residual 

outer segment lipids that are incompletely digested. The highest density o f those can 

be found in the macula. Because of this association, it has been suggested to 

contribute to macular degeneration.^^ Ion pumps and passive ion channels cause water 

movement across the RPE towards the choroid, promoting adhesion of the 

neurosensory retina and RPE.^''

The potential space into which FIV vectors were injected in this thesis is delineated 

by the zonulae occludentes (tight junctions) of RPE cells and by the external limiting 

membrane formed by the intermediate junctions (zonulae adhérentes) between 

photoreceptor inner segments and Muller cell apical p rocesses .T h is  space is filled 

with various proteins, glycoproteins, enzymes, glycosaminoglycans and proteoglycans 

that surround the rod and cone inner and outer segments and are called the 

interphotoreceptor matrix. Vitamin a transport between photoreceptors and RPE is 

enabled by the interphotoreceptor-retinoid binding protein of the interphotoreceptor 

matrix. Matrix sheaths surround the individual photoreceptor outer segments to 

maintain outer segment orientation and to isolate individual photoreceptor segments 

but also contribute to the attachment of photoreceptors to RPE cells.^^
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Rods and cones are the two types of photoreceptors found in vertebrate retinas. Rods 

are used in low light (scotopic) and cones in bright light (photopic) vision and allow 

to discern colors as they contain different opsins (red (564 nm; L cones), green (533 

nm; M cones), or blue (437 nm; S cones)).^^ The minority of cones are blue-sensitive. 

Photoreceptors, external limiting membrane, outer nuclear layer and layer of 

photoreceptor axons and synapses constitute the outer retina. Rods have a long, thin 

outer segment that contains rhodopsin with an absorption maximum at 500 nm. 

Overall, there are 4.6 million cones with a peak foveal cone density of 199,00 

cones/mm2 and 92 million rods that have the highest rod density o f 150,000 rods/mm^ 

in a ring around the fovea with an eccentricity of the optic disc.^^ Blue-sensitive cones 

are most numerous (2000 cells/mm^) in a ring at 0.1 to 0.3 mm from the foveal center 

but absent in the fovea itself. They constitute only 7% of cones in the periphery.^''

Rod and cone outer segments consist of stacked membranes with rhodopsin or cone 

opsin. The inner segments of photoreceptors contain mitochondria, ribosomes, 

endoplasmatic reticulum and Golgi apparatus. Rhodopsin is continuously added into 

newly forming discs that pinch off from the outer membrane at the base of the rod 

outer segment. The turnover of the entire outer segment that involves RPE 

phagocytosis and lysosomal degradation of shed discs is approximately 2 weeks. In 

contrast, rod outer segment membranes are continuous with the surface membrane. 

Shedding of cone outer segments occurs stepwise when large parts are deposed off at 

night while regrowth happens during the day.^' Outer and inner segments are 

connected by the cilium that functions as a conduit for transport of newly made 

proteins and originates in the centriole of the inner segment. It accommodates nine 

microtubule doublets arranged in a ring that can be found in sensory cilia. However, 

the central pair of microtubules that is characteristic of motile cilia is absent.

6.1.4.1. Layers and cell types of the Neuro-Retina
Several layers of the neuroretina can be distinguished histologically and will be 

discussed in the following:

1. the outer photoreceptor layer,

2. External limiting membrane,

3. the outer nuclear layer (nuclei of photoreceptors).
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4. Middle limiting membrane,

5. the outer plexiform layer,

6. the inner nuclear layer (nuclei of horizontal, bipolar and amacrine cells),

7. the inner plexiform layer,

8. the ganglion cell layer.

6.1.4.1.1. Outer Photoreceptor Layer
The external limiting membrane at the level of the photoreceptor inner segments 

consists of intermediate junctions (zonulae adhérentes) between rod and cone inner 

segments and the apical processes of Muller cells. These junctions form the inner 

border of the subretinal space are form a diffusion barrier to large molecules^^ that 

may include viral vectors. This layer contains rods and cones, the number of which is 

equal in the macula while the overall ratio is 1:20 rods to cones (120 million rods to 6 

million cones). When dark adapted, rods are 1000 times more sensitive than cones 

when dark adapted. They are in a ring 20 to 40 degrees around the fovea. Fifty percent 

of cones are located in the macula and have the highest density in the fovea.

6.1.4.1.2. External limiting membrane
The external limiting membrane is situated external to photoreceptor nuclei and 

consists of fenestrated intercellular bridges. It interconnects photoreceptor cells to 

Muller cells and photoreceptors.

6.1.4.1.3. Outer Nuclear Layer
The outer nuclear layer consists of cells bodies and nuclei of photoreceptors. It 

contains 8 to 10 rows of nuclei that belong mainly to cones in the par fovea and 5 

rows of nuclei (single row of cone nuclei and 4 rows of rod nuclei internal to them).^^

6.1.4.1.4. Middle limiting membrane
The middle limiting membrane consists of synapses and is located between the outer 

nuclear layer and the outer nuclear layer. It forms the approximate border of the 

vascular inner portion and avascular outer portion of the retina whereas the central 

retinal artery supplies the retina from the internal limiting membrane to the middle
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limiting membrane and the choriocapillaris the external retina from middle limiting 

membrane to the retinal pigment epithelium. It has been described as diffusion barrier 

to fluids such as exudates and hemorrhages.^^

6.1.4.1.5. Outer Plexiform Layer
Synapses of rod and cone photoreceptors and dendrites of horizontal and bipolar cells 

are located in the outer plexiform layer. The outer plexiform layer is thickest in the 

macula where it forms the fiber layer o f Henle with its characteristic radially radiating 

axons. Rod and cone terminals are arranged as invaginating synapses and encompass 

two lateral processes from horizontal cells, and a single central process from a bipolar 

cell. Cone pedicles have further small flat synapses on their surfaces that originate 

from “o ff’ cone bipolar cells. Small lateral gap junctions also exist between rod and 

cone terminals but do not contain synaptic vesicles.

6.1.4.1.6. Inner Nuclear Layer
Bipolar cells, horizontal cells, Muller cells, interplexiform cells and amacrine cells are 

the five cell types can be found in the inner nuclear layer.

Dendrites of horizontal cells innervate the photoreceptor axon terminals in the 

outermost row in the inner nuclear layer. The two different horizontal cell types (HI, 

H2, H3)^'' form widespread syncytia. Horizontal cells generate receptive fields and 

color opponent properties of bipolar and ganglion c e l l s . H I  cells have a large cell 

body and receive input from M and L cones but have no input from S cones. Each HI 

cell has a long axon with a terminal arbor connected to rod spherules^^ H2 cells have 

smaller cell bodies and receive input from all three cone types. Their axons contact 

mainly S cones. They receive input from L and M cones and have a large and often 

asymmetric field. H3 are similar to HI cells but are only known in human retina.^'' 

They receive input from L and M cones and have a large and often asymmetric field.

Bipolar cells receive direct input from photoreceptors (15 to 20 in the central retina,

40 to 50 in the periphery) and connect to amacrine and ganglion in the inner plexiform 

layer with their axon.^^ There are only "on" rod bipolar cells but "on" as well as "o ff  

cone bipolar cells, the later ones terminating in the outer strata of the inner plexiform 

layer.^^ Cone bipolars connect to several or single cones (midget bipolar cells). L- and
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M-cone input occur to six diffuse cone bipolar types and each foveal cone synapses 

onto one “on” and one “o ff’ midget bipolar cell. In contrast, the “on” blue cone 

bipolar cell receives input exclusively from S cones.

The cell bodies of the interplexiform cells lie among amacrine cells and synapse with 

bipolar and amacrine cells in the inner nuclear layer. They gather input from several 

bipolar cells. Different from all other retinal cells, interplexiform cells are arranged 

centrifugally in that they send processes into the outer plexiform layer where they 

form synapses with cone pedicles and dendrites of rod and cone bipolar cells."''' Their 

function is to regulate receptive fields of horizontal cells.

The amacrine cells form the inner row of cells of the inner nuclear layer. There are 40 

types of amacrine cells that can be distinguished by morphology and 

neurotransmitter.^^’ The density of amacrine cells is similar 

in the central and peripheral retina. Amacrine cells receive lateral input from bipolar 

and other amacrine cells in the inner plexiform layer and synapse to those cells as 

well as to ganglion cells.

6.1.4.1.7. Inner Plexiform Layer
The inner plexiform layer consists of the synapses from inner nuclear layer cells, the 

outer part o f which contains layers SI and S2 and the inner layer contains S3, S4 and 

S5. "on" center ganglion cells that respond when light is turned on have dendrites in 

the inner layer and "o ff  center ganglion cells in the outer layer.

While many rods converge onto a single rod bipolar cell in the outer plexiform layer, 

fewer cones converge onto a cone bipolar cell or may synapse onto various cone 

bipolar cell types. The rod and cone circuits are separate. Rod bipolar axons terminate 

in sublamina b of the inner plexiform layer onto dendrites of amacrine cells.

Amacrine type II cells from chemical synapses with "on" ganglion cells whose 

dendrites branch in sublamina b. A ll amacrines further form gap junction (electrical) 

synapses in sublamina b with dendrites of "on" diffuse cone bipolar cells, whose 

axons connect to both "on" and "o ff  ganglion cells. As a result, rod signals reach 

both "on" and "o ff center ganglion cells.

In sublamina A some cone bipolars synapse with "o ff  ganglion cells, while others 

synapse in sublamina B with "on" ganglion cells. Overall, much fewer cones converge
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to one cone bipolar cell than the many rods that create an input to a rod bipolar and 

fewer cone bipolar cells converge onto a ganglion cell. In the fovea a single M or L 

cone synapses onto one "on" and one "o ff  midget bipolar cell that synapses onto two 

midget ganglion cells ("on" and "o ff)  to provide the highest resolution in the visual 

pathway. Amacrine cells modify the ganglion cell receptive fields and center response 

also for the cone system.

6.1.4.1.8. Ganglion Cell Layer
The ganglion cells that form the ganglion cell layer are the projection neurons of the 

retina that constitute the third neuron of the visual pathway. The total count of 

ganglion cells can vary between 0.7 to 1.5 million per retina."" Outside the central 

retina the ganglion cell layer has one single row of cells and up to 10 rows within the 

macula and the highest concentration in the parafovea."" More than 20 different 

classes of ganglion cells have been described based on different staining, molecular 

markers, electrophysiological behavior or central projections."'^ The different 

ganglion cells have a characteristic receptive field, receiving input from the inner 

plexiform layer and one single projecting axon.

The inner surface of the retina is covered by a basal lamina that is derived from the 

Müller glial cells. This 2 pm internal limiting membrane is closely associated with the 

Müller end feet and merges with collagen fibrils of the vitreous. Müller cells are 

radial glia that extend from the vitreal surface of the retina to the subretinal space, 

while their body and nuclei are in the inner nuclear layer. Their apical cell processes 

extends to the external limiting membrane forming microvilli that project into the 

subretinal space around the photoreceptor inner and outer segments. Müller apical 

processes and photoreceptor inner segments are connected by band o f intermediate 

junctions of the external limiting membrane. Müller cells have fine cytoplasmic 

processes that reach into the retinal parenchyma surrounding all neurons and their 

processes. Because of this, retinal neurons only contact each other at the synapses but 

are otherwise completely engulfed. Muller cells also surround bundles of ganglion 

cell axons and terminate against the basal laminae of blood vessels in the inner retina. 

Besides structural and metabolic support of retinal neurons, Muller cells regulate 

potassium levels, neurotransmitters, CO2, pH levels in the retina and are involved in 

angiogenesis, differentiation and gliosis (Loewen et al., submitted).
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Astrocytic glia are located mainly in the nerve fiber layer and a few in the ganglion 

cell layer. Their wide foot processes surround the walls of retinal vessels. These 

stellate cells with oval nuclei are abundant in the prelaminar portion of the optic disc. 

Microglia are derived from the bone marrow and function as tissue macrophages. In 

the retina these cells form regular mosaics between the nerve fiber and ganglion cell 

layers as well as the inner nuclear and outer plexiform layers.'"'' As they are closely 

associated with the retinal vasculature they are absent in the foveal avascular zone. 

Microglia become activated during repair in traumatized or degenerating retina. They 

scavenge debris and present antigens to T lymphocytes.'"^

RPE, photoreceptors and the outer retina receive supply from the choriocapillaris, 

whose endothelial cells are fenestrated and allow diffusion of variously sized 

molecules along the lateral walls of RPE cells. About 65 to 85% of ocular blood flow 

occurs through the choriocapillaris while the remainder enters the inner retinal 

circulation. Tight junction between RPE cells block diffusion of larger serum 

components into the subretinal space constituting the outer blood-retina barrier. In 

contrast, the inner blood-retinal barrier is formed by endothelial cells of the central 

retinal circulation that lack fenestrations entirely and have zonulae occludentes. The 

central retinal artery has four branches to supply all quadrants. Its main branches lie in 

the nerve fiber layer and send capillaries to all levels of the inner retina. The arterial 

branches have smooth muscle walls and an endothelium but lack an internal elastic 

lamina. The branches of the central retinal vein have thin walls of smooth muscle and 

an endothelium, and the walls of the venules and capillaries contain mural cells 

(pericytes) enclosed within a basal lamina continuous with that of the endothelial 

cells. Capillaries are absent in the fovea in an area 0.25 to 0.6 mm in diameter because 

the foveal pit contains only photoreceptors and RPE c e l l s . '""
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6.2.Human Ocular Diseases
6.2.1. Glaucoma

Damage to 
optic nerve

Pressure 
inside eye

Optic Nerve 
normal glaucomatous

Figure 1: Impaired outflow of aqueous humor may result in increased intraocular 
pressure (left) and glaucomatous optic neuropathy (right) (National Eye Institute, 
National Institutes of Health).

6.2.1.1. Overview
Glaucoma is a descriptive term that identifies a group of clinical conditions with 

different etiology and the final common outcome of degenerative optic neuropathy 

(Figure 1).'"  ̂Categories are based upon whether increase of intraocular pressure 

(lOP) by aqueous humor outflow obstruction occurs in the presence of an open 

chamber angle (primary open-angle glaucoma, POAG) or a closed chamber angle 

(primary angle-closure glaucoma, PACG) and can further be subdivided into primary 

or secondary causes. The new American Academy of Ophthalmology (AAO) 

definition of primary open-angle glaucoma (POAG) states that the disease is 

multifactorial in origin but that it primarily affects the optic nerve. lOP is the most 

important cause of optic nerve damage, but not the only one. Characteristic findings 

include progressive thinning of the neurosensory retinal rim, notching, asymmetry, or 

nerve fiber layer defects. Because early glaucoma typically has no associated visual 

field loss (Figure 2),'" ’̂ visual field function screening (perimetry) has the goal to 

detect already moderate to advanced states of glaucoma.'"^

Glaucoma afflicts 67 million people and is the leading cause of irreversible blindness 

worldwide."" Risk of blindness remains high despite the availability of several
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treatments.'" For patients treated and monitored for open angle glaucoma, Kaplan- 

Meier cumulative probabilities of monocular and binocular blindness at 20 years are 

27 and 9%, respectively."^ These risks are increased when damage to the optic disc is 

present at the time of diagnosis.

It is estimated that 15 million Americans would be classified as having glaucoma 

based on optic nerve head criteria."^ In 1992 direct and indirect costs exceeded $2.4 

billion in the U S."'' About 50% of people affected by glaucoma are unaware o f their 

disease.'"^ Age is a strong risk factor to develop glaucoma (30-fold increase)"^’ 

and so is race (10-fold)."^ Mathematical models indicate that at lOPs of over 28 to 30 

mm Hg chances of optic nerve damage exceeds 50%."^"'^^ Conversely, lowering lOP 

by 30% from baseline was associated with a 50% reduction in visual field loss 

over.'''’'"''

Even with treatment, long-term outcome of POAG is poor and may result in 

progression of visual field loss in up to 8% of patients a n n u a l l y . T h e s e  risks are 

increased when damage to the optic disc is present at the time of diagnosis. Glaucoma 

is the cause of blindness (best visual acuity of less than 20/200 or best visual field less 

than 20°) in 80,000 adult Americans.'"^ Impaired vision is associated with measurably 

decreased quality of life'^" '^' and increased risk of falls, hip fractures, and decreased 

physical m o b ility .D ecreased  vision is also directly related to difficulties in vision- 

related tasks.

The major causal risk factor in most forms of glaucoma is intraocular hypertension, 

which is caused by impaired outflow of aqueous humor from the anterior chamber,'^"’ 

'^^but low tension glaucoma with average or below average intraocular pressure also 

ex ists .M ain ta in in g  intraocular pressure in a narrow range (10-21 mmHg) is 

essential for viability o f the neuroretina. In the most common form of glaucoma, 

primary open angle glaucoma, as well as angle closure glaucoma, sustained higher 

pressures directly damage optic nerve axons and also may impair vascular supply, 

resulting in irreversible loss of retinal ganglion cells. There is experimental support 

that advanced axonal loss can lead to increased shear forces and disadvantageous 

biomechanical properties at the lamina cribrosa.'^""'" In addition, instead of a 

percentage attrition resulting in an asymptotic decay curve, the rate of retinal ganglion 

cell loss in glaucoma accelerates with progressive disease at least in animal models.'''^
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Aqueous humor is produced by the ciliary body and exits the eye primarily through 

Schlemm’s canal and its downstream tributaries, the collector channels and episcleral 

veins. To enter Schlemm’s canal, fluid must first traverse the trabecular meshwork 

(TM), a wedge-shaped reticulum of metabolically active, yet mitotically quiescent 

endothelial- like cells located in the angle of the anterior chamber (a and b). Although 

it is known that the TM generates most of the resistance to aqueous humor outflow,'^"’ 

the responsible cellular mechanisms are poorly understood. Nevertheless, progress 

has been made in identifying human genes that are involved in the pathogenesis of 

some forms of g l a u c o m a . A  glaucoma-specific gene expression profile has been 

identified in human TM.'^" Stable transcriptional reprogramming is suggested by the 

consistency of this abnormal profile in diverse forms and stages of the disease, and by 

its persistence in TM cells after primary subculture removes them from glaucomatous 

conditions in the eye.'

6.2.1.2. Aqueous Humor Outflow
Aqueous humor outflow occurs through several structures. Pores can be seen between 

Schlemm’s canal cells as well as within cells t h e m s e l v e s . E y e s  with higher 

outflow facility have a higher number of such p o r e s . G i a n t  vacuoles also contribute 

to outflow. These structures are pressure-dependent, energy-independent protrusions 

of canal cells that may sense pressure by stretching.

Through interactions with integrins and cell adhesion molecules that is produced by 

trabecular meshwork cells, the extracellular matrix contributes to regulation of the so 

called conventional outflow through the trabecular meshwork.'^'' Proteoglycans, 

laminin, fibronectin, collagen, matricellular proteins and glycosaminoglycans (GAGs) 

make up this extracellular matrix. Cell-matrix interactions are modulated by 

matricellular proteins such as thrombospondins, tenascin and secreted protein acidic 

and rich cysteine (SPAC), that are nonstructural adaptors p ro te in s .A lth o u g h  

matricellular proteins are generally seen during development and tissue repair, these 

proteins are found in abundance in the trabecular meshwork.'^"' At this point it is 

unknown how these proteins regulate outflow. The negatively charged GAGs are 

primarily found in the extracellular matrix and on the cell surface. Because of their 

size these molecules can increase the viscosity of fluids and play a role in retaining
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and releasing water e.g. in cartrilage.'^^ In eyes with primary open angle glaucoma 

more chondroitin sulfate and less hyaluronic acid is seen compared to healthy eyes.^'

A hydraulic-like system has been described that may influence the actin cytoskeleton. 

Ciliary muscle tendons and elastin fibers extend to the endothelium of Schlemm’s 

canal and transmit any tension resulting in a change of shape of the trabecular 

m e s h w o r k . I t  is thought that while cellular contraction can change the outflow 

acutely, the extracellular matrix is more likely to modulate resistance in the long- 

term.''̂ »'""

A second route of aqueous humor outflow exists through the supraciliary space as 

well as across the anterior and posterior sclera through emissarial canals around 

vortex veins or into choroidal vessels. This outflow route is termed uveoscleral 

outflow and accounts for up to 60% in non-human primates'"' but this can vary 

considerably from e.g. 8% in rabbits to 80% in mice.'"^ In humans, uveoscleral 

outflow decreases with age'"^ and the conventional pathway becomes more important. 

A range from 4% to 60% has been reported in different studies.'^’

Although many differences have been identified between normal and glaucomatous 

eyes and changes during the course of the disease, the pathogenesis o f primary open 

angle glaucoma is not understood. It is known that normal trabecular meshwork cells 

become more sparse and altered behavior: proteomic studies identified a total o f 368 

proteins expressed in TM and differential expression of 52 proteins that were only 

seen in glaucomatous and 177 only in normal trabecular meshwork.'"" Vascular 

endothelial growth factor (VEGF),'"" tumor growth factor beta 2 (TGFp2),'"^ 

endothelin,'"^ plasminogen activator inhibitor (PAI)'"" and soluble CD44'^" are 

elevated in aqueous humor of glaucomatous eyes and may change the phenotype. 

TGF-B2 has attracted interest because it induces secretion of additional extracellular 

matrix molecules which increases the outflow resistance.'^'

Other factors might play a role in glaucoma pathogenesis but their role is less certain. 

Oxidative stress for instance has been identified in other eye diseases such as cataract 

formation and macular degeneration. Oxidative DNA damage can be demonstrated in 

the trabecular meshwork of glaucoma p a t i e n t s . Mo r e  evidence suggests that NF-kB 

release after oxidative stress causes up-regulation of ELAM-1 which has been 

suggested as a marker for glaucoma in the past.'"" Welge-Lussen et al. found that
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tissue transglutaminase is expressed in the HTM and can be induced by TGF-Bl or - 

B2 in cultured HTM cells/^" Tissue transglutaminase can polymerize fibronectin 

causing an increase of irreversibly cross-linked ECM proteins. This mechanism might 

play a role for the increased outflow resistance seen in glaucomatous eyes.

In 1997 involvement of myocilin in glaucoma pathogenesis was recognized.'''"’

Stone et al. identified point mutations in the olfactomedin domain, which is highly 

conserved among species, that are associated with and believed to be causative in 

primary open-angle glaucoma (POAG), including juvenile and adult forms of open- 

angle glaucoma.'"'" Research was further accelerated when the gene coding for 

myocilin, MYOC, was published.'^" Since then, a number of mutations associated 

with glaucoma have been confirmed in the third exon of MYOC'^" '^  ̂although the 

process leading to the development of glaucoma remains unclear. The idea of 

physiologic as well as pathologic effects of changes in myocilin production, 

degradation, or binding is supported by findings that normal myocilin can contribute 

to outflow obstruction in the anterior segment perfusion model'^" and can interact 

with other myocilin molecules to form complexes.'^"'

Myocilin is a secreted 55-57 kDa glycoprotein with a myosin-like domain, a leucine 

zipper region and an olfactomedin domain.'^" It is highly expressed in the trabecular 

meshwork (TM), within the cytoplasm and in association with fibrillar extracellular 

matrix c o m p o n e n t s . S e c r e t e d  myocilin can be found in the aqueous humor'"' 

and is expressed in s c l e r a , c i l i a r y  body,'^^’ '""and iris,'^^’ '"" and at lower

amounts in the r e t i n a ' a n d  optic nerve head.'^^’ The expression in TM cells

is induced upon treatment with dexamethasone,'''"'’ '"^ transforming growth factor-p'''"' 

and mechanical stretch.'''''

6.2.1.3. Clinical Perspective
6.2.1.3.1. Intraocular Pressure is Causatively Linked to 

Glaucoma: A Brief History
Intraocular pressure (lOP) has been causatively linked to glaucoma development,

progression and treatment. From its very first description to contemporary

approaches lOP plays the most noteable role in glaucoma. However, this was not

always the case and its significance was passionately disputed as late as in the 1980s

in the dawn of evidence-based medicine.'"^
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The first time of glaucoma was described as a blinding disease associated with 

high lOP was by the Persian physician Ali ibn Rabban at-Tabari (810-861) in the 

writings Firdaws al hikma (Paradise of Wisdom).'"" This association was later pointed 

out by Richard Banister o f England in 1622: “A treatise of one hundred and thirteen 

diseases of eye“: “if  one feele the Eye by rubbing upon the Eie-lids, that the Eye be 

growne more solid and hard than naturally it should be.” "̂" The Dutch 

ophthalmologist Franciscus C. Donders (1818-1889) coined the expression “simple 

glaucoma” for increased lOP occurring without any inflammatory symptoms. In 1973 

Drance provided for the first time the definition of glaucoma as an optic neuropathy 

caused by increased lOP and other associated risk factors.^"'

An association of lOP and open angle glaucoma was eventually confirmed in studies 

in the 1990s but still not in the form of a cause-result relationship: in the Baltimore 

Eye Survey' and the Barbados Eye Stud)/"^ lOP was found to be an important factor 

in glaucoma that correlated with increased prevalence and incidence.^"" It was not 

until the large randomized trials of the late 1990s that demonstrated 

beyond correlation that a true causal relationship existed by showing that lowering 

lOP can slow or prevent POAG progression. The two most noteworthy trials in that 

regards are the Ocular Hypertension Treatment Study (OHTS)^"'' and the Early 

Manifest Glaucoma Trial (EMGT).^"" These studies have direct practical implications 

for daily ophthalmic care today and are summarized in the following. While there are 

other risk factors for glaucoma, lOP remains the single most important modifiable 

variable used to prevent or delay progression. Other strategies, such as vascular^"",^"^, 

neuroprotective^"^'^'" or metabolic management^" appeared promising in animal 

experimentation and were recognized as risk factors (reviewed in^""’^'^) but influence 

on the course of manifest glaucoma could not yet be established in randomized 

clinical trials.

6.2.1.3.2. Elements of Intraocular Pressure
Intraocular pressure can be calculated using the Goldmann equation^'" which consists 

of four elements:

lOP = F / C + Pv - U
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whereas F is the aqueous humor formation rate in microliters per minute, C is the 

facility of outflow in microliters per minute per millimeter of mercury, Pv is the 

episcleral venous pressure in millimeters of mercury and U is the rate of outflow of 

aqueous humor via all channels that are intraocular pressure independent.

F, C and U are most commonly manipulated to alter lOP, while increased epivenous 

pressure might have to be addressed surgically.

Under physiological conditions, between 70% to 95% of outflow occurs through the 

trabecular meshwork and is pressure dependent'""’ but the pressure independent 

uveoscleral outflow can significantly increase during inflammation or second to 

prostaglandin analogues and very effectively lower lOP under those circumstances.

6.2.1.3.3. important Randomized Clinical Trials
6.2.1.3.3.1. Ocular Hypertension Treatment Study OHTS

The purpose of the Ocular Hypertension Treatment Study (OHTS)^"'' was to 

determine whether the medical reduction of elevated lOP can prevent glaucoma and 

to define risk factors for glaucoma development. Topical ocular hypotensive 

medication was effective in delaying or preventing onset of POAG in individuals with 

elevated lOP by about 50%. Results to date have shown an approximate 50% 

reduction in conversion from OHT to POAG with a 20% reduction in intraocular 

pressure (lOP)."" OHTS demonstrated that medical treatment of people with 

intraocular pressure (lOP) of > or =24 mm Hg reduces the risk of the development of 

primary open-angle glaucoma (POAG) by 60%.^'^

6.2.1.3.3.2. Early Manifest Glaucoma Trial (EMGT)
The Early Manifest Glaucoma Trial (EMGT)^"" compared how glaucoma progression 

was affected by immediate medical (betaxolol) or laser therapy for newly diagnosed 

POAG with normal or moderately elevated lOP versus late or no treatment. Treatment 

caused an average reduction of lOP of about 5 mm Hg (25%) which reduced 

glaucoma progression to 45% compared to 62% in the control group and occurred 

later.
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6.2.1.3.3.3. Collaborative Normal Tension 
Glaucoma (ONTO) trial

Before the Collaborative Normal Tension Glaucoma (CNTG) triaP^^ it was not

known whether lOP that was in the normal statistical range was at all involved in

glaucomatous optic nerve damage and visual field loss. During the study it became

apparent that - similar to simple POAG - participating patients had a slower glaucoma

progression (no progression in 5 years) when lOP was lowered by 30%.

6.2.1.3.3.4. Conclusion from Randomized Trials
These randomized clinical trials proved that lower intraocular pressure delays or 

prevents progression of POAG as evidenced by delay or complete prevention of 

development o f glaucomatous optic neuropathy from ocular hypertension, visual field 

defects from pre-existing optic nerve changes and reduced progression of existing 

visual field defects. However, another conclusion was that despite good lOP control 

in many actively treated patients, POAG can still progress and can result in blindness 

in an unacceptable large number of patients.

6.2.1.4. Current Status of Glaucoma Therapy
The site of the highest resistance to outflow of aqueous humor is the juxtacanalicular 

trabecular meshwork.^^’ This structure is the principal site of pathology in primary 

open angle glaucoma Current interventional approaches for

moderate to advanced POAG circumvent this resistance,^^^ induce remodeling^^^ or 

permanently disrupt the trabecular meshwork (TM).^^"  ̂Pharmacotherapy either 

decreases aqueous humor production or increases uveoscleral outflow as the main 

mechanisms.^^^

Traditional therapies for advanced glaucoma attempt to lower intraocular pressure 

surgically by circumventing the outflow resistance of the TM by shunting aqueous 

humor to the subtenon space (e.g. trabeculectomy, glaucoma drainage device)?^^ 

These filtering procedures have a high rate of complication and failure^^^ despite the 

introduction of antimetabolites and improvement of drainage device design, 

respectively.
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Trabeculoplasty has been employed to lower intraocular pressure by inducing 

remodeling of the TM and extracellular matrix?^^ However, the extent o f pressure 

reduction is much smaller than in filtering procedures and can only be used in early 

stages of the disease.

Complete disruption o f the TM and wall of Schlemm’s canal has recently been 

achieved with the trabectome^^^ but this disruption is irreversible creating a 

permanently open connection to the downstream drainage system.

Pharmacotherapy has primarily been successful in reducing intraocular pressure by 

decreasing aqueous humor production (e.g. P-blockers, alpha adrenergic receptor 

agonist, carbonic anhydrase inhibitor) and improving uveoscleral outflow (e.g. 

prostaglandin analogues, alpha adrenergic receptor a g o n i s t ) . T h e  only medication 

that addresses the primary pathology of reduced conventional outflow, pilocarpine,^^^ 

has been abandoned because of its side effects and reduction of non-conventional 

outflow.

Little is known about the actual pathophysiology on a molecular level and the cause 

of failing TM regeneration. Both normal and POAG TM cells are non-dividing 

in situ but can be cultured and expanded in v i t r o A few studies have examined 

TM regeneration responses but these were limited to focal destruction with laser.^^ '̂^^^ 

It would be desirable to ablate the entire tissue that creates outflow resistance yet to 

do so selectively in order to study cell turn over and regeneration.
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Figure 2: Gradual deterioration of the visual field from the periphery (A) and 
figurative representation of the effect on the visual field in a late stage of glaucoma 
(B) (National Eye Institute, National Institutes of Health).

6.2.1.5. Rational for Developing Gene Transfer to the 
Trabecular Meshwork

In the presence of poor long-term outcome of vision in glaucoma patients with current

strategies gene therapy may offer solutions to permanently correct aqueous humor

outflow. Lentiviral vectors have evolved as the only vector type that allows stable and

targeted genetic modification of the trabecular meshwork providing new tools for

development of glaucoma therapy and animal models through tissue specific

transgenesis. Permanent genetic reprogramming of anterior chamber outflow tract

physiology by gene therapy has attracted attention as an ideal solution in theory

because of the disease’s life-long chronicity and the emerging understanding of its

genetic b a s i s . T h e  trabecular meshwork (TM), is a key intraocular structure

to target since it controls lOP by controlling outflow of aqueous humor.

Strategies for gene therapy for glaucoma must not only consider the chronic nature of 

the disease but also the generally nondividing nature of the target cells. Two general 

approaches have emerged. One focuses on the intraocular pressure problem, and the 

other on blocking its sequelae, retinal ganglion cell death.^^^’ The accessibility of 

the anterior chamber and the restricted anatomic target are favorable for gene therapy
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directed at the TM. Gene therapy with retroviral vectors has appeal, because these 

vectors undergo reverse transcription of their single-stranded RNA genomes, 

generating a linear double-stranded DNA intermediate that that is subsequently 

integrated into the host genome in a reaction catalyzed by the retroviral integrase. 

Therefore, these vectors result in permanent transgenes and have potential to address 

the chronicity of glaucoma pathophysiology. However, an important consideration is 

that TM cells do not normally divide. Unlike conventional retroviral vectors based on, 

for example, murine leukemia viruses (MLVs), lentiviral vectors, such as those 

derived from HIV and FIV, integrate into the genomes of both dividing and 

nondividing cells.

Glaucoma is a particularly appropriate disease to investigate for corrective gene 

therapy because of its chronicity and anatomically restricted pathology. However, this 

approach would require stable expression of candidate genes in the aqueous outflow 

tract. Correcting the primary aqueous outflow pathophysiology, and the 

complementary aim of expressing antiapoptosis genes in retinal ganglion cells,^^^’ 

are both likely to require not only gene transfer to nondividing cells, but also 

transgene stability commensurate to the chronicity of the disease. Trabecular 

meshwork cells are highly metabolically active and display pronounced phagocytic 

and secretory function, but appear to undergo limited cell division in vivo; less than 

0.5% have been estimated to be mitotically active at any one time.^^^’ Although 

adenoviral and herpes simplex vectors transduce nondividing cells and can mediate 

gene transfer to the TM,̂ "̂ "̂ ’ these vectors are best suited to short-term gene 

expression because they do not generate integrated transgenes. In addition, these 

vectors can trigger marked inflammatory responses. Oncoretroviral vectors, such as 

those derived from murine leukemia viruses (MuLYs), do achieve stable integration, 

but only in target cells that are proliferating at the time of t r a n s d u c t i o n . T h e  

latter requirement could hinder effective gene transfer to the trabecular meshwork, 

although this question has not been investigated.

In contrast to these vectors, lentiviral vectors integrate permanently into the genomes 

of both dividing and nondividing cells. This property, which enables the universal 

lentiviral strategy of propagating through tissue macrophages, has been attributed to 

multiple determinants in virion proteins^"^  ̂and within the reversed transcribed DNA^"^  ̂

that facilitate nuclear import o f lentiviral preintegration complexes. Envelope
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glycoprotein-pseudotyped lentiviral vectors have been derived from primate 

lentiviruses^"^^’ and from nonprimate animal lentiviruses/'^^^"^^^ Feline 

immunodeficiency virus (FIV) vectors exploit compartimentalized blocks to 

productive cross-species infection, because they complete the postentry stages o f the 

infection cycle in nondividing human cells despite blocks to viral transcription and 

other life cycle mechanisms that prevent productive replication.^’ Human 

immunodeficiency virus type 1 (HIV-1) vector systems have so far received more 

extensive validation and molecular engineering for vector optimization.^^^

Additional features make glaucoma an intriguing potential proof-of-concept disease 

for gene therapy. The small amount of tissue that would require targeting, and its 

accessibility, could enhance the feasibility of adequate levels of corrective gene 

transfer. In the absence o f a selective growth advantage for gene-altered cells, and/or 

a tissue that supports proliferation in vivo after ex vivo gene transfer,^^^ achieving 

permanent transduction of most of a relevant tissue has remained a major hurdle in 

most gene therapy situations. Specific tissue targeting is problematic if  the target cells 

cannot be isolated ex vivo (e.g., ref.^^^). The anterior chamber can also be visualized 

through clinically feasible imaging methods, suggesting a means to monitor the in 

vivo expression of an integrated transgene over time during gene therapy 

developmental studies.

Long-term, stable, high-grade, and properly targeted transgene expression in the 

trabecular meshwork has not been achieved. Liposomes,^^^ adenovirus,^"^" ’̂ adeno- 

associated virus,^^^ and herpes simplex virus vectors^"^  ̂have been limited by short 

duration, inflammation, or lack of sufficient, targeted transduction. In contrast to 

DNA virus- or plasmid-based vectors, lenti-retroviral vectors integrate permanently 

into the genomes of transduced cells as an obligate part of the life cycle.^^"  ̂The 

advantage over conventional onco-retroviral vectors is their ability to integrate in 

nondividing cells.

Not only could long-term transgene expression in the trabecular meshwork be utilized 

to study therapeutic transgenes, it would also enable transgenesis that is selective to 

the outflow tract and technically more simple than the generation of entire transgenic 

animals. Prior to either therapeutic or experimental gene transfer, proof-of-principle 

has to be established with marker genes, the most common ones of which are beta- 

galactosidase that allows intensely blue staining of galactose breakdown products and
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fluorescent proteins such as the humanized, enhanced green fluorescent protein 

(eGFP), or a renilla reniformis green fluorescent protein (rGFP). The construction of 

these vectors is described below in detail. LacZ as a marker gene has the advantage 

that it can be detected with the beta-galactosidase assay after short fixation and the 

blue product of the assay is compatible with other conventional tissue staining 

techniques e.g. of paraffin sections. It can be detected even at low multiplies of 

infection (m.o.i.) or low enzyme activity. It can also be stained with 

immunohistochemistry staining techniques as numerous antibodies are commercially 

available. A disadvantage is that it cannot be visualized in vivo easily. In contrast, 

eGFP and rGFP can be visualized in vivo with a variety of techniques as long as the 

correct exciting wavelength is applied. E.g. standard cobalt blue light and observation 

with a slitlamp,^^ gonioscopic visualization with a histopathology microscope as 

described in the techniques section of this thesis or excitation and capture with a 

scanning laser ophthalmoscope^^^ are possible.

6.2.2. Retinal and Choroidal Diseases
A spectrum of chronic retinal diseases is suitable for gene therapy: vasoproliferative 

retinal and choroidal diseases that include retinopathy of prematurity, proliferative 

diabetic retinopathy and exudative age-related macular degeneration as well as 

degenerative retinal and choroidal diseases that include retinitis pigmentosa. Best 

disease, choroideremia and Favre Goldmann syndrome. All of these diseases fulfill 

criteria such as chronicity, identified genetic defect and limited or no available 

treatment options. These diseases are introduced in the following and the rational for 

gene therapy for retinal and choroidal diseases is discussed further below.
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6.2.2.1. Vasoproliferative Retinal and Choroidal Diseases
6.2.2.1.1. Retinal Neovascularization

Laser 
U  beam

Laser spots

Abnormal 
vessels

Figure 3: Simulation of normal visual field (A) and with diabetic retinopathy (B). 
Neovascularization, exudates and preretinal bleeding can be found in the proliferative 
state of diabetic retinopathy (C). The treatment consists of panretinal laser therapy 
and ablates healthy retina in the periphery (D) (National Eye Institute, National 
Institutes of Health).

Retinal neovascularization (e.g. in diabetic retinopathy, exudative macular 

degeneration and retinopathy of prematurity, Figure 3) is currently treated by ablating 

healthy retina to prevent release of growth factors that cause neovascularization. As in 

glaucoma, integrating vectors could provide a permanent cure because they allow 

expression of therapeutic genes for the whole life of a cell.

Ocular neovascularization is a central feature of retinopathy of prematurity, diabetic 

retinopathy and age-related macular degeneration. These conditions constitute a 

leading cause of blindness in infants, individuals of working age and the elderly, 

re sp ec tiv e ly .N eo v a scu la riz a tio n  is the final common pathway of these and 

several other disorders that are multifactorial in etiology and involve an imbalance 

between pro- and anti-angiogenic factors.^^^’ Visual loss is a result of increased
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vascular permeability that causes retinal edema, hemorrhage from vascular fragility 

and fibrovascular proliferation with tractional retinal detachment.^^^

Present therapies are of limited efficacy and adapt destructive measures with 

significant adverse effects in order to reduce production of angiogenic factors/^^'

As the pathophysiology is better understood, a number of new angiogenic and 

angiostatic molecules has been identified. While systemic angiostatic therapy would 

be problematic, local application in proximity to the affected tissue is promising. 

While effects of intraocular injection of angiostatic substances would be short-lived, 

gene transfer through vectors allows local and long-term delivery of therapeutic 

molecules.

Lentiviral vectors are attractive vectors for therapy of retinal and choroidal 

neovascularization (e.g. diabetic retinopathy, age related macular degeneration, 

retinopathy of prematurity) as well as of degenerative RPE diseases that do not 

involve neovascularization (dry age-related macular degeneration, Leber's amaurosis, 

choroideremia, atrophia gyrata. Best's disease, Stargardt's disease), because achieving 

long-term expression is a vital goal for these chronic conditions. Since transduction 

from subretinally injected lentiviral vectors is mostly limited to the RPE,^^ 

except when injected immediately after birth,^^^’^̂  ̂ these vectors would be similarly 

useful to AAV vectors for degenerative RPE diseases.

6.2.2.1.2. Retinopathy of Prematurity
Retinopathy of prematurity (ROP) is an ischemia-induced proliferative retinopathy, 

which affects premature infants with low birth weight. Retinal neovascularization in 

ROP may lead to traction, retinal detachment, and blindness. Infants bom at the 

gestational age of 31 weeks or less are at risk for ROP. O f these, 66% of infants 

weighing less than 1251 g at birth, and about 82% less than 1000 g develop this 

disease.^^^ Current treatments for ROP, using laser or cryotherapy, are only somewhat 

successful in preventing blinding sequelae.^^"  ̂It is generally accepted that the 

pathogenesis of ROP is multifactorial. Documented risk factors include oxygen 

exposure, prematurity, and acidosis during the early neonatal period. One hypothesis 

implicates relative hypoxia of the peripheral retina.^^^ As with other instances of
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retinal neovascularization, vascular endothelial growth factor (VEGF), which can be 

counteracted by PEDF,^^^ plays a central role.^^ '̂^^^

ROP is a two-phase process that occurs during the timeframe of early vessel 

development and maturation. In the first phase, developing retinal capillaries 

obliterate when exposed to hyperbaric oxygen concentrations, while under 

physiological conditions, there would be a balance between developing and 

degenerating capillary buds. When excess oxygen is removed, the acute ischemia 

leads to vascular proliferation. Newly formed vessels induced by VEGF break 

through the internal limiting membrane and grow into the subvitreal space. In the later 

healing phase glial-fibrocellular scar tissue develops that can cause significant visual 

loss, ectopia of the macula, as well as serous and tractional detachments of the retina. 

Although cryosurgery and laser retinal ablation of avascular retina improve chances of 

a favorable outcome, vision impairment still occurs in up to 44% of patients.

6.2.2.1.3. Proliferative Diabetic Retinopathy
Hyperglycemia in diabetic retinopathy Figure 3 is thought to cause ischemia through 

microvascular occlusion. Up-regulation of angiogenic growth factors results in vessel 

growth from the inner retinal surface into the vitreous.^^' Present treatment for 

proliferative diabetic retinopathy is retinal laser photocoagulation, a destructive 

procedure that can affect visual function adversely.^^^ 60% of diabetics develop 

retinopathy within 15 years of diagnosis.^^^ As in ROP, the blindness results from 

retinal detachment associated with pre-retinal neovascularization. It is hypothesized 

that hypoxia of the neural retina contributes to the pathogenesis. PEDF levels are low 

in diabetic retinopathy.^^^’
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6.2.2.1.4. Exudative Age-Related Macular Degeneration 
(AMD)

C D

Figure 4: Normal central fundus (A) and Amsler grid (C) and in wet age-related 
macular degeneration (B and D). Central vision is missing entirely or appears 
distorted (D) (National Eye Institute, National Institutes of Health).

Choroidal neovascularization in AMD Figure 4 is the result of retinal pigment 

epithelium hypoxia from thickening of Bruch's membrane or changes in choroidal 

p e r f u s i o n , w h i c h  leads to production of angiogenic growth factors.^^^’ Visual

loss is a consequence of hemorrhage from neovascular vessels extending from the 

choroidal vasculature through breaks in Bruch's m e m b r a n e . T r e a t m e n t  options 

include laser photocoagulation and photodynamic therapy, offering some short-term 

benefits to certain subgroups of p a t i e n t s . E x u d a t i v e  age-related macular 

degeneration (ARMD) typically occurs in individuals 60 years of age and older, and is 

responsible for blindness in 16,000 people in the US per year.^^^

6 2.2.2. Degenerative Retinal and Choroidal Diseases
The list of potential therapeutic target diseases for gene therapy is comprehensive but 

as with any therapeutic, development has to be guided not only by feasibility but also 

by socioeconomic relevance. As devastating as many hereditary fundus dystrophies 

are as challenging it would be to proceed through all steps from the drawing board to
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animal models, clinical trials and approval. It might be more applicable to focus on a 

common cause such as neovascularization in vasoproliferative disorders or on 

neuroprotective or anti-apoptotic strategies in degenerative disorders. In addition, an 

animal model is needed as a crucial step.

6.2.2.2.1. Retinitis Pigmentosa
Although the term retinitis implies inflammation it is a group retinal degeneration 

without inflammatory features. Retinitis pigmentosa is a term broadly applied to 

disorders in which nyctalopia and progressive peripheral vision loss occurs followed 

by late central vision loss. More than 100 genes have been identified that have a 

similar appearance on clinical exam but may affect primarily either the retina or the 

retinal pigment epithelium. Approximately 50% cases are sporadic while about 25% 

are autosomal dominant, 20% are autosomal recessive, 10% are X linked. In 30% of 

patients hearing loss can be observed as a systemic association known as Usher 

syndrome. Rods of the mid-periphery are primarily affected followed by cones. The 

frequency is about 1 in 3000 while the carrier state is about 1 in 100 in the USA with 

a worldwide estimated prevalence of I in 5000. On a genetic level, about 30% of 

autosomal dominant cases are caused by rhodopsin mutations and approximately 15% 

of those are single point mutations. RetNet, steadily growing online database is a 

collaborative effort to catalogue these (http://www.sph.uth.tmc.edu/Retnet/): the 

autosomal dominant form of RP can be caused by mutations in 12 different genes 

while more than 60 genes are identified for the autosomal recessive form and only 2 

for X-linked RP (75% of those in the RPGR gene (retinitis pigmentosa GTPase 

regulator)). Retinitis pigmentosa that is the result o f a retinal pigment epithelium 

defect (RPE65, RBP, RDH5) can be seen as a bystander phenomenon where 

photoreceptor death is the consequence. An exception is the ABCA4 gene that can 

cause both retinitis pigmentosa and Stargardt’s disease by primarily affecting the 

RPE. The mutation affects a flippase of the photoreceptor outer segments that moves 

photo-transduction molecules through the membrane that build up when defective and 

are phagocytosed by the RPE. Other noteworthy major genes are the RDS/peripherin 

gene and the beta-phosphodiesterase of the photo-transduction cascade.
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In the following hereditary fundus dystrophies are described that are rare but cause 

profound visual loss. Because the genetic defect is identified and animal models exist, 

these are amenable to a gene therapy approach in theory.

6.2.2.2.2. Best Disease
Juvenile Best disease has an AD inheritance. Vision is usually acceptable until the 

fifth decade after which there is a sharp decline due to macular scarring, choroidal 

neovascularization, geographic atrophy or hole formation. The course of the disease 

can be staged according to the fundus exam: stage 0 (pre-vitelliform) is characterized 

by a subnormal electrooculogram and normal fundus, stage 1 shows pigmentary 

macular mottling, stage 2 (vitelliform) presents in the first to second decades. Stage 3 

is characterized by a pseudohypopyon due to partial absorption of lipofuscin while 

stage 4 has the vitelliruptive ("scrambled egg") lesion with diminished vision. 

[5904376, 10737974] The most common mutation is found in VMD2 that encodes 

bestrophin, a multispan transmembrane protein preferentially expressed in the RPE 

that is localized at the basolateral plasma membrane and functions as an oligomeric 

chloride channel. VMD2 is highly and preferentially expressed in the RPE [9662395 

9700209]. Although accumulation of lipofuscin-like material within and beneath the 

RPE is also seen in age-related macular degeneration of patients with age-related 

macular degeneration show that VMD2 does not play a major role in this common 

disorder [10854112 10453731]. Guziewicz et al. suggested that canine multifocal 

retinopathy, an autosomal recessive disorder of multiple dog breeds that shares a 

number o f clinical and pathologic similarities with Best macular dystrophy may be 

used as an animal model for Best disease.[17460247] In this study two disease- 

specific sequence alterations were identified in the canine VMD2 gene: a C(73)T stop 

mutation in cmrl and a G(482)A missense mutation in cmr2.

The adult-onset vitelliform macular dystrophy is a rare autosomal dominant disorder 

with incomplete penetrance and highly variable expression that only causes mild 

metamorphopsias in the fourth to sixth decades. It is considered a subtype of patterned 

dystrophy of the retinal pigment epithelium (RPE).
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6.2.2.2.S. Choroideremia
Choroideremia is an x-linked recessive diseases in which female carriers have mild 

patchy peripheral RPE changes however in males nyctalopia already presents in the 

first decade.^®  ̂Progressive, diffuse atrophy of the choroid and RPE occurs with 

consecutive photoreceptor death. The scotopic electroretinogram is non-recordable 

and the photopic is severely subnormal as is the electrooculogram. Second to the RPE 

atrophy on fluorescein angiography prominent filling of retinal and large choroidal 

vessels can be seen with central blockage at the fovea surrounded by 

hyperfluorescence. Most patients retain some useful vision up to the sixth decade after 

which very sever visual loss occurs.

The choroideremia gene encodes for a protein, the Rab escort protein-1 (REPl), 

which is involved in membrane trafficking and several point mutations have been 

described^that introduce a premature termination codon. Tomachova et al.^^  ̂

created a knockout mouse model of the CHM gene in which heterozygous-null 

females display the features of choroideremia.

6.2.2.2.4. Favre Goldmann Syndrome
Favre-Goldmann syndrome is an autosomal recessive disease that causes nyctalopia 

already in childhood. Signs on exam are vitreous degeneration, congenital 

retinoschisis, pigmentary retinopathy and white, dendritiform, arborescent peripheral 

retinal vessels. The electroretinogram is reduced and the prognosis is poor. The 

genetic defect is located in the NR2E3 gene (nuclear receptor subfamily 2, group E, 

member 3 PNR, which encodes a retinal nuclear receptor that is a ligand-dependent 

transcription factor that regulates embryonic development and is required for regular 

maintenance in the adult. In early human NR2E3 disease demonstrates an S-cone 

hyperfunction in a thickened retina. Akhmedov et al. showed that in the rd7 mouse a 

deletion in a photoreceptor-specific nuclear receptor is responsible for the retinal 

degeneration ob served.

6.2.2 3. Rational for Gene Therapy for Retinal and Choroidal 
Diseases

Ocular gene therapy offers a novel approach to treating eye diseases characterized by 

retinal neovascularization (e.g. diabetic retinopathy, age related macular degeneration,
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retinopathy o f prematurity)/^^' 312-314 chronic retinal degeneration/^^’

Several different viral vector systems have been proposed, including lentiviral and 

adenoviral (Ad) vectors as used in this thesis. These vectors have markedly different 

biologic properties; lentiviral vectors, such as those based on the feline
I  0 * 7 0  1

immunodeficiency virus (FIV), ’ ’ require integration into the host genome as an

obligate part of the life cycle and have shown little direct immunogenicity or 

toxicity,^^ '̂^^"  ̂which may facilitate long-term expression.^^’ In contrast. Ad 

vectors remain episomal, persist variably, undergo dilutional attrition with cell 

division and are often immunogenic, which may result in shorter-term expression.^^^'
328

Parameters for lentiviral transduction efficiency were examined in the neonatal rat in 

particular because these animals have been used to study retinopathy of prematurity, 

and they are useful to investigate anti-angiogenic factors in Retinal and

subretinal neovascularization is common to a number of ocular diseases, many of 

which are leading causes of blindness, e.g. diabetic retinopathy, exudative age-related 

macular degeneration, and retinopathy of prematurity. These diseases are good 

candidates for RPE-targeted gene therapy since specific growth factors that modulate 

neovascularization are secreted by the RPE or neighboring cell types.^^^’^̂  ̂However, 

the tropism of lentiviral vectors within the rodent retina appears to depend on the 

route of injection, transgene promoter, age, and species.^^^’^̂ ’̂^̂ ®’^̂ ’̂^̂ '̂ '̂ ^̂  In 

particular, age (injecting within the first five days post-natal) has been a critical factor 

favoring lentiviral transduction of photoreceptors.^^^

6.2.3. Mediators of Ocular Angiogenesis
The development of ocular neovascularization depends on the balance of angiogenic 

and angiostatic e l e m e n t s , b o t h  of which can be exploited in gene therapy. Relevant 

growth factors and inhibitors include vascular endothelial growth factor (VEGF), 

insulin-like growth factor-1 (IGF-l),^"^^’ "̂̂  ̂pigment epithelium-derived factor 

(PEDF),^^^’^̂ ’̂ '̂̂ '̂̂ '̂  ̂matrix metalloproteinases (MMPs),^^ '̂^^"  ̂tissue inhibitors of 

MMPs (TIMPs),^’̂  angiostatin,^^^’^̂ ’̂^̂  ̂endostatin,^^^’^̂ ’̂^̂ ’̂^̂  ̂ and others.

VEGF is a potent endothelial-cell-specific mitogen^^^’ expressed by pigment 

epithelial cells, pericytes, vascular endothelial cells, neuroglia and ganglion cells.^^^’
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359,361,362 pj^yg ^ crucial rolc during retinal development/^^ Expression of VEGF is 

up-regulated by hypoxia^^^’ through the hypoxia-inducible factor-1 (HIF-1) 

transcriptional e l e m e n t / V E G F  acts through high affinity receptor tyrosine kinases 

specific receptors, fins-like tyrosine kinase (Flt)-l and fetal liver kinase-1 (Flk- 

l)/kinase insert domain-containing receptor (KDR) phospholipating C /an d  other 

proteins to form diacylglycerol (DAG) activate protein kinase C (PKC) ultimately 

leading to endothelial cell proliferation, migration, and increased vascular 

permeability.

Patients with proliferative diabetic retinopathy, retinopathy of prematurity, vascular 

occlusion and choroidal neovascularization have increased levels of VEGF^^ '̂^^^ that 

can be simulated in experimental models of retinal ischemia.^^^’ Many novel 

therapies target VEGF as a central molecule o f angiogenesis: neutralizing VEGF 

antibodies,^^^' 370,371 g^^^y^g VEGF-like receptors,^^^ oligonucleotides,^^^'^^^ VEGF 

receptor sFlt-1 (sequestrates VEGF),^^^’ inhibition of VEGF-specific protein 

kinase.^^^

Insulin-like growth factor 1 (IGF-1) mediates effects of growth hormone,^"^^ but can 

also induce angiogenesis directly.^^^ Inhibition of IGF-1 by a receptor antagonist was 

able to suppress retinal neovascularization in mice.^^^

Pigment epithelium derived factor (PEDF) is a new member of anti-angiogenic 

molecules successfully used in animals to inhibit neovascularization. A non-inhibitory 

member of the serine protease inhibitor (serpin) superfamily of p r o t e i n s , P E D F  was 

first described as a neurotrophic factor.^^ '̂^ "̂  ̂The potent anti-angiogenic properties of 

PEDF, possibly promoted though endothelial cell apoptosis,^"^^ were only discovered 

much later.^^^ Imbalance between PEDF and VEGF have been proposed as a 

mechanism of action in retinal neovascularization.^^^’ Pigment epithelium-

derived factor (PEDF) was recently identified as an inhibitor of angiogenesis and is 

among the most potent in comparative s t u d i e s . P E D F  has specific inhibitory 

activity against VEGF, a substance thought to be responsible for OIR.^^ '̂^^^ The 

physiologic source of PEDF in the eye is the RPE, from which it diffuses into other 

retinal layers. Normal roles of PEDF appear to be stopping retinal vascularization at 

appropriate points in development and inhibition of neovascularization in adult life.^^^ 

PEDF levels may be decreased in eyes with pathological neovascularization, e.g. 

diabetic retinopath)/^"^’ and age-related macular degeneration.^^^
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Angiostatin and endostatin, in particular, have yielded promising results in 

experimental m o d e l s , ^ a l t h o u g h  these inhibitors have yet to be 

evaluated in clinical trials for ocular neovascular disorders/^^

Subretinally expression of VEGF inhibitor sFlt-1,^^^ PEDF^*^ and angiostatin^'^ was 

also able to reduce neovascularization in models of choroidal neovascularization.

Finally, tissue inhibitors of matrix metalloproteinase^'"' and a soluble form of the 

Ang2 receptor^^'’ have been proposed as therapeutic molecules for gene therapy of 

retinal neovascularization.

6.2.4. Models of Retinal and Choroidal Neovascularization

/
Figure 5: Quantification of retinal 
neovascularization in a model of oxygen 
induced retinopathy. Flat mounted, stained

1

retina is divided into clock hours and 
pathological vessel buds (arrows) are 
counted.^^^

* The most common animal models for retinal

neovascularization are models of oxygen- 

induced retinopathy in the mouse^^"' or rat^^^’ 

that allow reliable induction of 

neovascularization and its quantification^^^ (Figure 5). In these models, newborn mice 

or rats that are exposed to cycling oxygen levels develop retinal neovascularization 

during the relative hypoxia on return to room air. In addition, newborn rats may be 

kept in expanded litters of n = 25 to mimic the low birth weight of premature human 

neonatals. I used this litter design in the experiments described below already to 

develop marker gene delivery as a basis for future gene therapy.^^’

Other models of neovascularization include choroidal neovascularization induced by 

rupture of Bruch’s basement membrane with laser^^^’ or the local application of 

VEGF^^^’ and basic fibroblast growth factor.^'"
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The neonatal rat model has the advantage that it is more established than these 

models, is widely used in various models of retinal neovascularization, particularly 

for retinopathy of prematurity and diabetic retinopathy/^^'^^^’

6.3.Gene Therapy
6.3.1. Definition

In gene therapy, diseases are treated by manipulating the genetic material in a targeted 

cell population to change its expression pattern. Genetic reprogramming requires 

detailed knowledge of the genetic basis of a disease. The most common and ethically 

accepted form of gene therapy is somatic gene therapy, which seeks to correct gene 

expression without propagation of this correction to the next generation. Treatment 

goals have a wide range from specific repair o f genetic defects to less specific 

amendment of or interference with nongenetic disease processes. Classically, the 

genetic material is delivered to a cell in the form of DNA or RNA for the expression 

of therapeutic proteins (

Figure 6), but recently discovered features of RNA (small interfering RNA,"'^ '̂"'^  ̂

reviewed in"'''  ̂and ribozymes,"'''^"'” '' reviewed in'” ' ’'"^) have increased the options.
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Figure 6: Gene types transferred in clinical gene therapy trials (data from the online 
database provided by The Journal of Gene Therapy).

Fundamental goals in gene therapy are the specificity, efficiency, and safety of gene 

delivery. Vehicles that encapsulate therapeutic genes for delivery are called “vectors”. 

For chronic diseases, expression from these vectors should ideally persist for the 

whole life of the cell and lead to a permanent cure, while short-term function is 

sufficient for acute diseases.

Most vectors currently in use are based on attenuated or modified versions of viruses 

and exploit the highly efficient targeting and gene delivery that have evolved from the 

adjustment of a pathogen to its host, by abandoning their pathogenicity and 

effectively turning them into a Trojan horse. Commonly used viral vectors are derived 

from adeno-associated virus, type-C retroviruses, lentiviruses, adenovirus, herpes 

simplex virus, but other viruses such as measles, alphaviruses, and paramyxoviruses
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have also been engineered into vectors. A variety of non-viral gene delivery systems 

is available that are based on cationic, cholesterol-containing liposomes, peptide-lipid 

vectors, activated dendrimers (branched DNA-binding carbohydrates), bacteria, 

artificial chromosomes or artificial viruses (liposomes with viral components).

6.3.2. History
Ideas for the genetic reprogramming of cells appeared already in 1967, when Nobel 

laureate Marshall Nirenberg reflected on reprogramming cells with synthetic 

messages in an editorial in Science entitled "Will Society Be P r e p a r e d ? t h a t  

addressed the concerns raised by molecular geneticists. Nirenberg contended that the 

impulse to exploit molecular genetics could only be kept in check by sobriety and 

caution: "When man becomes capable of instructing his own cells, he must refrain 

from doing so until he has sufficient wisdom to use this knowledge for the benefit of 

mankind. [...] decisions concerning the application of this knowledge must ultimately 

be made by society, and only an informed society can make such decisions wisely." In 

a draft of his Nobel acceptance speech'"'' Nirenberg stressed that knowledge of the 

genetic code made it likely that "man eventually w ill... influence his own biological 

evolution. One can predict that a new area of research will emerge during the next 

twenty-five years, that of molecular evolution, in which the effects of synthetic genes 

upon the economy of the cell will be explored in a systematic fashion."

This prediction rapidly materialized, when Stanfield Rogers attempted to treat two 

patients suffering from hyperargininemia with the Shope papilloma virus (SPV) in the 

early I970s.'"^ Four years later first regulations of recombinant DNA research became 

available when the National Institutes of Health (NIH) created the Recombinant DNA 

Advisory Committee (RAC). The acceptance of gene therapy experienced a setback 

when in 1980 Martin Cline performed recombinant DNA transfer into bone marrow 

cells of two patients with hereditary blood disorders, but tried to avoid review by this 

body and conducted these studies abroad under questionable c i r c u m s t a n c e s . I n  

1984 the RAC created a new group, called the Human Gene Therapy Working Group 

(later called the Human Gene Therapy Subcommittee (HGTS)) to specifically review 

gene therapy protocols''^^, the first two of which it received in 1990. One protocol by 

Michael Blaese and French Anderson proposed treatment of SCID,^^^ a fatal and
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incurable childhood disorder that has become one of the greatest successes of gene

therapy/^^

6.3.3. Types of Gene Transfer Vectors
As obligate intracellular parasites, viruses are optimized gene transfer vehicles by 

design that have evolved mechanisms to enter and take reprogram the infected host 

with great specificity and efficiency. These mechanisms can be exploited by replacing 

non-essential genes with genes of interest that can be transferred for a therapeutic or 

experimental purpose. Non-essential genes that are still needed during vector 

production can be provided in trans from other plasmids the genetic information of 

which will not become part of the physical vector particle. Because of the intricate 

host-virus interaction of their parent virus vectors may elicit a similar immune 

response.

In the following the most commonly used vector types are briefly reviewed to help 

put lentiviral feline immunodeficiency viral vectors used in this thesis into context. 

The order of discussion follows the percentage of usage in clinical trials as listed 

above.

6.3.3.1. Adenoviral Vectors
Despite early short comings, adenoviral vectors are used in 25% (337 trials) of all 

clinical gene therapy trials. Adenoviruses have a large genome of 35 kb 30 kb of 

which can be replaced with foreign DNA allowing for an exceptionally large cargo 

among current gene therapy vectors. They are non-enveloped viruses that contain a 

linear double stranded DNA genome. Most of the 40 serotypes cause benign 

respiratory tract infections in humans. Subgroup C serotypes 2 and 5 are commonly 

used as vectors. Adenoviruses do not integrate into the host genome but replicate as 

episomes. As a result potential disadvantages are that patients often are pre

immunized due to prior exposure, that permanent expression is difficult to achieve 

and that vectors can aerosolize during production.

Four early transcriptional elements (El through 4) have regulatory functions while a 

late transcript codes for structural proteins. In early adenoviral vectors either E l or E3 

were inactivated and supplied during the production process in trans as can be done
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with HEK293 cells/^^ Second generation vectors utilize an E2a temperature sensitive 

mutant''^^ or an E4 deletion/^'' More recent so called gutless vectors contain only the 

inverted terminal repeats and packaging sequence around the transgene while all other 

needed viral genes are provided in trans by a helper virus

A major advantage is the broad tropism and the relative ease compared to other 

vectors with which very high titers of adenoviral vectors can be achieved enabling 

injection of small volumes in restricted spaces or small species. However, expression 

is generally short lived, especially in earlier generation vectors with E l deletion. After 

intravenous administration up to 90 percent are already removed and broken down in 

the liver.''^^ Transduced cells are often eliminated by cytotoxic T cells (CTLs) within 

a short time and promoter shut down may follow in those that are not ablated by 

CTLs.''^'' Immune suppression''^^’ or oral induction of tolerance''^^ or administration 

of CTLA4Ig, which is known to block co-stimulatory signals between T cells and 

antigen presenting cells,''^^ can prolong transgene expression or permit repeat 

application. Occasionally, adenoviral vectors can induce an unpredictable toxicity the 

resulting inflammation of which has even resulted in a fatal outcome in one case in 

one patient.''^^ Adenovirus type 3, 4 and 11 more often results in toxicity compared to 

others''^^ (adenovirus type 5 was used in Jesse Gelsinger) but the mechanism is still 

poorly understood.

Later generation vectors contain fewer adenoviral genes or no adenovirally expressed 

genes (“gutless vector”''^ )̂. However, even such gutless vectors may trigger an 

immune response to the viral proteins that engulf the transferred DNA. Clinical 

application is nevertheless limited because a large proportion of the population has 

already been exposed to adenovirus.'''"'

Adenovirus update occurs in a two stage process that involves interaction of the fiber 

coat protein with MHC class I molecules'''" and the Coxsackie virus-adenovirus 

receptor.''''^ The penton base protein then binds to integrins''''^ and is internalized via 

receptor mediated endocytosis. Most cells express primary receptors for the 

adenovirus fiber coat protein but the process of internalization is more selective.'''''' 

Uptake into target cells can be improved by stimulating expression of appropriate 

integrins,''''^ antibody targeting by conjugating vectors with antibodies''''^’ or by 

incorporating receptor binding motifs into the fiber coat protein.''''^
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Rosenfeld et al. were the first ones to transduce rat respiratory epithelium with human 

alpha lAT, the gene for alpha 1-antitrypsin deficiency resulting in functional 

secretion from analyzed lung tissue. The major shortcoming of adenoviral vectors, 

short-term expression and immunogenicity was noticed as expression could only be 

followed for one week.' '̂'^

Other historically important studies include Akli et al.’s transfer of beta-galactosidase 

into rat brain using an adenoviral vector with E l and partial E3 deletion.''^'' For the 

first time the authors described adenoviral gene transfer to post-mitotic, neuronal 

tissue. A formidable target for gene transfer as type C retroviral vectors cannot be 

used for this purpose. The authors find that 3x10^  TU delivered in 10 microliters did 

not result in any tissue toxicity but note that this could be seen at 10  ̂TU per 10 

microliter. This highlights the relative ease with which high titers of vectors can be 

generated. Similar results were quickly replicated elsewhere.''^' Adenoviral vectors 

experienced a surge of popularity

The first functional mammalian odorant receptor could be expressed in sensory 

neurons in the rat olfactory epithelium using adenoviral v e c t o r s . Z h a o  took an 

elegant approach to demonstrate receptor function and specificity by using 

recombinant adenovirus expressing a hybrid mRNA encoding the 17 odorant receptor 

and green fluorescent protein and introducing them into the nasal cavity of rats. 

Imaging of the GFP in the olfactory neuroepithelium revealed that up to 10% of the 

cells expressed GFP and that the virus selectively infected the neuronal cell 

population. The authors assessed the electrophysiological response of wild-type and 

infected epithelium to individual odorant application by a measurement of transient, 

induced electrical potential, the electroolfactogram. The use of real olfactory neurons 

to direct the expression of introduced G protein-coupled receptors circumvents the 

previous difficulties in protein translocation and receptor function. Those receptor 

receptors were difficult to study because no particular mammalian receptor had been 

definitely paired with a ligand.

An interesting idea of ameliorating telomere loss was accomplished by adenoviral 

vector mediated essential telomerase RNA (mTR) gene in telomerase-deficient mice. 

In these mice, telomere dysfunction is associated with defects in liver regeneration 

and accelerated development of liver cirrhosis in response to chronic liver injury. 

Adenoviral delivery of mTR into the livers of mTR(-/-) mice with short dysfunctional
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telomeres restored telomerase activity and telomere function, alleviated cirrhotic 

pathology, and improved liver function.

Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based 

vaccines for human immunodeficiency virus type 1 and other pathogens have proved 

highly immunogenic in preclinical studies but are limited by the high prevalence of 

pre-existing anti-Ad5 immunity in human populations. Roberts et al. showed that 

recombinant adenoviral vectors serotype 5 can be engineered to circumvent anti-Ad5 

immunity.''^^ The authors constructed novel chimaeric Ad5 vectors in which the seven 

short hypervariable regions (HVRs) on the surface o f the Ad5 hexon protein were 

replaced with the corresponding HVRs from the rare adenovirus serotype Ad48.

These HVR-chimaeric rAdS vectors were produced at high titers and were stable 

through serial passages in vitro. HVR-chimaeric rAd5 vectors expressing simian 

immunodeficiency virus Gag proved comparably immunogenic to parental rAd5 

vectors in naive mice and rhesus monkeys. In the presence of high levels of pre

existing anti-Ad5 immunity, the immunogenicity of HVR-chimaeric rAd5 vectors was 

not detectably suppressed, whereas the immunogenicity of parental rAdS vectors was 

abrogated. These data demonstrated that functionally relevant Ad5-specific 

neutralizing antibodies are focused on epitopes located within the hexon HVRs. 

Moreover, these studies showed that recombinant viral vectors can be engineered to 

circumvent pre-existing anti-vector immunity by removing key neutralizing epitopes 

on the surface of viral capsid proteins.

The opposite approach, taking advantage of the immunogenicity o f adenovirus is to 

use vectors to develop vaccines. Shiver et al. used a replication incompetent 

adenovirus type 5 vector expressing the SIV gag protein to illicit a protective immune 

response to infection with a pathogenic HIV-SIV hybrid virus.''^'' Ad5 vectors 

immunized animals exhibited the most pronounced attenuation compared to plasmid 

DNA or modified vaccinia Ankara (MVA) virus. A similar strategy was applied by 

Letvin et al''^  ̂who immunized monkeys with E l deleted, E3-defective adenoviral 

vectors encoding SIV gag, pol and env. Although tested monkeys demonstrated a 

reduction in viremia only in the early phase of SIV challenge, this was associated with 

prolonged survival and preserved central memory CD4+ T lymphocytes.
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6.S.3.2. Retroviral Vectors
Retroviral vectors have been used for many years in clinical trials contributing to 22.6 

percent of clinical trials because they can easily be pseudotyped allowing for a broad 

host range, high titers can be achieved by ultracentrifugation and vector production 

cell lines can be made''^^ as these vectors integrate. In contrast to adenovirus, prior 

exposure to retroviruses in treated subjects is highly unlikely and pre-existing 

immunity is not expected.''^^ As described in the section reviewing AAV vectors, pre

existing immunity has recently been found to be an unexpectedly grave problem with 

AAV vectors that can cause destruction of transduced cells although no AAV capsid 

proteins are synthesized de novo.''^^

In the following discussion “retroviruses” refers to both type C retroviruses and 

lentiviruses unless mentioned otherwise. Retroviruses are enveloped, single stranded 

RNA viruses of 7 to 11 kb and 80 to 100 nm size although pseudotyped particles may 

be slightly larger. After cell entry the RNA is reverse transcribed into a double 

stranded DNA that is eventually integrated into the host genome. Gag (group specific 

antigen, core protein), pol (polymerase, coding for reverse transcriptase and env 

(envelope) are the three genes that can be found in any retrovirus. These are usually 

replaced with transgenes with exception of the packaging signal that is contained in 

gag. Removal of non-essential genes and separation of packaging, envelope and 

transfer function to different plasmids has made vector production a lot safer. There 

are long terminal repeats (LTRs) at each end of the genome that contain promoter and 

enhancers for the integration. Several splice sites are responsible for the generation of 

the different RNAs during the viral life cycle and can complicate vector design.

Some retroviruses contain proto-oncogenes that must be removed in vector design. 

Retroviral genomic integration, a required step in the viral life cycle, is mutagenic by 

definition. Retroviral integration is usually well tolerated but may be oncogenic itself 

if  it occurs near a cellular proto-oncogene or by disrupting a tumor suppressor gene or 

alteration of transcription start sites which are favored integration sites for the 

Moloney murine leukemia virus (MLV).''^^ Most retroviral vectors are based on the 

Moloney murine leukemia virus, an amphotrophic virus that is capable of entering 

both mouse and human cells which allows production in mouse cells and transduction 

of human target cells. The packaging capacity is limited to about 7.5 kb which 

requires use of cDNA. Because transduced cells are permanently altered, retroviral
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vectors can be used to generate cell lines. This is usually accomplished by co-transfer 

o f a non-cap dependent, internal ribosomal entry site-mediated marker''^'' that can be 

selected for by resistance or visualized and sorted for instance by fluorescence- 

activated cell sorting (FACS). The tropism of the retroviral envelope is a key 

determinant determining the target cell range. Attempts have been made to retarget 

retroviral vectors (reviewed in''^') but often this interferes with efficiency of vector 

uptake.''''''

Pseudotyping is an easier approach to target transduction yet potentially less specific 

than direct modification of retroviral envelope proteins. Retroviruses can use a 

surprisingly wide range of envelope proteins from other viruses that are not at all 

related to the family o f retroviruses. The most commonly used pseudotype, vesicular 

stomatitis G protein, allows for a broad target range and provides high stability for 

concentration by ultracentrifugation.''^^ A well known example of altering the tropism 

by pseudotyping is use of the rabies glycoprotein in retroviral vector envelop which 

facilitates transduction of n e u r o n s . O t h e r s  are the Jaagsiekte sheep retrovirus,''^'' 

maedi-visna virus,''^^ gibbon ape leukemia virus,''^^ equine infectious anemia virus,''^^ 

avian leucosis-sarcoma virus,''^^ baculovirus,''^^ Lassa virus,''^® rabies v i r u s , M o k o l a  

virus,''^' filovirus,''^^'''^'' influenza,^^^ lymphocytic choriomeningitis virus,^^^ Ross
475nver virus.

Type C retroviral vectors, but not lentiviral vectors, require the target cell be dividing 

to access to the genome.^''^ As a result, gene therapy with type C retroviral vector may 

require removal of a patients resting cells (e.g. hematopoietic stem cells) and 

induction of cell division.''^^ Despite genomic integration, long-term expression can 

be difficult to achieve because of promoter interference of interferons, specifically 

IFNa and IFN-y, with viral LTRs''^^ and méthylation of the integrated retroviral 

genome and flanking host DNA sequences.''^^

Because of the need for cell division and for high multiplicities of infection per target 

cells, retroviral gene therapy typically requires extraction of the target tissue (e.g. 

harvesting of hematopoietic stem cells) and transduction ex vivo prior to re

implantation. This adds the additional safety benefit of being able to select for desired 

characteristics of transduced cells before patient exposure to genetically modified 

material.
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Several breakthrough therapies have been developed using retroviral vectors to treat 

previously incurable diseases. Hacein-Bey-Abina et al. achieved a functionally 

adaptive immune system in patients with X-linked severe combined 

immunodeficiency (SCID)."^^  ̂In this disease, a mutation in the gene encoding the 

common gamma chain is lethal unless an allogenic stem-cell transplantation is 

performed. The study authors infused autologous hematopoietic stem cells that had 

been transduced in vitro with the gamma gene using an MLV vector. Transduced T 

cells and natural killer cells appeared in the blood of four of the five patients within 

four months. The numbers and phenotypes of T cells, the repertoire o f T-cell 

receptors, and the in vitro proliferative responses of T cells to several antigens after 

immunization were nearly normal up to two years after treatment. Patients developed 

a normal sized thymus gland. Although the frequency of transduced B cells was low, 

serum immunoglobulin levels and antibody production after immunization were 

sufficient to avoid the need for intravenous immunoglobulin. Correction of the 

immunodeficiency eradicated established infections in some patients and allowed 

them to live a normal life. However, almost 3 years after gene therapy, uncontrolled 

exponential clonal proliferation of mature T cells occurred in two p a t i e n t s . B o t h  

patients' clones showed retrovirus vector integration in proximity to the LM 02 proto

oncogene promoter, leading to aberrant transcription and expression of LM 02. 

Retroviral vector insertion triggered deregulated premalignant cell proliferation. The 

analysis showed that this was most likely driven by retrovirus enhancer activity on the 

LM 02 gene promoter.

Aiuti et al. used hematopoietic stem cell gene therapy for adenosine deaminase 

(ADA) deficient SCID."^^  ̂The authors used an MLV vector to replace the defective 

ADA and achieved sustained engraftment of engineered HSCs with differentiation 

into multiple lineages resulted in increased lymphocyte counts, improved immune 

functions (including antigen-specific responses), and lower toxic metabolites. Both 

patients are currently at home and clinically well, with normal growth and 

development. These results indicate the safety and efficacy o f HSC gene therapy 

combined with nonmyeloablative conditioning for the treatment of SCID.

Morgan et al. demonstrated that regression of metastatic melanoma can be achieved 

using genetically engineered lymphocytes."^^^ In this study autologous lymphocytes

- 7 4 -



Introduction: Gene Therapy

were harvested from peripheral blood and transduced with a retroviral vector 

encoding the alpha and beta chains of the anti-MART-1 T-cell receptor. These genes 

were cloned from a tumor infiltrating lymphocyte clone obtained from a cancer 

patient who demonstrated a near complete regression of metastatic melanoma after 

adoptive cell transfer. Adoptive transfer of the transduced cells resulted in durable 

engraftment for at least 2 months after infusion and objective regression of metastatic 

melanoma lesions. Although this outcome could only be achieved in 2 out of 15 

patients it demonstrates the therapeutic potential of genetically engineered cells for the 

biologic therapy of cancer.

Different from the above trials that involved correcting a lymphoid 

immunodeficiency, Ott et al. successfully corrected and clinically improved subjects 

suffering from X-linked chronic granulomatous disease (X-CGD),"^^^ a primary 

immunodeficiency caused by a defect in the oxidative antimicrobial activity of 

phagocytes resulting from mutations in gp91(phox). Substantial gene transfer could 

be noted in the two participating children’s neutrophils that lead to a large number of 

functionally corrected phagocytes. A large-scale retroviral integration site-distribution 

analysis showed activating insertions in M D Sl-EV Il, PRDM16 or SETBPl that had 

influenced regulation of long-term hematopoiesis by expanding gene-corrected 

myelopoiesis three- to four-fold in both individuals. The risks associated with the use 

of retroviral vectors for X-CGD was estimated to be low because gp91^^°^ is not 

known to provide a survival or growth advantage to transduced cells, and abnormal 

hematopoiesis or leukemogenesis have not been observed in animal models of X- 

CGD transplanted with gp91^^°Vexpressing cells.

Alzheimer disease is characterized by loss of cholinergic neurons as one of its 

cardinal features. Nerve growth factor (NGF) stimulates cholinergic function, is able 

to prevent cholinergic degeneration in animal models and improve memory.

Tuszynski et al. transduced autologous skin fibroblasts with an NGF MLV vector in 

subjects with early probable Alzheimer."^^"  ̂This trial is remarkable for several reasons: 

it involved subjects with a relatively early stage of the disease and addressed an 

ailment that is -  in contrast to the previously mentioned studies -  not lethal. In the 

contrary, several medical treatment options exist. After transduction, NGF production 

was measured, and cells were stereotactically injected into the cholinergic basal 

forebrain over a region of 1 cm in length in awake but sedated subjects. NGF induced
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cholinergic axon sprouting into the site of NGF delivery. At mean follow-up of 22 

months no long-term adverse effects of NGF occurred. Evaluation of the Mini-Mental 

Status Examination and Alzheimer Disease Assessment Scale-Cognitive 

subcomponent suggested improvement in the rate of cognitive decline. Serial PET 

scans showed significant (P < 0.05) increases in cortical 18-fluorodeoxyglucose after 

treatment. Brain autopsy from one subject suggested robust growth responses to NGF.

Junctional epidermolysis bullosa (JEB) is a devastating and often fatal skin adhesion 

skin disorder. In an Italian study/^^ a single individual with nonlethal JEB was treated 

with a retroviral vector expressing LAMB3 CDNA encoding LAM5-beta3, the 

basement membrane component that is defective in this disease. The patient was a 

double-heterozygous carrier of a null allele and a single point mutation (E210K) in 

the LAMB3 gene who had suffered from blistering skin occurring spontaneously or 

after minimal injury. Epidermal stem cells were transduced, expression of LAM5 was 

conformed and nine graft were transplanted onto surgically prepared regions. This 

skin remained stable at the 1 year follow up without blisters, infections or rejection.

6.3.3.3. Lentiviral Vectors
A subfamily of retroviruses, lentiviruses (lenti = Latin for slow) typieally cause 

slowly progressing diseases with incubation times that can amount several years. As 

lentiviruses, lentiviral vectors permanently integrate in both dividing and nondividing 

cells as Naldini et al. showed in their elegant study. "̂^  ̂Others have confirmed these 

results or applied those vectors to other hard to transduce cell types

Lentiviruses are considerably more complicated than type C retroviruses and -  in the 

case of HIV - contain the additional six genes tat, rev, vpr, vpu, nef and v if in addition 

to gag, env and pol. As for type C retroviral vectors, packaging cell lines can be 

generated"^^^ and the other afore mentioned advantages of retroviral vectors apply. A 

recent study by Yanez-Munoz et al. demonstrated that lentiviral integration is not 

always a requirement in order to obtain expression levels high enough to achieve 

therapeutic transgene levels when subretinal delivery of an integration-deficient 

HIVvector carrying a functional human RPE65 transgene led to expression of RPE65 

in transduced RPE with functional rescue as assessed by electroretinography for at 

least 8 w e e k s . F I V  vectors can express transgenes in non-dividing cells in the
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absence of a functional integrase but that expression is lost when growth-arrested cells 

are allowed to divide again.^^^ Transduction is negligible in dividing cells. The retinal 

pigment epithelium that Yanez-Munoz studied is non-dividing in vivo.

Replication-defective lentiviral vectors were originally derived entirely from the 

human lentivirus human immunodeficiency virus type 1 (HIV-l).'^^^’'̂ ®̂ Application of 

pseudotyping with broadly tropic, physically stable envelope glycoproteins"^^^ 

permitted efficient transduction of nonlymphocytes by HIV-1 vectors in vitro and in 

vivo. "̂^ ’̂ The first nonprimate lentivirus-based vector was derived from feline 

immunodeficiency virus (FIV).^ Subsequently, substantial improvements have been 

made in the design and capabilities of FIV vectors, and recently identified FIV 

elements (central polypurine tract, central termination sequence, and packaging 

signal) have been incorporated.'^^^’

6.3.3.3.1. Important Lentiviral Properties
Retroviral reverse transcription (Figure 7) yields a linear double-stranded DNA 

intermediate that is integrated into the target cell genome (Figure 8) in a reaction 

catalyzed by the viral integrase. Therefore, retroviral vectors generate permanent 

transgenes, a process that makes the former appealing for therapy o f chronic diseases. 

This capability was first demonstrated for vectors derived from simple 

oncoretroviruses, e.g., murine leukemia viruses. Oncoretroviral vectors have now 

been incrementally optimized to the point that clinical utility has been demonstrated 

for diseases that are recognized to be the targets most accessible to gene therapy. For 

example, children with common gamma chain deficiency, in which gene-altered cells 

have a marked survival advantage, have sustained clinical improvement.^^^’

However, it became apparent early on that oncoretroviral vectors achieve integration 

only in target cells that are proliferating at the time of transduction.^"^^’ This 

limitation, which precludes targeting many clinically relevant cell types, is a 

consequence of the fact that the reverse-transcribed linear DNAs (preintegration 

complexes) of these simple retroviruses cannot traverse the intact nuclear envelopes 

of interphase cells. Completion of the replication cycle instead depends on breakdown 

of the envelope during m i t o s i s . I n  contrast, the lentiviral preintegration complex 

is imported through the nuclear pore, permitting integration in nondividing cells. 

250,251,254 capacity to infect nondividing cells is fundamental to the universal
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lentiviral strategy of propagating through terminally differentiated macrophages and 

has been the principal motivation for engineering viral vectors from these highly 

pathogenic viruses. The mechanism of nuclear import remains controversial, but it has 

been attributed to multiple determinants in virion proteins^"^  ̂and to a plus strand 

discontinuity, the central DNA flap, which results from lentiviral initiation o f plus 

strand synthesis at two locations.

While genomic integration is mutagenic by definition there are significant differences 

between type C retroviruses and lentiviruses. Montini et al. studied hematopoietic 

stem cell transduction of a tumor prone mouse model (Cdkn2a-/- mice)."^^  ̂In a 

comparison of integration site selection and tumor development in transplanted mice 

retroviral vectors retroviral vectors caused dose-dependent acceleration of tumor 

onset dependent on long terminal repeat activity. Insertions at oncogenes and cell- 

cycle genes were enriched in early-onset tumors suggesting cooperation in 

tumorigenesis. Surprisingly, tumorigenesis was unaffected by lentiviral vectors and 

did not enrich for specific integrants, despite a higher integration load and robust 

expression of lentiviral vectors in all hematopoietic lineages. Unlike the gamma- 

retrovirus MLV, ELAY and HIV-1 vectors do not integrate preferentially into the 

promoter region or the 5' end of the transcription unit."̂ ^̂
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6.3.3.3.2. FIV and FIV Vectors
Three groups of lentiviruses infect primates, ungulates, and felines respectively. 

Feline immunodeficiency virus infects 10-20% of domestic cat populations 

worldwide, as well as many free-roaming, nondomestic Felidae, but is pathogenic 

only for the domestic cat. Figure 12 (Top) illustrates the genomic structure of FIV 

34TF10,"^^  ̂the clone used as the substrate for replication-defective FIV vector work 

to date. FIV has typical lentiviral morphology and genetic structure, although only 

three nonstructural genes (vif, rev, and orf2) are encoded in comparison to the six 

encoded by the primate lenti viruses. Other peculiarities are a Rev response

80



Introduction: Gene Therapy

element (RRE) that overlaps the 3’ end of env rather than the SU-TM junction and a 

pol-encoded dUTPase, which may facilitate reverse transcription under conditions of 

low nucleotide tension.

6.3 3.3.3. Primate versus Nonprimate
No lentiviral vector system will proceed to clinical use without documentation of 

effective mechanisms to prevent and to screen for the most recognized threat: 

generation of replication-competent retroviruses. Other, theoretical considerations can 

be marshaled for and against use of lentiviral vectors, but empirical data are lacking. 

Nevertheless, there are some reasons to hypothesize that FIV vectors could eventually 

have higher acceptability for a broad range of applications. A practical consideration 

for vector workers and for potential gene therapy recipients is that FFV lacks any 

capacity to generate immunological cross-reactivity with HIV, for example in 

diagnostic HIV antibody enzyme-linked immunosorbent assays (ELISAs)."^^^’ In 

addition, there is an extensive record of a lack of human infection or disease despite 

widespread human exposure to wild-type FIV via its principal and very efficient 

natural mode of interfeline transmission, biting (which fi*equently transmits other 

pathogens to humans), and despite the ability of the wild-type virus to use a human 

chemokine receptor for entry.^’^̂ ’̂^̂  ̂This epidemiological record of prevalent, direct, 

and efficient human inoculation without sequelae is unique among the lentiviruses. 

Another consideration is that FIV vectors can be tested in an animal model that is 

susceptible to disease causation by the parental virus.

FFV vectors efficiently complete the postentry stages of the infection cycle in 

nondividing human cells despite a severe block to transcription from the FIV long 

terminal repeat (LTR) and to other life cycle mechanisms that prevent productive 

replication.^’ The replication-defective FIV vector^derived from the 

infectious clone FIV34TF10^^^ was the first demonstration of the feasibility of using a 

nonprimate lentivirus as a substrate for vectors. The negligible FFV expression 

observed in human cells^^' was an initial obstacle to transfer vector production. This 

was overcome by substitution of the 5' FFV U3 (but not the 3' U3) with a heterologous 

promoter by a fusion at the TATA box just upstream of the R repeat.^^^ The change 

enabled expression of high levels of FFV proteins and FFV vectors in human cells, 

revealing that previously suggested blocks to other productive phase functions, e.g.,

-  81 -



Introduction: Gene Therapy

do not exist, at least in the relevant human cell lines. Use of a human cell line 

for clinical vector production (such as 293 cells, which have been approved for 

adenoviral vector production by the Food and Drug Administration, FDA) is 

important since feline vector producer cells would be unacceptable for human clinical 

application because of the risk o f known and unknown adventitious agents. For 

example, feline cells harbor multiple copies of an inducible, xenotropic, replication- 

competent type C endogenous retrovirus (RDI 14) that can replicate in human cells, 

resists inactivation by human serum complement, and is related at the nucleotide 

sequence level to a primate retrovirus (baboon endogenous virus).^^ '̂^^^

The transcriptional silence of the FIV U3 in most human cell types provides a first 

level self-inactivating or SIN feature, as it is copied to both LTRs in the human target 

cell. A standard U3 deletion can also be made to produce a conventional SIN vector 

as described below. In the initial studies, FIV vectors incorporating the hybrid 5’ 

promoter were shown to transduce dividing, growth-arrested, and postmitotic human 

targets.^ These results have been reproduced by others,^^^’ and envelope 

glycoprotein-pseudotyped lentiviral vectors have now been derived from all three 

subgroups of primate lentiviruses, HFV-l, HFV type 2 (HIV-2), and simian 

immunodeficiency virus (SFV), '̂^ '̂ and from the ungulate group of

lentiviruses.^^^’^̂ ’̂^̂  ̂ HFV-l vector systems have so far received more extensive 

validation and molecular engineering for vector optimization,^^"^ but there is growing 

interest in exploring the potential of nonprimate lentiviral systems. It should be 

emphasized that no direct, methodologically rigorous comparisons of transducing 

efficiencies per particle in vivo are available for different lentiviral vector systems, or 

for that matter in human tissues, although equivalent efficacy per transducing units o f 

FFV and HFV vectors has been demonstrated in one human organ.^^"^

The following landmark studies elegantly demonstrate the most important feature of 

lentiviral vectors: permanent transduction of post-mitotic or terminally differentiated 

cells. Pawliuk et al. showed that sickle cell disease can be corrected in a transgenic 

mouse model using lentiviral gene therapy.^ Sickle cell disease is caused by a single 

point mutation in the human betaA globin gene that results in the formation of the 

abnormal hemoglobin HbS (alpha2betaS2). In homozygotes, the abnormal 

hemoglobin polymerizes in long fibers upon deoxygenation within red blood cells, 

which become deformed, rigid and adhesive resulting microinfarction, anemia and
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organ damage. Using a betaA globin gene variant that prevents HbS polymerization, a 

third generation HIV vector achieved expression for 10 months at the study endpoint 

and presence of the anti-sickling protein in up to 52% of total hemoglobin or 99% of 

circulating red blood cells. Red blood cell sickling could be successfully prevented in 

two mouse models and hematological parameters, splenomegaly and urine 

concentration defects could be prevented.

In a study involving a nonhuman primate model of Parkinson’s disease, HIV vectors 

were engineered to express the glial cell line-derived neurotophic factor.'^^^ 

Nonlesioned aged rhesus monkeys and young adult monkeys treated with MPTP 

received injections into the striatum and substantia nigra. Dopaminergic function was 

augmented in aged monkeys while in lesioned monkeys functional deficits o f hand- 

reach tasks hand-reach task, in which the time to pick up food treats out of recessed 

wells was measured, were reversed and nigrostriatal degeneration completely 

prevented. These functional improvements were also found using a modified 

parkinsonian clinical rating scale. Fluorodopa PET scans displayed solid uptake in the 

GDNF-treated animals. Expression was followed for 8 months in control animals. 

Sections from all monkeys were stained for CD45, CD3, and CDS markers to assess 

the immune response after lentiviral vector injection which are markers for activated 

microglia, T cells, and leukocytes including lymphocytes, monocytes, granulocytes, 

eosinophils, and thymocytes. Staining for these immune markers was weak, or absent. 

Mild staining for CD45 and CDS was seen in two animals and some CD45- 

immunoreactive cells displayed a microglial morphology. Most monkeys displayed 

virtually no immunoreactivity.

Lentiviral equine infectious anemia viral (EIAV) vectors expressing RNAi were 

designed to specifically target the human SODl gene, the dominant mutation of 

which (S0D1(G93A)) is responsible for a fatal neurodegenerative disease, 

amyotrophic lateral sclerosis.^R N A i is a post-transcriptional mechanism of gene 

silencing that is mediated by small interfering RNA molecules (siRNAs), 19- to 23- 

nucleotide double-stranded RNA duplexes that promote the cleavage of specific 

mRNAs. Long-lasting RNAi-mediated gene knockdown can be achieved using 

lentiviral vectors that express the siRNAs. SODl encodes superoxide dismutase, an 

enzyme that neutralizes superoxide radicals, which can damage cells if  their levels are 

not controlled. Superoxide radicals are byproducts of normal cell processes.
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particularly energy-producing reactions that occur in mitochondria. Motor neurons are 

particularly sensitive to SOD dysfunction when mitochondria cannot meet the high 

energy demands, additionally apoptosis may be induced and misfolded superoxide 

dismutase is toxic. In Ralph et al.’s study vectors were injected into various muscle 

groups in a SODl mouse model that is overexpressing S0D1(G93A). SODl levels 

were efficiently reduced resulting in prolonged survival of vulnerable motor neurons 

in the brainstem and spinal cord. This led to measurable motor performance in these 

animals and a considerable delay in the onset of ALS symptoms as well as extension 

of survival time by almost 80%. This study demonstrated how lentiviral vectors can 

be used efficiently to deliver RNAi to treat a presently incurable disease. Early 

concerns that retroviral viral vectors that require packaging of vector RNA containing 

RNAi target sequences would be destroyed by production of interfering RNA in the 

same cell could not be confirmed.

Another lethal disease, metachromatic leukodystorphy, was successfully addressed by 

HIV lentiviral gene therapy in a study by Consiglio et al. involving a mouse model.^*"  ̂

Metachromatic leukodystrophy (MED) is an inborn lipidosis caused by lysosomal 

enzyme arylsulfatase A (ARSA). ARSA is required to catalyze the first step in the 

degradation pathway o f galactosyl-3-sulfate ceramide (sulfatide), a major 

sphingolipid of myelin. MED is characterized by myelin degeneration in both the 

central and peripheral nervous system, associated with the accumulation of sulfatide 

in glia cells and neurons. Children affected by the severe form of MED display 

progressive neurologic symptoms, including ataxia, seizures, quadriplegia, and die 

decerebrated early in infancy. Currently there is no effective treatment for MED or 

other storage diseases affecting the CNS (central nervous system). HIV vectors 

delivered the functional human ARSA gene into the brain of adult mice with germ- 

line inactivation of the mouse gene encoding ARSA, As2. Purified, concentrated 

vector stocks were slowly injected under stereotactic guidance into the right fimbria. 

Expression of the active enzyme was sustained throughout a large portion of the brain, 

with long-term protection from development of neuropathology and hippocampal- 

related learning impairments.

In another well publicized study, Dupre et al. compared HIV vectors to MEV vectors 

to restore function in T cells for Wiskott-Aldrich syndrome (WAS) p a tie n ts ,^ an  X- 

linked primary immunodeficiency with a median survival below the age o f 20 due to
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infections, hemorrhage and lymphomas. While transplantation o f hematopoietic stem 

cells from HLA-identical siblings can be a definite treatment, it is only available for a 

minority o f patients. Lentiviral vectors transduced T cells form WAS patients at 

higher rates compared to MLV vectors and efficiently transduced both activated and 

naïve WAS T cells. A selective growth advantage of HIV transduced T cells was 

found.

6.3.3.4. Non-Viral Gene Transfer
Although lentiviral and the adenovirus associated viral vectors are less immunogenic 

than for instance adenoviral and herpes viral vectors, those foreign proteins may still 

elicit some immune response and their capacity is limited. In addition large scale 

production is relatively difficult to achieve. Non-viral methods in contrast require 

only a small number o f proteins, the capacity is much larger, there is little risk of 

infectious agents and industrial production much more easily achievable. This 

explains the popularity and use of naked DNA in approximately 18 percent and 

lipofection in 8 percent of clinical gene therapy trials.

As a major disadvantage o f non-viral gene transfer methods, transgene expression 

tends to be transient with notable exception of complex strategies that mimic entire 

chromosomes.^’  ̂Methods of non-viral DNA transfer include use of naked DNA, 

liposomes or molecular conjugates. Currently, approximately 8 percent of clinical 

trials use non-viral DNA transfer the majority of which (7.6 percent) are liposomes.

Naked plasmid DNA can be directly injected into the target cell^’̂  or administered 

intravenously^'^ although this is not very effective. Alternatively, particles can be 

coated with DNA and literally shot into the target tissue with a gene gun.^'^ This has 

been used to vaccinate with DNA, an elegant way of circumventing pre-existing 

immunity that is also inexpensive, allows delivery of several antigens on one single 

plasmid and co-expression of immunogenic cytokines where needed.

Liposomes are a lipid belayed that entraps aqueous fluid. DNA typically associates to 

the external surface of cationic liposomes which interact with the cell membrane. 

Liposome transfection is effective in vitro but very cell type dependent and often 

disappointing when used on non-dividing cells or in vivo. In an attempt to target and 

facilitate uptake into cells as endosomes various proteins have been included, e.g.
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anti-MHC antibody, Senday vims F protein^ or transferring/^'' Use of Senday 

vims allows the plasmid DNA to avoid degradation in the endosome/^^

Molecular conjugates are protein or other synthetic ligands to which a DNA binding 

agent has been attached. Similar strategies as with liposomes have been exercised 

including transferrin^^^, polymeric IgA^^^ and complexes of nonmodified human 

adenovims particles and a protein conjugate consisting of N-acetyl-glucosamine- 

modified bovine semm albumin.

Kusano et al. showed that direct injection of plasmid DNA into myocardium can 

result in effective gene transfer with rather dramatic results.^^^ In an attempt to 

improve recovery from acute and chronic myocardial ischemia after ligation of the 

proximal left anterior descending artery branch of the left coronary artery, a plasmid 

encoding human sonic hedgehog (Shh) was injected subepicardially with a curved 27- 

gauge needle into 5 sites along the anterior and posterior left ventricular wall in rats in 

600pg/0.Iml and 100pg/0.02ml in mice. In pigs the ischemic area was mapped by 

nonfluoroscopic electroanatomical mapping to guide injections of 800 pg/3 ml into 6 

sites with an injection catheter. Shh is a cmcial regulator of organ development during 

embryogenesis. Gene transfer resulted in tissue preservation and repair by initiating a 

repertoire of signaling pathways in the local tissue and by recruiting circulating 

progenitor cells to engage in the repair process. Left ventricular function was 

preserved in both acute and chronic myocardial ischemia.

An example of highly engineered nanoparticles is the study of Hood et al. who used 

cationic nanoparticles coupled to an integrin alphavbeta3-targeting ligand to deliver 

genes selectively to angiogenic blood vessels in tumor-bearing mice.^^^ As a proof of 

principle nanoparticles were conjugated to a mutant Raf gene, ATPmu-Raf, which 

blocks endothelial signaling and angiogenesis in response to a variety of growth 

factors. During vascular remodeling and angiogenesis, endothelial cells show 

increased expression of several cell surface molecules that potentiate cell invasion and 

proliferation, integrin alphavbeta3 being one of them. This molecule plays a key role 

in endothelial cell survival during angiogenesis in vivo and potentiates the 

internalization of various viruses. The authors found pronounced M21-L cell tumor 

regressions in athymic WEHI mice.
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Oritz-Urda et al. reported an innovative non-viral method to achieve stable genetic 

correction for an inherited human skin disease by transfecting a construct that sues the 

phi C31 bacteriophage integrase to deliver C0L7A1 cDNA into genomes of primary 

epidermal progenitor c e l l s . P h i  C31 bacteriophage integrase stably integrates large 

DNA sequences containing a specific 285-base-pair attB sequence into genomic 

pseudo-attP sites. In this study epidermal progenitor cells were obtained from 

unrelated patients with a blistering skin disorder called recessive dystrophic 

epidermolysis bullosa (RUEB) that is caused by mutations in the COL&Al gene.

Skin regenerated on SCID mice including type VII collagen protein expression, 

anchoring fibril formation and dermal-epidermal cohesion. The authors argue that 

viral vectors, in particular type C retroviral and lentiviral vectors, suffer from 

biosafety concerns that currently prevent them fi*om being used more broadly. They 

fail to acknowledge that any form of integration is mutagenic by definition and that 

predictions that lentiviral vectors will be similarly oncogenic as retroviral vector do 

not hold true in practice as discussed above.''^^ It will remain to be seen whether use 

of a prokaryotic integration system will be advantageous for eukaryotic DNA 

especially in the presence of a mature immune system.

6.3.3.S. Adeno-associated virus
Adeno-associated viral (AAV) vectors are currently used in only 4% of clinical gene 

therapy trials but enjoy increasing popularity for several reasons: AAV is not 

associated with human disease and there is little immunogenicity. Long-term 

expression can be achieved in dividing and non-dividing cells even without genomic 

integration (formation of intracellular concatomers). Disadvantages are that many 

patients had prior exposure and likely have some immunity against AAV, only 

relatively small transgenes can be used and that cloning can be difficult due to the 

sequence of the flanking terminal repeats. Achieving high titers and large volumes is 

still technically challenging. Although the AAV wild-type integrates preferentially 

into AAVSl in chromosome 19q.^^' AAV vectors favored integration in active 

genes^^^ and in that regards are reason for the same concerns that exist with lentiviral 

vectors.

Adeno-associated viruses (AAV) are small, non-enveloped viruses that belong to the 

parvovirus family, genus dependovirus. As such, AAV requires a helper virus, for
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instance adenovirus or herpes simplex virus, in order to replicate. In the absence of 

such helper virus, AAV can establish a latent infection within the cell by either site- 

specific integration or as an episome. The AAV capsid contains a linear single

stranded DNA genome o f 4.7 kb and is only 22 nm in diameter. The genome has 

either plus or minus polarity.^^^’ Inverted terminal repeats (ITRs) at the termini 

consist o f 145 nucleotides that form a hairpin structure due to the multipalindromic 

nature of its 125 bases. This structure is needed to initiate replication and packaging 

and flanks the two large open reading frames (ORF) of the viral genome.^^^ AAV 

does not encode its own polymerase. The replication ORF (Rep) encodes for four 

replication proteins through the use of alternative splicing. The right capsid ORF 

(Cap) encodes for three viral structural proteins. Rep and cap are replaced by the 

transgene in AAV vectors but have to be provided in trans along with helper gene 

products. In contrast to wild-type AAV, in the absence of rep vectors will integrate as 

a single provirus preferentially in active genes or at random s i t e s . R a t h e r  than 

integration, the most common state are head to tail concatomers one the terminal 

repeats have slightly degraded.^^^’

AAV2 vectors rapidly gained popularity following the pioneering work of Laughlin et 

a/^^ and Hermonat et al,^^  ̂because of their long-term persistence without detrimental 

effects to the host and a wide range o f infectivity that include both dividing and non

dividing cells. AAV is relatively resistant to heat, solvents and change o f pH.^'"' Other 

serotypes with different tissue tropism have recently been found that facilitate 

targeted transduction.

Disadvantages of AAV are the size limitation, slow onset of gene expression and a 

possible association between AAV2 vector gene transfer and tumorigenesis as 

described in an animal model of mucopolysaccharidosis.^'" Similar to lentiviral 

vectors, AAV preferentially integrates into active chromatin^^^ although the frequency 

of true integration is low and in contrast to retroviral and lentiviral vectors not a 

required part of the life cycle.

AAV2 vectors have entered preclinical studies for hemophilia, cystic fibrosis, a l-an ti

trypsin deficiency, Duchenne muscular dystrophy and rheumatoid arthritis. Genetic 

disease are the leading group of indications (32%), but also tumor (19%), and at about 

equal percentage ocular, cardiovascular and neurological diseases. Present AAV- 

based gene therapy trials are mainly focused on monogenic diseases (53%), followed
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by cancer (23%)/^^ The first clinical trial was concerned with cystic fibrosis/''^ which 

is still the leading indication/''^ Other trials are focused on infantile neuronal ceroid 

lipofuscinosis/'''' Canavan disease/''^ a  1-anti-trypsin deficiency^''^ and Parkinson’s 

disease^''^ (all phase I) and cystic fibrosis^''^’ (phase II).

The completed studies and trials demonstrated that while AAV2 based gene therapy is 

generally safe, there are significant shortcoming in transduction efficiency and more 

organ-specific transduction. Attempts have been made to improve efficiency by 

manipulating the AAV2 capsid (reviewed in^^") through site-directed mutagenesis, 

chemical conjugation and peptide display libraries. Other strategies employed 

packaging of AAV genomes with two different ITR serotypes, use of capsid serotype 

mosaics, pseudopackaging rAAV genomes and self-complementary AAV2 vectors^^' 

to circumvent the rate-limiting second-strand DNA synthesis.^^"’

I will review important studies with AAV vectors in the following. AAV vectors 

haven been used extensively for ocular gene therapy. These will be reviewed in a 

separate chapter about ocular gene therapy.

Manno et al. transduced the liver of seven patients with severe hemophilia B using an 

AAV vector expressing human factor IX by infusing vector through the hepatic artery 

in a dose escalation study.''^^ The authors find that vector infusion up to 2 x lO'^ 

vector genomes per kg was not associated with acute or long-lasting toxicity and that 

therapeutic levels were achieved at the highest dose tested. However, different from 

highly successful pre-clinical studies with dogs^^^ and mice,^^'' therapeutic levels 

could only be achieved for about 8 weeks when a gradual decline o f factor IX was 

observed that was accompanied by asymptomatic elevation of liver transaminases that 

eventually resolved. Destruction of hepatocytes was caused by cell-mediated 

immunity targeting antigens of the AAV capsid. This is a remarkable finding because 

unlike factor IX, AAV capsid antigens, are not synthesized in transduced cells. MHC 

class I presentation pathways favor peptides derived from de novo produced proteins; 

nevertheless, alternative pathways exist that allow for appropriate presentation of 

proteins passively taken up by cells. These sufficed for recognition of AAV- 

transduced hepatocytes by CD8+ effector T cells. Unlike experimental animals, 

humans are naturally infected by AAV-2 during childhood. Because AAV is naturally 

replication defective, this initial infection invariably takes place together with a helper 

virus infection such as adenovirus. Although AAV-2 on its own may not induce
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inflammatory reactions needed for stimulation of a maximal adaptive immune 

response, in combination with the helper virus, which causes activation of the innate 

immune system, it is likely that CD 8+ T cells directed to the antigens of the helper 

virus and of AAV are formed. Upon controlling the infection, the frequency of AAV- 

specific CD8+ T cells would be expected to decline, leaving behind a small pool of 

memory T cells, which through homeostatic proliferation are maintained throughout 

the life of an individual. On re-exposure to AAV capsid, these memory CD8+ T cells 

are activated and eliminate the AAV capsid-harboring cells.

Chamberlain et a/^^ showed that AAV vectors can be used to rescue dystrophic 

muscle through U7 snRNA-mediated exon skipping. The majority o f the clinically 

severe Duchenne muscle dystrophy is caused by a frame shift or stop in the mRNA. 

The authors were able to achieve persistent exon skipping (exon skipping occurs at 

low frequency and sometimes eliminates the mutation). The mutated exon on the 

dystrophin mRNA of the mdx mouse was rescued by a single administration o f AAV 

vector expressing antisense sequences linked to a modified U7 small nuclear RNA. 

This resulted in the sustained production of functional dystrophin at physiological 

levels in entire groups of muscles and the correction of the dystrophy in those.

Strong neuroprotection of nigral dopamine neurons and rescue of the parkinsonian 

behavioral phenotype could be achieved in study by Luo et a/^^ who used AAV 

vectors to deliver glutamic acid decarboxylase, the enzyme that catalyzes synthesis of 

the neurotransmitter G ABA in excitatory glutamatergic neurons of the subthalamic 

nucleus in rats. The abnormalities of Parkinson’s disease are caused by alterations in 

basal ganglia network activity that includes the disinhibition of the subthalamic 

nucleus and excessive activity of the major output nuclei. After transduction, neurons 

were responding appropriately to electrical stimulation with G ABA release.

Another study with AAV vectors is remarkable in that it demonstrated successful 

targeting and correction of a genetic defect in stem cells ex vivo. Chamberlain et al. 

used a strategy of homologous sequence targeting to disrupt the dominant-negative 

mutant CO LlA l collagen gene to osteogenesis imperfecta.^^^ Similar to retroviral 

vectors described in this review chapter, the study authors harvested and transduced 

mesenchymal stem cells ex vivo. These cells can differentiate into a variety of tissues 

including bone, fat, cartilage and muscle. Transduced cells could be specifically re

transfused into bone most severely affected. One shortcoming is that the gene
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targeting strategy is not mutation specific. However, phenotypical correction is still 

possible because individual cells may synthesize entire collagen fibrils without 

mixing of peptide chains from different cells, genetic mosaics for lethal forms of 

osteogenesis imperfect have a mild clinical course and the cells expressing wild-type 

collagen may have a growth advantage.

An example of relatively non-specific gene therapy that is able to modify a complex 

dysfunction is the study by Haberman et al. who successfully treated a model of focal 

seizure genesis in the rat inferior collicular cortex. In this model, electrical stimulation 

of a specific region in the inferior collicular cortex causes brief poststimulus wild- 

running seizure activity, in which the seizure behaviors exactly coincide with 

localized after discharge. In addition, in the absence of any perturbation, the electrical 

stimulation threshold for seizure genesis remains stable for long periods o f time. The 

authors targeted the N-methyl-D-aspartic acid (NMDA) excitatory amino acid 

receptor with an AAV-delivered antisense oligonucleotide.

6.3.3.6. Herpes simplex virus
The size of complete genomic loci precludes their use in most viral systems with 

exception of herpes simplex virus type I (HSV-1) amplicon vectors. HSV-1 is an 

enveloped DNA virus that belongs to the herpesviridae family, subfamily 

alphaherpesvirinae. The virion is 120 to 200 nm in diameter and contains a double

stranded DNA genome of 152 kb. The transgene capacity is sufficient to 

accommodate approximately 95 percent of human genomic loci. Due to their 

neurotropism HSV vectors are attractive vehicles for gene therapy of neurological 

diseases and make for approximately 3 percent of all clinical gene therapy trials.

Disadvantages are similar to adenoviral vectors and include common immunity to 

HSV in the population and remarkable toxicity. Depending on whether amplicons or 

recombinant viruses are used the production can be technically demanding.

Two unique regions, termed UL and US for unique long and unique short, are linked 

by long and short internal repeat sequences (IRL and 1RS) in both directions and are 

flanked at the non-linker end by terminal repeats (TRL and TRS). Depending on the 

strain, the HSV-1 genome consists up to 81 genes of which approximately 50 percent 

are not necessary for growth in cell culture.^^^ Up to 50 kb of transfer DNA can be
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accommodated after deletion of these genes. HSV genes are grouped into immediate- 

early (IE or alpha) genes, early (E or beta) and late (L or gamma) genes. During lytic 

infection, VMW65, a tegument structural protein, activates the immediate early genes 

IPO, ICP4, ICP22, ICP27 and ICP477 which transactivate production of early genes. 

Early genes in return are responsible for nucleotide metabolism and DNA replication. 

Late genes are activated by early genes and code for structural proteins. This entire 

cycle that end with the death of the infected cell takes approximately 10 hours to 

complete.

Because herpes simplex virus is a human neurotropic virus use of derived vectors has 

mainly focused on transfer to the nervous system. A key feature of HSV is the ability 

to either proceed into a lytic life cycle or to persist as an intranuclear episome during 

latency. Because of the prevalence of HSV in the population, antibodies exist in most 

individuals.

The latency associated transcripts (LAT) located in the IRL region drive gene 

expression during latency and are involved in establishing of and reactivation from 

latency.̂ ^̂

HSV-1 vectors can be produced using either amplicons or recombinant HSV-1 

viruses. Amplicons contain the E l ori of E. coli, OriS, the HSV-1 origin of 

replication, HSV-1 packaging sequence and the transgene under control o f an 

immediate-early promoter and selectable m a r k e r . T h e  amplicon is transfected into a 

cell line that contains a helper virus which provides the missing structural and 

regulatory genes in trans. More recent amplicons utilize an Epstein-Barr virus derived 

sequence for episomal maintenance.^^'' Replication deficient recombinant virus can be 

constructed by deleting one of the immediate-early genes and providing it in trans 

(often ICP4). While these attenuated viruses can direct transgene expression to 

neuronal tissue, they are still toxic to neurons in cu l tu re .Dele t i on  of several 

immediate-early genes reduces cytotoxicity further and use of promoters that would 

be silenced otherwise in the wild type virus when latent. Such promoters are under 

investigation for long-term expression. Another option is use of replication- 

conditional mutants that can only replicate in certain cell lines that supply missing 

factors or enzyme e.g. the neurovirulence factor g34.5,^^' UTPase, ribonuclease 

reductase^^^ or thymidine kinase.^^^
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The main concern remains the strong inflammatory response to HSV-1 vectors at the 

application site as well as sites supplied by neurons originating from the area of 

injection/^'' In some studies fatality rates as high as 20 percent were observed among 

experimental a n i m a l s Y o r k  et al. found that removal of ICP47 can attenuate vector 

toxicity.^^^ Because HSV is neurotrophic by nature, gene therapy strategies have 

focused on neurological diseases. Potential uses of herpes simplex virus (HSV) 

vectors for gene therapy of neurodegenerative disorders and CNS malignancies.

HSV vectors had fallen in disfavor after initial optimism about exploiting its 

neurotropism and ability of episomal survival. Early studies received great attention: 

During et all showed that it is possible to maintain efficient behavioral and 

biochemical recovery for 1 year after gene transfer of human tyrosine hydroxylase in 

a Parkinson rat model with partially denervated striatum from 6-hydroxydopamine. 

Persistence o f tyrosinase could be detected by RNA and immunoreactivity.^^^ One 

problem is the immunogenicity of HSV thymidine kinase that is utilized now in 

suicide gene therapy when high levels of toxic acyclovir conversion products allow 

reliable ablation of expressing cell. However, HSV-tk may otherwise cause prolonged 

inflammation that is not desirable.^^^

HSV vectors have regained interest recently as their biology has become better 

understood. Exploiting neurotropism, the ability of the virus to spread through the 

nervous system and to form latent infections in neurons that last for the lifetime of the 

infected individual is the main topic in experimental applications. Replication- 

deficient HSV-1 vectors encoding human prepro-enkephalin were efficacious in 

reducing nociceptive behaviors and this reduction of nociceptive behaviors was 

abrogated by pretreatment using intrathecal opiate antagonist naloxone. Lu et al. 

demonstrated now that treatment of inflamed pancreas with enkephalin encoding 

HSV-1 recombinant vector reduces inflammatory damage and behavioral sequelae.

A fascinating finding is the seemingly paradox use of a potentially highly 

inflammatory virus to achieve both pain control and suppressed inflammation that 

provides better understanding of how close these two are. The study assessed the 

efficacy of pancreatic surface delivered enkephalin (ENK)-encoding herpes simplex 

virus type 1 (HSV-1) on spontaneous behaviors and spinal cord and pancreatic 

enkephalin expression in an experimental pancreatitis model. Replication-defective 

HSV-1 with proenkephalin complementary DNA was applied to the pancreatic
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surface of rats with dibutyltin dichloride (DBTC)-induced pancreatitis. On day 6, the 

treated rats had significantly improved spontaneous exploratory activities, increased 

met-ENK staining in the pancreas and spinal cord, and normalized c-Fos staining in 

the dorsal horn.

In an attempt to take advantage of HSV neurotropism and the HSV latency-associated 

promoter (LAP2) to attenuate damage to peripheral nerves, Chattopadhyay et al. 

transduced rat dorsal root ganglia.^^^ Interestingly, this could be achieved by 

subcutaneous rather than direct inoculation of replication-incompetent HSV-based 

vectors containing nerve growth factor (NGF) or neurotropin-3 (NT-3). When a pure 

sensory neuropathy was induced by overdose of pyridoxine and animals assessed 6 

months later the nerve damage was diminished in animals treated with the LAP2-NGF 

vector. Sensory amplitude, H-wave amplitude and behavioral measures of 

proprioceptive function were 30% to 85% of normal rats. Neurotrophin-3 treated 

animals had an even greater effect in preserving the largest myelinated fibers from 

degeneration.

A nonreplicating HSV vector expressing erythropoietin that was inoculated into the 

striatum of a MPTP mouse model of Parkinson disease was able to preserve 

behavioral function and tyrosine hydroxylase levels in the substantia nigra and 

dopamine transporter-immunoreactive terminal sin the striatum.^^^ Intranasal 

administration of the growth-compromised HSV-2 vector DeltaRR was able to 

prevent kainate-induced seizures and neuronal loss in rats and mice.^^" The anti- 

apoptotic HSV gene ICPIOPK was able to halt for at least 42 days kainic acid-induced 

seizures, neuronal loss, and inflammation, in both rats and mice.

6.3.4. Current Gene Therapy Trials
At the time of this writing a total of 1347 clinical gene therapy trials are under way or 

are awaiting approval (Figure 9) which are the result of intense basic science research 

and preclinical studies.

Clinical trials involving new drugs are commonly classified into four phases, each 

phase of which is treated as a separate clinical trial. The drug-development process 

will normally proceed through all four phases over many years. If the drug 

successfully passes through Phases I, II, and III, it will usually be approved by the
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national regulatory authority for use in the general population. Phase IV are post

approval studies. Extensive pre-clinical studies are conducted before clinical trials are 

started. It is difficult to count those in gene therapy but an estimate can be made with 

a Medline search for “gene therapy” as the Medical Subject Heading (MeSH is the 

U.S. National Library of Medicine's controlled vocabulary used for indexing articles 

for MEDLINE/PubMed that provides a consistent way to retrieve information that 

may use different terminology for the same concepts): an astonishing 17803 papers 

are concerned with this topic, 5580 of which are reviews.

Phase I trials are the first stage of testing in human subjects for which a small group 

of healthy volunteers of 20-80 is selected. This phase includes trials designed to 

assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of a drug. In 

March 2008, 820 gene therapy trials were underway (Figure 9).

Once the initial safety of the study drug has been confirmed in Phase I trials. Phase II 

trials are performed on larger groups (20-300) and are designed to assess how well the 

drug works, as well as to continue Phase I safety assessments in a larger group of 

volunteers and patients. In March 2008, 262 gene therapy trials were pending Phase II 

approval while 216 were already ongoing. When the development process for a new 

drug fails, this usually occurs during Phase II trials when the drug is discovered not to 

work as planned, or to have toxic effects. While some Phase II trials are designed as 

case series, other Phase II trials are designed as randomized clinical trials, where 

some patients receive the drug/device and others receive placebo/standard treatment.

Phase III studies are randomized controlled multicenter trials on large patient groups 

(300-3,000 or more depending upon the disease/medical condition studied) and are 

aimed at being the definitive assessment of how effective the drug is, in comparison 

with current gold standard treatment. Because of their size and comparatively long 

duration. Phase III trials are the most expensive, time-consuming and difficult trials to 

design and run, especially in therapies for chronic medical conditions. Thirteen gene 

therapy trials were pending Phase III approval and a total o f 36 were already in 

progress.

Phase IV trial is also known as Post Marketing Surveillance Trial. Phase IV trials 

involve the safety surveillance and ongoing technical support of a drug after it 

receives permission to be sold. The safety surveillance is designed to detect any rare
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or long-term adverse effects over a much larger patient population and longer time 

period than was possible during the Phase I-III clinical trials. Because of the newness 

of gene therapy, no gene therapy trial has reached this phase yet.

TRIAL PHASES

Phase I/ll 262

216

Phase li/ill I 13 

Phase III g  36

Figure 9: Gene therapy trials by phases.

Adenoviral and retroviral vectors account for 25% and 23% of vectors used or 337 

and 304 trials, respectively (Figure 10). Naked DNA follows closely with surprising 

18% (n= 244) of trials and lipofection (8%, n=102). In contrast, adeno-associated 

(AAV) and lentiviral vectors, the two most promising vector types for long-term 

therapy of noncycling cells, contribute to only 4% (n = 54) and 0.8% (n =  11) of 

trials, respectively. Indications of the AAV studies range from cystic fibrosis to 

bleeding disorders and Parkinson disease, while most lentiviral vector studies are 

concerned with treatment of already HIV positive subjects. The asymmetry of only a 

few studies with AAV and lentiviral vectors in contrast to numerous retro- and 

adenoviral studies reflects how much less preclinical experience with these vectors 

exists as well as how challenging large-scale production and safety concerns are.

Given that with 1 lethality per 1,000,000 vaccinia virus -  a poxvirus - is potentially 

more dangerous than AAV it is equally surprising that it is used more often (4.9%, 

n=66) than AAV (Figure 10). Poxvirus itself is used in 61 or 4.5% of gene therapy 

trials, respectively. Herpes virus has become more popular in recent years and there 

are currently 43 trials (3%).
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Vibrio cholerae 

Venezuelan equine encephalitis (VEE) virus...

Streptococcus mutans 

Simian virus 40 

Sendai virus 

Semliki forest virus 

Poliovirus 

Newcastle disease virus 

E. coli

Salmonella typhimurium 

Naked/Plasmid DNA + Adenovirus 

Listeria m onocytogenes 

Measles virus 

Adenovirus + Retrovirus 

Saccharomyces cerevisiae 

Gene gun 

Flavivirus 

Lentivirus 

RNA transfer 

Poxvirus + Vaccinia virus 

Unknown 

Herpes simplex virus 

Adeno-associated virus 

Poxvirus 

Vaccinia virus 

Lipofection 

Naked/Plasmid DNA 

Retrovirus 

Adenovirus

VECTOR TYPES

102

244

304

337

Figure 10: Vector types used in gene therapy clinical trials (data from free online 
database provided by The Journal of Gene Therapy).

By far the most common indication for short-term gene therapy is cancer (n=896), 

often fatal and with few therapy options, followed by 121 cardiovascular disease 

trials, 110 monogeneic and 89 infections disease gene therapy trials (Figure 11). A 

closer look at specific diseases reveals that most monogenic disorders are severe, 

often lethal disorders for which no good treatment options exist in most cases. Table 1 

provides a list of specific disease in the above categories.
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Ocular diseases 1 12

Neurological diseases 1 17

Others ■  26 1

Healthy volunteers ■  26

Gene marking

Infectious diseases ■ ■  89

Monogenic diseases 110

Cardiovascular diseases 121

Cancer diseases

DISEASE TYPES

896

Figure 11: Disease types addressed by gene therapy clinical trials (data from free 
online database provided by The Journal of Gene Therapy).

Although the vast majority of all studies are Phase 1 studies to assess the safety, first 

therapeutic successes have been reported. The treatment of a fatal form of severe 

combined immunodeficiency-Xl (SCID-Xl), an X-linked hereditary disorder 

characterized by an early block in the development of T and natural killer (NK) cells 

due to mutations in the yc cytokine receptor subunit, is the most prominent one. 

Stimulated hematopoietic stem cells were transduced ex vivo with a murine leukemia 

viral vector expressing the receptor subunit and re-infused.^^^ T and NK cells counts 

and function was restored to comparable levels of age-matched controls in 9 of 10 

children. This protocol profited from the selection advantage that yc-expressing 

lymphocyte progenitor cells had over the present cell population affected by the 

mutation. No exogenous selection strategy had to be applied.
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Monogenic disorders Cancer

Cystic fibrosis Gynecological

Severe combined immunodeficiency 

(SCID)

breast, ovary, cervix

Alpha-1 antitrypsin deficiency Nervous system

Hemophilia A and B glioblastoma, leptomeningeal carcinomatosis, glioma, 

astrocytoma, neuroblastoma

Hurler syndrome Gastrointestinal

Hunter syndrome colon, colorectal, liver métastasés, post-hepatitis liver cancer, 

pancreas

Huntington’s chorea Genitourinary

Duchenne muscular dystrophy prostate, renal

Becker muscular dystrophy Skin

Canavan disease melanoma

Chronic granulomatous disease 

(CGD)

Head and neck

Familial hypercholesterolemia nasopharyngeal carcinoma

Gaucher disease Lung

Fanconi's anemia adenocarcinoma, small cell, non small cell

Purine nucleoside phosphorylase 

deficiency

Mesothelioma

Ornithine transcarbamylase 

deficiency

Hematological

Leukocyte adherence deficiency leukemia, lymphoma, multiple myeloma

Gyrate atrophy Sarcoma

Fabry disease Germ cell

Familial amyotrophic lateral sclerosis

Junctional epidermolysis bullosa Neurological diseases

Wiskott-Aldrich syndrome Alzheimer's disease

Lipoprotein lipase deficiency Carpal tunnel syndrome

Late infantile neuronal ceroid Cubital tunnel syndrome
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lipofuscinosis

RPE65 mutation (retinal disease) Diabetic neuropathy

Mucopolysaccharidosis Epilepsy

Multiple sclerosis

Cardiovascular disease Myasthenia gravis

Peripheral vascular disease Parkinson's disease

Intermittent claudication Peripheral neuropathy

Critical limb ischemia

Myocardial ischemia Ocular diseases

Coronary artery stenosis Age-related macular degeneration

Stable and unstable angina Diabetic macular edema

Venous ulcers Glaucoma

Vascular complications o f diabetes Retinitis pigmentosa

Pulmonary hypertension Superficial comeal opacity

Heart failure

Other diseases

Infectious disease Inflammatory bowel disease

HIV/AIDS Rheumatoid arthritis

Tetanus Chronic renal disease

Epstein-Barr virus Fractures

Cytomegalovirus infection Erectile dysfunction

Adenovirus infection Anemia of end stage renal disease

Japanese encephalitis Parotid salivary hypofunction

Hepatitis C Type I diabetes

Hepatitis B Detrusor overactivity

Influenza Graft versus host disease

Table 1: Specific diseases addressed in current gene therapy trials.
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The long-term outcome of this promising trial experienced a setback when two 

patients developed T cell leukemia. While the mechanism is still under investigation, 

it is thought that a combination of several factors led to this outcome in 2 of 8 

patients.^^* The clones of both patients showed retrovirus vector integration in 

proximity to the LM 02 proto-oncogene promoter, leading to aberrant transcription 

and expression of LM 02, a transcription factor considered a central regulator of 

hematopoiesis. It is possible that insertion of onco-retroviral vectors can trigger 

deregulated premalignant cell proliferation by retrovirus enhancer activity on the 

LM 02 gene promoter at a much higher rate than previously thought .Addi t iona l  

factors might have been a varicella-zoster virus infection five months before 

clinically detectable lymphoproliferation that increased the immune reactivity of the 

T-cell clone and the selective growth advantage of the transduced cells. As the sister 

and a first-degree relative of one proband developed medulloblastomas there might 

have been an additional genetic predisposition for childhood cancer.

Only low levels of transduced progenitor cells were observed in an earlier treatment 

of adenosine deaminase (ADA) deficiency in another study, where patients received 

ADA preparations in addition to the transduced cells. This probably prevented 

selective outgrowth of the transduced cells,^^ '̂^^  ̂as supported by the observation that 

the number of peripheral blood mononuclear cells expressing the transgene increased 

after external application of ADA was stopped. B and NK cells counts decreased in 

these patients, but the number of T cells and function remained within normal limits.

Use of MLV vectors, based on type C retroviruses, requires extensive manipulation of 

stem cells and stimulation with cytokines to induce cell cycling to achieve 

transduction.^"^^’ This is undesirable because it may result in differentiation. The 

development of lentiviral vectors, which are able to transduce non-dividing cells at 

high efficiencies, will facilitate the long-term genetic manipulation of such tissues.
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T r ia l  ID  T it le

US-488
A Phase I Open-Label Clinical Trial of the Safety and Tolerability of Single Escalating Doses of 
Autologous CD4 T Cells Transduced with VRX496 in HIV Positive Subject

US-646

A Phase I/II, Open-Label, Multicenter Study to Evaluate the Safety, Tolerability, and Therapeutic 

Effect of Repeated Doses of Autologous T Cells Transduced with VRX496 in Antiretroviral 
Experienced HIV-Positive Patients

US-667

A Phase I/II, Open-Label, Single Center Study to Evaluate the Tolerability, Trafficking and 

Therapeutic Effects of Repeated Doses of Autologous T Cells Transduced with VRX496 in HIV- 
Infected Subjects

US-725
A Phase I Pilot Study of Safety and Feasibility of Stem Cell Therapy for AIDS Lymphoma using 

Stem Cells Treated with a Lentivirus Vector Encoding Multiple Anti-HIV RNAs

US-737

A Pilot Study of Safety and Feasibility of T Cell Immunotherapy Using Lentivirus Vector- 
Expressed RIMAi in Autologous T Cells of HIV-1 Infected Patients Who have Failed Anti-Retroviral 
Therapy

US-758 Lentiviral-Mediated, Hematopoietic-Directed Gene Therapy for MPS VII

US-791

Treatment and Biological Imaging of Patients with Locally Advanced or Metastatic Melanoma 

with Lentiviral Vector MART-1 TCR/HSVl-sr39k (FUW-Ml-TCR/sr39k) Engineered Lymphocytes, 
MART-1 26.35-Pulsed Dendritic Cells, and Interleukin-2 after a Nonmyeloablative Conditioning 

Regimen

US-793

Pilot Study of Redirected Autologous T Cells Engineered to Contain Anti-CD19 Attached to TCRz 

and 4-1 BB Signaling Domains in Patients with Chemotherapy Resistant or Refractory CD19+ 

Leukemia and Lymphoma

US-852

A Phase I Open-Label Clinical Trial for the Treatment of Beta-Thalassemia Major with Autologous 

CD34+ Hematopoietic Progenitor Cells Transduced with Thalagen, a Lentiviral Vector Encoding 

the Normal Human Beta-Globin Gene

US-871
A Phase I/II, Open-Label Study to Evaluate the Safety and Antiviral Activity of Autologous T- 
Cells Transduced with VRX496 in Treatment of Naive Subjects with Earl Stage HIV-1 Infection

US-875
A Rollover Study to Evaluate Safety and Therapeutic Effect of Re-infusing Subjects Who 

Completed Participation in the VRX-496-USA-05-002 Trial with Autologous T Cells with VRX496

Table 2: Lentiviral vector trials.

Noteworthy is also the clinical trial of Manno et al. o f hemophilia B patients who 

received intramuscular injections of adeno-associated viral (AAV) vectors expressing 

coagulation factor AAV vectors are a good choice for long-term therapy, 

because they are capable of genomic integration, albeit this is not a required step as in 

retroviral vectors.^^ '̂^^^ These patients showed some clinical benefits, although only 

low levels of factor IX were detected.

The successes with retroviral and adeno-associated viral vectors contrast the problems 

encountered with the first vectors to enter human trials, adenoviral (Ad) vectors.
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Potent immune responses to vectors and transduced tissue^^^’ were encountered, the 

magnitude of which became apparent by the death of a participant of a phase I trial/^"^

A total of 11 gene therapy trials with lentiviral vectors are underway at this point. 

While most address HIV, four trials differ in that they employ HIV vectors in non- 

HIV positive subjects: US-758 for hematopoietic-directed gene therapy for 

mucopolysaccharidosis VII, US-791 for patients with locally advanced or metastatic 

melanoma treated with engineered lymphocytes, US-852 for the treatment of beta- 

thalassemia major with autologous progenitor cells and US-793 to redirect autologous 

T cells to refractory leukemia and lymphoma. Few details are published about these 

trials perhaps because of the commercial interests behind them.

More recently, the first ocular gene therapy trials have begun. US-589 is a Phase 1 

study in glaucoma subjects receiving SCH 412499 (rAd-p21) administered as a single 

injection into the subconjunctival space prior to primary trabeculectomy. The concept 

behind this trial is less innovative as at least two well established anti-frbrotic agents 

are in use, mitomycin C and 5-fluorouracil that work very well.

Bainbridge et al. report that early results of a phase I ocular gene therapy trial for 

Leber’s amaurosis, an early-onset, severe retinal dystrophy caused by mutations in the 

gene encoding retinal pigment epithelium-specific 65-kDa protein that is associated 

with poor vision at birth and complete loss o f vision in early adulthood. The authors 

administered AAV vectors 2/2 expressing RPE65 complementary DNA (cDNA) 

under the control of a human RPE65 promoter to three young adults and observed in 

one patient significant improvement in visual function on microperimetry and on 

dark-adapted perimetry. This patient also showed improvement in a subjective test of 

visual mobility. This study was mainly concerned with safety and used adults with 

advanced disease and poor vision (below 20/120). It will be interesting to see how 

pediatric patient will benefit from the transfer as planned in the near future. Two 

additional trials started at Scheie's Center for Hereditary Retinal Degenerations, 

University of Pennsylvania and the University of Florida College of Medicine in 

Gainesville and the other at the University of Pennsylvania and Children's Hospital of 

Philadelphia.
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6.3.5. Ocular Gene Transfer
The chronicity of the majority of eye diseases poses a distinct challenge to physician 

and patient, often demanding lifelong management and good compliance with 

complicated medication regimens. In addition, treatment o f ocular tissue by current 

conservative means is most the time only indirect and non-specific. Most ocular cell 

types are terminally differentiated and non-dividing, which has further implications 

for disease outcomes in that degenerative diseases often are characterized by a 

permanent, cumulative loss of function and no therapy is available. Chronic, 

progressive ailments of the optic nerve and the outflow tract, o f the retina and of the 

cornea constitute leading causes of blindness. The impact on quality of life for the 

individual is dramatic and the burden of health care expenses and loss of labor is very 

high.^^^ Gene therapy of chronic eye diseases with a long-term expressing vector may 

offer a focused and cost-effective therapy option, but choice of vector is limited to 

ones that allow stable long-term expression for the therapeutic goal of cell 

preservation.

Other ocular diseases are characterized by proliferation, such as neovascularization of 

retina, choroid, or cornea and require an entirely different choice o f therapeutic gene 

and vector system. Transient expression to induce controlled cell death or stasis is a 

common goal in these cases.

Gene transfer has the advantage over drug application that sustained expression can 

be achieved locally, while minimizing any risk of systemic adverse effects. Ocular 

gene transfer usually requires a surgical approach because systemic vector application 

does not result in targeting to ocular structures. This can be accomplished by standard 

procedures through subretinal, intravitreal or intracameral injection. Since ocular 

tissues are highly compartmentalized, the transduction pattern by a given vector is 

dependent on the site of its intraocular administration. While subretinal injection of 

vectors largely results in gene transfer to cells lining this space (retinal pigment 

epithelium and photoreceptors),^^’ intravitreally or intracamerally injected vectors 

follow the flow of aqueous humor along retinal ganglion cells, lens, ciliary and iris 

epithelium, the trabecular meshwork and the comeal endothelium.

Host immune responses during ocular gene therapy are often limited because 

intraocular vectors are sequestered from the systemic circulation and additionally 

suppressed by anterior chamber-associated immune deviation (ACAID) or inhibition
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of delayed-type hypersensitivity (DTH) in the subretinal s p a c e . T h i s  

phenomenon can prevent development not only of cytotoxic T cells, but also of 

complement fixing antibodies. Other factors have been identified in the eye that 

ameliorate immune responses, such as transforming growth factor-p. Fas ligand, 

melanocyte-stimulating hormone, vasoactive intestinal peptide, and calcitonin gene- 

related peptide.^^ '̂^^^

6.3.5.1. Anterior Segment
6.3.5.1.1. Corneal Disease

Few vectors are able to achieve efficient and long-term transduction of structures of 

the anterior segment. Adenoviral vectors have been used extensively, but resulted 

only in short-term expression most the time,^^^’ as did and

lipopolysaccharide (LPS).^^^ Transduction of cornea was limited to the endothelial 

layer^^ "̂^^  ̂in most cases. Longer expression can be achieved with AAV^^^ or 

lentiviral vectors.^^^ Gene therapy of for comeal disease will be reviewed in the 

following in a more limited fashion as the main focus of this thesis is gene transfer to 

the outflow tract for future glaucoma therapy and the retinal pigment epithelium.

The major topics of comeal gene therapy are comeal transplantation and graft 

rejection, herpetic stromal keratitis, comeal neovascularization, comeal haze and 

mucopolysaccharidosis VII. These diseases do not share many common features: 

while some are chronic or inherited, some are more acute. Most are leading causes of 

vision loss from comeal disease with exception of mucopolysacharidosis which is an 

attractive target because the genetics and molecular pathway is well understood and 

there are little therapeutic altematives. Advantages of the comea as a target tissue are 

that it many features of a live tissue culture: it is easily observable, spread out in a 

plane more than three dimensionally and transparent allowing for immediate 

inspection of the few layers present and non-invasive treatment. Because it is 

generally not vascularized comeal transgenes are less accessible by the immune 

system than in perfused organs. Sophisticated morphometric technology is available 

as a result o f recent developments in comea and refractive surgery. Potentially 

facilitating gene therapy is the ocular immune privilege that is the result o f the 

mentioned blood-ocular barrier that physically prevents cellular infiltration, the low 

expression of major histocompatibility complex class I and II molecules and the lack
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of lymphatic drainage. Active aspects of ocular immune privilege include the 

constitutive expression of inhibitors of complement activation by comeal endothelial 

cells and of Fas ligand (which induces apoptosis of activated T cells) by comeal cells. 

The aqueous humor further contributes to immune privilege as it contains 

immunosuppressive factors. The anterior chamber-associated immune deviation is a 

descriptive term applied to an immune response that is deficient of B cells that secrete 

complement-fixing antibodies and T cells that mediate delayed hypersensitivity. The 

result of ocular immune privilege is that immune defense takes place with no 

inflammation to preserve comeal clarity, a vitally important condition. Finally, the 

comea itself takes an active role in immune protection of the stmcture and function of 

the eye surface in that comeal epithelial cells and keratocytes secrete cytokines.

First gene transfer studies to the comea appeared in 1994.^^^ Aheady in 1996 attempts 

were made to prevent graft rejection by ex vivo manipulation of the comea prior to 

transplantation,^^^followed by Rouse et al. to treat and Rakoczy et al.̂ ®̂  to

address comeal neovascularization.

Graft rejection is the major reason for transplant f a i l u r e . G r a f t  rejection is mediated 

by elevated levels o f Thl cytokines, while Thl and Th2 cells are inhibitory. Many 

gene therapy approaches therefore attempt to support Th2 or inhibit Thl pathway. 

Several studies have investigated comeal gene transfer of IL-4̂ "̂̂  and IL-10,^^^ both of 

which are Th2 cytokines, and CTLA4-Ig^^^ and P40 IL-12^ "̂  ̂which are antagonists of 

Thl response. Other interesting immunomodulary molecules are viral IL-10, a 

homolog to the human IL-10 that exhibits the immunosuppressive properties but lacks 

the immunostimulatory effects of human IL-10^^^ and indoleamine 2,3-dioxygenase, 

an intracellular enzyme that arrests activated T cells in the G1 phase.^^^ Stout et al. 

used a different approach by suppressing activation of endothelial cells and 

neovascularization that are related to graft rejection.^®^ Gene delivery of 

endostatimkringle 5 of plasminogen, a fusion protein that prevents endothelial cell 

proliferation and migration and also has anti-angiogenic properties was transduced 

into rabbit comea using HIV vectors. Graft survival from 14 and 18 days in the 

control group was extended to at least 39 days.

Different strategies that have been proposed to address herpes simplex virus keratitis 

include vaccination against a primary ocular HSV-1 'mÎQcXxon, prevention o f recurrent 

HSV reactivation and treatment of existing HSV keratitis symptoms as well as anti-
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neovascular approaches. Nebum et al. used recombinant vaccinia virus as a means to 

vaccinate against viral envelope glycoproteins as early as 1990 but provided only a 

small amount of protection.^^^ Recombinant HSV-1 virus encoding for cytokine 

adjuvants were used by Osorio et al.^*̂  Mice immunized with IL-4-expressing virus 

cleared the virus from their eyes more rapidly than mice immunized with IL-2- or 

IFN-gamma-expressing virus. The same author constructed and compared then 

recombinant HSV-1 viruses expressing IL-12p35 or IL-12p40 (subunits of IL12 with 

different biological activity) with the previous IL-4 expressing virus by 

intraperitoneally immunized BALB/c mice.^^^ IL-12 had been shown to act as a 

molecular adjuvant by bridging both innate and adaptive immunity but toxicity was 

observed after systemic application in the past. IL-12 is a regulatory protein produced 

by activated hematopoietic phagocytic cells and dendritic cells. Biological activities of 

IL-12 include growth stimulation of activated CD4^ and CD8^ T cells and natural 

killer cells. HSV-I expressing IL12-p35 exhibited the lowest virus replication, more 

rapid virus clearance and the lowest level of reactivation in the eyes after virus 

challenge without the toxicity seen with IL-12.

Dahesia et al̂ ^̂  and Wasmuth et al̂ "̂̂  attempted to attenuate or prevent recurrence o f  

HSV keratitis and comeal symptoms in relative early stages by topical ocular 

administration of plasmid DNA encoding antigens and cytokines and application of 

TNF-alpha-antisense oligonucleotides. DNA encoding the cytokines IL-4 or IL-10, 

but not IL-2 or interferon-gamma, modulated the severity o f the immunoinflammatory 

response to subsequent comeal infection with HSV. The antisense strategy diminished 

the release of TNF-alpha from lymphocytes in HSV-1-infected comeas, mitigating the 

course of HSV keratitis to some extent. Anti-neovascular therapy for HSV keratitis 

tries to prevent infiltration of CD4+ T cells into the stroma and derived from the 

observation that IL-12 can suppress comeal lesions via anti-angiogenesis. Various 

investigators have administered naked DNA encoding IL-18,^^^ RNAi knockdown of 

VEGF^^^ or MMP-9^'^ to prevent neovascularization. All o f these strategies worked in 

the short term decreasing neovascularization and reducing keratitis.

Corneal neovascularization can be caused by infection (such as the previously 

mentioned HSV keratitis), inflammation of various cause and trauma. Common 

animal models try to mimic these conditions by chemical, mechanical injury or
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implantation of angiogenic pellets. Anti-VEGF strategies are prevailing among anti- 

neovascular gene therapy as VEGF is the most potent neovascular molecule known: 

Lai et al. used adenoviral vectors to express FLtl, a VEGF receptor that can function 

as a sink^^^ resulting in protection of 92% of animals compared to control, while 

Stechschulte et al. found that naked plasmid cDNA alone injected under pressure in 

mouse comea effectively prevented neovascularization.^'^ Other authors have fused 

FLt23K, Flt24K, VEGF-binding domains of Fit 1 with KDEL, an endoplasmic 

reticulum retention peptide or albumin polyplexes as vehicles for Flt23K DNA to 

inhibit VEGF intracellularly.^'^’ RNAi^'^ and adenovirally encoded antisense 

VEGF^^' successfully knocked down VEGF. IE-18 similarly suppressed 

neovascularization as previously ment ioned.^Naked DNA administration of IL-1 

receptor antagonist that was shown in a model o f penetrating keratoplasty to reduce 

VEGF expression was unable to affect VEGF expression in a model of comeal 

neovascularization.^^^ Another interesting recent study that has potential to work 

longer term is that of Cheng et al. who used an AAV vector expressing angiostatin for 

subconjunctival injection in a model of alkaline induced comeal 

neovascularization.^^^ Surprisingly, angiostatin was found by PGR neither in the 

conjunctiva nor comea but limited to the extraocular muscle insertion sites suggesting 

serotype specific transduction as seen at other vector injection sites. The authors 

nevertheless found significant reduction of comeal neovascularization in the area of 

injection. As the main criticism the authors label regression of neovascularization 

what in fact is prevention of neovascularization as transduction is performed 3 weeks 

ahead of the alkali bum rather than in the clinically realistic, reverse order.

Several gene therapy studies have been conducted to address comeal haze, clouding 

or deposits some of which have similar approaches. Comeal haze can be a 

complication of excimer laser procedures used in refractive surgery and are a result of 

fibroblast proliferation. Therapeutic transgenes used were the dominant negative 

mutant cyclin G l, a survival factor that triggers apoptosis in various proliferative 

cells,^^"' or a suicide gene/prodmg combination of a retrovims encoding the HSV 

thymidine kinase gene with gan c i c lo v i r . HS V  thymidine kinase transforms 

ganciclovir to a toxic metabolite in proliferating keratocytes killing them.

A different condition that is associated with comeal deposits is 

mucopolysaccharidosis VII, a lysosomal storage disease caused by deficiency o f the
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enzyme beta-glucuronidase and the least common one. Treatment of comeal opacities 

is more of academic interest because of the rarity of this disease and because 

potentially life threatening issues need to be addressed first. A study by Kamata et al. 

showed widespread transgene expression of adenoviral vector mediated beta- 

glucuronidase transfer either intracameral injection or intracomeal administration 

(lamellar keratotomy), and rapid elimination of the lysosomal storage in comeal 

keratocytes occurred. This study is striking in how efficiently such a severe metabolic 

disease can be cured in local tissue and that the pathology of adjacent tissue resolves 

as well.^^^

6.3.5.1.2. Glaucoma
Although glaucoma is a leading cause of blindness at an age that has a maximum 

impact on the most productive years and is generating more costs than other leading 

causes of blindness not to mention the personal tragedies, gene therapy o f glaucoma is 

in its infancy. This is because the molecular pathophysiology is still not understood 

and in contrast to many degenerative retinal diseases, single genetic defects are the 

rare exception. Congenital glaucoma with single gene defects present with a 

developmental dysgenesis of the outflow tract that is already completed by the time or 

birth. This cannot be addressed by gene therapy anymore. Goals in gene therapy for 

the most common form of glaucoma, primary open angle glaucoma, are therefore to 

increase survival of retinal ganglion cells in the back of the eye or to facilitate outflow 

of aqueous humor in the fi*ont of the eye as well as to address issues of glaucoma 

surgery by adjunctive therapy (e.g. suppression of fibrosis in filtering blebs). The 

principle is to get an exogenous gene with a product that is therapeutically useful 

albeit not necessarily directly related to pathogenesis.

6.3.5.1.2.1. Outflow Tract Gene Transfer
Genetic modification of the aqueous humor outflow site o f mice, rabbits, rats, 

monkeys and human donor eyes^"'"'’ has been attempted before with a

variety of vectors, but was mostly unspecific and short-lived, with exception of 

lentiviral v e c t o r s . N o n - v i r a l  methods are generally impeded by low transfection 

efficiency and only transient expression. Hangai et al. used fusogenic liposomes from
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hemagglutinating virus of Japan to transfer LacZ as well as fluorescein isothiocyanate 

(FITC)-labeled phosphorothioate oligonucleotides into the outflow tract of rats and 

rhesus monkeys. Interestingly, beta-galacosidase expression could be visualized 

longer than in adenoviral vector mediated similar transduction protocols perhaps due 

to lower immunogenicity. The authors report that expression could be followed for 

60 days in rats and 30 days in monkeys. FITC fluorescence could be seen for as long 

at 14 days in rat and 7 days in monkeys. While this transfer system makes for a safe 

way of gene transfer, transfer efficiency is disappointing both in numbers of cells 

transduced and expression levels per single cell.^^^

Comes and Borras investigated whether naked siRNA could be delivered to human 

TM in anterior chamber cultures by direct perfusion.^^'' SiRNAs were directed against 

the matrix Gla protein and the glucocorticoid receptor. With this simple and 

straightforward approach using readily available, unmodified siRNA, matrix Gla 

protein expression was silenced in the trabecular meshwork perfused with naked 

MGP siRNA by 95% and the glucocorticoid receptor by 93%, respectively. 

Pretreatment of glucocorticoid receptor siRNA followed by dexamethasone treatment 

caused a reduction of myocilin expression, a glaucoma associated gene, by 99%.

A follow up study to prior work in which accidental transduction of the anterior 

segment was seen,^^' Budenz et al. injected purified replication-deficient adenoviral 

vectors with a CMV-promoter driven beta-galactosidase expression cassette into the 

anterior chamber o f adult CD-I mice.^^^ Mice were sacrificed and processed for beta- 

galactosidase expression histochemically from 2 to 21 days. Expression was seen in 

comeal endothelium and trabecular meshwork for only 14 days after injection. The 

authors noted that despite early loss of expression there was no toxicity observed in 

transduced tissue. The expression levels and extent of expression appear to be rather 

marginal in the data published.

Borras et al. came to similar conclusions with adenoviral gene transfer to the anterior 

segment but in contrast to Budenz et al. the authors did observe a severe inflammatory 

response. In this study, anterior segment adenoviral gene transfer was performed in 

rabbits. Rabbits were injected once with 20 pi containing 8x10^ TU and evaluated 

48 hours after injection. Beta-galactosidase expression was seen in comeal 

endothelium, the anterior endothelium of the iris and the trabecular meshwork. 

Transduction of lens endothelium led to endothelial decompensation with cell
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detachment and comeal opacification highlighting the toxicity in some species of 

these first generation adenoviral vectors with E l deletion and E3 inactivation. 

Inflammatory responses included a severe anterior uveitis in some animals requiring 

sacrifice. Borras later studied transduction of perfused anterior human segments and 

porcine anterior segments with the same adenoviral v e c t o r . I n  contrast to the 

previously in vivo transduced rabbit eyes, transduction of these eyes ex vivo was 

tolerated much better at lower doses o f 10 ,̂ 10  ̂and 10  ̂TU and did not affect outflow 

facility. At 10  ̂TU the outflow facility was reduced suggesting toxicity. Transduction 

of along the outflow pathway was observed that included the trabecular, 

juxtacanalicular trabecular meshwork, and the inner wall of Schlemm's canal. 

Expression of the reporter enzyme was seen at 7 days. Later studies by the same lead 

author in monkeys with an eGFP expressing vector led to gonioscopically observable 

fluorescence in the trabecular meshwork.^^"' Ten to 100 fold more transducing units 

were used despite the previously determined toxicity threshold of below 10  ̂TU in 

other species but similar eye size. Two monkeys were injected with 10  ̂TU and two 

more with 10  ̂TU due to anticipated difficulties visualizing fluorescence with a direct 

and insensitive detection system (personal communication). eGFP fluorescence was 

seen at both titers tested. One monkey received four consecutive injections into the 

same eye of 10  ̂TU over a 7 month period. Expression lasted 3-4 weeks with little 

clinical signs of inflammation. In the monkey injected repeatedly, expression was 

again seen for 3-4 weeks but induced severe iritis and comeal decompensation on the 

fourth occasion. These results demonstrated the shortcomings of adenoviral gene 

transfer that is limited to a short amount of time likely due to the episomal state of the 

DNA and immunogenicity resulting in almost immediate failure with repeat 

injections. The study did not distinguish between potential immunogenic substances 

(adenoviral proteins versus eGFP) but eGFP expression has been observed long-term 

in various animals including monkeys^^^ and was tolerated well in the past.

Kee et al. tried to take adenoviral gene transfer to the ocular outflow tract a step 

further by using a therapeutic gene, stromelysin.^^^ MMP-3 (Stromelysin-1) can break 

down the extracellular matrix but has to be activated before that as other matrix 

metalloproteinases. Matrix metalloproteinases break down extracellular matrix during 

physiological processes such as embryogenesis, reproduction and tissue remodeling 

but also in disease processes such as arthritis and metastasis. Almost all MMPs are
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secreted in an inactive zymogene form (proprotein) that requires activation by 

extracellular proteinases. MMP-3 degrades fibronectin, laminin, collagen III, IV, IX 

and X as well as cartilage proteoglycans.

Stromelysin perfusion has been demonstrated to increase outflow f a c i l i t y , T h e  

authors injected vectors intracamerally in rat eyes and found stromelysin expression 

in trabecular meshwork, iris and the uveoscleral outflow pathway. This study was 

hampered by the lack of stromelysin activation and a resulting lack of outflow change. 

Outflow therapy with matrix metalloproteinase gene transfer remains an attractive 

option but attention must be paid to the complex biochemistry and interaction of these 

enzymes. Constitutively active matrix metalloproteinases have been described which 

may be more useful for this purpose.

In perfused human anterior segments. Ads carrying the dominant-negative RhoA 

effectively transduced the TM and increased outflow facility s l i g h t l y . I n  this study 

a CMV promoter driven dominant-negative form of RhoA with a single amino acid 

substitution of Thrl9 to Asn was expressed by a replication-deficient adenoviral 

vector in perfused human anterior segment cultures. At 66 hours post transduction, 

anterior segments experienced an increase in outflow facility of 32.5%. TM cells 

showed a reduction in actin stress fibers and of the focal adhesion-containing protein, 

paxilin. The authors interpreted the increased outflow as a loosening of the cell- 

substrate and cell-cell attachments along the outflow pathway. The Rho family of 

proteins belongs to the larger Ras superfamily of GTP-binding proteins and has been 

shown to regulate a complex network of cytoskeleton-dependent cell functions. 

Manipulation of any content of this pathway harbors the risk of triggering cell 

migration and cell division ultimately resulting in cancer. Any vector with this 

potential should have a suicide gene cassette as well to allow ablation e.g. by HSV-tk 

conversion of acyclovir. This is still not a sufficient solution for non-integrating 

vectors as the cancer cells cannot be ablated anymore once the transient expression is 

extinguished.

In human TM cells. Ad carrying aquaporin I induced an 8.7% increase in resting cell 

volume that paralleled an 8% decrease in paracellular permeability of infected 

monolayers.^^^ Conversely, aquaporin antisense adenoviral vector transduced cells 

had a reduced cell volume by 7.8%. It is possible that one way how prostaglandin 

analogues might increase conventional outflow is via an observed aquaporin
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downregulation.^^^ Because cell size is able to regulate outflow through the trabecular 

meshwork, gene therapeutic knockdown of aquaporin might increase outflow facility. 

Results of transduction of perfused anterior chambers have not been published yet.

The original idea of this author that aquaporin is responsible for water passage from 

the anterior chamber directly through trabecular meshwork cells into Schlemm’s 

canal^^^ appears to be too simplistic and not applicable to glaucoma gene therapy.

Caldesmon is another protein that participates in the regulation of actin stress fibers 

and their manipulation is able to change outflow. Gabelt et al. over-expressed rat non

muscle caldesmon in human trabecular meshwork cells of cultured human and 

monkey anterior segments and found an increase of outflow facility by 43% at 66 

hours (human) and 35% (monkey), respectively .H isto logical studies showed that 

stress fibers gradually disappeared and novel actin structures were formed.

Caldesmon is a calmodulin- and actin-binding protein that regulates smooth muscle 

and nonmuscle contraction. The conserved domain of this protein possesses the 

binding activities to Ca^^-calmodulin, actin, tropomyosin, myosin, and phospholipids. 

This protein is a potent tonical inhibitor of the actin-tropomyosin activated myosin 

Mg-ATPase, and serves as a mediating factor for Ca^^-dependent inhibition of smooth 

muscle contraction. Caldesmon over-expression prevents focal adhesion and stress 

fiber formation even if the cells constitutively active Rho suggesting that caldesmon is 

operating downstream of the Rho signaling pathway.

The same group also studied C3 transgene expression and its effect on actin and 

cellular adhesions in cultured human trabecular meshwork cells and on outflow 

facility of cultured anterior monkey s e g m e n t s . C 3  transferase is an exoenzyme from 

Clostridium botulinum that targets Rho GTPases by specifically inactivating Rho 

through ADP-ribosylation. Similar to transduction with caldesmon, transduction with 

1.2x10^ TU adenoviral vector expressing C3 resulted in a dose-dependent 

morphological change about 3 to 4 days later with partial retraction, rounding and 

elongation. The authors observed disruption of the actin cytoskeleton, reduced 

vinculin-positive focal adhesions and loss of beta-catenin as assessed by 

immunofluorescence. Outflow facility increased rather dramatically by 90% as 

corrected for GFP transduced control eyes.
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As described in this thesis and discussed in detail below, use of lentiviral vectors for 

genetic modification of the ocular outflow tract is the only tool that has achieved 

stable long-term transduction.^^"'’ Similar to the HIV and FIV vectors

used in this thesis, Challa et al. used HIV vectors with an internal elongation factor 1 

alpha (EF-1 alpha) promoter driving eGFP expression.^""' In the later study authors 

found expression for three weeks at the study endpoint not only in the trabecular 

meshwork and the downstream outflow tract but also in the comeal endothelium. The 

authors speculate that frequent comeal neovascularization might be attributable to 

endothelial transduction and the fashion in which the needle is inserted (bevel up 

versus bevel down) but the lack of comeal infiltration or edema is inconsistent with 

this idea. More likely, this could be caused by the high titer used that were identical to 

the upper amount of TU used in the much larger feline eyes in our studies resulting in 

over-transduction with toxicity. Species differences may further result in different 

vector convection and exposure time. Balaggan et al. found the same using an equine 

infectious anemia vims (EIAV) in mice. In these even smaller eyes, high level 

transduction of TM and moderate transduction of comeal endothelium was observed 

after intracameral injection of approximately 2.8 x 10  ̂TU.^"'  ̂When pseudotyped with 

the rabies-G rather than VSV-G transduction was poor. In some cases eGFP 

fluorescence was observed in the comea in linear radial initial mid-stroma and central 

anterior stroma configuration that may be consistent with the pattem of neuronal 

innervations. Similarly, linear fluorescence was seen along the anterior border o f the 

iris and within the ciliary body that may be following ciliary body nerves and the 

ciliary neuronal plexus. Prior studies found neuronal tropism of rabies-G pseudotyped 

vectors (VSV-G recognizes the ubiquitous phosphatidylserine, whereas rabies-G uses 

the neuronal cell adhesion molecule, nicotinic acetylcholine receptor and p75

preferentially).^"'^

While most investigators have injected vectors and vehicles directly into the anterior 

chamber, Hudde et al. have described a way of achieving high multiplicities of 

infection and site specific targeting by direct injection into Schlemm’s canal.^"'"' The 

authors performed surgical sclera unroofing of Schlemm’s canal followed by direct 

injection of adenoviral vectors encoding MMP-3 (stromelysin). The authors found 

high transgene expression in the inner Schlemm’s wall and trabecular meshwork but
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failed to detect breakdown of the extracellular matrix. The same criticism of Kee et 

al.’s study discussed above applies here: although in cell culture MMP-3 appears to be 

active by zymographic assay, it is not clear whether MMP-3 is active in the ex vivo 

and in vivo experiments. A constitutively active form of MMP-3 should have been 

used. The authors confirm the intense immunogenicity of adenoviral vectors and find 

not only invasion of Schlemm’s canal and trabecular meshwork by inflammatory cells 

but also keratic precipitates although the vector was not applied intracamerally.

Another way of limiting transgene expression is the use of trabecular meshwork 

specific promoters. Liton et al. used the chitinase 3-like 1 (Ch3Ll) gene promoter 

after a comparative expression analysis of trabecular meshwork and Schlemm’s canal 

cells to restrict adenoviral vector expression to the TM.^"'  ̂The authors transduced 

cultured cells and anterior human segments with 10  ̂TU of adenoviral vectors that 

contained a Ch3Ll promoter driven lacZ cassette. Ch3Ll is a mammalian 

glycoprotein member of family 18 glycosyl hydrolases that is involved in tissue 

remodeling and inflammation and acts as a growth factor for connective tissue cells 

and as a potent migration factor for endothelial cells which could also play a role in 

both the normal physiology of the TM and the abnormalities that occur in glaucoma. 

Gonzales et al. found in a similar experiment by the same group that promoter 

fragments from the matrix Gla protein can specifically direct expression to the 

trabecular meshwork, while use of the vascular endothelin-cadherin gene promoter 

may allow differentiating between vascular and Schlemm’s canal endothelial cells.

A peculiar reverse observation is the complete inability of AAV vectors to achieve 

notable expression in the TM including primary cells cultures, organ cultures and 

living animals. AAV vectors have all the features that would make them highly 

desirable for long-term transduction of TM that apply to lentiviral vectors. Borras et 

al. studied the reasons for this restriction and found evidence for host downregulation 

of genes involved in cell cycle and DNA replication that require adenovirus 

coinfection for productive transduction.^"'^ This block can be overcome for the 

purpose of transduction with self-complementary AAV vectors which bypasses the 

required second-strand DNA synthesis to achieve a transcriptionally active AAV 

genome for gene expression.
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Many variations of the idea of wound healing modulation after glaucoma filtration 

surgery have been described. Perkins et al. developed a gene therapy approach 

adjuvant to glaucoma filtering surgery, where an outflow shunts is created from the 

anterior chamber to a fluid reservoir under the conjunctiva.^"'^ While this procedure 

can lower intraocular pressure very effectively when the fluid reservoir functions 

properly, scar tissue formation and closure of the draining shunt and reservoir often 

result in failure. Ad encoding the cell cycle inhibitor protein p21 prevented scar 

formation to an extent comparable to the commonly used mitomycin C. p21 is the 

major transcriptional target of the tumor suppressor gene, p53; despite this, loss-of- 

function mutations in p21 - unlike p53 - do not accumulate in cancer nor do they 

predispose to cancer incidence. This gene encodes a potent cyclin-dependent kinase 

inhibitor that binds to cyclin-CDK2 or -CDK4 complexes, and thus functions as a 

regulator of cell cycle progression at G l. The protein can interact with proliferating 

cell nuclear antigen, a DNA polymerase accessory factor, and plays a regulatory role 

in S phase DNA replication and DNA damage repair. This protein is cleaved by 

CASP3-like caspases, which leads to activation of CDK2, and may participate in 

execution of apoptosis following caspase activation. Other groups have used very 

similar strategies with the same gene producing similar results (reviewed here^"'^). 

Another approach to adjuvantive antifibrotic gene therapy is the use of RAD50, which 

is involved in the repair of mammalian DNA damage and antiproliferative activity 

that is p53-independent and p21-dependent.^^"

6.3.5.1.2.2. Retinal Ganglion Cells
Retinal ganglion cells (RGCs) represent the inner most cell layer of the neurosensory 

retina and their axons constitute the optic nerve. RGC death results irrevocably in 

optic nerve degeneration and loss of vision. Although technically easier to administer, 

gene transfer to retinal ganglion cells faces more significant barriers than subretinal 

injections targeting the RPE and outer neuroretina. Different from the liquefied, 

degenerated vitreous that is seen in patients with age related macular degeneration 

that allows easy diffusion and circulation of injected therapeutics, vitreous in 

experimental animals is without exception thick and gel like due to the relatively 

young age and perhaps species-difference. In contrast to the homogenous colloid 

structure of a gel, vitreous contains collagen strands that immobilize it and impede
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circulation. The vitreous is surrounded by a membrane, the hyaloid face while the 

internal limiting membrane presents another barrier that vectors must overcome 

before making physical contact with retinal ganglion cells. As discussed below, these 

barriers proved to be insurmountable to pseudotyped FIV vector in our own 

experiments.^^ It is possible that surface charge and vector particle size are more 

favorable for parvoviral AAV vectors to overcome these barriers than the larger 

pseudotyped lentiviral vectors. As the focus of my studies was anterior gene transfer 

to the outflow tract rather than posterior neuroprotection, the cause of impaired gene 

transfer to retinal ganglion cells has not been examined in a scholarly fashion.

After noticeable absence of studies demonstrating efficient gene transfer to retina 

ganglion cells for many years, there are now several interesting ones that use AAV as 

the vector. Neurotrophic factors are now known to be problematic in many cases. For 

instance while BNDF is neutrotrophic on neurons, it causes up-regulation of nitric 

oxide synthase^^' or by suppressing the heat shock protein 27.^^  ̂CNTF can produce 

rapid weight loss and death in mice.^^^ BNDF is thought to be the most potent 

neuroprotective factor^^"' but it also influences other neuronal cells o f the retina such 

as amacrine cells, Müller glia, and cone pho torecep tors .Use  of the extracellular 

signal-regulated kinase 1/2 (Erkl/2) and the phosphatidylinositol-3 kinase pathway 

represents an alternative strategy to target the intracellular events that lead to RGC 

survival thus bypassing the use of exogenous peptide factors.^^^ This is what Zhou et 

al. chose to do: 8.5 x 10  ̂TU of intravitreally injected AAV vectors were used to 

transduce retinal ganglion cells with the constitutively active or wild-type MAP2KI, 

the upstream activator of Erkl/2. After 5 weeks of ocular hypertension the dorsal 

retina RGC counts were almost twice as high as the control eyes. A major advantage 

of this approach over other strategies is that AAV serotype 2 mediates gene transfer to 

>70% of RGCs and a few displaced amacrine cells,^^^ but not other retinal cell types, 

hence Erkl/2 activation is largely restricted to a target neuronal population. Although 

a difference of 50% compared to controls might not deem much, this is the threshold 

below which only subtle visual field impairment occurs while above 50% RGC loss 

results in noticeable, severe visual impairment in primates.^^^
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The same senior investigator had previously used AAV vectors to transduce BDNF 

into RGCs by intravitreal injection. The protection against RGC loss was 

approximately 20% compared to control rats.^^^ In an earlier study this senior author 

used AAV to transduce the chicken beta-actin driven human baculoviral lAP repeat- 

containing protein-4 (BIRC4), a potent caspase inhibitor, into RGCs of an ocular 

hypertensive rat. BIRC4 is an intriguing molecule the discovery of which began when 

it was found that the baculovirus caspase inhibitory gene p35 was able to rescue 

photoreceptors in retinal degeneration-mutant fruit flies.^^'' Searches for homologs of 

p35 led to the discovery o f inhibitors of apoptosis protein (LAP) genes, also found to 

be evolutionarily conserved in viruses, insects, and m a m m a l s . l A P s  are defined by 

baculovirus LAP repeat domains critical to apoptosis inhibition.^^' One member of the 

mammalian lAP family, BIRC4 (also known as XLAP or hILP), is a direct inhibitor of 

downstream cell death proteases.

Another study that used AAV mediated gene transfer or the basic fibroblast growth 

factor (bFGF) and BDNF found that intravitreally injected rats were protected against 

NMD A challenge compared to controls at 1 month post challenge. The difference 

was relatively disappointing as BFGF achieved 18% protection and BDNF 12% in 

comparison to controls. Protection in the optic nerve crush model was only seen with 

bFGF and amounted 18%. Similarly, Ad mediated basic fibroblast growth factor 

(bFGF) expression rescued RGCs t r a n s ie n t ly . In  the later study only 

semiquantitation was performed by measuring optic nerve layer thickness making it 

difficult to judge outcome.

Leaver et al. used AAV-mediated gene transfer of CNTF to promote survival of 

axotomized retinal ganglion cells.^^"' This effect was bigger in bcl-2 over-expressing 

mice after optic nerve crush. The authors injected 1.5x10^ TU of AAV vectors and 

observed an increase of viability of RGCs by about 50% in bcl-2 overexpressing mice 

while there was only a disappointing 7% increase in wild type mice. Leaver et al. used 

AAV-2 vectors to transduce either BNDF or CNTF into eyes with optic nerve crush 

or transection with an attachment of a peripheral nerve.^^^ The authors found that 

only eyes with autologous peripheral nerve to optic nerve transplantation in 

combination with CNTF gene transfer would allow survival of about 25% at 7 weeks. 

Although these numbers are small overall, in a crush or transection model (as opposed
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to the less drastic insult of ocular hypertension) it is remarkable that about 1/4'" of 

retinal ganglion cells can survive the definite fate of apoptosis. In early gene transfer 

studies to retinal ganglion cells, Ad vectors were able to temporarily extend survival 

o f Muller cells of rats with axotomized RGCs^^" by about 4.5 fold by transducing 

brain-derived neurotrophic factor (BDNF).

Again using an AAV vector, Wu et al. achieved long-term expression of glial cell 

line-derived neurotrophic factor to retinal ganglion cells after injecting 1.1 x 10  ̂TU 

of AAV expressing GDNF intravitreally. The authors note the absence of 

inflammation, cell loss or change of electroretinogram latency and observed 

expression at the 1 year study endpoint.""^ As the main shortcoming, this study did not 

examine whether ganglion cell survival is improved in a glaucoma model. Ishikawa et 

al. also used GDNF but directly electroporated plasmids into RGCs after intravitreal 

injection. The authors find an improved survival o f 50% of RGCs versus 15% in 

untreated controls at 2 weeks after optic nerve crush. The extent of survival is 

surprising given the relative inefficiency of gene transfer to only 24% of retinal 

ganglion cells.

Malik et al. demonstrated that AAV2 mediated gene transfer o f Bcl-XL is very 

effective in preventing cell death in 94% compared to 15% of RGCs compared to 

control eyes at 2 weeks and 46% at 8 weeks compared to 6% in controls after optic 

nerve crush.^"^ Risks versus benefits must be carefully considered in gene transfer of 

members of the Bcl-2 family and other anti-apoptotic molecules. BCL-xl stands for 

“basal cell lymphoma-extra large” and has been isolated from cancer cells. Apoptosis 

serves a physiological purpose and manipulation o f this mechanism could easily have 

the opposite effect. Bcl-xl is a transmembrane molecule in mitochondria that is 

involved in the signal transduction pathway of Fas ligand (FasL), itself a 

transmembrane protein that belongs to the tumor necrosis factor (TNF) family, the 

binding of which induces apoptosis.

Another approach to ganglion cell protection that is not directly related to glaucoma 

was demonstrated for experimental autoimmune encephalomyelitis, an autoimmune 

inflammatory disorder of primary central nervous system demyelination that has been 

frequently used as an animal model for testing treatments against multiple sclerosis.
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The optic nerve is a frequent site of involvement in both experimental autoimmune 

encephalomyelitis and multiple sclerosis. Reactive oxygen species such as superoxide, 

hydrogen peroxide, nitric oxide, and peroxynitrite are mediators of demyelination and 

disruption of the blood-brain barrier in experimental autoimmune encephalomyelitis. 

Cellular defenses against reactive oxygen species include catalase and superoxide 

dismutase. Superoxide dismutase dismutes superoxide to hydrogen peroxide (H2O2), 

and catalase detoxifies the H2O2 to H2O and O2. Qi et al. cloned the human 

extracellular superoxide dismutase or catalase gene into AAV vectors and transduced 

mice by intravitreal injection."^" Animals were then sensitized for EAE, followed by 

serial contrast-enhanced MRI for 6 months, and sacrifice. Western blot analysis of 

infected RGC-5 cells revealed that expression of dismutase increased 15-fold and that 

of catalase 3.5-fold. One month after intraocular injections, transgene expression 

increased 4-fold for dismutase and 3.3-fold for catalase. Six months after intraocular 

injections and EAE sensitization, combination therapy with dismutase and catalase 

decreased retinal ganglion cell loss by 29%, optic nerve demyelination by 36%, 

axonal loss by 44%, and cellular infiltration by 34% compared with the contralateral 

control eyes transduced with an eGFP expressing AAV vector.

6 3.5.2. Posterior Segment
6.3.5.2.1. Retinal Degeneration

The most experience in ocular gene therapy exists for retinal diseases, in particular for 

inherited retinal degeneration. The decoding of molecular mechanisms, identification 

of genetic defects and cloning of genes involved has dramatically advanced gene 

therapy in this area. Retinitis pigmentosa is a group of inherited photoreceptor defects 

that lead to incurable, progressive degeneration in about 1 in 3000 people."^' There is 

a large number of natural or genetically engineered animal models with retinal 

degeneration analogous to human retinitis pigmentosa that can be used for 

development of preclinical therapy.

Retinal degeneration can involve lack-of-function mutations as well as gain of 

function mutations. Gene therapeutic replacement for a lack-of-flinction mutation is 

e.g. the premature stop codon of the beta subunit o f the rod photoreceptor-specific 

cGMP phosphodiesterase (PDE-p). The defect is caused by a premature stop codon 

that affects only the homozygous, but not the heterozygous, which suggests that even
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partial replacement of the defect might be sufficient. Rescue has been achieved in a 

mouse model (the rd mouse) with adenoviral ,AAV,"^^ gutted adenoviral"^"'and 

lentiviral vectors^^' carrying the same gene (PDEb).

Autosomal dominant retinitis pigmentosa is an example for gain-of-function 

mutations, which are more complex to treat. Defects may cause abnormal localization 

of proteins or altered function."^^’ AAV vectors have been used to deliver RNA- 

cleaving RNA molecules, ribozymes that leave the wild-type mRNA intact, while 

degrading the mutant RNA^^^and photoreceptor degeneration was slowed down for 

more than 3 months.

As described above in the therapeutic approaches for retinal ganglion cells in 

glaucoma, secondary strategies may consist of antiapoptotic"^^’ or neurotrophic 

therapy of p h o t o r e c e p t o r s . A d  vector with rhodopsin promoter driven expression 

of bcl-2, an anti-apoptotic molecule, temporarily rescued photoreceptors in the rd 

mouse was able to rescue photoreceptors.Rescue with AAV vectors expressing 

neurotrophic factors CNTF^^^'or GDNF"^' resulted in improvement of retinal 

morphology in rats, but there was no functional ERG improvement with CNTF.^'^

Efficiency of non-viral transduction into the retina can be enhanced by simultaneous 

electroporation. Electroporated plasmids injected into the subretinal space can 

produce reporter gene expression for up to 50 days"^^ but this can be extended to more 

than 4 months with cotransfection of phiC31 integrase to allow integrase-mediated 

recombination with attB sequences.^^^ It is important that electroporation be 

optimized for each species as severe disruption of ocular structures can occur with 

inflammation, cataract formation, retinal degeneration and phthisis bulbi because of 

its physically violent nature.

Lentiviral vectors are an excellent choice for disorders that originate in the retinal 

pigment epithelium and can be applied to treat both degenerative as well as vaso- 

proliferative conditions. However, transduction of neuroretina is inefficient or 

impossible depending on the age and species. In our own experience as detailed 

below, FIV vectors only transduced retinal pigment epithelial cells even when 

injected into 5 day old rats. This contrasts to results with HIV vectors in mice that 

were injected at day 2 resulting in efficient transduction of neuroretina.^^' In all other 

studies lentiviral gene transfer to neuroretina was disappointing no matter what

- 121 -



Introduction: Gene Therapy

promoter or pseudotype.^^"' It is likely that this is the result o f barriers and physical 

vector properties (charge, size) that may depend on species and animal maturity. 

Neuroretinal transduction can be improved by local trauma and enzymatic disruption 

of the inter-photoreceptor maxtrix.^^^’ Lentiviral vector mediated expression in 

the RPE has been reported for up to 2 years.^^’ SIV and HIV vectors have been 

used successfully to treat retinal degeneration caused by a genetic defect o f the 

RPE 344,688 findings suggest that lentiviral vectors that are integrase defective

can be used to achieve high enough expression levels to be therapeutic in RPE 

disease.^^^’ Yanez-Munoz et al. show that Rpe65^ '̂^^^ '̂  ̂mutant mice with a 

phenotype similar to that of individuals with Leber congenital amaurosis, a severe 

form of early-onset autosomal recessive retinitis pigmentosa that results from 

mutations in RPE65 can be rescued with HIV vectors that have a D64V mutation. 

Vectors can persist as episomal double-stranded DNA circles.

AAV vectors are the common vectors used for gene transfer to the retinal pigment 

epithelium and the neuroretina. Although the majority of AAV vectors does not 

integrase but remains in the cell in the form of concatomers, transgene expression 

from AAV vectors has been followed for several years. ^Tissue specificity as well 

as expression kinetics are surprisingly dependent on the vector serotype and ocular 

structure into which vectors are injected. Recent hybrid vectors in which AAV an 

AAV genome is packaged in a capsid from a different serotype have expanded the 

applicability. For instance, while AAV-2 vectors typically show a delayed onset of 

expression, slowly increasing expression after 2-4 months (which may be an 

advantage that allows gentle accumulation of a foreign transgene with less disruption 

of intracellular metabolism and immunogenicity), AAV-2/1, AAV-2/5 and AAV-5/5 

vectors cause rather rapid expression as early 3 days after transduction. AAV-2/2 and 

AAV-2/5 transduce the RPE and photoreceptors, while AAV-4/4 and AAV-2/4 are 

restricted to the RPE."^' Successful gene replacement has been achieved in both 

rodent and large animal models of inherited retinal degenerations with AAV-5 

vectors."^'’ A novel serotype, AAV-2/8 can transduce photoreceptors and RPE 

even more efficiently than AAV-2/2 and AAV2/5. The self-complementary version of 

AAV-2/8, a strategy in which sense and antisense genomes are mixed in the final 

vector preparation, shows even faster and higher transgene expression than AAV- 

2/8.®^
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For both experimental and therapeutic purposes, gene regulation is a desirable feature. 

This has been accomplished in the retina with dual vector as well as single vector 

systems with both rapamycin and tetracycline-inducible systems."^"' Lebherz et al. 

achieved regulated long-term expression with a dimerizer-inducible expression 

system (rapamycin) in non-human primates for 2.5 years.^^^ In an experimental model 

of uveitis tetracycline-inducible expression of IL-10 using a single AAV vector 

worked well."^" Other researchers have used promoters that respond to environmental 

changes such as ischemia with mixed success.^^^ The authors do not quantify the 

change of expression. The use of native promoters is o f advantage as other inducible 

systems have been noted to be immunogenic (reviewed in"^^).

Proof-of-principle for gene replacement therapy has been demonstrated in several 

experimental models of inherited retinal degeneration resulting from loss-of-function 

mutations and is the most classical example of gene therapy. AAV vectors are the 

foremost vectors but not the only ones. In the rds mouse model peripherin, a 

membrane glycoprotein that is responsible for the formation and stability of 

photoreceptor outer segments can be replaced and restore function if  done within 14 

weeks. However, gene replacement is not maintained in the long term most likely 

because of the timing of intervention.^^^ A protein anchored in the photoreceptor 

connecting cilia, the retinitis pigmentosa GTPase regulator interacting protein 

(RPGRIP), can be replaced as well and is able to preserve photoreceptors and function 

in a mouse model of Leber’s congenital amourosis.^'"'AAV-2 mediated expression of 

retinoschisin in a model of X-lined recessive juvenile retinoschisis allowed the 

electroretinographic improvement however, the retinal structure did not recover.^'" 

When younger animals were used in the same model functional and structural 

improvements were found for up to one year using AAV-5 vectors.^''^ Another 

common murine model is the Royal College of Surgeons rat that is lacking Mertk, an 

RPE receptor tyrosine kinase involved in the phagocytosis of shed photoreceptor 

outer segments. Rescue of this model was achieved with both AAV2 and lentiviral 

vectors."^^’ HIV-vector mediated gene transfer was more efficient in this model, 

likely an effect of the RPE-specific tropism as well as the more rapid onset compared 

with AAV-2 vectors. Another interesting model is the murine model of ocular 

albinism in which gene replacement of OAl has been performed, restoring the 

number of melanosomes and improving the electroretinographic abnormalities.^''"'
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RPE65 is another model of Leber’s congenital amaurosis. RPE 65 is an RPE-specific 

visual cycle isomerase which is essential for the synthesis of 11-cis-retinal. Dejenka et 

al. performed in utero delivery o f RPE65 in RPE65-/- knockout mice with resulting 

rescue.^^^ By now several groups have treated Swedish Briard dogs which are 

homozygous for an RPE65 null mutation.^^^’ The phenotype in these dogs is

similar to humans with very poor vision from early life and almost absent dark- and 

light adapted electroretinography.

The study of Acland et al.^^  ̂was regarded a breakthrough because it was the first case 

in which actual visual function was restored through gene therapy: dogs with a 

genetic defect equivalent to Leber's amaurosis in humans (RPE65-deficiency with 4 

bp deletion resulting in a premature stop codon) recovered already altered vision and 

retinal function in electroretinography (ERG) after a single subretinal injection of 

AAV expressing RPE65 wild type. Four months after injection, electroretinography 

(ERG) of the treated eyes as well as behavioral and visual assessment tests, 

demonstrated that the dog had recovered the ability to avoid objects only on the side 

of the treated eye. This represents the first case of restoring visual function by gene 

therapy. Gene transfer corrected this phenotype and noticeably changed the dogs’ 

behavior for the 3 years these animals were followed.^^^

The first cone-target gene therapy was recently presented in which the authors 

corrected cone-mediated ERG function and restored visual acuity in an animal model 

of achromatopsia with AAV vectors that have an internal red/green cone rhodopsin 

promoter driving a-transducin expression.^®^ Using adeno-associated virus (AAV) 

gene therapy, Alexander et al. further showed that it is possible to rescue visual acuity 

in the Gnat2̂ ^̂  ̂mouse modef^^ of achromatopsia. This study demonstrates the 

feasibility of targeting cones in order to treat many of the most prevalent disorders 

threatening vision in humans.

Henning et al. used a mouse model of mucopolysaccaridosis VII to study AAV- 

mediated gene replacement o f beta-glucuronidase by intravitreal injection.^'^ The 

authors found reduction of partially degraded gycosaminoglycans in RPE cells and 

improved retinographic responses.
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Cleaving of mutant mRNA using ribozymes is an attractive solution for heterozygous 

genetic defects with a pathogenic gene product rather than simple lack of function. 

One rationale that has driven ribozyme use for retinal degenerations is the fact that it 

will be impossible to develop individual gene therapies for the over 100 different 

mutations that have been described for the rhodopsin gene alone in retinitis 

pigmentosa. Gorbatyuk demonstrated that this can be accomplished in combination 

with gene replacement o f a ribozyme-resistant wild-type rhodopsin.^^^ Small 

interfering RNA (RNAi) has revolutionized the field and as a result ribozyme use has 

fallen into disfavor. Paskowitz et al. elegantly show that RNAi mediated knock-down 

can be accomplished with both AAV and HIV vectors in rat RPE and suppress basic 

fibroblast growth factor within a few days after vector injection which remained 

stable throughout the study which concluded at 60 days.^*^ Others have knocked 

down rhodopsin without yet providing wild-type substitution.^Because rhodopsin is 

produced in large amounts and rapidly, it is difficult to knock down entirely. This may 

be an insurmountable obstacle for aggressive dominant mutants such as the rhodopsin 

P23H mutation.^^^

6.3.S.2.2. Retinal and Choroidal Neovascularization
Choroidal and retinal neovascularization is a major cause for visual loss.^^ '̂^^  ̂In view 

of limited efficacy and significant adverse effects of current treatments^^^’ novel 

strategies are needed. Stable long-term expression of anti-angiogenic proteins from 

gene therapeutic vectors have already produced first promising results with vectors 

expressing vascular endothelial growth factor (VEGF) receptor as a VEGF sink,^^®’ 

angiostatin,^*^ endostatin,^'^^ and pigment epithelium-derived factor (PEDF).^*^’
347,356

Diabetic retinopathy and age-related macular degeneration are two major causes of 

blindness in developed countries and share ocular neovascularization as a central 

feature. Present novel therapy with small molecules requires repeated injection into 

the vitreous. Ocular gene transfer offers the opportunity of sustained and targeted 

delivery of angiostatic molecules preventing potential systemic complications such as 

thromboembolic events.
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Murin oxygen induced retinopathy is a common model of ischemia-induced, VEGF- 

dependent retinal neovascularization. Adenoviral and AAV vectors have been used to 

express soluble fms-like tyrosine kinase (sFlt-1), a VEGF receptor .^After  induction 

of proliferative retinopathy in mice by oxygen exposure, intravitreally injected 

adenoviral vectors resulted in a 56% reduction o f neovascular endothelial cells and a 

52% reduction in AAV injected eyes.

In lieu o f an animal model of AMD, choroidal neovascularization models of laser- 

induced rupture of Bruch’s membrane have been developed. Subretinal delivery of 

AAV vectors expressing sFlt-1 can successfully suppress such neovascularization.^^^ 

Expression of PEDF^"^  ̂or angiostatin^^^ can equally successful prevent choroidal 

neovascularization.

Lamartina et al. used helper dependent adenoviral vectors that the authors have 

previously used to express eGFP for up to one year previously to transfer sFlt-1 into a 

rat model of oxygen induced retinopathy.^*^ Retinal neovascularization was inhibited 

by more than 60%. HD-Ad/GFP promoted long-lasting (up to 1 year) transgene 

expression in retinal Müller cells, in marked contrast with the short-term expression 

observed with FG-Ad/GFP.

Comparably fewer studies with lentiviral vectors delivering angiostatic proteins have 

been performed. Most noteworthy is Igarashi et al.’s use of HIV vectors expressing 

angiostatin to reduce neovascularization dramatically by 90%.^^^ EIAV vectors also 

achieved impressive reduction in a laser model of choroidal neovascularization: EIAV 

vectors expressing endostatin resulted in an approximately 60% reduction in 

neovascularization area and angiostatin expressing vectors a 50% reduction.^^** 

Hyperpermeability was also assessed and was reduced by 26% with endostatin versus 

24% with angiostatin.

6.3.S.3. Ocular Malignancies
Uveal melanomas (iris, ciliary body, and choroids) or retinoblastomas constitute 

potential targets for gene therapy that require an entirely different approach. The 

known problems of preferential tumor transduction, tumor penetration and avoidance 

of the delicate adjacent structures in the eye present difficult hurdles. The initial
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optimism that gene therapy for ocular tumors will allow better treatment modalities 

has not materialized. In the contrary, it has become more obvious that classical 

methods of cancer therapy are preferable. For instance, retinoblastomas respond well 

to adjuvantive chemotherapy to shrink a tumor e.g. prior to laser therapy. This allows 

confining damage with excellent manual control in the hand of the treating surgeon. 

Any cytotoxic therapy in the eye can easily be detrimental to neighboring structures. 

Uveal melanomas in contrast can be treated with sutured radioactive plaques that can 

be applied directly above the lesion on the sclera and removed after destruction of the 

tumor.

Kimura et al. was one of the first ones to propose and demonstrate cytotoxic gene 

therapy to proliferating cells in the eye.^^* Originally thought out for proliferative 

vitreoretinopathy, this approach has been adopted to ocular malignancies later on. The 

authors took advantage of the trademark of type C retroviral vectors, selective 

transduction of dividing cells that distinguishes this vector type from others. Because 

type C retroviral vectors require cellular division to obtain access to the genome for 

integration, only the diseased tissue is affected. Rabbit with experimental proliferative 

vitreoretinopathy were transduced with retroviral MLV vectors, expressing the herpes 

simplex virus thymidine kinase (HSV-tk) gene, allowing for the selective killing of 

these cells after ganciclovir exposure. Unfortunately, in vivo transduction efficiency 

was low after intravitreal injection in with a relative transduction efficiency of 

approximately 2%. Despite this, transduction of HSV-tk was associated with a 

powerful bystander effect both in vitro and in vivo with significant effects even when 

HSV-tk-positive cells represented only 1% of the population. In vivo transduction 

followed by GCV significantly inhibited the development of proliferative 

vitreoretinopathy.

Hurwitz et al. popularized the idea of treating retinoblastoma with herpes simplex 

virus thymidine k i n a s e . T h i s  approach can result in efficient tumor ablation and has 

been approved for a phase 1 human clinical trial.^^^ Because present treatment for 

large retinoblastoma are enucleation followed by radiation or chemotherapy (and 

secondary malignancies later in life), search for novel therapies is justified. The 

authors tested the hypothesis that gene therapy can reduce the tumor size sufficiently 

to allow local control by laser or cryo treatment in a murine model o f retinoblastoma. 

Intravitreal injections of retinoblastoma Y79Rb cells in immunodeficient mice create
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an aggressive, metastatic murine model of retinoblastoma. When these murine 

retinoblastomas were transduced in vivo with adenoviral vectors expressing HSV 

thymidine kinase followed by intraocular injection of ganciclovir, 70% showed a 

complete ablation of detectable tumor. Mice had a significantly longer progression- 

free survival compared with controls. A clinical trial was subsequently initiated to 

apply these results to patients with retinoblastoma that demonstrated the safety of 

vector application and remission in one patient.

The same group has now instigated a recently discovered picoma virus, Seneca 

Valley Virus, a conditionally replication competent virus that is not pathogenic to 

normal human cells but causes lysis in human retinoblastoma c e l l s . I n  the above 

mentioned xenograft murine model o f metastatic retinoblastoma was injected with 

10*̂  viral particles. Only 1 out of 20 animals showed invasive disease versus 7 out of 

20 in the control group. CNS metastasis was prevented in all animals compared to 4 

metastatic events in the control group. No adverse events were observed.: 18006805

Plasminogen activators are facilitating tumor metastatic by promoting invasion of 

tissue barriers. Uveal melanoma is the most common intraocular malignancy in adults 

and has a mortality o f 50%. Ma et al.^^  ̂explored the possibility of preventing the 

metastasis of intraocular melanomas by disrupting plasminogen activator function 

through gene transfer. A replication-deficient adenovirus vector was used for the in 

vivo transfer of plasminogen activator inhibitor type 1 by intraocular injection. The 

authors found transduction of more than 95% of human and murine uveal melanoma 

cells in the eyes of nude mice, a 50% reduction in the number of animals developing 

liver métastasés and a 78% reduction in the metastatic tumor burden in animals that 

eventually developed métastasés. Intravenous injections of this vector resulted in 

transduction of normal liver cells and culminated in a sharp reduction in the incidence 

of métastasés and a significant prolongation of host survival. The effect seen in this 

study is rather dramatic and encouraging. As a significant difference to human 

melanomas, the tumors in this study are very small and high transduction rates can 

more readily be achieved than in the solid tumors of humans.
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7. Materials and Methods

7.1.Materials
The following is a comprehensive list of materials and reagents used in the context of 

this thesis. The next chapter will provide details about their application and use.

7.1.1. Amplification of Plasmid DNA in Bacteria
Bacterial plasmid DNA

Competent E. coli One Shot Top 10 high efficiency kit (Invitrogen, Carlsbad, 

California)

Competent E. coli Subcloning Efficiency Dh5alpha (Invitrogen, Carlsbad, California) 

Waterbath

7.1.2. DNA Analysis
Restriction enzymes (New England Biolabs, Ipswich, MA)

7.1.3. Cloning using Plasmid Vectors
Restriction enzymes (New England Biolabs, Ipswich, MA): cutting of DNA

DNA ligase (New England Biolabs, Ipswich, MA): joining of DNA fragments

T4 Polynucleotide Kinase (New England Biolabs, Ipswich, MA): addition of 5 '- 

phosphates to oligonucleotides to allow subsequent ligation

DNA Polymerase I, Large (Klenow) Fragment (New England Biolabs, Ipswich, MA)

7.1.4. Polymerase Chain Reaction
Taq PCR kit (New England Biolabs, Ipswich, MA)

High Fidelity PCR (Roche Applied Science, Indianapolis, IN)

Primers, custom made by Mayo Clinic Sequencing Core

7.1.5. DNA Sequencing
Primers, custom made by Mayo Clinic Sequencing Core

7.1.6. Cloning of Viral Vectors
Generally, current retroviral vectors systems such as the one used in the context of 

this thesis are replication-defective and tripartite. They consist of: 1. transfer vector, 2. 

packaging plasmid and 3. envelope plasmid. Same molar ratios of 3:3:1 apply but
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might have to be optimized depending on the individual vector system. Components 

of the FIV vectors system are discussed in detail in the chapter “FIV Vectors”.

7.1.6.1. Feline Immunodeficiency Virus (FIV) vectors
1. pMD.G: plasmid encoding VSV-G: 84 pg for CFIO, 16.8 pg (CF2), or 1 pg (T75).

2. Transfer vector. pGiNWF: minimal bi-cistronic FIV transfer vector plasmid coding 

for EGFP and neomycin phosphotransferase neoR, containing WPRE and FIV central 

DNA flap; pCT26: lacZ-encoding second generation FIV plasmid or other FIV 

transfer vector: 252 pg for CFIO, 50.4 pg (CF2), or 3 pg (T75). This vector also has 

the central DNA flap inserted between the end of the gag segment and RRE.

3. pFP93: minimal FIV packaging plasmid coding for structural and enzymatic 

proteins derived from the Gag/Pol precursor (matrix, capsid, nucleocapsid, protease, 

reverse transcriptase, RNase H, integrase, dUTPase) and Rev (regulator o f expression 

of virion proteins): 252 pg for CFIO, 50.4 pg (CF2), or 3 pg (T75).

Ratio of pMD.G/pGiNWF/pFP93 is 1/3/3. DNA used for vector preparation for in 

vivo applications must be sterile and endotoxin free to prevent toxic or inflammatory 

reactions in animals. There are several kits commercially available, EndoFree Plasmid 

Maxi Kit (Qiagen, cat. no. 2362).

7.1.6.2. Murine Leukemia Virus (MLV) beta-galactosidase 
expressing vector LZRNL"*®̂

1. 293GP-LZRNL cells (retrovirus packaging cell line 293GP expressing the Moloney 

gag and pol genes"*^  ̂and LZRNL provirus (LTR-lacZ-RSV-neoR-LTR)^^^

2. pCMV-G^^^

7.1.6.3. Human Immunodeficiency Virus (HIV) vectorŝ "̂ ®’
1. pHR9CMVlacZ^^**’^̂**

2. pCMVDR8.9^ *̂*’^̂**

3. pCMV-G*^^
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7.1.6.4. Adenoviral Vector
Ad.CMVlacZ’ ”̂ "̂

7.1.7. Cell Cultures
7.1.7.1. Cell Cultures

The same culture materials as described in the following were used in all cell cultures 

that were part of this thesis unless otherwise mentioned. Materials and reagents are 

therefore not listed separately. All cell lines can be obtained from the American Type 

Culture Collection (ATCC) unless otherwise noted. Tissue culture techniques were 

performed in a tissue culture hood approved for biosafety level 2 + handling.

7.1.7.2. Cell Cultures for Retroviral Vector Production
1. 293T cells.

2. Adherent fibro-epithelial cell lines for titration: CrFK cells.

3. Dulbecco’s modified Eagle medium with 10% fetal calf serum (DMEM-10), 

penicillin G sodium 100 units/mL, streptomycin sulfate 100 pg/mL and L- 

glutamine 2 mM.

4. Trypsin, tissue culture grade

5. PBS (phosphate-buffered saline), tissue culture grade.

6. Distilled water, sterile.

7. 70% isopropanol or ethanol.

8. 37°C humidified incubators, 5% C02.

9. Nikon Coolpix 990 camera for digital image capture (Nikon, Melville, NY)

10. Nikon Eclipse TE300 microscope (Nikon, Melville, NY)

7.1.7.3. Cell Cultures for Production In Cell Factories
1. Cell Factory with desired number of layers (Nunc Cell Factory, available as 1-layer 

CFl, 2-layer CF2, 10-layer CFIO, and 40-layer CF40).
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2. Cell Factory start-up kit (cat. no. 170769) with the following components: HDPE 

connectors (cat. no. 171838), white Tyvek cover caps (cat. no. 171897), blue sealing 

caps (cat. no. 167652), Gelman 4210 bacterial air vent filter.

3. 2 L Kimax aspirator bottle (Kimble Glass, cat. no. 14607-2000) or similar bottle.

4. Funnels, sterile.

5. Cell strainers (BD Falcon, cat no. 352350)

7.1.7.4. Cell Cultures for Production in T75 Flasks
Appropriate number of T75 tissue culture flasks with gas-permeable cap.

7.1.7.5. Human Ocular Anterior Segment Cultures
Human donor eyes from the local eye bank

Custom made anterior chamber segment perfusion equipment as described by 

Douglas H. Johnson^^* consisting of:

1. Bottom chamber

2. Scleral sealing ring

3. Cover

4. Perfusion tubing

5. Pressure transducer

6. Pressure recording software

7. Microperfusion pump

7.1.8. Transfections
1.2.5MCaC12.

2. 0.01 MTris-HCl, pH 8.0.

3. 2X HBS (HEPES-buffered saline). Stock solution of dibasic Na2HP0 4 : 52.5g 

Na2HP0 4 , 5000 mL H2O. 2X HBS: 80 g NaCl, 65 g N-2-hydroxyethylpiperazine- N- 

2-ethanesulfonic acid (HEPES) (sodium salt), 100 mL Na2HP0 4  stock solution. Bring

- 132 -



Materials and Methods

volume to 5000 mL and adjust pH o f 6.95, 7, and 7.05 with 1 N NaOH. Optimal pH 

needs to be determined (see Notes and recipes): pH 6.95, 7.00, or 7.05.

4. Fresh culture media.

7.1.8.1. Cell Factories
1. Sterile plastic bottle (CF2, 250 mL; CFIO, 500 mL).

2. Waste beaker with same volume as culture media in use.

3. Sterile Cell Factory loading bottle with silicon tube and connector.

7.1.8.2. T75 Flasks
1. Clear polystyrene 5-mL tubes (Falcon, cat. no. 352058).

7.1.9. Vector Harvest
7.1.9.1. Cell Factories

1. 500-mL filter units, 0.22-pm pore size

2. Cryo vials

3. -80 C freezer

7.1.9.2. T75 Flasks
1. Small filter unit (50 mL).

2. Cryovials

3. -80 C freezer

7.1.10. Vector Concentration
7.1.10.1. Cell Factories

1. 500-mL filter units, 0.22-pm pore size.

2. 250-mL polyallomer Oak Ridge ultracentrifuge bottles (Sorvall, cat. no. 54477) 

with fluorocarbon caps (Sorvall, cat. no. 54421) for A612 rotor (Sorvall, cat. no 

11997).

3. Scale.
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4. 36-mL disposable polyallomer ultracentrifuge tubes (Sorvall, cat. no. 03141) for 

SureSpin 630 rotor (Sorvall, cat. no. 79367).

5. 1.8-mL screw cap cryo vials, sterile.

6. 0.5- and 1.5-mL microcentrifuge tubes, sterile.

7. PBS, tissue culture grade/suitable for in vivo application.

8. 70% molecular grade ethanol in squeeze bottle.

7.1.10.2. T75 Flasks
1. Scale.

2. 36-mL disposable polyallomer ultracentrifuge tubes (Sorvall, cat. no. 03141) for 

SureSpin 630 rotor (Sorvall, cat. no. 79367).

3. 1.8-mL screw cap cryo vials, sterile.

4. 0.5- and 1.5-mL microcentrifuge tubes, sterile.

5. PBS, tissue culture grade/suitable for in vivo application.

5. 70% molecular grade ethanol in squeeze bottle.

7.1.11. In Vivo Applications
7.1.11.1. Animals

Specific pathogen-free domestic cats (Harlan, Indianapolis, IN)

Sprague-Dawley rats (Harlan Laboratories, Indianapolis, IN)

7.1.11.2. Imaging
1. Nikon digital microscopy camera DXM 1200 (Nikon, Melville, NY)

2. Nikon image capture software (Automatic Camera Tamer (ACT-1), Nikon, 

Melville, NY)

3. Custom made cat restrainer as detailed below

4. Zeiss gonioscope to visualize the trabecular meshwork

5. Tiletamine HCl/Zolazepam HCl (Telazol, Fort Dodge Laboratories Inc., Fort 

Dodge, lA)

6. Slit lamp (Haag-Streit, Mason, OH)
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7. Gonioscope (Posner, Ocular Instruments, Bellevue, WA)

8. Microscope (Nikon Eclipse E400)

9. GFP-optimized filter (Nikon, EF-4 B-2E/C FITC, cat. 96107)

7.1.11.3. Pressure recording
Handheld pneumatonometer (Model 30 Classic, Medtronic, Fridley, MN) to 

determine lOP

7.1.11.4. Subretinal Injection in Rats
1. Custom needle (32 ga, 12° bevel, 7 mm length, Hamilton Co., Reno, NV)

2. 5 pi Hamilton microsyringe (Hamilton Co., Reno, NV)

3. Inhalation anesthesia with Metofane® (Schering-Plough Animal Health Corp, 

Union, NJ)

7.2.Methods
7.2.1. Manipulation of Vector Components

7.2.1.1. Cloning using Plasmid Vectors
Molecular cloning is the procedure of isolating a specific DNA sequence and copying 

it with techniques of molecular biology. Cloning is used to amplify a DNA sequence 

in order to change its ends (e.g. by adding restriction enzyme sites) and to link it to 

other DNA. Most the time DNA is amplified in E. coli in circular form as a plasmid 

and therefore needs an origin of replication. For selection of bacteria that contain the 

desired plasmid, an antibiotic resistance gene (e.g. for ampicillin resistance) is needed 

as well.

Cloning of a DNA fragment requires fragmentation with restriction enzymes, ligation 

with ligases (DNA linking enzymes), transformation into bacteria, selection with 

antibiotic resistance for successful transformation and screening with restriction 

enzymes and electrophoresis.

7.2.1.1.1. Creating DNA Fragments
DNA fragments can be created with single or combination of restriction enzymes as 

described above for diagnostic purposes. The difference here is the careful choice o f
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location of the restricted location in order not to destroy an intact feature (e.g. gene, 

promoter, internal ribosomal entry site, etc). This is often followed by gel 

electrophoresis to confirm the digest, to isolate and purify the desired insert.

7.2.1.1.2. Manipulation of Restriction Sites
Restriction sites can be manipulated with several other enzymes that are capable of 

removing 5’ or 3’ single strand overhangs or filling in of single strand overhangs. The 

enzymes below were used for molecular cloning as described in the cloning history.

Exonuclease T (Exo T) (cat. No. M0265S), also known as RNase T, is a single

stranded DNA or RNA specific nuclease that requires a free 3' terminus and removes 

nucleotides in the 3' ^  5’ direction. Exonuclease T can be used to generate blunt ends 

from a DNA molecule that has a 3' extension.

T7 Exonuclease (cat. No. M0263S) acts in the 5' to 3' direction, catalyzing the 

removal of 5' mononucleotides from duplex DNA. T7 Exonuclease is able to initiate 

nucleotide removal from the 5' termini or at gaps and nicks of double-stranded DNA. 

It will degrade both 5' phosphorylated or 5’ dephosphorylated DNA. It has also been 

reported to degrade RNA and DNA from RNA/DNA hybrids in the 5' to 3' direction 

but is unable to degrade either double-stranded or single-stranded RNA. The protein 

is the product of T7 gene 6.

DNA Polymerase I, Large (Klenow) Fragment (cat. No. M0210S) is a proteolytic 

product of E. coli DNA Polymerase I which retains polymerization and 3 '^  5' 

exonuclease activity, but has lost 5'—> 3' exonuclease activity. Klenow retains the 

polymerization fidelity of the holoenzyme without degrading 5' termini.

7.2.1.1.3. Isolation of DNA Fragments from Agarose Gel
DNA fragments were extracted from agarose gel using the QIAquick Gel Extraction 

Kit (cat. No. 28704) using a microcentrifuge.

DNA fragment were excised from the agarose gel with a clean, sharp scalpel and 

weighed in a microcentrifuge tube. 3 volumes of Buffer QG to 1 volume o f gel (100 

mg ~ 100 pi) were added and incubated at 50°C for 10 min interrupted by frequent 

shaking to facilitated mixing. The QIAquick spin column was placed in a provided 2
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ml collection tube, the sample was applied to the column and centrifuged for 1 

minute. The flow-through was discarded and placed back in the QIAquick column. 

0.75 ml of Buffer PE was added to the QIAquick column and centrifuge for 1 min for 

washing. The flow-through was discarded and the QIAquick column was centrifuged 

for an additional 1 min at 17,900 x g. The QIAquick column was placed into a clean 

1.5 ml microcentrifuge tube, 50 pi of Buffer EB (10 mM Tris Cl, pH 8.5) was added 

to the center of the QIAquick membrane and centrifuged for 1 min to elute DNA.

7.2.1.1.4. DNA ligation
A ligase catalyzes the formation of a phosphodiester bond between juxtaposed 5' 

phosphate and 3’ hydroxyl termini of both blunt ends and cohesive end termini. 

Ligations were performed at room temperature using 1 pi of T4 DNA Ligase (cat. No. 

M0202T) in a 20 pi reaction for 10 minutes for cohesive ends. For blunt ends, 1 pi 

high concentration T4 DNA Ligase was used for 10 minutes (cat. No. M2200S). 

Cloned plasmids were then transformed into bacteria, extracted and analyzed as 

described in the following.

7.2.1.2. Amplification of Plasmid DNA in Bacteria
7.2.1.2.1. Transformation of Competent Bacterial Cells

Bacterial transformation is the uptake of DNA resulting in a stable genetic change. 

This uptake is only able in so called competent cells that are able to uptake exogenous 

DNA. In the laboratory, this competence is referred to as “artificial” because cells are 

made passively permeable to DNA by mechanisms that would not normally occur in 

nature. For plasmid DNA, cells are chilled and incubated with DNA to make the cell 

wall more permeable followed by a brief heat shock that causes the DNA to enter the 

cell. Electroporation would be another way of transformation but this method was not 

applied in this thesis and will not be discussed further.

A plasmid must contain an origin of replication to persist and be stably maintained in 

the cell. A gene coding for antibiotic resistance is also contained to allow selection to 

transformed cells from the abundant non-transformed cells.

For all transformations Invitrogen One Shot Top 10 cells (cat no C4040-6) were used. 

Transformation was started immediately following the thawing of the cells on ice and

- 137 -



Materials and Methods

mixed by swirling. Before starting the water bath was warmed to 42°C and both the 

vial of media and the plates were warmed to room temperature. One pi of each 

ligation reaction was added directly into the vial o f competent cells and mixed by 

tapping. The vials were incubated for 30 minutes on ice followed by heat shock at 

42°C in the water bath and placement on ice again. 250 pi of pre-warmed medium 

was added to each vial. The vials were placed on a shaker at 37°C for exactly 1 hour 

at 225 rpm. 20 pi o f bacteria were then spread on a pre-warmed plate and placed 

inverted into an incubator overnight at 37°C. Colonies were picked, grown in 

minipreps and analyzed with restriction digest.

7.2.1.2.2. Amplification and Recovery of Recombinant 
Plasmid DNA

Ten clones from each agar plate were picked with disposable pipette plastic tips and 

dropped into 10 ml disposable media tubes that were filled with 1 ml lysogeny broth 

(LB). The minipreps were incubated on shaking incubators at 37C overnight.

LB media is a nutritionally rich medium that is primarily used for the growth of 

bacteria. It is also known as Luria broth or Luria-Bertani broth. LB media 

formulations have been an industry standard for the cultivation of Escherichia coli as 

far back as the 1950s. These media have been widely used in molecular microbiology 

applications for the preparation of plasmid DNA and recombinant proteins. It 

continues to be one of the most common media used for maintaining and cultivating 

recombinant strains of Escherichia coli. There are several common formulations of 

LB. Although they are different, they generally share a somewhat similar composition 

of ingredients used to promote growth, including peptides and casein peptones, 

vitamins, trace elements (e.g. nitrogen, sulfur, magnesium) and minerals. Peptides and 

peptones are provided by tryptone. Vitamins and certain trace elements are provided 

by yeast extract. Sodium ions for transport and osmotic balance are provided by 

sodium chloride. Bacto-tryptone is used to provide essential amino acids to the 

growing bacteria, while the bacto-yeast extract is used to provide a plethora of organic 

compounds helpful for bacterial growth.

For 1 liter o f LB lOg tryptone, 5g yeast extract and lOg NaCl were mixed and 

suspended in 800 ml of distilled water. Further water was added to make for a total of
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1 liter. The mix was autoclaved at 121°C and stored at 4°C. Immediately prior to use 

ampicillin was added to 100 mg/ml to allow selection of plasmids.

For miniprep cultures, 1 ml of LB media with ampicillin was used to grow picked 

clones overnight while for maxiprep cultures 150 ml or more was grown once the 

proper clone was confirmed. Cultures were incubated at 37C overnight.

To extract plasmid DNA from miniprep picked clones, DNA was isolated using a 

Miniprep kit (QIAprep Spin Miniprep Kit, Cat. No. 27104; Qiagen, Hilden, Germany) 

and a microcentrifuge.

This protocol was designed for purification of up to 20 pg of high-copy plasmid DNA 

from 1 ml overnight cultures of E. coli in LB medium. The bacterial cells were 

harvested by centrifugation at 6800 x g in a conventional table-top microcentrifuge 

for 3 min at room temperature in microcentrifuge tubes. Bacterial pellets were 

resuspended in 250 pi Buffer PI and transferred to a microcentrifuge tube. RNase A 

had been added to Buffer PI. No cell clumps were visible after re-suspension of the 

pellet. Bacteria were resuspended completely by pipetting up and down until no cell 

clumps remained. 250 pi Buffer P2 was added and mixed thoroughly by inverting the 

tube 4-6 times. The lysis reaction was not allowed proceed for more than 5 min. 350 

pi Buffer N3 was added and mixed immediately and thoroughly by inverting the tube 

4-6 times. Tubes were centrifuged for 10 min at 17,900 x g in a table-top 

microcentrifuge and a white pellet formed. The supernatants from were applied to the 

QIAprep spin columns by pipetting and centrifuged for 30-60 s, the flow-through was 

discarded. QIAprep spin columns were washed by adding 0.75 ml Buffer PE and 

centrifuged for 30-60 s. The flow-through was discarded and centrifugation was 

continued for an additional 1 min to remove residual wash buffer. The QIAprep 

column was placed in a clean 1.5 ml microcentrifuge tube. To elute DNA, 50 pi 

Buffer EB (10 mM TrisCl, pH 8.5) was added, let stand for 1 min, and centrifuged for 

1 min.

7.2.1.2.3. Quantification of Nucleic Acid
Because DNA and RNA absorb ultraviolet light with an absorption peak at 260 nm, a 

UV spectrophotometer could be used to calculate DNA concentration using the Beer 

Lambert Law. DNA was diluted in water at a ratio of 1:10 or above till reliable
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readouts were obtained. DNA purity was estimated using the absorption ratio at 

260:280 nm and only samples with 90% purity or above were accepted.

7.2.1.3. DNA Analysis
7.2.1.3.1. Restriction Enzyme Digestion of Plasmid DNA

Restriction enzyme digests were used to analyze DNA. This technique uses restriction 

enzymes that are capable of cutting DNA into shorter fragments that can be visualized 

in gel electrophoresis. A restriction enzyme cuts DNA segments with a highly specific 

nucleotide recognition sequence that typically consists of six, to twelve nucleotides. 

Because of the limited number by which these sequences can occur along a DNA the 

distance at which a cut occurs is very characteristic for a DNA of interest. The same 

technique was used not only to identify correct orientation of inserts in vector 

plasmids used in this thesis but also for cloning as DNA fragments with 

corresponding cut sequences can be ligated back together. The enzymes used in this 

thesis are listed in the FIV cloning history. DNA was analyzed by digesting with 

commercially available restriction enzymes. All restriction enzyme digests used in 

this thesis were from New England Biolabs (New England Biolabs, Ipswich, MA) and 

followed the New England Biolabs protocols. A restriction digest was performed 

using 1 microliter of enzyme solution at 37C for 1-2 hours in a volume of 10 to 20 

microliter. Solutions that allow restriction to occur consist of the plasmid DNA, an 

enzyme optimized buffer that allows the reaction to occur, the restriction enzyme and 

water to bring the reaction volume to 10 microliter.

7.2.1.3.2. Gel Electrophoresis of DNA
Agarose gel electrophoresis is a method to separate DNA. Nucleic acid is negatively 

charged and migrates at different speed based on molecule size through the agarose 

gel grid following an electric field towards the (positively charged) cathode. Shorter 

molecules move faster and migrate farther than longer ones. Increasing the agarose 

concentration of a gel reduces the migration speed and enables separation of smaller 

DNA molecules. Migration speed increased with increasing voltage but resolution 

might suffer. In order to visualize the DNA gels are stained with ethidium bromide 

which fluoresces under UV light when intercalated with DNA. As ethidium bromide 

is a carcinogen it has to be handled carefully.
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7.2.1.4. Polymerase Chain Reaction
Polymerase chain reaction (PCR) is used to amplify a specific region of a DNA 

strand. The PCR applications in this thesis employed a heat-stable DNA polymerase 

from Thermus aquaticus, Taq polymerase. This DNA polymerase enzymatically 

assembles a new DNA strand from nucleotides, using single-stranded DNA as the 

template and DNA primers required for initiation of synthesis. This is achieved by 

thermal cycling to a defined series o f temperature steps. The selectivity of a PCR is 

primarily due to highly complementary primers to the DNA region targeted for 

amplification and to the thermal cycling conditions.

Any PCR requires a DNA template that contains the DNA region to be amplified, one 

or more primers, which are complementary to the 5’ and 3' ends of the DNA region, a 

polymerase with a temperature optimum around 70°C, deoxynucleoside triphosphates 

(dNTPs), a buffer solution, magnesium and monovalent cation potassium ions.

The PCR protocol typically 20 to 35 repeated temperature cycles with 2-3 discrete 

temperature steps each. The cycling is preceded by a single temperature step at a high 

temperature to meld DNA at above 90°C. Temperature and the length of time depend 

on the enzyme used and the melting temperature of the primers.

In the initialization step the reaction is heated to 94°C and held for about 5 minutes 

for a so called hot-start. The dénaturation step is the first regular cycling event that 

consists of heating to 94C for 20-30 seconds resulting in DNA template and primer 

melting by disrupting hydrogen bonds between complementary bases and yields 

single strands of DNA. During the subsequent annealing the temperature is lowered to 

50-65°C for 20-40 seconds allowing annealing of the primers to the single-stranded 

DNA template. Typically the annealing temperature is about 3-5 degrees Celsius 

below the Tm of the primers used. The polymerase binds to the primer-template 

hybrid and begins DNA synthesis. In the extension phase the temperature is increased 

to the optimum activity temperature of about 72C for Taq. At this step the DNA 

polymerase synthesizes a new DNA strand complementary to the DNA template 

strand by adding dNTPs that are complementary to the template in 5' to 3' direction, 

condensing the 5'-phosphate group of the dNTPs with the 3'-hydroxyl group at the end 

of the nascent (extending) DNA strand. The extension time depends both on the DNA
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polymerase used and on the length of the DNA fragment to be amplified (typically 

1000 bases/minute). Because the amount of DNA target is doubled each cycle the 

amplification is exponential. During final elongation at 70-74°C for 5-15 minutes, the 

remaining single-stranded DNA is ftilly extended. Usually a final hold at 4C is added 

after this for short-term storage.

7.2.1.5. DNA Sequencing
DNA sequencing is the process of determining the nucleotide order o f a given DNA 

fragment. The classical technique developed by Frederick Sanger uses sequence- 

specific termination of a DNA synthesis reaction using modified nucleotide 

substrates. Sequencing is initiated at a specific site on the template DNA by using a 

short oligonucleotide 'primer' complementary to the template at that region and 

extended using a DNA polymerase. The sequencing reaction contains the four 

deoxynucleoside bases in addition to the primer and DNA polymerase, along with a 

low concentration o f a chain terminating nucleotide. Limited incorporation of the 

chain terminating nucleotide by the DNA polymerase results in a series of related 

DNA fragments that are terminated only at positions where that particular nucleotide 

is used. The fi-agments are then size-separated by electrophoresis in a slab 

polyacrylamide gel or in a glass capillary filled with a viscous polymer. The primers 

used for sequencing of FIV vectors are described in the cloning history where 

appropriate.

7.2.1.6. FIV Vector Components
7.2.1.6.1. Glossary of Lentiviral Vector Components

The LTR (Long Terminal Repeat) comprises U3-R-U5 (5'to 3') and measures 300 to 

1800 base pairs composed. LTRs are located at both ends of the unintegrated and 

integrated proviral linear DNA. The LTRs are also found in closed circular forms of 

retroviral DNA that can contain one or two LTRs.

R (Repeat) is a nucleotide sequence at both ends genomic RNA that measures only 15 

to 250 nucleotides. The boundaries are defined by the RNA transcription initiation 

and polyadenylation (AAUAAA). R is present in both LTRs between U3 and US. In 

HIV, R is the binding site for the transactivator Tat.
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U5 (Unique 5') is located between R  and the primer binding site, PBS. In the viral 

RNA genome it is only present once but in the in integrated provirus also copied to 

the 3' end as part of the LTR.

PBS (Primer-binding Site) is a very short sequence that usually starts with 5'TGG 

and measures 18 nucleotides. PBS binds tRNA and initiates reverse transcription. It 

therefore has to be specific to the host tRNA.

gag is one of the retroviral genes that are found in all retroviruses. It encodes the 

group specific antigen. Gag that is subsequently cleaved into matrix (MA), capsid 

(CA) and nucleocapsid (NC) that form the virus core.

The polyprotein pro  is cleaved from Gag-Pro-Pol into a protease (PR) and dUTPase 

(DU).

pol codes for reverse transcriptase (RT) and integrase (IN).

env encodes for an envelope precursor protein that is further processed to surface 

(SU) and transmembrane (TM) structural proteins.

The SD (Splice Donor Site) is a site where an upstream 5’ RNA is joined to the splice 

acceptor (SA) 3' RNA.

RRE (Rev Response Element) is a binding site for the Rev protein to aid the export of 

unspliced RNA fi*om the nucleus.

The PPT (Polypurine Tract) is a purine-rich sequence of 7-18 nucleotides 

immediately upstream of U3 that is cleaved during reverse transcription to produce 

the RNA primer for synthesis o f the plus (+) strand of viral DNA. Lentiviruses use an 

additional central polypurine tract to form a three dimensional structure that 

participates in nuclear import and facilitates transduction of non-dividing cells.

U3 (Unique 3 )  is a sequence of -190 to 1200 nucleotides that are positioned between 

PPT and R near the 3 'end of viral RNA and is present once in viral genome RNA but 

twice in viral DNA as part of the LTR. U3 contains promoter-enhancer sequences that 

control viral RNA transcription from the 5'LTR.

Poly (A) Tract is consists of 50-200 adenylic acid residues following the R sequence 

at the 3 'end of the viral RNA. It is added posttranscriptionally and not encoded in the 

viral genome. A signal for polyadenylation (AAUAAA) is generally present about 

15-20 nucleotides upstream (5') o f the site of polyadenylation within R.
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The IR (Inverted Repeat or att site) are short sequences of 3 to 25 bp that form 

inverted repeats at the ends of the LTR providing recognition sites for the integrase.

CMV (cytomegalovirus) immediate early promoter is a strong promoter with a broad 

host range that functions in most eukaryotic cells.

1RES (internal ribosome entry site) allows for cap independent translation initiation 

in the middle o f an mRNA. In vectors this allows for expression of two proteins (cap- 

mediated and 1RES mediated) from the same transcript.

VSV-G (vesicular stomatitis virus G protein) is one of five major proteins of VSV, a 

member of the vesiculovirus genera of the rhabdovirus family. It enables viral entry 

by mediating attachment and fusion of the viral envelope with the endosomal 

membrane after endocytosis. It provides broad tropism and has sufficient stability to 

survive ultracentrifugation.

WPRE (woodchuck hepatitis virus posttranscription regulatory element) enhances 

transcription through an unknown mechanism

7.2.1.6.2. FIV Packaging Constructs
The first packaging construct, CFlAenv,* was cloned hy Eric M. Poeschla in whose 

laboratory I conducted my studies. It was made by blunting the AcI-BlpI fragment 

containing most of the viral genome into the polylinker of a human cytomegalovirus 

immediate early gene promoter expression plasmid and then deleting a 0.9 kb 

fragment of the env gene (Figure 12, Top and Middle). Roman Barraza further 

reduced significant overlap with cis-acting transfer vector sequences in CFlAenv, the 

5’ LTR (U3, R, and U5 elements) by additionally deleting 154 nt o f the FIV leader 

upstream of Sad, leaving 119 nt of leader upstream of gag including the interval 

between the major splice donor and gag. Viral sequences terminated 37 nt 

downstream of the second exon of Rev and most of U3 (all of R and U5 are missing) 

at the 3’ end, the dispensable vif gene is intact. During a series of modifications, 

Roman Barraza deleted cis-acting sequences and unneeded viral coding sequences 

while preserving Gag/Pol expression. In contrast to CFlAenv, the resulting construct, 

pFP93, lacks all viral leader sequences, as well as vif, and contains less residual env 

sequence (Figure 12, Bottom). At the 3’ end, viral sequences terminate with the stop 

codon of Rev.
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Figure 12: Genomic structure of FIV and derivative packaging constructs. Top: 
Genome of FIV34TF10. LTR is long terminal repeat; U3, 3'-unique region of LTR; 
U5, 5'-unique region of LTR; R, repeat element of LTR; SD, major splice donor; Gag, 
group antigen (encodes structural components of virion core particle); Pol encodes a 
polyprotein that is cleaved by the viral protease into the five enzymatic activities: 
reverse transcriptase, integrase, RNAse H, protease, and dUTPase; Vif, virion 
infectivity factor; SU, surface envelope glycoprotein; TM, transmembrane portion of 
the envelope glycoprotein; RRE, rev response element. Grf2 is open reading frame 2. 
The OrfZ gene product may have LTR transactivating activity similar to HIV-1 Tat. 
However, 0RF2 is not expressed by FIV 34TF10 because of the illustrated premature 
stop codon, and in any case, the vector system dispenses with the promoter activity of 
the FIV U3 element entirely by using a CMV promoter substitution and fusion at the 
TATA box (explained below). Middle: First generation packaging construct 
pCFldeltaewv. Bottom: Second generation packaging construct pFP93. Note deletions 
of vif, Orfl, additional env sequences, and removal of all viral sequences upstream of 
gag. Deletions of vif  and orf 2 are attenuating to FIV in vivo.

7.2.1.6.2.1. Deletion of Leader Sequence and 
Nonstructural Genes

Roman Barraza replaced all FIV sequences upstream of the gag gene with a 9 nt

canonical splice donor sequence. Vif, additional env, and U3 sequences were also

removed. Splice donor and acceptor sites were selectively inserted between pol and

rev to permit splicing.
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7.2.1.6.2.2. Packaging Signal Exclusion
Iris Rentier mapped encapsidation (packaging) determinants in FIV genomic mRNA 

using RNAse protection/^^ Her data demonstrated that the packaging constructs 

lacked the necessary encapsidation determinants.

7.2.1.6.2.3. Development of Class I Integrase Mutants 
for Control Vectors

1 50
1 1

100 150
1 1

200 250 288
1 1 1

Zinc finger Catalytic core DNA binding
1 H-H C-C Ï D D E i )

t
D64V

T
D116A

Consensus 
Splice Donor 

1
1 CMVp H  .  989 . J in t)0  RREIÛBGH p{A)

Figure 13: Class I FIV integrase mutations. The three universally conserved amino 
acids (D64, D116, and E l 52) that are required for fonction of the integrase catalytic 
center are illustrated. The aspartic acid (D) at position 64 was mutated to valine (V) 
by site-directed mutagenesis. Subsequently, addition of a second mutation (D116A) 
has been shown to preserve class I properties.

To establish that transgene expression in vivo oecurs from integrated vector DNA and 

to provide a control for pseudotransduction, I constructed a single amino acid mutant 

of FIV integrase (D64V, Figure 13). Pseudotransduction is false-positive transduction 

caused by carryover of preformed protein present in the vector preparation. This 

source of artifactual transduction needs to be considered in all lentiviral vector 

experiments. 293T cells cotransfected with VSV-G, a vesiculating protein, can release 

large amounts of preformed marker gene protein into the supernatant. Generally this 

results in a mottled, nonuniform appearance of the target cell, but this distinction is 

not always reliable, and in vivo in tissues it can be hard to distinguish from genuine 

de novo synthesis. Although enhanced green fluoreseent protein (EGFP) can 

occasionally produce this problem, P-galactosidase (laeZ) is more likely to confound. 

Two controls for pseudotransduction can be used. First, the packaging plasmid can be 

omitted during vector production (transfer vector and VSV-G are transfected). This 

“mock” vector should be processed in parallel with the real vector. The second, more 

elegant, control is a class I integrase mutant packaging plasmid.
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The aspartic acid residue at position 64 is required for integrase catalytic activity that 

consists of DNA cleaving and joining. It is a universally conserved participant in the 

catalytic center of retroviral integrases.^^^ I performed site-directed mutagenesis of 

FIV integrase in three steps to create a D64V-requivalent (amino acid D66V (aspartic 

acid to valine) in FIV), selectively integration deficient FIV vector as a control for 

experiments. This allowed generating control vectors that only became available at 

the end of the present thesis. Other controls were used in prior experiments. A 1.8 kbp 

integrase fragment of FIV pol was generated by PCR using FIV packaging plasmid 

CFlAenv,* as the template using sense primer 5’-

ATATACTAGTTCTAGAGAAGCCTGGGAATC-3’ and antisense primer 5’- 

ATATGAATTCTCCGGAGGTAGCCTAG-3 ’. The restriction sites EcoRI and Spel 

introduced by these primers were then used to subclone the integrase fragment into 

pCI (Promega, Madison, WI). The GAT encoding aspartic acid at position 66 of the 

integrase was changed to GTA (valine) by mutagenesis (QuikChange, Stratagene, La 

Jolla, CA) with sense primer 5’-

GCCTGGTATCTGGCAAATGGTATGCACACACTTTGATGGC-3’ and antisense 

primer 5 ’-GCCATCAAAGTGTGTGCATACCATTTGCCAGATACCAGGC-3 ’. The 

mutation, and lack of introduction of inadvertent second-site mutations in the insert, 

was confirmed by sequencing. Finally, the fragment was excised with internal BspEl 

and Bsu36I sites and ligated between BspEl and Bsu36I in CFlAenv to form 

packaging plasmid CFlAenv.D66V. RT activity was determined in triplicate for both 

CT25 and the integrase mutant CT25.D66V.^^ Experiments were conducted with 

equal RT units of each vector. The measurements or RT activity were carried out by 

Dyana T. Saenz and M ary Peretz.

7.2.1.6.3. FIV T ransfer Vectors
Eric Poeschla found in his first studies o f FIV vectors that fusion of the hCMV 

promoter to the R repeat permitted high-level expression of FIV proteins and 

production of infectious virus in human cells. *’^̂ * This hybrid LTR is the basis of all 

other transfer vectors that I will describe in the following.
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7.2.1.6.3.1. Minimal Packaging Signal Inclusion
Complementary to the packaging construct changes, only 311 nt of the 1353 bp of gag 

were included in the transfer vector to reduce potential recombination with the 

packaging plasmid. I minimized gag by following analogy to other lentiviral vectors 

and found them to be fully functional in preliminary transduction experiments. Iris 

Kemler subsequently investigated encapsidation requirements of FIV and established 

that a smaller gag fragment enhanced encapsidation compared to the original 

vector.^^^

7.2.1.6.3.2. Central DNA Flap
Todd Whitwam demonstrated that the FIV central polypurine tract (cPPT) and central 

termination sequence (C IS) act as cis-acting elements"*^  ̂as seen in other lentiviruses 

to enhance transduction of non-dividing cells or progenitor c e l l s . T h i s  feature has 

only a relatively small impact on FIV vector performance however its presence 

suggests some evolutionary advantage and was maintained in FIV vectors since its 

discovery to match other current lentiviral vectors systems. Todd Whitwam has to be 

acknowledged for integrating the cPPT and CTS into FIV vectors that I later used in 

my studies.

Todd Whitwam inserted the central polypurine tract (cPPT) into pCT26 by PCR 

amplifying the cPPT-CTS from FIV 34 TflO with sense primer 5’- 

aaaaCCTTCAAGAGGctgcagaaacaacctccttggataatgcc- 3’ and antisense primer 5’- 

atataCCTTCAAGAGGtctagactctccttatgtgtctcctagg-3’. The cPPT-CTS combination is 

also referred to as the central DNA flap, because the strand initiations and 

terminations that occur at these loci result in a triple stranded DNA flap structure at 

the completion of FIV reverse transcription. The amplicon was blunted into the EcoNI 

site of pCT25 downstream of the RRE. CT26 therefore contains, from 5’ to 3’, the 

hybrid promoter, R repeat, U5, leader, 311 bp of gag, RRE, central DNA flap, human 

CMV immediate early promoter lacZ, and 3’ LTR.

7.2.1.6.3.3. Woodchuck Hepatitis Virus
Posttranscriptional Regulatory Element (WPRE)

The woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) is an

RNA transport element that enhances transgene expression^^^’ I inserted it
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upstream of the polypurine tract at the 3’-LTR by sticky-end cloning into a single 

Clal site using the WPRE flanking Clal sites. WPRE was derived from plasmid 

pCLNTluc-W^^"^ which contained WPRE flanked by two Clal sites of plasmid 

pCLNCX after substituting a BamHl-Hin&Wl thymidine kinase (TK)-luciferase

cassette for the CMV promoter.^^^

7.2.1.6.3.4. Plasmid Construction of eGFP and p- 
gaiactosidase FIV Transfer Vectors

P-galactosidase expressing contains, in series from 59 to 39, the hybrid U3-

substituted promoter of pCT5;* the FIV R repeat, US element, and leader sequence;

the first 311 bp of the gag open reading frame (ORF); the Rev response element; an

internal cytomegalovirus (CMV)-lacZ cassette; and the 39 long terminal repeat

(LTR).

pCT25, a lacZ transfer vector, was parental to a sequentially constructed series of 

eGFP-containing plasmids eventuating inpGiNWF: pGiN (also called 

CT25.eGFP.ires.neo), pGiNW, pGiNWcPPT-CTS, and pGiNWF. To first construct 

pGiN, peGFP-1 (BDE Biosciences-Clontech, Palo Alto, CA) was cleaved with Notl, 

blunted with Klenow fragment, and then cleaved with BamHI. The resultant 0.74-kb 

fragment was inserted into an MLV retroviral vector between BamHI and Hpal, 

yielding the EcoRI-containing sequence GCGGCCAACGAATTC at the 3’- junction. 

This eGFP insert was then excised with BamHI and EcoRI and inserted into the 

BamHI-EcoRI-cleaved backbone of pCT25, thus replacing lacZ and generating 

pCT25.eGFP.

A 1.49-kb Sal-Nhe fragment containing the internal ribosome entry site and neoR 

gene from pJZ30814 was then inserted by blunt-end ligation into the EcoRI site of 

pCT25.eGFP, generatingpG iN  (pCT25.egfp. ires.neo).

pGinW  was constructed by inserting the WPRE by blunt insertion of an EcoRV-XhoI 

fragment of pBluescriptllSK’WPRE-Bl 112 into the BspEI site of pGiN (yielding a 

regenerated BspEI site that is blocked by dam méthylation). Finally, the central DNA 

flap was inserted in several steps as follows. A 279-nt amplicon containing the FIV 

cPPT-CTS was synthesized by PCR, by using a sense primer tailed with a BstBI site 

(5’-
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ATATTTCGAATCAAATCAAACTAATAAAGTATGTATTGTGAAACAACCTC 

CTTGGATAATGCC- 3’) and an antisense primer tailed with an Xba site (5’- 

ATATACCTCTTTTAGGTCTAGACTCTCATGTGTCTCCTAGG- 3’). The sense 

primer fuses the cPPT with the 3’ end of the FIV RRE and deletes an unneeded splice 

acceptor. This BstBI-Xba amplicon was inserted into the corresponding sites of 

pGiNW, generating pGiNWcPPT-CTS. The latter maneuver removed the internal 

CMV promoter from pGinW and inserted the cPPT-CTS. To restore this promoter, 

the BamHI-XhoI fragment of pGiNW was inserted into the XhoI-BamHI backbone of 

pCR2.1 (Invitrogen, San Diego, CA). An Xbal linker (GCTCTAGAGC) was inserted 

into the Klenow-treated Aflll site of this intermediate plasmid, and the 614-nt Xbal- 

Xbal fragment was then inserted into the Xba site of pGiNWcPPT-CTS, generating 

pGiNWF. GiNWF contains, from 5’ to 3’, a hybrid U3-substituted promoter derived 

from pCT5,^ the FIV R repeat, U5 element, leader sequence, the first 311-bp of the 

gag gene, the Rev response element (RRE, nucleotides 8537-8952 of the FIV 34TF10 

genome), a sequence (FIV nt 4904-5191) containing the FIV central polypurine tract 

(cPPT), and the central termination sequence (CTS), the CMVp, eGFP, an internal 

ribosomal entry site (1RES) neoR, the woodchuck hepatitis virus posttranscriptional 

regulatory element (WPRE), 12 and the 3’ long terminal repeat (LTR).

7.2.1.6.3.5. Bi-cistronic Vectors Utilizing an Internal 
Ribosomal Entry Site (1RES)

proximal gag fragment

HCMVp R u s  b zz f  iRRElrLAplhCMVpl gene 1 I 1RES I gene 2 IWRREI U3 R US
I f f  t

tRNA cPPT CTS PPT
PBS

Figure 14: Second-generation bicistronic transfer vector. The central DNA flap 
and WPRE^^^ have been inserted, and gag has been reduced to 311 nt.

492

I created a bi-cistronic expression cassette was created that contains an internal 

ribosomal entry site (1RES), a picomavirus element that mediates cap-independent 

translation (Figure 14). The choice of transgene position influences the expression 

level achievable and is typically between 10 to 20-fold lower from the second position 

than from the first position when a standard ECMV 1RES is used.^^^
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Self-Inactivating FiV Vector
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Figure 15: HIV vector with self-inactivating (SIN) LTR modification (after ref. ^̂ )̂.

In parallel to HIV v e c t o r s , I  constructed a new series of FIV SIN vectors by 

deleting 172 bp in the U3 region of the 3' LTR, including the TATA box and binding 

sites for transcription factors (NFkB, NF-ATc, SPl) (Figure 15). Self-inactivating 

(SIN) lentiviral vectors improve significantly the biosafety by reducing the likelihood 

that replication competent retroviruses will originate in the vector producer and target 

cells. Although FIV LTR promoter function is minimal in non-feline cells, any 

residual promoter activity from either 5'- or 3'-LTR should be avoided. While 3'-LTR 

promoter activity could lead to expression of open reading frames downstream of the 

insertion site, 5'-LTR promoter activity may generate antigenic peptides from Agag. 

The U3 deletion o f the 3'-LTR SIN design is copied to the 5'-LTR during reverse 

transcription and inactivates both LTRs of the integrated vector (Figure 7).

pFSIN-MCS, a minimal FIV SIN vector with a large multiple cloning site and only 

230 bp of gag was generated as follows: pGINWF served as the template to delete 

171 bp of the 3'-U3 by overlapping primer extension. A first PCRs amplified the 

WPRE and the most 5' part of the 3'-U3 (first PCR sense primer: 5'- 

tatatctagatccggatcaagcttatcg-3 ' and antisense primer 5'-

CACTGGTTAGCTAGCTTCAGGGTTCCAATACTCATCCC-3') and a second PCR 

amplified the most 3' part of the 3'-U3, R, and U5 (second PCR sense primer 5'- 

ccctgaagctagcgtgctttgtgaaacttcgaggagt-3' and antisense primer 5'- 

TATAAAGCTCTCGACGC-3'; bold = overlap). PCR products were then combined 

and amplified with the most 5’ and 3’ primer to complete the deletion by fusion in a 

third PCR. The final product was digested with Xbal and Notl and cloned into 

pGINWF-G230 (pGINWF with only 230bp gag) to form FSIN. A directly synthesized

-151



Materials and Methods

multiple cloning site (MCS) of 90 bp length with 19 unique restriction sites was then 

inserted into the Xbal and Bspel sites o f pFSIN generating pFSIN-MCS. The eGFP 

cassette of pGINWF was subsequently cloned into this vector and used for studies in 

cats.

7.2.1.6.4. Retroviral Transfer Vectors for Outflow Tract and 
Retinal Experiments

Two lentiviral vectors (FIV based and HIV-1 based), an MuLV vector (LZRNL),"^^^

and an adenoviral vector "̂^  ̂were evaluated. Vesicular stomatitis virus glycoprotein G

(VSV-G) pseudotypes for FIV, HIV, and MuLV lacZ vectors were prepared by

transient plasmid transfection as previously described.^’ Plasmids used to generate

FIV vectors were a minimal transfer vector (pCT25), packaging construct

pCFlAenv,* and a VSV-G expression construct, pCMV-G."^^^ pCT25 contains, in

series from 59 to 39, the hybrid U3-substituted promoter of pCT5^; the FIV R repeat,

U5 element, and leader sequence; the first 311 bp of the gag open reading frame

(ORF); the Rev response element; an internal cytomegalovirus (CMV)-lacZ cassette;

and the 39 long terminal repeat (LTR). HIV-1 vectors were generated with

pHR9CMVlacZ and pCMVDR8.9^'^^’ plus pCMV-G. Adenovirus lacZ vector

(Ad.CMVLacZ) was prepared as described.^"^*

All retroviral vectors were filtered through a 0.45-mm pore size filter, concentrated by 

ultracentrifugation, resuspended, centrifuged at low speed to remove particulates, and 

titered on CrFK cells. For transduction of cultured human eyes, high-titer stocks 

of each of the lacZ-encoding vectors were generated and adjusted to 1 x 10  ̂CrFK- 

transducing units (TU)/ml. As a control for pseudotransduction, a mock FIV vector 

was prepared by transient transfection into 293T cells of the same amounts of pCT25 

DNA and pCMV-G DNA used for generation of transducing vector, while omitting 

the packaging plasmid. Plasmid transfection efficiency was evaluated by 5-bromo-4- 

chloro-3-indolyl-P-D-galactopyranoside (X-Gal) staining and was greater than 80% 

for the transfected 293T producer cells for both mock and packaged CT25 vectors. 

39-Azido-29,39-dideoxythymidine (AZT, 50 mM; Sigma, St. Louis, MO) was used as 

an additional control for pseudotransduction in both cultured cells and perfused eyes. 

Reverse transcriptase measurements with a ^^P based assay were performed as 

previously described.^ Before normalization to 10  ̂TU/ml, vector titers were 4.6 x 10^
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TU/ml for FIV, 1.2 x 10* TU/ml for HIV, 2.4 x 10* TU/ml for MuLV, and 1.1 x lO"

TU/ml for Ad.CMVlacZ.

7.2.1.6.5. History of Beta-Galactosidase Expressing 
Murine Leukemia Viral Vector LZRNL

The murine leukemia viral (MLV) vector LZRNL was a vector plasmid stably

transfected into MLV packaging cell line 293GP forming the cell line 293GP-

LZRNL"^^  ̂and was generously provided hy J. C. Burns. 293GP-LZRNL cells express

the Moloney gag and pal genes as well as the LZRNL MLV provirus and only need to

be transfected with an envelope plasmid. The vesicular stomatitis G protein was used

in my experiments for this purpose. The MLV pro virus contains from 5’ to 3’ the

MLV LTR driving lacZ (beta-galactosidase) and further RSV-neoR-LTR.^^^

7.2.1.6.6. Cloning of Human Immunodeficiency Viral 
Vectors

Human immunodeficiency viral vector plasmid pHR9CMVlacZ and HIV packaging 

plasmid PCMVDR8.9 was a generous gift by Luigi Naldini. PHR9CMVlacZ 

contains a beta-galactosidase expressing cassette driven by a CMV promoter. 

Packaging plasmid pCMVDR8.9 contains HIV gag and pol genes under control of a 

CMV promoter.^'"''

7.2.1.6.7. History of Adenoviral Vector
The adenoviral vector used in this thesis was a generous gift by Robert D. Simari at 

the Mayo Clinic. It expressed P-galactosidase directed by the same human 

cytomegalovirus immediate-early promoter/enhancer^"^^’ as the FIV vector used 

here. This adenoviral vector (Ad.CMVlacZ)^^^'^^^ was derived from adenovirus-5 

serotype and contains deletions in regions E l a spanning 1.0 to 9.2 map units and E3 

spanning 78.4 to 86 map units, rendering it replication-deficient. The CMV-lacZ 

cassette was inserted into the E l deletion of Ad.ElA that was parental to 

Ad.CMVlacZ.^^^ Ad.CMVlacZ was a kind gift of J. Wilson^^^’ to R. Simari and Z. 

Katusic.̂ ^̂
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7.2.2. Cell Cultures
7.2.2.1.1. Cell Lines

7.2.2.1.1.1. 293T Cells
293T cells were readily available in the laboratory where the studies were conducted. 

293T cells are a highly transfectable derivative o f the 293 cell line (also known as 

HEK or human embryonic kidney 293 cells) into which the temperature sensitive 

gene for SV40 T-antigen had been inserted. Because these cells are so easily 

transfectable, they are the standard cell line for retroviral vector production when 

transient transfection is used (as opposed to inducible producer cell lines).

Historically, HEK 293 cells were generated by transformation of cultures o f normal 

human embryonic kidney cells with sheared adenovirus 5 DNA in the laboratory of 

Alex Van der Eb in Leiden, Holland in the early 70s. The human embryonic kidney 

cells were obtained from a healthy aborted fetus and originally cultured by Van der 

Eb himself, and the transformation by adenovirus was performed by Frank Graham 

who published his findings in the late 1970s."̂ ^  ̂The number 293 indicates the 

investigator’s 293rd experiment. Subsequent analysis showed that the transformation 

was brought about by an insert consisting of 4.5 kb from the adenoviral genome, 

which became incorporated into human chromosome 19.̂ "̂ "̂  For many years it was 

assumed that HEK 293 cells were generated by transformation of either a renal 

fibroblastic, endothelial or epithelial cell. Recently, Shaw et al. demonstrated that 

HEK 293 cells have properties of immature neurons rather than epithelial 

properties.^"^^

On Day -1 of a respective experiment 3x10^  293T cells per T75 flask, 5 x 10  ̂o f the 

above 293T cells into a CF2s or 2.5 x 10  ̂per CFIO. The detailed transfection 

protocol is discussed below.

7.2.2.1.1.2. CRFK Cells
The CRFK feline kidney cell line was established by Rees A. Crandell from the renal 

cortex of a 12-week-old female domestic cat.̂ "̂  ̂These cells exhibit typical epithelial 

morphology and are often utilized in viral research and in the production of vaccines.

Crandell feline kidney (CrFK) cells are robust, rapidly dividing cells that experience 

moderate contact inhibition at high confluency resulting in slower division. These
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cells were used for titration of transducing units of vector preparations and to 

determine vector differences upon cell cycle arrest with aphidicolin. As with other 

cells, 2.5 X 10  ̂cells were seeded into each well of a 6-well plate one day prior to 

titration. On day 0, 4 h before transduction, old media was replaced with 2 mL fresh 

media per well.

7.2.2.1.1.3. Primary Human Trabecular Meshwork Cells
Human trabecular meshwork (TM) cells were kindly provided by Terete Barras who 

obtained them from a normal human eye at autopsy within 24 hours and treated as 

follows: The TM had been isolated by microdissection and digested with collagenase. 

Isolated cells were grown in 24-well plates for 2 weeks to near confluence in 

Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal calf serum (PCS). 

Doubling time was approximately 4 days.

I received a frozen vial of human TM cells from Douglas H. Johnson at the Mayo 

Clinic after these cells had been expanded by 2 passages in T25 flasks and frozen 

down in liquid nitrogen.

Primary human trabecular meshwork cells were treated and propagated in analogy to 

293T cells except that the passage time was twice as long. These cells were used 

primarily to test for transduction differences of various vector types. One day prior to 

titration, 2.5 x 10  ̂cells were seeded into each well of a 6-well plate. On day 0, 4 h 

before transduction, old media was replaced with 2 mL fresh media per well.

7.2.2.1.2. Culture Techniques
Cells were thawed in a 37C waterbath, washed with DMEM containing 10% PCS and 

antibiotic, spun down at 300 rpm for 3 minutes and seeded again in a T25 flask. Cells 

were grown again to confluency, DMEM was removed, cells were washed with 

phosphate buffered saline (PBS) and trypsinized with 1 ml of tissue culture grade 

trypsin for 3 minutes at 37 C in an incubator. Cells were then suspended in 8 ml of 

PBS, pipetted up and down while resting the tip of the pipette agains the bottom of the 

T25 flask to break up cell clumps. Cells were then spun down again with the above 

settings, supernatant was decanted and the cell pellet was suspended in DMEM with 

10% PCS and antibiotic.
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7.2.2.1.3. Transduction Techquiques
7.2.2.1.3.1. Transduction of Primary Human Trabecular 

Meshwork Cells
Cells were then transduced with 300 ml o f unconcentrated supernatant containing a 

2.5 X 10^-TU/ml concentration of MuLV or FIV lacZ vectors with or without 24 hr of 

prior growth arrest with aphidicolin (15 mg/ml). The transduction was carried out for 

6 hr before replacement with fresh medium. Aphidicolin (15 mg/ml) was maintained 

in all media overlying growth-arrested cells throughout the experiment, and was 

replenished daily until fixation and staining for p-galactosidase activity at 48 hr after 

transduction. G l/S growth arrest was verified by flow cytometric analysis with 

propidium iodide. Percent transduction was calculated by counting 10 visual fields per 

well at 340 magnification. No background p-galactosidase activity was detected in 

TM cells at any time point.

7.2.2.I.3.2. Cultured TM Cell Transduction
Primary human TM cells {gift o f  T. Borras, University of North Carolina Chapel Hill) 

were transduced with an escalating multiplicity o f infection (m.o.i) o f GINWF to test 

for potential GFP toxicity in vitro prior to in vivo experimentation. Doses were 

chosen to have an equivalent m.o.i to that in a feline eye injected with a bolus of 10^, 

10 ,̂ 10  ̂and 10  ̂j u  747,748 medium was replaced weekly and TM cell layers were 

photographed (Nikon Coolpix 990 and Nikon Eclipse TE300, Nikon, Melville, NY) at 

the experimental endpoint of one month.

7.2.2.I.3.3. Human Eyes
Pairs of human eyes were obtained from the Minnesota Lions Eye Bank 

(Minneapolis, MN). Eyes were from individuals without any known eye disease 

(median age, 65 years) and were cultured within 36 hr of death. Eyes were sectioned 

along the equator, dissected to remove retina, iris, and lens, and cultured as described 

prev iously .Briefly ,  the sectioned specimens were sealed at the equator into a 

custom-built culture vessel as shown (Figure 17). The culture vessel was placed in an 

incubator (37°C, 5% C02), and connected to a microinfusion pump that perfused the 

eye with medium at the normal human anterior chamber rate o f 2.5 ml/min. A dose of 

1x10^ TU, or a range of doses for the dose-response experiments, was injected as a
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bolus into the afferent perfusate. AZT (50 mM) was included in the perfusate in some 

control experiments. Generally, eyes were cultured for 3 to 21 days. For the initial 

characterization of transduction by FIV, HIV, MuLV, adenoviral, and mock vectors, 

all eyes were injected and perfused with a randomly assigned vector, whereas the 

fellow eye was not injected and served as a control for potential endogenous P- 

galactosidase activity. Pairwise comparisons of FIV to MuLV vector and o f FIV to 

HIV vector were performed, using the left and right fellow eyes of human donors. 

Three pairs of randomly assigned eyes were transduced by injection of 1 x 10  ̂TU of 

FIV vector in one eye and 1x10^ TU of MuLV vector in the other eye of the pair, 

and three pairs were transduced in a separate experimental set with 1x10^ TU of FIV 

and HIV vector, respectively. Eyes were fixed and stained for P-galactosidase activity 

on day 7 after transduction. The ratio of transduced to total TM cells was determined 

by counting all TM cells in each of four sections per eye (one from each quadrant).

7.2.2.2. Trypsinizing Cells
In order to propagate cells, media of established cell cultures in T75 bottles were 

removed by vacuum aspiration and washed twice with 5 ml of phosphate buffered 

saline (PBS). 2.5 ml trypsin solution was added and evenly spread across the cell 

monolayer by tilting. The culture bottles were placed back into the incubator to 

provide the ideal temperature for the enzymatic action of trypsin. At about 3 minutes 

the culture bottle was removed from the incubator, rocked to dislodge adherent cells, 

placed back in the incubator and trypsinization allowed to continue for another 2 

minutes. Bottles were removed from the incubator and opened in the tissue culture 

hood. The cell suspension was aspirated with an automatic pipette and forcefully 

ejected while creating a moderate seal with the counter pressure from the wall at the 

bottle end to break up remaining cell clumps that had not completely trypsinized. A 

volume of 7.5 ml Dulbecco’s modified Eagle medium with 10% fetal calf serum 

(DMEM-10), penicillin G sodium 100 units/mL, streptomycin sulfate 100 pg/mL and 

L-glutamine 2 mM (DMEM) was added to stop trypsinization and provide appropriate 

culture environment.
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7.2.2.S. Counting Cells
Figure 16: Hematocytometer counting 
chamber. Rulings cover 9 square 
millimeters. Boundary lines of the 
Neubauer ruling are the center lines of 
the groups o f three. (These are indicated 
in the illustration below.) The central 
square millimeter is ruled into 25 groups 
o f 16 small squares, each group 
separated by triple lines, the middle one 
of which is the boundary. The ruled 
surface is 0.10mm below the cover glass, 
so that the volume over each of the 16 
small squares is .00025 cubic mm.

After trypsinization as described above, suspended cells were counted with an 

improved Neubauer hemocytometer (cat. No. 3100, Hausser Scientific, Horsham, PA, 

USA) and a counter. This device has two separate cell counting areas, one of which is 

shown above (Figure 16). The volume above each square contains 0.1 mm^ of sample 

when covered by a cover slip ( 1 x 1  x 0.1 mm^). A cover slip mounts on two ground 

glass bars to form the top of the two chambers. The cell suspension that had to be 

counted was transferred to each chamber with a pipette resulting in the suspension 

being drawn into the chamber by capillary action. For proper counting both sides of 

the chamber have to be filled and counted. Fine rulings on the floor of each chamber 

provide grids to help count the number o f cells in suspension. There are nine large 

squares on each side of the hemocytometer. Cells were counted in three big squares. 

The number of cells per milliliter was calculated as the average number per square 

times l o t  Cells that were lying at the top and left hand lines of each box were 

included in the count but not the ones on the lower and right hand line. On average, 

100 to 300 cells were counted per chamber to increase accuracy. The same procedure 

was repeated in the second chamber. The appropriate volume was then added to the 

desired culture vessel and filled up with DMEM to the recommended volume as 

described below.
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7.2.2.4. Seeding and Growing Cells
7.2.2.4.1. 293T Cell Cultures for Retroviral Vector 

Production by Transfection
1. 293T cells.

2. Adherent fibro-epithelial cell lines for titration: CrFK cells.

3. Dulbecco’s modified Eagle medium with 10% fetal calf serum (DMEM-10), 

penicillin G sodium 100 units/mL, streptomycin sulfate 100 pg/mL and L- 

glutamine 2 mM.

4. Trypsin, tissue culture grade.

5. PBS (phosphate-buffered saline), tissue culture grade.

6. Distilled water, sterile.

7. 70% isopropanol or ethanol.

8. 37°C humidified incubators, 5% C02.

9. Nikon Coolpix 990 camera for digital image capture (Nikon, Melville, NY)

10. Nikon Eclipse TE300 microscope (Nikon, Melville, NY)

7.2.2.4.1.1. T75Flask
On Day -1 of a respective experiment 3x10^  293T cells per T75 flask were seeded. 

On day 0, 4 h before transfection, old media was replaced with 10 mL fresh media

7.2.2.4.1.2. Cell Factory CF2
1. D ay-4: CF2: seeding each of 4 T75 flasks with 3 x 10  ̂293T cells.

2. Day -2: Trypsinizing and seeding a CF2 with 5 x 10  ̂of the above 293T cells.

3. Day -1 : Trypsinizing and reseeding 5 x 10  ̂of the above 293T cells into a CF2s. If 

desired and if full doubling occurred over from day -2  to day -1 , a second CF2 can be 

seeded.

4. Day 0: Transfection.

7.2.2.4.1.3. Cell Factory CF10
1. D ay- 6 : Seeding of 4 x 10  ̂293T cells into each of 4 T75 flasks.

2. D ay-4: Trypsinizing and seeding 6.3 x 10  ̂o f the above 293T cells into a CF2.
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3. Day -2: Trypsinizing and seeding a CFIO with 2.5 x 10 of the above 293T cells.

4. Day -1 : Trypsinizing the CFIO and reseeding 2.5 x 10  ̂of these 293T cells into the 

same CFIO (i.e., the original CFIO is reused).

5. Day 0: Transfection.

7.2.2.4.2. Human Ocular Anterior Segment Cultures
Human donor eyes from the local eye bank

Custom made anterior chamber segment perfusion equipment as described by 

Douglas H. Johnson^^^ consisting of:

1. Bottom chamber

2. Scleral sealing ring

3. Cover

4. Perfusion tubing

5. Pressure transducer

6. Pressure recording software

7. Microperfusion pump

7.2.3. Generation of Vectors
7.2.3.1. Feline Immunodeficiency Virus Vectors

I generated replication defective feline immunodeficiency viral (FIV) vectors with the 

technical help of Mary Peretz and Wu-Lin Teo. Several different derivatives were 

created in the course of this thesis as detailed in the cloning history. Plasmids used to 

generate initial FIV vectors were a minimal transfer vector (pCT25), packaging 

construct pCFlAenv,^ and a VSV-G expression construct, pCMV-G."^^^ pCT25 

contains, in series from 59 to 39, the hybrid U3-substituted promoter of pCT5*; the 

FIV R repeat, U5 element, and leader sequence; the first 311 bp of the gag open 

reading frame (ORF); the Rev response element; an internal cytomegalovirus (CMV)- 

lacZ cassette; and the 39 long terminal repeat (LTR).
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7.2.3.1.1. Transfection
The amount of DNA was adjusted to 1 pg pCMV-G"^^^, 3 pg of pCT25^^"  ̂and 3 pg of 

packaging plasmid pCFlA env/ The volume was brought to 800 pi with 0.01 M Tris- 

HCl (pH 8.0) and 800 pi of 2.5 M CaClz were added while vortexing at middle speed. 

The mix was allowed to precipitate for exactly 3 min and then pipetted at once into 

media pooled at the end of the tilted T75. Further mixing was achieved by turning the 

tilted flask back and forth around its longitudinal axis without dislodging cells.

Bottles were placed in incubators and left undisturbed until the medium was changed 

18 h later.

7.2.3.1.2. Harvest
Supernatants were collected 48 h after removal of the transfection mix, filtered 

through a 0.22-pm filter and aliquoted into cryovials. Aliquots were frozen at -80 C.

7.2.3.2. Feline Immunodeficiency Virus Mock Vectors
Mock vectors are not vector particles but allow comparing true transduction with 

proteins expressed from transduced genes to proteins that are present in the collected 

supernatants. A false positive result from unintentionally transferred of proteins is 

also known as pseudotransduction. Mock vectors were made with omission of 

packaging plasmids. Because there negligible transduction of trabecular meshwork 

cells in vitro or in ex vivo organ cultures, no mock vectors were needed in the 

experiments discussed below. HIV mock vectors were not generated because no 

pseudotransduction was found with FIV mock vectors and studies were designed to 

compare FIV to HIV mediated transduction while excluding pseudotransduction. 

Experiments also had to be designed with a limited number of human donor eyes.

7.2.3.2.1. Transfection
The amount of DNA was adjusted to 1 pg pCMV-G"^^^, 3 pg of pCT25^^"  ̂while 

packaging plasmid pCFlAenv,^ was left out. The volume was brought to 800 pi with

0.01 M Tris-HCl (pH 8.0) and 800 pi of 2.5 M CaClz were added while vortexing at 

middle speed. The mix was allowed to precipitate for exactly 3 min and then pipetted 

at once into media pooled at the end of the tilted T75. Further mixing was achieved by
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turning the tilted flask back and forth around its longitudinal axis without dislodging 

cells. Bottles were placed in incubators and left undisturbed until the medium was 

changed 18 h later.

7.2.Z.2.2. Harvest
Supernatants were collected 48 h after removal of the transfection mix, filtered 

through a 0.22-pm filter and aliquoted into cryovials. Aliquots were frozen at -80 C.

7.2.3.S. Adenovirus Vectors
The adenoviral vector used in this study was a generous gift by Robert D. Simari. It 

was generated as described before.^"^^’ Briefly, subconfluent 293 cells were infected 

with crude viral lysate, the supernatant was collected and purified twice by cesium 

chloride ultracentrifugation. The viral band was collected and desalted by dialysis, 

equilibrated with 0.01 M Tris pH 8, 0.01 M MgC12 and 10% glycerol. Viral titers 

were determined and recorded as transducing units by infecting Crandell feline kidney 

(CrFK) cells. The absence of replication-competent virus was confirmed by testing 

the vector preparation on 293 cells at a multiplicity of infection of 10.

7.2.3.4. Murine Leukemia Virus Vectors
I generated beta-galactosidase expressing murine leukemia virus (MLV) vector 

LZRNL^^^ as published"^^^’ and detailed in the following. Mary Peretz provided 

technical assistance with vector production. All materials as listed in the materials and 

reagents section were present in Eric Poeschla*s laboratory where I conducted my 

studies.

7.2.3.4.1. Transfection
The amount of DNA of VSV-G expressing plasmid was adjusted to 1 pg. The volume 

was brought to 800 pi with 0.01 M Tris-HCl (pH 8.0) and 800 pi of 2.5 M CaCli were 

added while vortexing at middle speed. The mix was allowed to precipitate for exactly 

3 min and then pipetted at once into media pooled at the end of the tilted T75. Further 

mixing was achieved by turning the tilted flask back and forth around its longitudinal
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axis without dislodging cells. Bottles were placed in incubators and left undisturbed 

until the medium was changed 18 h later.

7.2.S.4.2. Harvest
Supernatants were collected 48 h after removal of the transfection mix, filtered 

through a 0.22-pm filter and aliquoted into cryovials. Aliquots were frozen at -80 C.

7.2.3.5. Human Immunodeficiency Virus Vectors
I produced the replication defective human immunodeficiency viral (HIV) vectors^"^^’ 

with the technical help of Mary Peretz. Production was similar to that of MLV and 

HIV vectors.

7.2.3.5.1. Transfection
The amount of DNA was adjusted to 1 pg pCMV-G"^^^, 3 pg of pHR9CMVlacZ^"^^’ 

and 3 pg of packaging plasmid pCMVDR8.9.^"^^’ The volume was brought to 800 

pi with 0.01 M Tris-HCl (pH 8.0) and 800 pi of 2.5 M CaClz were added while 

vortexing at middle speed. The mix was allowed to precipitate for exactly 3 min and 

then pipetted at once into media pooled at the end of the tilted T75. Further mixing 

was achieved by turning the tilted flask back and forth around its longitudinal axis 

without dislodging cells. Bottles were placed in incubators and left undisturbed until 

the medium was changed 18 h later.

7.2.3.S.2. Harvest
Supernatants were collected 48 h after removal of the transfection mix, filtered 

through a 0.22-pm filter and aliquoted into cryovials. Aliquots were frozen at -80 C.

7.2.4. Scaled-up Lentiviral Vector Production
Use of larger animals in the course of this thesis required larger volumes of vector and 

made development of a protocol for scaled up lentiviral vector production necessary. I 

established this protocol with the technical help of Wu-Lin Teo which has been
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published.^^' Depending on the amount of vectors needed, either larger volume cell 

factories (CFIO) were used or smaller ones (CF2).

7.2.4.1. Production of High-Titer FIV Vector Stocks by 
Transient Transfection of 293T Cells

7.2.4.1.1. Transfection and Vector Production
1 .1 adjusted the DNA amount of the three plasmids pMD.G/pFP93/pGINWF to a 

ratio of 1/3/3. For CFIO, use 84.5/253.5/253.5 pg in a 500-mL sterile plastic bottle, 

bring volume to 60.5 mL with 0.01 M Tris-HCl (pH 8.0), add 6.5 mL of 2.5 M CaC12, 

and mix by bubbling air into transfection mix with pipette. For CF2, use 

16.9/50.7/50.7 pg in a 250-mL sterile plastic bottle, brought volume to 12.1 mL with

0.01 M Tris-HCl (pH 8.0), add 1.3 mL of 2.5 M CaC12, and bubbled with pipette.

2 .1 tilted the bottle to gather contents in comer of bottle and added 67 mL (CFIO) or 

13.4 mL (CF2) of 2X HBS by rapid pipetting. Bubbled air through the mix and shake 

for 10 s. Vortexing was found to be less desirable because contents were not mixed 

immediately. Set aside and let precipitate for exactly 3 min. I found that small DNA 

amounts used in this protocol resulted in fewer condensation nuclei during 

precipitation and faster growth of crystals than large DNA amounts.

3. While the precipitation continued, I emptied Cell Factory into waste beaker, wiped 

inlets again with 70% ethanol-soaked Kimwipe, and connect loading bottle with 

silicon tube and connector to Cell Factory. Filled loading bottle with 100 mL of fresh 

culture media per layer (total of 1000 mL in CFIO or 200 mL in CF2) without letting 

media mn into Cell Factory.

4. At 3 min, stopped precipitation by pouring transfection mix straight into media in 

loading bottle. Shook and bubbled vigorously for even distribution.

5 .1 placed the Cell Factory on its side and filled by elevating loading bottle. Made 

sure chambers of Cell Factory contain equal media levels; lifted Cell Factory at 

connector end while still placed on side to prevent media of upper chambers from 

leaking into lower chambers. Rolled back into horizontal orientation. Put Cell Factory 

back into incubator in a precisely horizontal orientation.

6. Removed media 18 h later and replaced with fresh media.
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7.2.4.1.2. Vector Harvest
1. On day 3, i.e., 48 h after replacement of transfection mixed with fresh media, 

collected supernatant in large beaker, stirred, and let sit for 3 min to allow detached 

cells to settle.

2. Filtered through 0.22-pm filter into 500-mL filter units. Aliquoted filtered vector 

supernatant into appropriate number of 1.8-mL cryovials.

7.2.4.2. Concentration by Large Volume Ultracentrifugation
Generation of larger volumes of vector required new ways of concentration. 

Therefore, I developed a fixed, large volume rotor protocol. This was done by 

extrapolating and estimating parameters fi*om the swinging bucket rotor concentration 

protocol.

1. I washed insides of 250-mL centrifuge buckets and lids with 70% ethanol. 

Aspirated dry with vacuum. Always filled buckets to top mark and used 

additional PBS if necessary. Balanced tubes on scale together with lids and 

closed tightly.

2. Spun at 67,000grmax for 6 h at 4°C. A brownish vector pellet was visible at the 

outer bottom rim of the bucket.

3. Decanted buckets, placed on ice at 45° angle with pellet pointing upward, let 

sit on ice for 2 min, and sucked up collected liquid at bottom. Rotated pellet to 

bottom and add 5 mL PBS if two rounds of concentration were planned. Used 

smaller volume if only one round of centrifugation is desired.

4. Started re-suspension with 5-mL pipette by washing down the whole outer 

wall to which pellet was attached, along with the entire bottom and the outer 

rim. Directed the wash jet toward the pellet. This process took more than 5 

min per bucket. Undispersed fragments are pipetted into 25-mL tubes for 

second round of concentration together with fully dispersed vector.

5. Washed insides of 36-mL centrifuge tubes, as well as buckets and lids of 

swinging bucket rotor with 70% ethanol. Sucked dry with vacuum. Filled 

buckets to the maximum level with resuspended vector from first round.
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Added PBS if  necessary. Balanced tubes on scale together with lids and closed 

tightly.

6 .  Spun at 6 7 ,0 0 0 g r m a x ,  3 l , 0 0 0 g n n i n  for 1 h 3 0  min at 4°C. A brown vector pellet 

was visible at the bottom of the bucket.

7 .  Resuspended pellet in 500 pi PBS by washing the entire bottom with jets for 5 

min. Set pipette to 250 pL and kept tip submerged to prevent bubbles and 

foam. Pipetted resuspended vector into 1.5-mL microcentrifuge tube and spun 

for 3 min at 3000g to remove large unsuspended particles.

8. Aliquoted vector in 50-pL fractions in tubes with narrow bottoms; freeze at -  

80°C.

9. Washed Cell Factories twice with dH20 inside the hood. Seal and store at 4°C 

if reuse was desired for production of same vector in next days.

7.2.5. Titration of Transducing Units
1 .1 seeded 2.5 x 10  ̂CrFK into each well of a 6-well plate.

2. Twenty-four hours later, thawed vector stocks and made 10-fold serial dilutions.

3. Removed media from 6-well plate and added each mixture to a well of the 6-well 

plate, either changing the tip each time or moving from most dilute to least dilute.

Left one well untransduced as a control.

4. After 6 h, replaced supernatant with fresh media.

7.2.5.1. Enhanced (eGFP) and Renilia (rGFP) Green 
Fluorescent Protein Transducing Units

CrFK and TM cells were transduced as described above with enhanced (eGFP) or

Renilia (rGFP) green fluorescent protein expressing vectors. Cells were trypsinized 48

h after start o f transduction following the same protocol as for “Seeding and Growing

Cells”, washed with PBS, resuspended in PBS, and fixed with 1% formalin in PBS.

The suspension was analyzed for the percentage o f transduced cells with

fluorescence-activated cell sorter flow cytometry (FACS).
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7.2.5.2. Beta-Galactosidase Transducing Units
48 h after transduction, fixed cells with 1% glutaraldehyde for 3 min, washed with 

PBS, and incubated overnight at 37°C with 5-bromo-4-chloro- 3-indoxyl-p-D- 

galactopyranoside (X-Gal) staining solution. Washed once with PBS and replaced 

with 1% glutaraldehyde. Used a transparent 2-mm x 2-mm-square counting grid and 

determined number of squares per well. Counted positive foci in 10 random squares at 

lOOx magnification and determined the number of positive colonies per well. 

Multiplied count by dilution factor to obtain TU/mL. E.g. for a volume of 1 mL the 

titer = total number of P-galactosidase positive colonies per well x dilution factor = 

transducing units per milliliter.

7.2.6. In Vitro and Ex Vivo Methods
7.2.6.1. In Vitro Human Trabecular Meshwork Cells

Human trabecular meshwork (TM) cells (gift from  T, Borras) were derived from a 

normal human eye obtained at autopsy and seeded as described above. Transduction 

was carried out for 6 hr before replacement with fresh medium. Half the 6 wells with 

TM cells were incubated with aphidicolin (15 mg/ml) to achieve growth arrest which 

was maintained in all media overlying growth-arrested cells throughout the 

experiment. Media was replenished daily until fixation and staining for P- 

galactosidase activity at 48 hr after transduction. G l/S growth arrest was verified by 

flow cytometric analysis with propidium iodide. Percent transduction was calculated 

by counting 10 visual fields per well at 340-fold magnification. Beta-galactosidase 

staining was performed as described in the section “Titration”. No background p- 

galactosidase activity was detected in TM cells at any time point.

For the experiments seeking to enable real-time non-invasive monitoring, GFP- 

expressing vectors were the principal focus. To preliminarily assess feasibility and 

potential toxicity of GFP expression, cultured primary human TM cells were 

transduced with a 4-log range of FIV vector input. Transduction was carried out for 6 

hours before replacement with fresh medium and subsequently changed every 3 days. 

Fluorescence and viability of cells was confirmed by observation for one month with 

a tissue culture microscope with fluorescence equipment.
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7.2.6.2. Ex Vivo Human Donor Eyes
7.2.6.2.1. Human Organ-Perfusion Culture

i

Figure 17: Anterior chamber perfusion model/^' Left: Schematic side view. Media 
enters hemidisected eye centrally and exits following the natural route through the 
TM and episcleral veins collecting in the well surrounding the eye. A pressure 
transducer to measure lOP is also connected to the anterior chamber and enters from 
underneath (not shown). Right: Top view of open culture chamber.

The Minnesota Lions Eye Bank (Minneapolis, MN) provided pairs of human eyes. 

Eyes were used in accordance with Mayo Clinic Institutional Review Board 

guidelines and according to the tenets of the Declaration of Helsinki. All were from 

donors (median age, 76.5 years, n = 6) without known eye disease and were placed in 

perfusion culture within 24 hours of death, as previously described.^^*’ In this 

system, a human eye is obtained shortly postmortem and hemisectioned at the 

equator, the entire posterior pole, retina and choroid, iris and lens are removed. The 

anterior half is sealed posteriorly with an apparatus that maintains the aqueous 

circulation with fidelity to natural parameters (Figure 17). Medium is perfused with 

DMEM and antibiotics at the physiological rate of 2.5 microliter per minute and 37 C 

through the anterior chamber and exits the eye through the normal conventional 

outflow pathway (trabecular meshwork, Schlemm’s canal, collector channels, and 

episcleral veins). The cultures were maintained in 5% C02 in an incubator. Eyes 

cultured in this fashion remain viable for up to 4 weeks, during which outflow tract 

structures and trabecular meshwork cells maintain normal morphology. Intraocular 

pressure was measured every 60 seconds for 5 days and recorded as averages per 

hour.
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7.2.6.2.2. Intraocular Application of Vectors
One anterior segment of each pair (n = 3) was injected with a bolus of 1 x 10  ̂

transduction units (TU) CT26 vector in a volume of 500 pL DMEM, and the fellow 

eyes received an equivalent volume of CT26 mock vector. Similarly, 1x10^ TU of 

GiNWF vector in 500 pL DMEM was injected into one anterior segment of a pair (« = 

3), whereas the control fellow eye received the same volume of medium without 

vector.

For comparison of HIV, FIV and MLV vectors, a dose of 1 x 10  ̂TU, or a range of 

doses for the dose-response experiments, was injected as a bolus into the afferent 

perfusate. AZT (50 mM) was included in the perfusate in some control experiments. 

Generally, eyes were cultured for 3 to 21 days. For the initial characterization of 

transduction by FIV, HIV, MuLV, adenoviral, and mock vectors, all eyes were 

injected and perfused with a randomly assigned vector, whereas the fellow eye was 

not injected and served as a control for potential endogenous p-galactosidase activity. 

Pairwise comparisons of FIV to MuLV vector and of FIV to HIV vector were 

performed, using the left and right fellow eyes of human donors. Three pairs of 

randomly assigned eyes were transduced by injection of 1 x 10  ̂TU of FIV vector in 

one eye and 1x10^ TU of MuLV vector in the other eye of the pair, and three pairs 

were transduced in a separate experimental set with 1x10^ TU of FIV and HIV 

vector, respectively. Eyes were fixed and stained for p-galactosidase activity on day 7 

after transduction. The ratio of transduced to total TM cells was determined by 

counting all TM cells in each of four sections per eye (one from each quadrant).

7.2.6.2.3. Time course of Expression
To evaluate the time course of expression, the TM of eyes in the vector comparison 

study (FIV, HIV, MLV) was biopsied 3 days after transduction, while the eyes were 

kept in culture for 16 days. For this, a standard surgical trabeculectomy was 

performed on two quadrants 90 degrees apart on day 3. Histological assessment of the 

entire meshwork was done at the end of the culture period, on day 16 after 

transduction.
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7.2.7. Tissue Processing and Marker Detection
7.2.7.1. Beta-Galactosidase Detection with the X-Gal Assay

7.2.7.1.1. X-Gal Assay in Human Eyes
Eyes were rinsed in phosphate-buffered saline (PBS) and cut into quadrants. From 

each quadrant, one corneoscleral wedge was taken for antibody labeling, while an 

adjacent wedge was fixed for 15 min in 4% paraformaldehyde, rinsed in PBS, and 

stained for 16 hr in X-Gal solution, rinsed with PBS, and embedded in paraffin or JB- 

4 plastic medium. Sections (6 mm) were obtained from unstained and stained paraffin 

blocks for antibody labeling. Nuclear fast red was used as a nuclear counterstain. JB4 

embedding and staining was performed by Cindy Bahler.

7.2.7.1.2. X-Gal Assay in Cat Eyes
Eyes of sacrificed animals that were injected with beta-galactosidase expressing FIV 

vector CT26 were enucleated. Only one random quadrant was removed from the 

anterior segment for X-Gal-staining, while the remaining 3 were used for eGFP 

detection because the in vivo study focused on detailed assessment o f a live marker. 

Eyes were X-Gal stained overnight, photographed with an operating microscope 

(Nikon, SMZ800, and DXM 1200, ACT-1 software), and embedded in paraffin by the 

Histopathology Core Facility of the Mayo Clinic. Sections were counterstained with 

fast nuclear red.

7.2.7.1.3. X-Gal Assay in Rat Eyes
To assess gene expression for the comparison of subretinal and intravitreal injection 

techniques, half of the neonatal rats in each litter injected with CT25 in right eyes, 

were sacrificed at 2 days post-injection and the other half at 7 days post-injection. 

Time points 2 and 7 days were chosen because neovascularization is maximal in the 

ROP model during this period.^^^ In the long-term expression/integration study 

comparing FIV WT integrase and mutant integrase vectors, 10 animals were 

sacrificed at 2 months, 10 animals at 3 months and the rest of 17 animals at the 

experimental endpoint of 7 months. After sacrifice and enucleation, eyes were fixed in 

10% formalin at 4°C for 90 minutes and cornea and lens were removed. To detect 

expression of the marker gene, eye cups were incubated in X-gal reagent overnight at
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37°C. Eyes were then send to the Histopathology core at the Mayo Clinic for paraffin 

embedding and counterstaining with nuclear fast red.

For cross-sectional histology o f eyes transduced with FIV or adenoviral vectors, two 

representative pairs o f eye cups from each time point were processed as above, 

embedded in paraffin, sectioned at 6 pm through the transduced area and 

counterstained with either neutral red or nuclear fast red. To assess the histology in a 

masked manner, all slides were examined by an ophthalmic pathologist (JDC) who 

was unaware of the experimental group.

7.2.7.2. Beta-Galactosidase Detection by Anti-Body Labeling
7.2.7.2.1. Antibody Labeling of Beta-Galactosidase in 

Human Eyes
For labeling with anti-p-galactosidase antibodies, 6- mm sections were mounted on 

slides at 60°C, deparaffinized with HemoD (Fisherbrand; Fisher Scientific, 

Pittsburgh, PA), rehydrated through stepped ethanol-water baths, and placed for 30 

min into a steamer with 0.1 M piperazine-N,N9-bis(2-ethanesulfonic acid) (PIPES, 

pH 8.0) to maximize antigen retrieval. Nonspecific binding was blocked by a 1-hr 

incubation with bovine serum albumin, followed by two 5-min washes with PBS, a 1- 

hr incubation with a polyclonal rabbit anti-p-galactosidase antibody (Molecular 

Probes, Eugene, OR) at a dilution of 1:50, washing, and a 30-min incubation with a 

secondary photostable, pH-independent, green fluorophore-conjugated goat anti

rabbit antibody (Alexa Fluor 488, Molecular Probes; fluorescence absorption peak at 

495 nm, emission peak at 539 nm) at a concentration of 1:300. A 5-min incubation 

with diamidinophenylindole (DAPI; Molecular Probes) was used to stain nuclei.

7.2.7.2.2. Antibody Labeling of Beta-Galactosidase in Rat 
eyes

In the study comparing FIV WT and integrase mutant vectors, an additional expanded 

litter of 25 rats was used to assess localization of transgene expression using 

immunohistochemistry with anti-y^-galactosidase antibodies.^®"  ̂All right eyes received 

subretinal injections of CT25 vector as described above. Left eyes were treated as one 

of three controls as described above. Prefixed eyecups were soaked in 20% sucrose 

overnight, embedded in OCT, and snap frozen in liquid nitrogen. 10 pm cryosections
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were rehydrated with PBS for 10 minutes and blocked with 3% bovine serum albumin 

and 0.1% Tween in PBS for 1 hour. Sections were then washed twice with PBS for 5 

minutes, exposed to the primary antibody (rabbit anti-/?-galactosidase antibody. 

Molecular Probes, A-11132) at a dilution of 1:100 in PBS for 60 minutes, washed 

twice with PBS for 5 minutes, incubated with the secondary antibody (goat anti-rabbit 

antibody Alexa Fluor 488 labeled. Molecular Probes, A-11008) at a dilution of 1:300 

in PBS for 90 minutes, and washed twice for 5 minutes each in PBS. Cell nuclei were 

stained with a 300 nM DAPI solution in PBS.

7.2.7.3. Antibody Labeling of Enhanced Green Fluorescent 
Protein (EGFP)

7.2.7.3.1. Antibody Labeling of EGFP in Human Eyes
Localization and extent of expression of eGFP were confirmed with specific antibody 

labeling in human eyes. Six micron paraffin-embedded sections from two quadrants of 

each eye were deparaffinized (22-143975; Citrisolv; Fisherbrand, Fair Lawn, NJ) and 

rehydrated with decreasing concentrations of ethanol, and antigens were retrieved for 

5 minutes in a steam chamber with piperazine-A-V-bis(2-ethanesulfonic acid)

(PIPES) buffer. Sections were incubated for 60 minutes with a primary rabbit anti- 

eGFP antibody (1:200 dilution, NB 600-303; Novus Biologicals, Littleton, CO) and 

for 30 minutes with a fluorescent phalloidin-labeled secondary goat anti-rabbit 

antibody (1:200 dilution, A-11088, Alexa 488; Molecular Probes). Nuclei were 

stained with a 1:1000 dilution of 4',6'-diamino-2-phenylindole (DAPI; D-1306; 

Molecular Probes).

7.2.7.3.2. Antibody Labeling of EGFP in Cat Eyes
For a more sensitive assessment of the extent of transduction with GINWF other eyes 

were labeled with an anti-GFP antibody following the exact same protocol as above.

7.2.7.3.3. Antibody Labeling of Feline Macrophages and I-  
Cells

7.2.7.3.3.1. Feline Macrophages
Anterior segment sections from cats that had developed an iritis after GFP over

expression were analyzed for presence of feline macrophages with a primary murine
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anti-myeloid/histiocyte antibody (1:50 dilution, MAC 387, M0747, and

a secondary Alexa 488-labeled goat anti-mouse antibody (1:100 dilution, A-11001, 

Molecular Probes). Specifically, sections were pretreated with a pre-made solution of 

proteinase K (DAKO, product number S3020) for 10 minutes, blocked with DAKO 

blocking solution (DAKO, product number S200189) and incubated with MAC 387 

for 1 hour followed by washing with PBS for 5 minutes in the presence of blocking 

solution. Sections were then incubated with the secondary Alexa 488-labeled goat 

anti-mouse antibody for 1 hour followed by PBS washing for 10 minutes. MAC 387 

detects the myeloid/histiocyte antigen, a calcium-binding molecule, which 

predominantly consists of different polypeptide chains adding up to an Mr of -36  500 

protein complex.^^^ The complex contains at least two different subunits, which have 

molecular masses of 8 and 14 kDa.^^^ It belongs to the S I00 family,^^^ which is a 

large subfamily of EF-hand proteins.^^^ The myeloid/histiocyte antigen is expressed 

by circulating (and emigrated) neutrophils and monocytes, as well as a subset of 

reactive tissue macrophages and many tissue eosinophils.

7.2.7.3.S.2. Feline T-Cells
To detect feline T-cells,^^^’ sections were incubated with peroxidase-conjugated 

anti-CD3 (Anti-CD3/HRP, U0026, DAKO) according to manufacturer protocol. 

Tissue sections were deparaffinized (22-143975; Citrisolv; Fisherbrand, Fair Lawn, 

NJ) and rehydrated, followed by incubation with 3% hydrogen peroxide in distilled 

water for 5 minutes. Sections were then rinsed with Tris-buffered saline (TBS) for 5 

minutes and incubated with proteinase K (DAKO, product number S3020) for 5 

minutes. Sections were again rinsed in TBS for 5 minutes. Specimen were then 

covered with 2-3 drops of DAKO EPOS Anti-CD3/HRP and incubated for 60 minutes 

at room temperature. A horseradish peroxidase-labeled immunoglobulin mix (DAKO 

EPOS Negative Control solution, U0951) was used as a control: sections were rinsed 

in TBS for 5 minutes, incubated with DAKO Liquid DAB Plus (code Nos K 3467/K 

3468), a chromogenic substrate solution, for 5-15 minutes. Slides were rinsed with 

water and counterstained and mounted with a cover slip.

Sera of cats with proven iritis infiltrate were analyzed for antibodies against GFP and 

VSV-G. A 10% SDS-PAGE gel with a continuous well was loaded with GFP protein 

produced by transient transfection of 293T cells and transferred. Membrane strips
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were incubated with serum before transduction and 4 weeks after animals had 

developed an iritis. A rabbit anti-GFP antibody (1:1000 dilution, Novus Biologicals, 

NB 600-303) and a monoclonal mouse anti-VSV-glycoprotein antibody (1:1000 

dilution, protein clone P5D4, C-7706, Sigma, St. Louis, MO) served as a positive 

control. After washing, wells with cat serum as the primary incubation were incubated 

with a secondary peroxidase conjugated goat anti-cat antibody (1:1000 dilution, cat. 

55293, IGN Pharmaceuticals, Aurora, OH). A peroxidase conjugated goat anti-rabbit 

antibody (1:1000 dilution, Calbiochem, San Diego, CA) served as a secondary 

antibody for GFP detection and a peroxidase conjugated goat anti-mouse antibody 

(1:1000 dilution, Calbiochem) as the secondary antibody to the anti-VSV-G antibody. 

The same protocol was used to detect anti-VSV-G antibodies except that 293T cells 

were transfected with VSV-G expression plasmid pMD-G.

7.2.8. Animal Handling and Vector Application
7.2.8.1. Animals

All animals in used in this thesis were handled in accordance to the Institutional 

Animal Care and Use Committee and the ARVO Statement for the Use o f Animals in 

Ophthalmic and Vision Research.

7.2.8.1.1. Long-Term Outflow Tract Modification In the Cat
Because the anterior chamber perfusion model is artificial in many respects, such as 

short viability with consequent inability to assess long-term outcomes, substitution of 

the complex aqueous humor with synthetic medium, and the complete lack of a 

systemic immune response. In rodents, the outflow tract is too rudimentary to permit 

robust comparisons. I therefore proceeded to assess the possibility of long-term 

targeted gene expression with the required characteristics in the cat, a readily 

available larger animal with an outflow tract that is anatomically and physiologically 

similar to that of humans.

Experiments were conducted with specific pathogen-free domestic cats (Harlan, 

Indianapolis, IN). Ten days before vector application, cats were anesthetized with 10 

mg/kg intramuscular Tiletamine HCl/Zolazepam HCl (Telazol, Fort Dodge 

Laboratories Inc., Fort Dodge, lA) for ocular examination with slit lamp (Haag-Streit,
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Mason, OH) and a handheld pneumatonometer (Model 30 Classic, Medtronic,

Fridley, MN) to determine lOP. Fluorescence of transduced trabecular meshwork was 

observed with a standard gonioscope (Posner, Ocular Instruments, Bellevue, WA) and 

a microscope (Nikon Eclipse E400) equipped with a GFP-optimized filter (Nikon, EF- 

4 B-2E/C FITC, cat. 96107). Two days before vector application, two initial pilot cats 

received a bilateral conjunctival injection of 200 pi Kenalog-40 (Bristol-Myers 

Squibb, Princeton, NJ) to blunt nonspecific iritis during initial intraocular procedures 

as seen after saline injection in pilot studies. However, this procedure was abandoned 

in subsequent animals when no iritis occurred in two further cats.

Twelve subsequent animals were assigned to dosing groups (group 1:10^ TU, group 

2: 10  ̂TU, group 3:10^ TU, group 4:10^ TU) in which each group o f 3 animals was 

transcomeally injected with different vectors (see Table 4 for vector identities) in 

each eye but without Kenalog.

7.2.8.1.2. Subretinal versus Intravitreal Injection Route 
Study In the Rat

To characterize transduction after different types of intraocular injection of FIV 

vectors, I chose subretinal and intravitreal routes in seven day old rats. Expanded 

litters were assembled that are commonly used in models o f oxygen-induced 

retinopathy resulting in retinal neovascularization similar to retinopathy of 

prematurity. For this, 100 newborn Sprague-Dawley rats (Harlan Laboratories, 

Indianapolis, IN) were randomly assigned at birth to 4 expanded litters of 25,^^ '̂^^^’^̂  ̂

and raised in room air. 77 of the original 100 animals survived to the day o f injection 

(day 7), an expected attrition rate due to the expanded litter design.^^^ For comparison 

of injection techniques, right eyes of 39 rats received subretinal injections and right 

eyes of 38 rats intravitreal injections of CT25 on day 7 of life, while left eyes were 

assigned to one of three control groups: 1) FIV mock vector (n = 13 subretinal, n = 13 

intravitreal), 2) DMEM+10% FCS (n = 13 subretinal, n = 12 intravitreal) and 3) no 

injection (n = 26). DMEM+10%FCS was chosen as a control because vectors were 

produced in this medium. In the injection route study, 4 pi of 4.6 x 10  ̂TU/ml (1.8 x 

10  ̂TU total) of CT25 or control was delivered by either subretinal or intravitreal 

injection.
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7.2.8.1.3. Comparison of Long-Term Expression in the Rat 
with FIV and Adenoviral Vectors

In a second experiment, I tested whether genomic integration of FIV vectors is of 

advantage for long-term expression compared to non-integrating adenoviral vectors/^ 

In the long-term expression study, 60 five-day-old Sprague-Dawley rats received 

subretinal injections of 2 x 10  ̂TU FIV vector into right eyes and 2 x10^  TU Ad 

vector into left eyes. An additional 10 animals served as non-injected grading 

controls. At 1 week, 1 month, 3 months and 6 months, 10 injected animals and 2 non

injected controls were sacrificed for analysis of transgene expression. Ten injected 

animals and 1 non-injected control were sacrificed at 12 months. Deaths by normal 

senescence (n = 3) began to occur at 16 months, so the remaining animals (7 injected 

and one non-injected control) were sacrificed at that time point.

7.2.8.1.4. Retinal Long-Term Expression and Integration 
Study In the Rat with Wild-Type versus Mutant 
Integrase FIV Vectors

50 rats were raised in expanded litters as described above. At 7 days, right eyes of the 

37 surviving were injected subretinally with 2 pi of 4.6 x 10  ̂TU/ml of CT25 and left 

eyes were injected with the integrase mutant vector (CT25.D66V).

7.2.8.2. Anesthesia
7.2.8.2.1. Cats

Cats were anesthetized with 10 mg/kg intramuscular Tiletamine HCl/Zolazepam HCl 

(Telazol, Fort Dodge Laboratories Inc., Fort Dodge, lA)

7.2.8.2.2. Neonatal Rats
In the FIV versus FIV integrase mutant vector study, seven-day-old pups underwent 

inhalation anesthesia with Metofane® (methoxy urane, Schering-Plough Animal 

Health Corp, Union, NJ) and were placed under an operating microscope. The 

anesthetic was delivered by placing a soaked sponge into the cover of a syringe and 

placing the open end over the nose of the animal. Metofane had the advantage that it 

did not require a vaporizer or doser. Although it has been very popular it is no longer 

available for use because of its carcinogenic and nephrotoxic potential in humans.
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In the study that compared FIV with adenoviral vectors, rat pups underwent inhalation 

anesthesia with isoflurane (isoflurane, USP; Abbott Laboratories, North Chicago, IL) 

and were placed under an operating microscope. Isoflurane was delivered as above 

metofane.

7.2.S.3. Intraocular Application of Vectors
7.2.8.3.1. Intracameral Vector Application Technique In the 

Cat
A 1 microliter syringe with a 30 gauge needle was used to inject anterior chambers of 

cat eyes under an operating microscope with a bolus of 50 pi of PBS (DPBS, Cellgro, 

Mediatech, Herndon, VA) containing 10  ̂TU, 10  ̂TU, or 10  ̂TU of vectors RGWF, 

GINWF, CT26 or FGINSIN. Good vector circulation was achieved by aspirating 100 

microliter a total of 3 times. Circulation of the highly concentrated vector suspension 

was visualized and even distribution confirmed.

7.2.8.3.2. Subretinal and intravitreal Vector Application 
Technique In the Neonatal Rat

Harvested vector supernatant o f producer cells must be concentrated for subretinal or

intravitreal injection because of the limited volume that can be introduced (Figure

18). I developed a novel subretinal injection technique. Because of the small size of

the eye of newborn rats (Figure 19 A), subretinal injections are difficult and good

microsurgical skills are required.

The eyelid was cleaned with a cotton wool swap soaked with 70% alcohol. Alcohol 

must not contain any additional substances or be denatured to avoid remanescence 

and interference with the injected vector. After canthotomy with extension of the 

lateral palpebral lid fissure by 1 mm (Figure 19 B), a latex membrane with a 1 mm 

central slit was placed on top of the eye and spread open with curved forceps. The eye 

was prolapsed through the membrane with a gentle backward movement toward the 

orbit (Figure 19 C).
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Figure 18: Vector production, concentration, and injection. Supernatants of 
transfected 293T cells are collected, filtered, and concentrated by ultracentrifugation. 
For a subretinal injection, the needle is inserted through a sclera tunnel with the bevel 
of the needle facing the center of the eye (middle). An intravitreal injection requires a 
steeper angle and the bevel is rotated outwards (right). Injury of the large rodent lens 
must be avoided to prevent cataract formation.

7.2.8.3.2.1. Subretinal Injection
The subretinal injection was carried out in two steps: first, a 30ga needle was used to 

create a sclerotomy incision at the superior pars plana 1 mm back from the limbus 

(Figure 19 D). Because the latex membrane exercised slight pressure to the back of 

the eye, good hemostasis was achieved. A small volume of aqueous humor usually 

leaked and made room for the vector bolus. Precaution was taken not to injure the lens 

during the initial incision that aims toward the center of the eye. The 33ga needle of a 

custom made Hamilton syringe was advanced in a flat, tangential angle through the 

first incision, which directed the needle into the subretinal space (Figure 19 E). It was 

crucial to turn the needle with the open side and bevel facing the center o f the eye for 

proper guidance. Successful subretinal injection formed a detachment that could be 

seen through the translucent sclera of non- to medium pigmented animals (Figure 19 

F). In contrast, misplacement of the needle in the subconjunctival space caused 

outward bulging and could be recognized immediately. The needle was withdrawn, 

the latex membrane was stretched to open the central slit and removed.
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Figure 19: Subretinal injection technique. (A) Size of a 7 day old rat in comparison to 
the tip of a pen. (B) When full anesthesia is reached, lids are spread open with forceps 
and the lateral palpebral fissure is extended by 1 mm. (C) A latex membrane with a 
central cut of 2 mm is placed on top of the eye and the eye prolapsed with curved 
forceps in a backward motion while the slit is stretched open. (D) Creation of a sclera 
tunnel using a 30ga hypodermic needle. (E) Tangential insertion of a 33ga needle 
mounted on a custom made Hamilton syringe through the sclera tunnel. (F) A forming 
retinal detachment can be seen as a translucent crescent in animals without dark 
pigmentation.

7.2.8.3.2.2. Intravitreal Injection
Similar to subretinal injections, the intraretinal injection was carried out in two steps: 

first, a 30ga needle was used to create a sclerotomy incision at the superior pars plana 

1 mm back from the limbus (Figure 19 D). Because the latex membrane exercised 

slight pressure to the back of the eye, good hemostasis was achieved. Leakage of a 

small volume of aqueous humor was observed that made room for the vector bolus. 

Precaution was taken not to injure the lens during the initial incision that aims toward 

the center of the eye. The 33ga needle of a custom made Hamilton syringe was now 

directed into the vitreous, anterior to the optic nerve, the vector bolus was injected and 

the needle retracted.
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7.2.9. Ex Vivo and In vivo Imaging of Transduced Cells 
Expressing Fluorescent Proteins

7.2.9.1. Ex Vivo Imaging
7.2.9.1.1. Imaging of Anterior Human Segments

Transduction efficiency was determined as the mean percentage of transduced cells in 

four quadrants. Eyes in the eGFP group were divided into four quadrants, and 2-mm 

wedges were removed, rinsed in PBS, and placed into phenol red-free Dulbecco’s 

modified Eagle’s medium with 0.1% Hoechst 33342 (H-3570; Molecular Probes, 

Eugene, OR) for in vivo staining of nuclei. Expression of eGFP in freshly dissected, 

unfixed anterior segments was visualized by a frontal view toward the TM and a 

sagittal view of wedges mounted on their sides, by a microscope with a fluorescent 

light source (Eclipse E400; Nikon, Melville, NY) and by confocal microscopy (LSM 

510; Carl Zeiss, Thomwood, NY). To measure transduction efficiency with GiNWF, 

eGFP-positive TM cell bodies and stained nuclei were manually counted at 400x 

magnification in microscopic fields comprising an area of 0.24 mm^ in each of the 

four quadrants. Transduction efficiency is expressed as the mean percentage of eGFP- 

expressing cells versus stained nuclei ± SD. Medium-injected fellow eyes served as 

the control.

7.2.9.1.2. Imaging of Enucleated Cat Eyes
Cats were sacrificed with an injection of 175 mg/kg pentobarbital sodium IV 

(Sleepaway, Fort Dodge Laboratories, Sligo, Ireland) and eyes were enucleated. To 

correlate gonioscopic expression grades with transduction efficiency, 3 quadrants in 

one eye per expression grade were analyzed. One random quadrant was removed from 

the anterior segment for X-Gal-staining, while the remaining 3 were incubated with 

PBS and 1000-fold diluted Hoechst 33342 (Molecular Probes, Eugene, OR) to 

counter stain nuclei of living cells. The transduction efficiency was determined by 

counting GFP positive, living TM cells, and Hoechst 33342-positive nuclei in the 

same visual field at 100-fold magnification with a histology microscope (Nikon 

Eclipse E400). This required that the focus be moved up and down to count cells 

lining along the three-dimensional structure of the trabecular meshwork.
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7.2.9.2. Non-lnvasive In Vivo Monitoring of Enhanced (eGFP) 
and Renllla (rGFP) Green Fluorescent Protein 
Expression In the Cat Eye

mirror view

top view schematic side view

Figure 20: Top view of anesthetized cat on restrainer (A) and side view of restrainer 
under modified microscope (B). The trabecular meshwork can be seen as a black ring 
in the mirror of the gonioscope that is placed on the cornea (C).

Anesthetized cats were examined with slit lamp, pneumatonometer, and 

biomicroscopy at the day after arrival, 3 days before, at day of, and 3 days after vector 

application, then weekly for 2 months, bi-weekly for 4 months and monthly 

thereafter. lOP was always measured at the same time of the day, three readings per 

eye were taken and averaged. The entire TM circumference was inspected. 

Photographs of fluorescent TM were taken at each examination and grades 

determined in a masked manner by two observers rating independently, using the 

scale photographs shown in Fig. lb. A digital microscopy camera (DXM 1200,

Nikon, Melville, NY) was used, with 2 second exposures and image capture software 

(Automatic Camera Tamer (ACT-1), Nikon, Melville, NY).

During the examination, animals were secured in a bag (red bag in Figure 20 A) and 

placed on a custom made restrainer looking upwards. I designed this restrainer and 

had it manufactured by the Engineering Department of the Mayo Clinic. A Posner 

gonioscope mounted on a holder that could be moved around the head was positioned 

on top of the open eye without use of a contact gel.
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7.2.10. Quantification and Statistics
7.2.10.1.1. Quantification and Statistics of Human Eyes of 

Perfused Anterior Segment Cultures
The ratios of p-galactosidase-positive TM cells to total TM cells present in random 6-

mm sections from each quadrant o f an eye were determined by counting the labeled

and unlabeled cells and calculating the mean value for each quadrant. Colocalized

nuclear staining (nuclear fast red) and cytoplasmic P-galactosidase staining was

counted as a transduced cell. A paired Student t test was used for statistical analysis.

7.2.10.1.2. Quantification and Statistics of Expression in 
Feline Eyes

In vivo TM fluorescence as seen during gonioscopy was graded on a scale of 0 to 4, 

with representative photographs shown in Figure 23 B. Grade 0 was defined as no 

detectable fluorescence, graded as single fluorescent spots in the TM, grade 2 as 

numerous nonconfluent fluorescent spots with some confluent areas, grade 3 as 

extensive, mostly confluent, mid-level transduction and grade 4 as extensive, high 

level and completely confluent fluorescence. Because of the high linear correlation, 

expression grades were handled as continuous data during the statistical comparison 

of marker protein accumulation. To determine whether the rate of fluorescent marker 

protein accumulation (V f) influenced the duration o f expression, Vp was measured as 

the change from initial expression grade (gradei) to peak expression grade (grade?) 

over time from the first examination (ti) to the time point of peak expression (t?): Vp 

= Agrade/Atime = (grade? - gradei)/(t? - ti). Time was measured in days. A large 

increase in expression grade over a short period of time would result in a larger Vp 

than a small increase in the same period of time. lOP readings before vector injection 

were compared to peak pressures of the same eye as well as to the experimental 

endpoint using the paired student's t-test.

7.2.10.1.3. Blinded Assessment and Statistics of
Expression In Rat Eyes Transduced with Normal or 
Integrase Mutant Vectors

X-Gal-stained eye cups were graded in random order for transduction, and scored as

positive if p-galactosidase expressing cells could be identified in at least one retinal

quadrant by an independent observer in a masked manner using a Zeiss operating
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microscope. Eyes were finally scored before the random number code was broken.

The proportions of eyes transduced after intravitreal and subretinal injection were 

compared at 2 and 7 days post injection using a chi-square test. Statistical significance 

was defined as a p value < 0.05.

7.2.10.1.4. Assessment of Incidence and Extent of
Transduction of FIV and Adenoviral Vectors after 
Intravitreal or Subretinal Injection

control grade 1 grade 2 grade 3 grade 4 grade 5

Figure 21: Grading system for P-galactosidase expression. Grades were defined 
prospectively on a scale with a range from 0 to 5. Grade 5 = confluent transduction of 
entire retinal surface area, grade 4 = large confluent areas of at least half of retinal 
surface area, grade 3 = confluent areas with less than half the retinal surface area, 
grade 2 = large areas of non-confluent transduced cells, grade 1 = isolated, discrete 
transduced cells, grade 0 = no detectable p-galactosidase activity.

After sacrifice, eyes were enucleated and fixed for 90 minutes in 10% formalin at 4"’C. 

The cornea and lens were then removed and eye cups were stained overnight in X-gal 

solution to detect P-galactosidase expression. All eye cups were evaluated in a 

masked manner by an observer unaware of the experimental group for extent of 

transduction using a Zeiss stereo operating microscope (Zeiss OPMIMD; Carl Zeiss 

Surgical, Inc., Thomwood, NY). I used a prospectively defined grading scale to 

quantify the extent of retinal transgene expression, with a range from 0 to 5 (Figure 

21). Grade 5 was defined as confluent transduction of the entire retinal surface area, 

grade 4 as large confluent areas of transduction involving at least half of the retinal 

surface area, and grade 3 as confluent areas of transduction but involving less than 

half the retinal surface area. Grade 2 was defined as large areas of non-confluent 

transduced cells, grade 1 as the presence of isolated, discrete transduced cells and 

grade 0 as no detectable p-galactosidase activity.

Incidence and extent of transduction at each time point, and overall, were compared 

using McNemar's tests and Wilcoxon signed-rank tests.
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8. Results

8.1.Transgenesis of the Ocular Outflow Tract with Lentlvlral 
Vectors as a Basis for Gene Therapy of Glaucoma
8.1.1. FIV transfer vectors and Production Procedures

8.1.1.1. Transfer Vector Modification
The original beta-galactosidase expressing FIV vector, CTRZLb,^^^ was modified to 

minimize the risk of recombination with the packaging plasmids. The resulting 

minimal transfer vector, CT25, contained no sequences derived from viral coding 

regions except for the initial 311 nucleotides of the gag ORF, and a 250-nucleotide 39 

env fragment encoding the Rev response element. Reporter gene (lacZ) transcription 

was promoted internally by the human CMV immediate- early promoter-enhancer. 

Unconcentrated CT25 vector pseudotyped with VSV-G yielded mean titers of 1.6 

(±0.74) X 10  ̂TU/ml (n = 12 preparations). After concentration by ultracentriftigation, 

mean titers were 2.2 (±1.8) x 10  ̂TU/ml (n = 4 preparations). These were at least 

equivalent to titers obtained with FIV vector CTRZLb, which contained an additional 

938 nucleotides of gag that Iris Kemler found to be dispensable for efficient FIV 

genome encapsidation."^^^ Vectors with this truncated segment are in fact 

packaged into virions at higher efficiency than those with the longer gag  segment 

contained in the original vectors."^^  ̂Reverse transcriptase (RT) measurements 

performed hy Iris Kemler confirmed equivalence: transducing units per counts per 

minute of RT activity for CT25 and CTRZLb vectors were 2.89 and 1.18, respectively 

(n = 3). Two rounds of concentration o f CT25 vector increased titer from 4.8 x 10  ̂

TU/ml to 2.3 X 10^  ̂TU/ml (79% yield).

Subsequent eGFP transfer vectors also contained new transgenes {eGFP and neoP^ 

and additional viral elements that are involved in reverse transcription and viral 

nuclear import (cPPT)"^^  ̂or that enhance transgene mRNA levels (WPRE).^^^

8.1.1.2. Production Procedures
To enhance scalability of vector production, I developed a modified procedure that 

uses a much smaller amounts of plasmid DNA than in previously described 

protocols^"^® (10 times less in micrograms of DNA per square centimeter of 293T cell 

monolayer), as well as high-surface-area vessels (Cell Factory, Nunc) and large
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volume ultracentrifugation. Large-scale vector supernatants produced with these 

methods in cell factories averaged 2.8 ± 1.5 x 10  ̂TU/mL {n = 8). The first round of 

ultracentrifugation resulted in vector recoveries of 60% to 80%, the second round in 

recovery of 40% to 60%, and maximum titers of 2.5 xlO* TU/mL. Vector 

preparations used for the organ perfusion experiments contained 6.83 x 10  ̂TU/mL 

(GiNWF) and 2.5 x 10  ̂TU/mL (CT26) and were diluted for injection of 1 x 10  ̂TU 

in a volume o f500 pL. For bicistronic vector preparations, eGFP dinàneoR titers 

correlated within 50% of each other and more than 95% of G418-stable colonies 

expressed eGFP, indicating good function of the internal ribosomal entry site.

8.1.2. Transduction of Primary Human Trabecular Meshwork 
Cells with FIV LacZ Transfer Vector CT25

The CT25 FIV vector was tested for its ability to transduce primary TM cells derived

from human trabecular meshwork. CT25 was compared with an MuLV-based lacZ

vector also pseudotyped with VSV-G; for this and all comparisons in this study,

vector preparations were normalized to equal transducing units after titration under

identical conditions. The lentiviral vector transduced both proliferating cells and cells

growth-arrested in G l/S phase with aphidicolin (Figure 22). In contrast, growth arrest

prevented transduction by the MuLV vector. No background p-galactosidase activity

was detected in TM cells, no transduction was seen with a mock FIV vector, and

transduction by both vectors was completely blocked by 50 mM AZT, an inhibitor of

reverse transcriptase.
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MLV MLV + aphidocolin

FIV FIV + aphidocolin

percentage of transduced TM cells

no aphidocolin aphidocolin
MLV 31% 4%
FIV 40% 43%

Figure 22: Primary trabecular meshwork cell transduction and effect of growth arrest. 
Cells isolated from human trabecular meshwork and plated in 24-well plates were 
transduced with 300 m\ o f unconcentrated supernatant containing a 2.5 x 10^-TU/ml 
concentration of MuLV vector {top) or FIV lacZ vector {bottom). Growth arrest with 
aphidicolin (15 mg/ml, right-hand side) blocked MuLV but not FFV transduction. 
Percent transduction is shown at the bottom.

8.1.3. Transduction of Primary Human Trabecular Meshwork 
Cells with FIV eGFP Transfer Vector GINWF

Because enabling real-time non-invasive monitoring was a central goal, GFP-

expressing vectors were the principal focus of the study. To preliminarily assess

feasibility and potential toxicity of GFP expression, cultured primary human TM cells

were transduced with a 4-log range of FFV vector input (Figure 23a). Transduction at

the highest multiplicity o f infection (m.o.i), which I estimated to be the approximate

equivalent of ten times the maximum in vivo multiplicity used in the animal

experiments that follow, produced marked GFP over-expression in all TM cells
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(Figure 23) without morphological change, detachment, vacuolization, change in 

doubling time, or other evidence of vector or transgene toxicity. The plateau of GFP 

fluorescence was reached within 24 to 48 hours. As shown by the one-month post

transduction results in Figure 23, this transgene expression was stable. When Renilla 

GFP (from the sea pansy^^^’ ^̂ )̂ was substituted for Aequoria^^^’ GFP, cells 

transduced with equivalent m.o.i appeared paler and reached peak fluorescence later, 

at 48 to 72 hours. Unless otherwise specified below, GFP designates the Aequorea 

protein. Similar to in vivo TM cells, cultured primary TM cells experience strong 

contact inhibition and stop dividing when a certain culture density is reached. Cells 

were viable for at least 2 months under these conditions.

dose escalation with human TM cells in vitro

m.o.i. 4 
a 10® TU/eye

m.o.i. 40 
a 10̂  TU/eye

m.o.i. 400 
a 10* TU/eye

m.o.i. 4000 
a 10* TU/eye

■:.â

Figure 23: Vector dose escalation experiments, (a) Dose-escalation experiment with 
GINWF in primary cultured human TM cells. Shown are contact-inhibited TM cells 
at 1 month post transduction. The vector encodes enhanced (codon-humanized) green 
fluorescent protein (GFP) under the transcriptional control of the human CMV 
promoter. No toxicity was observed at any dose.
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8.1.4. Transduction of Human TM
8.1.4.1. Transduction of Cuitured Human Eyes: Extent and

Time Course of Transgene Expression in the Trabecuiar 
Meshwork

Efficient transduction of growth-arrested primary human TM cells with the FIV 

vector provided a basis for proceeding to the human organ perfusion model. Initial 

experiments were performed to assess the comparative capabilities o f the MuLV 

vector, an adenoviral vector, and two different lentiviral vectors: the CT25 FIV vector 

and an HIV-1 vector, pHR9CMVlacZ.^"^^’ Vectors were administered as a single 

bolus injection of 1 x 10  ̂TU into the afferent perfusion chamber. No polycations or 

other enhancers o f virion-cell binding were added, as Polybrene was highly toxic at 

concentrations (4 mg/ml) that enhanced transduction of cultured cell lines (data not 

shown). The MuLV vector produced minimal transduction of the TM at both days 3 

and 16 (Figure 24). Only occasional blue cells were seen in stained histological 

sections. In contrast, both FIV and HIV lentiviral vectors consistently transduced 

more than 60% of TM cells when examined on day 3; staining intensity was increased 

by day 16 (Figure 24). Transduction was distributed throughout the TM, including the 

juxtacanalicular portion, and extended to the endothelium of Schlemm’s canal. As 

previously s h o w n , t h e  adenoviral lacZ vector also transduced the majority of TM 

cells at both time points. The majority of lentiviral transduction was seen in the TM, 

although some lacZ-transduced cells could also be detected in portions of the ciliary 

body, comeal endothelium, Schlemm’s canal, and downstream collector channels. For 

example, day 3 trabecular biopsies and day 16 chamber angle views in lentivirally- 

transduced eyes in Figure 24 show patchy p-galactosidase activity in the comeal 

endothelium adjacent to the heavily transduced TM. The results were confirmed by 

the more sensitive method of antibody labeling, which detected p-galactosidase 

protein in TM cells after transduction with either of the lentiviral vectors, but not after 

oncoretroviral transduction (Figure 26). Controls using either preimmune rabbit semm 

as the primary antibody or only the secondary antibody were negative, as was an 

untransduced control eye using both antibodies. Furthermore, mock FIV vector- 

injected eyes showed no X-Gal staining or antibody labeling, and 50 mM AZT 

blocked TM transduction completely, confirming that both endogenous LacZ staining 

and pseudotransduction were absent.
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day 3; 
trabeculectomy

day 16: 
chamber angle

day 16: 
TM section

control sc

mock
sc

MLV

17-

FIV

HIV

Figure 24: Transduction of human trabecular meshwork. Left: Representative TM 
biopsies obtained on day 3 after transduction. Middle and right Representative 
chamber angles and histological sections, respectively, from eyes evaluated for 
reporter gene expression 16 days after transduction. TM, Trabecular meshwork; SC, 
Schlemm’s canal.
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c) d)

Figure 25: Fluorophore-labeled anti-p-galactosidase antibody labeling of the 
trabecular meshwork 16 days after injection of 10  ̂TU of FIV vector (a), 10  ̂TU of 
HIV-1 vector (b), or 10  ̂TU of MuLV vector (c) or mock FIV vector (d). SC, 
Schlemm’s canal.
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Ô 120

o 100

o 80

"AC

SC sc

c) d)

Figure 26: Dose response and trabecular meshwork preservation. Percent 
transduction (a) and total trabecular cells (b) in four eye pairs perfused with the 
indicated doses of vector. A section from each quadrant of an eye was counted and the 
mean was compared with the simultaneously perfused and untransduced fellow eye. 
Bars represent the SD. (c and d) TMs from a pair of fellow eyes perfused with 
medium alone (c) or 10  ̂TU of FIV vector (d).

8.1.4.2. Dose Response
A dose-response study for FIV vector was then performed (Figure 26). Significant 

transduction of TM cells was seen after administration of 10  ̂and 10  ̂TU, but not at 

lower vector doses (Figure 26). Fellow control eyes from each human donor in this 

series received no vector and displayed no p-galactosidase activity (data not shown). 

TM structure was intact in fellow eyes perfused with medium alone (Figure 26) or 

10  ̂TU of FIV vector (Figure 26). TM lamellae, extracellular matrix, and cellularity 

were preserved after transduction. Thin, blue-staining cytoplasm extended along 

trabecular beams from counterstained TM cell nuclei (Figure 26). No significant 

differences in cellularity were found between transduced eyes and untransduced 

fellow eyes from the same donor (Figure 26).
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8.1.4.3. Pairwise Comparison of Trabecular Meshwork
Transduction by Oncoretroviral and Lentiviral Vectors

Direct, pairwise comparisons of FIV vector with MuLV vector and separately with

HIV vector were performed, using the left and right fellow eyes of human donors

(Table 3). Three pairs of eyes were used for each comparison. Quantitation o f the

meshwork cells expressing p-galactosidase showed that MuLV vector-perfused eyes

had no transduced TM cells, compared with transduction of 68 ± 3% of TM cells with

the FFV vector (p = 0.0005, n = 3). The separate, FFV/HIV-I vector comparison in

eyes from three donors resulted in 75 ± 4% transduced cells for the FIV eyes and 79 ±

11% for HIV eyes; this difference was not statistically significant (p = 0.67).

Transduction was uniform around the circumference of each TM (Table 3, standard

deviations for quadrant counts), indicating even dispersal of vector.

Paired comparison I

FIV HIV

Donor 1 79 ± 6  (R)“ 66 ±  3 (L)
Donor 2 71 ± 4  (L) 84 ±  7 (R)
Donor 3 74 ± 15 (L) 87 ±  3 (R)
Mean ±  SEM: 75 ±  2^ 79 ± 6

Paired comparison II

FIV MLV

Donor 4 70 ± 5 (L) <1 (R)
Donor 5 65 ±  22 (R) <1 (L)
Donor 6 69 ±  20 (L) <1 (R)
Mean ±  SEM: 68 ± 2 <1

Table 3: Paired comparison of retroviral vectors -  percent transduction after injection 
of 10  ̂TU per eye. a) Percent transduction values for the individual eyes represent 
means 6 SD of counts from four TM sections, one from each eye quadrant, b) 
Aggregate mean 6 SEM was derived for each three-eye set.

8.1.4.4. Expression of eGFP and p-Galactosidase in Human 
Trabecuiar Meshwork

GiNWF vector injection into cultured anterior segments produced efficient TM

transduction, as determined by visualization of expression of eGFP (Figure 27).

Transduction was limited to the TM, with the exception of occasional eGFP-positive
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cells elsewhere within the outflow pathway (comeal endothelium in proximity to the 

TM, Schlemm’s canal, collector channels). Cell counts performed with nuclear 

counterstaining revealed that a mean of 82% ± 4% of TM cells were eGFP positive 

and no cell loss was apparent (P = 0.94 for comparison with control eyes, n = 2>). 

Staining of tissue sections with anti-cGFP antibodies confirmed the extent and 

location of expression of eGFP (data not shown). Plastic-embedded sections showed 

preserved TM morphology and cellularity. Transduction of two unpaired eyes with a 

version of GiNWF without the central DNA flap or WPRE (pGiN) showed less 

efficient transduction (data not shown).

a) GiNWF Control

frontal

sagittal

b)

Figure 27: (a) Confocal microscopy view with frontal and sagittal view of TM 5 days 
after transduction with GiNWF and the TM in the fellow control eye. Imaging depth 
of 20 pm with wide pinhole, (b) Conventional fluorescence microscopic view. 400x 
magnification.

193



Results: Transgenesis of the Ocular Outflow Tract with Lentiviral Vectors

a)

b)

SC .
- ■ r . . . .

Figure 28: Chamber angles 5 days after injection of CT26 (a), and CT26.mock vector 
(b). Sections are stained with X-Gal to detect expression of p-galactosidase. SC, 
Schlemm’s canal.

Transduction with the /acZ-encoding CT26 vector also resulted in high-level 

transduction (79% ± 15%) of TM cells (Figure 28) The fellow eyes injected with the 

CT26.mock vector did not stain positively for B-galactosidase, confirming absence of 

pseudotransduction. Comparison of total cell numbers showed no significant cell 

loss (P = 0.18 for comparison with control eyes, « = 3) and the morphology was well- 

preserved (data not shown). Expression of B-galactosidase was mainly observed in 

TM, although a few comeal endothelial cells in proximity to the TM and occasional 

cells in the endothelia of Schlemm’s canal and the collector channels were also 

transduced.
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8.1.5. Effects on Outflow Facility
Despite the extensive transduction and high levels of marker gene expression in both 

sets of eye pairs, only slight and transient changes in outflow facility were observed 

(Figure 29). In six eyes with high (79% or greater) transduction of TM cells with lacZ 

or eGFP, a mean 30% ± 22% {P = 0.02) peak reduction in outflow facility was 

observed. This minimal decrease in outflow facility was followed by stable return to 

preinjection levels by approximately 48 to 72 hours. The experiments were terminated 

at 5 days. The mean peak decreases were not significantly different between the lacZ 

and eGFP groups (25% ± 30% and 36% ± 17%, respectively, P  = 0.6, « = 3 per 

group). CT26.mock vector-injected eyes did not show a significant change in outflow 

facility compared with medium-injected control eyes.

a) vector

.  control 

» CT26

-24 120

time (ttours)

b) 1.6
1.4

□ control

TT
Co/Cmln Co/C 72ti

Figure 29: Intraocular pressure, (a) Recording of eye injected with CT26 and 
CT26.mock vector control, (b) Ratio of outflow facility (1/R) before transduction ( C o )  

and at recorded minimum (Cmin) and CO and 72 hours after transduction (C72h). 
Outflow facility ratio of transduced eyes was significantly different from the control 
at the recorded minimum (* f  = 0.02), but returned to stable baseline at 72 hours.

8.1.6. Transgene Expression In Vivo
A total of 19 domestic cats were used in this study. 7 were used as pilot animals to 

establish techniques and assess feasibility of gene transfer with eGFP vector, using 

what was later established to be a highly effective dose (10^ TU per eye). When these 

animals showed extensive expression of GFP in the TM, 12 more cats were assigned 

to groups organized by dose level and marker gene in a design that utilized
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comparisons of different marker transgenes in right and left eyes of the same animal 

(see Methods and Table 1 for animal group assignments). Vectors were injected 

transcomeally into the anterior chambers of lightly anaesthetized animals via single 

50 pi bolus injections through a 27-gauge needle. Animals injected with lO^and 10  ̂

TU of GFP-transducing vector developed high grade (grade 4; see Figure 23b for 

grading scale), persistent GFP expression in the TM that was readily visualized and 

photographed through a conventional gonioscope (Figure 31& 2). Notably, 

expression was confined to the TM. Numerical results are summarized by group in 

Table 1. GFP expression in the TM steadily increased after transduction, reaching a 

maximum within days to weeks. It then was observed in most animals to plateau at 

the same or a lower grade, where it persisted for at least ten months, at which time the 

animals were sacrificed (Figure 32a, Aequorea GFP panels). There was a high linear 

correlation (R^ = 0.9) of gonioscopic expression grade and histologically determined 

transduction efficiency, with antibody labeling for GFP confirming that expression 

was limited to the TM (Figure 33). Overlay with DAPI (nuclear) staining 

demonstrated normal cellularity in both highly transduced and untransduced TM in 

the same animal (Figure 33). Of note, the expression grade data in this study were 

scored in a masked manner by 2 independent observers who used the scale 

photographs shown in Fig. lb, did not participate in the experiments, and were 

blinded to vector assignments. The robustness of this rating scale is evident in the 

outcome that both of the masked observers agreed independently on each scored 

expression grade, except for one point in which a grade of 2 was assigned by one 

observer and 3 by the other. In this one instance, a grade of 2 was scored.

B gonioscopic in vivo expression grades

grade 1 grade 2 grade 3 grade 4

Figure 30: Gonioscopic in vivo expression grades. GFP fluorescence in the TM of 
living cats was serially photographed and graded by direct gonioscopy (a cornea- 
shaped lens with a mirror is used to enable visualization of the anterior chamber 
angle). There was a high linear correlation (R^ = 0.9) between expression grade and 
histological transduction efficiency (grade 1, 2% ± 0.3%; grade 2, 21% ± 1%; grade , 
39% ± 3%; and grade 4, 94% ± 5%).
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gonioscopic real-time view of TM in all quadrants
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Figure 31: View of trabecular meshwork in living animal in standard (top and 
bottom) and corresponding UV light gonioscopic views (center). All four quadrants 
from an eye with grade 4 expression after transduction with 10  ̂TU are shown (SN = 
superonasal, IN = inferonasal, IT = inferotemporal, ST = superotemporal). 
Transduction was virtually complete and was confined to the TM.
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Temporal and spatial patterns of cats in Group 1, which were injected with 10  ̂TU 

GFP vector in one eye and 10  ̂TU Renilla GFP vector in the other eye were 

consistent with the human TM cell culture outcomes described above. Companion 

eyes were initially similar (Figure 32 and Figure 34 A). However, eyes expressing 

Renilla GFP showed smaller median expression (maximum grade 2 compared to 4 in 

the GFP injected eye of the same animal, p = 0.04, Table 1). Renilla GFP expression 

was also shorter lived than GFP expression (35±22 days versus more than 10 months). 

High level GFP expression remained stable in two of the three Group 1 animals 

(grade 2 in one, grade 3 in the other) to the endpoint of the study (i.e., sacrifice at 10 

months). The third animal also had grade 4 GFP expression initially. Strikingly 

however, the intense GFP fluorescence was observed to disappear abruptly on day 38, 

concurrent with a brief iritis (discussed further below). Rate of marker protein 

accumulation VF, expressed as Agrade/time was 0.2±0.1 grades/day for GFP and 

0.2±0.1 grades/day (p = 0.4) for Renilla GFP (Figure 32).
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3 days 8 days 10 months

right eye, 
Aequorea GFP

left eye, 
Renilla GFP

B

right eye, 
Aequorea GFP

3 days 8 days 13 days

left eye, 
beta-gal

Figure 32: Representative examples of reporter gene expression in animals in group 1 
and 2. (a) Renilla GFP (right eye) and GFP (left eye) expression in group 1. (b) Paired 
comparison of GFP (right eye) and B-galactosidase expression (left eye) in group 2. 
Shown are photos of TM as seen via UV light gonioscopy (the 13 day B-galactosidase 
eye was fixed and stained with X-gal after sacrifice). Detectable Renilla GFP 
expression was always shorter-lived than that of GFP, while B-galactosidase 
expression persisted longer than GFP only at the highest dose, when over-expression 
toxicity of GFP was observed.
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eGFP antibody labeling

o
0)

0_ 

?  +

eGFP control

Figure 33: Antibody labeling for GFP confirms gonioscopic extent of transduction. 
GFP expression was limited to the TM and collector channels. Comparison DAP I 
staining of transduced TM (left) and control TM (right) demonstrates preserved 
cellularity in GFP-expressing TM. AC = anterior chamber, P = plexus.

groL£3 r jmoe"" 
of ca:5 vector

medial 
expression grades 

max. f'lal
c jratioi V.= i f â E â  

day
iCPuan VS. 

10=*,

1 1 = 3 R= IC^TU GFP i. 2’ > 13 moiths* C.2±3.1 0 = 3.93
L= 1Q®TL Reniiia GFP 2 C 35±22 days C.2±3.1 0 = 3.05

"Tl 1 = 3 R = ID® TU GFP i. C 12±5 days 1.1=3.E 0 = 3.8S
L = 1Q®TU 06t5-ga. r.a n.a. > 12±5 days r.a. 0 = 3.07

3 1 = 3 R = 1CTJ GPP i 4 > 13 moiths D.2±3 D3 0 = 3.41
L = I C r  TU beta-ga' r.a i.a. > 13 moiths r.a. D = 3.0S

4 1 = 3 R = ID® TU GFP 3 2 > 13 mci'hs 0.1 ±3 1 0 = 3.23
L = 10® TU beta-gai r.a n.a > 13 moiths r.a. p = 3.03

' Ore a lirai *e'mlnated expression at 39 days.

Table 4: Characteristics of transgene expression imaged serially in vivo.

These results indicated that quite high level and sustained transgene expression 

focused to the TM was feasible after a single transcomeal injection, that it could be 

monitored gonioscopically, and that GFP (from Aequorea) was preferable to Renilla 

GFP. Because of the high level of GFP expression achieved with 10  ̂TU, the loss o f 

expression in one of these maximally-transduced animals might be due to the 

previously reported phenomenon of GFP-specific over-expression toxicity.

™ I therefore proceeded to examine further the parameters affecting GFP expression
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in dose response studies, this time using B-galactosidase vector^^"  ̂as a control in the 

companion eye rather than Renilla GFP vector (Table 4). In Group 2(10^ TU for each 

vector), the extent of GFP and B-galactosidase expression were comparable (Figure 

32), and all animals developed sustained grade 4 GFP expression. They attained the 

plateau of GFP expression 5-fold faster (Figure 32, Figure 34) than the animals of 

group 1 (p = 0.03). Here, the rate of marker protein accumulation VF was 1.1±0.5 

grades/day. Consistent with toxicity from rapid GFP over-expression, the intense 

fluorescence in all Group 2 animals was observed to terminate abruptly after a mean 

of 12±5 days, concurrent with a brief iritis. In contrast, and consistent with the results 

of B-galactosidase vector transduction in human eyes,^ "̂ ’̂ high-level B-galactosidase 

expression was found in the same animals at sacrifice after GFP expression had 

disappeared in the other eye (Figure 32). Thus, the cytotoxicity observed was marker 

protein-specific and the result of rapidly developing GFP over-expression. 

Immunolabeling with leukocyte lineage-specific antibodies in histological sections of 

eyes from cats experiencing this short-lived GFP over-expression showed numerous T 

cells, but not neutrophils or macrophages, in the TM, as well as loss o f TM cells 

(Figure 35). Sections of Renilla GFP expressing eyes also demonstrated occasional T- 

cells. No infiltrates were present in companion eyes expressing B-galactosidase. Sera 

of cats with short-term expression did not react in immunoblots with GFP, which was 

readily detected with commercial anti-GFP sera (data not shown).

These results were encouraging because they indicated that the method was effective 

enough to enable marked protein over-expression in the TM. Because of that, I 

injected reduced vector doses (animal groups 3 and 4, receiving 10  ̂and 10  ̂TUs 

respectively, again via single transcomeal injections). 10  ̂TU also produced a median 

expression grade of 4, which was not significantly different fi-om group 2 (p = 0.37). 

Importantly, however, at this lower dose, the grade 4 GFP expression was reached 

noticeably slower than in group 2 (VF was G.2±G.Q3 grades/day. Table 1). A clear 

difference with Groups 1 and 2 was that GFP expression persisted until sacrifice at the 

IG month-post injection endpoint of the study, and remained Grade 4 throughout. 

Thus, IG  ̂TUs emerged as the optimal dose for the GFP vector, while B-galactosidase 

was tolerated well at IG  ̂TUs. Group 4 animals (IG^ TU GFP vs. B-galactosidase 

vector, or 2 logs less vector input than animals in groups 1 and 2) corroborated these 

results and clarified dose requirements. They had a maximum median expression
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grade of 3, with a VF of only 0 .1±0.1. The expression persisted at grade 2 until 

sacrifice at 10 months. The results indicate that an optimal GFP vector dose 

substantially below the peak of the achievable dynamic range can be selected (10^ 

TUs in the case of this GFP vector) to achieve long-term gene expression in the TM.

slow onset: long-term expression

W - = 0 .2
150 200 250 300

days

W - 0 . 1
150 200 250 300

days

B
rapid onset: short expression

t r  "
50

t r
A grade _ 
A time

A acade  _ 
A time

Figure 34: Rate of initial GFP accumulation determines whether successful long-term 
GFP expression is established, (a) Expression slowly reached peak levels in two cats 
from group 1 transduced with 10  ̂TU GFP vector (right eye) and Renilla GFP vector 
(left eye), resulting in stable fluorescence of GFP, but not Renilla GFP. (b) Rapid 
GFP over-expression in animals of group 3 that were also transduced with 10  ̂TU 
GFP vector triggered an iritis that eliminated transduced cells. Dotted red line 
illustrates onset of expression. Inserted photos show actual gonioscopic view of TM 
as indicated.
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Figure 35: Antibody staining for T-cells (anti-CD3: a, b and c), macrophages (anti- 
myelomoncyte: d, e and f) and DAPI staining (g, h and i). Shown are sections from a 
TM transduced with eGFP (a, d and g) after loss of expression and the p-galactosidase 
transduced partner eye (b, e, h). Only the eGFP transduced TM is infiltrated by T- 
cells (a), but not macrophages (d), while there is no infiltrate in the other eye. Control 
c is an isotype control section from the same eGFP eye (c). Control f  the comeo- 
conjunctival junction where macrophages are expected (f and i).

8.1.6.1.1. Intraocular Pressure
The initial TOP of all transduced eyes was not different from lOP at the end of the 

study (p = 0.4). Days to weeks after application, cats had a brief increase in lOP 

(33±34%, p<0.01) followed by return to normal pressures, which may be consistent 

with corticosteroid induced ocular hypertension.^^’’ In support of this inference, 

lOP change in non-premedicated pilot animals was minimal with GFP vector (n = 3, 

lOP change = 3±5%, p = 0.4) or B-galactosidase vector (n = 3, lOP change = 1±1%, p 

= 0.4).
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8.1.6.1.2. SIN Modification

CMV.eGFP.IRES.neo

GINWF FGINSIN

eGFP TU/ml 1.6 xIO® 7.8 xIO®

cpm/ml 4.0 xIO® 1.5x10®

ratio 40:100 50:100

Table 5: Differences o f eGFP expression. SIN modification of the FIV-LTR slightly 
improves eGFP expression levels from internal CMV.eGFP.IRES.neo cassette. 
Cpm/ml = counts per minute per ml in RT assay, eGFP TU/ml = eGFP transducing 
units per ml determined with flow cytometry, GINWF = internal 
CMV.eGFP.IRES.neo cassette, FGINSIN = internal CMV.eGFP.IRES.neo cassette.

SIN vector FGINSIN had a slightly higher ratio of eGFP_TU per RTAhan,GINWF-__

G230 (50:100 vs. 40:100, Table 5). In conclusion, the SIN deletion o f the FIV 3'-LTR 

did not negatively affect vector function.
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8.2.Transgenesis of the Retinal Pigment Epithelium with 
FIV Vectors as a Basis for Gene Therapy of Retinal and 
Choroidal Diseases

8.2.1. Comparison of Wild-Type and Class I Integrase Mutant-FIV 
Vectors in the Retina Demonstrates Sustained Expression of 
Integrated Transgenes in Retinal Pigment Epithelium

8.2.1.1. Results
8.2.1.1.1. Eyes Analyzed

For the comparison of subretinal and intravitreal injections, all injected animals were 

available for analysis at the conclusion of the study (n = 39 in the subretinal group, 

and 38 in the intravitreal group). In the intravitreal group, six pairs of eyes were 

unreadable due to problems in tissue processing, leaving 32 pairs for analysis. 

Therefore, 39 right eyes subretinally injected with the p-galactosidase-encoding FIV 

vector, CT25, and 32 right eyes intravitreally injected with CT25 could be analyzed. 

Control left eyes were treated as follows: (1) FIV mock vector (n = 13 subretinal, n =

11 intravitreal), (2) DMEM+10% FCS (n = 13 subretinal, n = 10 intravitreal), and (3) 

no injection (n = 24). For the long-term expression/integration study, all 37 animals 

survived from injection to outcome. Ten animals injected subretinally were analyzed 

at 2 months, 10 at 3 months, and the remaining 17 at 7 months. All eyes in all groups 

were evaluated and scored in random sequence by an observer blinded to injection 

assignment.

8.2.1.1.2. Comparison of Subretinal and Intravitreal 
Injection

VSV-G-pseudotyped FIV vectors were injected either subretinally or intravitreally. 

Following subretinal injection, ^-galactosidase expression was found in 15 of 19 

retinae (79%) at 2 days and in 19 of 20 (95%) retinae at 7 days (Figure 36) and 

expression was widespread (Figure 37 a), with some eyes showing nearly complete 

transduction of the retina. Cross-sectional histology revealed extensive p- 

galactosidase activity in the retinal pigment epithelium (RPE) (eyes from 

representative animals are shown in Figure 38 a and 3b), with more than half o f RPE 

cells expressing the marker gene. Antibody labeling for p~ galactosidase in one 

additional litter confirmed transduction of the RPE in eyes injected subretinally 

(Figure 38 c and d). No transgene activity was detected in noninjected control eyes or 

control eyes injected subretinally with mock FIV vector or DMEM+10% FCS.
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Occasionally, endogenous ^-galactosidase activity was observed in the ciliary body 

(Figure 37); this was equivalent in uninjected and injeeted animals, and at a 

histological level was not confined to cell bodies. No other ocular tissues showed such 

endogenous activity, and no inflammation or virus-induced pathology was observed.
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Figure 36: Proportion of eyes transdueed 2 and 7 days after either subretinal or 
intravitreal injection.

In contrast to subretinal injeetions, reporter transgene expression was found in only 4 

of 12 eyes (33%) at 2 days following intravitreal injection of the same volume of 

vector and 6 of 20 (30%) eyes at 7 days (Figure 36). Also, in clear contrast, 

expression in eyes receiving intravitreal injections was limited to a small area of 

retina direetly adjacent to the injection site (Figure 37c). As in control eyes for 

subretinal injeetions, no reporter transgene activity was detected in control eyes 

intravitreally injected with moek vector or DMEM + 10% FCS, or in non-injected 

eyes, and no inflammation or pathological change was seen. In summary, subretinal 

injections resulted in a significantly greater proportion of transduced retinae than 

intravitreal injections at both 2 and 7 days following injection (p < 0.05 and <0.001, 

respectively). Subretinal injections also caused transduction of a larger retinal area 

eompared with intravitreal injections. Subretinal injections resulted in virtually 

eomplete RPE transduction, while only patchy transduction was observed near the 

injection site of intravitreally injected eyes.
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Figure 37: Representative eyes injected subretinally with (a) CT25 vector and (b) 
subretinal injection control, or injected intravitreally with (c) CT25 vector and (d) 
intravitreal injection control. Note the larger area of transduced retina with subretinal 
injection (a versus c, arrow). Endogenous P-galactosidase activity in the ciliary body 
was occasionally observed, and was equivalent in both uninjected and injected eyes, 
as seen in panels (b)-(d) (blue ring).

8.2.1.1.3. Long-term Expression and Integration
In the second group of experiments, I examined duration of expression, compared 

wild-type, and class I integrase-mutant vectors. Right eyes of 37 rats were injected 

subretinally with CT25 and left eyes were injected with CT25.D66V. Preparation of 

CT25.D66V was identical to the preparation of the integrase-competent CT25 with 

the exeeption of using paekaging plasmid CFlAenv.D66V, in which the only change 

from CFlAenv is the single amino acid in integrase. Class I properties (selective block 

to integrase eatalytie function without disruption of other Gag/Pol funetions, 

equivalent to those described for HIV-1 integrase D64V) have been systematically 

validated in tissue culture studies for this mutant of FIV integrase and were reported

207



Results: Transgenesis of the Retinal Pigment Epithelium with FIV Vectors

elsewhere.^^^ Reverse transcriptase (RT) activity was determined in triplicate as 

described for both CT25 and the integrase mutant CT25.D66V and animals were 

injected with equal RT units of each vector.

ONL ONL

RPE RPE

ONL

RPE

ONL

RPE

Figure 38: Examples of representative cross-sectional histology confirming 
transduction of the RPE. Paraffin sections (a and b) counterstained with neutral red 
showing P-galaetosidase activity as blue stain within the RPE at both low power (a, 
65x) and high power (b, 1 lOOx). Antibody labeling for p-galactosidase confirmed 
limitation of marker gene expression to the RPE (400x; INL = inner nuclear layer, 
ONL = outer nuclear layer, RPE = retinal pigment epithelium). CT25 injected eye 
with (c) anti-p-galactosidase antibody staining and (d) DAPI counter stain, (e, f) Non
injected control eye.

10 animals were evaluated at 2 months, 10 were evaluated at 3 months, and 17 were 

evaluated at 7 months post-injection. All eyes injeeted subretinally with CT25 

demonstrated extensive, confluent areas of p-galaetosidase expression in the RPE
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(Figure 39). At the longest time period (7 months), 60% of eyes demonstrated such 

expression in more than half of the total area of the retina (Figure 39 e), with the 

remainder ranging from a punctate distribution in one quadrant up to 50% or less of 

the total retinal area. In addition, occasional cells in inner retinal layers expressed p- 

galactosidase at 3 and 7 months (Figure 39 a and d). In contrast to CT25- injected 

eyes, fellow eyes injected with CT25.D66V vector had no or only very rare cells 

expressing P-galactosidase (Figure 39 c and f). Incidence and extent of expression at 

2, 3, and 7 months were the same, with widespread areas of transduction after CT25 

injection and only very sparse, punctate staining with the integrase mutant 

CT25.D66V.

Figure 39: Cross-sectional histology (a and d) and whole eye cups (b, c and e, f) of 
representative eyes 3 (a-c) and 7 months (d-f) after subretinal injection with CT25 
vector (b and e), and CT25.D66V (c and f). Vector particles, which differ in only one 
amino acid, were normalized to equal RT units.
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8.2.2. Long-Term Retinal Transgene Expression with FIV versus 
Adenoviral Vectors

8.2.2.1. Results
8.2.2.1.1. Dose-Response Study

To determine the optimum vector dose for the subsequent long-term expression study, 

eyes injected subretinally with 3 different doses of FIV and Ad vectors were assessed 

at 2 days post injection for p-galactosidase expression.

At the highest dose of 2 x 10  ̂TU, all animals survived to the study endpoint. All 14 

FIV vector injected eyes and 13 of 14 Ad vector injected eyes showed transduction 

with a median grade of 3 with each vector (p = 1). In contrast, at a dose of 2 x TU, 

9 of 13 (69%) FIV vector injected eyes showed expression, compared to 5 of 13 

(38%) Ad vector injected eyes. The median grade of transduction was greater in eyes 

injected with 2x10"^ TU FIV vector, but this was not statistically significant (median 

grade 2 versus 0; p = 0.22). Only 2 of 12 (17%) eyes injected with 2x10^  TU FIV 

vector and 4 o f 12 (33%) eyes injected with Ad vector showed expression. One rat 

injected with 2x10"^ TU, and two rats injected with 2x10^  TU, died prior to 

sacrifice, and therefore were not analyzed. None of eyes from non-injected control 

animals showed transduction. Based on these results, 2x10^  TU was chosen for the 

following long-term expression study.

8.2.2.1.2. Long-Term Expression Study
Nearly all eyes (96%) through all time points of the study showed some degree of 

transduction (Figure 40). Analyzing data from all eyes across the entire 16 month 

study, FIV vector produced a higher distribution of grade o f expression than Ad 

(Figure 40, p = 0.01, Wilcoxon signed-rank). Analyzing each time point separately, 

differences in expression grade were statistically significant at 6 months, when FIV 

vector transduced eyes had a higher grade than Ad eyes (p < 0.05) (Figure 40). At all 

other time points beyond one week, FIV vector transduced eyes had higher grades of 

transduction than Ad eyes (Figure 40), though these differences were not statistically 

significant due to low statistical power. For example, at sixteen months, 4 of 7 FTV 

vector transduced eyes were grades 3-4, while none of the Ad eyes achieved this 

degree o f transduction, but individual time point comparisons were limited by low 

statistical power.
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Grades of expression across the 16 months suggested that FIV vector expression 

increased to a maximal level at 3 months, with some subsequent reduction in extent 

(Figure 40). In contrast, Ad vectors appeared to yield more immediate expression, 

peaking at 1 week, with a decline thereafter (Figure 40).
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Figure 40: Time course of p-galactosidase expression. FIV is shown in panel A, and 
Ad vectors are shown in panel B. Circle sizes represent the number o f animals at each 
grade. FIV expression reached a maximum extent at 3 months and then decreased, 
while expression from Ad vectors reached its maximum extent at 1 week.

When cross-sectional histology was examined, the retinal pigment epithelium showed 

p-galactosidase expression with both vectors at day 2 (Figure 41). In eye cups that 

had lower grade of transduction the staining was greatest in the quadrant that 

corresponded to the site of injection. The retinae had multiple folds (not shown), 

similar to our findings in previous studies using subretinal injection. At day 7, 

expression was similar to day 2 (Figure 41).

At 1 month, extensive P-galactosidase staining could be seen throughout the retinal 

pigment epithelium, associated with staining of the adjacent photoreceptor outer 

segments (Figure 41). Some individual cells in the inner retinal layers in both FIV- 

and Ad vector injected eyes were transduced. In Ad injected eyes, there was evidence 

of infiltration by large cells morphologically consistent with macrophages (Figure 41, 

see insert shown in 16 month section) and extracellular p-galactosidase staining was 

prominent. The shallow retinal folds seen earlier with both FIV and Ad persisted, 

presumably secondary to subretinal injection and there were isolated areas of
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intraretinal microcyst formation (not shown). Retinae from both groups showed areas 

of attenuation, consistent with resolving focal traumatic retinopathy (not shown), 

while the remaining retinal architecture remained intact.

At 3 months, 6 months and 12 months, FIV vector-injected eyes were similar to those 

at 1 month with the exception of the time-dependent increase of cells in the outer 

nuclear layer staining positive for p-galactosidase. In Ad vector injected eyes, the 

intensity of RPE staining for p-galactosidase decreased over time. Transduced areas 

in Ad injected eyes often accumulated a focal cellular infiltrate and the previously 

normal retinal architecture appeared disrupted.

At the conclusion of the study (16 months), p-galactosidase positive cells were found 

in the RPE and occasionally in the inner and outer nuclear layers o f FIV vector- 

injected eyes. There was focal traumatic retinopathy, while the rest of the retina 

showed normal retinal morphology. Ad vector injected eyes still expressed p- 

galactosidase, but were less extensively transduced and had larger areas with 

disrupted retinal architecture (Figure 41).
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Figure 41: Representative eye cups and histological sections through the transduced 
retina of eye pairs from the same animal. Right eyes were injected with FIV, left eyes 
with Ad vector. When a retinal detachment was present in the section, images of 
neurosensory retina and RPE are shown in their normal spatial relationship. Insert; 
large, macrophage-like cells with abundant cytoplasm appeared to contain 
phagocytosed P-galactosidase positive material (arrows). Macrophage infiltrates were 
often seen in Ad transduced eyes after 3 months. Abbreviations (for control eye 
section): GCL = retinal ganglion cell layer, INL = inner nuclear cell layer, ONL = 
outer nuclear layer, PR = photoreceptor outer segments, RPE = retinal pigment 
epithelium.
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9. Discussion

9.1.Transgenesis of the Ocular Outflow Tract with Lentiviral 
Vectors as a Basis for Gene Therapy of Glaucoma
9.1.1. Genetic Modification of Human Trabecular Meshwork with 

Lentiviral and Adenoviral Vectors versus Type-C Retroviral 
Vectors

The results demonstrate that lentiviral vectors effectively transduce the human 

trabecular meshwork in situ. The direct, controlled comparisons of vector systems 

using normalized vectors in the present work also demonstrated for the first time that 

lentiviral vectors derived from FIV can perform as effectively as a well-validated 

vector derived from a human lentivirus for transduction of a mitotically quiescent, 

differentiated human tissue. The consistently efficient transduction of trabecular cells 

with two different lentiviral vectors but not with equal numbers of transducing units

of a murine leukemia virus vector establishes vector properties needed to achieve 

genetic modification of the meshwork, and is consistent with evidence that turnover 

of TM cells is minimal in vivo.^^ '̂^"^ '̂^^  ̂For example, gross injury from laser 

trabeculoplasty stimulates thymidine labeling of TM cells, but processes often 

associated with decreased outflow facility and glaucoma (such as increased 

phagocytosis, inflammation, and hyphema) do not.^^^’ The finding that 

lentiretroviral vectors but not onco-retroviral vectors transduce the trabecular 

meshwork is additional evidence that trabecular cells are mitotically quiescent in vivo.

Anterior chamber injection is a routine ophthalmologic procedure that requires only 

local anesthesia. The present results suggest that administration of lentiviral vectors 

into the anterior chamber circulation has potential to deliver therapeutic genes to the 

trabecular meshwork. The preferential transduction of the TM over other outflow tract 

structures may be an in vivo correlate of the enhancement of transduction that is 

produced by perpendicular convective flow of retroviral vector supernatants through 

target cell monolayers grown on porous s ubs t r a t e s . Th i s  targeting effect was not 

completely selective, because a few p-galactosidase-expressing cells could also be 

detected in some eyes in the outflow pathway both downstream (Schlemm’s canal and 

collector channels) and upstream (comeal endothelium in proximity to the TM, and 

the transition zone between ciliary muscle and TM). Additional strategies, for 

example, transcriptional targeting, may be useful in this regard. This has been

215-



Discussion: Transgenesis of the Ocular Outflow Tract with Lentiviral Vectors

successfully demonstrated by Liton et al.̂ "̂  ̂The authors used the chitinase 3-like 1 

(Ch3Ll) gene promoter after a comparative expression analysis o f trabecular 

meshwork and Schlemm’s canal cells to restrict adenoviral vector expression to the 

TM of adenoviral vectors that contained a Ch3Ll promoter driven lacZ cassette. 

Ch3Ll is a mammalian glycoprotein member of family 18 glycosyl hydrolases that is 

involved in tissue remodeling and inflammation and acts as a growth factor for 

connective tissue cells and as a potent migration factor for endothelial cells which 

could also play a role in both the normal physiology of the TM and the abnormalities 

that occur in glaucoma. Gonzales et al. found in a similar experiment by the same 

group that promoter fragments from the matrix Gla protein can specifically direct 

expression to the trabecular meshwork, while use of the vascular endothelin-cadherin 

gene promoter even allows differentiating between vascular and Schlemm’s canal 

endothelial cells.

Vectors that transduce nondividing cells but do not predictably integrate into the 

cellular genome also have potential to express transgenes in the human TM, as found 

here and previously.^"^"  ̂However, glaucoma is a chronic disease. Aqueous outflow 

impairment requires long-term control, which is best addressed by a vector that stably 

integrates as an obligate part of the transduction process. In addition, adenovirus 

vectors can trigger marked inflammation, which could exacerbate glaucoma. The 

importance of investigating long-term expression is underscored by work that 

identified a stably abnormal gene expression profile in the glaucomatous TM.^^^ 

Although a gene mutation has been associated with g l a u c o m a , a  therapeutic gene 

has yet to be described. Lentiviral vectors will facilitate study of candidate genes in 

the human organ perfusion model and in animals.

9.1.2. Preservation of Aqueous Outflow Facility after FIV-
Mediated Transduction of Anterior Segments of Human Eyes

The goal of glaucoma gene therapy directed to the anterior chamber is to restore and

preserve aqueous outflow through the TM. For therapeutic transgenes to be validated

and for eventual clinical application to proceed, a method not only has to be stable but

non-toxic modification is needed that does cause intraocular pressure to be

dangerously high during or immediately after transduction. This capability is

necessary for experimental evaluation of candidate therapeutic genes and for eventual
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use of those genes in therapy. In particular, the method of gene transfer must not cause 

counterproductive disruption of aqueous outflow through the TM. My histological 

analyses in transduction experiments of human eyes with FIV, HIV, MLV and 

adenoviral vectors proved that cellularity is well preserved and that lentiviral vector 

transduction is minimally toxic. In the next set of experiments 1 extended these results 

by demonstrating that eGFP can also be used as an effective marker gene and that the 

extensive transduction observed with these vectors does not significantly impair 

outflow facility. 1 used more refined, second-generation vectors that incorporated the 

FIV central DNA flap that Todd Whitwam identifled'^^^ and cloned into the eGFP 

vector 1 had engineered and WPRE, as had been demonstrated to improve transgene 

expression levels in other lentiviral vector systems.

Aqueous humor outflow is a complex process that is not completely understood. The 

unique architecture oftheJTM, the phagocytic biology ofthe cells, theinarrangement— 

within a collagenous lattice and the extracellular matrix they populate are all believed 

to play important roles. A final regulatory step may occur at the interface of the TM 

with Schlemm’s canal, where bulk flow occurs through large outpouchings (giant 

vacuoles) in the endothelium.^^"^ A potential concern for gene therapy is that gene 

transfer methods might disrupt the physiology of this structure. Despite a high level of 

transgene expression, FIV vector-mediated gene transfer caused only transient, slight 

(mean of 30%) declines in outflow facility, with stable return to normal baseline 

levels from 48 to 72 hours after transduction until the end of the experiment at 5 days. 

These results compare favorably with those obtained by Borras et al.̂ "̂̂  in the same 

model after injection of adenoviral vectors. After injection of 1 x 10  ̂TU of adenoviral 

vectors, outflow facility declined 13% compared with control eyes within the first 4 

hours, and was reduced by 54% after 12 hours. Subsequently, baseline outflow facility 

was reached at 36 hours and continued to increase to approximately 20% higher than 

baseline until the end of the experiment at 48 hours.^^^ As in my previous 

e x p e r i m e n t s , 1 observed preferential transduction of TM. Targeted transduction 

prevents unwanted effects of transgene expression on neighboring structures. This is 

of particular importance in ocular gene therapy, in which anatomic structures in close 

proximity serve highly specialized functions.
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9.1.3. Long-Term Genetic Modification of the Outflow Tract 
Coupled with Non-lnvasive Imaging of Gene Expression In 
Vivo

Any gene therapy for glaucoma and the proper investigation of glaucoma associated 

genetic mutations requires a method that is simple to administer and can provide long

term, stable, high-grade, and properly targeted transgene expression within the 

anterior chamber. The experiments with domestic cats demonstrated that long-term, 

serial in vivo imaging of transgene expression is possible and that transduction can 

lead to stable genetic modification in living animals for 10 months. The effectiveness 

of gene transfer was so high that at the highest doses rapidly accumulating GFP 

expression resulted in toxicity from overtransduction. In contrast, administration of 

equivalent b-galactosidase vector also produced high level expression but without 

toxicity. Toxicity of GFP is well-described, particularly at maximal expression levels, 

_and appears toJbe cell-type-dependent.^^^iZ^^i^^tZZ&Since_eGFP_is not amplifiable (one

molecule equals one fiuorophore, whereas enzymatic markers can convert many 

molecules of substrate to detectable dye), at least 10  ̂molecules per cell are needed 

for the cell to yield twice the background f luorescence .Thi s  estimate is a lower 

boundary as it assumes perfect eGFP maturation; incomplete maturation would raise 

the threshold higher.^^^ Undoubtedly, many more than 10  ̂molecules per cell are 

needed to image through the cornea and to produce the high grade fluorescence 

observed here. As the same applies to the titration of FIV vectors, it is possible that 

the same number of transducing units of eGFP expressing vectors is a much higher 

number of physical vectors particles and a higher m.o.i. than with B-galactosidase 

vectors. That lower doses circumvented this problem while resulting in GFP 

expression that was still readily imaged in the living animal makes clear that a high 

dynamic range of gene delivery and expression was achieved. Consistent with results 

of others,^^^ the use of Renilla GFP did not offer advantages in the TM. Renilla GFP 

was originally advertised as a fluorescent molecule with better biocompatibility but 

this has not been solidified in a stringent way and may represent company-intem 

findings by the vendor.

As seen in human eyes, 1 again observed preferential transduction of TM over other 

ocular structures in cats which is consistent with the results in perfused human 

anterior chambers.^^"^’ This targeting may be an in vivo correlate o f the 

enhancement produced by perpendicular convective flow of retroviral vector
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supernatants through target cell monolayers grown on porous substrates7^  ̂In 

addition, the tropism of these VSV-G pseudotyped lentiviral vectors may favor certain 

cell types, as seen for example in the subretinal space where the retinal pigment 

epithelium is preferentially transduced. Thus aqueous humor flow dynamics and cell- 

specific permissiveness to transduction by these vectors may both be factors. Strict 

targeting in these larger eyes has not been seen by two other groups who used rodent 

eyes, the mouse^^^’ and the rat.̂ "̂  ̂It is possible that this is a species specific 

observation and a result o f lentiviral restriction in comeal endothelial c e l l s . O n  the 

other hand, it is unlikely that the large amount of lentiviral vectors does not cause 

saturation of restricting factors^^^ in comeal endothelial cells but does so in trabecular 

meshwork cells. More likely, convection and flow are different in small rodent eyes; 

in the cat and in human eyes the central comea is further away firom the draining 

structure, the trabecular meshwork than in rodent eyes (Figure 17). Occasionally 

injected air bubbles may have contributed to protection of comeal endothelium as is 

commonly done prior to surgery of mature cataracts when trypan blue is injected 

undemeath air to only stain the anterior surface of the lens immediately before 

capsulorhexis. As of note, 1 observed some transduction of comeal endothelial cells 

directly adjacent to TM (Figure 24). Another possibility is that manipulation of small 

rodent eyes creates more comeal warping and stretching compared to the larger eyes 

which may induce endothelial cell cycling of this non-dividing cell. It is known that 

cell division facilitates lentiviral transduction^^^ although these vectors have a evolved 

a specialized mechanism that allows transduction of non-dividing cells, a feature that 

distinguishes them from type-C retroviral vectors.

As in human donor eyes,^ "̂ ’̂ high level transduction could be performed without 

detriment to aqueous humor outflow or the histological fine stmcture, indicating that 

these replication-defective lentiviral vectors have favorable toxicity profiles for 

further investigation of glaucoma gene therapy. This was reflected in an only 

moderate and transient change of intraocular pressure.

There is a critical need for a realistic animal model for glaucoma. The results establish 

that prolonged, targeted, and multi-grade expression of transgenes in the disease

relevant tissue is possible. After completion of the studies for this thesis, we have 

explored this in the cat model that 1 developed here using myocilin and myocilin
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mutant expressing vectors.^"^* However, co-expression with enhanced GFP of 

myocilin or a juvenile glaucoma-associated mutant myocilin did not elevate lOP.

The association of myocilin gene mutations with familial glaucoma was recognized a 

decade ago;̂ "̂  ̂a number of disease-associated mutations have been identified/

Since various studies suggest that the heterozygous state for many of these mutations 

is associated with POAG,^^^ we hypothesized that prolonged expression of a 

glaucoma-associated mutant (and possibly even additional wild-type protein 

expression) might produce elevated lOP in cats. It is possible that the feline outflow 

pathway may not be vulnerable to myocilin-related pathophysiology or the feline 

Y423H mutant chosen for study may differ from the human Y437H mutant protein in 

structure or other aspects. However, feline myocilin did behave similarly to human 

myocilin with respect to intracellular trafficking, with the Y423H mutant retained in 

the celFsimilar to humanAf437H and_theJwild^type_proteins undergoing-export.7fhe—

lack of significant lOP elevation we observed could be due to inadequate expression, 

or lack of uniform expression in all cells, since our immunofluorescence analyses 

using an epitope-tag do not establish the degree o f expression of the exogenous 

myocilins relative to endogenous levels. However, consistent with our study, 

transgenic mice with uniform Y423H expression also do not develop lOP elevation or 

glaucoma.^^^ Taken together with clinical and epidemiological data, existing animal 

data suggest that development of lOP elevation is dependent on other factors in 

addition to a mutant myocilin protein. Finally, since the clinical time course of human 

genetic glaucomas is quite variable, and disease can take many years to become 

evident, our study may simply lack the necessary duration for detecting an effect on 

lOP despite its relatively long follow-up period. Although the Y437H has a relatively 

early onset phenotype in humans, these individuals do not develop glaucoma at 1-2 

years of age (the term of our study) and the period of follow-up in the cats may well 

have been too short to detect an effect. The lentiviral vector feline model has the 

potential to produce a reliable, realistic animal model of POAG, but this will possibly 

also require alternative transgene approaches that can induce a realistic POAG-like 

state. While surgical or laser injuries to the full circumference of the TM can raise 

lOP,^^’ such approaches cannot recapitulate the subtle outflow resistance problem in 

POAG and the gross injury destroys the therapeutic target, the TM.
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The lack of a high fidelity full disease model of POAG with lOP elevation that can be 

followed to the endpoint o f retinal ganglion cell death, should not prove to be an 

impediment of any great degree to pre-clinical therapeutic transgene testing. Small 

molecule therapies in current practice appear to utilize physiological mechanisms that 

are also available in the normal outflow pathway (reviewed in^^ )̂. Normotensive eyes 

are currently used for pre-clinical animal studies of candidate lOP-reducing POAG 

therapeutics which have often used the domestic cat; this is because lOP reductions in 

normotensive eyes are predictive of efficacy in POAG and the minimal variation 

between eyes at baseline facilitates paired left to right eye comparison designs.

9.1.4. Conclusions from Studies of Genetic Modification of the 
Outflow Tract and Future Directions

1 have shown that lenti-retrovirak but not oncoretroviral. vectors allow the specific

transduction of trabecular meshwork in human donor eyes and established a dose- 

response curve over 4 logs between injected vector number and transduction 

eff ic iency.Despi te  high transduction efficiencies the outflow facility was affected 

only transiently and to a minor d e g r e e . T h e  fine structure of the trabecular 

meshwork remained unaltered.^^"^’ In the cat, a similar transduction efficiency and 

effect on outflow facility was observed. Vector function could be followed in real 

time for the entire study of 10 months.^^^

FlV-mediated transgenesis is a highly effective method to reprogram the outflow tract 

permanently. This opens entirely new options to develop realistic glaucoma animal 

models by injecting vectors into the anterior chamber that transduce a desired 

genotype.

Our results with myocilin mutants cast doubt on the idea that mutations are 

responsible for intracellular deposits of proteins that are undegradable by the 

proteasome and are essentially the equivalent o f a neurodegenerative disease of the 

outflow tract. Ongoing in vivo experiments with feline myocilin mutants in the cat 

will help to better understand the pathomechanism that leads to the glaucoma 

phenotype.

Long-term genetic modifications for therapeutic purposes appear to be possible. This 

is the first basis for a gene therapy of glaucoma that can adequately address the
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chronicity o f glaucoma. Because transduction is targeted to the outflow structures, the 

choice of potential therapeutic transgene is also limited to proteins responsible for its 

regulation, which limits for instance regulation of aqueous humor production by the 

ciliary body. A variety o f transgenes has been suggested for the therapeutic 

modification of TM. Transduction of stromelysin^^^ to modify the extracellular matrix 

is attractive in theory, but will require well controlled expression to avoid 

autodigestion of the cellular network. Matrixmetalloproteinases also require activation 

by a complex system of other metalloproteinsases. Simple delivery of e.g. stromelysin 

cDNA ignores this fact^^  ̂resulting in expression of inactive pro-stromelysin.

An attractive transgene for gene therapy is the small guanosine triphosphatase (GTP) 

Rho that regulates remodeling o f the actin cytoskeleton during cell morphogenesis 

and motility. Rao et al. investigated the role of Rho kinase in the modulation of 

aqueous-humor-outflowfacility.^^The-treatment-of human trabecular-meshwork and 

canal of Schlemm cells with a Rho kinase-specific inhibitor led to significant but 

reversible changes in cell shape and decreased actin stress fibers, focal adhesions, and 

protein phosphotyrosine staining. Based on the Rho kinase inhibitor-induced changes 

in myosin light chain phosphorylation and actomyosin organization, the authors 

suggested that cellular relaxation and loss of cell-substratum adhesions in the human 

trabecular meshwork and canal of Schlemm cells could result in either increased 

paracellular fluid flow across the canal of Schlemm or altered flow pathway through 

the juxtacanalicular tissue, thereby lowering resistance to outflow. Rho kinase is a 

potential target for the development of drugs to modulate intraocular pressure in 

glaucoma patients. However, adenoviral vector mediated transduction of TM with the 

Rho A gene's dominant-negative mutant protein showed only minor effects.

C3 transferase could be of use as a therapeutic transgene because it selectively ADP- 

ribozylates Rho in its effector-binding domain on asparagine residue 41 and thereby 

abolishes its biological fiinction.^^'^’

Caldesmon is another protein with therapeutic potential as an actomyosin regulatory 

protein found in smooth muscle and nonmuscle cells.^^^ Domain mapping and 

physical studies suggested that caldesmon is an elongated molecule with an N- 

terminal myosin/calmodulin-binding domain and a C-terminal 

tropomyosin/actin/calmodulin-binding domain separated by a 40-nm-long central 

helix.
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A different approach is the transduction of enzymes that produce pro-inflammatory 

substances, e.g. cyclooxygenase catalyzing the first two steps in prostaglandin, 

thromboxane, and prostacycline synthesis from arachnidonic acid. Some of the most 

successful intraocular pressure lowering drugs mimic the effect of prostaglandin p 2a 

(latanoprost).^^^ However, the effect of prostaglandins produced by cyclooxygenase, 

while potent, are not specific. It may be possible to cotransduce the appropriate 

receptor to make the effect specific. In order to create a production site of 

cyclooxygenase for the generation of prostaglandins, the jet during intracameral 

injection can be directed at different targets and repeatedly washed. The receptor 

should be expressed by the outflow structures and intraocular injection techniques 

would not have to be modified.

A more radical idea that 1 would like to pursue and have recently submitted for 

funding is trabeculoablative genejherapy toJmprove outflow.and to-create a model to-

study repopulation dynamics o f the trabecular meshwork. The site of the highest 

resistance to outflow of aqueous humor is the juxtacanalicular trabecular meshwork^^’ 

and the principal site of pathology in primary open angle glaucoma (POAG).*^^’ 

Traditional therapies for advanced glaucoma attempt to lower intraocular pressure 

surgically by circumventing the outflow resistance of the TM by shunting aqueous 

humor to the subtenon space (e.g. trabeculectomy, glaucoma drainage device)?^^ 

These filtering procedures have a high rate of complication and failure^^^ despite the 

introduction of antimetabolites and improvement of drainage device design, 

respectively. The complete disruption of the TM and wall of Schlemm’s canal has 

recently been achieved with the trahectome^^^ but this disruption is irreversible 

creating a permanently open connection to the downstream drainage system. Instead, 

trackable FIV vectors that co-express eGFP and herpes simplex virus thymidine 

kinase for selective ablation of the juxtacanalicular trabecular meshwork by 

ganciclovir^^^ may offer a solution. HSV-tk converts the antiviral prodrug of 

nucleotide analogs such as ganciclovir to the diphosphorylated form, which is then 

converted by endogenous cellular kinases to the toxic triphosphate form that competes 

with normal nucleosides for DNA replication. After incorporation into DNA 

elongation is inhibited leading to apoptosis.

HSV-tk suicide gene therapy^^^’ is a well established method of cytoreduction 

(reviewed in Yang et al. have recently demonstrated that an HFV vector co-
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expressing both HSV-tk and eGFP can be generated and is highly successful in killing 

human lens epithelial cells/^^ Because of selective transduction of the trabecular 

meshwork with FIV vectors and minimal bystander effect of HSV-tk, this approach 

will leave the supporting structures (trabecular beams, comeal endothelium, iris) 

intact and allow regeneration from adjacent tissues. This strategy has the advantage of

(a) being simple as it is using an already established model with proved transgenes,

(b) the chief pathology of POAG of an abnormally high outflow resistance is 

addressed in its core and (c) a new model to study TM regeneration and repopulation 

will be created. Another desirable safety feature for potential therapeutic application 

is that cells that were permanently genetically altered by an integrating vector can be 

visualized and reliably ablated.

Finally, trabecular meshwork transgenesis must be evaluated in eyes that are even

more similar to that of humans, e.g. that of macaques. Cats are different in thatth ey___

have a more wide-spread trabecular meshwork and a plexus of collector channels, 

while primates have a more confined, wedge-shaped TM and one occasionally 

doubled collecting Schlemm's canal. I have participated in studies with Dr. Paul 

Kaufman by setting up the imaging system, producing the vector and teaching vector 

application techniques. These findings have been presented at the 2006 meeting o f the 

Association for Research in Vision and Ophthalmology in Fort Lauderdale.

Preliminary results of trabecular meshwork transduction in macaques have 

demonstrated that the prior results in cultured human and live feline eyes can be 

replicated.
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9.2.Transgenesis of the Retinal Pigment Epithelium with 
FIV Vectors as a Basis for Gene Therapy of Retinal and 
Choroidal Diseases

9.2.1. Comparison of Wild-Type and Class I Integrase Mutant-FIV 
Vectors in the Retina Demonstrates Sustained Expression of 
Integrated Transgenes in Retinal Pigment Epithelium

My studies followed retinal transgene expression for the longest reported time.

Experiments with pseudotyped lentiviral vector systems in retina prior to mine

reported expression in rodents only up to post-injection day 42/^^ 84/^^' 140^^^

and 168.^^  ̂My studies also involved the unbiased reporting of results from all

animals enrolled in a prospective design, and were scored by observers masked to

injection status minimizing observer influence.

Intravitreal injections resulted in relatively poor transduction efficiency compared to 

-subretinal injectionsrusing the same volume for delivery. In contrast, subretinal---------

injections of a similar volume caused extensive transduction of the RPE, indicating 

broad dissemination of the vector within the subretinal space. It is possible that the 

extent of transduction in eyes injected by the intravitreal route would be different at 

later time points, which were not examined in the injection route comparisons. 

However, most published studies agree with mine that the inner retinal layers block 

significant access of lentiviral vectors and other vectors to the RPE firom the 

vitreous."'^'

I found extensive transgene expression in the RPE, at 2, 3, and 7 months, and in only 

occasional cells of other inner and outer retinal layers. It was limited to the RPE at 

early time points (2 and 7 days). Transduction of neonatal rat neurosensory retina, in 

addition to the RPE, has been observed using subretinal injection of HIV vectors by 

other investigators.^^^ An important distinction is that the latter study was limited to 

rats injected earlier in post-partum development (2-5 days) than the rats in our study 

(7 days). The very rapid developmental changes occurring at these early time points 

are likely to influence permissivity. My findings are therefore consistent with the 

results of a number of studies that have found that in rodents older than 5 days post

natal, and in adult rabbits, expression has been largely limited to the RPE, whether 

administered subretinally or intravitreally.^^^’ 3̂6-338 y g y .Q  jg believed to 

mediate entry via ubiquitous plasma lemma lipid molecules, thereby giving the 

vectors broad entry specificity.^^^ Varying distribution of these molecules between
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cell types, and differential vector particle diffusion, might also contribute to 

preferential transduction of RPE. Duisit et al. saw only RPE transduction in a large 

series of rats injected with SIV vectors pseudotyped with 5 different viral envelopes, 

including VSV-G and Mokola-G,^^^ and a study with bovine immunodeficiency virus 

vectors showed targeted, high-level RPE expression in mice.^^^ One group saw 

reporter protein localization in both RPE and photoreceptors in 5-7 week old mice 

after HIV-1 vector injection; pseudotyping with the Mokola-G rather than VSV-G 

restricted transduction to the RPE.^^^ In contrast, in non-human primates injected at 

the macula, FIV vector-mediated expression was reported to be variably detectable in 

Müller cells and photoreceptors in some animals.^^^ Transduction of RPE cells is 

facilitated by vector uptake at their phagocytotically active, apical site.^^^ Other 

factors influencing differential expression between cell types include distance o f and 

barriers to diffusion as well as varying metabolism rates of neurosensory retina and 

RPE.

The class I integrase mutant vector data in my study suggests that integration is 

necessary for long-term transgene expression by this lentiviral vector. This has been 

confirmed in later collaborative studies with Dyana T. Saenz who has explored factors 

involved with integration^^^’ and species-dependent resistance o f transduction in 

more detail.^^^ I observed substantial, sustained transgene expression after subretinal 

injection of wild-type FIV vector (for at least 7 months); this was blocked when the 

D66V vector was used. D66 is the most amino-terminal of the three invariant acidic 

residues in the conserved catalytic core domain of integrases (DXsg.sgDXssE).^^^ The 

residues are highly conserved in eukaryotic retro-element integrases as well as in 

bacterial transposons.^^^"^^^ A D64V substitution in the HfV-1 integrase results in 

dramatically lower to undetectable transduction in rat brains^"^ ’̂ and has been 

shown to be “class I" in that it specifically blocks the integration reaction while 

leaving all of the multiple other functions of Gag/Pol precursor-derived proteins 

undisturbed.^^^’ In contrast, simple deletions, frame shifts, and most other

point mutations in integrase yield "class 11" phenotypes in which particles are 

pleiotropically aberrant in non-integrase f u n c t i o n s . I n  vector experiments, this 

elegant control has the virtue of comparing particles that differ only in a single amino 

acid in a single enzyme that forms a very small molar fraction of the virion.

Class I integrase mutants had not been described for FIV, or tested in the eye for any
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lentiviral vector. My results with FIV vectors demonstrate long-term transgene 

expression in retina from an FIV vector and show that preventing integration prevents 

sustained expression. This single amino acid variant of FIV integrase provides a 

useful control for future studies using FIV vectors; pseudotransduction might in part 

account for some of the previously reported discrepancies in retinal layer targeting.

It is remarkable that Yanez-Munoz et al. found high level transduction with a non

integrating HIV vector in mice."̂ ^  ̂My own studies employed a rat model and FIV 

vectors as did Naldini et al. in brain transduction experiments.^^® However, Park et al. 

transduced mouse liver and were unable to detect transduction with non-integrating 

v e c t o r s . I t  is possible that this is a species barrier or perhaps that the mode of 

application resulted in more cell cycling and attrition of non-integrated vector circles 

as the same author has demonstrated before.^^^

The^higi transgene expression seen at days 2"tô”7~âfterinjëction o f CT25 correlates 

temporally with the peak of neovascularization in HOP m o d e l s . I t  will be of interest 

to use FIV vectors to deliver candidate therapeutic genes to the retina o f neonatal rats 

under conditions of oxygen-induced retinopathy in a model for ROP. This may 

provide a tool to understand the pathogenesis of neovascular diseases and allow 

exploration of novel therapies for clinically approachable diseases such as age-related 

macular degeneration. The ability to obtain preferential gene expression in the RPE is 

desirable. Endogenous angiostatic factors, such as pigment epithelium derived factor 

(PEDF), are produced in these cells, and diffuse from the RPE into the adjacent retinal 

and choroidal layers.A deno-associated  virus vectors have shown promise for 

retinal expression of pigment epithelium derived factor; however, they do not limit 

expression of this protein to its physiological origin, the RPE.^^^ RPE-targeted gene 

therapy using FIV or other lentiviral vectors may be useful in treating diseases 

characterized by abnormal retinal angiogenesis. Other lentiviral vectors have now 

been successfully used to express anti-angiogenic substances: Igarashi et al. used HIV 

vectors expressing angiostatin to reduce neovascularization dramatically by 90%.^^^ 

EIAV vectors also achieved reduction of neovascularization in a laser model by 

expressing endostatin. Approximately 60% of the neovascularization area was 

reduced with endostatin versus 50% with angiostatin.^^®
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9.2.2. Long-Term Retinal Transgene Expression with FIV versus 
Adenoviral Vectors

I found similar location, extent and duration of transgene expression in neonatal rat

eyes subretinally injected with FIV and Ad vectors expressing P-galactosidase under

transcriptional control of the human CMV immediate-early promoter/enhancer.

Expression with each vector was present at 16 months post injection. There was a

higher overall extent of expression with FIV, which peaked later than Ad (3 months

vs. 1 week). Histology revealed greater cellular infiltrate and disruption of normal

retinal architecture with Ad.

Preferential transduction of RPE over other retinal cell types was again seen by VSV- 

G pseudotyped lentiviral vectors as reported.^®’ Ad vectors appear to

have a similar tropism within the r e t i n a . I n  contrast, only occasional 

expression in the post-mitotic, terminally differentiated, neurosensory retina occurred 

at 1 month post-injection and beyond with both FIV and Ad vectors. While this might 

limit applicability to neovascularization of inner retinal layers, choroidal 

neovascularization and degeneration of the RPE, as seen in wet macular degeneration, 

are good targets. Limiting expression to the RPE is desirable in degenerative diseases 

of the retinal pigment epithelium that result also in degeneration of photoreceptors 

from death of RPE cells.^^^ In wet macular degeneration, the combination of 

neuroprotective and anti-angiogenic action of PEDF would be highly desirable to 

prevent photoreceptor death and progressive vessel growth and exudation.

The extent and duration of expression with FIV vectors has implications for future 

therapy: lentiviral vectors are advantageous for long-term expression over other 

vectors because of their ability to integrate into the host cell genome. In my own 

studies, this was supported by the use of a single amino acid mutation in the catalytic 

core domain of the FIV integrase (D66V) blocked efficient transduction, while 

vectors with intact integrase expressed for 7 months.^®

The duration of expression from a first generation Ad vector was unexpected. Marker 

gene expression from subretinally injected Ad vector in an immunocompetent host 

often lasts between 1 to 3 m o n t h s . A d  vectors lack any mechanism for 

integration, leaving them more vulnerable to attrition by intracellular metabolism and 

dilution during cell division. Although adenoviral vectors may integrate in 0.1% to
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1% of infected c e l l s , t h i s  mechanism cannot explain the extent and duration 

observed in the present study. Most likely, the low mitotic rate of RPE cells 

contributes to long-term persistence of Ad vectors in this cell type.

Immunogenicity is a disadvantage of first generation Ad vectors.^^^’ I

confirmed that Ad vectors induce a long-term cellular response, associated with 

disruption of the normal retinal architecture in our model. This retinal disruption 

limits the clinical application of first generation Ad vectors in treating retinal disease. 

In contrast, retinal architecture was preserved in eyes injected with FIV vectors, with 

the exception of small areas of atrophy directly adjacent to the injection site.

Based on light microscopy, my experiments suggest minimal toxicity of FIV vectors 

following subretinal injection. Others have confirmed normal retina function with 

technically highly specialized assessment with electroretinography after lentiviral 

vector gene transfer to the subretinal space.̂ "̂ "̂ ’̂ ^^
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10. Conclusion

The central goal to engineer FIV vectors into a more modular platform for long-term 

ocular gene therapy could be accomplished by separating envelope, packaging and 

transfer function.^^* While this was a collaborative approach between several 

individuals (mostly Todd Whitwam, Iris Kemler, Roman Barraza) in Eric Poeschla’s 

laboratory, I contributed by transfer vector optimization. FIV mediated gene transfer 

to the aqueous humor outflow tract̂ "̂̂ ’ and to the retina^^’ was established 

and long-term vector function and biocompatibility were assessed.^^’

Transduction of the outflow tract was highly efficient and resulted in genetic 

modification o f nearly the entire trabecular meshwork.^^"^’ I developed methods 

for administration and more sensitive monitoring of FIV vectors in the anterior 

chamber^^^ and a novel subretinal injection technique.^^’

Bicistronic FIV vectors generated high levels of two different transgenes eGFP and P- 

galactosidase, which allowed live in vivo tracking^^"^’ and sensitive yet specific 

cell labeling in tissue specimen, respectively.^^’ In eGFP vectors, I disabled the 

LTR promoter function of integrated vectors through a SIN modification in analogy to 

HIV vectors.^^̂ ' "̂̂ ® This vector was used in later studies in which I participated to 

deliver myocilin mutants to the outflow tract in vivo to generate an in vivo glaucoma 

model.^"^  ̂ The above studies and subsequent experiments that I have participated in 

and co-published published recently^"^  ̂ establish that durable transgene expression is 

readily achievable and is well tolerated, exceeding 2 years. This model has been 

recreated by other investigators in other specieŝ "̂ ®’ as well as with a collaborator, 

Paul Kaufman, in macaques. Future directions that I will pursue include development 

of trabeculoablative gene therapy and creation of a model to study trabecular 

meshwork repopulation dynamics and cell based therapy.

I also cloned an integrase mutant control vector that differed in only one amino acid 

while preserving all other biochemical properties.^^’^̂® While I observed no 

transduction in vivo,^^ later studies have shown that there is significant transgene 

expression in non-dividing cells in vitro experiments.^®"  ̂Unfortunately, more recent 

results with HIV integrase mutant vectors where full rescue could be achieved 

question the usefulness of this control unless the observed effect is HIV and rodent 

specific."̂ ^̂
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With the technical assistance of Teo Wu-Lin I developed a novel protocol for scaled- 

up production of these vectors using cell factories and large-volume concentration 

that proved useful in subsequent animal studies/^' Especially the

results achieved in the larger animal model, the domestic cat, validate the protocol for 

large-scale production. Transient transfection of 10 times less DNA in 293T cells 

within high surface area slides and high volume, fixed-angle ultracentrifugation 

resulted in high titer vectors that were effective in the eye. Standard protocols use 5 to 

10 times as much transfection DNA, which is expensive and time consuming to 

produce, and generally concentrate vectors in smaller volumes.^’ Although 

inducible vector production cell lines are very useful,^^ '̂^^"  ̂they do not have the 

versatility of transient transfection that allows readily adjustment and swapping of 

vector components.

Further preclinical studies will have to be conducted to evaluate vector safety and 

immunology. Although FIV is unable to actively infect and replicate in human cells, 

the domestic cat as the natural host will be used as a model to evaluate chances of 

generating replication competent retroviruses that could emerge in theory. For the 

actual clinical application, FIV vector producing cell lines will have to be generated 

and well characterized to fulfill regulations of Good Manufacturing Practices.
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