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Abstract

Markov chain Monte Carlo simulation was used in an analysis of the data acquired in three 

longitudinal biomedical magnetic resonance studies. The first of these investigations uses a 

Bayesian nonlinear hierarchical random coefficients model to examine the longitudinal 

extracellular direct current (DC) potential and apparent diffusion coefficient (ADC) responses to 

focal ischaemia in the rat. The purpose is to perform a formal analysis of the temporal relationship 

between the two responses, and thus to examine the data for compatibility with a common latent 

(driving) process and, alternatively, the existence of an ADC threshold for anoxic depolarisation. 

The DC-potential and ADC transition parameter posterior probability distributions were 

generated, paying particular attention to the within-subject differences between the DC-potential 

and ADC transition characteristics. The results indicate that the DC-potential and ADC changes 

are not driven by a common latent process and, in addition, provide no evidence for a consistent 

ADC threshold associated with anoxic depolarisation.

The second analysis uses data acquired in a nuclear magnetic resonance spectroscopic study into 

the effects of intestinal ischaemia and subsequent reperfusion on liver metabolism in the rat. The 

purpose of the analysis is to examine the temporal relationship between energy status [inorganic 

phosphate to adenosine triphosphate ratio (PAR)] and the pH response, the former of which is an 

indicator of liver energy failure. The posterior distribution obtained for the PAR-pH onset time 

difference indicates that the pH response precedes the change in PAR, suggesting that intracellular 

acidosis cannot be ruled out as a contributing factor to the observed liver failure.

The third dataset was acquired in an electron spin resonance study of the Arrhenius behaviour of 

the rabbit muscle sarcoplasmic reticulum membrane. An MCMC Arrhenius plot changepoint 

analysis is used to estimate the order parameter 'transition' temperature.
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1. INTRODUCTION 

1.1 Motivation

Clinical magnetic resonance imaging (MRI) is an important diagnostic tool, especially in 

neurology. To take an example, MRI is claimed to have revolutionised the understanding of 

disease activity in multiple sclerosis (Arnold et al., 1997; Miller et al., 1998). Similarly MRI plays 

a central role in the assessment of a variety of other conditions including central nervous system 

tissue damage in cerebral ischaemia (stroke). Among the reasons for this prominent role is the 

superiority of MRI as a method for assessing disease progression, as compared with the 

alternatives. The diagnostic information provided by MRI can be supplemented by using magnetic 

resonance spectroscopy (MRS), which is a non-invasive method for performing quantitative 

biochemical analysis. Among the clinical applications for MRS are the assessment of traumatic 

brain injury (Vink and McIntosh, 1997), including damage due to birth asphyxia (Cady, 1997; 

Hope et al., 1984; Hope and Reynolds, 1985) and the diagnosis and management o f brain tumours 

(Ross et al., 1997). In addition to their clinical role, MRI and MRS are widely used in biomedical 

research. A common feature of many biomedical magnetic resonance-based investigations is the 

multivariate and longitudinal nature of the acquired data. This applies to both clinical and 

laboratory studies. Numerous longitudinal magnetic resonance (MR) studies have been published 

but, in most instances sub-optimum or invalid statistical methods have been adopted. This 

observation provides the motivation for this thesis.

1.2 Background to the role of MRI and MRS in clinical diagnosis and 

biomedical research

Magnetic resonance is a non-invasive and non-destructive method for performing diagnostic 

imaging and biochemical analysis and, as such, is ideally suited to longitudinal studies. Soon after 

the discovery of the nuclear magnetic resonance (NMR) phenomenon (Bloch et al., 1946; Purcell 

et al., 1946), NMR spectroscopy became established as an important tool in analytical chemistry, 

mainly for chemical structure determination, although it is also used for quantitative analysis.
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Over the last two decades it has developed into a biomedical research tool of major importance, 

mainly due to the versatility of the technique. In fact it fulfils two distinct roles. The first of these 

is an extension of its use in analytical chemistry, and it is now used for performing biochemical 

analyses within intact and living systems in the form of in vivo MR spectroscopy. Its major role is, 

however, as a clinical imaging technique. The development of MRI started in the 1970s when it 

was recognised that proton spin density (water) maps can be generated using the NMR method 

(Lauterbur, 1973). The basis of the method is the Fourier relationship between spin density and 

the NMR signal acquired in the presence of a magnetic field gradient (Callaghan, 1991, Chapters 

1 and 3; see footnote in Section 1.3). This is, in effect, an NMR diffraction phenomenon 

(Mansfield and Graunell, 1975). MRI emerged as an important diagnostic imaging tool during the 

late 1980s. In addition to its role in clinical diagnosis it is widely used in biomedical research. 

Among the reasons for its present-day predominance in medical imaging are: it is a 

radiofrequency technique and, as such, is not associated with the risks involved with x-ray and 

other methods that employ ionising radiation; the superior quality of the resulting images when 

compared with alternative methods, especially in brain imaging; and the fact that MR images can 

be sensitised to a variety of biophysical processes. As a consequence of the last o f these 

properties, MRI can be used in an immense variety of differing modalities, including conventional 

imaging modes, angiography (MRA), perfusion imaging and diffusion imaging (Gadian, 1995; 

King et al., 1997b; Thomas et al., 2000). Although the majority of these imaging methods are 

based on various types of water (proton) imaging, MR can be used to generate images of 

important tissue metabolites, thus combining the imaging and spectroscopic modalities 

(spectroscopic imaging; Gadian, 1995). As mentioned previously, one of the major advantages of 

MR as a laboratory biomedical research technique is the non-invasive, non-destructive nature of 

the method. This yields a huge advantage over conventional histology, for example, when a 

characterisation of progression in pathophysiology is a major objective.

The advantage of the MR method, as applied to biomedical laboratory studies, over the traditional 

techniques, is made clear by taking, as an example, animal studies designed to establish the
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relationship between evolving pathology and the underlying biochemistry and physiology. The 

data used in Chapters 3 and 4 are typical of the results acquired in this kind of study, although the 

observation period might be extended to several hours, days, weeks or months, depending on the 

research question. The traditional approach in which separate histological and biochemical data 

are acquired requires large numbers of animals due to the necessarily destructive nature of the 

method. Thus it is not possible to follow individuals over time, and separate groups of animals are 

required for each observation occasion. Furthermore, separate animals might be required for the 

histological and biochemical components of the study, making within-subject comparisons 

impossible, even at a single time point. Among the considerable advantages associated with 

MRI/MRS is the non-invasive and harmless nature of the method, this facilitating a longitudinal 

investigative approach. This feature, together with the manner in which MRI can be used in a 

variety of modes to provide surrogate markers of pathology, in vivo (see, for example. King et al., 

1997b, p i95), effectively allows the acquisition of simultaneous biochemical, pathological and 

anatomical data. For this reason multivariate longitudinal studies are extremely common in 

biomedical MR research. Invariably, huge amounts of data are generated within a single study, 

and frequently the typical MR researcher is required to undertake analytical problems of 

considerable complexity. It is unfortunate that inferior statistical methods continue to be used by 

many MR researchers, with the result that many studies are severely compromised. Accordingly, 

the main emphasis in the statistical sections of this introduction is on methods for dealing with 

longitudinal data where the traditional approaches either fail, are not robust or might be dismissed 

as inappropriate, paying particular attention to the kind of statistical problems that arise in 

biomedical MR research.

The main part of this thesis describes the reanalysis of data obtained from two published 

multivariate longitudinal MR studies with the aim of addressing some important biomedical 

questions. In common with many longitudinal MR studies, one of these takes the form of a 

nonlinear random coefficients modelling problem, while the other requires some form of
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multivariate changepoint analysis. Markov chain Monte Carlo (MCMC) simulation is the method 

of choice in both cases, and this provided the motivation for this work.

Recent developments in MCMC simulation-based statistical analysis has been accompanied by a 

resurgence in the Bayesian inferential method with which MCMC is associated. A huge amount 

has been written on the contentious debate regarding the relative merits of the ffequentist and 

Bayesian approaches. None of this is reproduced in this thesis, for the following two reasons. 

Firstly, the debate has become an irrelevance because the availability of both software and 

computing power now enables the analyst to turn to the most appropriate method for any given 

problem. For example, random coefficients modelling is associated with a variety of well-known 

difficulties, the traditional reliance on asymptotic approximation being a major concern. Nonlinear 

random coefficient models are especially problematic. The possibility of avoiding the need for 

approximation by resorting to MCMC simulation has an obvious appeal. Secondly, clinical 

researchers in general, and biomedical MR researchers in particular, are faced with a huge range 

of rather challenging statistical problems. Accordingly, the focus of the introduction to this thesis 

is restricted to those topics that are of direct relevance to the types of problem and issues that have 

arisen in the clinical environment in which the candidate works. The majority are practical 

problems, but there are a few instances in which some apparently theoretical issue has huge 

clinical implications. The manner in which p-values are used by clinicians is an important 

example, and Appendix D is devoted to an appraisal of the use of p-values as evidence. The 

diverse nature of current MR imaging modes has been emphasised in this section because it 

underlies the multivariate nature of the data acquired in a typical MR study. The following section 

includes a very brief introduction to the magnetic resonance phenomenon, sufficient to provide 

some insight into the mechanism by which so much information can be acquired using a single 

technique.
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1.3 The nuclear magnetic resonance phenomenon and MR imaging.

A brief summary

Many nuclei, including the (proton) and nucleus, possess spin angular momentum and an

associated nuclear magnetic moment. The application of an external magnetic field causes a 

quantisation of the energy states associated with these magnetic moments (Carrington and 

McLachlan, 1967). Both the proton and the nucleus have spin quantum number 1/2, giving rise 

to two quantised energy levels. Essentially, the nuclear moments can adopt only one of two 

allowed spatial orientations, i.e., either parallel or anti-parallel to the direction of the applied field. 

The application of a second, perpendicular radiofi-equency magnetic field stimulates transitions 

between these energy states and this is the origin of the magnetic resonance phenomenon. In MR 

imaging this radiofi-equency excitation is applied as short pulses. These induce a degree of 

coherence within the nuclear spin system giving rise to a bulk magnetisation that processes about 

the static magnetic field. Inductive coupling to a receiver coil generates an electric current and 

subsequent signal within the receiver system. This signal is acquired in the presence of various 

time-varying magnetic field gradients, thus generating a magnetic field having a strength that is 

spatially dependent. These gradients cause a spatial dependence in the resonance condition and 

give rise to a Fourier relationships between proton density (usually tissue water density) and the 

NMR signal, thus generating the required spatial dependence in the MR data (Callaghan, 1991).

s p(r) = JJJ5'(k)exp[-z2;rk.r£/k], where 5'(k) is the signal amplitude in k-space, and

k = { In Y ^y G t. p{r) is the spin density (water density), expressed as a fimction of r, the nuclear 

spin co-ordinates, y is the gyromagnetic ratio of the proton, G is the (pulsed) magnetic field 

gradient, and t is time.
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As stated previously MR imaging is extremely versatile and is used in a variety of modes. This 

includes a mode of imaging designed to be sensitive to spin relaxation processes. The spin 

relaxation rate determines the rapidity with which the spin system returns to equilibrium after 

radiofrequency excitation. Tissue differences in relaxation rates [the so-called Ti (longitudinal) 

and Tz (transverse) relaxation rates] are used to generate MR contrast and it is this contrast that 

gives rise to anatomical structure within a conventional MR image (Gadian, 1995). MR images 

can also be sensitised to a variety of other physical processes, including flow, which is used in MR 

angiography, and diffusion, as implemented in various forms of diffusion-weighted imaging (King 

et ah, 1997b). An analysis of the data obtained from an MR diffusion study of the response to 

transient cerebral ischaemia forms a major part of this thesis. To put this in context. Fig. 1.1 shows 

two sets of images, one acquired in a laboratory diffusion-imaging study o f the effects of middle 

cerebral artery occlusion in the rat, the other acquired in a clinical examination of a 1 2 -year-old 

child, 2 days after an ischaemic event. The two images shown on the right are diffusion-weighted, 

while the lower left image is Tz-weighted. Diffusion-weighting causes a reduction in signal-to- 

noise ratio and a consequent loss of grey-matter to white-matter contrast, with the result that the 

two diffusion-weighted images lack the structural/anatomical detail of a conventional Tz-weighted 

image. Nevertheless the diffusion-weighted images provide useful information on the extent of the 

damage caused by the ischaemic insult. It might be noted in passing that Tz- and diffusion- 

weighted images contain little direct information on the pathophysiology of the tissue response to 

ischaemia. q-Space imaging is a diffusion-imaging variant that uses magnetic field gradients in a 

manner designed to provide structural information at the microscopic (cellular) level (Cory and 

Garroway, 1990; King et al., 1994). Localised q-space imaging was developed as an experimental 

technique for probing the microstructural changes that occur during cerebral ischaemia (King et 

al., 1997a). This technique requires extremely large magnetic field gradients, however, and cannot 

be implemented on a clinical scanner. Thus, standard diffusion-weighted imaging remains an 

important diagnostic tool in the management of stroke patients, although it cannot provide direct 

information on the microstructural changes that occur in pathology, and the mechanistic basis of 

the image intensity changes that occur in cerebral ischaemia remain to be established.
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Fig. 1.1. MR central nervous system imaging and cerebral ischaemia

The upper two images were acquired from a rat 4 hours after the onset of an 

ischaemic insult produced by surgical occlusion of the left middle cerebral 

artery. A perfusion image (also referred to as a cerebral bloodflow map) is 

shown on the left, and a diffusion [trace(D)] image on the right. The perfusion 

image was obtained using an arterial spin tagging technique (Calamante et al., 

1999). The trace(D) image was generated by equating the intensity of each 

pixel to the trace of the diffusion tensor (see King et al., 1997, for details). The 

main feature of the perfusion image is the reduction in blood flow in the left 

hemisphere relative to that in the normal contralateral right hemisphere. The 

region of reduced intensity in the left hemisphere of the trace(D) image 

indicates an area of cytotoxic oedema caused by the ischaemic insult. In a 

clinical setting this tissue would become infarcted. (Images provided by Dr. M. 

Lythgoe, Institute of Child Health, UCL, London.)
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Fig.1.1. continued

The two images in the lower row were acquired from a 12-year-old child 2 days after an ischaemic 

event. An axial Tz-weighted echo planar image is shown on the left and a diffusion-weighted 

image on the right. There is a clear distinction between an acute lesion and pre-existing infarcted 

tissue (chronic lesion). The chronic lesion appears as an area of high intensity in the Tz-weighted 

image and low intensity in the diffusion-weighted image, while the acute lesion appears as an area 

of high intensity in the diffusion-weighted image (indicated by the arrow). (Images from the Great 

Ormond Street Hospital for Children, provided by Dr. F. Calamante, Institute of Child Health, 

UCL, London.)
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1.4 Longitudinal data analysis and related topics. An overview.

A common problem with the classical approach to longitudinal data analysis is the frequent need 

to force the problem into a format that is not ideal. This might occur at either the design stage or 

analytical stage in order to conform to some statistical model for which an analysis has been 

developed. The sums of squares based ANOVA approach to experimental data analysis provides 

an example. The important principles of experimental design were established in the 1920s and 

1930s. The ANOVA calculation was central to the approach and, at that time, computational 

feasibility was a major consideration. The recommended procedure was to adopt some standard 

experimental or study design, one for which an analysis had been laid out. A number of texts were 

exclusively concerned with these designs, the monograph Experimental Designs by Cochran and 

Cox (1957) being particularly well-known. An analysis of variance is reasonably straightforward 

provided the study or experiment conforms to one or other of the standard plans (details are given 

in Cochran and Cox, 1957, and Cox, 1992). In contrast, a departure from these standard designs 

often caused major problems for the analyst. In many cases the failure to conform was 

unintentional. Unintended incomplete data was, for example, a major problem. Data imbalance 

due to missing observations is associated with a number of difficulties. Non-uniqueness in the 

sums of squares introduces a major complication, and the sums of squares may not be related in 

any simple way to the hypotheses of interest (Rawlings, 1988, Chapter 16; Littell et al., 1991, 

Section 4.3). Furthermore, some key effects may not be estimable. The latter problem is not, of 

course, restricted to the ANOVA calculation. An insufficiency of data may result in a condition in 

which various effects cannot be separated, regardless of the analysis that is adopted. In this case 

the model in question is intrinsically under-identified. Nevertheless, some of the computational 

problems associated with missing data disappear when the sums of squares analysis is abandoned. 

Of course, the problem of possible bias remains if data are missing due to some non-random 

process.
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Improvements in computing power were accompanied by a movement away from the sums of 

squares ANOVA calculation. The resulting methods are rather less restrictive and the emphasis on 

adopting a standard design has receded. Thus the prominent role of published treatment plans, as 

detailed by Cohran and Cox (1957) and Jones and Kenward (1989), for example, has given way to 

a more flexible approach. Mead (1988, p 8 ), for example, suggested that ‘if  the set of treatments 

fits simply with the structure of units using a standard design, then the experiment is already 

designed.’ He recommends, however, that ‘the natural pattern of units and treatments should not 

be deformed in a Procrustean fashion to fit a standard design', and that the available resources 

(units) should be used in an optimal way, not constrained to achieve computational simplicity 

(Mead, 1988, pages 8  and 154 et seq.). A major advantage associated with the more modem, 

likelihood-based modelling approach to statistical inference is the elimination of the need to 

coerce the problem into a sums of squares/ANOVA format. Consequently, hypotheses of interest 

can be specified in a more natural and direct manner.

1.4.1 A summary of common non-Bayesian approaches to multilevel and 

longitudinal data analysis

It is not uncommon to find biomedical research papers in which ordinary least squares (OLS) is 

used in the analysis of longitudinal and multilevel data. The BLUE property of least-squares 

estimation depends, however, on the validity of the assumption that the errors are identically and 

independently distributed (abbreviated iid', Rawlings, 1988, p237), and this assumption is not 

realistic in many longitudinal/multilevel contexts. Correlated errors result in a loss of efficiency in 

the OLS parameter estimates, i.e., the OLS estimates are no longer minimum variance, although 

the properties of unbiasedness and consistency are retained (Goldstein, 1987, p i 8  et seq. and p28 

et seq.; Diggle, 2002, Section 4.3). hi addition the OLS estimate of the covariance matrix is 

incorrect, in general, and all measures of precision biased, yielding invalid tests of significance 

(Goldstein, 1987, p l 8  et seq. and p28 et seq.; Diggle, 2002, Section 4.3). The direction of the bias 

in the variance estimates depends on the sign of the autocorrelation fimction (Theil, 1971, p254 et
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seq.; Zeger and Liang, 1992, p i 826). A variety of alternative ffequentist approaches to 

longitudinal data analysis have been outlined with differing objectives in mind. These range from 

simple methods aimed at researchers wanting quick but acceptable methods and, at the other 

extreme, rigorous methods requiring a considerable degree of statistical sophistication. A number 

of repeated measures review papers have been published including Everitt (1995), Cnaan et al. 

(1997), Omar et al. (1999) and Sullivan et al. (1999). The texts by Crowder and Hand (1990), 

Hand and Crowder (1996) and Jones (1993) are among those that provide a comprehensive 

coverage. A brief summary of the important methods is given in the following pages.

1.4.1.1 Summary measures

The summary measures approach has been recommended as a procedure for those researchers 

requiring an easily applied method of analysis (Matthews et al., 1990; Everitt, 1995; Omar et al., 

1999; Crowder and Hand, 1990, p i 1 et seq.). Essentially, a summary parameter is chosen, one that 

captures the principal characteristics of the response or a particular feature of interest. The 

summary parameter is then treated as a raw observation in a subsequent univariate analysis using 

some simple textbook method, ANOVA for example. Refinements to the approach have been 

suggested including a weighted analysis (Matthews, 1993; Omar et al., 1999). The latter procedure 

is, however, far from straightforward. This is, perhaps, inevitable when a simple method is refined 

to deal with inadequacies in the original approach. The loss of simplicity defeats the original 

objective and a more rigorous approach might be adopted at the outset.

1.4.1.2 Repeated measures ANOVA

An alternative approach to longitudinal data analysis is based on a modified ANOVA calculation 

(referred to as mixed-model ANOVA). It is widely used in biomedical research. While readily 

applied to studies involving a small number of observation occasions, with no missing data, the 

method has a number of disadvantages. These include the well-known non-uniqueness in the sums 

of squares associated with unbalanced data and the problem that arises if  subjects differ in their 

observation times, either due to missing data or because the design does not stipulate well-defined
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observation occasions. Various types o f sums o f squares have been defined for the unbalanced 

case (Rawlings, 1988, Chapter 16; Littell et al., 1991). Non-uniqueness in the sums of squares 

causes a considerable degree of complication for the analyst, however. Although imputation 

provides an alternative approach to dealing with missing observations (Schafer, 1999; Barnard and 

Meng, 1999), the problem can be avoided by adopting a mixed-model regression approach. This is 

among the strong arguments in favour of the latter.

In any discussion on the relative merits of the ANOVA approach to repeated measures (RM) data 

analysis, it is useful to distinguish two types of RM study. The first type might be described as 

“intrinsically longitudinal” because the time dependent behaviour is the primary focus of the 

study. Growth curve studies fall into this category. This is in contrast to the second type in which 

information on the effect of one or more treatments or factors is sought and an RM design is 

chosen, although it is not obligatory. In the latter case, time is of no interest in its own right; 

instead it is a nuisance factor, but one which must be dealt with properly. Many cross-over 

experiments fall into this latter category. This distinction between types o f RM study is important 

in the context of the ANOVA-based methods of analyses because, although the factorial nature of 

the cross-over type of design fits naturally into the ANOVA format (despite a potential violation 

of the fundamental ANOVA assumptions), this is not true of growth curve data. Forcing growth 

curve data into an ANOVA structure can be extremely detrimental to the analysis and the mixed- 

model regression approach is preferred.

1.4.1.3 Mixed-model regression

The theory that underlies the likelihood based approach to mixed-model regression has been 

outlined in numerous texts including Crowder and Hand (1990), Jones (1993), Hand and Crowder 

(1996), and Littell et al. (1996). Laird and Ware (1982) is regarded as the seminal publication, 

while Jennrich and Schluchter (1986) have provided a useful tutorial paper on the Laird-Ware 

model.
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Following Laird and Ware (1982) and Littell et al. (1996) the mixed model is written as

y = Xp + Zy + 8  [1.1]

Var
G O'

E 0 R
[1.2]

where X and Z are the fixed- and random-effect design matrices, p is a vector of fixed-effect 

coefficients, y a vector of random-effect coefficients and s the vector of within-subject random 

errors. G is the random-coefficients covariance matrix (between-subject variation) and R  the 

within-subjects covariance matrix.

The variance of y  is given by 

V = Z G Z ^+ R  

and the parameter covariance matrix is

[1.3]

C =
X ^R ^X  X^R Z 
Z ^ R - 'X  Z ? R  iZ  + G 1

[1.4]

where the final superscript indicates the generalised inverse. It has been shown (McLean and 

Sanders, 1988; see Littell et al., 1996, p500-l for additional information) that the fixed-effect

covariance matrix is given by = (X^V'^X)". In practice, R  and G are unknown, and must be

estimated using, for example, maximum likelihood (ML) or restricted maximum likelihood 

(REML) methods. The relevant log likelihood functions are (Littell et al., 1996, p498)

ML: /(G ,R) = --Iog |V | -  - l o g r ^ V ’r - - [ I  + Iog(2s- / «)]

REML: /(G ,R) = - | l o g |v |  - t i o g |x ^ V ‘x | -  • ^ ^ lo g r ^ ’v V  -

{l + log[2 ;r /(«-/>)]}.n - p

[1.5]

[1.6]

These are used as the objective function in some standard minimisation routine (Fletcher, 1980) to 

obtain the required maximum. Estimates of P and y are obtained by solving the mixed model 

equations, giving
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P = ( X W X )" X ’'V -‘y [1.7]

y=GzW -'(y-XP). [1.8]

Inspection of the second of these equations reveals the interesting property whereby the random 

coefficient estimates display shrinkage towards the origin, the degree of shrinkage depending on 

the relative magnitude of the between-subject and within-subject variation. The resulting estimates 

are a weighted combination of the individual least-squares estimate and zero. Laird and Ware 

(1982, p 966-7) describe these random coefficient estimates as Empirical Bayes.

Given the linear hypothesis Lb = h , a traditional test is based on the Wald statistic

lL = (L p -h )^ (L V ^ L ’') - '(L p -h )  [1.9]

where Vasy is the asymptotic covariance matrix given by the inverse of the second derivative of the 

likelihood with respect to the model parameters. W is distributed as Clearly, the application of 

the Wald statistic to small sample problems is dubious, and a number of alternative tests have 

been suggested. The Wald statistic divided by the rank of the design matrix (i.e., the numerator 

degrees of freedom), for example, has an F-distribution (Berk, 1987). A variety o f other 

conversion schemes have been suggested, the details of which depend on the design structure 

(Schluchter and Elashoff, 1990; Dixon and Merdian, 1992).

A related procedure is to form an F-ratio using (Littell et al., 1996, p502)

F  =
(L P‘ -h)'^(L^CL)-'(L P - h )

[y\ [y\
rank(L)

But the question regarding the denominator degrees of freedom remains. One approach is to use a 

value given by the number of observations minus the rank of the design matrix, which is the 

standard ANOVA definition. Other alternatives have been suggested, however (see, for example, 

Littell et al., 1996).
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An interesting feature of the Laird-Ware mixed-model regression method is the manner in which it 

embraces both Bayesian and frequentist concepts. On the one hand p-value calculation and 

comparison against a critical value is a fundamentally ffequentist approach while shrinkage 

towards the mean is an essentially Bayesian property. Laird and Ware (1982) describe the latter 

behaviour as Empirical Bayes.

1.4.1.4 Multilevel models

A category of mixed-effect regression models consisting of a nested or hierarchical structure of 

random effects is referred to as the multilevel model. Multilevel modelling is well-known to 

educational research statisticians, mainly due to the work of Goldstein and co-workers and the 

resulting computer program, MLn, which is designed specifically for performing hierarchical 

random-effects modelling calculations (see, for example, Goldstein et al., 1994; Goldstein, 1995). 

The focus of the program is maximum likelihood estimation based on iterative generalised least- 

squares (IGLS) (Goldstein et al., 1994, pages 1645 and 1654), although recent releases o f MLn 

have been expanded to include a variety of developments, including Gibbs sampling.

1.4.1.5 Generalised estimating equations

Two distinct likelihood-based approaches to longitudinal data analysis have been developed. The 

preceding sections have focused on methods that involve an explicit modelling of between-subject 

heterogeneity in the regression parameters. This includes the Laird-Ware mixed-model in which 

subject-specific effects are assumed to conform to some parametric distribution. Zeger et al.

(1988) refer to this approach as a subject-specific (SS) analysis. The alternative method involves a 

modelling of the population-average response as a function of covariates, without explicitly 

accounting for between-subject heterogeneity. The resulting regression coefficients apply to the 

population only, and provide no information about individuals. These models are referred to as 

population averaged (PA) models or, alternatively, marginal models. The focus is fixed-effect 

parameter estimation. Additional parameters are required to define the variance structure, but 

these are regarded as nuisance variables of no interest in their own right. An attractive feature of



- 16 -

PA modelling is that the only requirement for consistent inference is the validity of the link 

function (Zeger et al., 1988, pl059). Zeger et al. (1988) outline a generalised estimating equations 

(GEE) approach to both SS and PA modelling. The main objective is to extend the quasi

likelihood generalised linear modelling technique to applications involving correlated data. 

[Quasi-likelihood methods apply when the likelihood cannot be specified fully. Furthermore, the 

assumption that the model belongs to the exponential family of generalised linear models can be 

relaxed (Garthwaite et al., 1995, p266 et seq.; Armitage and Colton, 1998, p i626 et seq.).] An 

important characteristic of the GEE approach is the need to specify a structure for the so-called 

working correlation matrix, although validity of the standard error estimates does not depend on 

the selected structure matching the true correlation structure (Burton et al., 1998, and references 

therein). Robustness in the standard errors is among the attractive features of the method^ The 

question arises regarding the applicability of PA models. Clearly, subject-specific modelling is 

required when individuals are the focus of the study. In some instances, however, the objective is 

to acquire data on average treatment effects or average covariate effects (Omar et al., 1999), in 

which case PA methods can be adopted.

1.4.2 Bayesian inference

1.4.2.1 Bayes’ theorem and inverse probability. Introduction

Bayes' theorem enables an analyst to make probabilistic statements about model parameters, 0, 

conditional on the acquired data, y, as follows. The joint probability p(Q,y) is written as a product 

of the prior probability,/?(0 ), and the sampling distribution,/?(y|0 ), i.e.,

p(8,y) = X 8M y|8 ), [1.11]

 ̂Appendix A provides a table of GEE parameter estimates and standard errors obtained in an 

analysis of the RATS growth curve data of Gelfand et al. (1990) using SAS PROC GENMOD 

with several alternative working correlation matrix structures. Mixed model regression and 

MCMC results are included for comparison.
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from which it follows that

= [ 1 .1 2 ]
p(y)  p(y)

Box and Tiao (1973, p5) state that j9 (y|8 ) is a probability density of any hypothetical data, y, 

before data acquisition. Written in this form the sampling distribution /?(y|6 ) is a density function 

of y for fixed 0. But following data collection y is fixed and known. Then, assuming the purpose 

of the investigation is to estimate 0 , it is usual to regard /?(y|0 ) as a function of 0  for fixed y. j9 (y|0 ) 

is then referred to as the likelihood, a conceptual change that is often emphasised by using the 

notation /(0]y). Thus we arrive at Bayes' theorem, which states that posterior probability is 

proportional to the product of prior probability and likelihood, i.e.,

X 8 |y )« :/( 8 |y )X 8 ). [1.13]

Bayes and Laplace are credited as having worked independently to arrived at this relationship for 

calculating inverse probability. The important point is that a reversal of conditioning is achieved, 

thus providing the information that is sought by the researcher in most applications, i.e., the 

probability distribution of some parameter, for example, given the information provided by an 

experiment. The latter takes the form of the likelihood of the observed data, conditional on some 

model or hypothesis. Bayes’ theorem encapsulates the process of learning. In this context it is 

important to distinguish subjective and mathematical probability (see, for example. Box and Tiao, 

1973, pl4). This issue is discussed at some length in Appendix D, but the main point is that 

subjective probability relates to degrees of belief, and the Bayesian approach provides a 

mathematical expression of the researcher's degree of belief with respect to some proposition. Box 

and Tiao (1973, p20) state that Bayesian statistical inference is concerned with the state of nature 

in probability terms. This information is provided by the posterior distribution. To summarise, 

p( 0 |y) tells the researcher what can be inferred about the parameter, 0 , given the data, y, and 

relevant prior knowledge, as represented by the distribution p(Q). Newly acquired data, y, modifies 

prior belief through the likelihood function, /(0 |y), the latter of which expresses the information 

content of the data relating to 0 .
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1.4.2.2 Comments on the Bayesian method and some properties of Bayesian 

models

A number of general points are worth noting regarding Bayesian inference. Firstly, the well- 

known criticism directed at the Bayesian method is the need to specify a prior distribution, which 

is mandatory. This appears contradictory to the premise that all scientific investigation should be 

objective, with no place for subjectivity. Critics suggest that, in some cases, the problem 

surrounding the arbitrary nature of the adopted prior is overwhelming. A host of important 

questions arise. Box and Tiao (1973, p9) address the issue, noting that some prior knowledge 

enters into all inferential systems. They suggest that this is overlooked on many occasions, and 

give the application of sampling theory as an example in which prior belief that a given 

distribution is exactly normal might be invoked, together with the belief that each observation is 

independent and has the same variance. Subsequent residuals analysis may show one or other of 

these assumptions to be invalid. They point out that among the attractive features of the Bayesian 

method, compared with the sampling approach, is the relative ease with which the prior 

assumptions, for example, the normality assumption, can be relaxed. Nevertheless, in many 

studies an overriding requirement for objectivity calls for the use of so-called noninformative 

priors, many statisticians making the point that in any scientific investigation 'the data must speak 

for themselves'. Clinical trials are an interesting exception, and the recommendation is to 

formulate several prior distributions representing differing clinical opinion, including extreme 

forms of prior belief (Spiegelhalter et al., 1994). This permits an assessment of the degree to 

which a given trial result is robust to differences in prior belief, information that carries 

considerable clinical importance.

Parameter shrinkage

Parameter shrinkage is a well-known Bayesian property. For example, in the simple case in which 

both the prior and likelihood have Gaussian distributions
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y \0 ~ N (e ,(j^ )  

the marginal distribution of y

m{,y) = \K 0\y)p{0)de  [ i.is ]

is N (p ,(7^ + T^) and the posterior distribution,/7(^[p), is Gaussian with mean and variance given 

by

E(0\y) = Bp + ( \ - B ) y  ri 161
var(^ly) = (1 -  B)a^

respectively (Carlin and Louis, 2000, pi 1; Lee, 1989, p38-39; Gelman et al., 1995, p43), where 

B = a^ I (cr  ̂ + t^),0< B < 1. The posterior mean is a weighted average of the prior mean and the 

estimate provided by the data. Accordingly, the observed estimate shrinks towards the prior mean, 

the amount of shrinkage depending on the relative precision of the prior and observed data. 

Bayesian shrinkage provides a compromise between bias and variance (Carlin and Louis, 2000,

pH).

Marginal distributions

In many applications interest centres on a subset of model parameters, while the remaining 

elements are regarded as nuisance variables. Formally, given 0 = ((j),(p), with interest restricted to 

(j), the posterior distribution for ^ is obtained from the joint posterior distribution by 

marginalization using

p(My) = \p i^ M y ) d ^  [ i.H ]

Prediction

Inference concerning unknown observables is especially relevant to clinical decision making and 

diagnosis. Gelman et al. (1995, p8 et seq.) provide the following details. In the absence of any data 

the distribution of the unknown observable, y, is
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p(y)=  fX y , 8 X 8

;  [1.18]
= ]  p(yl8 )p(8 )̂=̂8 .

After data acquisition the prediction for an unknown observable, ÿ , is given by the posterior 

predictive distribution, which takes the form

p(y|y) = jXy,8|yX8

= J X y | 8 ,y )X 8 |yX 8  [i.i9]

= j"X y|8 )X 8 |yX 8 ,

where, as explained by Gelman et al. (1995, p9), the last equation follows from the conditional 

independence of ÿ and y, given 0.

1.4.2.3 Posterior distribution summary methods

The variance of the population posterior distribution of a given parameter vector combines the 

uncertainty in the parameter estimates with the true underlying natural variability in the 

parameters. An important issue that arises in any Bayesian analyses, but especially when 

implemented using MCMC, is the manner in which this distribution might be characterised. One 

approach is to use a Bayesian analogue of the ffequentist point and interval estimates. In large 

sample applications the normal approximation applies, and the mode plus or minus two standard 

errors can be used to characterise the posterior distribution. In small sample analyses, the normal 

approximation does not necessarily hold and the choice of point estimate remains an issue for the 

analyst. Carlin and Louis (1996, p42 et seq.) provide some useful recommendations and suggest 

that for asymmetric posteriors the median might be used, since it lies between the mode and mean. 

The posterior mode is equal to the maximum likelihood estimate when the prior distribution is flat 

and is referred to as the generalised maximum likelihood (Carlin and Louis, 1996, p39). A variety 

of approaches to specifying posterior uncertainty have been suggested including the central 

posterior interval, which is the range of values lying within the 100(a/2)% posterior probability 

limits. An alternative summary is provided by the highest posterior density (HPD), which is the 

region containing 100(l-a)% of the posterior probability, subject to the condition that the density
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within the interval is everywhere higher than outside. The HPD is identical to the central posterior 

interval if  the former is symmetric and unimodal, but is narrower otherwise (Carlin and Louis, 

1996, p44). Finally, a comment on terminology is required, namely that Lindley (1965, pl5) uses 

the expression Bayesian confidence interval for posterior intervals with some specified coverage, 

while Edwards et al. (1963, p213) use the term credible interval for any interval containing 95% 

of the posterior density, noting the existence of an unlimited number of credible intervals for any 

specified probability.

1.4.3 Hierarchical and random effect models. Empirical Bayes

Useful introductions to hierarchical models and empirical Bayes are given in Gelman et al. (1995, 

Chapter 5) and Carlin and Louis (1996, Chapter 3). The terms hierarchical and random- 

coefficients are used synonymously on occasions although, in the modelling context, the term 

hierarchical refers to the nested structure that arises naturally in many random coefficient 

applications. These models apply to problems in which information is available at several levels 

within a nested structure of observational units and arise automatically, therefore, in the 

longitudinal data modelling context. An alternative use of the term hierarchical is made in 

connection with the Bayesian treatment of random coefficient models. Excepting those 

applications requiring informative priors in order to represent existing opinion, the usual demand 

for scientific objectivity necessitates the use of uninformative priors. A common approach to the 

specification of uninformative priors is to defer the point at which values are assigned to the 

distribution parameters. This is achieved through the introduction o f a hierarchy of priors (Gelman 

et al., 1995, Chapter 5; Carlin and Louis, 1996, Chapters 2 and 3). Thus the prior distribution 

parameters at one stage are specified in terms of a higher level of prior distributions. Several 

levels can be introduced giving rise to an hierarchical model (Lindley and Smith, 1972; Carlin and 

Louis, 1996, Section 2.1). The terms hyperprior and hyperparameter are used in this context. A 

simple example is considered in Section 1.6.4.3 which deals with various computational issues 

surrounding hierarchical models.
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An extensive literature exists on random-coefficient and hierarchical models, and this subsection 

focuses on a few topics of particular relevance to nonlinear random-effect models since this is 

especially relevant to the V dc-A D C  study that forms the major component of this thesis. In 

addition, a few topics of particular relevance to the clinical environment in which the candidate 

works have been included.

Nonlinear random effect models

A brief outline of the Laird-Ware two stage model is given in Section 1.4.1.3, the main feature of 

which is the separation of the fixed- and random-effects and their associated design matrices. In 

general, this separation is not possible when the response function is nonlinear. Nonlinear random- 

effect models play a major role in pharmacokinetic research and a huge effort has been made over 

a period of many decades in the search for useful analytical methods. The text by Davidian and 

Giltinan (1995) provides detailed coverage of the earlier methods, but most of this work has been 

superseded by MCMC. Hand and Crowder, (1996, Chapter 8) outline an alternative approach 

based on Gaussian estimation. Roe (1997) provides an assessment of the better-known algorithms 

through a comparative study of seven nonlinear random-effects modelling programs.

Mager and Goller (1997) give a useful introduction to the problems that typically arise in 

modelling toxicokinetic (pharamokinetic) data. The nonlinear problem can be expressed as

Y/“  >P/) [1.20]

where t is time, X; is a matrix of covariates for the /th subject and Pi is a vector-valued random 

variable distributed about the population vector P, i.e., p . = p + ti,. . The precision of the parameter

estimates provided by the traditional methods is difficult to evaluate. Similarly, an evaluation of 

the variance of any nonlinear function of the primary model parameters is problematic. Referring 

to the earlier approaches, Mager and Goller (1997) state that biased estimation is the rule and not 

the exception (even asymptotically) and the extent of the bias can be difficult to evaluate. But 

there was no alternative prior to the development of sampling methods, and researchers were
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forced to rely on approximate asymptotic inferences and solutions. This was a particular problem 

for researchers involved in small sample studies.

Pharmacokinetic and toxicokinetic studies are a crucial component of drug development and, 

given the analytical difficulties referred to in the preceding paragraph, this provided the 

motivation for the development of improved statistical techniques. Sampling approaches to 

hierarchical modelling and longitudinal data analysis received particular attention. The resulting 

methods have a direct application to other areas of clinical research and beyond. Typical of the 

information sought in a pharmacokinetic study is the probability distribution of key 

characteristics, rates of metabolism or excretion, for example, and the manner in which these 

depend on various covariates, including body mass, age and possibly gender. Pharmacokinetic 

behaviour is typically modelled as a mixture of exponentials, and a common feature of these 

models is chronic ill-conditioning. Although sparse sampling of the longitudinal response might 

be unavoidable due to practical or clinical limitations, the model itself may be fundamentally 

under-identified, given a realistic physiological model. Both scenarios are common in 

pharmacokinetic research, and this causes major analytical problems. The fact that various key 

parameters are impossible to estimate from the data alone can be inescapable. Among the 

solutions adopted in earlier work was the application of crude constraints by assigning fixed 

values to the offending variables. But this leads to inaccurate estimates and underestimated 

uncertainty. A superior approach is to formulate the model in terms of parameters that have 

physical meaning, with informative priors assigned, as appropriate, using published physiological 

data (Gelman et al., 1996a). Hierarchical modelling lies at the centre of much of this work (see, 

for example, Wakefield, 1996), since individual-specific and/or subgroup-specific parameter 

estimation is an important aspect of pharmacokinetics, and hierarchical models provide the 

required estimates (Wakefield 1996; Gelman et al., 1996a).

Gelman et al. (1995, p i 19) make the point that, in most cases, the formulation of a given 

hierarchical problem in terms of a nonhierarchical model is inappropriate because the resulting
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increase in parameter number causes the model to overfit the data in the sense of producing 

models with poor prognostic capability, despite the good fit obtained with the original data. This 

remark is aimed, presumably, at models in which units within an hierarchical structure (e.g., 

individuals in a longitudinal study, or centres within a multi-centre clinical trial) are modelled 

using fixed-effect terms. The key to hierarchical modelling is the removal of the effects of severe 

overparameterisation through the distributional constraint imposed on each of the unit-specific 

parameters within the hierarchical structure. An additional detail to note in relation to hierarchical 

modelling is the distinction between subject-level and observation-level covariates (Cnaan et al., 

1997) the former of which remain constant over repeated observation within a unit while the latter 

may vary. Congdon (2001, Section 7.6) provides an introduction to time-varying coefficient 

models and linear dynamic modelling.

An additional issue that arises in hierarchical random-coefficients modelling is the method used to 

specify the final stage parameters. Given an hierarchy of priors with unknown parameters at each 

stage, the hierarchy must be terminated at some stage and the parameters given specific values 

(Lindley and Smith, 1972). One approach to this assignment, referred to as empirical Bayes (EB), 

uses the observed data to generate values for the final stage parameters. For example, the final 

stage parameters can be set at those values that maximize the marginal likelihood. An illustration 

of the distinction between a fiilly Bayesian analysis and empirical Bayes is provided by Smith et 

al. (1995) who compared various Bayesian approaches to a random-effects meta-analysis of trial 

data on the effectiveness of antibiotic treatment in respiratory tract infection. Using the notation 

r[̂  for the number of respiratory tract infections among n f  subjects in the control group within the 

/th trial, and assuming probability p f  of developing infection, with an equivalent notation for the 

treatment group, they compare the two analytical approaches using the model
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Bin{pf , nf )

logit(j!?f) = /z^-(5,./2  [1.21]

\ogiX{pJ) = Pi + ^ , / 2

where <5, = logit(/?,̂  ̂) -  logit(/?f ) is the true treatment effect on a log-odds scale. They describe a 

process for assigning values to the prior distribution parameters in the fully Bayesian treatment, 

including the use of conservative prior guesses for the population and individual trial treatment 

effects. Similarly, parameters relating to the prior distribution of the between-trial variance (o^) 

are obtained by guesswork. In contrast an empirical Bayes analysis might use d  and cr̂  estimated 

by moment-matching.

An important feature of hierarchical models is the distinction between types of posterior 

distribution that might be of interest. Thus, given a model characterised in terms of parameters (0) 

and hyperparameters ((j)), interest might focus on the distribution of future observations (ÿ ) , 

conditional on an existing 0, or, alternatively, the distribution of future observations conditional on 

future values for 0y ( 0^ ). The required posterior predicted values can be obtained by drawing

appropriate samples, the latter requiring an initial draw from /?(({)) to generate 0^, followed by a

subsequent draw from 0^ to generate y (Gelman et al., 1995, pl27). An additional point of

practical importance relates to the distinction between fixed- versus random-effect attributes and 

the manner in which these are assigned to each term in the model under consideration. Smith et al. 

(1995) discuss this issue in relation to meta-analysis, but it is central to the kind of brain image 

analysis in which the candidate is engaged. Referring to the meta-analysis example, the attribute 

assigned to centres depends on the manner in which centres enter into the trial and whether
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interest is restricted to the individual centres recruited into the study (fixed-effect^) or, 

alternatively, to some wider population of which the study centres are a random sample (random- 

effect attribute^). Similar considerations apply to image analysis. A brain MR image consists of 

pixels nested within anatomically defined regions. Thus, given a set of serial images for each 

individual within a group, the research question might involve comparisons among a small 

number of distinct, predefined anatomical regions, with pixels nested within regions, in which 

case it is clear that regions should be treated as a fixed effect. Pixels within a homogenous region 

should be specified as random. Alternatively, regions-of-interest might be selected, but not based 

on anatomical structure. For example, a set of arbitrary grey-matter regions (or white-matter 

regions) might be selected for study. Then, in the absence of a defined anatomical basis for 

selection, and depending on the selection criteria, regions might be given a random-effects 

attribute. Smith et al. (1995) compared the difference in results obtained in their meta-analysis by 

changing the trial attribute from random-effect to fixed-effect, and found that the trial-specific 

treatment-effect 95% intervals obtained with the random-effects attribute were narrower than 

those generated using the fixed-effects model, and were drawn towards the overall mean. In 

contrast, the interval for the population treatment effect was wider (Fig. 4 in Smith et al., 1995).

 ̂A fixed effect attribute is assigned when the units under consideration (centres in the trial 

context) are predefined and all inferences are restricted to these units with no reference to some 

broader population. Furthermore, the same fixed-effect units can be selected, in principle, in a 

replicate study. In this sense their inclusion is reproducible. Given a fixed effect attribute, the 

location differences among n individual levels/units of the effect in question (centres, for example) 

are incorporated into the model via n-\ fixed-effect design matrix columns (dummy variables), 

together with the associated regression model coefficients. In contrast, a set of n random 

coefficients is required under the random-effects model, but these are constrained by the assumed 

distribution. These coefficients enter into the model via n random-effect design matrix columns 

and associated variance component.
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A caveat is required at this point. Although the units selected for a given study might be the focus 

of interest, as opposed to some wider population, a random attribute is sometimes adopted in order 

to impose the constraints provided by the assumed distribution. This approach can be used to 

advantage given data containing outlier/spurious observations. Furthermore, given a large number 

of units (eg., a large number of centres within a multicentre study) the number of fixed-effect 

parameters can become excessive under a fixed-effect model, and a considerable reduction in 

number can be achieved by using a random coefficients specification. In this context Gelman et al. 

(1995, p l i 9) comment on the improved predictive performance that can sometimes be achieved 

by adopting a hierarchical random-effects model due to the resulting reduction in fixed-effect 

parameter number and random-coefficient distribution constraints.

1.5 Bayesian computation

A key component of Bayesian statistical inference is posterior interval evaluation or some other 

form of posterior characterisation. Often interest is restricted to a subset of the model parameters, 

and the required marginal posterior distribution is obtained from the joint posterior distribution by 

integrating over the remaining parameters. Thus, given

^(e |y )=  [ 1 .2 2 ]
j/(eiy)p(e)rf0

the analytical problem might be specified using the partitioning 0 = (0 j , 0 2 ), in which interest 

focuses on the parameter vector 0i, exclusively. 0 2  is a vector containing the remaining 

parameters, often referred to as nuisance parameters. The required marginal distribution is 

obtained from the joint posterior by integrating over 0 2 , using factorisation if this provides a 

simplification of the problem. Thus the marginal distribution />(0i|y) is given by

X 8ily) = j X 8 i, 8 2 lyX 8 2

,  [1.23]
= J/?(0il02,y)/>(02ly)f/02.

In some applications the integration can be simplified by using appropriate conjugate priors, 

chosen to produce a posterior distribution that can be evaluated analytically. Simple linear models
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with normal likelihoods are one type of problem in which this can be achieved. But in many 

practical applications, the analyst is faced with the evaluation of complex, multidimensional 

integrals, often of high order. Furthermore, it is usually necessary to perform additional 

calculations to generate posterior distribution summary information, quantités, for example, and 

this requires additional integration. Given the analytical intractability of the integration in many 

applications a numerical approach was, for many years, the only alternative. Gaussian quadrature 

(Press et al., 1988, p l3 1) was among the numerical techniques used to perform the integration, but 

this does not work well when applied to multidimensional integrals of high order (more than about 

10 parameters). Although Monte Carlo integration is not new and offered an alternative to the 

standard numerical methods (Hammersley and Handscomb, 1964) CPU speed was, until recently, 

a limiting factor. For many years these practical difficulties were a major obstacle and prevented 

the implementation of various theoretical developments. For example, Lindley and Smith (1972) 

provided a detailed treatment of Bayesian hierarchical models and yet computational limitations 

remained an important practical issue for more than a decade. This is illustrated by the work of 

Racine et al. (1986) who discuss the application of Bayesian statistical models to various problems 

in pharmaceutics. Their paper includes a treatment of hierarchical nonlinear pharmacokinetic 

models, and refers to the need for efficient routines for performing the numerical integrations 

(Racine et al., 1986, p i 17). Given these almost insurmountable difficulties, the problem was, for 

many years, circumvented by adopting computationally less demanding approaches to providing 

posterior summary information. In particular, algorithms were developed.for finding posterior 

modes and these were used in conjunction with various approximation methods for obtaining 

dispersion estimates. The EM algorithm and normal (asymptotic) approximation were especially 

important in this context and a very brief outline of these methods is given in the following pages. 

However, these techniques have been superseded to a large extent by modem Monte Carlo 

simulation algorithms. The latter effectively allow a complete characterisation of the posterior 

distribution. A major reason for the current movement in favour of Bayesian statistical inference is 

that the CPU intensive simulation methods that facilitate its implementation have become feasible 

due to recent developments in computer technology. Traditional numerical integration no longer
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plays a prominent role and is not covered in any detail in this brief account of Bayesian 

computational methods. Although the same might be said of the EM algorithm and other methods 

for finding marginal posterior modes, these techniques and the associated normal approximation 

methods are not entirely redundant. These topics are, therefore, included (Section 1.5.2 and 1.5.3). 

The following overview includes very little mathematics because the aim is to provide a brief 

account of Bayesian computational methods with an historical perspective and an emphasis on the 

underlying concepts.

1.5.1 Numerical integration

The term numerical integration encompasses both stochastic simulation and the more traditional 

algorithmic integration methods (Simpson's rule and Gaussian quadrature, for example). For many 

years Gaussian quadrature and related traditional methods were all that remained when asymptotic 

approximation was inapplicable or insufficient in accuracy. Numerous texts have been published 

with sections devoted to these methods (Gerald, 1978; Conte and de Boor, 1981; Press et al.,

1988) and this material is not reproduced in this introduction. As stated above, traditional 

numerical integration is no longer prominent among the methods used for Bayesian computation.

1.5.2 Normal approximation

An approach to Bayesian computation that was widely used prior to the availability of present day 

computing power was based on the combined use of some mode-finding algorithm and asymptotic 

approximation. Despite the development of iterative MCMC, these older methods are not entirely 

redundant since it has been suggested that posterior approximation should be used to generate the 

set of overdispersed starting points required for multiple chain MCMC simulation (Gelman and 

Rubin, 1992b, p459-460; Gelman et al., 1995, pages 322 and 335; see Section 1.6.1 for additional 

details). Furthermore, normal approximation is used by some analysts to check MCMC results for 

gross error (Gelman et al., 1995, p322). Among the methods that have been employed to perform 

the first-stage posterior mode identification are the standard minimisation techniques, including
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Newton-Raphson (Fletcher, 1980), and conditional maximisation (Gelman et a l, 1995, p272). The 

latter refers to a stepwise ascent procedure in which each parameter is adjusted in turn within each 

step of an iterative sequence. The EM algorithm is an alternative and widely used mode-finding 

technique. Subsequent to mode identification some asymptotic method, normal approximation or 

Laplace's method, for example, can be used to obtain an analytical approximation to the posterior 

distribution in the region of the mode. Finally, this approximation is used to generate the required 

joint posterior distribution summary statistics. The latter might take the form of posterior intervals 

or standard errors. Alternatively, the resulting normal approximation can be used in a subsequent 

simulation to generate a posterior sample. To illustrate this procedure, Gelman et al. (1995,

Section 9.8) give an hierarchical normal model example in which a factorisation of the joint 

posterior is used, together with normal approximation and subsequent sampling, to generate 

samples from the joint posterior distribution and thence to calculate summary medians and other 

quantiles.

The validity of any posterior asymptotic approximation depends, in part, on the likelihood, which 

must take the form of a narrow peak relative to the prior (Carlin and Louis, 1996, p i42). This 

requirement will be met given a sufficient number of observations, thus ensuring that the prior is 

relatively flat over the region in which the likelihood is non-negligible. Then, subject to various 

regularity conditions, the Bayesian Central Limit Theorem applies (Carlin and Louis, 1996, p i42), 

the essence of which is that the posterior distribution can be approximated by a multivariate 

normal distribution with mean equal to the posterior mode and covariance matrix estimate given 

by the Hessian matrix (i.e., the matrix of log posterior density second partial derivatives with 

respect to the model parameters). This quadratic approximation to curvature is based on a Taylor

series expansion. Specifically /7(0|y) « A^(0,[1(0)]"'), with 1(0) equal to minus the Hessian of the 

log posterior evaluated at the mode (Gelman et al., 1995, p95; Carlin and Louis, 1996, p 142), 

where the matrix of second partial derivatives has elements

■logj[7(0|y) [1.24]
e= 0
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This is referred to as the generalised observed Fisher information matrix, generalised in the sense 

that it depends on the prior in addition to the likelihood. Under the large sample assumption the 

prior is locally uniform, however, suggesting an alternative approach in which the prior is ignored 

completely. The maximum likelihood estimate can then be taken as an approximate posterior 

mode, while the conventional Fisher information matrix provides an approximation to the 

posterior covariance matrix (Gelman et al., 1995, plOl; Carlin and Louis, 1996, pl43). With this 

modification the calculation reduces to the standard maximum likelihood method that is widely 

used in a number of classical applications including mixed model regression analysis (Section 

1.4.1.3), generalised linear modelling (Dobson, 1990, Chapter 4) and nonlinear modelling (Jones, 

1993, Section 7.1). These are well established areas of statistics in which some standard 

minimisation routine, Newton-Raphson or the method of scoring, for example, is used to obtain 

the maximum likelihood and covariance matrix estimates. Finally, it has been suggested (Gelman 

et al., 1995, p275) that the multivariate Student-/ distribution might be employed to extend the 

applicability of asymptotic approximation to small sample problems. In addition, asymptotic 

approximation can be incorporated into a two-stage procedure in which the approximate 

distribution is refined via importance resampling (Gelman et al., 1995, p291 et seq.). Asymptotic 

approximation combined with importance resampling (the latter also referred to as sampling- 

importance resampling (SIR)) has been suggested as a method for drawing the sample of 

overdispersed starting values required for parallel chain MCMC. Although this is rather labour 

intensive and might appear excessive, Gelman and Rubin (1992b) demonstrate the benefits 

afforded by this approach in an application involving a multimodal posterior distribution. A brief 

overview of SIR is given in Section 1.5.4.

Asymptotic approximation refinements. Laplace’s method for integral approximation

As mentioned above, one of a number of techniques can be adopted to improve the results 

obtained with normal approximation including importance resampling. Laplace's method provides 

an alternative refinement.
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Normal approximation is expected to be poor if  applied to skewed distributions. It is, however, a 

first-order Taylor series expansion, and an obvious refinement is the incorporation of higher order 

terms. The Laplace approximation adopts this strategy and includes second order terms. 

Historically, it was used mainly for performing multivariate integration when Simpson's rule and 

Gaussian quadrature were not successful (Gelman et al., 1995, p306). Additional details are given 

in Gelman et al. (1995, p306) and Carlin and Louis (1996, pl45). Laplace's method replaces 

numerical integration with noniterative numerical differentiation, which is one of the main 

advantages, but this comes at the cost of unknown accuracy. Inaccuracies are expected to arise 

when dealing with samples of limited size and multidimensional problems of high order. Concerns 

regarding poor accuracy in large multidimensional calculations leads to the conclusion that 

Laplace's approximation cannot be recommended in most random coefficients modelling 

applications (Carlin and Louis, 1996, pl49-150). It has been suggested, however, that the method 

produces estimates of better accuracy than posterior simulation for several types of model 

(Raftery, 1996, pl70, quoting S. Rosenkranz, Ph.D. dissertation. Dept. Biostatistics, University of 

Washington, 1992).

1.5.3 A basic description of the EM algorithm

Although the EM algorithm is particularly well known for its application to missing data 

problems, it is used extensively as a mode-finding method. It is, in effect, an iterative optimisation 

(minimisation/maximisation) routine. The main feature of the EM method is the manner in which 

the observed data are augmented with latent data. This augmentation is performed in such a way 

that an initially intractable maximisation is converted into a simpler stepwise maximisation 

calculation. Lee(1989), Gelman et al. (1995) and Jackman (2000) all provide introductory 

accounts, the latter two of which relate the EM algorithm to the data augmentation method. Each 

iteration of the algorithm consists of two steps, i.e., an expectation (E) step and a maximisation 

(M) step. Specifically, given a decomposition of the data vector y = {y obs^y mg) the conditional

probability density function of the augmented data, /  (ya„glyo&,4>), where <|) is a vector of current
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values for the model parameters, the E-step requires an evaluation of J L{^\y)f{yaug\yobs>^)dyaug-

The subsequent M-step performs a maximisation of (j) using the expected log-likelihood obtained 

in the E-step, thus generating an updated estimate of (j) (Garthwaite et al., 1995, p48). Gelman et 

al. (1995) provide a concise but informative account of the EM method with a focus on its role as 

a marginal posterior mode-finding algorithm. Thus given 0=( y, (j>) and the problem of 

approximating the marginal posterior density /?((j)|y) in the region of the mode, the EM algorithm is 

used when direct maximisation ofy?(^|y) is difficult but maximisation ofy?((|)|y,y) is relatively 

easy. The EM algorithm is as follows (Gelman et al., 1995, p278):

1. Generate a set of starting parameter values

2. E step: EstimateE^w[log(p(y,(|)|y))] = Jlog(p(y,<|i|y))p(Y 14»'"',y) f̂y

M step; Find the value of that maximises Eg/^[log(p(y,())|y))].

Lee (1997, p255-7) has outlined an implementation of the EM algorithm, as applied to the simple 

hierarchical normal model

[1.25]
6 , ~ N { m, ¥)

with prior , ̂ )  ocl / <r^. The M-step yields values for the set of hyperparameters

(^('+9 _  ̂0 -2 ' ' yja a maximisation of the log posterior density which contains the

augmented data (x,y^'^), where ŷ '̂  = , ) y(0 jg among the parameters estimated at the

E-step. In this particular example, closed form expressions are available at both the E- and M- 

steps.

1.5.4 Posterior simulation. An overview of noniterative Monte Carlo 

methods

The previous section outlines an approach to posterior interval evaluation, based on asymptotic 

approximation, designed to overcome the problems that arise due to the intractable form of the 

integrals encountered in most practical problems. But these methods do not always produce results
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of sufficient accuracy (Gelman et al., 1995, p320; Cowles and Carlin, 1996, p883). Monte Carlo 

(MC) simulation offers an alternative to analytical approximation^ An additional advantage of the 

simulation approach is the relative ease with which various assumptions can be relaxed. For 

example, data with outliers can be modelled by replacing the usual normality distribution with a t 

distribution having some low value for the degrees of freedom. The degrees of freedom parameter 

ean be included in the vector of model parameters (Gelman et al., 1995, p357; Congdon, 2001, 

p25).

MC simulation has been used for decades as a method for evaluating integrals (Hammersley and 

Handscomb, 1964). Rejection and importance sampling, together with crude hit-or-miss Monte 

Carlo are well-known methods (Morgan, 1984, Chapters 5 and 7). The idea underlying the Monte 

Carlo simulation method, as applied to Bayesian statistical inference, is to generate a sample from 

the joint posterior distribution or, alternatively, some marginal posterior distribution of interest. 

The resulting sample is used to generate the required statistics. In its basic form this might be 

achieved by direct sampling from the joint posterior distribution, in which case marginal statistics 

are generated from the resulting sample simply by ignoring the remaining parameters (Gelman et 

al., 1995, p65). Direct sampling from the joint posterior is not often performed in practice, 

however, since in many cases a considerable simplification can be achieved through factorisation. 

In fact, direct sampling from the joint posterior distribution might not be feasible, in which case 

some form of simplification is essential. For example, referring to [1.23], a sample from the 

marginal posterior distribution /?(0i|y) can be generated by first drawing 0 2  from its marginal

 ̂Although importance resampling can be used to refine the results obtained using analytical 

approximation, satisfactory accuracy is not guaranteed (Gelman et al., 1995, p320). Current 

practice is to use Monte Carlo simulation at the outset, thus avoiding analytical approximation 

entirely.
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posterior distribution y?(92|y), and then drawing 8 % from its conditional posterior distribution

given 02. Sometimes direct simulation methods might be applied to the parts, otherwise some 

form of indirect sampling is used. Once the sample has been generated, quantiles can be derived 

from the ordered sample, as required. One of the many advantages of the simulation approach is 

the ease with which statistics can be obtained for complicated parameter functions, since the 

primary posterior sample can be used to generate a sample for any function of interest. Thus, 

given a set of draws 0^'\0^^\...,0^^' from the posterior distribution, the mean, median, variance 

and/or posterior intervals can be estimated for virtually any posterior function of interest, h(Q), 

simply by using A(0^'^),A(0^^^),...,A(0^^'). The sample can also be used to generate posterior 

predictive simulations of unobserved outcomes (Gelman et al., 1995, pages 301 and 329) as 

outlined in Sections 1.4.2.2 and 1.4.3. In those situations in which direct sampling is feasible it 

offers the advantage that it is an exact small-sample procedure, unlike ML and normal 

approximation, which are based on asymptotic theory. This assertion assumes a simulation size 

sufficient to ensure negligible simulation error. A striking illustration of the importance of the 

simulation approach to Bayesian inference is provided by the well-known rats growth-curve data 

(Gelfand et al., 1990). A linear random coefficients treatment of these data has been outlined in a 

number of papers and texts (Gelfand et al., 1990; Carlin and Louis, 1996, p i 66; Spiegelhalter et 

al., 1995b). This model is exceedingly simple conceptually, and yet, given the 30 individual 

growth profiles and a typical Bayesian random coefficients structure, a total of 66 model 

parameters is required. This number renders numerical approximation or numerical integration 

inapplicable. In fact, noniterative MC is expected to be somewhat problematic (Carlin and Louis, 

1996, p i68) leaving MCMC as the remaining viable alternative.

As implied in the previous paragraph, a number of categories of Monte Carlo simulation methods 

for Bayesian computation have been developed. These can be divided into two broad categories, 

namely the traditional noniterative methods and the iterative methods. Rejection sampling and 

importance sampling are well-known noniterative methods (Morgan, 1984) while the Metropolis-
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Hastings algorithm, data augmentation method and Gibbs sampler are commonly used iterative 

techniques (Carlin and Louis, 1996). These three iterative sampling algorithms all belong to the 

Markov chain Monte Carlo integration class of methods. Simulation offers an advantage over 

earlier posterior summary methods (based on posterior modes) in providing a complete description 

of the posterior distribution, and both types of simulation, i.e., iterative and noniterative, are used 

for this purpose. Iterative simulation is now dominant among Bayesian computational methods 

due, in part, to a period of intense research activity during which various methodological 

improvements were established (Bernardo et al., 1992; Gilks et al., 1996a; see Section 1.6). A 

brief description of the commonly used algorithms is given in the following sections.

In contrast to MCMC, classical noniterative sampling produces independent non-Markov samples, 

assuming that correlation is not introduced deliberately. Broadly speaking, the noniterative 

methods can be sub-classified as direct or indirect, although no definitive categories exist. For 

example, Gelman et al. (1995) consider rejection sampling as a class of direct-sampling algorithm, 

while Carlin and Louis (1996) reserve the term direct for those methods in which an immediate 

draw from the target distribution is performed. Accordingly, they categorise rejection and 

importance sampling as indirect methods.

Noniterative direct sampling

As indicated in the preceding paragraph, noniterative direct sampling methods employ an 

immediate draw of samples from a target distribution. The basic, direct sampling approach to 

integration, as applied to Bayesian computation is conceptually simple. Suppose we seek an

evaluation of the integral J /  (8)A(8)(f(8) and we can generate 0 i,...,8n~/^(8) by direct sampling.

1  ^
Then the required estimate is given by — % ]/(8 y ) . A specific but simple illustration is provided

by the normal model ~ N {p,a^), i=l,...,n, with prior n{p ,a )  = 1 / c r. The joint posterior 

distribution, ;?(//,cr^ly), is given by
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jLi\a^,y ~ N{ÿ,<j^ In)

-  K x i l  = K . I G [ f f f

n

where K  = ^ ( y ,  - ÿ Ÿ  7G(.) is the inverse gamma distribution (Carlin and Louis, 1996,
i=l

pl51; Lee, 1989, Section 2.12). A sample from the joint posterior distribution can be generated by 

making a draw crj|y, and then drawing p j  ~ N{y,<j^j / n ) . This process is replicated for 

j  = Given this sample, an estimate of any function of the parameters and associated

statistics can be generated, as required. For example, given some/(8) of interest, an estimate of the 

posterior probability of the interval {a < f  (0) < b)\y is provided by p  = { # f  (Gy) e (a,b)) / N  with

associated binomial standard error estimate ^ p { \ -  p ) /  N  (Carlin and Louis, 1996, pl51).

Direct sampling has an obvious appeal since, as stated in the preceding paragraph, the accuracy of 

the simulation is determined solely by the sample size. Thus the latter can be calculated at the 

outset, which contrasts with MCMC simulation, where a lack of independence among the samples 

causes a reduction in accuracy. A useful tool in the implementation of direct sampling is the 

inverse cumulative density function method, in which a draw from p(6|y) is made by using the 

inverse cumulative distribution, based on a lookup table implementation, if required (Morgan, 

1984, Section 5.2; Gelman, et al., 1995, Sections 1.8,3.7 and 10.2). Piecewise linear 

approximation (trapezoidal approximation) can be used as a refinement to the lookup results, if 

necessary.

Noniterative indirect sampling

In many applications it is not possible to perform direct sampling, with or without factorisation, 

and some other form of sampling is required. A number of noniterative indirect methods are 

available, including rejection sampling, importance sampling and the weighted bootstrap (also 

referred to as sampling importance-resampling (SIR)). In common with noniterative direct
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sampling, the concept of convergence does not apply here. Instead, a sample of some prespecified 

size is drawn, at which point sampling is terminated.

Rejection sampling

Rejection sampling is used for generating a random sample when immediate sampling of the 

target distribution is not possible. It is conceptually simple and documented in numerous texts 

including Morgan (1984), Gelman et al. (1995) and Carlin and Louis (1996). Following Carlin and 

Louis (1996, pi 54), suppose a random sampling of the posterior distribution

A(8)= .. [1.27]
I L(eM Q )de

is required. Further, suppose that an easily sampled envelope function g(0) is available satisfying 

Z,(0);r(0) < Mg(Q) where M >  0 is a constant. The algorithm is

(1) Generate 0y ~ g(0)

(2) Generate t /~  Uniform(0,l)

(3) if MUg(Qj) < L(Qj )7t(Qj ) , accept 0y, otherwise reject 6j and return to (1).

Formal treatments showing that the resulting sample is random with distribution h(6) are 

available, although an inspection of Fig. 5.2 in Carlin and Louis (1996) or Fig. 10.1 in Gelman et 

al. (1995) suggests that this result is intuitive. One approach to defining the envelope function is to 

use piecewise trapezoidal approximation (Gelman et al., 1995, p305). An interesting application is 

provided by Wolfmger and co-workers, who developed a rejection sampling approach to Bayesian 

linear mixed model analysis for incorporation into a statistical package (Wolfmger and Rosner, 

1996; SAS Institute, 1999). The main objective was the provision of a routine capable of 

producing reliable statistics without user intervention. Thus MCMC was ruled out due to the need 

to demonstrate convergence, which requires user input. An independence chain algorithm 

(Wolfmger and Kass, 2000) was added to subsequent releases of the software (SAS Institute,

1999). Rejection sampling is also used in the BUGS package to sample full conditional 

distributions not available in analytical form [Gilks, 1992; Gilks et al., 1994 (p i76), 1995].
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Importance sampling (Gelman et al., 1995, p307; Carlin and Louis, 1996, pl53)

Suppose that an approximation to the posterior expectation

f/(0)Z(0);r(e)^/0
^ ( / ( 0 ) |y ) - ^ 4 -------------------- [1.28]J Z(0);r(0)J0

is sought and the density g(0) is an easily sampled approximation to cZ(0);r(0). A sampled 

approximation can then be generated using

£ ( / ( 6 ) | y ) « ^ f T 7 -------------  [1.29]

y-i

where w(0) = Z(0);r(0) / g(0) is a weight function. Importance sampling is among the methods 

used to compute marginal posterior densities (Gelman et al., 1995, p308). A related method is the 

sampling-importance resampling (SIR) algorithm that is described in the following subsection.

Sampling-importance resampling (weighted bootstrap)

Smith and Gelfand (1992) provide an introduction to SIR, describing it as a weighted-bootstrap. 

SIR provides a mechanism for sampling from h{Q) = / (0 )  / J / (6)d0 when the bounding constant

required for rejection sampling is not available. Thus, referring to the problem in which a sample 

from

[1.30]
J z(e)jr(e)ae

is required, the algorithm proceeds as follows (Smith and Gelfand, 1992; Carlin and Louis, 1996, 

pl57):

(1) Generate a sample from an approximating density g(0)

. Z(0 ;);r(0 ;.) w,(2) compute w,- = —^ ---- — and =
g(8 .)

y  , z 1 )...) hi

y=i
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(3) D raw 8*from {0[,...,0y}withmass Çion 0,.

Smith and Gelfand (1992) point out that this is a bootstrapping algorithm, but with weights given 

by qi. Furthermore, they show that the resulting sample has an approximate h(Q) distribution. 

Gelman and co-workers (Gelman et al., 1995, p339; Gelman and Rubin, 1992b, pages 460 and 

471) recommend using a combined EM-SIR approach to generating the overdispersed set of 

starting values required for parallel chain MCMC simulation, the suggestion being that in some 

applications the refinement provided by SIR can be important. Finally, Gelman et al. (1995, p301) 

state that posterior simulation can be attempted by combining SIR with an approximation based on 

joint posterior modes. This, they suggest, can be applied to models of some complexity, thus 

providing an alternative to MCMC, although success is not guaranteed.

1.5.5 Posterior simulation. Markov chain Monte Carlo. The Metropolis, 

Metropolis-Hastings and Gibbs sampler algorithms

In principle, an ideal simulation uses independent samples drawn directly from the target 

distribution, since this is the most efficient. The accuracy of the simulation is determined 

immediately by the sample size, a property which is shared with the noniterative indirect 

methods \  This is an appealing feature and contrasts with MCMC, in which a lack of 

independence among the samples causes a reduction in precision. Direct sampling is not always 

feasible, however, and the indirect methods can be problematic when dealing with complex 

models. Consequently, MCMC is conceived as being the easiest approach to a wide variety of 

problems, including hierarchical analysis (Geyer, 1992; Gelman et al., 1995, p320). Geyer (1992, 

p473) states that, in contrast to independence sampling, MCMC can always be made to work. The 

basic idea behind MCMC-based estimation is to perform a random exploration of parameter space

 ̂The algorithms of Section 1.5.4 are described as noniterative Monte Carlo methods in the sense 

that the concept of convergence does not apply. Instead, a sample of some predetermined size is 

generated, after which the algorithm stops.
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which, in the Bayesian context, is a random exploration of the target posterior distribution. The 

aim is to create a Markov chain whose stationary distribution is identical to the specified target 

distribution. In practice, the simulation needs to be of sufficient length to ensure that the resulting 

chain is close to the stationary distribution. Once this is achieved the MCMC output is used to 

calculate the required statistics. Serial correlation within the sequence of samples is a major 

concern, since this reduces the rate at which convergence is met and thus has a detrimental effect 

on efficiency. Nevertheless, this can be overcome by increasing the length of the MCMC output, 

and MCMC provides exact results, in the sense that analytical/numerical approximation is not 

required. In principle estimates can be calculated with any specified precision, CPU time being the 

limiting factor. An additional advantage is the removal of some constraints regarding the types of 

prior that might be adopted. For example, a reliance on conjugate priors is eliminated. It might be 

noted that although MCMC is best known for its role in Bayesian analysis and has been described 

as a posterior simulation method (Raftery, 1996, p i 67), it is also used in various frequentist 

calculations, including missing-data analyses (Cowles and Carlin, 1996, p883; SAS Institute,

2001, Chapter 9).

The Gibbs sampler and the Metropolis/Metropolis-Hastings algorithms are the two best known 

Markov chain simulation methods. As outlined below, full conditional distributions are required to 

implement the Gibbs sampler and this can cause considerable difficulties since, in some 

applications, standard, closed form full conditionals are not available for sampling. The 

Metropolis/Metropolis-Hastings algorithms provide a useful alternative if  sampling from the fiill- 

conditionals is problematic. On the other hand, the Metropolis algorithm uses a transition kernel to 

generate the Markov chain, and a successful implementation of the algorithm can be very 

dependent on the choice of kernel. Accordingly, it has been suggested that implementation of the 

Metropolis/Metropolis-Hastings methods is expected to be difficult in many mixed model 

(random coefficient model) applications due to the difficulty in finding a suitable transition kernel, 

given the large multidimensional nature of the parameter space associated with these models 

(Gelfand et al., 1995, p479-80).
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The Metropolis and Metropoiis-Hastings algorithms

The Metropolis algorithm was used in chemical physics and in image processing for many years 

before it was widely used by statisticians. Gelman et al. (1995, p323), Carlin and Louis (1996, 

pi 73) and Gilks et al. (1996b, p9) each provide an account of the algorithm, as applied to 

Bayesian computation. The main feature is the manner in which the algorithm uses draws from a 

distribution that is distinct from the target distribution, but modifies the output to achieve the 

target stationary distribution. This concept is explained below.

The Metropolis algorithm for generating a Markov chain is as follows:

1. Sample a candidate point 0* from a jumping distribution //(0*|0^‘̂ ) where 0'**

is the current point. J,(0*|0'‘̂ ) must be symmetric in the sense that Jt{^a\^b) ~  ̂ (06|0o).

2. Calculate the density ratio

X 6 *ly)
/7(0'-’|y)

3. Set

. f 0 * with probability min(r,l)
® = l e - otherwise.

The requirement for symmetry in the transition kernel is important; a multivariate normal 

distribution centred at the current position is commonly used.

The Metropoiis-Hastings algorithm, which is outlined by Gelman et al. (1995, p325), Carlin and 

Louis, (1996, p i 76) and Gilks et al. (1996b, p5), is a generalisation of the Metropolis method in 

which the requirement for a symmetric transition kernel is dropped. The acceptance/rejection 

ratio, r, modified to compensate for this asymmetry, is

X 8 « |y )J ,(e '- '|e ')
[1.33]
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The successful implementation of both the Metropolis and Metropoiis-Hastings algorithms 

requires a suitably scaled transition kernel in order to ensure reasonable efficiency. This matter is 

discussed in some detail in Sections 1.6.2 and 1.6.3.

A modification to the Metropolis algorithm in which ) is used as the jumping distribution (i.e., 

samples are drawn independently of the current location) together with the acceptance rule

yields an independence sampler (Gilks et al., 1996b, p9; Chib and

Greenberg, 1995, p330). Thus, in contrast to the random walk process that is generated with a 

transition kernel centred on the current position, independent samples are generated.

An appreciation of the manner in which the Metropolis and Metropoiis-Hastings algorithms 

generate chains with the required target distribution as the stationary distribution can be acquired 

at various levels of mathematical sophistication. Formal treatments are given in Roberts (1996) 

and Tierney (1996). Informal treatments showing that the Metropolis algorithm converges to the 

target distribution are provided by both Carlin and Louis (1996, p i74) and Gelman et al. (1995, 

p325). Each of the latter consists of two parts, the first of which shows that the sequence is a 

Markov chain with a unique stationary distribution. The second stage shows that, given the 

symmetric form of J  ̂(.].), this stationary distribution is equal to the target distribution. An 

informal proof showing that the Metropoiis-Hastings algorithm converges to the target distribution 

is provided by Gilks et al. (1996b, p7). A central component of each treatment is the 

demonstration that both algorithms generate reversible chains. It is also shown that chain 

reversibility is a necessary condition for obtaining a statistical distribution equal to the target 

distribution (Chib and Greenberg, 1995, p328, equation 3; Gilks et al., 1996b, p7, equation 1.5; 

Carlin and Louis, 1996, p i 74). An examination of the reversibility condition provides an 

interesting insight into the mechanism through which the Metropolis/Metropolis-Hastings 

algorithm generates the required sampled distribution. This is the subject of the following 

subsection.
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Chain reversibility. Insights into the Metropolis and Metropoiis-Hastings algorithms

Several articles provide intriguing insights into these two algorithms, the account given by Chib 

and Greenberg (1995) being especially informative. Central to understanding these algorithms is 

chain reversibility. Dealing first with the more general Metropoiis-Hastings case, reversibility is 

expressed by the equality

p (e ' ' ' )3V /,( e ' ie " ' ) = p (9 ')^MH(e"‘|e ')  [1.34]

where

= [i.35]

r(0 '“’,9 ') is  the acceptance rate given the entrent position, 9'’’, and candidate position, 0'. If we 

suppose the condition

p (9 '-‘ )J, (9' |9 '-' ) > p(9 ' )J, (9 '-' |9' ) [1.36]

then, if it were not for the adjustment provided by the Metropoiis-Hastings acceptance-rej ection 

rule, the process would move from 0''  ̂ to 0' too often. Thus a rule of the form r(0',0 '"^) = 1, 

r(0^“^ 0 ')  < 1 is required to meet the reversibility condition. Substituting [1.35] into [1.34] gives

X 6 '" ') / ,(8 '|8 '-^ ) r (0 '- \8 ')  = X 6 ')/f(8 '- '|8 ')r(0% 8 '-^) [1.37]

which, in turn, gives the acceptance-rej ection ratio

In the special case in which the transition kernel is symmetric (i.e., J,(8'10'"^) = /,(8'~*18')) this 

reduces to the Metropolis acceptance-rej ection ratio p(Q^) I . In this case a candidate

position of higher density, i.e., position with /?(8^) > p(8 '"^), is accepted on eveiy occasion, while 

a candidate position of lower density is accepted with probability j9(0') / p{Q‘~ )̂ < 1. Gelman et 

al. (1995, p324) describe the Metropolis algorithm as a stochastic type of stepwise mode finding 

process in which steps to a position of increased density are accepted always, while steps to a 

position of reduced density are accepted with a specified probability. In this sense the Metropolis
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algorithm is a class of simulated annealing method (Press et al., 1988, p343). The same comments 

apply to the Metropoiis-Hastings algorithm.

A number of additional points warrant attention. Firstly, the acceptance-rej ection ratio can be 

calculated without knowing the normalisation constant associated with p(6), since the latter 

appears in both the numerator and denominator. The choice of transition kernel is important, and 

common among the candidates is a multivariate normal or t distribution centred on the current 

position (Gelman et al., 1995, p324; Chib and Greenberg, 1995, p300; Carlin and Louis, 1996, 

p i75). This produces a random walk within the posterior distribution. Chib and Greenberg (1995, 

p330) discuss some other alternatives, including the independence sampler variant mentioned 

previously. Finally, Geyer (1992, p474) states that the Metropoiis-Hastings algorithm 

encompasses a huge family of methods. Consequently, although any one method might prove 

inadequate for a given problem, there are numerous alternatives. Reference is made to the 

advantages of adopting hybrid methods in which a variety of updating schemes are mixed within a 

given simulation.

Gibbs sampling

Many review articles and textbooks include accounts of the Gibbs sampler, a number of which 

(Casella and George, 1992; Carlin and Louis, 1996, p i59 et seq.; Lee, 1997, Chapter 9; Jackman,

2000) adopt a comparative approach in which the Gibbs sampler is related to other methods 

including the data augmentation approach. Gelman et al. (1995, p326) provide the following 

summary. The parameter vector is divided into components 0 = (0 j,...,0 ^ ). At each iteration the

algorithm cycles through the components 6„ i=l,..,d, drawing a sample from the conditional

distribution. Specifically, at the rth iteration, 0' is sampled from the conditional distribution

p(0y|0!”^ y ) , where d‘_~/ = (0j,...,0 '_i,0'̂ ,̂ ,...,0^'^) is the vector containing ordered components

of 0 with 0y removed. The required conditional distributions are available in closed form for a 

large class of hierarchical models with conjugate priors and hyperpriors (Carlin and Louis, 1996,
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pages 165 and 171), and implementation is relatively straightforward in these cases. But in some 

applications conjugate priors do not exist, while in other cases non-conjugate priors might be 

chosen by design. A number of approaches have been developed for dealing with these more 

challenging problems (Gilks, 1992; Gilks et al., 1995).

A final point of interest is the relationship between the Gibbs sampler and the Metropoiis-Hastings 

algorithm. The former is a special case of the latter (Gelman, et al., 1995, p328; Chib and 

Greenberg, 1995, p327; Jackman, 2000, p384). As stated above, the Metropoiis-Hastings 

acceptance-rej ection rule dictates that a candidate point is accepted witii probability r  < 1 if  the 

transition is associated with a reduced density. The Gibbs transition kernel is given by

Jy,(0*|0^-^) = i7(0;.|0!:;,y) [1.39]

for theyth component within the rth iteration, with 0ly = Q^Sjhy definition. Given this form of

transition kernel, the Metropoiis-Hastings acceptance-rej ection rule yields an acceptance 

probability of unity (Gelman et al., 1995, p328; Tanner, 1996, pl81). Thus the Gibbs variant of 

the Metropoiis-Hastings algorithm updates each component in parameter space sequentially using 

a transition kernel given by the conditional density and with an acceptance rate of 100%.

1.6 M CM C im plem entation and related practical m atters

1.6.1 Introduction and general issues

This section provides an introduction to various practical issues that arise in any MCMC 

simulation analysis, and includes a number of recommendations that have been made regarding 

implementation (Chapter 11 in Gelman et al., 1995, provides a useful summary). Among these are 

various procedures that have been proposed for performing an initial assessment of the MCMC 

output. Convergence is the major issue and, at some stage, the analyst needs to determine the 

number of samples required to achieve this. A related question is the sample size required to attain 

some specified precision in various target statistics. Both depend on the degree of autocorrelation 

in the MCMC output. While the number of samples required with an independence sampler is



- 4 7 -

detennined directly by the required precision, this direct relationship does not hold in MCMC 

simulation. A high degree of correlation between consecutive iterations results in poor movement 

over parameter space (described as poor mixing) and a consequent reduced precision in the 

derived statistics. Thus, correlation reduces the effective sample size and has an adverse effect on 

convergence. It is an inescapable fact that the number of samples required cannot be determined 

until the degree of autocorrelation is known, and this information is available only after running 

the simulation. This section discusses briefly an informal approach to assessing convergence 

together with various procedures that have been suggested for overcoming poor performance and 

convergence failure. A few of the more formal convergence tests are outlined in Section 1.7.

A number of questions arise at the start of any MCMC simulation analysis, including the relative 

merits of using a single long chain in favour of a multiple parallel chains implementation (Geyer 

1992, p474; Gelman, 1996, pl32; Raftery and Lewis, 1996, pl28). Given the fact that invalid 

inference can result from using chains of insufficient length, it has been suggested that a single 

long chain simulation is preferred (Geyer, 1992). Nevertheless, the diagnostic value of running 

multiple parallel chains is generally accepted. If a multiple chain implementation is chosen, the 

number of chains and their starting positions must be specified.

Many analysts argue in favour of multiple chain simulation, based on experience. A single chain 

may appear to have converged, as judged by visual inspection and formal convergence tests, but 

the chain may, in fact, be stuck in some restricted region of the target distribution. The detection 

of convergence failure is not, therefore, guaranteed. This kind of behaviour is more readily 

uncovered by examining multiple chains. Gelman et al. (1995, p330) argue that the distribution of 

each of the individual chains must be close to the distribution of the mixed chains before an 

individual chain is taken as an approximation to the target distribution. To illustrate the dangers 

associated with using a single MCMC chain, Gelman (1996, pl32 et seq., see Fig 8.1) show two 

chains generated as part of a pharmacokinetic MCMC hierarchical model simulation analysis. An 

inspection of either chain in isolation gives the impression of convergence, while the two chains
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are, in fact, well separated in parameter space. This example provides a compelling illustration of 

the benefits of using parallel chain trace plots as a mechanism for assessing convergence. In an 

hierarchical model analysis the random coefficients should be included in this assessment, 

irrespective of the fact that population statistics might be the sole focus of the study. Nevertheless, 

a substantial computational cost is incurred by running multiple chains and, in the past, some 

researchers have suggested that in all but the most important applications a single chain simulation 

might suffice, recognising that misleading parameter estimates might be obtained on occasions 

(Raftery and Lewis, 1996, pl28). Undiagnosed convergence failure in a single chain was 

considered an acceptable risk when computational demands were an overriding consideration. 

Substantial improvements in computing power have occurred, however, since this early work on 

MCMC simulation, and computational demands are less of a consideration. Consequently, the 

benefits of the multiple chain approach have become generally accepted. The following guidelines 

have been proposed for a typical MCMC simulation analysis (based on Gelman et al., 1995, pages 

322 and 330 et seq.; Gelman, 1996): (1) run several (three or more) parallel chains with 

overdispersed starting points derived from asymptotic approximation based on posterior modes;

(2 ) discard the bum-in samples (see below) and use the resulting parallel chains to obtain an initial 

assessment of convergence, based on the degree of overlap between the chains; (3) if  visual 

inspection suggests that the MCMC output is satisfactory, perform a formal assessment of 

convergence; (4) assuming satisfactory convergence, compare inferences derived from the MCMC 

output with those based on the approximate density generated in Step 1.

In those cases in which a visual inspection of the MCMC output indicates convergence failure in 

the form of poor coverage of parameter space, formal convergence tests become redundant. At this 

point the analyst might attempt to overcome the problem by using longer simulations runs, thus 

compensating for the inefficiency that arises due to correlation between successive samples. This 

approach might yield adequate coverage within reasonable CPU-time limits. Alternatively, the 

performance might be sufficiently poor that a change in approach is required (see Section 1.6.4).

If, on the other hand, a visual inspection of the parameter chains reveals no signs of convergence
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failure and the formal convergence test results are satisfactory, one can proceed with the analysis. 

The usual practice is to mix the chains (after discarding the bum-in section) and use the resulting 

sample to determine the required statistics.

In order to ensure that a given set of parallel chains is guaranteed to reveal convergence failure it 

is essential that the set of starting parameter values are dispersed widely in parameter space. But, 

usually, little is known about the target distribution in the initial stages of the analysis. One of a 

number of approaches can be adopted for generating the required overdispersed parameter values. 

As stated previously, Gelman et al. (1995, p322) suggest a formal approach using approximation 

based on posterior modes (see Sections 1.5.2 and 1.5.3). Samples can be drawn from the resulting 

distribution using SIR, for example. This procedure clearly requires a considerable amount of 

computation, and Carlin (roundtable discussion in Kass et al., 1998, p96) outlines a simpler 

approach which, he suggests, works well in practice. Given some approximation to the target 

distribution and assuming, for example, that five parallel chains are planned, theyth chain starting 

value for the rth parameter is equated to + (y -  3)<j,, y = 1,... ,5, where /r, and are the 

estimated mean and standard deviation of the rth parameter, respectively. In an hierarchical model 

analysis the results obtained by fitting individual data is one approach to acquiring information 

about the target distribution (Gelman et al., 1995, p271).

Given the overdispersed nature of the parallel chain starting positions, it is necessary to discard the 

initial portion of each parallel chain, i.e., the so-called burn-in period (Geyer, 1992; Gelman et al., 

1995, p330; Raftery and Lewis, 1996). A sufficient portion must be discarded to ensure that the 

truncated chain satisfies the stationarity condition. In this context Carlin and Louis (1996, p i85) 

suggest a pragmatic definition of convergence, namely the condition under which the MCMC 

output can be safely thought o f as coming from the true stationary distribution o f the Markov 

chain for all t>T Some researchers suggest that only the second half of each parallel chain should 

be retained (Gelman et al., 1995, p322), but this is an extravagant use of CPU time. Alternatively, 

the Raftery and Lewis (1992) calculation can be used to determine the number of samples that
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might be discarded as burn-in (Section 1.7.3). Finally, given a marked degree of correlation, it is 

common practice to discard the majority of MCMC samples in order to obtain a reduced set of 

approximately independent samples (Geyer, 1992; Gelman et al., 1995, p330; Gelman, 1996). A 

simple approach is to retain one in every k  samples, after discarding the bum-in section. This 

process is referred to as thinning. (Section 1.7.3 describes the Raftery-Lewis method for obtaining 

a suitable thinning ratio.) Alternatively, samples may be drawn at random from the MCMC output 

(Gelman et al., 1996a, p i406). It has been noted, however, that thinning is not essential, even if a 

considerable degree of autocorrelation exists within the MCMC output, since the only two 

advantages to be gained from thinning the sample are a reduction in data storage and a decrease in 

the computational demands of the post-MCMC processing phase of the analysis. Carlin and Louis 

(1996, p i95-6) are more assertive in their opinion and state that thinning cannot be recommended 

because it is accompanied by an increase in sample mean estimator variance.

1.6.2 Efficient Metropolis jumping rules

The naïve application of the Metropolis algorithm can result in extremely slow mixing and 

inefficient estimation (Gelman et al., 1996b, p599). Poor mixing occurs for two reasons. Firstly, 

transitions that are too short must result in a slow movement over the target distribution. 

Conversely, transitions that move consistently into regions of low probability are rejected on most 

occasions, causing the chain to remain at a fixed position for many iterations. Intuition suggests 

that both extremes can be avoided by an appropriate adjustment of the transition kernel. Thus, a 

good jumping kernel generates transitions which cover reasonable distances in parameter space, 

subject to the requirement that candidate points are not rejected too frequently. This suggests that 

performance might be monitored either through an examination of the distance associated with 

each transition, or by using the acceptance frequency. The question of efficiency has been 

addressed by several researchers. Among the more formal treatments, Gelman et al. (1996b) have 

used both eigensystem calculations and limiting diffusion theory (limiting in the sense 

d-^co , where d  is the dimension of the parameter space) to determine the optimum scaling for a 

^/-dimensional multivariate normal (MVN) transition kernel. These studies have led to a number of
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recommendations. Gelman and co-workers (Gelman et al., 1995, p334; Gelman, 1996, pl41; 

Gelman et al., 1996b) suggest that draws should be made from a symmetric normal kernel with the 

same shape as the target distribution, as characterised by its covariance matrix (E), but scaled by a

factor of approximately ^2.4 / , giving the transition kernel ,2.4^ IL/ d^. This

assumes that the target has an approximately MVN distribution, which can be achieved through 

transformation, if  necessary. Their limiting diffusion analysis indicates that optimum scaling gives 

a transition frequency of the order of 0.23, and accompanying simulations indicate that these 

results hold for dimensions as low as 6  (Gelman et al., 1996b, p603). A number of researchers 

have suggested an adaptive approach. For example, the following general procedure has been 

suggested for setting up an efficient Metropolis simulation (Gelman et al., 1995, p335). (1) Obtain 

an estimate of the target covariance matrix, (2 ) run a number of parallel simulations, using a

scaling factor of 2.4 / ̂ fd , (3) use the resulting MCMC output to update the Metropolis jumping 

kernel, and finally (4) adjust the scaling of the kernel to obtain an acceptance rate in the range 

0.44, for one-dimensional problems, to 0.23 for multidimensional problems of high order. The 

rationale for step (3) is the conservative nature of the covariance matrix estimate provided by the 

MCMC output, assuming a set of parallel chains with overdispersed start points (Gelman, 1996, 

pl41). Transition kernel scaling can be built into a real-time adaptive scheme in which the 

acceptance rate is monitored and the scaling adjusted at intervals to keep the acceptance rate close 

to the target value. It should be noted, however, that caution must be exercised when using this 

kind of adaptive modification of the transition kernel since, by definition, the behaviour in one 

portion of the chain depends on previous iterations. This can compromise the stationarity of the 

resulting chain (Gilks and Roberts, 1996, p99; Gelman et al., 1996b, p606). An obvious solution is 

to use an adaptive algorithm to tune the transition kernel for a given target distribution. Once this 

has been achieved, the existing MCMC output can be discarded and the simulation restarted using 

a fixed kernel. Among the related procedures is one in which preliminary chains are used as a 

basis for model reparameterisation (Gelman et al., 1996b, p606; Gilks and Roberts, 1996, p97-99).
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For example, this approach can be used to create a target distribution that is approximately 

spherical (Gelman et ah, 1996b, p606).

1.6.3 Convergence issues and poor performance

The application of untuned MCMC simulation algorithms to complicated models invariably leads 

to poor performance due to extremely slow movement over the target distribution. One solution to 

the problem is to use longer chains since, assuming contiguity in parameter space, a chain will 

visit every region given sufficient time. There is a limit, however, beyond which it is not realistic 

to contemplate an increase in chain length. Thus it has been suggested that while simulations 

lasting several hours are tolerable, longer runs become impracticable (Gilks and Roberts, 1996). 

Faced with the situation in which an algorithm has not converged after a large number of 

iterations, some analysts discourage the brute force solution based on ever increasing chain 

lengths in the hope of obtaining convergence eventually. Depending on the nature of the problem, 

this can be futile (Brooks and Roberts discussion contribution to Poison, 1996). Ameliorative 

action is suggested, based on additional exploratory work, and aimed at solving the problem 

through model reparameterisation. Successful reparameterisation requires an understanding of the 

underlying causes of poor convergence, and this is the subject of this subsection. Two common 

causes of poor mixing are strong correlations between the model parameters and weak parameter 

identifiability (Gelfand et al., 1995), both of which can cause the likelihood and posterior surfaces 

to be poorly behaved due to extreme irregularity. This affects both the Gibbs sampler and the 

Metropolis algorithm (Gilks and Roberts, 1996, p90). In the case of the Gibbs sampler, a 

substantial degree of cross-parameter correlation tends to concentrate the full conditional densities 

close to the current position (Gilks and Roberts, 1996, p90), with the result that the majority of 

iterations generate very small steps. Several researchers have discussed this problem in relation to 

the simple MVNk, constant correlation (p) target distribution. Poison (1996, p305) provides 

theoretical results indicating that in the case Af=10 and p=0.9 Gibbs run lengths as large as 1.8x10^ 

iterations are required to achieve convergence (> 1 0 ^̂ iterations for A= 1 0 0  and /?=0 . 9  using the 

Metropolis algorithm; Poison, 1996, Table 3), although some practitioners might regard these as
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excessive and accept a reduction in accuracy. But it is clear that this thin, cigar-like distribution is 

a very poor candidate for Gibbs sampling and requires modification. Similarly, cross-parameter 

correlation has a detrimental effect on the Metropolis algorithm unless the transition kernel 

matches closely the unknown target distribution. The following explanation is intuitive (based on 

Gilks and Roberts, 1996, p90). The effect of neglecting the target correlation structure is most 

marked when a candidate point is generated some distance from the current position since the 

associated probability will be small relative to the current probability on most occasions, and the 

candidate will be rejected. The majority of accepted transitions will, therefore, lie close to their 

preceding positions, and the chain will be characterised by segments in which there is no 

movement, connected by a single small step. Under these conditions movement in parameter 

space will be impeded. It has been pointed out that these difficulties are related to the numerical 

problems that arise in multiple linear and nonlinear regression, given a marked cross-parameter 

correlation (Hills and Smith, 1992, p228; Gilks and Roberts, 1996, p92). One solution is to use a 

transformed parameterisation that is close to satisfying the ideal condition in which all cross

correlations are zero. In the linear case this can be achieved by using Gram-Schmidt 

orthogonalization (Strang, 1980), for example (Gilks and Roberts, 1996, p93; see Section 1.6.4.1). 

An alternative approach to improving the Metropolis algorithm is to use a transition kernel that 

matches closely the target distribution since, in a conjugate sense, tailoring the transition kernel is 

equivalent to reparameterisation. In fact it has been suggested (Carlin and Louis, 1996, p i 8 8 ) that 

a full MVN Metropolis approach provides a method for dealing with problems in which large 

cross-correlations are an inevitable consequence of poor identifiability.

A few miscellaneous comments are appropriate at this stage. A number o f modifications to the 

basic Metropolis algorithm are possible including the so-called Metropolis within Gibbs variant, 

in which each parameter is updated individually (Raftery and Louis, 1996, p 121). It is suggested 

that this variant of Metropolis should be easier to automate. This algorithm is not a proper Gibbs 

sampler, however, since it does not use full-conditionals. The name is, therefore, misleading. An
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additional point of interest is the suggestion (Gilks and Roberts, 1996, p91) that a uniform 

transition kernel oriented along the major axis is among the strategies that might be used for 

dealing with prolate target distributions.

Given the disastrous deterioration in efficiency that can occur when a marked level of correlation 

exists among the parameters, it is important to understand the mechanisms through which cross

parameter correlation arises. It is useful to adopt a threefold classification, namely (1) cross

correlation that is attributable to the manner in which the model is specified and for which 

reparameterisation provides the solution, (2 ) correlation that arises because one or more 

parameters is poorly identified, given the available data, and (3) cross-correlation caused by 

overparameterisation, perhaps due to model specification error and/or inherent lack of 

identifiability. The sparse data problem that is common in pharmacokinetics (Wakefield, 1996; 

Gelman et al., 1996a, pl410; Roe, 1997) provides an example of the second of these three types. 

In this context the term sparse indicates that additional data could, in principle, provide a good 

identification of all parameters, even if  the acquisition of these data is impracticable.

Poor identifiability of the second type often arises when vague prior distributions are specified and 

the information content of the data is insufficient to allow effective 'separation' of the parameters. 

Lack of identifiability due to data inadequacy also occurs in conventional fitting, and is a well- 

known cause of problems in linear regression, together with slow convergence in nonlinear 

regression, maximisation/minimisation, iteratively reweighted least squares and Fisher scoring 

applications. In the Bayesian setting nonidentifiable parameters have identical posterior and prior 

distributions (Kass et al., 1998, p97). A number of researchers have commented that poor 

identifiability and overparameterisation are a particular problem with large models (Carlin and 

Louis, 1996, p i87), since these characteristics can be hard to detect when confronted with a 

complicated model. On the other hand, it has been noted that in some instances nonidentifiability 

arises naturally and is harmless. Mixture models are an example in which nonidentifiability is a
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natural consequence of the nature of the problem and it has been suggested that in these situations 

any attempt to impose constraints to achieve identifiability is likely to be harmful (Kass et ah, 

1998, p97).

1.6.3.1 Random effects models

It is stated in the preceding subsection that cross-parameter correlation can be extremely harmful 

to MCMC simulation efficiency, and that this is related to the multicollinearity issue that arises in 

multiple regression, implying that some simple ameliorative action is available in the form of a 

suitable reparameterisation or transformation. The situation is, however, rather more complicated 

when dealing with random-effect models (hierarchical models) MCMC simulation. These models 

typically contain a large number of parameters and, although this does not result automatically in 

inadequate performance (Gilks and Roberts, 1996, p93), mixing can be extremely poor. This 

problem has received considerable attention. Gilks and Roberts (1996) and Gelfand et al. (1996) 

both discuss parameter correlation in the context of the simple random effects model

yy = ^  + Sy

a;~V (0 ,o-^) [1.40]

gÿ -  N(0,(7^)

...,«. The posterior cross-correlations for this model are given by (Gilks and 

Roberts, 1996)

Thus the relative size of the variance components is important, and large posterior cross

correlations and consequent poor mixing will be avoided if  ! n is large in relation to cr^ / m. 

This result might appear counter-intuitive since a large number of random effects, m, or.
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altematively, a small random effects variance, c r j, improves mixing, while a large number of 

observations per random effect, n, or small observational variance, cr^, has a detrimental effect. 

Gilks and Roberts (1996) emphasise the point that mixing deteriorates as the data become 

increasingly informative. On a related matter, it has been noted that convergence failure can occur 

in MCMC hierarchical modelling when a chain enters a region of parameter space with a small 

random effect variance, since the chain tends to stall at this point (Gilks and Roberts, 1996, p96; 

Raftery and Lewis, 1996, pl28).

1.6.4 Methods for improving performance. Transformation, centering and 

hybrid methods

A considerable research effort has been devoted to the development of methods for improving 

performance in MCMC applications. A number of review and summary papers are available, 

including Gilks and Roberts (1996), Gelman et al. (1996b) and Kass et al. (1998). Central to the 

performance issue is the detrimental effect of high correlations (Carlin and Louis, 2000, p i 62; see 

Sections 1.6.1 and 1.6.3) and a variety of methods have been suggested for speeding up 

convergence, including the 'feedback’ or so-called adaptive processes in which the MCMC output 

generated at a given point in time is used to alter some aspect of the simulation process. Adaptive 

MCMC simulation is mentioned in Section 1.6.2 in relation to Metropolis kernel updating. An 

alternative strategy is adaptive model reparameterisation based on previously obtained Metropolis 

output, with the objective of achieving a near spherical target distribution (Gelman et al., 1996b, 

p606). At the same time a near optimal transition rate can be obtained by rescaling the transition 

kernel. A related approach to model reparameterisation has been suggested in Gibbs sampling 

(Hills and Smith, 1992, Section 3). A number of researchers (Carlin and Louis, 2000, p i 62; 

Gelman et al., 1996b, quoting work by Gelfand and Sahu; Gilks and Roberts, 1996, p99) have 

noted the need for caution regarding adaptive MCMC simulation since the resulting output is not, 

in general, a stationary Markov process. Nevertheless, it has been demonstrated that regular
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updating schemes can yield stationary chains (Carlin and Louis, 2000, p i62, quoting Mira and 

Sargent, 2000).

1.6.4.1 Reparameterisation methods

The preceding paragraph refers to adaptive reparameterisation methods. In essence, these methods 

are empirical. In some cases, however, convergence can be helped at the outset through a rational 

reparameterisation of the physical model, effective independence among the parameters being the 

objective (Gelman et al., 1995, p334). A number of approaches have been outlined, some of which 

are discussed below. Related to reparameterisation is a hierarchical blocking approach to 

acceleration (Carlin and Louis, 2000, p i63) in which the model parameters are updated in blocks, 

each consisting of a set of highly correlated parameters.

The numerical approach

Hi-conditioning due to lack of independence is a well-known problem in several areas of 

numerical analysis, and a number of approaches to accelerating convergence in linear models 

MCMC have their origin in the numerical methods discipline. Among these is the application of 

orthogonal transformations/rotations and parameter scaling, the former of which is aimed at 

achieving approximate posterior independence among the model parameters (Gilks and Roberts, 

1996, p93; Kass et al., 1998, p95-6). For example, an initial Gram-Schmitt orthogonalization 

(Strang, 1980) of the entire parameter space can be performed (Gilks and Roberts, 1996, p93), 

which can be conceived as a numerical alternative to the analytical reparameterisation mentioned 

in the preceding paragraph. It has been suggested, however, that this kind of algorithmic 

transformation is problematic in high-dimensional problems (Kass et al., 1998, p95). Furthermore, 

orthogonal transformation and related methods are restricted to linear problems. Nonlinear 

problems are more difficult (Gilks and Roberts, 1996, p96), although Hills and Smith (1992, p228) 

discuss a reparameterisation based on residuals.
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An alternative procedure founded on orthogonal transformations is an adaptive algorithm in which 

subsidiary Metropolis iterations are used within a Gibbs algorithm, combined with regular 

parameter space transformation (Carlin and Louis, 2000, pages 160 and 170, citing Müller, 1991). 

Each update is based on the covariance matrix estimate provided by the current MCMC output, 

but with the refinement that a Cholesky decomposition is performed to obtain an orthogonal basis 

for the parameter space. The computational cost associated with approximating the covariance 

matrix with sufficient accuracy has been noted, however, and this limits the feasibility of this 

approach in high-dimensional applications. Overrelaxation (Carlin and Louis, 2000, p i62) is 

another approach to convergence acceleration that has its origins in the numerical methods field, 

in the sense that it is related to the Gauss-Seidel/overrelaxation algorithms (Strang, 1980) for 

solving linear equations. It achieves an improvement in performance by ensuring that each new 

sample is negatively correlated with the previous one, thereby suppressing the random walk 

generated by the basic Gibbs sampling and Metropolis algorithms (Kass et al., 1998, p97; Neal,

1995).

As stated previously, a considerable effort has been made to improve the efficiency of the basic 

Gibbs sampling and Metropolis algorithms. This subsection has provided a brief overview of some 

of this work, much of which centres on model reparameterisation. It is appropriate to conclude by 

reiterating the point that an alternative strategy can be adopted in Metropolis MCMC, namely the 

updating method in which the transition kernel is tailored to the target distribution, as described in 

Section 1.6.2.

1.6.4.2 Hybrid and related algorithms

A variety of hybrid schemes or mixture algorithms have been suggested for obtaining an improved 

sampling of parameter space, the central feature of which is algorithm switching. For example, 

Metropolis MCMC can be implemented by using a set of alternative transition kernels which are 

used in a cycle (Carlin and Louis, 2000, pl59-160). In addition, hybrid algorithms can be used to
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force an occasional jump across parameter space, thus reducing autocorrelations while, apparently, 

preserving convergence to the stationary state (Carlin and Louis, 2000, p i59; Gilks and Roberts, 

1996, p i 10). A related issue that has received some attention is the need for algorithms capable of 

forcing jumps between poorly connected regions of parameter space (Kass et al., 1998, p96; Gilks 

and Roberts, 1996, p i02). Other mixing strategies include random swapping between different 

parameterisations (Gilks and Roberts, 1996, pi 10). An associated technique is a simulated 

tempering approach (Kass et al., 1998, p96; Gilks and Roberts, 1996, p i04; both provide 

references to simulated tempering in MCMC) for generating random interchanges between a set of 

MCMC chains.

1.6.4.3 Random coefficients model hierarchical centering

As stated previously poor mixing is a frequent occurrence in MCMC simulation work. Although a 

given problem might be inherently pathological due to lack of identifiability, the choice of model 

parameterisation can dramatically affect the shape of the surface. Hierarchical random coefficient 

models are known to be particularly problematic in this respect due to the high posterior 

autocorrelations and cross-parameter correlations involving the random coefficients. A lack of 

information about the variance components has been implicated as an additional cause of slow 

mixing (Gilks and Roberts, 1996, p96). In particular a problem arises when the MCMC sampler 

enters a region of parameter space in which one of more of the posterior random effect variances 

is small. MCMC algorithms sometimes fail in this situation because these regions tend to trap the 

MCMC output, effectively preventing a proper sampling of the target distribution (Raftery and 

Lewis, 1996, pl28; Gilks and Roberts, 1996, p96). This occurs, however, only if the variance 

component prior distribution has nonzero probability close to zero\ and an acceptable solution

 ̂DuMouchel and Watemaux (1992, discussion contribution to Morris and Normand, 1992), 

Spiegelhalter (1995a, Section 9.2) and others have discussed the related impropriety issue that 

arises in connection with random effect variances, pointing out that = 0  can be supported by a
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might be a change in prior specification to incorporate an appropriate lower bound that excludes 

zero (Gilks and Roberts, 1996, p96). The rationale for imposing this constraint is the argument 

that a given variance should not be small if a random effects attribute is deemed necessary at the 

outset. This problem aside, in many cases a marked improvement in performance can be achieved 

by reducing the level of posterior correlations through a reparameterisation of the random 

coefficients. One approach is to use so-called hierarchical centering in which a strictly hierarchical 

structure is adopted among a set of random effects, each of which is centred about the mean 

defined by the next level in the hierarchy. Gelfand and co-workers have provided a thorough 

treatment of hierarchical centering, as applied to both normal linear models (Gelfand et al., 1995) 

and generalised linear models (Gelfand et al., 1996). A brief outline of the former is given below. 

Vines et al. (1996) have proposed an alternative scheme, based on the observation that random 

coefficient models are typically overparameterised. This arises because the random coefficients 

are usually expressed as deviations from a population mean, resulting in an inevitable strong 

posterior correlation between each random coefficient and the associated mean. Accordingly, the 

authors suggest a change in parameterisation to one in which each random effect is expressed as a 

deviation from its sample mean. This reparameterisation assumes, however, that the purpose of the 

analysis is an evaluation of the random effects relative to their overall mean as opposed to the 

absolute random effect and grand mean estimates (Vines et al., 1996, p341-2). Gilks and Roberts 

(1996, p95) refer to this method as reparameterisation by sweeping. Hierarchical centering is 

better known and has become established as a useful approach to the parameterisation of linear 

random coefficient models. It is unfortunate that no general approach has been devised for 

nonlinear models (Gilks and Roberts, 1996, p96).

non-negligible likelihood, leading to an improper posterior, if allowed under the variance 

component prior distribution (e.g., a prior of the form p{cr\) oc 1 / ).
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Hierarchical centering details

Hierarchical centering is the name given to the reparameterisation scheme in which random 

effects are centred about their respective population means (Kass et al., 1998, p95; Gilks and 

Roberts, 1996, p94). Gelfand et al. (1995) provide a useful introduction using the simple random 

effects model

[1.43]

[1.44]

Level 1: +/?/, + %

Level 2: Sy  ̂ ~ Py ~ #(0,(T^), a,- ~ #(0,Œ^), p ~ N{pQ,cr\).

Hierarchical centering yields the alternative parameterisation

Level 1: Yŷ  + %
Level 2: Py = yu + a , + Py = + py

Level 3: 77, = / /  + «,

Level 4: %  ~ 7/(0, cr] ), Py ~ V(0, ), a,- ~ V(0, c r^ ) ,p -  V (po, )•

The first model consists of two hierarchical levels while the second has four. The important 

feature of the centred parameterisation is the manner in which, at each level, the random 

coefficient term is centred with respect to the next level in the hierarchy. Thus the units 77, are 

centred about //, the units py are centred about 77, and the units Yÿk are centred about py. It should 

be noted that the two models have identical sample space dimensionality. The potential for 

improved performance afforded by hierarchical centering has been shown through an examination 

of the simpler two-level model given previously (equation [1.40])*. After centering the model 

becomes y  y = 7 7, + s  y , 7 7, ~ N{p, ), s  y ~ N{0, ct\ ), and the resulting posterior correlations are 

(Gilks and Roberts, 1996, p94; Gelfand et al., 1996)

[1-45]

* Hierarchical centering is examined in Appendix C. In particular, Fig. C.l provides an example of 

the gain in performance that can be achieved by adopting an hierarchical centred parameterisation, 

relative to the performance of a non-centred model.
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■ [1.46]

These equations show that, in contrast to the properties of the non-centred model, mixing 

improves as cr^, 7M and n increase. Thus a reversal of the relationship between the magnitude of 

cj^ and the posterior correlation behaviour is achieved (compare [1.45] and [1.46] with [1.41] and 

[1.42]). Among the models examined by Gelfand et al. (1995) are those that are not naturally 

hierarhical, such as the 2 -way additive model

Yy = P + OCi + Pj + Sy. [1 .47]

Simulation results indicate that centering the effect with the larger posterior variance can lead to 

improved performance (Gelfand et al., 1995, p486). Accordingly the general recommendation is to 

centre effects having large posterior variances relative to the residual variance, together with all 

effects lower in the hierarchy (Gelfand et al., 1995, p486; Gilks and Roberts, 1996, p94).

1.7 Convergence assessment. Formal tests of convergence

Convergence is an issue of fundamental importance to MCMC statistical inference. Given a 

Markov chain, , convergence is met at the point ti provided the MCMC output is

stationary for all t > ti. Thus an MCMC algorithm is described as having converged when its 

output behaves as coming from a stationary distribution. An informal definition of the stationary 

condition is the absence of any systematic change in the mean or variance, after removing any 

strictly periodic variation (Chatfield, 1989, p i0). More formally, a time series is strictly stationary 

if the joint distribution of X(?i),..., X(?„) is the same as the joint distribution of X{t-  ̂+ t),

..., X{t„ + t )  for all r  (Chatfield, 1989, p28). The main point to note is that, due to the

stochastic nature of the problem, the goal is to achieve convergence to a distribution as opposed to 

convergence to a point. Given the central role of MCMC-simulation in the work presented in this 

thesis it is necessary to define a Markov process and some related concepts, starting with the 

definition of a process as any function of time, stochastic or deterministic, that specifies the 

instantaneous state of a system (Gillespie, 1992, page xi). An important subclass of processes are
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stochastic and memoryless^ meaning that the value X{t) determines the probabilistic behaviour of 

X{t + r), uniquely. Thus, given a memoryless stochastic process, any probability 

assignments p{X{t + r)) based on the value X(0 cannot be improved by using information 

X {t'),t' < t (Gillespie, 1992, page xii). The process forgets past values. Memoryless stochastic 

processes are referred to as Markov process after the Russian mathematician A.A. Markov (1856- 

1922).

It is clear from the preceding overview of the MCMC literature that the convergence issue is 

central to the MCMC method, as applied to Bayesian statistical inference. An assessment of 

output convergence is a necessity because the statistics derived from the MCMC output are invalid 

if it is not achieved. Furthermore, the magnitude of the discrepancy (bias in both the parameter 

and precision estimates) between the simulation results and the target statistics is unknown. Some 

degree of serial correlation is expected within the chains generated by a Markov process, and the 

chain length required to reach convergence increases with increasing autocorrelation. The latter is 

unknown at the start of the analysis. It is, therefore, incumbent on the analyst to demonstrate 

convergence, either formally or by using some informal procedure to show that the posterior 

distribution is sampled adequately. Care must be taken to ensure that sufficient accuracy and 

precision are both achieved. Serial correlation rules out any simple estimation of simulation error, 

but estimates can be obtained, post simulation, by using the time-series methods described below.

Rigorous mathematical treatments have provided theoretical results on the relative convergence 

rates of various competing algorithms and bounds on the number of iterations needed to ensure 

that a distribution is obtained within some specified limit of a given true stationary distribution 

(Carlin and Louis, 1996, pages 186 and 189; Carlin and Louis, 2000, pages 174 and 176). It 

appears, however, that theoretical results are seldom used in practice and that an alternative 

convergence diagnostic approach is used in the majority of applied analyses. The question that 

must be addressed is the point at which a given MCMC output can be terminated and treated as 

representative of the required stationary distribution. The aim is to determine the extent to which
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inferences based on a given Markov chain differ from the intended target results. An informal but 

extremely useful approach to acquiring this information is to run several parallel chains started at 

remote positions within parameter space (overdispersed starting points). Overlaid parallel chain 

trace plots provide an immediate visual indication of convergence problems since this results in a 

failure to obtain good overlap over the entire length of the set of chains in one or more parameters. 

Poor mixing among the chains indicates inadequate sampling of the posterior distribution. This 

behaviour arises when a high degree of serial correlation causes the sampler to move slowly 

within a local region of the target distribution. Assuming the level of serial correlation is 

insufficient to cause overwhelming problems, convergence is achieved at some point given a 

sufficient number of iterations. It is then necessary to discard the initial nonstationary portion of 

each parallel chain. This section of the chain is referred to as the bum-in period, and the question 

arises as to the number of samples that should be discarded. Various diagnostic procedures have 

been developed to address the two key questions, i.e., the number of iterations to discard as bum- 

in, and the chain length required for adequate sampling of the posterior distribution. Both depend 

on the level of correlation.

Types of convergence diagnostic

Convergence diagnostic methods can be distinguished according to several key features (Carlin 

and Louis, 1996, pl91; Cowles and Carlin, 1996, p884). Some are designed to produce 

diagnostics based on a single MCMC chain while others require at least two parallel chains. Some 

apply to univariate MCMC output while others can be used with the full joint posterior sample. 

Some diagnostics are restricted in their application to chains produced using the Gibbs sampler, 

some work with a specific subset of MCMC schemes, while others can be applied to any MCMC 

output. Some methods are quantitative and produce a summary diagnostic parameter, while others 

are qualitative in the sense of producing graphical output designed for visual inspection. Finally, 

most focus on estimating bias, while other methods provide estimates of precision. The following 

description is restricted to three particularly well-known diagnostics. The Gelman-Rubin 

diagnostic was selected as an example parallel-chain test while the Geweke method was selected



- 6 5 -

as a single chain diagnostic. Finally, the Raftery-Lewis diagnostic was selected as a commonly 

used method for assessing precision. All three methods are restricted to univariate MCMC output, 

but with no constraint on the type of algorithm used to generate this output.

Software

A number of software routines are available for performing MCMC convergence diagnoses 

including CODA (Convergence Diagnosis and Output Analysis software) and BOA (Bayesian 

Output Analysis Program). These two programs consist of a set of menu-driven S-Plus functions, 

also available in an R language implementation (the latter referred to as R-CODA). In addition to 

providing a comprehensive set of diagnostics, both programs include various statistical and 

graphics tools. CODA is supplied as a supplement to the BUGS/winBUGS Gibbs sampler 

program.

1.7.1 The Gelman and Rubin diagnostic

The Gelman-Rubin diagnostic is concerned with bias and requires at least two univariate parallel 

chains with overdispersed starting points (Gelman and Rubin, 1992a, 1992b; Gelman et al., 1995, 

p331; Gelman, 1996; Cowles and Carlin, 1996; Brooks and Roberts, 1998). It is based on an 

ANOVA-type estimation of the within- and between-chain variance, and uses this to provide an 

index of convergence. Specifically, given J  parallel chains of length n, the Gelman-Rubin 

convergence diagnostic is based on the so-called scale reduction factor {R )  which is defined by

4 k  =
w

where

var+(V/|y) [1.48]

var+((i/|y) = — [1. 49] 
n n

with
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, 2  _  1 ^  _  1 ■'
v? . . = 7 E v',

/ - '  „ '=' [1.50]

^ = j é ^ h
7=1 /=1

Thus, var"^(^|y) is a weighted average estimate of the marginal posterior variance of the estimand 

in question involving the between-chain variance (B) and the within-chain variance, (fV). Gelman 

and Rubin (1992, p463) show that this weighted average, which uses an ANOVA-like partitioning 

of mean-squares, provides an unbiased estimate of the target distribution variance, provided the 

stationarity condition is met.

Given a set of parallel chains with an overdispersed distribution of starting points, the observation 

that the resulting average within-chain variance (fV) does not exceed the between-chain estimate 

of the variance in the chain means, B/n, by a substantial amount indicates that the parallel chains

are far removed from a common distribution. Under these conditions, var'^(^|y) overestimates 

the marginal posterior variance, var(^ |y ), while W is an underestimate and the scale reduction 

factor provides a measure of the magnitude of the extent to which the scale of the current 

distribution might shrink if sampling were continued indefinitely ->1 as n ->  oo ). To 

summarise, the method is based on an ANOVA-like construction of an over- and underestimate of 

the variance of the target distribution, with the property that the two estimates become 

approximately equal at convergence, but not before. The Gelman-Rubin diagnostic can be applied 

to any type of MCMC output. The approach is univariate, but can be used with -21og(posterior 

density) as a mechanism for examining the convergence of the joint density (Cowles and Carlin, 

1996, p885). The recommendation is to examine all model parameters and other quantities of 

interest, including parameter functions (see, for example, Gelman et al., 1995, p331; Gelman,

1996). Each should have a near normal distribution for the method to work well. Transformation 

is, therefore, recommended using logits, for example, in the case of estimands bounded by zero
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and unity. The Gelman-Rubin diagnostic is critically dependent on the identification of a set of 

overdispersed starting points, a feature that Carlin and Louis (1996, p i93) find dubious.

Some analysts apply the Gelman-Rubin diagnostic to the second half of each of a set of parallel 

chains and calculate the scale reduction parameter 50% and 97.5% quantiles (Gelman et al., 1995, 

p332; Best et al., 1995, pl9; Cowles and Carlin, 1996, p885). The recommended criterion for 

convergence is that both quantiles are close to unity. If satisfied, the second half of each chain is 

used to form a composite sample from which the required statistics are generated. This is, of 

course, extremely wasteful in terms of CPU resources, and alternative approaches have been 

adopted based on Gelman-Rubin plots.

Gelman-Rubin plots

The CODA and BOA packages both produce shrink factor plots using the following protocol. 

Each chain is divided into a number of segments, the first consisting of samples 1 to 50 (or some 

larger number when dealing with long chains), the second consisting o f samples 1 to 50+%, the 

third consisting of samples 1 to 50+2%, etc. The Gelman-Rubin shrink factor median and 97.5% 

quantile is computed for the second half of each segment and plotted against the maximum 

iteration number of the segment. Convergence is indicated if the plots obtained for all model 

parameters stabilize around a value of unity at some point. Since the diagnostic is based on the 

second half of each chain, convergence can be assumed to have occurred at the midpoint of the 

first segment giving a shrink factor median and 97.5% quantile close to unity.

1.7.2 Geweke’s spectral density diagnostic

The Geweke convergence diagnostic is based on a time series (signal processing) approach to 

making a comparison of the means of two portions of a single chain (Geweke, 1992; Brooks and 

Roberts, 1998; Cowles and Carlin, 1996). The two segments, which may be unequal in length.
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should have similar means if the chain is stationary. The comparison uses a spectral density 

estimate of the asymptotic variance of the parameter in question. Accordingly, the Geweke Z- 

score is defined as

[ ,5 i ]
j — Se"(0)+—4"(0)

where Sq (0 ) is the spectral density variance estimate provided by the kth segment, and is the 

segment length. Z„ should have an approximate standard normal distribution given a stationary 

chain. An excess of Z-scores outside the 95% confidence interval of the standard normal 

distribution indicates that the chain is not fully convergent over its entire length. The form of the 

Geweke Z-score follows from the Wiener-Khintchine Fourier relationship between the normalised 

power spectral density, and the autocorrelation function,/?(r), together with the

relationship between var[x] and p (r) (the latter is given in Priestley, 1981, equation 5.3.5). The 

Wiener-Khintchine Fourier relationship is

where F„orm(co) is the normalised spectrum of the process, X(t). Thus, it follows that

varF « (27r<T̂  /  N)S„,„(0) [1.53]

as shown by Priestley (1981, equation 5.3.7) where <r̂  = var[ZJ. The Geweke diagnostic can be 

applied to any MCMC chain, but among its limitations is a sensitivity to the manner in which the 

two segments (spectral windows) are specified (Cowles and Carlin, 1996, p 8 8 6 ).

Geweke diagnostic plots

CODA and BOA both include a routine for plotting the Geweke Z-score based on the following 

procedure. Given a chain consisting o f #  samples, a number of chain segments are formed, the
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fîrst consisting of all N  samples, the second consisting of the last N-n samples, the third consisting 

of the last N-2n samples, etc. The Geweke Z-score is calculated for each segment and plotted 

against the sample number at which the segment starts. An abundance of Z-scores outside the 

range +/-1.96 suggests convergence failure. Large Z-scores restricted to early chain segments are 

attributed to bum-in and these samples discarded.

Methods for assessing simulation error

The preceding convergence diagnostics are concerned solely with the estimation of bias in the 

MCMC estimates. Although bias might be the main worry in the first instance, the precision of the 

MCMC sample statistics must be determined at some stage. Given the posterior estimate

£(% ) = !;, [1.54]
(=1

for some parameter or function of interest (A), as obtained by combining chains after discarding 

bum-in iterations, a naïve estimate of the simulation standard error can be calculated using

[1.55]

But this estimate ignores autocorrelation in the sample and is, therefore, anti-conservative. An 

improved estimate is obtained by using the effective sample size N/k{X) (Kass et al., 1998, p99; 

Carlin and Louis, 2000, p i71), where k(A.) is the autocorrelation time given by

=  [1.56]
k = l

and p,  ̂(À) is the autocorrelation at lag k  for the parameter of interest.

A number of alternative approaches to standard error estimation are documented, including the use 

of a sample obtained by taking the Ath iteration from each of m independent chains, or retaining
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every Ath sample from a given chain, with k  sufficiently large to achieve approximate 

independence (Carlin and Louis, 1996, p i95; Carlin and Louis, 2000, p i71). The former 

procedure is extremely wasteful of CPU time since the proportion of retained MCMC output is 

extremely small. The latter procedure is referred to as thinning and has been discussed in Section 

1.6.1. Yet another method, based on batching, divides each MCMC chain into m segments 

(batches) of sufficient length to ensure that the correlation between segments is negligible. A 

subsequent calculation using the segment means (J5,) yields (Carlin and Louis, 2000, p i72)

A 1 ^  _
yMbatch{Xj^)= - • [1-57]

CODA provides the following three standard error estimates: (1) the naïve estimate provided by 

the sample standard deviation divided by the root of the number of iterations; (2 ) a time-series 

estimate given by the root of the spectral density variance estimate divided by the sample size; and

(3) a batch estimate calculated as outlined above (Best et al., 1995, p i4). The degree to which 

these estimates are dissimilar depends, in part, on the degree of autocorrelation in the sample. The 

Raftery-Lewis analysis, which is described in the following subsection, provides an alternative 

method for assessing simulation accuracy.

1.7.3 The Raftery and Lewis convergence rate test

The following outline is based on Raftery and Lewis (1992, 1996), Cowles and Carlin (1996, 

p885) and Brooks and Roberts (1998). The Raftery and Lewis (1992) diagnostic is used to detect 

convergence to a stationary distribution in a single chain and to obtain bounds on the accuracy of 

the estimated quantiles. An estimate is provided of the number of iterations (#) required to obtain 

a given quantile to some specified accuracy, taking into account the correlation between samples. 

In addition, the number of iterations displaying bum-in behaviour is indicated together with the 

thinning number, k. The latter refers to the maximum proportion of samples (LA:) that may be 

retained in order to achieve independence within the chain, given an MCMC process with non-



- 71 -

negligible autocorrelation. Standard implementations of the Raftery-Lewis diagnostic provide two 

additional parameters, namely Nmin and I. #min is the minimum number of iterations required to 

achieve the specified accuracy given independent samples, /  is a measure of the increase in chain 

length required to compensate for dependence in the sample (1 = N I ). #min is based on the 

binomial variance (see, for example, Raftery and Lewis, 1996), leading to the counterintuitive 

result that the number of iterations required to estimate quantiles near the median to a specified 

accuracy is greater than the number required for a quantile in the tails. To be specific, suppose the 

posterior quantile estimate g=Prob(À<n|T) is required to within ±r units with probability s. The

required standard error is given by r/z, where z = and 0 '^(.) is the standard normal

cumulative distribution fiinction. Thus, assuming independence among the samples, the required 

sample number follows from the binomial variance and is given by = q{l -  q)z^ ! r^. An 

example calculation is given by Raftery and Lewis (1996), in which they suppose that the quantile 

^/=0.025 is required to within ± 0.0125 units with probability 0.95, The required sample number 

(#min)j assuming independence, is approximately 600. Taken together with an identical 

specification for ^„=0.975, it then follows that a true posterior interval coverage of between 0.925 

and 0.975 will be achieved in 95% of applications.

Briefly, the remaining parameters provided by the Rafteiy-Lewis procedure are calculated as 

follows. The thinning parameter, k, is determined by comparing a Ist-order Markov model against 

a 2nd-order model, using the Bayes information criterion (BIC) to determine the smallest value of 

A: for which the Ist-order model is preferred [Raftery and Lewis, 1992 (p765), 1996 (pi 16);

Brooks and Roberts, 1998, (p331)]. Finally, Markov chain theory is used to determine the number 

of initial (bum-in) iterations to discard in order to obtain a chain that is within some specified limit 

of its estimated stationary distribution (Rafteiy and Lewis, 1992; Cowles and Carlin, 1996, p885; 

Raftery and Lewis, 1996, pi 17).
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1.7.4 Autocorrelation and cross-correlation

As stated previously, autocorrelation is a major issue in MCMC simulation-based statistical 

inference because it has a direct impact on efficiency. Similarly, parameter cross-correlation has a 

detrimental effect on the Gibbs sampler (see Sections 1.6.3 and 1.6.4), and can affect the 

efficiency of the Metropolis algorithm if the transition kernel is not well matched to the target 

distribution. Some statisticians might argue that autocorrelation and cross-correlation are no 

longer a major concern in these days of cheap computing power, since poor efficiency can be 

overcome by increasing the sample number, as required to achieve a given accuracy. In contrast, 

others suggest that some attention should be paid to this issue because a marked level of 

correlation indicates that some form of reparameterisation is required (Best et al., 1995, p26-7; 

Gelfand et al., 1995,1996; Carlin and Louis, 2000, p i83). Accordingly, CODA and BOA provide 

options for generating auto-correlation tables and plots, together with cross-correlation data. As 

stated previously, thinning is suggested by some analysts as a mechanism for reducing the level of 

autocorrelation. Gelman (1996, p i40) points out, however, that thinning offers no advantages 

except for reduced storage and computational costs (see Section 1.6.1 for additional information).

1.8 MCMC in practice. A summary of recommendations and 

comments

In an ideal situation the analyst would know how well the simulated distribution approximates the 

target distribution. In practice, however, the latter will always be unknown . This is a fundamental 

problem and it follows that no diagnostic procedure can prove convergence. The analyst is forced 

to adopt a pragmatic approach. Fortunately, an abundance of practical experience has been 

accumulated over the past decade or so, and a number of MCMC texts and review papers have 

been published in which the major practical issues are discussed. On the whole a broad consensus 

exists regarding good practice, although, of course, some differences remain regarding details.
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Experience bears out the benefits of using a set of initially overdispersed parallel chains as a 

simple mechanism for detecting convergence problems. The essential problem with the single 

chain approach is that single-chain diagnostic tests may fail to detect significant convergence 

failure [Gelman and Rubin, 1992a, 1992b (pages 458 and 471); Gelman, 1996 (p i32-3); Raftery 

and Lewis, 1996 (p i28)]. Thus, convergence cannot be assumed solely because a single-chain 

diagnostic test appears satisfactoiy. The importance of performing a visual inspection of parallel 

chain trace plots has been emphasised by a number of analysts. Interestingly, one participant in a 

'roundtable discussion on MCMC practice' does not use any formal test of convergence, but relies 

entirely on autocorrelation estimates and a visual inspection of trace plots, including the 

log(posterior density) trace plot (contribution from Neal to the discussion in Kass et al., 1998, 

p95). A final point discussed by Kass et al. (1998, p95) is the situation in which all parameters of 

interest exhibit convergence while one or more of the remaining parameters fail to meet the 

convergence criteria. Clearly, any temptation to use the MCMC output without satisfying 

convergence on every parameter should be resisted because the true distribution of any individual 

parameter must be uncertain until the entire target distribution is sampled adequately.

The following general recommendations have been compiled from a variety of sources, including 

Gelman et al. (1995, p322), Carlin and Louis (1996, p i96), Gelman (1996) and Kass et al. (1998).

• Run a number of chains starting at points taken from a distribution believed to be over 

dispersed with respect to the stationary distribution, covering, for example, ±3 standard 

deviations from the prior mean. The starting points might be chosen systematically rather 

than at random (Carlin and Louis, 1996, p i96; See Section 1.6.1 for additional information).

• Visually inspect overlaid chain trace plots for each parameter.

• Investigate cross-correlations among parameters suspected of being nearly confounded.
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• When working with hierarchical models, examine all fixed effect parameters, some variance 

components and a few well-chosen random effects (say two individuals at opposite 

extremes).

• Use several alternative convergence diagnostic tests rather than any one method, although 

some analysts might focus on a particular diagnostic in the first instance. For example, both 

Gelman (contribution to the discussion in Kass et al., 1998, p94-5) and Carlin and Louis 

(1996, pi 96) pay attention to the Gelman-Rubin shrink factor during the initial stages of an 

analysis. Gelman aims for a value less than 1.2 in every parameter.

Finally, the desirability of using several alternative MCMC algorithms has been noted, although 

this might be impractical.
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2. METHODS

2.1 Experimental methods

Brief descriptions of the experimental and data acquisition methods are given in each of the 

relevant chapters as follows: the DC-potential/ADC study methods in Chapter 3 (Section 3.2.1), 

(the same data are used in the ADC threshold analysis of Chapter 4); the electron spin resonance 

Arrhenius changepoint study methods in Chapter 5 (Section 5.2.1); the intestinal ischaemia- 

reperfusion study methods in Chapter 5 (Section 5.2.2). These details are provided mainly in the 

form of references to published experimental methods, with the exception of the unpublished 

electron spin resonance work, which is described in greater detail.

2.2 Statistical methods

A complete description of the statistical model used in the DC-potential/ADC latent variable study 

of Chapter 3 is given in Section 3.2.2. Section 4.2.2 provides additional details relating 

specifically to the ADC threshold analysis of Chapter 4. The electron spin resonance Arrhenius 

changepoint and the intestinal ischaemia-reperfusion changepoint statistical models are described 

in Section 5.3.

The DC-potential/ADC latent variable and ADC threshold simulation analyses were both 

performed using Markov chains generated using the Metropolis algorithm (see Section 1.5.5). 

These simulations were performed using software written in SASIML (SAS Institute, 1990). With 

the exception of convergence testing, all subsequent analyses were performed using SAS 

procedures (SAS Institute, Cary, NC., USA.). In particular SAS/GRAPH was used to generate the 

graphical output (overlaid chain plots, trajectory plots, etc.) that are an important component of 

the work. Markov chain convergence testing was performed as outlined below (Section 2.2.2).

The same basic approach was used in the changepoint Metropolis MCMC simulation analyses of 

Chapter 5. For comparison Gibbs sampler (winBUGS) MCMC changepoint analyses were also 

performed. Additional details regarding the changepoint MCMC methods are given in Section 5.3.
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2.2.1 Metropolis transition kernel. Initial estimate and adaptive updating 

procedure

DC-potential/ADC analyses

A key to the successful implementation of the Metropolis algorithm, especially when applied to 

problems containing a large number of parameters, is the choice of transition kernel, since a 

considerable gain in efficiency is achieved by using a kernel that matches the target distribution 

(see Sections 1.6.2 and 1.6.4). Specifically, given a multivariate normal (MVN) target distribution 

(a transformation can be used to achieve an approximate MVN target, if necessary), a general rule 

states that near optimum efficiency (i.e., near optimum performance in terms of the rate of 

convergence to a stationary distribution) is obtained by using a MVN transition kernel with

covariance , c «  2.4 / 'Jd  , where E is the covariance matrix of the target distribution, and d  is 

the number of parameters. This gives an acceptance rate of about 0.23 for problems with <7 > 5 

(Section 1.6.2). Thus, a starting estimate of Z is required in order to calculate the transition kernel. 

In addition, this estimate is used to generate a set of overdispersed starting points for the set of 

parallel chains. The procedure used to obtain an estimate for E and to generate a suitable transition 

kernel is outlined in the following paragraphs. The MCMC simulations of Chapters 3 and 4 [i.e., 

the DC-potential/ADC (V dc-A DC) response analyses] were found to be particularly sensitive to 

the choice of transition kernel, mainly because the number of parameters is large (134). The 

following description refers specifically to the procedure used in that work. The changepoint 

problem of Chapter 5 is relatively easy in terms of transition kernel initialisation. The same 

general procedure was adopted, however, as described at the end of this section. Referring to the 

V dc-ADC simulation analysis, the random coefficients were held at fixed values obtained by 

fitting each individual curve (or set to reasonable values, if an individual nonlinear regression 

calculation failed to converge). Initial fixed-effect parameter variance estimates were then derived 

from bivariate likelihood plots, taking parameter pairs selected on the basis of their potential for
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correlation. Accordingly, the transition rate and associated transition-time parameters were taken 

in pairs and the transition scaling and location parameters were treated in pairs. These estimates 

were used to construct a starting diagonal transition kernel which, in turn, was used to perform a 

preliminary simulation. Three parallel chains were generated, two of which were started at 

positions in parameter space well removed from the first chain. The latter was started using 

individual-specific least-squares parameter estimates and other approximations to the posterior 

mode. At this stage, the same transition kernel was used for the random-effect and fixed-effect 

parameters. The sample obtained by combining the three parallel chains was used to calculate a 

target distribution covariance matrix estimate, which was used, in turn, to calculate an updated 

transition kernel. The equality of the fixed-effect and random-effect parameter transition kernels 

was lifted at this second stage, since the first stage parallel chains permit the estimation of separate 

fixed- and random-effect transition kernels. This iterative transition kernel updating procedure 

(referred to as manual updating in the following paragraphs) was repeated, as required, to obtain a 

satisfactory transition kernel. At each stage overlaid trace plots were produced for each parameter 

and used to assess performance based, at this stage, on visual inspection alone. A failure to obtain 

a good overlap over the entire length of the set of overlaid trace plots was taken to indicate 

convergence failure caused by inadequacy in the transition kernel. After several iterations 

satisfactory overlaid trace plots were obtained.

In addition to the manual updating scheme outlined in the preceding paragraph, a within-chain 

transition kernel updating procedure was also incorporated into the algorithm. Within-chain 

updating was based on a covariance matrix calculated using a preceding segment of the current 

chain. This gives rise to a within-chain adaptive algorithm in which transition kernel updates are 

performed at intervals using a moving window approach. Despite the use of this within-chain, 

moving-window updating procedure, good performance was not achieved without first going 

through several cycles of the manual parallel chain transition kernel updating sequence. The 

manual updating procedure is particularly effective because the extra dispersion reflected in the 

set of partially offset chains obtained for the parameters that fail to converge to a common
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distribution serves to increase the estimated variance, relative to the variance estimate provided by 

any of the chains in isolation. This depends, of course, on the provision of a set of suitably 

overdispersed parallel chain starting values. Thus the dispersed nature of the parallel chains 

obtained for the subset of problem parameters causes their variance estimates to become inflated, 

while the variance estimates obtained for the remaining parameters, ie., those exhibiting good 

overlap among their parallel chains, will be relatively unaffected by the update. The resulting 

increase in the subset of transition kernel elements causes a more rapid movement over the 

corresponding parameter space during the next-stage simulation run.

Although this manual updating procedure was successful in the sense that a given set of problem 

parameter chains always showed a markedly improved movement through parameter space, as 

reflected in the overlaid chain trace plots obtained subsequent to the transition kernel update, in 

the initial stages this was accompanied by the introduction of poor coverage in one or more of the 

remaining, previously well-behaved parameters. Thus, some parameter chains found to be 

satisfactory at a given stage, as indicated by their overlaid trace plots, exhibited a marked 

deterioration in chain overlap at some subsequent stage in the manual updating sequence. 

Eventually, however, a transition kernel was generated that produced satisfactory overlaid trace 

plots for each of the 145 parameters in the model. At this stage the manual updating procedure 

was terminated. Then, using the transition kernel generated at the last stage of the cycle of manual 

updates, three new parallel simulations were performed, each generating a parameter vector chain 

consisting of 9.6x 1 0̂  samples. Run-time thinning was applied at this stage (thinning ratio 1:100), 

giving 96,000 stored samples per chain. One chain was started with parameter values close to the 

median while the other two chains were started using an overdispersed value (approximately equal 

to the median plus-or-minus 3 standard deviations) for each parameter. Within-chain transition 

kernel updating was continued, initially, but the resulting changes were found to be negligible at 

this point. All updating was therefore terminated and the simulation continued. Given the 

negligible changes generated by the within-chain updates at this stage, the associated MCMC 

output was retained, together with all subsequent output. The resulting set of three parallel chains
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was subjected to several diagnostic tests of convergence, as outlined in the following section. 

Guided by the results provided by the Raftery-Lewis procedure, a 3000-sample bum-in section 

was subsequently removed from the start of each chain, after which the three chains were 

combined and used to generate the required parameter medians and quantiles (2.5% and 97.5%).

Changepoint analyses

The method used to establish a transition kernel in the changepoint simulation analyses of Chapter 

5 was similar to that described above, with the exception that a single manual transition kernel 

update was sufficient to generate a satisfactory kernel, as determined by a visual inspection of the 

resulting overlaid chain plots.

2.2.2 Convergence assessment

As stated above, a preliminary assessment of convergence was made through a visual inspection 

of overlaid trace plots. By starting the three parallel chains at different points in parameter space, 

two of which were overdispersed in every parameter, a failure to achieve a good coverage of 

parameter space was easily identified in the form of poor mixing of the parallel chains obtained 

for one or more parameters and a consequent failure to achieve good overlap over the entire length 

of the set of chains. The sequence of manual adaptive simulations, described above, was 

continued until this visual assessment indicated good coverage of parameter space. Then, using an 

overdispersed set of starting parameter values the simulation was restarted and a final set of 

parallel chains generated and used as input to the Geweke, Raftery-Lewis and Gelman-Rubin 

convergence tests, as implemented in the CODA (Convergence Diagnosis and Output Analysis 

Software for Gibbs sampling output) and BOA (Bayesian Output Analysis) programs (Best et al., 

1995). A brief description of these diagnostic tests is provided in Section 1.7, and a subset of 

results obtained in the DC-potential/ADC analysis is given in Section 3.3. In the initial stages of 

this work these analyses were performed on a Unix system using an S-Plus implementation of 

CODA (Version 0.4, obtained from URL http://www.mrc-bsu.cam.ac.uk). Subsequent calculations

http://www.mrc-bsu.cam.ac.uk
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were performed on a PC using R-CODA (obtained form URL http://www-fis.iarc.ff) and BOA 

(obtained from URL http://www.pmeh.uiowa.edu) running under the R language.

http://www-fis.iarc.ff
http://www.pmeh.uiowa.edu
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3. THE TEMPORAL RELATIONSHIP BETWEEN THE ADC 

AND DC-POTENTIAL RESPONSES TO TRANSIENT 

FOCAL ISCHAEMIA IN THE RAT

3.1 Introduction

3.1.1 Cerebral ischaemia*

Ischaemia is the term given to the condition in which tissue blood flow is reduced to an abnormal 

level, too low to support normal cell function. Ischaemia can be transient or persistent. 

Furthermore, cerebral ischaemia can be global, as occurs in cardiac arrest, or focal if, for example, 

it is caused by embolic occlusion of a small arterial vessel. Associated conditions are hypoxia and 

anoxia, the former of which indicates an inadequate supply of oxygen while the latter is the term 

given to the state in which there is a complete absence of oxygen. Impaired blood flow of 

sufficient severity and duration is accompanied by a disruption of cell membrane function and cell 

energy failure. The resulting ischaemic damage, which is reversible in the initial stages, is 

selective at both the regional and cellular level (Abe et al. (1995) and Griesemer et al. (2002) both 

provide references to the relevant literature).

The brain cannot store oxygen and has minimum reserves of energy yielding substrates. It is, 

therefore, critically dependent on a sustained delivery of glucose and oxygen via the blood. 

[Sokoloff (1976) and Siesjo (1981) both provide a brief overview of brain metabolism in relation 

to the effects of ischaemia/hypoxia.] Given a condition in which cerebral blood flow (CBF) starts 

to decline, the brain compensates initially by extracting a greater proportion of oxygen and 

glucose from the circulation, thus maintaining normal metabolism and function. But there is a

 ̂A brief review on cerebral ischaemia with an MRI emphasis is provided by Jacobs and Brant- 

Zawadzki (1992).
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critical CBF threshold below which it becomes impossible to support normal activity through an 

increase in oxygen and glucose extraction. Neurons in this condition become quiescent, although 

ion homeostasis is maintained. At this stage the subject becomes unconscious if the insult is 

global, or suffers selective loss of function if the deficit is focal. Beyond this limit any additional 

reduction in CBF causes a massive movement of ions between various tissue compartments and 

this is accompanied by cell death.

A host of biochemical and physiological events are associated with cerebral ischaemia, including 

brain oedema. As outlined in Section 1.2, MRI is, in essence, a water imaging technique. It is, 

therefore, sensitive to oedema, although the precise relationship between the various MR 

responses (relaxation rate and diffusion image changes) and oedema is not established. The 

present longitudinal study of the apparent diffusion coefficient (ADC)' and DC-potential (V dc) 

responses to focal ischaemia was undertaken to explore a particular aspect of this relationship.

The oedematous response to ischaemia consists of two distinct phases. In the initial phase, 

membrane ion pump failure occurs together with a consequent increase in intracellular water and 

loss of cell volume regulation. This is referred to as cellular or cytotoxic oedema. If this continues 

the blood-brain barrier becomes compromised and this allows a redistribution of plasma proteins 

and an accumulation of water via the remaining patent vessels giving rise to a second phase 

oedematous response referred to as vasogenic oedema. The latter occurs over a period of hours.

 ̂The term apparent diffusion coefficient was adopted in recognition of the fact that absolute 

values cannot be extracted from bounded-system pulsed field gradient data in the absence of 

additional information.
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3.1.2 MR diffusion imaging

The intrinsic sensitivity of the NMR signal to diffusive displacement (Hahn, 1950; Carr and 

Purcell, 1954) became established soon after the NMR phenomenon was first observed. This 

sensitivity to diffusion, which arises due to inhomogeneity in the magnetic field within the sample, 

is a nuisance in many applications. For example, it gives rise to a fundamental lower limit to the 

resolution that can be achieved in MR microscopic imaging (i.e., high resolution k-space imaging, 

Callaghan, 1991, p201). On the other hand, the deliberate application of a constant magnetic field 

gradient yields an increased sensitivity to diffusion, and NMR soon became established as a 

method for the precise measurement of diffusion in liquids (McCall et al., 1959, 1963). There is, 

however, a lower limit to the range of diffusion coefficients that can be measured with usefiil 

precision using the original steady-gradient method (Callaghan, 1991, p i62). This lower limit was 

reduced considerably through a modification in which a pulsed magnetic field gradient was 

employed (Stejskal and Tanner, 1965; Tanner and Stejskal, 1968), and the resulting pulsed- 

gradient spin-echo technique soon became established as a method for measuring both diffusion 

and coherent displacement in liquids, colloids and porous systems (Tanner and Stejskal, 1968; 

Callaghan, 1991, Chapters 6  to 8 ).

The measurement of tissue perfusion status (i.e., blood flow at the microscopic, cellular level) is a 

fundamentally important component of the neurological assessment that is carried out routinely in 

connection with a number of pathologies. Although a variety of techniques have been developed, 

none are entirely satisfactory (Bell, 1984; Calamante et al., 1999; Thomas et al., 2000). Soon after 

MRI became established in neurology, it was suggested that pulsed magnetic field gradient spin- 

echo imaging might be used to measure perfusion, based on the argument that perfusion can be 

regarded as a pseudo-diffusive process (LeBihan et al., 1986). This expectation was never 

realised, however, mainly because the calculations required to extract perfusion information from 

diffusion-weighted (DW) images are fundamentally ill-conditioned, and cannot produce useful 

parameter estimates (King et al., 1992). Nevertheless, it is fortuitous that pulsed-gradient spin- 

echo/stimulated-echo images were found to exhibit an unexpected sensitivity to one or more of the
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tissue changes that occur following an ischaemic insult (Moseley et ah, 1990a, 1990b). Within a 

short period of time diffusion-weighted imaging was shown to provide diagnostic information in a 

variety of neurological conditions (Doran et al., 1990). Furthermore, diffusion behaviour within 

bounded systems carries structural information (Callaghan, 1991, Chapter 7) and a so-called q- 

space variant of the pulsed field gradient stimulated-echo technique was developed with a view to 

obtaining structural data, in vivo, as it relates to the tissue response to a perfusion deficit (King et 

al., 1994, 1997a). Thus, although the original proposal to use pulsed field gradient imaging as a 

surrogate for perfusion imaging was never realised, pulsed field gradient imaging [commonly 

referred to as diffusion imaging or ADC mapping] is a central component of the neurological 

assessment of stroke patients. Furthermore, it is widely used in experimental stroke research, and 

is becoming established as a method for investigating other central nervous system pathologies 

(King et al., 1997b; Thomas et al., 2000).

Although DW imaging is used extensively in both clinical diagnosis and experimental stroke 

research, a consensus view of the processes involved in the DW image sensitivity to stroke 

remains elusive, despite almost two decades of research. Numerous investigations into the 

extracellular DC-potential response to ischaemia have also been performed and its temporal 

behaviour is well documented. Furthermore, the cellular electrophysiology of the ischaemic 

response is well established. A study was therefore undertaken to examine the temporal 

relationship between the extracellular DC-potential and ADC changes that occur during a transient 

ischaemic episode, since this is expected to lead to an improved understanding of the biophysics 

that underlies the ADC response. This chapter outlines an MCMC simulation analysis of the 

resulting DC-potential and ADC data.

3.1.3 Cerebral ischaemia biophysics

Several hypotheses have been advanced to account for the appearance of ischaemic lesions in DW 

images. Latour et al. (1994b) and Norris et al. (1994) both suggested, for example, that DW image 

changes occur as a result of reduced extracellular water diffusivity. This is attributed to a



-85-

reduction in extracellular volume driven, in turn, by the cell swelling that occurs when water 

moves into the intracellular space. (Hoehn-Berlage et al. (1995) provide references documenting 

the extracellular space changes that occur in ischaemia.) An increase in the tortuosity of the 

extracellular space has also been implicated (Latour et al., 1994a; van der Toom et al., 1996). 

(Helmer et al. (1995) provide an introduction to tortuosity and related measures in biological 

systems.) It should be noted, however, that Krizaj et al. (1996) have examined the sensitivity of 

water compartmentation and extracellular tortuosity to changes in osmolarity and have shown that 

the resulting changes in volume fraction are not accompanied by substantial changes in tortuosity 

(see Fig. 6  in Krizaj et al., 1996). They argue, therefore, that a change in tortuosity may not be 

pivotal in the DW imaging response to ischaemia, and suggest that the extra- and intracellular 

volume changes are themselves the primary driving force, except under conditions of extreme 

tortuosity. Similarly, Anderson et al. (1996) have argued that extracellular volume changes are a 

principal cause of the observed shifts in ADC. This conclusion is consistent with the well- 

documented decrease in extracellular volume that occurs in association with anoxic depolarisation 

(see, for example, Hansen and Olsen, 1980, and Hansen, 1985; anoxic depolarisation is the name 

given to the rapid and persistent negative extracellular DC-potential shift seen in response to 

ischaemia/anoxia). Alternative explanations for diffusion changes in ischaemia include a reduction 

in cell membrane permeability (Helpem et al., 1992) and a decrease in intracellular diffusivity, the 

latter of which is based on intracellular metabolite (Wick et al., 1995) and '^^Cs diffusion 

measurements (Neil et al., 1996). A tight coupling between the ADC response and ATP depletion 

has been suggested (Busza et al., 1992).

Clearly, a general theory for the DW image changes that occur in stroke remains to be established. 

A key to making progress towards a better understanding of the biophysical chemistry underlying 

the DW image response is the acquisition of more detailed information concerning the temporal 

relationship between the diffusion changes and the primary biophysical and biochemical events. 

Numerous multivariate longitudinal studies have been performed, but relatively little progress has 

been made. In part, this might be due to limitations in the statistical methods that have been
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employ ed. In particular there has been a tendency to ignore the fundamentally longitudinal nature 

of the problem. Thus many researchers have focussed on the relationship between two or more 

key variables but have not always performed a rigorous analysis of the temporal relationship 

between them. It is unfortunate that, in general, the MR research community appears unaware of 

the extensive literature that now exists on the statistical analysis of longitudinal data (see Section 

1.4). Furthermore mean statistics do not provide a complete characterisation of the temporal 

response since important information is contained in the between-subject differences in temporal 

behaviour.

The main purpose of the present study was to determine whether a more detailed examination of 

previously published longitudinal data can provide new information concerning the relationship 

between the various pathophysiological changes that occur during an ischaemic insult. Given the 

central role attributed to tissue depolarisation in cerebral ischaemia [see, for example, Balestrino 

(1995) and references therein and the review papers by Hansen (1985), Somjen et al. (1990) and 

Lipton (1999)] together with the well established relationship between diffusion changes and 

tissue pathology, it was decided to focus on the DC-potential and ADC data obtained in a series of 

experiments, performed by Harris et al. (2000) in which simultaneous measurements were made 

over a period of time prior to, during and following an ischaemic insult. Extracellular glutamic 

acid measurements were also made but these data are not used in this analysis. It is shown that by 

adopting a more formal analytical approach, new information can be extracted from the data, 

information that is key to gaining an insight into the pathophysiology of cerebral ischaemia. 

Particular attention is paid to the within-subject temporal relationship between the DC-potential 

and ADC responses. This is central to the common latent process question. A latent variables 

model assumes that, among a set of observations, several are related directly to some common 

underlying process. Direct proportionality is usually assumed although some nonlinear 

relationship might apply in the current context. Indistinguishable response characteristics are a 

necessary condition for the involvement of a linear common latent process. It has been argued that 

the ADC is one of several MR observables that can be used as a surrogate marker of
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pathophysiology. A formal analysis of the ADC response is a prerequisite to adopting this 

approach.

3.2 Methods

3.2.1 Experimental methods

Focal ischaemia was induced in rats by intraluminal occlusion of the middle cerebral artery as 

outlined previously (Roussel et al., 1994; Harris et al., 2000). DC-potential and MR data were 

acquired simultaneously and continuously during an observation period consisting of a pre

occlusion phase, followed by a post-occlusion phase and subsequent recovery period. Echo-planar 

spin-echo images were acquired with a temporal resolution of 15s, while the DC-potential 

sampling interval was 4s. All other experimental details, including the MR data acquisition and 

DC-potential recording details are given in Harris et al. (2000). One of the 11 animals was 

excluded from the present analysis because the observed ADC was unusually high during both the 

pre-occlusion and post-occlusion phases.

3.2.2 Data analysis

3.2.2.1 Image analysis

Region-of-interest diffrision-tensor trace values were calculated using the image processing 

procedure described by Harris et al. (2000). Measurements were taken from a 1.5mm^ region 

within the striatum, immediately below the position of the DC-potential recording electrode, 

resulting in a separate longitudinal set of trace values for each animal.

3.2.2.2 Longitudinal data analysis

A Bayesian MCMC analysis was performed using the Metropolis algorithm, as described in 

Section 2.2. A two-phase simulation approach was used, the first phase of which was adaptive and 

used a transition kernel updating algorithm to 'train' the Metropolis transition kernel. This was 

followed by a second phase in which transition kernel updating was stopped. The majority of the
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MCMC output generated in the first phase was discarded and the remaining output retained for 

convergence assessment and subsequent analysis. Central to this analysis are the individual- 

specific posterior probability distributions for the DC-potential and ADC transition rates and half- 

response times, these permitting a statistical assessment of the temporal relationship between the 

two responses. Thus, in contrast to the usual interest in population-average statistics, the main 

focus of the present analysis is the within-animal temporal relationship between the DC-potential 

and ADC responses, as characterised by the individual-specific transition parameter posterior 

medians and 95% intervals.

A formal description of the statistical model is given in the following paragraphs, a main feature 

of which is the logistic function used to model the ADC and DC-potential responses. A single 

logistic term was used for the ADC data, while a sum of two logistic terms was used for the DC- 

potential response. A full random coefficients model was adopted as described below. Uniform 

prior distributions were used for all parameters except for the variance components, for which 

priors of the form p{cr) oc cr"' were adopted. The Metropolis algorithm was used to generate three 

parallel chains, each consisting of 9.6x10^ samples. A run-time thinning ratio of 1:100 was 

employed to reduce the storage and subsequent processing demands of the analysis, giving rise to 

a final chain length of 9.6x10'' samples. Convergence was assessed using the CODA 

implementation of the Geweke, Raftery-Lewis and Gelman-Rubin diagnostics (see Section 1.7 

and 2.2). In addition, the parallel chains obtained for each model parameter were inspected for 

signs of convergence failure.

3.2.2.3 Statistical model

The following model was adopted:
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/*, -  N(0,cr^), A: = l,...,ll;^,^.(/) ~N(0,o-J(;)), l = adc,dc.

The subscripts ij(dc) and ij(adc) indicate theyth DC-potential andyth ADC observation in the zth 

animal, respectively. Uk, A:= 1,2,...,11 and yid. A: = 1,2,..., 11, are the fixed-effect and random-effect 

terms, respectively. The individual-specific half-response times are given by + Y kd , f = 

1,...,10, Ar = 4 (ADC response), Ar= 8  (fast DC-potential response (DCfasO) and A:= 11 (slow DC- 

potential response (DCsiow))- The individual-specific normalised rates (rates of change at half

maximum response) were calculated using ^ 4 / 4 , pgi/4 and Pu,74 for the ADC, DCfast and DCsiow 

transitions, respectively. This amounts to an individual-specific scaling of each of the three rate 

coefficients to a unitary transition, i.e., a transition between the initial and final asymptotic levels 

of one and zero, respectively, as shown in Fig. 3.20 and Figs. 3.24 to 3.26. This is necessary when 

testing for compatibility with a common latent process. The above reparameterisation of the 

logistic function (i.e., the transformation from the y^parameter space to the ûr-parameter space 

seen by the Metropolis algorithm) was adopted in order to reduce the level of parameter cross

correlation. In addition, parameter exponentiation confers a near log-normal distribution on each 

of the rate parameters, pki, A: = 4, 8 , 11. For the sake of programming simplicity, the MCMC 

simulation analysis was performed using a time-origin shift of lOmin, giving fshift > 0  at all 

observation occasions.
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A likelihood of the form

f i r/=! /=!

was adopted where a  is the vector and y, is the vector of random coefficients

[Yi/,y2 /v,Yii;]^ for the zth subject. Y/y?; is the vector of observations for the /th response variable, 

l={dc, adc), in the zth subject, #t(.|p,E) is a A:-dimensional normal distribution with mean p and 

covariance matrix S, L  is the A-dimensional identity matrix, Vn is diag(c7 ŷ  ) ,  k=l,2 ,...,ll,

a n d //(a ,y ,) is the nonlinear model (logistic function) given above for l={dc, add). Us is the 

number of animals and Ui(i) is the number of observations acquired for the /th response variable in 

the zth animal.

3.3 Results

Fig. 3.1 shows the DC-potential and ADC responses acquired from each of the ten individual 

animals, together with the ADC data obtained from one animal that was excluded because of the 

unusually high ADC associated with both the pre- and post-occlusion phases. Fig. 3.2 shows the 

same data plotted to show the ten within-individual pair of ADC and DC-potential time courses. 

MCMC simulations were performed as described in Sections 2.2 and 3.2.2 and the resulting 

output assessed for convergence. In accordance with accepted procedure (Sections 1. 6  and 1.7) 

formal convergence testing was preceded by a visual inspection of various overlaid chain trace 

plots. These plots were generated for all parameters in the model, including all random effects and 

variance components. Plots were also generated for the transition rate and half-response time 

parameters that were derived from the model and various other parameters of interest. The 

following subset of overlaid plots are shown: (1) the primary (i.e.. Metropolis space) ADC fixed- 

effect parameters («1-0 4 , Fig. 3.3); (2) the primary DC-potential fixed-effect parameters (as-oii, 

Fig. 3.4); (3) var(£-,y(/)), /=ADC, DC (Fig, 3.3); (4) the derived DC-potential and ADC transition

parameters (the transition rate parameter chains are displayed after log transformation; Fig. 3.5); 

(5) the subset of random coefficient chains = 1,2,...,10; A: = 3, 4, 7, 8 ,10,11, where z is the
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Fig. 3.1. A D C  and D C -potential response profiles
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Individual ADC and DC-potential responses from ten animals are shown (thin 

lines) together with the population median response profiles superimposed (bold 

lines). The data acquired from an eleventh animal (ADC profile shown using a 

broken line) were excluded from the analysis because the ADC associated with 

both the pre- and post-occlusion phases was unusually high.
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Fig. 3.2. Normalised ADC and DC-potential response profiles
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Fig. 3.3. Overlaid Metropolis-space parameter chain plots are shown for each of the four fixed- 

effect ADC parameters and the two residual error variances [VC_1, loge(ADC error variance); 

VC_2, loge(DC-potential error variance)]. Two chains (yellow and red) were started using 

overdispersed values for all model parameters while the third chain (blue) was started at a position 

close to the expected posterior median. A run-time thinning ratio of 1:100 was applied giving a 

post thinning chain length of 96,000 iterations. For the sake of programming simplicity, the 

MCMC analysis was performed using a time-origin shift of lOmin, hence the apparent 

discrepancy between the Metropolis-space trace plot shown for 0 4  and the half-response time data 

shown in subsequent figures.

Fig. 3.4. Overlaid Metropolis-space parameter chain plots are shown for each of the seven fixed- 

effect DC-potential parameters. For the sake of programming simplicity, the MCMC analysis was 

performed using a time-origin shift of lOmin, hence the apparent discrepancy between the 

Metropolis-space trace plots shown for ug and an, compared with the half-response time data 

shown in subsequent figures. Additional details are given in the legend to Fig. 3.3.
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Fig. 3.3. ADC fixed-effect parameter and residual error-variance overlaid chain plots
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Fig. 3.4. DC-potential fixed-effect parameter overlaid chain plots
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Fig. 3.5. Transition rate and half-response time overlaid chain plots
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Overlaid chain plots are shown for each of the three rate coefficients (plotted on a 

loge(|rate|) scale) and for the three half-response time parameters that characterise the 

ADC and DC-potential transitions. Additional details are given in the legend to Fig. 3.3.
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subject index (Figs. 3.6 to 3.11. This subset was selected because these random coefficients, 

together with their corresponding fixed-effect parameters, determine directly the individual- 

specific transition rate and ha lf response time estimates that are the focus of the analysis); (6) the 

log(posterior density) and a selected contrast of interest involving the difference between two 

individual-specific rate parameters (Fig. 3.12).

The rate o f ‘diffusion’ over parameter space is somewhat tortuous in some instances, aj (Fig. 3.3) 

and as (Figs. 3.4), for example, exhibit a substantial degree of autocorrelation despite using a run

time thinning ratio of 1:100. Nevertheless, the plots indicate an acceptable coverage of parameter 

space in every case. Furthermore, a good overlap of the three chains is achieved in every 

parameter, and the overlaid chain plots show no signs of convergence failure. Similarly, the 

log(posterior density) overlaid chain plot (Fig. 3.12) shows no signs of convergence problems. A 

variety of 2D trajectory plots were also produced, since these contain additional information. 

Again, the subset of six h a lf response time and rate-determining fixed-effect parameters are 

selected for display (Figs. 3.13). Although these plots indicate no major problems in the form of 

substantial chain separation, they do show several instances of individual chain migration into 

isolated regions of parameter space. Nevertheless, there is no indication of prolonged residence 

within these regions, suggesting that these occur due to a few excursions into regions of low 

probability. Histograms were produced for each fixed-effect parameter together with the six 

derived transition rate and half-response time parameters. A subset of these histograms is shown 

in Fig. 3.14. All have an acceptable shape and there are no instances in which the tails reveal 

sampling problems. Finally, visual inspection of various plots derived from the random coefficient

Figs. 3.6 to 3.11. Overlaid Metropolis-space random-coefficient chain plots are shown for each of 

the six parameters that characterise the ADC and DC-potential transitions. Figs. 3.6 and 3.7,

ADC transition parameters; Figs. 3.8 and 3.9, fast DC-potential transition parameters; Figs. 3.10 

and 3.11, slow DC-potential transition parameters. Additional details are given in the legend to 

Fig. 3.3.
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Fig. 3.6. Random-coefficient overlaid chain plots (7 3)
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Fig. 3.7. Random-coefficient overlaid chain plots (7 4)
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Fig. 3.8. Random-coefficient overlaid chain plots (y?)
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Fig. 3.9. Random-coefficient overlaid chain plots (yg)
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Fig. 3.10. Random-coefficient overlaid chain plots (71 0)
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Fig, 3.11. Random-coefficient overlaid chain plots (y^)
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Fig. 3.12. Overlaid chain plots for the posterior density and a selected ADC 

transition rate difference
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upper panel, loge(posterior density) overlaid chain plot. Lower panel, overlaid chain plot of 

the natural logarithm of the difference between the ADC transition rates in the 2nd and 3rd 

animals.
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Fig. 3.13. Fixed-effect transition-rate and transition half-response time parameter

overlaid chain trajectory plots
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Overlaid chain Metropolis-space trajectory plots are shown for each of the three pairs of 

fixed-effect transition-rate and half-response time parameters [DCfast {o-i and «g), DCsiow («lo 

and « 1 1) and ADC ( « 3  and «4 )]. See legends to Figs. 3.3 and 3.4 for additional information.
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Fig. 3.14. Fixed-effect transition-rate and transition half-response time param eter 

histograms
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Histograms are shown for each of the three pairs of fixed-effect transition-rate and half

response time parameters [ADC ( 0 3  and 0 4 ), DCfast (a? and Cg) and DCgiow («lo and an)]. See 

legends to Figs. 3.3 and 3.4 for additional information.
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chains indicate an adequate coverage of parameter space with no signs of convergence failure (a 

subset of overlaid chain plots is shown in Figs. 3.6 to 3.11). This is important because the random 

coefficients are central to the analysis of the within-individual temporal relationship between the 

DC-potential and ADC responses, and this is the major focus of the analysis presented in this 

chapter.

In summary, the overlaid chain plots, trajectory plots and histograms appear satisfactory and show 

no signs of convergence failure. Accordingly, a second phase assessment using formal 

convergence diagnostic tests was performed. This is required for two reasons. Firstly it is 

necessary to substantiate the assertion, based on visual inspection of the parameter chain plots, 

that convergence has been achieved within reasonable limits. A more formal convergence analysis 

provides a quantification of these limits . Secondly, it is important to obtain an estimate of the 

simulation error associated with the various parameters.

Three convergence test procedures were used in this study, namely the Gelman-Rubin shrink 

factor diagnostic, the Geweke time-series Z-score diagnostic, and the Raftery-Lewis diagnostic 

procedure. A number of parameters of interest were included in these convergence tests, but for 

illustrative purposes, a subset of five sets of results are included in this chapter. These are the 

log(posterior density), the three transition rates (diagnostic tests performed using log transformed 

rates) and the difference between two individual-specific ADC transition rate parameters. The last 

of these was selected because the main conclusion arising from this analysis follows from the 

observed pattern of between-animal ADC transition rate differences. It is essential, therefore, that 

these differences are estimated with sufficient accuracy. The Raftery-Lewis procedure provides an 

estimate of the accuracy of the associated quantiles.

Figs. 3.15 to 3.19 show, for each parameter, the three single chain Geweke Z-score plots, together 

with the Gelman-Rubin parallel chain shrink-factor plot. (To reduce the processing time required 

for these calculations, each MCMC output chain was subjected to additional thinning (1:100) prior
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Fig. 3.15. Loge(posterior density) Geweke Z-score and Gelman-Rubin shrink

factor plots
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Fig. 3.16.ADC transition rate Geweke Z-score and Gelman-Rubin shrink factor

plots
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The figure shows the convergence diagnostic plots obtained for the loge(|ADC

transition rate|) chain generated from the MCMC output.
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Fig. 3.17. Fast DC-potential transition rate Geweke Z-score and Gelman-

Rubin shrink factor plots
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The figure shows the convergence diagnostic plots obtained for the logedDCfast

transition rate|) chain generated from the MCMC output.
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Fig. 3.18, Slow DC-potential transition rate Geweke Z-score and Gelman-Rubin

shrink factor plots
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The figure shows the convergence diagnostic plots obtained for the loge(|DCsiow

transition rate|) chain generated from the MCMC output.
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Fig. 3.19. Geweke Z-score and Gelman-Rubin shrink factor plots obtained for a 

selected ADC transition rate difference
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The figure shows the convergence diagnostic plots obtained for the natural

logarithm of the difference between the ADC transition rate in the 2nd and 3rd

animals, as generated from the MCMC output.
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to processing, giving a final chain length of 930 samples, after discarding bum-in iterations.) The 

majority of Z-score points lie within the range -2<Z<2 as expected, assuming convergence, 

although an occasional Z-score outlier is evident. Similarly, each of the Gelman-Rubin shrink- 

factor plots indicates a value close to unity towards the end of each set of chains, suggesting that 

little improvement is achievable by increasing the number of iterations. Table 3.1 lists the Geweke 

Z-score obtained for each selected parameter and each chain, together with the Gelman-Rubin 

shrink factor and Raftery-Lewis estimate of the number of iterations, N, required to obtain the 

0.025 quantile with an accuracy of 0.0125 with probability 0.95. These diagnostic results were 

judged adequate. Although the Raftery-Lewis N exceeds 930 in some cases (maximum #=1803), 

subsequent parameter estimates are based on the combined parallel chains giving an equivalent N  

of 2790. The second phase of the analysis was therefore undertaken using the existing output 

without additional chain extension.

The posterior fixed-effect transition-parameter medians (i.e., the estimated population transition- 

parameter medians) are listed in Table 3.2. Fig. 3.2 shows the observed DC-potential and ADC 

pair of response profiles obtained for each of the 10 animals, after normalisation^ while Fig. 3.20 

shows the corresponding individual-specific posterior median DC-potential and ADC response

 ̂The main purpose of the present analysis was to examine the ADC and DC-potential responses 

for behaviour consistent with a common latent process. If a common process drives either of the 

two DC-potential component responses and the ADC response, then the ADC and corresponding 

DC-potential component must move between their two asymptotic states in synchrony. Thus it is 

necessary to scale each rate coefficient to the magnitude of their respective transitions when 

testing for compatibility with a common latent process. Very similar results were obtained, 

however, if this scaling was performed using the corresponding group medians.
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Table 3.1. V dc-A D C  MCMC simulation analysis. Convergence diagnostics

Geweke Z-score

GR shrink 
factor 

(97.5% 
quantile)

Raftery-Lewis N

Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3
Log(DCi rate) -0.89 -0.27 -0.71 1.01 (1.05) 910 910 763
Log(DC] rate -0.73 -0.34 -0.93 1.00(1.00) 1090 994 1456
Log(ADCrate) -0.36 -0.20 1.89 1.00(1.01) 1616 1803 763
Log(rate diff) 1.96 0.65 0.52 1.00(1.01) 642 600 600
Log(pden) 0.44 1.08 -2.47 1.00(1.00)

The statistics listed in this table were obtained after discarding a bum-in sample of 3000 iterations 

from the total of 96000 iterations in each chain, and subsequent thinning to 930 samples per chain. 

The number of bum-in samples was based on an initial Raftery-Lewis analysis. Having removed 

the effects attributable to the overdispersed starting values used for two of the three parallel 

chains, the Geweke Z-scores should satisfy, the convergence criterion -1.96<Z<+1.96 with 

probability 0.95. Assuming convergence, shrink factor values and 97.5% quantiles (given in 

brackets) close to unity are expected (see Section 1.7.2). The Raftery-Lewis N  provides an 

estimate of the number of iterations required to estimate the 0.025 and 0.975 quantiles to an 

accuracy of+/-0.0125 with probability 0.95. This gives a posterior interval coverage of between 

0.925 and 0.975 with probability 0.95. Abbreviations: DCi, fast DC-potential component; DC], 

slow DC-potential component; rate diff, difference between the ADC transition rates in the 2nd 

and 3rd animals; pden, posterior density.
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Table 3.2. ADC and DC-potential transition param eter population medians and 95% 
posterior intervals

Median 2.5%
quantile

97.5%
quantile

rate, DCfast (min*‘) -2.09 -3.34 -1.35
rate, DCsiow(min^) -0.411 -0.51 -0.34
rate, ADC (min'*) -1.18 -4.69 -0.45
Arate(ADC - DCfast) (min'*) 0.88 -2.52 2.31
Arate(ADC - DCsiow) (min *) -0.77 -4.30 -0.027
timei/2 , DCfast (min) 1.25 1.14 1.37
timei/2 , DCsiow (min) 2.06 1.69 2.43
timei/2 , ADC (min) 1.00 0.79 1.21
Atimei/](ADC - DCfast) (min) -0.24 -0.49 -0.02
Atimei/](ADC - DCsiow) (min) -1.06 -1.49 -0.65

The rate parameters are normalised by scaling to a unitary transition as outlined in Section 3.2.2.3; 

timci/ 2  indicates the transition half-response time. The 95% interval for the difference between the 

ADC and DCsiow transition rates [Arate(ADC - DCsiow)] excludes zero indicating a significant 

difference in median rates.
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Fig. 3.20. Temporal relationship between the ADC and DC-potential responses
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Fig. 3.20. continued

The normalised ADC (black continuous line) and DC-potential (white broken line) individual- 

specific posterior median response profiles obtained for each of the ten animals are shown, 

together with a set of 100 random time-course profiles generated by sampling from the posterior 

distribution (ADC profiles, grey broken lines; DC-potential profiles, black band surrounding the 

white broken line).

Fig. 3.21. The DC-potential data (+++) acquired from each of the ten animals are shown, together 

with the individual-specific posterior median (black line) and a set of 100 random time-course 

profiles generated by sampling from the posterior distribution (surrounding grey band).

Fig. 3.22. The ADC data (black irregular line) acquired from each of the ten animals are shown, 

together with the individual-specific posterior median (smooth black curve) and a set of 100 

random time-course profiles generated by sampling from the posterior distribution (grey broken 

lines).



-118-

Fig. 3.21. Individual specific DC-potential response profiles
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Fig. 3.22. Individual-specific ADC response profiles
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profiles, together with a cluster of profiles obtained by sampling the posterior distribution. Fig. 

3.21 shows the individual-specific median and sampled posterior DC-potential response profiles 

with the observed data superimposed, while Fig. 3.22 shows the median and sampled posterior 

ADC response profiles with the ADC observations superimposed.

Visual inspection of these figures indicates that the two-term logistic function provides a 

reasonable fit to the observed DC-potential responses (Fig. 3.21), while a single logistic term 

provides an adequate fit to the ADC data (Fig. 3.22). The DC-potential drift that occurred towards 

the end of the 6 min post-occlusion period in a few cases is discussed in Section 3.4. In addition, 

the median and sampled response profiles obtained for animal 4 indicate a marked decline in ADC 

prior to the ischaemic insult (Figs. 3.20 and 3.22). This observation is discussed in detail in 

Section 4.3.3. The need to include two logistic terms in the model for the DC-potential response is 

demonstrated by the weighting coefficient posterior distributions. The population posterior 

medians (95% posterior interval) are: DCfast (given by Oe), 6.12(5.12, 7.20); DCsiow (given by 0 9 ), 

8.04 (7.04, 9.06). Furthermore, the individual-specific weighting-coefficient posterior intervals 

associated with each of the two DC-potential components («6 +7 6 / and «9 +7 9 /, z = 1,2,...,10) all 

exclude zero (Fig. 3.23).

Among the striking features of these figures is the considerable between-animal variation in the 

rate of the ADC transition (Figs. 3.20 and 3.22), between-animal differences in the shape of the 

DC-potential response (Figs. 3.20 and 3.21), and an absence of any obvious and consistent 

relationship between the DC-potential and ADC transitions within each individual (Fig. 3.20). To 

expand on the latter observation it is informative to focus, for example, on the responses in 

animals 2 and 3. The immediate visual impression provided by Figs. 3.21 and 3.22 is a marked 

between-animal difference in ADC transition rate (Fig. 3.22, panels 2 and 3) despite the relative 

similarity of the DC-potential response profiles (Fig. 3.21, panels 2 and 3 ). In both animals the 

ADC transition tends to precede the DC-potential response (Figs. 3.2 and 3.20).
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Fig. 3.23. Individual-specific ADC and DC-potential scaling coefficients
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The plot shows the individual-specific scaling coefficient medians and 95% posterior 

intervals obtained for each of the two DC-potential components (DCfast, «6+76/ and 

DCsiow, «9+79/, i = 1, 2,..., 10). For completeness the individual-specific ADC transition 

scaling coefficients («2+72/, z = 1, 2,..., 10) are included.
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A visual impression of the relationship between the two components of the DC-potential response 

and the ADC response is given in Figs. 3.24 and 3.25. Fig. 3.24 focuses on the fast DC-potential 

component while Fig. 3.25 focuses on the slow DC-potential responses. Thus Fig. 3.24 shows 

each of the individual-specific fast DC-potential posterior median response profiles with the 

corresponding posterior median ADC response superimposed, while Fig. 3.25 shows the 

individual-specific posterior median slow DC-potential profiles, again with the ADC response 

superimposed. Neither of the two DC-potential components exhibits a consistent temporal 

relationship with the ADC response. Fig. 3.26 shows each of the ten individual pair of slow and

Fig. 3.24. Overlaid plots showing the normalised ADC (black line) and fast DC-potential 

component (white broken line within the black band) individual-specific posterior median 

responses obtained for each of the ten animals. Also shown is the set of 100 random time course 

profiles drawn from the posterior distribution (ADC profile set, grey broken lines; DC-potential 

profile set, black band).

Fig. 3.25. Overlaid plots showing the normalised ADC (black line) and slow DC-potential 

component (white broken line within Ae black band) individual-specific posterior median 

responses obtained for each of the ten animals. Also shown is the set of 100 random time course 

profiles drawn from the posterior distribution (ADC profile set, grey broken lines; DC-potential 

profile set, black band).

Fig. 3.26. Overlaid plots showing the fast and slow DC-potential component normalised 

posterior median profiles obtained for each of the ten animals (fast DC-potential posterior 

median, black continuous line; slow DC-potential posterior median, white broken line). Also 

shown is the set of 100 random time course profiles drawn from the posterior distribution (fast 

DC-potential sampled posterior profile set, broken grey lines; slow DC-potential sampled 

posterior profile set, continuous black lines).
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Fig. 3.24. Temporal relationship between the ADC and fast DC-potential responses
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Fig. 3.25. Temporal relationship between the ADC and slow DC-potential responses
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Fig. 3.26. Temporal relationship between the fast and slow DC-potential responses
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fast DC-potential posterior median response profiles. Again, these plots reveal a substantial degree 

of between animal variation in response characteristics.

The ten individual D C f a s t ,  D C s i o w  and A D C  transition rate medians are displayed in Fig. 3.27 

together with the 2.5% and 97.5% quantiles. Fig. 3.27 also displays the individual transition half

response time medians and associated quantiles. All six parameter medians (transition rate and 

half-response time for each of the three responses i.e., DCfast, DCsiow and ADC responses) exhibit a 

considerable degree of between-subject variability. Four animals yield ADC transition-rate 

distributions that are heavily skewed, indicating that in these individuals the A D C  transition 

sampling is insufficient to rule out a near step change in A D C .  The ten individual A D C - D C f a s t  

transition rate median differences and quantiles are shown in Fig. 3.28, together with the transition 

half-response time median differences and quantiles. Six of the ten individual A D C - D C f a s t  rate 

difference 95% posterior intervals exclude zero (Fig. 3.28, panel (a)), indicating a significant 

difference in rates in these subjects. Five of these six median differences are positive and one is 

negative. Four of the difference distributions are heavily skewed, this being a reflection of 

skewness in the corresponding A D C  transition-rate distributions mentioned above. Four of the ten 

posterior intervals for the A D C - D C f a s t  difference in half-response time lie below zero (Fig. 3.28, 

panel (b)) indicating that the A D C  half-response time occurs prior to the D C f a s t  half-response point 

in these individuals, the difference achieving statistical significance.

Figure 3.28 also shows the A D C - D C s i o w  transition rate and half-response time median differences 

and quantiles. Seven of the ten intervals for the difference in rate lie below zero (Fig. 3.28, panel 

(c)), indicating a significant difference in these individuals, while one interval is close to 

excluding zero with a positive median. All ten ADC-DCsiow half-response time difference intervals 

lie below zero, indicating that the ADC transition half-response time is consistently early relative 

to the DCsiow half-response time. Finally, animals 1 and 8 differ from the remaining animals; in 

these two animals the ADC and fast DC-potential component are similar in terms of both their 

transition rate and half-response time medians (Figs. 3.28, panels (a) and (b)). In addition to these
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Fig. 3.27. A D C  and D C -potential norm alised transition rates and half

response tim es
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the middle two panels show the slow DC-potential component results. The lower 

limit of the ADC transition rate posterior interval for animals 1,3,7  and 8 is large 

and negative, indicating a near step change in ADC. For display purposes these have 

been truncated a t-11.
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Fig. 3.28. Transition rate and half-response time difference between the ADC 

and DC-potential responses
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intervals generated for each of the ten individual animals. These data were obtained 
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rate difference posterior intervals obtained for animals 1,3,7 and 8 is large and 

negative, reflecting a near step change in ADC (see Fig. 3.27). For display purposes 

these intervals have been truncated at -15 and -12 in (a) and (c), respectively.
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two animals, animal 10 also yields transition rate and half-response time difference 95% intervals 

both of which span zero (Fig. 3.28, panels (a) and (b)). Animals 4 and 5 differ from the remaining 

animals with respect to their slow DC-potential transition rate medians, which are fast relative to 

the ADC transition. Furthermore, the 95% interval for animal 4 is close to excluding zero (Fig. 

3.28, panel (c)).

3.4 Discussion

Despite the established role of diffusion imaging in stroke research and diagnosis, many aspects of 

the ADC response to an ischaemic insult are poorly understood. It is generally believed that 

anoxia-induced brain damage is the result of a cascade of events (Spetzler and Nehls, 1987;

Siesjo, 1992) but the relationship between these events and the ADC response remains to be 

determined. This chapter focuses on the temporal relationship between the ADC and DC-potential 

responses to transient focal ischaemia. Until recently, a rigorous analysis of this type of 

longitudinal data was barely feasible. Although useful statistical models were available by the 

early 1980s (Laird and Ware, 1982), it is only with the more recent availability of substantial 

computing power that a proper modelling of longitudinal data has become routine. This study uses 

a Markov chain Monte Carlo simulation implementation of a nonlinear, full random coefficients 

model of the ADC and DC-potential responses to an ischaemic insult. Random coefficients are 

required to model adequately various features of the between-animal variation in the DC-potential 

and ADC responses. For example, the greater between-animal variance in baseline ADC, 

compared with the between-animal variance in the asymptotic post-occlusion ADC level is a 

striking feature of the ADC profiles (Fig. 3.1). This behaviour is captured by the full random 

coefficients model. Among the other advantages of the random coefficients modelling approach is 

its applicability to sparse data. This is particularly important in the present application because the 

ADC transition is undersampled and it is difficult to obtain precise estimates of the transition 

parameters by fitting individual data. Undersampling was unavoidable because signal-to-noise 

ratio considerations placed an upper limit of the order of 4min’’ on the image acquisition rate. 

Fortunately, a formal random coefficients analysis provides improved individual parameter



-130-

estimates (random coefficient estimates). This improvement is achievable because each individual 

contributes information to all the remaining individual-specific random coefficient estimates. This 

information borrowing behaviour is a central feature of Bayesian hierarchical models; it is 

examined in Appendix B. The MCMC simulation random coefficients modelling technique offers 

several additional advantages over the more traditional mixed-model/random-coefficients 

regression methods, including an elimination of the need for large-sample approximation. This 

applies to both linear and nonlinear applications. These issues are discussed in Chapter 6 in a little 

more detail.

The main purpose of the analysis outlined in this chapter was to determine whether the ADC and 

DC-potential changes might be driven by some common latent process. If some common process 

is directly responsible for the DC-potential and ADC responses (i.e., if the ADC and DC-potential 

are immediately and tightly coupled to some underlying driving process, with a linear 

dependence), the normalised individual-subject ADC and DC-potential transition parameters will 

be indistinguishable. It might be argued that any attempt to relate the temporal dependence of the 

ADC and DC-potential response is mistaken because the DC-potential recording electrode is 

sensitive to a highly localised region of tissue, while difftision imaging is relatively low in 

resolution. (The present ADC data were acquired from a 1.5mm^ region within a 2,1mm slice, 

giving an acquisition volume of approximately 3mm^.) A high degree of spatial variation in DC- 

potential or ADC might invalidate the comparison. Nevertheless, several studies of this type have 

been performed. These have, however, led to disagreement regarding the temporal relationship 

between the two responses (as discussed by de Crespigny et al. (1999); see below for additional 

information). The present study attempts to resolve some aspects of the problem by adopting a 

formal statistical analysis. It is important to stress that a failure to demonstrate that any of the 

population mean ADC-Vdc transition parameter differences is non-zero (i.e., a failure to reject any 

of the null hypotheses) cannot be used as evidence for a common latent process since this might 

arise due to between-subject variability in transition characteristics. If a common latent process (as 

defined above) is involved, then the within-subject ADC and DC-potential transition
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characteristics must be indistinguishable, irrespective of the between-subject variability in 

transition behaviour. Consistent with previous studies (see de Crespigny et al. (1999) Fig. 5, for 

example), the DC-potential response was found to consist of two components. Accordingly, it is 

necessary to examine the temporal relationship between the ADC response and each of the two 

DC-potential components.

Before entering into a detailed examination of the results obtained from this V dc-ADC data re

analysis, a number of issues must be addressed. The first of these relates to the DC-potential drift 

that occurred, in a few cases, towards the end of the 6min post-occlusion period (Fig. 3.21, animal 

7, for example). An inspection of Fig. 3.21 might lead to the conclusion that autoregressive (AR) 

error structure should have been incorporated into the model. An AR model was not adopted, 

however, for several reasons. Firstly, in the majority of cases an independent errors model was 

shown to be adequate, relative to an AR(1) model, when compared using AIC. Secondly, it was 

decided that the departure between the posterior median and observed DC-potential profiles that 

occurred in a few cases should not be modelled as a stochastic process because DC-potential drift 

is deterministic rather than stochastic. Any attempt to model DC-potential drift would be 

problematic, however, since it occurred in a few individuals and its occurrence was erratic. It is 

unfortunate that interference pickup is a common problem in this type of biological monitoring 

involving high impedance devices (Horowitz and Hill, 1980, p612). Stray capacitance is a well- 

known cause of interference coupling in this context. Only a few experiments were affected by 

DC-potential drift, however, and, when it did occur, it did not interfere with the transition. Time- 

course truncation could have been used as an approach to dealing with the problem, but this was 

not adopted in the interests of objectivity.

The second issue relates to the precision of the 2.5% and 97.5% quantile estimates given by the 

present simulation analysis. A case might be made for increasing the MCMC output chain length 

in order to achieve better accuracy. It was decided, however, that the limiting feature of this study 

is not the analysis, but the presence of noise spikes in several of the ADC transitions (Fig. 3.2).
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The offending noise spikes were introduced when the radiofrequency shield was opened in order 

to perform the middle cerebral artery occlusion. An obvious solution to the noise spike problem is 

remote arterial occlusion, although a complete redesign of the radioffequency probe and 

associated animal holder would be required to allow arterial occlusion without compromising the 

radioffequency shield. It is this aspect of the study that requires attention, and improvements in 

this area are more pressing than refinements to the analysis.

A final matter that must be addressed is the marked decline in the posterior median ADC that 

occurs prior to the ischaemic insult in the fourth animal. The noise spike at zero time contributes 

to the problem, but there are other instances of similar, although less extreme behaviour. V dc- 

ADC time-base synchronisation is discussed at length in Chapter 4, because it has important 

implications for the trigger threshold analysis that is the subject of that chapter. In contrast, the 

main conclusions of this chapter are based mainly on the transition rate data, and these are 

immune to time-base inaccuracy. Accordingly, no additional discussion of the issue is included 

here, except to mention the difficulty that arises because the ADC data were not available in real

time. In an ideal experiment a good quality baseline would be established in the interval 

immediately prior to occlusion. But ADC data generation requires a 2D Fourier transformation of 

the MR signal followed by ROI identification and post-processing. Given the 15s time resolution 

and the hardware used in this study, a real-time generation of the ADC data was not possible. 

(Simultaneous signal acquisition and processing was not feasible on a computer fitted with a 

single DSP (digital signal processing) board.)

Putting aside the occasional DC-potential drift that is discussed in the preceding paragraph, an 

adequate modelling of the DC-potential data is obtained using a sum of two logistic terms, while a 

single logistic term is sufficient with respect to the ADC response. It should be noted, however, 

that a poor signal-to-noise ratio causes a reduction in power to detect model inadequacy in the 

latter case. The observation that a sum of logistic terms provides a convincing description of the 

DC-potential and ADC responses is particularly interesting given the classical logistic form of the
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relationship between binding-site saturation and log(concentration), as expressed by the Langmuir 

adsorption isotherm (i.e., the Michaelis-Menton equation; Colquhoun, 1971, Sections 12.8 and 

14.6). An underlying binding process may be implicated, although this does assume an 

exponential ligand concentration dependence on time.

The results obtained from this MCMC analysis rule out the possibility that either of the two DC- 

potential components and the ADC response to an ischaemic insult are driven directly by some 

common latent process. This assertion is based on the following observations: six of the ten 

animals yielded distinguishable ADC and fast DC-potential transition rates; seven animals yield 

distinguishable ADC and slow DC-potential transition rates. The transition rate parameters have 

been made the focus of the analysis because it might be argued that differences in transition time 

could be an artefact of poor synchronisation between the MR and DC-potential recordings. 

Nevertheless the transition time statistics are consistent with the assertion that the ADC and DC- 

potential responses are driven independently. In four of the ten animals, the ADC half-response 

time preceded the fast DC-potential half-response time with a difference that achieves 

significance. All ten animals reached significance with respect to the difference between the ADC 

and slow DC-potential transition times. At this stage it is important to consider the possibility that 

these differences might arise as an artefact due to ‘shrinkage’ in individual parameter estimates 

towards the population estimate. Shrinkage towards the population mean is a characteristic of 

Bayesian hierarchical models (see, for example, Gelman et al., 1995, pl33) and this is important 

in the present context due to the differing precision of the ADC and DC-potential measurements, 

and the differing transition rates. The ADC data were acquired with a lower sampling rate and 

lower precision. The ADC transition rate estimates are, therefore, more susceptible to shrinkage, 

especially when the transition is undersampled due to its rapidity. One can imagine a situation in 

which a within-animal pair of ADC/Voc transitions with near identical rates appear to have 

differing rates due to shrinkage in the estimated ADC rate, while the DC-potential estimate 

remains close to its sample value. An inspection of the data indicates that estimation shrinkage 

does indeed take place (see Appendix B) but, with one exception, this occurs only when the ADC
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transition is fast relative to both the DC-potential transition and the population median ADC rate. 

Thus, when it occurs, ADC parameter shrinkage reduces the estimated ADC-Vdc transition rate 

difference rather than creating a difference in rates as an artefact. The one exception, referred to 

above, is the A D C - D C f a s t  rate difference in Animal 1. In this instance the 95% posterior interval 

includes zero, and so shrinkage is not a concern.

To summarise, the main finding in this study is that the observed ADC and DC-potential changes 

are not driven by a common latent process. Furthermore, the statement (Harris et al., 2000) that 

the mean ADC half-response time is shorter than the mean DC-potential half response time is 

consistent with the population median half-response time statistics given in Table 3.2; thus this 

assertion is not altered when the biphasic nature of the DC-potential response is taken into 

consideration. The fundamental question is how the failure to find evidence for a common latent 

process relates to the known pathophysiology of the anoxic/ischaemic response. Although the 

electrical response to anoxia has been studied extensively, the biophysical basis of so-called 

anoxic depolarisation is not completely established; rather more is known about the related 

phenomenon of spreading depression. This literature is reviewed briefly in the following section.

3.4.1 The temporal relationship between the ADC and DC-potential

responses to cerebral ischaemia/anoxia and spreading depression. 

The ADC and cell swelling

Many aspects of the biophysical responses to cerebral ischaemia/anoxia resemble those observed 

in spreading depression and, since there is a considerable literature on the latter, it is useful to 

draw on this information. Contradictory results appear to have been obtained concerning the 

temporal relationship between the ADC and DC-potential responses to spreading depression and 

cerebral ischaemia/anoxia. Thus, while it has been reported that the transient ADC response to 

spreading depression and ischaemia/anoxia appears simultaneously with the DC-potential shift 

(Gyngell et al., 1994; de Crespigny et al., 1998), others report that the ADC response to cerebral 

ischaemia occurs before anoxic depolarisation (Huang et al., 1997; de Crespigny et al., 1999;
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Harris et al., 2000). de Crespigny et al. (1999) point ont, however, that despite the earlier onset of 

the ADC response to ischaemia, a larger and more rapid ADC change occurs during 

depolarisation. It should be noted that technical limitations typically restricted the temporal 

resolution of early DW imaging work (scan times of lOmin or more) with the result that any 

existing V dc-A D C  response mismatches may have been missed.

Reference has been made in Section 3.1.3 to early studies into the aetiology of stroke-induced 

ADC changes (Busza et al., 1992; Norris et al., 1994; Latour et al., 1994b; Szafer et al., 1995; 

Hoehn-Berlage et al., 1995; Anderson et al., 1996). Several researchers have suggested that cell 

swelling (cytotoxic oedema) is responsible for the observed reduction in ADC (Norris et al., 1994; 

Latour et al., 1994a, 1994b; Anderson et al., 1996). van der Toom et al. (1996) state that there is a 

close correlation between the ADC time course and both the tortuosity and 

extracellular : intracellular volume fraction changes that occur in global ischaemia. They suggest, 

therefore, that these processes are mechanistically linked. This conclusion is, however, based on 

sample-average behaviour. A formal analysis of the within-subject temporal relationship between 

responses provides additional information, and this has been the focus of this chapter. 

Nevertheless, it is interesting to note that van der Toom et al. (1996) report a difference between 

white and grey matter with respect to the latency of the ADC transition, a difference which is 

reflected in the tortuosity and volume fraction data. They suggest that cell swelling is the common 

link and that this is triggered by a depletion of phosphocreatine. In this context it is interesting to 

note that cell swelling has also been suggested as a direct cause of anoxic depolarisation 

(Balestrino, 1995).

Several researchers have studied the electrophysiology of anoxia and reported a three-phase 

response (see Hansen (1985) and Lipton (1999) for reviews on the biophysical chemistry of 

ischaemia/hypoxia). A key feature of the second of these three phases is a rapid increase in 

extracellular potassium (K^c) and an associated fast negative shift in extracellular DC-potential 

(anoxic depolarisation). These events are accompanied by a simultaneous movement of NaCl from
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the extracellular space into the intracellular compartment and an increase in both extracellular 

impedance and extracellular marker concentration. The impedance and marker concentration 

changes are both attributed to a reduction in extracellular volume. It is well known that cell 

volume is maintained by osmotic pressure resulting from impermeable intracellular anions 

counterbalanced by extracellular Na"*". Thus, the redistribution of Na^ that occurs during anoxia 

causes an osmotically-driven movement of water from the extracellular space into the intracellular 

compartment. Cell swelling and the observed reduction in extracellular volume are a manifestation 

of this process. Osmotically active products of anaerobic metabolism, including lactate, contribute 

to this process. Hansen (1978, 1985) states that passive diffusion in the absence of pump activity 

is insufficient to account for the observed increase in K%c during anoxic depolarisation and that 

the ion movements that occur during this phase of the anoxic response are due to a sudden 

increase in overall cell membrane ion permeability. He suggests that this permeability change is 

caused by K^c-induced cell membrane depolarisation, arising from the initial elevation in K^c that 

occurs during the first phase of the anoxic response. Similar DC-potential, KLcj impedance and 

extracellular marker responses are observed in spreading depression (see, for example, Collewijn 

and van Harreveld, 1966; Hansen and Olson, 1980; Nicholson and Kraig, 1981; Hansen, 1985). In 

fact, as stated previously, the biophysical chemistry of spreading depression is well established 

(the key events are summarised in Fig. 3.29^) and this has enabled Nicholson and Kraig (1981) to 

arrive at a working hypothesis for the sequence of events that underlie the process. A schematic of 

this hypothesis is outlined in Fig. 3.30\ It provides an explanation for the present results. A key 

observation is that Na^c and Cl'ec decrease in spreading depression. Furthermore, both spreading 

depression and the associated NaClgc changes persist in the presence of tetrodotoxin, showing that 

the increase in sodium permeability does not involve the conventional voltage-dependent channel. 

Thus action potentials are not an essential component, as had been assumed previously. 

(Tetrodotoxin is a puffer fish toxin that blocks the inward sodium current of the action potential.) 

Nicholson and Kraig suggested that a chemically-mediated channel is involved, and that the

 ̂ Figs. 3.29 and 3.30 are based on Nicholson and Kraig (1981) Figs. 8 and 9, respectively.
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Fig. 3.29. Key events in spreading depression

Stimulus1
)uai
oni

[K ]ec rises and neuronal activity is abolished 

Cation and anion channels open

[Na"]ec, [Ca-^ec[Cl]eofall 
[K*]ec increases further

Cells swell, extracelullar space shrinks 
Negative extracellular potention develops

A schematic summary of the major events that occur in spreading depression 

(based on Nicholson and Kraig, 1981, Fig. 8). The square brackets indicate 

concentration of the species within the bracket and the subscript ec indicates 

extracellular.
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Fig. 3.30. The Nicholson-Kraig hypothesis

Presynaptic 
nerve terminals Glial cells
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Nerve cell dendrites

A schematic summary of the Nicholson-Kraig (1981) hypothesis for the events that occur 

in spreading depression. An initial increase in extracellular K^ causes presynaptic 

depolarisation and an associated C a^ channel opening. The resulting influx of C a^ leads 

to excitatory and inhibitory transmitter (T^a and Tci) release. The excitatory transmitter 

causes dendritic channels to open allowing Na"̂  and C a^ to enter, which causes subsequent 

cell depolarisation. This, in turn, causes an additional release of K^ into the extracellular 

space, c r  leaves the extracellular space, driven by its electrochemical gradient.

Transmitter release continues which, in turn, causes NaCl to enter the dendrites as a neutral 

flux. This massive entry of NaCl is accompanied by the entry of water, either through 

separate water pores or via ion channels. The accumulation of K^ in the extracellular space 

causes additional presynaptic depolarisation. It also causes glial cell depolarisation, with 

the result that glial cells act as a K^ sink. Nicholson and Kraig suggest that this is the main 

cause of the observed negative shift in extracellular DC-potential. A' is an unidentified 

anion. (A modification of Fig. 9 in Nicholson and Kraig, 1981.)
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movement of water that accompanies the redistribution of NaCl occurs either via separate aqueous 

pores or via ion channels. This movement of water is assumed to be associated directly with the 

observed decrease in ADC. Nicholson-Kraig further suggest that an accumulation of K^c produces 

glial cell depolarisation and that this is the cause of the negative extracellular DC-potential shift. 

The assertion that glial cell depolarisation and not neuronal depolarisation is the essential 

component of spreading depression had been suggested previously on the basis of experiments in 

which neuronal and glial cell intracellular DC-potential recordings were made in the presence and 

absence of tetradotoxin (Sugaya et al., 1975). A close temporal relationship between glial 

depolarisation and spreading depression was observed, while the neuronal intracellular DC- 

potential failed to show a consistent temporal relationship. Thus the Nicholson-Kraig 

interpretation of the sequence of events in spreading depression provides a plausible explanation 

for the temporal separation of the ADC and DC-potential responses observed in the present study. 

Furthermore, the notion that the volume and DC-potential components of spreading depression are 

separate processes has been demonstrated by experiments in which NaCl was replaced by sucrose. 

The negative potential associated with spreading depression was maintained, while the light- 

scattering and impedance changes associated with cell swelling were abolished (see Nicholson and 

Kraig, 1981, p221 for references). Although a simple picture of the sequence of events occurring 

during anoxic depolarisation appears to emerge, a number of experimental observations 

complicate the issue. Thus, although anoxic depolarisation might be attributed to (Na^-K^)- 

ATPase pump failure, tissue ATP concentrations are relatively unaffected in spreading depression^ 

(Hansen, 1985, pi 26), despite the similarity of both the ion-concentration and DC-potential 

responses to spreading depression and ischaemia/anoxia. An additional complication emerges 

from the demonstration (Obrenovitch et al., 1990) that ischaemia-induced depolarisation occurs in 

isolated perfused brain, despite the maintenance of ATP at a significant level (one third of the 

control concentration). Product inhibition of the (Na^-K^)-ATPase by ADP (Apell et al., 1986) 

might underlie this finding, in which case a partial depletion of ATP suffices to cause

 ̂A marked depletion of ATP occurs in ischaemia/anoxia (Hansen, 1985, p i 22 et seq.).
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transmembrane ion-gradient disruption. To summarise, it is established that ischaemia/anoxia can 

lead to massive ion shifts and an associated decrease in extracellular DC-potential (anoxic 

depolarisation; Dijkhuizen et al., 1999, and references therein). Furthermore, it has been 

demonstrated that in spreading depression the changes in extracellular volume attributable to cell 

swelling occur in synchronisation with changes in extracellular DC-potential (Hansen and Olsen, 

1980; Hansen, 1985, p i 19). Nevertheless the present diffusion study indicates that the ADC and 

DC-potential changes associated with anoxia are not driven by a common process.

3.4.2 The ADC and DC-potential responses to focal ischaemia. A 

summary of the latent process analysis

In this chapter the ADC and DC-potential data obtained in a previously published study has been 

re-examined, with a view to addressing the common latent process issue. The analysis focuses on 

the ADC and DC-potential transition characteristics. A simple comparison of the normalised 

transition rates and half-response times is valid provided the biological system in question behaves 

as an approximately linear system, i.e., provided the ADC and DC-potential responses are 

approximately linearly related to the driving process(es). Nonlinearity in the system will give rise 

to a difference in the ADC and DC-potential transition characteristics unless the dependencies in 

the two responses are identical. But identical dependencies are not necessarily expected. For 

example, identical DC-potential and ADC dependencies on ion concentration are not expected if 

ion movement is the common driving process. Nevertheless, any resulting difference in transition 

characteristics should be consistent across animals given a common latent process. No such 

regularity in transition behaviour is observed, however, thus ruling out both linear and nonlinear 

common latent processes. In particular. Fig. 3.28a shows that the median difference in the ADC 

and DCfast transition rates is positive in some animals, while it is negative in others. Heterogeneity 

is also observed in the ADC-DCgiow median rate differences (Fig. 3.28c). It might be argued that it 

is wrong to suggest that the ADC-DCsiow rate differences shown in Fig. 3.28 provide evidence 

against a common latent process, since eight of the ten median differences are negative, the 

remaining two being close to zero. On the other hand, an inspection of the ten individual overlaid
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component DC-potential and ADC posterior cluster plots (Figs. 3.24 and 3.25) lends credence to 

the conclusion that there is no consistent temporal relationship between the two transitions. A 

common latent process involving nonlinear responses therefore appears unlikely. A triggered 

process model provides an alternative to the common latent process hypothesis and might appear 

as an extreme form of nonlinearity in the temporal relationship between the ADC and DC- 

potential responses. In a triggered system the stimulus for change in one variable is threshold 

crossing in the value of the driver variable. The threshold in question might be the concentration 

of some trigger species, for example. A comprehensive analysis of the time-series data is required 

to explore lully the possible involvement of some triggered process. This work is the subject of 

Chapter 4.

To conclude, the present study suggests that the ADC and DC-potential responses to ischaemia are 

not driven by a common latent process, although some caution is required since this conclusion is 

based on the between-animal differences in temporal behaviour. The analysis shows that a 

restricted focus on the mean responses can be misleading. The temporal relationship between the 

ADC and the established biophysical/biochemical responses to ischaemia clearly requires further 

investigation in order to understand fully the mechanism underlying the ADC response. The 

possible involvement of some triggering mechanism is examined in Chapter 4.
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4. IS ANOXIC DEPOLARISATION ASSOCIATED WITH AN 

ADC THRESHOLD?

4.1 Introduction

4.1.1 Diffusion imaging in cerebral ischaemia

Diffusion imaging is used extensively in stroke research and as a routine clinical tool in the 

clinical assessment of stroke patients due to its well-documented responsiveness to the tissue 

changes that occur following a period of cerebral ischaemia. Nevertheless, the mechanistic basis 

of the observed stroke-induced ADC changes remains to be established, despite the numerous 

publications on this subject. [Several review papers on the role of diffusion imaging in cerebral 

ischaemia have been published, including King et al. (1997b) and Thomas et al. (2000).] A key to 

understanding the cerebral ADC response to ischaemia is a detailed examination of the temporal 

relationship between the ADC response and the well documented biophysical and biochemical 

changes that occur following an ischaemic insult. In one such study Harris et al. (2000) examined 

the temporal relationship between the ADC and DC-potential responses to transient focal 

ischaemia, and concluded that these responses are distinguishable in their temporal characteristics, 

with the decline in ADC preceding the negative DC-potential shift, the latter of which is indicative 

of anoxic depolarisation. A subsequent and formal Bayesian analysis of these data was performed 

using a Markov chain Monte Carlo (MCMC) simulation approach, the main focus of which was a 

within-animal comparison of the ADC and DC-potential transition rates and transition half

response times. The results, which are presented in Chapter 3, reveal an absence of any consistent 

temporal relationship between the ADC and DC-potential transition responses to focal ischaemia 

among the sample of ten animals, an observation which appears incompatible with the notion that 

the ADC and DC-potential responses are driven by a common latent process. Despite this finding, 

one cannot necessarily conclude that the two responses are entirely uncoupled in time, since the 

possibility remains that one response is triggered by the other, albeit with uncoupled transition 

behaviour. Thus the DC-potential transition might be initiated at that point in time when the ADC
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reaches some threshold. Once triggered, the DC-potential transition rate might be determined by 

any number of factors unrelated to the ADC. In this chapter the combined ADC and DC-potential 

data are examined from this perspective. This is not to suggest that a change in the diffusivity of 

water is likely to act as a direct trigger, merely that the ADC might be coupled to the cellular 

events that do trigger the DC-potential response. A role for ADC thresholds in ischaemia has been 

discussed previously (Hoehn-Berlage et al., 1995; de Crespigny et al., 1999), prompted, 

presumably, by the well-documented existence of ischaemic response thresholds (Astrup et al., 

1981; Spetzler and Nehls, 1987; Heiss, 1992; Busza et al., 1992 ; Hoehn-Berlage et al., 1995). The 

purpose of the analysis outlined in this chapter is to examine the previously published data of 

Harris et al. (2000) for evidence indicating the involvement of an ADC threshold in central 

nervous system anoxic depolarisation.

4.1.2 ADC thresholds in cerebral ischaemia

The concept of ADC thresholds is not new. A cascade of events is known to occur following an 

ischaemic/anoxic insult, starting with functional and metabolic disturbances and culminating in 

the onset of energy failure and anoxic depolarisation. It has been suggested that a cerebral blood 

flow (CBF) threshold exists for the commencement of each event (Astrup et al., 1981; Spetzler 

and Nehls, 1987; Heiss, 1992). This has prompted a search for the existence of related ADC 

thresholds since this has implications for clinical diagnosis and should lead to an improved 

understanding of the biophysical chemistry of stroke-induced tissue damage. In one such study 

Hoehn-Berlage et al. (1995) matched the areas of ATP depletion and acidosis after 2h of 

ischaemia in the rat with co-registered ADC images to obtain a mean ADC threshold of 77±3% 

(±SD, threshold expressed as a percentage of the ADC in the hemisphere contralateral to the 

ischaemic lesion) for ATP depletion (energy failure) and 90±4% for acidosis. Using these data 

they distinguish the unsalvageable lesion core, which is destined to become necrotic, and the 

surrounding oligemic corona in which blood flow is sufficient to prevent energy failure, but at the 

cost of severe tissue acidosis. Thus, the latter corresponds to the area in which the ADC lies in the 

range 77% to 90%. It is emphasised that these thresholds apply only to the specific animal model
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used in the study and a 2h-period of ischaemia, and that an extensive series of studies is required 

to determine whether these thresholds are time and species dependent, de Crespigny et al. (1999) 

suggest that the existence of different ADC thresholds for acidosis and energy failure is related to 

the observation that, in their studies, the ADC response is biphasic.

4.2 Methods

4.2.1 Experimental methods

A detailed description of the experimental and image processing procedures is given in Harris et 

al;(2000) and Roussel et al.(1994). A summary is provided in Section 3.2.

4.2.2 Longitudinal data analysis

A complete description of the MCMC simulation and convergence diagnostic test procedures is 

given in Sections 2.2 and 3.2.2. The trigger threshold analysis outlined in this chapter reuses the 

MCMC output of Chapter 3, but it is based mostly on an alternative, model-free approach to 

characterising the temporal relationship between the DC-potential and ADC responses, with an 

emphasis on response onset time. The majority of the analyses use the ADC and DC-potential 

normalised 0.9 level as a marker of the onset of the two transitions and hence to determine the 

relationship between them. In contrast, the ADC median threshold and 95% posterior interval data 

shown in Fig. 4.3 were obtained by equating the ADC threshold to the ADC at the maximum in 

the Vdc-ADC curve second derivative, as obtained using the logistic model for the ADC and DC- 

potential transitions. The V dc-ADC curve second derivative {dV^ddD) is given by

d ’avec ^  dVpc d h  ^  d^V,
dD^ dt dD^

DC

dt

where D indicates the ADC. Thus, given transitions of the form

[4.1]

^  = [l + e x p (A + /? .0 ] ’

with y  = Focfast, Pocsiow or D, rearrangement yields
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P a - y

<= R ' [4 3]
Pc

from which the following derivatives are obtained:

_ -Pa

[4.4]

dy _ -PaPcQ^y{Pb+Pct)  

dt [l + exp(^6+^cO r '

d^y ^  '^PaPl exp(2yg  ̂+ 2P J) P J l  exp(yg  ̂+ p j )  

dt^ [l + exp(/?6 + P ct)f [l + exp(/?i + p , t ) f

These equations were used in conjunction with a simple search algorithm and the MCMC output 

of Chapter 3 to obtain the threshold medians and posterior intervals. Essentially the same results 

are obtained by adopting a simple finite difference approach.

4.3 Results

Fig. 4.1 shows the DC-potential and ADC responses acquired from each of the ten animals, 

plotted individually, together with a set of 100 random time-course profiles generated by sampling 

from the posterior distribution. The observed DC-potential and ADC response profiles are also 

shown in Chapter 3 (Fig. 3.2) together with the individual-specific ADC and DC-potential 

posterior median responses (Figs. 3.20 to 3.22). These plots indicate that there is a considerable 

uncertainty in the onset of the ADC response. Furthermore, a proportion of the randomly sampled

Fig. 4.1. Overlaid plots showing the normalised ADC (continuous irregular line) and DC-potential 

(white broken line) response profiles acquired from each of the 10 animals, together with a set of 

100 animal-specific random profiles obtained by sampling the posterior distribution (ADC profiles, 

grey broken lines; DC-potential profiles, black band surrounding the white broken line).
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Fig. 4.1. Normalised individual-specific ADC and DC-potential response

profiles
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ADC response profiles obtained for some animals (4, 5 and 6, in particular) show a non-negligible 

decline in ADC prior to zero time, and this appears to be reflected in the ADC observations. The 

reasons for this behaviour and the resulting implications are dealt with in Section 4.4.3. Suffice it 

to say that the unusual behaviour observed in these three animals must be taken into consideration 

in the following analyses.

The MCMC output was used to perform a number of calculations with a view to identifying 

behaviour consistent with the existence of an ADC trigger threshold. These analyses were 

exploratory in nature and relied heavily on various graphical displays. An initial search for the 

existence of an ADC threshold was performed by generating DC-potential versus ADC (V dc- 

ADC) plots (Fig. 4.2), using the MCMC output. Separate plots were produced for each animal 

using the MCMC posterior median fixed- and random-effect coefficients to generate values for the 

ADC and DC-potential as a function of time, these serving as input to a plotting routine. In 

addition, a set of credible V dc-ADC profiles was generated by resampling from the posterior 

distribution, i.e., by resampling the MCMC output. The median and sampled profile sets are both 

shown in Fig. 4.2. No consistent behaviour is observed across all ten animals. Thus, the plots 

obtained for animals 2, 4, 5,9, 10 and possibly 6 might be taken as evidence for a threshold 

centred in the region of 0.60 to 0.62, say, but the remaining plots are inconsistent with a well- 

defined threshold in this range. Furthermore, the V dc-A D C  plots generated for animals 4, 5 and 6 

should be viewed with caution due to possible baseline instability. The shape of the plot obtained 

for animal 1 indicates that the DC-potential and ADC essentially move in synchrony over much of

Fig. 4.2. V dc-A D C  curves were generated for each of the 10 animals using the posterior random 

coefficient estimates. The curve generated from the individual-specific posterior medians is 

shown for each animal (white), together with 100 random curves generated by sampling the 

posterior distribution (black). Each curve spans a time interval starting 3 minutes pre-occlusion 

(lower left region of the plot) and ending 6 minutes post-occlusion (upper right region).
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Fig. 4.2. Individual-specific DC-potential dependence on ADC
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their range. Similarly, proportional ADC and DC-potential responses were seen in animal 8 over a 

substantial part of the ADC transition. An additional feature of the response observed in this 

animal was the absence of the rapid DC-potential component that was observed in the remaining 

nine cases (see top left panel of Fig. 3.27). The unique plot obtained for the third animal is a 

reflection of the ADC transition having finished prior to the start of the DC-potential transition. 

The median ADC transition obtained for animal 7 is close to a step transition and so this plot 

contains little useful information about ADC threshold points. Each of the accompanying credible 

profile sets reveals a considerable degree of uncertainty, but the preceding remarks are unaffected 

by this imprecision. The V dc-ADC credible profile set obtained in the subset of animals in which 

the median V dc-ADC curve has a shape consistent with a triggered DC-response were used to 

generate a set of animal-specific ADC threshold posterior distributions, a subset of which is 

shown in Fig.4.3. This was achieved by using an ADC threshold defined as the V dc-ADC curve 

maximum second derivative. (This definition is justified in Section 4.4.3.) The trigger threshold 

posterior distributions obtained for animals 6 and 10 cover a wide range of ADC values and are 

not, therefore, included in the figure since this contravenes the definition of a well-defined 

threshold. Although a cursory inspection of the V dc-ADC plots (Fig. 4.2) obtained from the 

selected subset of animals might be taken to indicate the presence of an ADC threshold. Fig. 4.3 

reveals a considerable degree of between-animal variation among the subset of posterior intervals. 

This is reflected in the joint posterior probability distribution. Calculation shows, for example, that 

the ADC range 0.600 < threshold <0.615 has a joint posterior probability of only 0.12% in the 

subset of four animals with a narrow individual-specific posterior distribution. This lack of 

consistent behaviour, together with the observation that several of the remaining V dc-ADC plots 

(1 ,3 ,7  and 8) lack any threshold signature, leads to the conclusion that, taken as a whole, the V dc- 

ADC plots provide no consistent evidence for a well-defined ADC threshold.

As an alternative approach to the trigger analysis the ADC values at the start of the DC-potential 

transition have been examined using a more direct indicator of the latter. Given the logistic 

function used to model the DC-potential response and the associated asymptotic behaviour, there
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Fig. 4.3. Individual-specific ADC thresholds
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is no well-defined start to the DC-potential transition. A normalised DC-potential value of 0.9 was 

selected as marking the onset of the DC-potential response. Similar results were obtained using 

other normalised threshold crossing values, provided they were greater than 0.85. The argument 

for using the 0.9 normalised DC-potential level to define the start o f the DC-potential transition is 

that it provides an estimate of the ADC at the point in time at which the DC-potential starts to 

show a marked excursion away from the pre-insult level and this should provide an estimate of the 

ADC trigger threshold if it exists. There is a considerable degree of between-animal variation in 

the resulting ADC trigger point (Fig. 4.4A) but this is attributable, at least in part, to the 

substantial between-animal variation in pre-insult ADC. The effects of between-animal variation 

in the pre-insult and asymptotic post-insult ADC levels can be removed by performing the 

analysis on a normalised ADC scale. Fig. 4.4B shows, however, that a substantial level of 

between-animal variation remains in the normalised trigger thresholds. No evidence for a 

consistent ADC threshold emerges from this analysis. As mentioned previously, animals 4, 5 and 

6 might be disregarded as being unreliable, but substantial between-animal differences exist 

among the remaining threshold posterior intervals and so the conclusion remains unaltered. This is 

consistent with the impression obtained by inspecting the overlaid ADC and DC-potential 

response profiles (Fig. 4.1). In animal 3, for example, the ADC transition reached completion 

prior to the start of the DC-potential response while in animal 1 the two transitions are more 

synchronised.

To complete this part of the trigger-point analysis, the existence of latency in the DC-potential 

response must be considered. The above analysis was therefore repeated but using a modified 

model in which the DC-potential response is preceded by a latent period. Exploratory analyses 

were performed using a range of plausible latency values (Fig. 4.5). The ADC trigger threshold 

medians and 95% posterior intervals obtained without normalisation and assuming a latent period 

of 30s are shown in Fig. 4.6A. A considerable degree of between-animal variation is evident. A 

greater degree of similarity between animals is observed in the results obtained using the 

normalised ADC scale, and these results might be taken as consistent with a normalised ADC
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Fig. 4.4. ADC level at the start of the DC-potential transition
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Fig. 4,5. Relationship between the DC-potential and ADC. Delayed-response model 

results
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Fig. 4.5. continued

A  set of seven individual-specific V dc-ADC curves were generated for each of the ten animals 

using the posterior random coefficient median estimates and assuming a latency in the DC- 

potential response ranging from zero (bottom curve) to 30 s (uppermost curve). The intermediate 

curves were generated at 5 s increments in latency. Each curve spans a time interval starting 3 min 

pre-occlusion (lower left region of the plot) and ending 6 min post-occlusion (upper right region).
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Fig. 4.6. ADC threshold estimates based on a delayed-response model
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of the DC-potential transition, together with the 95% posterior intervals. The start of the 
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0.9 on a normalised scale. (A) Without ADC normalisation. (B) With ADC 
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threshold close to the baseline value of unity, given the need for caution concerning the data 

acquired from animals 4, 5 and 6 (Fig. 4.6B). Thus, if the notion of an ADC trigger is correct, the 

results suggest that it lies close to the pre-insult ADC level and that it is associated with a latency 

in the DC-potential response. Prompted by this finding an alternative presentation of the data was 

produced to show the individual-specific medians and 95% posterior intervals obtained for the 

difference in time between the normalised 0.9 level crossing points in the ADC and DC-potential 

responses, i.e., the individual-specific latencies, based on a normalised value of 0.9 for the ADC 

threshold and using a normalised value of 0.9 as an indicator of the start of the DC-potential 

response (Fig. 4.7). With the exception of animal 4, a latency of the order of 34s lies within the 

95% posterior interval for all animals. The population median V dc-A D C  onset time difference is 

22s (95% posterior interval: -6 to 70s).

Component Responses

The analysis outlined in Chapter 3 shows that the DC-potential response is biphasic. Furthermore, 

an examination of Figs. 3.21 and 3.26 indicates that the two DC-potential components are 

simultaneous rather than sequential, both components making a significant contribution to the 

early stages of the response. Thus, to complete the analysis outlined in this chapter, it is necessary 

to examine each component separately in order to explore the possibility that one of the DC- 

potential components exhibits a consistent trigger-type relationship with the ADC. The failure to 

see this in the analysis of the composite DC-potential response might be due to its being obscured 

by the second, overlapping DC-potential component. Figs. 4.8A and 4.9A show the individual- 

specific median ADC threshold estimates and 95% posterior intervals obtained for the fast and 

slow DC-potential components, respectively. The former are not dissimilar to those obtained using 

the composite DC-potential response (Fig. 4.4A), and fail to provide evidence for a consistent 

ADC threshold in relation to the fast DC-potential component. The same applies to the normalised 

threshold data shown in Fig. 4.8B. Similarly, there is considerable between-animal variation in the 

slow DC-potential component ADC threshold posterior intervals, with or without normalisation 

(Fig. 4.9), although several of the posterior intervals extend towards unity on the normalised ADC
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Fig. 4.7. DC-potential to ADC 0.9 level crossing point time difference
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Fig. 4.8. ADC level at the start of the fast DC-potential transition
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Fig. 4.9. ADC level at the start of the slow DC-potential transition
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scale, In addition, a comparison of Figs. 4.4B and 4.9B indicates that, with the exception of 

animals 5, 6 and 8, the individual-specific slow DC-potential median normalised thresholds are 

closer to unity than the corresponding composite DC-potential thresholds. This arises because, in 

the remaining cases, the onset of the slow DC-potential component precedes that of the fast-DC 

component (Fig. 3.26). Despite the resulting increase in similarity among the individual-specific 

medians, the slow DC-potential component ADC normalised threshold posterior intervals are too 

disparate to be taken as evidence for a consistent threshold across all animals (Fig. 4.9B).

The preceding single DC-potential component analysis should be extended to consider the 

possibility of a well-defined threshold combined with a latency in the response. Inspection of Fig. 

3.26 indicates, however, that a marked latency in the slow DC-potential response is not, in 

general, plausible since its onset is close to zero time in every case. In contrast, a latency in the 

fast DC-potential component is a possibility. A latent-period analysis was performed, but failed to 

uncover any consistent threshold-type relationship between the fast DC-potential component and 

the ADC response (data not shown). Finally, Fig. 4.10A shows the median difference between the 

individual-specific ADC and fast DC-potential normalised 0.9 level crossing times, together with 

their associated 95% posterior intervals. Fig. 4.1GB provides this information in relation to the 

slow DC-potential component. The earlier onset of the slow DC-potential response, relative to the 

fast component, in seven of the ten animals (the exceptions are animals 5, 6 and 8; see Fig. 3.26) 

is reflected in the difference between the two sets of results. With the exception of two cases that 

were flagged as having an unstable baseline (animals 4 and 5), the posterior intervals for the slow 

DC-potential component all span zero, which is consistent with the preceding comment on the 

implausibility of a marked delay in the slow DC-potential response.

4.4 Discussion

4.4.1 ADC thresholds in cerebral ischaemia

Ischaemia causes a variety of well documented biochemical and electrophysiological changes in 

the affected tissue. It is established that, in general, each is associated with a well-defined CBF
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Fig. 4.10. Fast and slow DC-potential component to ADC 0.9 level crossing point 
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threshold, and that tissue perfusion must fall below some defined level to elicit each of the 

responses (Astrup et ah, 1981; Spetzler and Nehls, 1987; Heiss, 1992). ADC measurements are 

used routinely in the clinical assessment of stroke patients, and it has been suggested that the ADC 

response might be similarly graded. For example, Hoehn-Berlage et al. (1995) have shown that, 

after two hours of ischaemia, rat brain tissue with an ADC lower than 77% of normal is destined 

to become necrotic, while poorly perfused tissue with an ADC in the range 77% to 90% of normal 

is salvageable, despite the accompanying acidosis. The authors emphasise that these ADC 

thresholds are expected to depend on the duration of the ischaemic period, and to be species 

specific. Prompted by the concept of a graded response to the decline in ADC that occurs in 

ischaemia, an analysis was undertaken to determine whether anoxic depolarisation is associated 

with a well-defined ADC threshold. This might be taken as evidence for a mechanism in which 

the ADC is tightly coupled with a process that triggers the DC-potential response. A reanalysis of 

previously published ADC and DC-potential data (Harris et al., 2000) was undertaken for this 

purpose, the results of which are presented in this chapter.

4.4.2 On the question of an ADC threshold for anoxic depolarisation

It is necessary at this point to clarify the use of the term ADC threshold fo r depolarisation. For the 

purpose of the present V dc-A D C  analysis, this is defined as a narrow and reproducible ADC level 

at which the DC-potential response is triggered, a level that is essentially independent of other 

prevailing conditions. In particular this definition requires the threshold to be independent of the 

duration of the ischaemic insult. A triggered response in which the ADC level depends on one or 

more additional factors would be interpreted as contravening the definition of a well-defined 

threshold. It might be argued that this definition is inappropriate and that the threshold associated 

with any triggered process might be modulated by one or more variables and fail, therefore, to 

meet the reproducibility criterion. This kind of modulation might be expected when the triggering 

and response processes are separated by a sequence of intermediate events. For example, the CBF 

threshold required to elicit an ADC response is reported to depend on the duration of the anoxic 

insult (Kohno et al., 1995, Table 3). Similarly, a dependence on insult duration is indicated in the
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CBF threshold for other key components of the ischaemic response, including the functional/ 

electrical (Heiss, 1992), biophysical (i.e., volume/electrical impedance; Matsuoka and Hossmann, 

1982b), biochemical (Kohno et al.,1995, Table 3) and pathological (Heiss, 1992; Lassen and 

Astrup, 1987, and references therein) components. In defence of the present definition it should be 

noted that the purpose of the V dc-ADC analysis is to explore the possibility that the ADC and DC- 

potential responses are closely linked in the sense that both are intimately coupled to the 

transmembrane ion movements that occur subsequent to an ischaemic/anoxic insult. In this 

context the notion of a well-defined ADC threshold that is independent of the history of the 

system (occlusion rate and CBF level, for example), and other factors, is sensible.

4.4.3 Vdc-ADC MCMC simulation analysis

As a starting point for the analysis, V dc-ADC plots were constructed using the MCMC output. If 

both the DC-potential and ADC measurements had been obtained with high precision and 

sufficient temporal resolution then the raw DC-potential and ADC data might have been used for 

this purpose. But the ADC measurements are relatively imprecise and in several cases the ADC 

transition is undersampled. For this reason the MCMC parameter medians were used to generate 

values for the ADC and DC-potential as a function of time, these serving as input to the plotting 

routine in preference to using the observed DC-potential and ADC values. In addition, a set of 

individual-specific credible V dc-ADC profiles was generated by resampling the MCMC output. 

The V dc-ADC curve maximum second derivative was used as a threshold parameter (Fig. 4.3) on 

the basis of its potential sensitivity to the onset of cascade-like processes. The V dc-A D C  curve 

analysis was supplemented by a threshold crossing-point analysis. It is appropriate, however, to 

acknowledge that a formal changepoint analysis (Carlin et al., 1992; Chapter 5 is devoted to 

MCMC changepoint analyses) modified to deal with smooth transitions (Bacon and Watts, 1971) 

might provide an alternative approach, but this was not pursued. Among the advantages of the 

method outlined in this chapter is the manner in which the logistic function allows a complete 

characterisation of the sigmoid transition. Furthermore, a logistic-type response has a plausible 

biological basis.
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The main finding arising from this ADC threshold analysis is that, taken together, the data appear 

contradictory to the notion of a well-defined ADC threshold for anoxic depolarisation. Five of the 

ten animals yielded response profiles that appear consistent with the existence of an ADC trigger, 

but further analysis indicates that even among this subset of animals a considerable degree of 

variation is evident among the individual-specific threshold indices, suggesting the absence of a 

well-defined threshold. Disregarding those animals (4, 5 and 6) in which the baseline ADC is ill- 

defined, the data might be considered as consistent with a trigger-point close to the pre-insult 

ADC level (i.e., close to unity on the normalised ADC scale), together with a delay of the order of 

30s in the onset of the DC-potential response. It should be noted, however, that this observation 

might be a reflection of the lower gradient in the early portion of the logistic ADC response curve. 

In the absence of any well-defined trigger point, the slower change in ADC close to zero time 

guarantees a better consistency between animals if a normalised trigger level close to unity is 

assumed, together with an appropriate value for the duration of the latent period. Expanding on 

this remark, each of the calculated subject-specific normalised trigger thresholds tends to unity 

with increasing latency, causing a reduction in the between-animal variation in the normalised 

trigger threshold estimate. The range of plausible values for the duration of the latent period is, 

however, subject to the time constraint that the trigger point must occur at a time greater than zero, 

at least to within experimental error. Thus, in the absence of a well-defined trigger threshold, a 

minimum between-subject variation in the normalised threshold estimate will be obtained by 

assuming a latency in the DC-potential response with a maximum plausible duration. Exploratory 

calculations show that even among the subset of animals with a well-defined maximum second 

derivative in the V dc-ADC curve (animals 2,4, 5, 9), no combination of ADC trigger level and 

plausible latency eliminates the considerable between-animal variation in ADC trigger threshold, 

with or without normalisation. This is seen in Fig. 4.6, which shows the individual-specific 

median thresholds, and 95% posterior intervals, derived by assuming a latent period of 30s and 

using the normalised 0.9 level crossing point as an approximate marker of the onset of the DC- 

potential response. Thirty seconds is close to the maximum possible latency under the condition of 

non-negative individual-specific trigger timing, and yet a considerable level of between-animal
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difference remains among the posterior intervals, even i f  attention is restricted to the subset o f  

animals with a w ell-defined V dc-ADC  curve turning point.

The latent variables analysis presented in Chapter 3 shows that the DC-potential response is 

biphasic, and consists of overlapping fast and slow components (Figs. 3.20, 3.23 and 3.26). Thus, 

to complete the analysis outlined in this chapter, it is necessary to examine each component 

separately in order to explore the possibility that one of the DC-potential components exhibits a 

consistent trigger-type relationship with the ADC. The failure to see this in the analysis of the 

composite DC-potential response might be due to its being obscured by the second, overlapping 

DC-potential component. No evidence for a well-defined threshold was found in either of the two 

DC-potential components, however.

Given the overall heterogeneity in the two ADC threshold indicators, i.e., the V dc-ADC curve 

maximum second derivative and the normalised 0.9 level crossing point, the data as a whole (or, if 

preferred, the subset with animals 4 to 6 excluded) provide no strong evidence for the existence of 

a well-defined ADC trigger point. On the other hand, it is not possible to rule out a mechanism in 

which a small departure of the ADC from the pre-insult level is associated with an event, or series 

of events, that leads to delayed anoxic depolarisation, with a substantial degree of between-animal 

variation in the duration of the latent period. It should be noted that, in the present analysis, 

latency does not appear as a model parameter, per se, and is not subject to the same distributional 

constraint that operates on the random coefficients. Thus the model places no direct distributional 

constraint on the relationship between the ADC and DC-potential onset times. A different 

statistical model in which the ADC and DC-potential transitions are coupled through a latency 

random coefficient might provide supplementary information, but this approach was not pursued. 

Bearing this in mind. Fig. 4.7 shows the individual-specific median difference in time between the 

normalised 0.9 level crossing points in the ADC and DC-potential responses. These data provide 

evidence for a temporal separation in the initiation of the ADC and DC-potential responses in 5 

animals, as indicated by those 95% confidence intervals that exclude zero. In contrast, however.
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the population median difference 95% posterior interval spans zero (median: 22s; 95% posterior 

interval: -6 to 70s), which is consistent with the results obtained in a study of global ischaemia 

indicating that the ADC and DC-potential responses are indistinguishable in terms of their mean 

onset time (see Table 1 in de Crespigny et al., 1999). It has been suggested (de Crespigny et al.,

1999) that this appears inconsistent with the report (Huang et al., 1997) that the ADC response 

precedes the negative DC-potential shift. The latter observation is based, however, on a 

comparison of the ADC and DC-potential data acquired in separate studies. [The DC-potential 

information was taken from Hansen (1978)]. Furthermore, the results presented in this chapter 

show that population mean/median onset-time difference estimates can be deceptive and that an 

analysis of within-subject differences provides additional information.

Some clarification is required regarding the very notion of an ADC threshold for anoxic 

depolarisation. Irrespective of the outcome of the analysis, changing water diffusivity is unlikely 

to act as a direct trigger. A more plausible hypothesis is that the ADC is coupled tightly to some 

underlying process that acts as a trigger for depolarisation. But the present analysis provides no 

firm evidence for a triggered DC-potential response and alternative mechanisms must be 

considered. Among the possibilities is a process in which the DC-potential and ADC respond 

independently to events that take place at a time close to the start of the ischaemic insult. This 

assumes that both transitions occur after a latent period, the duration of which tends to be longer 

for the DC-potential response. The distinction between this and the trigger hypothesis is that the 

former implies that both processes are passive, while the trigger hypothesis suggests that the ADC 

change is associated directly with the process that initiates anoxic depolarisation. Additional 

information is provided by the latent variables analysis of Chapter 3, the results of which suggest 

that the temporal relationship between the DC-potential and ADC responses is inconsistent with a 

latent variables model. The distinction between a latent process and a triggered process is 

important. According to a latent-process model the ADC and DC-potential are immediately and 

tightly coupled to some underlying driving process. The coupling is continuous over the duration 

of the response. In contrast the trigger model assumes that the two processes are linked at one
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point in time only, i.e., the trigger point. Once initiated, the triggered response occurs at a rate that 

is independent of the triggering process. The distinction is between a driving process and a process 

that involves initiation only.

Baseline instability

Reference is made in Section 4.3 to the fact that in some animals the ADC transition appears to 

precede the ischaemic insult, as indicated by a decline in ADC prior to zero time. These data have 

not been excluded from the analysis because this was judged inappropriate. For the same reason a 

constrained model was not adopted, i.e., one in which the start of each of the two transitions is 

constrained to occur at a time greater than zero. Doubts regarding the validity of either of these 

approaches arise for the following reason. Baseline data were collected for a period of about 7min 

prior to occlusion, although it was considered appropriate to truncate the baseline period for 

modelling purposes, hence the 3min baseline span shown in Fig. 4.1. An inspection of the entire 

baseline shows, however, that the ADC declined slowly over the entire 7min period in the fourth 

animal, while an erratic, cyclic instability in ADC is evident in the fifth animal. Given the relative 

stability o f the baseline ADC in the majority of the remaining animals, these time-dependent 

changes in ADC appear to reflect real changes in physiology as opposed to machine instability or 

measurement error. The resulting pre-insult decline in ADC appears to be genuine and it has been 

captured by the logistic function in these two animals. Thus the posterior parameter estimates and 

associated ADC time-course profiles obtained for animals 4 and 5 are a reflection of the 

superimposed declining baseline and the driven ADC transition. Given the preceding definition of 

an ADC threshold (Section 4.4.2) this summation is appropriate since the manner in which the 

proposed ADC threshold is reached is immaterial. It is fortunate, therefore, that any systematic 

decrease in baseline ADC is captured by the logistic function, although this necessarily introduces 

some degree of uncertainty in the normalised parameter estimates. The latter is inevitable because 

the pre-insult asymptote is not well-defined in the presence of an unstable baseline. Furthermore, a 

declining ADC during the baseline period implies some degree of model failure in the region of 

the post-insult asymptote due to the symmetry of the logistic function, although this is lost in the
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noise. In an ideal experiment, the baseline ADC would be monitored in real-time and the 

experiment terminated if the baseline ADC is unstable. But the ADC time-course data were 

available only after a considerable amount of image processing and subsequent calculation, and an 

evaluation of the ADC data in real-time was not feasible (see Section 3.4 for further discussion). 

The data were, therefore, used in their entirety, but taking care to ensure that none of the 

conclusions is a consequence of baseline instability. To summarise, this study was undertaken to 

address important questions concerning the biophysical chemistry of the ADC response and the 

possibility of a threshold-type relationship between the ADC response and anoxic depolarisation. 

A formal analytical approach to the problem is outlined with the aim of making optimum use of 

the data while acknowledging the limitations of the study. The main conclusion is that the data 

provide no convincing evidence for the existence of a consistent ADC threshold. This conclusion 

is robust, despite the obvious baseline ADC instability that occurred in a few cases.

4.4.4 The sparse data problem, ill-conditioning and Bayesian random 

coefficient models

It is well known that random coefficients modelling can offer considerable advantages when 

dealing with problems that are under-determined or ill-conditioned in an ordinary regression 

context (see Section 1.4.3). This is especially true of Bayesian random coefficient (hierarchical) 

models. There were several instances in the present study in which attempts to fit an individual 

DC-potential and ADC profile pair led to failure, either because the ADC transition is corrupted 

with noise and/or is inadequately sampled, or because the biphasic nature of the DC-potential 

response is poorly identified. On the other hand, the Bayesian random coefficients model 

succeeded in providing the required subject-specific parameter estimates and associated posterior 

intervals. The Bayesian random coefficients model succeeds where a simple regression approach 

fails because it makes proper use of distributional information provided by the collection of 

individual response profiles. Thus, a formal modelling of the distribution of each of the random 

coefficients influences the subject-specific parameter estimates and associated statistics, and 

moderates the influence of spurious observations. This is related to the parameter shrinkage
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behaviour discussed in Section 1.4.2.2, and is especially important if the response profile sampling 

within a given individual is sparse. It is, therefore, particularly relevant to the ADC data acquired 

in this study and, for this reason, shrinkage in the ADC transition-rate estimates is examined in 

Appendix B. Despite the advantages of a formal random-coefficients analysis, an improvement in 

the precision of the ADC random coefficient estimates would be helpful. This can, however, be 

achieved only by a reduction in the signal-to-noise ratio and/or an increase in sampling rate. 

Unfortunately, the signal-to-noise ratio is inversely related to the sampling rate, and an 

improvement in the quality of the data was not feasible given the available hardware.

4.4.5 Corroborative versus conflicting evidence for an ADC threshold in 

anoxic depolarisation

Several studies provide information that is relevant to the ADC threshold question. Hossmann 

(1971) reported that the onset of the extracellular volume response to ischaemia, as determined by 

cortical impedance measurements, coincides with the appearance of cortical potential changes 

(anoxic depolarisation), suggesting that these are related. On the other hand it has been noted 

(Kohno et al., 1995) that the CBF threshold for the electrical impedance response is far higher 

than the threshold for anoxic depolarisation [see, for example, the 2h CBF data given in Fig. 3 of 

Matsuoka and Hossmann, 1982b, which indicate a threshold of approximately 25-30 ml lOOg’̂  

min'^ for the extracellular-space response, as measured by cortical impedance, compared with a 

threshold of the order of 8-10 ml lOOg'̂  min‘* for anoxic depolarisation (Lassen and Astrup, 1987, 

p462)]. This demonstrates that these processes can occur independently, despite the earlier and 

apparently contradictory report (Branston et al., 1978) that the CBF threshold for the electrical 

impedance response is 9.6 ml lOOg'  ̂m in'\ which is close to the threshold for potassium release 

[of the order of 10 ml lOOg'  ̂ min'^ (Astrup et al., 1981; Lassen and Astrup, 1987, p462)]. 

Assuming a causative relationship between the extracellular volume change and the ADC 

response to ischaemia, the demonstration that the former can occur independently of anoxic 

depolarisation is consistent with the present V dc-ADC data. In particular a latent variables 

relationship between the ADC and DC-potential responses has been ruled out (Chapter 3), and the
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analysis outlined in this chapter suggests the absence of a threshold-type relationship between the 

two processes. In recognition of the observation that factors other than depolarisation must 

contribute to the volume changes that occur during an ischaemic insult, Hossman and co-workers 

(Matsuoka and Hossmann, 1982a, 1982b; Kohno et al., 1995) have discussed the well-documented 

osmotic disturbances that take place. Macromolecular breakdown products and lactic acid, the 

latter produced through anaerobic glycolysis, are both implicated. These components of the 

osmotic response are not expected, however, to make a significant contribution to the initial ADC- 

sensitive component of the extracellular volume change. Macromolecular degradation, for 

example, occurs at a later stage. It is suggested in Chapter 3 that components of the Nicholson- 

Kraig (1981) model for the electrophysiology of spreading depression provide an explanation for 

the present V dc-ADC data. The threshold analysis outlined in this chapter does not alter this 

assertion.

4.4.6 Conclusion

The analysis reported in this chapter yields no consistent evidence for the existence of a well- 

defined ADC threshold for anoxic depolarisation. Despite the sampling-rate and signal-to-noise 

ratio limitations of the study, the precision of the subject-specific ADC threshold estimates is 

sufficient to warrant the conclusion that this is a reflection of true between-animal differences in 

ADC at the start of the DC-potential response.
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5. MAGNETIC RESONANCE CHANGEPOINT STUDIES

5.1 Introduction

The motivation for the work outlined in this chapter arose from the realisation that in some 

pathological conditions [birth asphyxia (Hope et al., 1984; Hope and Reynolds, 1985; see Section

5.5.1 for details) and stroke^ (Heiss, 1992), for example] clinical practice is driven, in part, by 

opinion based on results provided by time-of-onset studies. The concept of a therapeutic window, 

as applied to birth asphyxia and stroke, is an important example that arises in the paediatric 

environment in which the candidate works. Similarly, a window o f  opportunity fo r  intervention has 

been discussed in relation to head trauma, again based on time-of-onset studies indicating that the 

primary insult leads to a series of events that culminates in delayed axonal damage (i.e., secondary 

axotomy; Povlishock, 1992; McKenzie et al., 1996; Teasdale and Graham, 1998; Laurer and 

McIntosh, 2001). Likewise, a progression of axonal changes have been identified in minor head 

injuiy, again leading to the suggestion that some form of therapeutic intervention might be possible 

(Povlishock et al., 1983). It is in the birth asphyxia context that a study is planned, and formal 

changepoint analyses of onset-time data are envisaged as an important component of the proposal. 

An evaluation of MCMC changepoint analytical methods was therefore undertaken. The 

changepoint problem arises in many other areas of MR research, including several biomedical 

disciplines, thus providing an additional incentive to undertake this work. A variety of Gibbs 

sampler and Metropolis MCMC analytical approaches to the changepoint problem were examined 

using two MR datasets. A selection of results are presented in this chapter. The following Sections 

provide an overview of several MR applications in which formal changepoint analyses are 

required. A brief discussion of the birth asphyxia therapeutic window issue is provided in Section

 ̂ In adult stroke a therapeutic window of up to 3-6 hours duration is consistent with clinical trial 

results (Fisher and Ratan, 2003) and neurological outcome studies in animals (Spetzler and Nehls, 

1987).
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5.5.1, while an appraisal of current practice in biomedical changepoint data analysis is given in 

Section 5.5.2.

5.1.1 The changepoint problem in MR research

Departure from an expected linear relationship between two variables is a phenomenon of 

considerable importance that arises in numerous disciplines, including a number of magnetic 

resonance applications. Among the well-known examples is the departure of a variety of systems 

from classical Arrhenius behaviour ( \og{rate) oc 1 / temp % temperature in °K), as observed in many

studies into the effect of temperature on reaction rates and other processes. There are a number of 

applications in which Arrhenius behaviour is of considerable practical and/or economic 

importance. In other areas of research Arrhenius behaviour is of fundamental academic interest. 

For example, Arrhenius-plot changepoints have been associated with phase transitions in some 

systems, including lipid systems and biological membranes, electron paramagnetic resonance 

(EPR, also called electron spin resonance and abbreviated ESR) and NMR being prominent among 

the methods that have been used to study phase behaviour. Arrhenius-plot discontinuity studies are 

typical of an application in which formal changepoint analyses are required. A brief overview of 

selected industrial and scientific applications is provided in the following pages, mainly to make

^Absolute reaction rate theory provides the reaction rate expression (Silvius and McElhaney, 1981) 

rate = (xMrT / A) e x p ( - / RT)qx^{^S^ / R) where %isa constant, N  is the number of reactant 

molecules, k  and h are the Boltzmann and Planck constants, respectively, à l f  and AŜ  are the 

enthalpy of activation and entropy of activation, respectively, R is the gas constant and T is 

absolute temperature. The pre-exponential term has a weak dependence on temperature relative to 

the first exponential term, thus giving rise to the Arrhenius equation which takes the

form where Âate is the rate constant, A is treated as a constant, and E  is the

activation energy. The numerical difference between the activation energy and activation enthalpy 

is negligible in those systems under consideration.
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the case for the importance of changepoint analyses, and hence to provide a justification for this 

chapter. It must be stressed that no attempt has been made to provide a comprehensive list of 

references. On the contrary, the majority of papers were selected using the criterion that each 

should include a figure illustrating the manner in which changepoints have been defined/detected. 

In addition, many of these studies were selected because they included an MR component. These 

references provide an entry point into the relevant literature.

5.1.1.1 Arrhenius discontinuity behaviour with industrial research applications

Among the economic and commercial contexts in which Arrhenius-plot discontinuities have been 

discussed are chill-injury/chill-sensitivity in plants (Bagnall and Wolfe, 1978, 1982), the shelf-life 

of both foods (Karmas et al., 1992) and pharmaceuticals (see Hancock and Zografi, 1997, for a 

review) and the longevity of seeds (Buitink et al., 1999, 2000). To elaborate on the shelf- 

life/longevity problem, a variety of pharmaceutical and food preparations exist as an amorphous 

solid. The chemical and physical properties of amorphous state materials are, therefore, hugely 

important in the food and drug industries because these have a direct impact on the chemical and 

physical stability and consequent shelf-life of numerous preparations. The major distinction 

between crystalline and amorphous solids is that the latter are characterised by short-range order 

and, in general, a greater degree of molecular mobility. Amorphous materials tend to be more 

reactive and relatively unstable. But an important characteristic of the amorphous state is the so- 

called glass transition (or glass to rubber transition). At temperatures lower than the glass transition 

temperature, Tg, an amorphous material exists in a glassy-state, while above Tg the material exists 

as a rubbery-solid. The former takes the form of a highly viscous glassy medium in which 

rotational and translational molecular mobility are restricted. In general, molecular mobility is a 

key factor in determining reaction rates, including rates of deterioration. Thus, deterioration tends 

to occur at a reduced rate in the glassy-state. For example, macromolecules, including protein and 

peptide therapeutic agents, tend to be more stable in a glassy-state medium (Chang et al., 1996). 

Consequently, the storage stability and shelf-life of amorphous pharmaceutical and food materials 

is critically dependent on storage temperature relative to the glass transition temperature. For these
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reasons, numerous studies of the rotational correlation time and reaction-rate Arrhenius behaviour 

of amorphous materials have been carried out, with a focus on the changepoint associated with Tg 

(see, for example, Buitink et al., 1999, 2000; Karmas et al., 1992). One reason for the considerable 

interest in the amorphous state within the pharmaceutical industry is the improved solubility and 

bioavailability associated with amorphous materials, compared with crystalline preparations, 

despite the accompanying stability issues (Hancock et al., 1995; Hancock and Zografi, 1997). A 

similar interest in the amorphous state occurs in agriculture because the cytoplasm of seeds has 

been shown to form an intracellular glassy-state medium at low temperature and low water content, 

with a resulting increase in the longevity of stored seeds (Buitink et al., 1999, 2000).

The importance of the glass transition in amorphous materials is clear, and although differential 

scanning calorimetry (DSC) might be the method of choice for detecting phase changes, this is not 

always feasible (Buitink et al., 2000, p290). An alternative is to identify the transition temperature 

using ESR or NMR molecular mobility measurements [either directly via rotational correlation 

time or translational mobility measurement, or indirectly via T2 measurement or solid-state magic- 

angle spinning spectroscopic studies (Kalichevsky et al., 1992)] in conjunction with Arrhenius-plot 

changepoint analysis (see, for example. Fig. 2 in Buitink et al., 2000). This approach has the 

advantage of providing additional information about each of the phases, including a variety of 

parameter estimates (for example, rotational correlation times, thermodynamic variables, etc; see 

Hancock and Zografi, 1997, pages 6-7 for references relating to the pharmaceutical sciences) 

which, it is suggested, can be used as predictors of shelf-life (Hancock et al., 1995, page 800). The 

relationship between the glass transition temperature and reaction-rate Arrhenius changepoint 

behaviour is the focus of attention in some studies (see, for example. Karmas et al., 1992, p877).

5.1.1.2 The Arrhenius changepoint problem in biomembrane research

The preceding section outlines the central role of Arrhenius plot discontinuity studies in some areas 

of pharmaceutical and food-science research. Similarly, Arrhenius discontinuity studies have 

provided important information relating to a number of basic science questions. In particular.
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studies of the Arrhenius behaviour of membrane lipid mobility and the activity of various integral 

membrane enzymes has provided the basis for various theories relating to membrane structure and 

function. Arrhenius-plot changepoints have been the focus of much of this research (Kumamoto et 

al., 1971; Inesi et al., 1973; Hesketh et al., 1976; Wynn-Williams, 1976). A brief overview is 

provided in the following sections. ESR has played an important part in this work. [See Inesi et al. 

(1973), Raison and McMurchie (1974), Cannon et al. (1975) and Hesketh et al. (1976) for 

examples of early work on the muscle sarcoplasmic reticulum membrane ATPase and other 

membrane systems.] An example of the kind of information that can be derived from an ESR 

spectroscopic spin-labelled membrane study is provided by the first changepoint problem examined 

in this chapter. It is taken from an ESR study of the rabbit muscle sarcoplasmic reticulum (Ca^- 

Mg‘̂ )-ATPase. A brief summary of the ESR method, as applied to biomembrane research, is 

provided below (Section 5.1.4) together with an overview of the literature on the Arrhenius 

behaviour of the sarcoplasmic reticulum membrane (Section 5.1.1.4). This is preceded by a brief 

description of one area in membrane biology in which temperature effects have an immediate 

functional relevance. The main objective is to provide support for the claim that changepoint 

analyses are fundamental to a number of important biological questions and to counter any 

impression that piecewise-linear models have no theoretical basis (Bagnall and Wolfe, 1982), thus 

undermining the suggested need for formal changepoint analytical methods. The material presented 

in this chapter indicates several research areas in which a rigorous changepoint treatment is 

required.

5.1.1.3 Low temperature membrane biology in plants and animals

Chill injury in plants

Many plants, including a variety of cereals, vegetables and fruits are susceptible to so-called chill 

injury. Below some critical temperature these plants fail to grow in the short term, and eventually 

die. Several studies have been performed to examine the relationship between the temperature- 

dependence of some growth-rate index and a variety of biochemical/biophysical observables, 

including mitochondrial function, chloroplast function and membrane lipid mobility (see, for
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example, Raison and Chapman, 1976). The suggestion was that plant growth-rate and enzyme 

reaction-rate Arrhenius-plot discontinuities are both related directly to lipid mobility Arrhenius-plot 

changepoints and that changes in membrane lipid ordering/fluidity are the underlying determinant 

of the observed Arrhenius behaviour (Raison and Chapman, 1976). The relevance of these 

observations to the chill-sensitivity of certain plants is contentious, however, and it has been argued 

that membrane lipid mobility changes are an unlikely cause of abrupt temperature-induced changes 

in enzyme activation energies or plant growth rate characteristics (Bagnall and Wolfe, 1978). 

Nevertheless, interest in this kind of phenomenon continues in a variety of research areas, including 

low temperature animal biochemistry.

Low tem perature animal biology

Hibernating mammals, reptiles and amphibians provide a number o f fascinating examples of the 

manner in which cellular biochemistry has adapted to enable some species to deal with periods of 

low temperature and lack of food. For example, hibemators tolerate a degree of hypothermia that 

would be severely damaging in non-hibernating mammals (Mehrani and Storey, 1997). The 

transition between the hibernating and non-hibernating states is a temperature-driven process 

involving kinase-mediated protein phosphorylation. An important component of the arousal from 

hibernation is substrate mobilisation and subsequent energy production, as required for warming 

(MacDonald and Storey, 1998). The provision of free fatty acids as fuel for mitochondrial 

oxidation is a critical part of this process (MacDonald and Storey, 1998), brown adipose tissue 

being the primary source (MacDonald and Storey, 1998). Related to hibernation is the freeze- 

tolerance phenomenon exhibited by some hibernating amphibians and reptiles. This has been 

studied in a freeze-tolerant frog in which glucose is produced as a cryoprotective agent. Glucose 

serves to minimise the cell volume reduction that would otherwise occur in the presence of 

extracellular ice crystals (Holden and Storey, 2000). This has prompted several studies into the 

effects of temperature on the properties of the protein kinase involved in glucose production in this 

amphibian (Holden and Storey, 2000).
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Returaing to more general questions on low-temperature biochemical adaptation, various ATPases 

(an essential component of various ion pumps), kinases (enzymes involved in protein 

phosphorylation) and other integral membrane enzymes have been studied in the search for 

differences between hibernating and non-hibernating animals. In some cases the enzyme in 

question has been isolated and characterised (MacDonald and Storey, 1998; Holden and Storey,

2000), while other studies have been performed using membrane suspensions. The focus of these 

studies has been the sensitivity of the enzyme to changing temperature. Arrhenius discontinuities 

have been reported together with significant differences in kinetic/changepoint behaviour between 

hibernating and non-hibernating species (McMurchie et al., 1973; Mehrani and Storey, 1997; 

Holden and Storey, 1998). Some of these differences have been discussed in relation to the 

signalling processes involved in arousal from the hibernating state (MacDonald and Storey, 1998; 

Holden and Storey, 1998) and the adaptive biochemical regulation that is an essential part of 

mammalian hibernation (Mehrani and Storey, 1997). Low temperature biology studies of this type 

are among those in which rigorous changepoint analytical methods might be used to advantage. In 

particular, a random coefficients extension of the MCMC method outlined in this chapter might be 

used to perform a statistical assessment of the between-species differences in Arrhenius-plot 

changepoint behaviour. It should be noted that a particularly careful ESR spin-label study of a 

mitochondrial preparation obtained from cold-adapted hamsters (hibemators) and rats (non- 

hibemators) led to the conclusion that spin-label correlation time Arrhenius discontinuities can 

occur as an artefact if inappropriate approximations are used to obtain the rotational correlation 

time estimates (Cannon et al., 1975). In fact. Cannon and co-workers failed to find a relationship 

between lipid motional freedom within the mitochondrial membrane of hamster brown adipose 

tissue and the capacity to adapt to low temperature, casting doubt on the reliability of some earlier 

ESR studies.

It is established that, in general, many enzymes and other proteins respond to changing temperature 

by undergoing conformational transformation. Accordingly, some integral membrane proteins may 

exhibit a sensitivity to temperature that is mediated directly via an alteration in conformation
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(Holden and Storey, 1998). On the other hand, there is a consensus of opinion that in many 

membrane systems the lipid matrix is involved intimately in the enzymatic response to changing 

temperature. The sarcoplasmic reticulum membrane (Ca^^-Mg'^^)-ATPase has been extensively 

studied in this context and the role of the membrane lipids has been debated for several decades, 

especially in relation to so-called protein-lipid interactions. (Marsh and Horvath, 1998, provide a 

review of the literature on the structure and dynamics of the lipid-protein interface.) Interest in the 

temperature dependent properties of this and other homothermous integral membrane systems 

stems from the premise that their thermodynamic behaviour is a key determinant of both structure 

and function and that protein-lipid interactions are a central factor. To give a tangible example, 

recent high resolution studies of membrane protein-lipid complexes [Pebay-Peyroula and 

Rosenbusch (2001) and Fyfe et al. (2001) provide an overview] have led to the intriguing 

hypothesis that hydrophobic surface matching provides a general mechanism for protein-lipid 

sorting, giving rise to a lateral partitioning/organisation of membrane lipid and protein components 

and consequent membrane compartmentation (Dumas et al., 1999). [The concept that hydrophobic 

interactions provide a passive driving force for membrane self-assembly is founded on well- 

established thermodynamic principles (Tanford, 1980; King and Marsh, 1987).] The question 

regarding the involvement of membrane lipids as a cause of sarcoplasmic reticulum (Ca^-M g^)- 

ATPase Arrhenius discontinuities remains unresolved, however (Godiksen and lessen, 2002, and 

references therein). The first of the changepoint examples used in this chapter was taken from an 

ESR study of the rabbit hind leg muscle sarcoplasmic reticulum membrane. A brief summary of the 

relevant literature is given in the following section.

5.1.1.4 The Arrhenius behaviour of spin-labelled sarcoplasmic reticulum 

membrane

Muscle sarcoplasmic reticulum (SR) regulates muscle contraction through the release and 

subsequent re-uptake of Ca"̂ .̂ [Murray et al. (2000) and Ganong (2001) provide a brief summaiy of 

the role of the sarcoplasmic reticulum in muscle contraction.] The sequestration of Ca^^ is driven 

by an ATP-dependent Ca^^ pump and brings about myofibril relaxation. The sarcoplasmic
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reticulum membrane can be isolated in the form of closed vesicles (a so-called microsomal 

fraction, isolated using differential centrifugation methods) which retain the capacity for Ca"*"̂  

translocation. Rabbit muscle SR microsomal preparations have been used extensively as a model 

system in biomembrane research, the Arrhenius behaviour of the (Ca^-Mg^)-ATPase having 

received considerable attention. At first sight this focus on the temperature-dependent properties of 

the rabbit muscle SR might appear unjustified since the rabbit is a warm-blooded animal and 

thermally-induced membrane changes are not expected to occur in homothermous biological 

systems. Nevertheless, interest in using spin-labelling, NMR and other techniques to study 

temperature driven changes in this kind of membrane preparation has spanned several decades, 

motivated by the belief that the thermodynamic properties of these systems are key to 

understanding structure-function relationships. For example, it was suggested that univalent and 

divalent cations might interact with biological membrane lipid surfaces to bring about changes in 

lipid structure that are related to the crystalline to liquid-crystalline phase transition [see Trauble 

and Eibl (1974) and Trauble et al. (1976) for example]. Trauble and Eibl (1974) discussed the 

biological significance of this observation with specific reference to nerve excitation. Despite the 

rigour of the thermodynamic theory on which this proposition was based, the concept that lipid 

phase transitions are an important component of normal membrane function was speculative. 

Nevertheless, considerable interest in lipid phase changes, as detected by MR and other techniques, 

continues, with an emphasis on integral membrane enzyme regulation. [Zakim et al. (1992) have 

examined the relationship between the thermodynamic behaviour o f the enzyme and lipid 

components of a variety of membrane systems and discussed their findings in relation to membrane 

enzyme regulation.] The central philosophy remains unchanged, namely that an understanding of 

the relationship between membrane structure and function is a prerequisite for the eventual 

understanding of the molecular basis of membrane-regulated biological processes. Controlled 

temperature change provides a convenient mechanism for producing experimental changes in 

membrane structure (crystalline to liquid-ciystalline phase transitions in reconstituted membrane 

systems, for example), and for studying the accompanying effects on membrane function. The 

work of Inesi and co-workers (Inesi et al., 1973) provides an early example of this approach to
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biomembrane research. They used ESR to monitor temperature-driven changes within the lipid 

matrix of the SR membrane, and related these to the discontinuity that occurs in the Arrhenius plot 

of the (Ca^-Mg^^)-ATPase hydrolytic activity. Their ESR data provided evidence of a lipid 

structural change at about 20°C (293 °K), as indicated by a step discontinuity in the Arrhenius plot 

of the order parameter obtained with a spin-labelled fatty acid. This is close to the enzyme reaction- 

rate Arrhenius-plot changepoint temperature. They attributed this behaviour to an order-disorder 

lipid phase transition which, they suggested, causes a perturbation in the ATPase molecule. SR 

membrane lipids are, however, highly unsaturated, and the involvement of a crystalline to liquid- 

crystalline phase transition was consequently questioned by some researchers. A variety of 

alternative explanations were suggested to account for the nonlinear Arrhenius spin-label mobility 

behaviour, including a change in the anisotropy of the motion in parts of the lipid molecule (Davis 

et al., 1976), and the formation of lipid clusters (Lee et al., 1974; the term cluster was used in the 

sense of short-lived populations of densely packed molecules within a more freely dispersed 

collection of molecules). On the other hand, Hesketh et al. (1976) suggested that an interaction 

between the ATPase molecule and a tightly bound lipid annulus is a central determinant of the 

response to changing temperature and a consequent cause of the departure from classical Arrhenius 

behaviour. Other researchers raised the possibility that the Arrhenius discontinuity is a reflection of 

some structural change within the ATPase protein itself and not a property of the surrounding lipid 

(Dean and Tanford ,1978). Nevertheless, the original proposition (Inesi et al., 1973) that the 

observed behaviour is due to the presence of strong protein-lipid interactions, and that these 

interactions are fundamental to membrane function, persists as a general theory to the present day 

(Dumas et al., 1999; Fyfe et al., 2001).

Several observations cast doubt on some of the experimental data on SR membrane protein-lipid 

behaviour, including the demonstration that various properties of the SR membrane vesicular 

preparation depend on the medium used in the isolation procedure. In particular, the addition of the 

reducing reagent dithiothreitol to the isolation and assay media yields a greater stability in the 

calcium pump and a change in Arrhenius behaviour (references given in King and Quinn, 1983,
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and King et al., 1987). The ESR data used in this chapter were acquired as part of a comparative 

study of the Arrhenius behaviour of ATPase activity and spin-label mobility in vesicles isolated in 

the presence and absence of dithiothreitol. A rigorous changepoint analysis is central to this kind of 

study.

5.1.2 Changepoint problems in pharmacology and medicine

The changepoint problem arises in a number of disciplines in addition to those discussed in the 

preceding sections, including pharmacology and medicine. For example, a fluorescent probe study 

of the Arrhenius changepoint behaviour of lipids in a plasma membrane preparation, combined 

with an examination of the associated Arrhenius behaviour of the plasma membrane (Na^-KQ- 

ATPase has led to the suggestion that changes in membrane lipid structure/fluidity may be an 

important component of the toxicity of the antitumour drug adriamycin (Deliconstantinos et al., 

1987). Similarly, plasma membrane (Na'^-KQ-ATPase and (Ca^^-Mg^)-ATPase Arrhenius 

behaviour has been examined in relation to the toxic side effects of some local anaesthetics 

[Kopeikina (1997); see Rosenberg and Alila (1982) for references to early studies of the effect of 

local anaesthetics on lipid membranes]. An intriguing application arises in transplant surgery. 

Following kidney transplantation, serum creatinine measurement is sometimes used to assess 

kidney function, since kidney failure is accompanied by a systematic, time-dependent decrease in 

the inverse of the serum creatinine concentration ([creatinine]'^). Thus the onset of rejection is 

associated with a changepoint in the [creatinine]'^ time-course data (Smith and Cook, 1980). A 

surgical setting provided the second of the two changepoint datasets used in this chapter. It relates 

to the serious complications that sometimes occur in association with major surgery due to 

ischaemia-reperfusion injury.

5.1.3 Intestinal ischaemia-reperfusion injury and hepatic energy failure

Intestinal ischaemia-reperfusion injury is a life-threatening state that is associated with a number of 

conditions, including mesenteric arterial occlusion and midgut volvulus [twisting of the midgut 

around its axis causing obstruction and vascular compromise (Spitz, 1995)]. The gut appears to be
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particularly sensitive to ischaemia-reperfusion injury, with the consequence that this condition can 

also occur as a secondary response to a period of haemorrhagic shock or prolonged hypotension 

caused by a variety of primary insults, including bums, mechanical trauma and major surgery, 

including but not necessarily intestinal surgery (Deitch, 1992; Pastores et al., 1996; Stechmiller et 

al., 1997). In each of these conditions the restoration of arterial flow and tissue perfusion is a 

priority. This is achieved by surgical correction (midgut volvulus) , revascularisation (mesenteric 

arterial occlusion), or resuscitation (shock). Unfortunately, multiple organ failure is a complication 

that sometimes arises following reperfusion, hence the term intestinal ischaemia-reperfusion injury. 

It is, perhaps, paradoxical that reperfusion exacerbates the damage that occurs during the hypoxic 

phase with such devastating consequences, although progress has been made towards 

understanding the underlying pathophysiology and biochemistry (Welboum et al., 1991; Deitch, 

1992; Pastores et al., 1996; Stechmiller et al., 1997). Circulating bacteria and endotoxins^ with 

subsequent macrophage* activation, neutrophil* release and cytokine* production all feature as 

essential components of the response. Remote organ endothelial cell damage, caused by oxygen 

free-radicals (via xanthine oxidase activation) and neutrophil accumulation, is a major cause of 

remote organ dysfunction and subsequent failure (Welboum et al., 1991; Deitch, 1992; Pastores et 

al., 1996). Although it is established that mucosal cell damage and consequent impaired gut barrier 

function is a central component of multiple organ failure, the causal relationship between intestinal 

damage and remote organ failure remains speculative (Deitch, 1992; Pastores et al., 1996; 

Spechmilleretal., 1997).

 ̂Endotoxins are toxins, contained within bacteria, that are released when bacterial cells die or 

become degraded. Macrophages are a component of the immune system which function by 

engulfing and destroying foreign cells, including bacteria. Neutrophils are a type of white blood 

cell. Cytokines are signalling proteins produced by activated immune cells in response to infection 

or injury.
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The majority of midgut volvulus cases are encountered in newborn infants, this providing the 

motivation for several studies into the condition at The Institute of Child Health, UCL. The liver is 

among the organs that are commonly affected in intestinal ischaemia-reperfusion injury, and the 

data shown in Fig. 5.5 were acquired as part of a comprehensive experimental study into the effects 

of intestinal ischaemia and subsequent reperfusion on liver metabolism in the rat (Vejchapipat et 

al., 2001,2002). Experimental intestinal ischaemia-reperfusion was produced surgically by 

clamping and subsequently unclamping the superior mesenteric artery. Liver energy failure was 

found to occur within a short period following reperfusion, as indicated by an increase in the 

inorganic phosphate (PJ to adenosine triphosphate (ATP) ratio (PAR) and a decrease in pH (Fig. 

5.5). The latter is caused by a switch to anaerobic metabolism and consequent lactic acid 

production. Intestinal ischaemia failed to produce hepatic energy failure in the absence of 

reperfusion (data not shown). Among the aims of the study was an examination of the temporal 

relationship between the pH and PAR changes. In particular, intracellular acidosis might be 

implicated as a causative factor in the liver failure associated with intestinal ischaemia-reperfusion 

injury, as opposed to a passive response, if the pH change precedes the PAR response. 

Consequently, a rigorous analysis is required to determine the pH and PAR changepoints and the 

difference between them. Among the other components of the study was an examination of the 

therapeutic effects of hypothermia and perfluorocarbons on the liver response to intestinal 

ischaemia-reperfusion injury (data not shown). Formal changepoint models are required to assess 

some aspects of these treatment effects.

5.1.4 Electron spin resonance spectroscopy in biomembrane research

Electron spin resonance (ESR) spectroscopy (also referred to as electron paramagnetic resonance 

spectroscopy and abbreviated EPR) is a magnetic resonance technique used to study paramagnetic 

centres arising from unpaired electrons. The first of the two changepoint problems presented in this 

chapter arose in an ESR spin-label study of the muscle sarcoplasmic reticulum membrane. The 

term spin label is used to describe any free radical that is used as a molecular environmental probe. 

An important class of spin labels is based on the nitroxide radical, which is a stable organic free-
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radical species in which the free electron is localised within a nitrogen-oxygen bond (see insert to 

Fig. 5.1). Nitroxide spin labels are used extensively in biomembrane research due to their 

sensitivity to both motion and orientation in an external magnetic field, as reflected in the ESR 

spectrum (Berliner, 1976). The ESR data used in this chapter were acquired in a spin-label study of 

the temperature dependence of the molecular mobility (fluidity) of the sarcoplasmic reticulum 

membrane. Arrhenius plot changepoints were the focus of the study. These were based on order 

parameter measurements made using a nitroxide-labelled fatty acid incorporated into the 

membrane.

A brief overview of the motional sensitivity of nitroxide spin-labels is appropriate. The nitrogen 

nucleus possesses spin angular momentum with an associated quantum number (I) equal to one*.

An interaction of the paramagnetic electron with the magnetic field associated with the magnetic 

moment of the neighbouring nitrogen nucleus produces hyperflne structure in the ESR spectrum 

consisting of three spectral lines (number of lines = 27+1). The positions of the lines and the 

magnitude of the hyperflne splittings depend on the relative orientation of the nitroxide molecular 

axes (see insert to Fig. 5.1) with respect to the external magnetic field. This gives rise to so-called 

spectral anisotropy (orientation dependence in the ESR spectrum) that is the basis of much spin- 

labelling work. Spectral anisotropy is usually specified in terms of the hyperflne constants, A^x, Ayy 

and Azz, associated with each of the three principal molecular axes (A^x = ~Ayy < A 2 2  in the co

ordinate system of Fig. 5.1), together with the g-values that determine the absolute position of the 

resonances. Anisotropy in the hyperflne splitting is the main cause of the motional sensitivity o f the 

spectrum, and rotational reorientation is the dominant form of motion within the lipid environment 

of a typical biological membrane. A nitroxide spin label undergoing rapid and isotropic rotational 

motion gives rise to a simple three-line spectrum due to rotational averaging, while increasing 

immobilisation leads to a loss of averaging and a resulting intermediate spectrum, i.e., intermediate

 ̂ The electron possesses spin angular momentum with an associated quantum number of 1/2, 

indicating that the component of spin angular momentum in a given direction takes on two values.



-185-

I
&

I
0)

I
II
.a-II
1
in
.SP

I
I
I
§I
.1flH



“186-

Fig. 5.1. continued

An ESR spectrum acquired at 24.8°C from a microsomal sarcoplasmic reticulum membrane 

preparation isolated in the absence of dithiothreitol and labelled with 3-doxylstearic acid. The insert 

provides a schematic showing the N-oxyl-4',4'-dimethyloxazolidine stearic acid spin label (n=3, 

m=12 in the nomenclature of Hidalgo et al., 1976; abbreviated 3-doxylstearic acid) together with 

the nitroxide principal molecular axes. The parallel and perpendicular hyperflne splittings are 

indicated by the two arrows (shorter arrow, 2^min, ^min -  longer arrow, 2Amax, ^max -  A\i, see 

Griffith and Jost (1976) pages 473 to 484 for additional information). For clarity, the outer 

hyperflne extrema are reproduced on an expanded scale above/below the spectrum.
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to the fully averaged and the completely immobilised pseudo-powder spectrum. This intermediate 

condition arises when a fatty acid or lipid nitroxide spin label is incorporated into a lipid dispersion 

or membrane preparation. The nitroxide molecules become randomly oriented with respect to the 

external magnetic field, leading to a composite spectrum, an example of which is given in Fig. 5.1. 

Furthermore, although each of the nitroxide molecules undergoes rapid rotational motion, 

reorientation of the long molecular axis is restricted leading to a reduced averaging of the hyperflne 

splittings. Thus ̂ 1 1  (parallel component of the time-averaged hyperflne tensor) becomes smaller 

than the principal hyperflne value A^z, while A_̂  (perpendicular component of the time-averaged 

hyperflne tensor) becomes greater than the principal value A^x- A\i and Â  ̂can be estimated from the 

ESR spectral turning points [see Fig. 5.1; An ^A^ax and = Griffith and Jost (1976) pages 

473 to 484 provide additional information] and the magnitude of the motional averaging 

determined using the order parameter (S), which is a function of^max^min, ^zz, Ayy and A%x (Griffith 

and Jost, 1976). The order parameter is, therefore, related to the angular amplitude of the 

anisotropic molecular motion (Griffith and Jost, 1976; McConnell, 1976).

5.2 Experimental methods

5.2.1 Sarcoplasmic reticulum spin-labelling study

Sarcoplasmic reticulum vesicles were prepared from the white muscle of rabbit hind leg according 

to the method of Robinson et al. (1972) and Warren et al. (1974), excepting that N-2- 

hydroxyethylpiperazine-N'-2-ethane-sulphonic acid was substituted for the histidine buffer. An N- 

oxyl-4',4'-dimethyloxazolidine (doxyl) stearic acid derivative [«=3, m=\2, in the nomenclature of 

Hidalgo et al. (1976, page 4226); structure given in the insert to Fig. 5.1] was incorporated into the 

membrane as described by Hidalgo et al. (1976). ESR spectra (conventional first harmonic 

absorption spectra) were acquired using a Varian E-104 spectrometer. Order parameter estimates 

were calculated with polarity correction from the first-derivative spectral turning points, as outlined 

by Griffith and Jost (1976, pages 481 to 484, Method II), using the spin-labelled fatty acid 

hyperflne tensor data given in Appendix II of Berliner (1976).
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5.2.2 Intestinal ischaemia-reperfusion study

The pH-PAR data used in this chapter were acquired within the RCS Unit of Biophysics at the 

Institute of Child Health, UCL, by Paisam Vejchapipat, while working for the degree of Doctor of 

Philosophy. Full experimental details, including a description of the surgical procedures and MR 

spectroscopic data acquisition method, are provided by Vejchapipat (2001) and Vejchapipat et al. 

(2001, 2002).

5.3 Statistical methods

The following models were used in the changepoint analyses outlined in this chapter.

Model 1. Order parameter (S) Arrhenius plot analysis with continuous changepoint (ks):

ln(S),
{U T ),< k s ;M ,= fio + fi,2 0 /T -k s ) i,

Model 2. pH-PAR data analysis. Full model with discrete changepoints (ki, /=pH, PAR):

yi(pH) ~ ̂ (yi(pH) 5 ̂ i(pH) )

yi(pH) - 0̂(pH)À -  — yi(pH) ~Po{pH)'̂ P\2{pH)ih ~ '̂ph)’  ̂~̂ 'pH

'̂ i{pH) ~'^l(pH)P ~^P'’- ’^pH’ '̂ i(pH) -  +2,...,M
k ’pH &\[,2,...,n},kpfj^t{k'pH)

[5.2]

y i(p a r) ~  ̂ ( y i ( p a r )  > ^i(_par) )

y i{p a r) ~ P o {p a r )  P u (p a r ) ( f i  ~ ^ p a r ')’  ̂~

y i(p a r) ~  Po{par) P \ l{p a r ) ~ ̂ par )’ ̂  ~ ̂ par ^par "t" 2,...,
^i(par) ~   ̂— l;2,...,A:pg,̂ , — '̂ 2(/x3fr)’ '̂ ~ ^ p a r  ~^^>^par +2,...,W

p̂ar ^{l;2,".,Mj,Ap^ ~ îPpar)

where A:/ is the changepoint occasion, /=pH, PAR, and r(A:/) is time at the changepoint.
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Model 3. pH-PAR data analysis. Full model with continuous changepoints (^i, /=pH, PAR):

yi{pH) ^(-yi{pH)’^i(pH)^’ yi{par) ^iyi(par)’^i{par)')

yi(pH) -  Po(pH)Pi < ^pH

y^pH) -  P^{pH) + P\2{pH)ih ~ ^pH)Pi -  ^pH

yi{par) ~ Pd^par) P\\{par)^^i ~ ^par)Ai ^  ^par

y i ( p a r )  ~  P o (p a r )  P l2 (p a r )( .^ i ^ p a r ) d i  —  ^ p a r

^\pH) -  ^KpH)> 4 < ^pH’ ^\pH) -  ^2ipH)Pi -  ^pH

^i{par) ~~ ^l(par)> ^  ^par^ ^i{par) ~ ^2{par)^^i — ^par'

Reduced models were derived from each of the two pH-PAR full models by imposing the

c o n s t r a i n t = 0. The continuous changepoint Metropolis simulation analyses were performed

using a transformation of the form

[5.4]
ki=Qi +(bi -a i)s]

where Sf is the changepoint parameter in Metropolis space for the /th variable, I = pH, PAR, S. ki,

I -p H , PAR, is the changepoint in absolute time (pH-PAR analysis), and ks is the changepoint in 

reciprocal absolute temperature (order parameter analysis), g, and bi are the lower and upper limit 

of the changepoint prior distribution, which were set equal to the minimum and maximum of the 

observation range, respectively (/ = pH, PAR: ai = /min = 54s, bi = /max = 186s; I = S:ai=  lOOO/Tmax 

= 3.2373 K'*, bi = lOOO/TLn = 3.6630 K'*).

The Metropolis simulations were performed using a normal likelihood, as described in Chapter 3. 

Uniform prior distributions were used for all parameters except the variance and changepoint 

parameters. The prior p{a) oc <j“* was used for each of the variances, while a bounded uniform prior 

distribution,/?(^i) ~ Unif(«/,7/), was used for each changepoint parameter. The change of variables 

rule yields a prior of the form p{si) ~ (6/ -  ai)e^‘ / (1 + e^' Ÿ  for each changepoint parameter in 

Metropolis space. A total of 50,000 samples was stored using a runtime thinning ratio of 1:100 in 

the ESR analysis and 1:200 in the pH-PAR analysis. Additional details regarding the Metropolis
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simulation analyses are given in Chapter 2 (Section 2.2). Each analysis was performed using a 

transition kernel obtained by performing a preliminary training run with transition kernel updating 

(Section 2.2.1). Three parallel chains were generated in each case. Convergence diagnostic tests 

were carried out using CODA (Sections 2.2.2).

Gibbs sampling was performed using WinBUGS (downloaded from http://www/mrc- 

bsu.cam.ac.uk/bugs. The Gibbs sampler results shown in this chapter were all generated using 

discrete changepoint models. Priors of the form V(G.G, 10"̂ ) were used for all parameters, except 

the precision and changepoint parameters. A gamma(G.GGl, G.GGl) prior was adopted for each of 

the precision parameters, while a discrete uniform prior distribution on K„, K„= {1,2,..,«}, was used 

for each of the changepoint parameters, where n is the number of design points. Three parallel 

chains (1GG,GGG samples per chain) were generated and convergence diagnostic tests carried out 

using CODA (Section 2.2.2).

5.4 Results

5.4.1 ESR spin-labelled sarcoplasmic reticulum membrane Arrhenius study

ESR spectra were acquired from a fatty-acid spin-labelled sarcoplasmic reticulum membrane 

microsomal preparation at intervals of temperature in the range G.l to 38.4°C. The spectrum 

acquired at 24.8°C (298.G°K) is shown in Fig. 5.1 for illustrative purposes; it is typical of the kind 

of spectrum obtained from a partially immobilised nitroxide. Order parameter estimates were 

derived from the spectra as described in Section 5.2.1 and used in a subsequent Metropolis MCMC 

simulation analysis based on the model given in [5.1]. The simulation was performed as described 

in Sections 5.3. The order parameter data are displayed in the form of an Arrhenius plot in Fig 5.2.

Formal convergence testing was preceded by a visual inspection of the MCMC output, as displayed 

in the form of overlaid chain trace plots. These plots, which were generated for all model 

parameters, are shown in Fig. 5.3, together with the log(posterior density) overlaid trace plot. 

Various 2D trajectory plots were also examined. The latter are shown in Fig. 5.4 as primary model

http://www/mrc-
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Fig. 5.2. Spin-labelled sarcoplasmic reticulum membrane order 

parameter Arrhenius plot
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3-doxylstearic acid-labelled sarcoplasmic reticulum membrane order parameter (S) 

data displayed in the form of an Arrhenius plot. The observed order parameter data 

are displayed together with the posterior median piecewise-linear Arrhenius profile 

(black lines). Also shown is a set of 100 random profiles drawn from the posterior 

distribution (grey lines). The parameter medians are (95% posterior intervals in 

parentheses): = 3.515 (3.493, 3.536), fio = -0.3090 (-0.3290, -0.2896), fin =

1.042 (1.010,1.077), f i n  = 0.5600 (0.4633, 0.6391).
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Fig. 5.3. Order parameter Arrhenius-plot changepoint analysis. Overlaid chain plots
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Fig. 5.4. Order parameter Arrhenius-plot changepoint analysis. Overlaid chain

trajectory plots and histogram
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parameter trajectories, as opposed to the Metropolis space trajectories, to allow an immediate 

assessment in relation to the underlying Arrhenius behaviour displayed in Fig. 5.2. The overlaid 

trace plots and trajectory plots both indicate a good coverage of parameter space. Furthermore, a 

satisfactory overlap of the three parallel-chain trace plots is obtained for every parameter.

Similarly, the trajectory plots indicate no major problems in the form of substantial chain 

separation, although they do show a few instances of individual chain migration into isolated 

regions of parameter space. Nevertheless, there is no indication of prolonged residence within these 

regions, suggesting that these occur due to occasional excursions into regions of low probability. 

These low probability excursions are not expected to be reproducible across the set of parallel 

chains. A substantial correlation among the parameters is evident (Fig. 5.4). This is not unexpected, 

given the form of the model. The inverse-temperature changepoint parameter (ks) and intercept (po) 

are, for example, highly correlated, but this does not cause significant convergence problems due to 

the low dimensionality o f the Metropolis space. Finally, histograms were produced for each 

parameter, including the changepoint parameter, the latter of which is included in Fig. 5.4. All have 

an acceptable shape and there are no instances in which the tails reveal a sampling problem. In 

summary, the overlaid trace plots, trajectory plots and histograms all appear satisfactory; the trace

Fig 5.3. Overlaid chain plots for each of the model parameters, including the residual error 

variance (displayed in the Metropolis-space metric) and the log(posterior density). Two chains 

(yellow and blue) were started using overdispersed values for all model parameters while the third 

chain (red) was started at a position close to the expected posterior median. A run-time thinning 

ratio of 1:100 was applied giving a post thinning chain length of 50,000 iterations.

Fig 5.4. Overlaid chain trajectory plots for each pair of regression parameters. Two chains (yellow 

and blue) were started using overdiSpersed values for all model parameters while the third chain 

(red) was started at a position close to the expected posterior median. The trajectories are 

displayed after additional thinning to show the separate paths with greater clarity. Also shown is 

the changepoint parameter histogram.
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and trajectory plots show no signs of convergence failure.

A more formal assessment of convergence was performed using the Gelman-Rubin shrink factor, 

the Geweke time-series Z-score and the Raftery-Lewis procedure (see Sections 1.7 and 2.2.2 for 

details). Satisfactory results were obtained for all parameters. The majority of the Geweke Z-score 

points lie within the range -2<Z<2, and each of the Gelman-Rubin shrink-factor plots indicates a 

value close to unity towards the end of each set of chains. The Raftery-Lewis results indicate that 

each chain is of sufficient length to yield all 0.025 and 0.975 quantile estimates with an accuracy of 

at least +/-0.0015 with 0.95 probability.

Fig. 5.2 shows the Arrhenius plot derived from the parameter median estimates, together with a 

cluster of profiles obtained by sampling the posterior distribution, and superimposed observed 

order parameter data. The Arrhenius plot changepoint 95% posterior interval has a temperature 

range of 9.7 to 13.2 °C (median 11.4 °C) indicating a well-defined Arrhenius-plot discontinuity.

The complete set of posterior medians is listed in the legend to Fig. 5.2 together with the 95% 

posterior intervals.

5.4.2 Liver response to intestinal ischaemia-reperfusion injury

Rat liver pH and PAR (inorganic phosphate to adenosine triphosphate ratio) data were acquired, 

starting 50min after the production of intestinal ischaemia, and continued during a subsequent 

reperftision phase, which was initiated at 90 minutes, i.e., 40min into the data acquisition period. 

The data collected from one of six animals are shown in Fig. 5.5. This pair of pH/PAR profiles was 

used in an assessment of various changepoint models, each of which was evaluated in relation to its 

behaviour within the MCMC setting. In each case a simultaneous pH/PAR changepoint MCMC 

simulation analysis was performed using the Metropolis algorithm. In some cases the analysis was 

repeated using the Gibbs sampler. Among the models investigated were two intersecting biphasic- 

linear models, both of which assume the absence of a discontinuity in the observed variable at the 

changepoint. Details are provided in Section 5.3. One of the two models, which is referred to as the



196-

Fig. 5.5. Liver metabolite response to intestinal ischaemia-reperfusion injury
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Plots showing the liver pH and PAR (inorganic phosphate to ATP ratio) responses to 

intestinal ischaemia-reperfusion. Data were acquired starting 50 minutes after the 

initiation of intestinal ischaemia, and continued during a subsequent reperfusion phase, 

which was started at 90 minutes, i.e., 40 minutes into the data acquisition period. The 

reduced model' '̂^ °̂^^  ̂and full model^^™  ̂ posterior median time-dependencies are 

shown (black lines) superimposed on the experimental observations. Also shown is a set 

of 100 random profiles drawn from the posterior distribution (grey lines).
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reduced model, constrains PAR to be constant prior to its changepoint ([5.2] and [5.3] with the 

constraint pn(par)= 0), while this constraint is lifted in the second model ([5.2] and [5.3], referred to 

as the full model). Both models constrain pH to be constant prior to its changepoint. Gibbs 

sampling was performed using a discrete changepoint variant of the two models ([5.2] and its 

reduced form), while the Metropolis-based simulations were performed using a continuous 

changepoint implementation ([5.3] and its reduced form).

Metropolis chain overlaid trace plots were generated for all model parameters in each of the 

simulation analyses (shown for the full model in Fig. 5.6 and for the reduced model in Fig. 5.7). 

The log(posterior density) overlaid trace plot is included in each of these figures. Various 2D 

trajectory plots were also produced (Figs. 5.8 and 5.9). These trajectory plots are shown in the 

primary model parameter space (i.e., pre-transformation) as opposed to the Metropolis parameter 

space. Thus the trajectories displayed in Figs. 5.8 and 5.9 relate directly to the underlying time- 

dependent pH and PAR behaviour shown in Fig. 5.5. A good overlap of the three parallel chains is 

achieved for every parameter with no sign of convergence failure. The truncated appearance of 

several of the PAR full model trajectory plots shown in Fig.5.8 [{k versus pQ)pan {k versus ^\\)par 

and (^ versus p\i)pai] is among the striking features of this graphical output. This is attributable to 

an abrupt change in likelihood in the region of ̂ ^^=170, which is entirely consistent with the 

observed PAR time-course data (Fig. 5.5). The trajectory plots indicate no major problems in the 

form of substantial chain separation. An occasional migration into an isolated region of parameter 

space occurs and is commented on in Section 5.4.1. The pH and PAR changepoints and PAR-pH 

changepoint difference are the main focus of the analysis. Histograms for these three parameters 

are shown in Fig. 5.10. Histograms were also generated for the remaining parameters. All have an 

acceptable shape and show no sign of sampling problems. In summary, the histograms, overlaid 

chain trace plots and trajectory plots all appear satisfactory. In particular, the trace and trajectory 

plots show no signs of convergence failure. Gelman-Rubin shrink factor and Geweke time-series Z- 

score diagnostic tests were performed on a subset of parameters, and yielded satisfactory results.
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Fig. 5.6. Full model pH-PAR changepoint analysis. Overlaid chain plots
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Fig. 5.6. Continued.
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Overlaid chain plots are shown for each of the model parameters, including the two residual 

error variances, together with plots for the change-point time difference kpar - kpf^ and 

the log(posterior density). Two chains (yellow and blue) were started using overdispersed 

values for all model parameters while the third chain (red) was started at a position close to 

the expected posterior median. A run-time thinning ratio of 1:200 was applied giving a post 

thinning chain length of 50,000 iterations.
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Fig. 5.7. Reduced model pH-PAR changepoint analysis. Overlaid chain plots
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Fig. 5.7. Continued.
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Overlaid chain plots are shown for each of the model parameters, including the two residual 

error variances, together with plots for the change-point time difference (kdijf^ kp„ - kpn) and 

the log(posterior density). Two chains (yellow and blue) were started using overdispersed 

values for all model parameters while the third chain (red) was started at a position close to 

the expected posterior median. A run-time thinning ratio of 1:200 was applied giving a post 

thinning chain length of 50,000 iterations.



-202-

Fig. 5.8. Full model pH-PAR changepoint analysis. Overlaid chain trajectory plots
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Fig. 5.9. Reduced model pH-PAR changepoint analysis. Overlaid chain

trajectory plots
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Fig. 5.10. Liver metabolite changepoint analysis. Changepoint parameter histograms
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The Raftery-Lewis procedure indicates that each individual chain provides the required full and 

reduced model changepoint parameter 0.025 and 0.975 quantile estimates to an accuracy of at least 

0.004, with probability 0.95.

The posterior medians and 95% posterior intervals derived from the Metropolis output are listed in 

Table 5.1. The results obtained using Gibbs sampling are included for comparison. Gibbs sampling 

was performed using a discrete changepoint model in contrast to the continuous changepoint model 

used in the Metropolis-based simulations. The two MCMC simulation methods are not, therefore, 

expected to produce identical posterior distributions. Nevertheless, no substantial discrepancy 

between the two sets of results is evident. Posterior median pH and PAR time-course data were 

generated using the Metropolis MCMC output. These are shown in Fig. 5.5 together with the 

observed data and a cluster of profiles obtained by sampling the posterior distribution. The 95% 

posterior interval for the difference between the pH and PAR changepoints {kdiff- kpar - kpn) is the 

main focus of the analyses. Both models yield a 95% posterior interval for Ar^^that lies on the 

positive side of zero, leading to the conclusion that the pH response precedes the increase in PAR.

Fig. 5.8. Overlaid chain trajectory plots are shown for selected pairs of regression parameters. Two 

chains (yellow and blue) were started using overdispersed values for all model parameters while 

the third chain (red) was started at a position close to the expected posterior median. The 

trajectories are displayed after additional thinning to show the separate paths with greater clarity.

Fig. 5.9. Overlaid chain trajectory plots are shown for selected pairs of regression parameters. Two 

chains (yellow and blue) were started using overdispersed values for all model parameters while 

the third chain (red) was started at a position close to the expected posterior median. The 

trajectories are displayed after additional thinning to show the separate paths with greater clarity.

Fig. 5.10. A histogram is shown for each of the pH and PAR changepoint parameters and for the 

changepoint time difference {kdiff= kpar - kpn\ as generated using the full and reduced models.
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Table 5.1. Intestinal ischaemia-reperfusion changepoint analysis. Metropolis and Gibbs 

sampler posterior medians and 95% intervals

FULL MODEL

Parameter Method Median Lower Upper
PoipH) M 7.37 7.32 7.43

B 7.38 7.32 7.45
Po{par) M 0.682 0.632 0.733

B 0.683 0.633 0.734
Pl2{pH) M -0.00508 -0.00656 -0.00382

B -0.00498 -0.00670 -0.00369
Pllipar) M 0.00216 0.00144 0.00285

B 0.00217 0.00144 0.00288
Pl2{par) M 0.0338 0.0232 0.0505

B 0.0332 0.0219 0.0491
kpH M 107.6 85.8 126.7

B 106 78 126
kpar M 162.6 156.0 168.4

B 162 158 166
kdiff
{kpar~ kpfj)

M 55.3 36.0 78.2
B 56 36 84

^KpH) M 0.0136 0.00695 0.0345
B 0.0150 0.00742 0.0433

^2{pH) M 0.00302 0.00160 0.00650
B 0.00337 0.00174 0.00736

2
\̂{par) M 0.00326 0.00197 0.00593

B 0.00347 0.00209 0.00636
2

^2{par) M 0.0143 0.00500 0.0733
B 0.0187 0.00594 0.1183

REDUCED MODEL

Parameter Method Median Lower Upper
PoipH) M 7.37 7.32 7.44

B 7.38 7.32 7.45
Po(par) M 0.554 0.516 0.590

B 0.555 0.516 0.592
P\2(pH) M -0.00506 -0.00657 -0.00379

B -0.00498 -0.00664 -0.00370
P\2{par) M 0.0290 0.0172 0.0422

B 0.0286 0.0163 0.0432
kpH M 107.4 84.4 126.6

B 106 82 126
kpar M 155.4 142.0 162.5

B 154 142 162
kdiff
{kpar~ kpff̂

M 48.2 26.1 72.4
B 52 24 76

^l(pH) M 0.0136 0.00694 0.0351
B 0.0150 0.00740 0.0421

„2
^2{pH) M 0.00304 0.00160 0.00653

B 0.00337 0.00175 0.00737
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^ \{ p a r )
M 0.00728 0.00427 0.0134
B 0.00779 0.00456 0.0145

^ 2 {p a r )
M 0.0118 0.00472 0.0433
B 0.0147 0.00533 0.0636

Changepoint parameter median estimates and 95% posterior intervals generated from the 
Metropolis (M) and Gibbs sampler (WinBUGS, B) output.
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5.5 Discussion

5.5.1 Time-of-onset (changepoint) phenomena in medicine

The changepoint problem arises in numerous disciplines, including many MR applications. The 

motivation for the work presented in this chapter comes from the need for a rigorous statistical 

analysis of MR data obtained in time-of-onset studies in which delayed biochemical and/or 

physiological responses are believed to occur subsequent to some event or stimulus. The pH-PAR 

MR spectroscopic study presented in this chapter is typical of this type of investigation; a 

changepoint analysis is required to address the key research question. Among the several areas in 

which the changepoint question arises is birth asphyxia and it is in this context that the candidate 

was prompted to undertake a study of changepoint analytical methods.

Hypoxic-ischaemic injury during delivery causes major neurodevelopmental abnormality in a 

significant proportion of birth asphyxia survivors. Phosphorus NMR spectroscopic studies have 

shown that the ratio of phosphocreatine to inorganic phosphate (PCr/P, ratio; an index of cellular 

energy status) declines over a period of several days in those infants destined to die or to suffer 

severe neurodevelopmental abnormalities (Hope et ah, 1984; Hope and Reynolds, 1985). The 

PCr/Pi ratio is, however, reported to be normal in these individuals on the day of delivery, and this 

has led to the notion of a latent period during which therapeutic intervention might be used to bring 

about a reduction in central nervous system damage following birth asphyxia. (The latter process is 

sometimes referred to as programmed cell death although, strictly speaking, this term refers to a 

programmed cell death mechanism that is specific to neurons.) Mild hypothermia is among the 

possible interventions (Thoresen et ah, 1995). The expression secondary (delayed) energy failure is 

used in relation to the period of slow decline in PCr/P, because it is believed that this decline is 

initiated by a primary acute hypoxic-ischaemic episode of energy failure that occurs before birth 

and which resolves on resuscitation (Lorek et ah, 1994; Thoresen et ah, 1995). The concept of a 

latent phase followed by a period of secondary energy failure is, in essence, the therapeutic window 

that has been discussed in many papers on cerebral ischaemia (Heiss, 1992, for example). A 

number of clinicians have asked questions regarding the exact duration of the therapeutic window
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in birth asphyxia, the widely held view being that it lasts only a few hours (2-6 hours) after birth 

(Toet et ah, 1999, and references therein). Head trauma provides another example in which time- 

of-onset studies have demonstrated the involvement of delayed/secondary responses, and led to the 

suggested existence of a window o f opportunity for therapeutic intervention (Povlishock, 1992; 

McKenzie et ah, 1996; Teasdale and Graham, 1998; Laurer and McIntosh, 2001).

In the birth asphyxia context, considerable clinical significance has been attached to studies 

suggesting that the PCr/Pj ratio is apparently normal on the first day after delivery, as indicated by 

a failure to demonstrate a statistically significant PCr/Pj ratio difference between birth asphyxiated 

and normal infants (Hope et ah, 1984; Hope and Reynolds, 1985). Only after several days does the 

difference reach significance, as judged by consecutive two-sample statistical tests. The resulting 

concept of a therapeutic window in birth asphyxia is hugely important, but it may be a statistical 

artefact. Larger studies with a greater power to detect group mean differences may lead to a 

different conclusion. Experiments have been performed using newborn piglets in order to 

investigate various aspects of the birth asphyxia problem (Lorek et ah, 1994; Thornton et ah, 1998). 

As expected, the PCR/P,- ratio is severely depressed during an episode of experimentally induced 

ischaemia, and it recovers rapidly after the restoration of blood flow. This is followed by a 

subsequent reduction (secondary energy failure). In summary, the PCr/Pj response in the newborn 

piglet is reported to match that observed in birth-asphyxiated human infants (Lorek et ah, 1994; 

Thornton et ah, 1998), reinforcing the belief that a secondary response occurs with a delay of many 

hours. But this conclusion is based on an identical statistical approach, namely, a comparison of 

separate consecutive significance tests obtained at each of several measurement occasions. The 

latency/therapeutic window concept appears to imply a delay in the event that triggers the 

secondary response, but this might be a misconception. The term secondary appears to have 

become confused with the concept of response latency/delay. The ischaemia-reperfusion insult 

appears to cause a response in the PCr/Pj ratio having the form of an exponentially-damped 

polynomial of the type described by Crowder and Tredger (1981) and, in this sense, the final slow 

decline is part of a continuum, initiated when reperfusion commences (see Thornton et ah, 1998,
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Fig. 2a; Hope et al., 1984, Fig. 3, noting that the pre-reperfusion PCr/Pj ratio in inaccessible in birth 

asphyxiated infants). In this case the notion of a latent period is misleading. The observation that in 

human infants the PCr/Pj ratio is close to normal on the day of delivery might be of little 

therapeutic significance. Given an initial restoration in PCr/Pj followed by a gradual decline, any 

estimate of the duration of the supposed latent period, as obtained using the longitudinal data in a 

series of significance tests, might be determined solely by the power of the study. Estimates 

obtained in this manner may have little or no clinical relevance. The hypothesis that the secondary 

response is preceded by a well-defined latent period suggests some kind of changepoint behaviour, 

and the data should be examined in this context. Hence the need for a rigorous analytical approach 

and the decision to explore MCMC changepoint methods.

Two MR changepoint datasets unrelated to the birth asphyxia problem were used in this 

development work, based on the premise that the methods are expected to apply to changepoint 

problems in general. The first of these is an Arrhenius discontinuity problem. Among the reasons 

for selecting this example is the observation that it is in this context that the changepoint problem is 

encountered in much of the biochemical/biomedical MR literature. Furthermore, Arrhenius 

discontinuity studies occur in many areas of research, both academic and industrial (Section 5.1.1). 

Biomembrane research is prominent among those areas of biophysical chemistry in which MR 

techniques have made an important contribution. ESR spectroscopy, in particular, has been used 

extensively in the study of the Arrhenius properties of biomembranes (Sections 5.1.1 and 5.1.4). 

NMR methods, including T] relaxation and solid-state magic-angle spinning techniques 

(Kalichevsky et ah, 1992) have also been used, but to a lesser extent. Much of this work focuses on 

phase transition behaviour. Thus, although differential scanning calorimetry is, in general, the 

definitive method for studying thermotropic phase transitions, magnetic resonance methods play an 

important part and it is in this context that formal changepoint analytical methods are required. The 

order parameter Arrhenius data presented in this chapter are typical; they are taken from an ESR 

study of the rabbit muscle sarcoplasmic reticulum membrane.
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The second dataset was acquired in an NMR study of the hepatic response to intestinal ischaemia- 

reperfusion. The analysis is more challenging than the typical Arrhenius discontinuity problem, 

because the response is bivariate. An important aspect of the analysis is the need for a rigorous 

statistical assessment of the apparent difference between two changepoints, in addition to 

evaluating the evidence for a changepoint in each variable. Furthermore, the changepoint is 

somewhat ill-defined compared with a typical Arrhenius-plot changepoint, and in this sense it is 

more representative of the kind of data that might be encountered in a majority of clinical or 

biomedical MR research studies. This chapter presents some results obtained during an 

investigation of MCMC simulation approaches to these two changepoint problems.

5.5.2 Statistical approaches to the changepoint problem

A point that emerges from an appraisal of the literature on Arrhenius models (Section 5.5.3) is the 

need for a formal comparison of competing models (see, for example, Londesborough, 1980; 

Silvius and McElhaney, 1981; Bagnall and Wolfe, 1982; Godiksen and lessen, 2002). In many 

applications this takes the form of a comparison between a biphasic linear model and some 

curvilinear model, as required to distinguish between a discontinuity versus some other form of 

nonlinearity. The standard textbook methods for comparing models based on the likelihood ratio 

test assumes nested models. This approach is, therefore, inadmissible since the models under 

consideration do not satisfy the nested criterion. This is not an issue if the Bayes factor is adopted, 

but was a considerable problem when, in the past, computational/numerical intractability precluded 

such an approach. Methods were devised with biological problems in mind. Among these was a 

simulation approach (Williams, 1970) in which the distribution of a likelihood ratio discriminating 

function is generated under each of the two competing models. In the case discussed by Williams 

(1970) the discriminating function reduced to the ratio of the residual sum of squares obtained for 

the competing piecewise-linear and curvilinear models. The distributions obtained under the two 

competing models, together with the observed ratio of residual sum of squares, form the basis for 

discriminating between the models. This kind of approach might retain its appeal among those 

reluctant to adopt a more formal method for model discrimination.
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In those applications in which a changepoint/discontinuity is demonstrated, as opposed to some 

curvilinear form, changepoint estimation is usually required. In some cases the changepoint may be 

sufficiently well defined that a visual assessment of the piecewise linear regression plot and 

superimposed data, together with a summary parameter statistical analysis (Section 1.4.1.1), might 

be adequate for the task in hand. In contrast, a formal analysis is required in many applications, 

including studies in which between-species or between-sample differences in changepoint are the 

focus. For example, the need exists for a rigorous analysis of the nonlinear Arrhenius-plot 

behaviour that arises in a variety of biological membrane systems, as was noted several decades 

ago (Londesborough, 1980; Silvius and McElhaney, 1981). In those studies in which Arrhenius 

behaviour is determined by a continuous temperature sweep within individual samples (possibly 

with temperature-sweep replication), as opposed to an independent samples/observations approach, 

the analysis takes the form of a random coefficients changepoint problem.

A number of methods have been suggested in the biological literature for defining/estimating 

changepoints, including approaches based on the residual sum of squares (Bagnall and Wolfe,

1978, page 1237) and informal residual distributional considerations (Wolfe and Bagnall, 1979). 

Wolfe and Bagnall (1980) provide a brief summary of the methods reported in the earlier biological 

literature. Although largely ignored in many areas of biomedical research, the statistical literature 

on the changepoint problem is substantial. Carlin et al. (1992) provide a useful entry-point to this 

literature and, additionally, outline an Hierarchical Bayesian approach to the changepoint problem, 

a summary of which follows.

Given

[55]

where k  is the changepoint, and likelihood

i(Y|A,0,Ti) = j q / « | e ) j q g ( i ; h ) ,  [5.6]
/=!
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then, assuming a prior distribution , the joint posterior distribution is

p(A:,0,Ti|Y)ocL(Y|A:,e,Ti);r(/:,0,ri). [5.7]

The marginal distribution of k  is

p{k\Y)cc^p{k,\sf\Y)dM/ [5.8]

with \j/ = (0, q ) . The posterior odds for no change is given by p{k = «| Y) / {1 -  p{k = «| Y)}.

Carlin et al. (1992) give a number of changepoint examples including one, referred to as a 

changing linear regression model, which is relevant to the sarcoplasmic reticulum membrane order 

parameter and intestinal ischaemia-reperfusion analyses. They use this piecewise linear model to 

re-examine the surfactant changepoint data presented previously by Bacon and Watts (1971). A 

three-stage hierarchical implementation of the regression model is outlined, in which inverse 

gamma distributions are assigned to the variance components at the second stage, together with 

independent multivariate normal distributions for the piecewise regression coefficients and a 

discrete uniform prior distribution on K„, K„ = {1,2,..,«}, for the changepoint parameter, where n is 

the number of design points. Thus the Carlin-Gelfand-Smith three-stage hierarchical model takes 

the form:

STAGE 1

Yi ~ N{a^+ /3^Xi,cF\)J = \,...,k

Yi ~ N{œ 2  i = k + \,...,n [5.9]

k  e{l,2,...,n}

STAGE 2

c y ] - I G i a M  [5.10]

crl~IG(aQ,bQ) 
k d u n i f  (\,n)
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STAGE 3

[5.11]

The inverse gamma distribution parameters are chosen to produce a vague prior for each of the 

variances and a vague third-stage prior is adopted for 6 0 . Using this model they compare the 

posterior distribution obtained using a somewhat informative prior for [Wishart prior with /?=4, 

F=diag(0.001, 0.3)] with the posterior distribution generated under a less informative prior 

[Wishart, with /?=2, F=diag(0.0, 0.0)]. Finally, these results are compared with the posterior 

distribution given in Bacon and Watts (1971), which is based on the continuous changepoint

Bayesian model described below ([5.12] with the transition function tanh{(jc- x f ) ! y ] )  and the 

single-stagenoninformativeprior p{p ,c r) oc 1  / c r , where f  =  (aQ ,a^,a 2 ,XQ,y).

A  useful feature of the Bacon and Watts treatment of the biphasic linear problem is the introduction 

of a transition function, tm{(% - x f j !  y} ,  which they use in a model of the form

y  = aQ + a f x  -  Xq) + a 2 (x -  XQ)tm{(x -  Xq) / y j  [5.12]

to obtain a smooth transition between the two linear dependencies. Among the transition functions 

discussed i s t a n h { ( % T h i s  function has the property that lim tm{(x- XgJ / y j  gives simple

linear dependence, while limtm{(%-%o)/ /}  = sgn(%-%o) gives a discontinuity in the first derivative at

x-Xq. This aspect of their treatment is relevant to the Arrhenius-plot modelling problem, especially 

in relation to the curvilinear issue, mentioned above, which arises in the context of the finite- 

transition range models referred to below (Section 5.5.3). Furthermore, models of this kind might 

be examined in connection with the intestinal ischaemia-reperfusion study, and any other context in 

which a discontinuous first derivative is not stipulated, a priori, on the grounds of well-established
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theory. An alternative approach to dealing with this kind of behaviour is segmented polynomial 

regression (Gallant and Fuller, 1973) which is based on piecewise models of the form

y  =  g(x)  +  ^

g(x) = g f x , P i ) , a<x<a^

= g2ix,P2\(^\<^^^2
[5.13]

= g r { x , P ^ \ a ^ _ ^ < x < b ,  

where a  = is an unknown vector of knots and g(x,A) is continuous with a

continuous first derivative in x  over the interval [a,b\. Gallant and Fuller (1973) outline an 

approach to finding the least-squares estimates of the unknown parameters. A piecewise linear- 

quadratic-linear model might apply to some of the Arrhenius dependencies discussed by Silvius 

and McElhaney (1981) in which the transition enthalpy is insufficient to cause a near discontinuity 

in the first derivative at the transition, assuming an empirical approach is sought in preference to 

thermodynamic modelling. Arrhenius plot shape and its dependence on transition enthalpy is 

among the topics discussed in the following section.

5.5.3 Arrhenius plot models

The Arrhenius-plot changepoint model used in this chapter attributes the departure from classical 

Arrhenius behaviour to a discontinuity in (M.{S)ld{\IT), while assuming continuity in ln(5). This 

kind of intersecting biphasic linear model has been adopted in numerous enzyme and biomembrane 

research studies. In general, a discontinuity in <^n(rate)/6f(l/7) is attributed to an abrupt change in 

activation energy. (The numerical difference between the activation energy and activation enthalpy 

is negligible in the systems under consideration. The two terms are used synonymously in much of 

the biological literature, although activation enthalpy is a concept that originates from transition 

state theory, while the term activation energy arises from the empirical Arrhenius equation 

treatment of reaction rates.) In any serious application the validity of the model under consideration 

must be assessed in comparison with plausible competing models. In particular, a generalisation to



-216-

include a discontinuity in rate should be considered. At the other extreme, a smooth dependence of 

rate on inverse temperature should be examined. The competing Arrhenius models question has 

been the subject of several papers, many of which have addressed this issue in relation to the 

kinetics of biomembrane enzyme systems.

Two simple competing reactions cannot produce a true discontinuity in an Arrhenius plot, although 

a biphasic linear model might provide a good approximation to the curve that is obtained given a 

sufficient difference in activation enthalpy (Kumamoto et al., 1971). A commonly held view is that 

the apparent Arrhenius plot discontinuities that have been reported to occur in many integral 

membrane enzyme systems are real and that membrane lipid phase transitions are the cause. Lipid- 

protein interactions are believed to be an important component of the coupling between integral 

membrane enzymes and the lipid matrix in which they are embedded. Accordingly, a phase 

transition within the lipid matrix might be expected to affect the kinetic properties of the embedded 

enzymes. [See Table 1 in Zakim et al. (1992) for information on the relationship between lipid 

phase transitions and integral membrane enzyme properties. Griffith and lost (1976) and 

McConnell (1976) provide a review of early ESR biomembrane and lipid-protein interaction 

studies. The more recent literature is reviewed by Marsh and Horvath (1998).] In some cases, 

however, the observed departure from classical Arrhenius behaviour might be an artefact of the 

measurement. For example, Silvius et al. (1978) discuss temperature-dependent substrate binding 

in relation to reaction rate Arrhenius plot discontinuity artefacts, while Cannon et al. (1975) and 

Schreier et al. (1978) refer to artefacts arising from the inappropriate approximation methods that 

are sometimes used to calculate correlation-time and order parameter estimates based on ESR 

spectral measurements.

Returning to the competing models issue, a discontinuity in 6^n(rate)/(7(l/7) in the absence of a 

discontinuity in rate gives rise to intersecting biphasic linear behaviour. Several researchers have 

discussed this model (Kumamoto et al., 1971; Wynn-Williams, 1976; Londesborough, 1980;

Silvius and McElhaney, 1981). Among the explanations that have been suggested for the continuity
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in rate is enthalpy-entropy compensation. According to this model the phase transition is associated 

with a change in activation entropy equal to the enthalpy change (Kumamoto et al., 1971). 

Subsequent to the early publications on Arrhenius plot nonlinearity Silvius and McElhaney (1981) 

provided a particularly detailed treatment of the problem, and made a number of important 

comments. They pointed out that most biological thermotropic changes occur over a finite 

temperature range which, depending on the magnitude of the transition enthalpy, can be broad (a 

range of several decades, for example). Biological membranes, in particular, are not expected to 

undergo sharp phase transitions due to heterogeneity in their lipid composition. Phase diagrams are 

especially useful in this context, since they provide a schematic representation of the membrane- 

lipid response to changing temperature, at least in principle (Bagnall and Wolfe, 1978). For 

example, the phase diagram for a simple 2-component lipid mixture shows the presence of two 

critical temperatures, between which separate lipid domains of differing composition coexist. Only 

a few models predict true biphasic linear Arrhenius behaviour (Silvius and McElhaney, 1981). 

Silvius and McElhaney (1981) and Wynn-Williams (1976) both discuss the special conditions 

under which an abrupt change in activation energy can occur in the absence of a discontinuity in 

rate. An important conclusion is that the absence of a discontinuity in rate does not depend on an 

exact enthalpy-entropy compensation. Among the models outlined by Silvius and McElhaney

(1981) is a kinetic model that applies to lipid motion, as monitored using spin label and fluorescent 

probes. They show that although a sharp lipid phase transition will yield an Arrhenius plot 

discontinuity, the former is not a necessary condition for the latter, and that a discontinuity can 

arise under other conditions. In particular, a transition enthalpy of sufficient magnitude can produce 

an apparent Arrhenius plot break, although the transition itself will span a wide temperature range.

It is, in fact, difficult to determine the starting and endpoints of a thermotropic transition from an 

Arrhenius plot. Thus, although membrane probes can provide the transition midpoint, they do not 

provide an estimate of the transition temperature range. An independent calorimetric assessment of 

phase behaviour is clearly desirable. (Fig. 4 in Buitink et al., 1999, provides an example in which 

rotational correlation time Arrhenius plot discontinuities are shown in relation to transition onset 

temperatures determined by differential scanning calorimetiy.) The Silvius-McElhaney treatment
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explains why studies reporting sharp Arrhenius changepoints are so common in the biomembrane 

literature. They also discuss the conditions under which a discontinuity in rate (referred to as jump 

discontinuities) might be observed. Although an infinite transition enthalpy is required to produce a 

true discontinuity in rate, enthalpies of several hundred kcal mof* might produce an apparent 

discontinuity, because the 1-2°C interval over which the transition then occurs is smaller than the 

temperature sampling interval used in most studies. To summarise, a number of important points 

emerge. (1) Activation energies cannot be determined with reliability from an Arrhenius-plot slope; 

(2) lipid mixtures do not have a sharp phase transition, as indicated by their phase diagrams 

(Bagnall and Wolfe, 1978); (3) an apparent activation enthalpy discontinuity can occur, without a 

discontinuity in rate, at the phase separation/transition starting and endpoint temperatures. This 

behaviour does not depend on enthalpy-entropy compensation.

An important conclusion is that biphasic linear Arrhenius plots can arise in the absence of a phase 

transition, and that the former should be interpreted with caution. The need for a rigorous analysis 

of the Arrhenius plot shape is clear. Thus, Londesborough (1980) points out that although the 

application of some rigorous statistical analytical method might improve the accuracy with which 

an Arrhenius-plot changepoint is estimated, it does not necessarily establish the validity of the 

underlying model. This can be achieved only through a rigorous comparison of competing models. 

The latter places stringent demands on the quality o f the data.

5.5.4 A comparison of the Gibbs sampling and Metropolis changepoint 

analyses

Various approaches were adopted in an attempt to implement the two changepoint analyses using 

the Gibbs sampler but, on the whole, these were unsuccessful. In particular, Gibbs sampler 

implementation of the continuous changepoint variant of the models was problematic, and output 

was invariably generated in which the changepoint parameter moved rapidly to one end of the 

range allowed under the prior distribution (uniform over the entire measurement range), after which 

the parameter became trapped. The same Gibbs sampler behaviour was encountered with the
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discrete changepoint treatment of the order parameter data, which is based on a uniform prior 

density over the set o f design points. Carlin et al. (1992, p390) interpret the result ^ « as 

indicating no change, stating that a posterior probability for A: = « close to zero is required in order 

to claim strong evidence for a changepoint. The Gibbs sampler result suggesting the absence of a 

discontinuity in the order parameter Arrhenius-plot gradient is inconsistent with the changepoint 

posterior distribution generated with the Metropolis algorithm, which indicates a well-defined 

changepoint. In contrast to the difficulty experienced with the Gibbs sampler analysis of the order 

parameter Arrhenius data, the pH-PAR changepoint posterior distributions generated by the 

Metropolis and Gibbs sampler algorithms are in good agreement (Table 1).

5.5.5 Spin-labelled sarcoplasmic reticulum Arrheuius-plot changepoint 

analysis

The spin-label order parameter data used in this chapter were acquired as part of a study of the 

effect of dithiothreitol on the Arrhenius behaviour of the sarcoplasmic reticulum ATPase reaction 

rate and membrane lipid motion (King and Quinn, 1983; King et al., 1987). Several studies had 

shown that the sarcoplasmic reticulum calcium pump is stabilised in vesicles isolated in the 

presence of dithiothreitol (see King et al., 1987, for references) and that the Arrhenius properties of 

the ATPase are altered if dithiothreitol is added to the assay medium. Various properties of the 

dithiothreitol stabilised preparation were therefore examined and compared with the behaviour of 

the preparation isolated in the absence of this reagent. The data shown in Fig. 5.2 were acquired 

from a sarcoplasmic reticulum microsomal preparation isolated in the absence of dithiothreitol. A 

departure from classical linear Arrhenius dependence is demonstrated, consistent with other studies 

(for example, Inesi et al., 1973; Hesketh et al., 1976). A changepoint in the region of 9.7 to 13.2°C 

is low, however, compared with the values reported in the literature, which lie in the range 20 to 

30°C. When these data were acquired in 1979, questions regarding the precision of the changepoint 

estimates were raised but not addressed formally. The Arrhenius plot appeared to indicate a well- 

defined changepoint. This is consistent with the 95% posterior interval of 9.7 to 13.2°C, provided 

by the present MCMC simulation analysis. This interval is well removed from 20°C. A visual
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inspection of data not included in this chapter indicates possible differences in changepoint 

behaviour during the two phases of a heating-cooling cycle, raising the possibility of hysteresis. 

The order parameter data used in this chapter were acquired during the cooling phase. Hysteresis 

might, therefore, account for the discrepancy. It is noted in passing that the ESR spectrum obtained 

at 0° is close to the limit at which the position of the high-field resonance can be estimated. 

Furthermore, the method used to extract parameter estimates from the ESR spectra has been 

questioned. ESR rotational correlation time data are frequently presented as Arrhenius plots, and it 

has been suggested that spin-label Arrhenius changepoint anomalies can occur due to a violation of 

the motional narrowing assumption that underlies the standard approximations used to obtain the 

correlation time estimates. Rigorous slow-motion mathematical-modelling/simulation (Freed,

1976) has been recommended (Schreier et al., 1978). Similarly, Cannon et al. (1975) suggest that 

order parameter Arrhenius plot discontinuities can occur as an artefact if approximation is used to 

extract the order parameter estimates. In fact the physical significance of the measured order 

parameter depends on correlation time (Griffith and lost, 1976, p474; McConnell, 1976, p542). 

Again, slow-motion modelling has been recommended (Cannon et al., 1975; Schreier et al., 1978) 

which, at the time, was a considerable computational undertaking. These issues are beyond the 

scope of this chapter. The present changepoint MCMC simulation study was carried out for the sole 

purpose of investigating the performance of various MCMC approaches to problem. This ESR 

study predates the upsurge of papers on MCMC in the statistical literature. Given additional 

experimental data with adequate replication (the funding period expired prior to completion of the 

study) an extension of the Metropolis-based MCMC analysis outlined in this section should 

provide definitive answers to a number of questions, including the Arrhenius-behaviour differences 

between various microsomal sarcoplasmic reticulum preparations and questions relating to 

hysteresis.

The order parameter analysis outlined in this chapter deals with only one of several outstanding 

issues regarding spin-label Arrhenius studies, namely the changepoint estimation problem. In 

addition a rigorous comparison of competing models is required, and the need for robust order



-221-

parameter (or rotational correlation time) estimates is obvious. Finally, the uncertainty that 

surrounds the thermodynamic and/or structural significance of uncorroborated spin-label 

Arrhenius-plot discontinuities must be addressed. Differential scanning calorimetry provides 

definitive information on the phase behaviour of membrane lipids, but is not always feasible 

(Buitink et al., 2000, p290).

5.5.6 Liver response to intestinal ischaemia-reperfusion injury

Intestinal ischaemia-reperfusion injury is a serious clinical condition, which is associated with a 

number of complications, including the common occurrence of multiple organ failure. The latter is 

the most common cause of morbidity and mortality in patients with intestinal ischaemia- 

reperfusion injury (see Section 5.1.3). An essential feature of the condition is the damaging effect 

of reperfusion, as opposed to ischaemia, per se. Multiple organ failure involving gut injury is a 

major cause of intensive care unit (ICU) deaths, including surgical ICU mortality.

The pH-PAR data used in this chapter were acquired as part o f an extensive study of several 

aspects of multiple organ failure in intestinal ischaemia-reperfusion, including a detailed 

assessment of the hepatic metabolic response and an examination of the protective potential of 

hypothermia and perfluorocarbon administration (Vejchapipat et al., 2001, 2002). Among the 

principal aims of the study was an assessment of the effect of hypothermia on the onset of liver 

failure, as indicated by the PAR index. Furthermore, the time difference between the onset of the 

pH and PAR changes is of considerable interest from a mechanistic viewpoint. A formal 

changepoint analysis is required, therefore, to address properly several of the key research 

questions. A complete analysis of the entire set of pH-PAR responses was not performed because 

the main objective of the work outlined in this chapter was to explore alternative MCMC 

approaches to the changepoint problem. It is interesting to note, however, that the posterior 

distribution obtained for the PAR-pH onset-time difference indicates that the pH response preceded 

the onset of the increase in PAR in the one case examined. A previous informal treatment of the 

data had led to the conclusion that the decline in pH was relatively late and that intracellular
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acidosis was an unlikely cause of hepatic energy failure. The present result indicates that a re- 

evaluation of the data is required; a modification of the conclusion would follow if the pH response 

was found to precede energy failure in every animal.

The model assessment component of the pH-PAR data analysis has not been addressed in this 

chapter. The intersecting biphasic linear model is empirical and, as far as the candidate is aware, it 

is not possible to rule out alternative models using arguments based on established biochemistry 

and physiology. Insufficient is known about the mechanism that underlies hepatic energy failure in 

intestinal ischaemia-reperfusion injury, and any of the empirical models that were discussed in the 

Arrhenius-plot context might apply. Thus a curvilinear response, at one extreme, and a biphasic 

response with a discontinuity in each of the response variables and their respective derivatives 

might be considered. The latter model was examined but, unfortunately, insufficient pre

reperfusion data were collected to allow a useful assessment of this type of model. In contrast, 

sensible results were obtained given the constraint imposed by assuming continuity in pH and PAR 

at the changepoint. Subject to the need for model validation, confidence in the Metropolis and 

Gibbs sampling results presented in this chapter is justified given the good agreement between the 

posterior intervals obtained using these alternative methods. Agreement at the level of simulation 

error is not expected because a continuous changepoint model was adopted in the Metropolis 

simulations, while a discrete changepoint model was used in the Gibbs sampler analysis.

The pH-PAR modelling work outlined in this chapter was not extended to include a full random- 

coefficients analysis of the complete dataset (the normothermic group consisted of six animals) 

mainly because the study was somewhat compromised by the absence of spectroscopic data for the 

first 54 minutes of the ischaemic period. As stated previously, the remaining 36 minutes of pre

reperfusion data are not sufficient to allow a proper assessment of competing models. This MR 

study was performed using a purpose-built animal-holder/RF-coil assembly designed specifically to 

permit remote control of the superior mesenteric arterial blood flow (Vejchapipat et al., 2001). 

Accordingly, it might have been possible to commence data acquisition soon after the start of the
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ischaemic phase. The question of experimental design and its optimisation should, of course, 

always be considered. In the present context simulations might be used to improve the study design 

as required to enable an assessment of competing models and to obtain changepoints estimates with 

sufficient precision.

5.5.7 Final comments

In conclusion, the purpose of the work outlined in this chapter was to explore the MCMC approach 

to changepoint modelling using ESR spin-label and MR spectroscopic data to achieve this. The 

model assessment part of the problem has not been addressed. For this reason no attempt is made to 

offer an interpretation of the Arrhenius changepoint estimate and other parameters extracted from 

the ESR data. Furthermore, the observed spectral changes and resulting Arrhenius behaviour 

provide an indirect indicator of membrane lipid phase behaviour, at best. The MR intestinal 

ischaemia-reperfusion study is less problematic in the sense that a direct observation of the 

processes under consideration (i.e., acidosis and energy failure) is possible. Consequently, the 

posterior probability distributions provide a direct estimate of the parameter that is sought, i.e., the 

difference in time between the onset of the pH and PAR responses. Although the application of an 

inadequate model is expected to yield a biased estimate, this has no impact on the validity of the 

interpretation regarding the temporal/causal relationship between acidosis and liver energy failure.
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6. DISCUSSION

6.1 The role o f Bayesian hierarchical m odelling in longitudinal M R  

data analysis and paediatric neurology

MR imaging and spectroscopy can be used in a variety of modes to provide surrogate markers of 

pathology, effectively allowing the non-invasive acquisition of simultaneous biochemical, 

physiological and anatomical data. For this reason multivariate longitudinal studies are extremely 

common in biomedical MR research. Invariably, huge amounts of data are generated within a 

single study, and frequently the typical MR researcher is required to undertake analytical problems 

of considerable complexity. Although a number of textbooks (including Crowder and Hand, 1990; 

Jones, 1993; Goldstein, 1995; Hand and Crowder, 1996) on longitudinal data analysis serve to 

supplement the extensive statistical literature on the subject, this work has been somewhat ignored 

by the MR research community. Thus, despite the major methodological advances that have been 

made since the early 1980s, it is unfortunate that inferior statistical methods continue to be used 

by the majority MR researchers, with the result that many studies are severely compromised.

The seminal paper by Laird and Ware (1982) on random coefficients modelling provides the basic 

framework for both Bayesian and non-Bayesian longitudinal data analysis. Among the attractive 

features of the approach is the considerable degree of model flexibility that is permitted, including 

a wide range of within-subject error structures (equicorrelated errors, autoregressive error 

structure, etc.). This is coupled with a rigorous modelling of the between-subject variability in 

behaviour. For several reasons, random coefficient models are especially relevant to many of the 

clinical MR studies carried out within the tertiary referral centre in which the candidate works 

(Great Ormond Street Hospital for Children). The first is the fundamental need for a formal 

modelling of subject variability. The Vdc-ADC data presented in Chapters 3 and 4 illustrate the 

point; it is typical of the MR data acquired in longitudinal MR studies. In many cases mean 

behaviour might be of secondary interest, and the main focus is the manner in which some
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measure evolves within individuals. This applies to both clinical and non-clinical investigations. 

The V dc-A D C  investigation falls into this category because an improved understanding of the 

processes that drive the ADC response to focal ischaemia is provided by the study of the within- 

individual temporal relationship between the ADC and DC-potential responses. Thus, although a 

formal treatment of the between-individual differences in response behaviour might be required 

solely for the purpose of obtaining reliable mean statistics in some studies, the V dc-ADC  

investigation provides an example in which a modelling of individual behaviour is required to 

address the primary research question. The distinction between analyses in which the population 

mean behaviour is the focus and those in which individual-specific inferences are required is 

discussed in Section 1.4.1.5.

A related context in which an explicit random coefficients modelling is required is in paediatric 

prognostic modelling. Prognostic models are relevant to both paediatric research and clinical 

practice. A number of circumstances arise in which prognostic models, based on MR data, might 

be used to advantage, including premature birth. Chapter 5 gives a brief account of the manner in 

which brain phosphorus NMR spectroscopic PCr/Pj ratio data (an index of cell energy status) 

acquired during the first few days after delivery from asphyxiated infants, bom at term, provides 

an indicator of those destined to die or to suffer severe neurodevelopmental abnormalities (Hope 

et al., 1984; Hope and Reynolds, 1985). In individuals with a reduced PCr/P, ratio the insult is so 

severe that it is incompatible with survival and the maintenance of normal neurodevelopmental 

function. The birth prematurity scenario is not dissimilar, and a proportion of children that survive 

prematurity at birth exhibit major neurological impairment, subsequently. Of those that survive 

without major impairment (85 to 90%), up to 30% develop cognitive and behavioural problems. 

Furthermore, MR volumetric analysis based on images acquired within a few weeks of delivery 

indicates a relationship between early right sensorimotor white matter volume and 

neurodevelopmental outcome assessed at between 18 and 20 months (Peterson et al., 2003). Early 

right midtemporal white matter volume is similarly related to neurodevelopmental outcome at 18- 

20 months (Peterson et al., 2003), Recent studies have shown, however, that among those
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individuals appearing to survive unimpaired initially, a proportion go on to develop subtle 

functional abnormalities that become apparent only later in childhood (Bhutta et al., 2002). It is 

suggested that, in some cases, these latent cognitive deficits are caused by elusive but identifiable 

brain anatomical/structural abnormalities (see Gadian, 2002, for a minireview). The latter are not 

necessarily identified by visual inspection of the MR images, and it is only through the 

development of new image processing techniques that the underlying abnormalities have been 

detected. It is in this context that a study of the relationship between structural pathology and 

impaired function in preterm children has been undertaken as a major component of the MR 

research programme at the Great Ormond Street Hospital for Children. Among the aims is the 

development of prognostic models. It is anticipated that MR imaging information acquired shortly 

after birth, together with a subsequent longitudinal MR characterisation of the manner in which 

pathology evolves in the early stages, will provide a basis for prognosis. Growth-curve prognostic 

models of the type outlined by Berzuini (1996) will receive particular attention. The study will be 

exploratory in nature, various structural pathologies and cognitive functions requiring 

investigation. It is envisaged that a characterisation of the manner in which pathology evolves 

within individual subjects will lead to an improved understanding of the causes of some types of 

mild cognitive impairment. A characterisation of the population mean progressive behaviour is, in 

contrast, relatively unimportant.

A number of special but unavoidable circumstances contrive to compromise the studies outlined 

above. Fortunately, however, Bayesian hierarchical modelling, as implemented using MCMC, 

provides a credible solution to the resulting analytical challenges. Foremost among the difficulties 

that arise in paediatric MR monitoring is the need to sedate young children during scanning and 

the resulting sparse data problem. Sedation is required for two reasons. Firstly, MR images are, in 

general, degraded if the subject moves during data acquisition. Diffusion images are especially 

prone to degradation, caused by motion artefacts, because a sensitivity to displacement is 

fundamental to diffusion imaging. Without sedation few young children can be expected to co

operate for the length of time required to perform an extensive MR investigation, and the quality
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of the resulting images will be compromised in most cases. Secondly, anxiely will cause some young 

children to become generally unco-operative, a few simply refusing to enter the scanner. Thus, 

allhough MR imaging can be undertaken in newborn infants while they sleep, sedation is required 

from about 2 months onwards. MR data can, therefore, be obtained only if an MR investigation is 

required on clinical grounds, since sedation for the collection of research data is ethically unacceptable 

and strictly forbidden. Longitudinal MR data in children under the age of about 7 years are, therefore, 

necessarily sparse. In older children imaging is usually possible without sedation. The sparse data 

problem is compounded by the implausibilily of acquiring MR data on every individual at pre

specified design points. This rules out the development of simple prognostic models based on a defined 

set of early observations. The growth-curve approach provides the solution, and Bayesian hierarchical 

modelling is the method of choice for dealing with undersampled longitudinal data. In some studies 

very little imaging data might be collected on a few individuals, but it is anticipated that the improved 

individual-specific parameter estimates afforded by Bayesian random coefficient (hierarchical) models 

will provide useful information from studies that would otherwise be of limited value due to the 

undersampling that inevitably occurs given the need to employ sedation. Thus the growth-curve 

prognostic modelling approach should allow forecasting for eveiy individual. It remains to be 

determined whether useful prognostic models can be constructed using MR growth curve data.

The motivation for these studies is the notion that corrective or ameliorative action becomes a 

possibility given the identification of individuals at risk of a poor outcome. The concept of a 

therapeutic window is discussed in relation to birth asphyxia in Section 5.5.1. It has to be said that, 

despite the passage of several decades since therapeutic approaches to hypoxic-ischaemic brain 

damage were first discussed (Astrup et al., 1981; Hope et al., 1984; Lassen and Astrup, 1987; Heiss, 

1992), little progress has been made\ It is suggested, however, o. special needs approach 

might be used to advantage in the mild cases that are under discussion.

 ̂Among recent developments is an assessment of potential therapeutic interventions through 

formal clinical trials. For example, several multicentre trials are in progress to determine whether
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A similar need for prognostic modelling arises in temporal lobe epilepsy (TLE). This is a 

debilitating condition commonly associated with mesial temporal sclerosis, which is a pathology 

characterised by changes in the hippocampus, including a reduction in volume and an increase in 

T2  relaxation time. (A review of magnetic resonance imaging as it relates to mesial temporal 

sclerosis and TLE is provided by Kuzniecky and Jackson, 1995.) This form of epilepsy tends to 

be unresponsive to medication, and temporal lobe resection is performed in a proportion of cases. 

In fact, mesial temporal sclerosis is the most common structural abnormality seen in patients 

requiring surgery for intractable epilepsy. An important clinical observation is the association 

between mesial temporal sclerosis and prolonged febrile convulsions (PFC), between 4 to 20% of 

PFC cases subsequently developing TLE with associated mesial temporal sclerosis. Furthermore, 

approximately 50% of patients undergoing surgeiy for TLE have a history of PFC. Newly 

emerging MR data has led to the proposition that in these TLE cases an episode of prolonged 

febrile convulsions has initiated a process that has caused hippocampal damage, culminating in 

mesial temporal sclerosis and TLE. Components of the process appear to be MR visible due to the 

associated T2  relaxation time, volume and, possibly, water diffusivity changes. Accordingly, it is 

reasonable to suppose that the evolution of pathology might be monitored using MR imaging, and 

that growth curve prognostic modelling is a possibility. The implications for clinical practice are 

important. At present the development of TLE is not always recognised in the initial stages with

cooling reduces the risk of death or neurodevelopmental injury following birth asphyxia. These 

include the total body hypothermia for perinatal asphyxia (TOBY) trial, which is a multicentre 

UK investigation into the effects of reducing body temperature to 33-34°C for 72h, compared with 

the maintenance of body temperature at 36.8-37.2°C in the control group. Randomisation takes 

place within 6 hours of delivery, and the primary outcome is the combined rate of mortality and 

severe neurodevelopmental impairment in survivors at 18 months of age (www.npeu.ox. 

ac.uk/TOBY).

http://www.npeu.ox
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the result that there can be a considerable delay in the prescription of suitable medication. The 

identification of individuals at risk of developing TLE would allow close monitoring, with the 

result that the onset of seizure activity should be recognised without delay and suitable medication 

started. Among the advantages of prompt intervention is a minimisation of secondary tissue 

damage, circumstantial evidence indicating that the electrical activity associated with TLE causes 

additional injury (Scott et al., 2003). Looking to the future, a number of clinical trials have been 

conducted to investigate the therapeutic effects of potential antiepileptogenic drugs. 

[Epileptogenesis is the pathological process leading to epilepsy. Schachter (2002) and Walker et 

al. (2002) discuss the case for antiepileptogenic therapy.] Although no effective treatment has 

emerged so far (Temkin, 2001), success in this pursuit would provide a treatment that might be 

used to prevent the development of TLE following a PFC. Given the relatively low proportion of 

PFC cases destined for eventual TLE, long term drug-administration following every occurrence 

of a PFC may be unacceptable. Given the serious nature of TLE, however, drug administration to 

a subset of high risk individuals might be appropriate. Growth curve data acquired following a 

PFC might provide the required prognostic information.

In some paediatric conditions there may be no effective treatment. Nevertheless prognostic models 

still have a place in clinical practice, since parents frequently express the need to know what the 

future holds. Invariably, clinicians are required to deal with questions regarding eventual outcome 

after a medical emergency, even if the outcome is inescapable due to the absence of any effective 

treatment. Sometimes this information is sought in order to plan for the future. When dealing with 

hereditary conditions, information of this type is fundamental to decisions regarding future 

pregnancies. Non-clinicians might find the emphasis on the provision of prognostic information 

surprising, but it is among the duties that a paediatrician is required to fulfil on a regular basis.

To summarise, random coefficients modelling provides an approach to achieving two objectives. 

The first of these is a characterisation of the pattern with which pathology evolves within 

individuals; the second is the development of growth-curve prognostic models. A characterisation
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of the time-dependent behaviour of the pathologies under consideration is of interest in its own 

right from a clinical viewpoint and, in some cases, from a basic neuroscience perspective. The 

latter applies to those pathologies that lead to the abstruse neurodevelopmental/cognitive deficits 

referred to earlier. Prognostic models are required primarily as an aid to clinical decision making, 

but it is anticipated that, in some cases, these models will provide an insight into the processes that 

underlie some types of cognitive impairment.

Returning to the special circumstances that impact on paediatric studies, small-sample problems 

are sometimes an inevitable consequence of the rarity of the condition under investigation. Several 

cognitive abnormalities are rare, for example, and a number of ongoing paediatric studies at the 

Great Ormond Street Hospital for Children are concerned with conditions in which scarcity places 

an absolute upper limit on the number of patients that are available for recruitment. This adds to 

the analytical challenge. The Vdc-ADC data presented in Chapters 3 and 4 provide a non-clinical 

example in which the small sample and sparse data problems are combined, since in some animals 

the ADC transition was undersampled due to its rapidity. An additional complication arose due to 

the need to adopt some type of nonlinear model. Thus a full random-coefficients treatment is 

required to achieve a proper modelling of the between-animal variation in transition behaviour 

that is central to the analysis, while the form of the DC-potential and ADC responses demanded 

the use of a nonlinear model. A number of future investigations are envisaged with the same 

combination of features that were encountered in the Vdc-ADC study, namely multivariate, 

longitudinal and small-sample studies in which the analytical challenge is compounded by a 

degree of unavoidable undersampling and the need to adopt some form of nonlinear model. These 

challenges are met in a number of other areas of research, including pharmacokinetics- 

pharmacodynamics. In particular sparse data are a major problem in many pharmacokinetic 

studies. This provided the stimulus for the development of improved methods for dealing with 

these issues. Recently, much of this effort has been directed at the MCMC simulation approach to 

statistical inference. Relevant aspects of the pharmacokinetic/pharmacodynamic modelling 

problem are discussed briefly in the following pages.
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Referring specifically to the undersampled data problem, a commonly encountered difficulty in 

pharmacokinetics/pharmacodynamics is the impracticality of acquiring sufficient data on an 

individual to obtain the required subject-specific kinetic parameter estimates with the necessary 

precision. In fact it is not uncommon to face the situation in which the data obtained for some 

subjects are so sparse that the resulting analytical problem is either underdetermined or too ill- 

conditioned to allow any useful estimates to be obtained (Gelman et al., 1996a). An advantage of 

the Bayesian analytical approach is that it can be used to turn an ill-conditioned problem into one 

that is well-conditioned. This is achieved through a combination of two features of the Bayesian 

formalism. Firstly, the explicit incorporation of prior information on one or more of the model 

parameters is a mechanism through which constraints can be imposed, together with a consequent 

improvement in conditioning. In many applications reliable and independent data are available, 

and this information can be used to generate the required informative prior distributions (Gelman 

et al., 1996a; Wakefield, 1996). This approach is not always adopted, however, since the pursuit 

of objectivity will sometimes prohibit the use of the informative priors that are required to provide 

a sufficient constraint on the poorly identified parameters. On the other hand, prognostic 

modelling is an application in which informative priors might be used to advantage. A second 

mechanism through which the Bayesian approach provides an alleviation of the effects of ill- 

conditioning is through the formal combination of information afforded by the individuals that 

make up the sample, but taken as a whole in the form of distributional information. Thus, although 

the data obtained for some individuals might be insufficient to provide parameter estimates, if 

used in isolation, the distributional information provided by the remaining subjects has a 

constraining effect that can yield useful estimates for otherwise poorly identified subject-specific 

parameters. The Vdc-ADC study of Chapters 3 and 4 provides an example of this behaviour, 

which arose because signal-to-noise ratio considerations placed an upper limit on the effective 

ADC acquisition rate. In those animals in which the ADC transition was fast, the ischaemia- 

induced transition was undersampled. Consequently, reliable estimates of the ADC transition 

parameters could not be obtained by fitting the individual ADC time-series data in these cases. A
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formal Bayesian analysis provides best estimates of the individual-specific parameters in question, 

best in the sense of being an optimum weighted average of the estimate that would be obtained 

from the individual time series, taken in isolation, and the group average. The weighting is 

determined by the adequacy of the sampling rate and the relative magnitude of the within-subject 

and between-subject variances. This behaviour is shared by both non-Bayesian and Bayesian 

random coefficient models. In the former context Laird and Ware (1982, p966-7) described this 

behaviour as Empirical Bayes. The resulting parameter shrinkage is discussed in Sections 1.4.1.3 

and 1.4.2.2, and it is examined in Appendix B in the V dc-ADC study context, where it is shown 

that the level of shrinkage in the individual-specific ADC transition rate estimates is related to the 

adequacy with which each transition is sampled. When the data available for a particular transition 

are sparse the estimated rate is more heavily weighted by the population mean, thus using the 

group behaviour to moderate the individual-specific value, giving an improved (safe) estimate. In 

contrast, in those individuals in which the response is well defined, the estimate is dominated by 

the data acquired for that individual.

Another characteristic of the paediatric prognostic and longitudinal data modelling studies that are 

envisaged is the expectation that nonlinear models will be a necessity. As stated previously, 

nonlinear random effect models play a major role in pharmacokinetic and pharmacotoxicology 

research, and given the importance of these research areas to the drug industry, this provided the 

impetus for a considerable effort, extending over several decades, in a search for useful statistical 

methods (see, for example, Vonesh, 1992; Chapter 7 in Jones (1993); Wakefield, 1996; Gelman et 

al., 1996a; Roe, 1997). Much of the earlier work was based on Taylor series expansion (Racine- 

Poon and Smith, 1990; Vonesh, 1992; Davidian and Giltinan, 1993; Chapter 7 in Jones, 1993). A 

number of algorithms became established, but each is based on a low-order expansion. The 

accuracy of the resulting parameter estimates is, therefore, uncertain. Furthermore, the traditional 

approach to both linear and nonlinear random-effect models is to use the Hessian matrix to 

approximate the parameter covariance matrix. Large samples are required to ensure the validity of 

this approximation (see, for example, Sections 4.1 and 9.4 in Gelman et al., 1995; Section 5.2 in
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Carlin and Louis, 1996; Vonesh and Carter, 1992; Vonesh, 1992). In summary large-sample 

theory is central to the standard approach to both linear and nonlinear random effects inferential 

statistics. Clearly, the application of the resulting asymptotic statistics to small sample studies is 

dubious. In nonlinear modelling applications the accuracy of the approximation and resulting 

statistics is difficult to determine in practice (Mager and Goller, 1997). Furthermore, it is not 

possible, in general, to determine the sample size required for the validity of the asymptotic 

statistics that are obtained. For this reason the MCMC simulation approach is an attractive 

alternative.

MCMC offers several advantages over the more traditional random-coefficients regression 

methods. Firstly statistics can be generated without resorting to large-sample approximation. As 

indicated previously, a number of ongoing paediatric studies at the Great Ormond Street Hospital 

for Children involve extremely rare conditions. Small samples are inevitable and asymptotic 

statistics inappropriate. By adopting an MCMC implementation, full random-coefficient nonlinear 

models can be adopted, without resorting to approximation. All of the advantages relating to the 

optimum use of sparse data apply. [Wakefield (1996) and Gelman et al. (1996a) both discuss the 

advantages of the simulation-based Bayesian approach to sparse data analyses, with specific 

reference to nonlinear hierarchical models.] An additional and powerful feature of the MCMC 

approach is that it allows considerable flexibility in the manner in which the primary model 

parameters are treated. In particular these primary variables can be incorporated into complicated 

functions, including derivatives, as required to generate derived variables of interest. The V dc- 

ADC curve analysis of Chapters 4 provides an example. The required posterior intervals are 

readily obtained from the MCMC output, again avoiding the kind of approximation required in a 

traditional analysis involving complicated nonlinear functions of the primary variables. It is no 

exaggeration to suggest that MCMC methods have revolutionised the approach to statistical 

inference in many areas of research. These methods are expected to become an essential 

component of some of the paediatric MR research that is in progress at the Great Ormond Street 

Hospital for Children.
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Appendix A. Longitudinal data analysis. A comparison of mixed 

model regression methods 

A.l Introduction

A number of approaches to longitudinal data analysis are outlined in Chapter 1, with an emphasis 

on MCMC, as implemented using the Metropolis/Metropolis-Hastings and Gibbs sampler 

algorithms (Section 1.5.5). In addition, brief accounts of the GEE and traditional mixed model 

regression methods are included (GEE, Section 1.4.1.5; mixed-model regression. Section 1.4.1.3). 

During the developmental stages of the Metropolis simulation work outlined in this thesis, several 

well-known longitudinal datasets were used to assess the performance of the Metropolis algorithm 

and to compare the resulting MCMC statistics with those obtained using well-established 

programs based on standard ffequentist statistical methods (mixed-model regression and GEE). In 

addition, a comparison was made with Gibbs sampler results. Both the Potthoff-Roy growth curve 

data (Potthoff and Roy, 1964; Jennrich and Schluchter, 1986) and the RATS data of Gelfand et al. 

(1990) were used for this purpose. A selection of results obtained with the latter are shown in 

Table A.I. Frequentist mixed model regression, GEE and Gibbs sampling results are included in 

the table, together with the Metropolis simulation results. Gibbs sampling was performed using 

several types of noninformative prior.

A.1.1 Noninformative prior distributions in random coefficients 

modelling

Traditionally, Gibbs sampling growth curve hierarchical modelling analyses are performed using 

normal priors for the fixed-effect and random coefficients, and inverse gamma priors for the 

variance components (or, equivalently, gamma priors if the model is specified in terms of 

precision parameters; Gelfand et al., 1990; Spiegelhalter et al., 1995a; Carlin and Louis, 1996, 

p i 66 et seq.). In many applications, each of the normal and inverse gamma prior distributions is 

specified using parameter values chosen to render the resulting distribution noninformative. This
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specifîcation is common among the BUGS/WinBUGS example programs provided by the 

Cambridge MRC Biostatistics Unit (Spiegelhalter et a l, 1995b) and this is, no doubt, a major 

reason their widespread use. A different approach is required, of course, in those applications in 

which informative priors are a prerequisite. Informative priors are sometimes used, for example, to 

express current medical opinion in clinical trials (Spiegelhalter et a l, 1994). The following applies 

to those applications in which objectivity demands the use of noninformative priors.

A number of research papers have addressed the issue of variance component prior distributions 

(Morris and Normand, 1992; Kass and Wasserman, 1996, and references therein; Daniels, 1999). 

The classical noninformative prior for the normal standard deviation is its inverse, i.e.,/>(cr)ocl/(T 

(Box and Tiao, 1973, p29). Alternatively, prior probability might be specified in terms of in 

which case the classical noninformative prior is (Lee, 1989, p55). These follow fi-om the 

requirement that each noninformative prior should satisfy the criterion that the distribution is 

uniform in a metric in which the likelihood is data translatable (Box and Tiao, 1973, p26; Lee, 

1989, p48). The latter requires that the dispersion character of the distribution is unaltered under a 

location shift. A number of statisticians have pointed out, however, that a prior of the form Mcf 

(or 1/(7) can be problematic in some random coefficient modelling applications because (ĵ  = 0 

might be supported by a non-negligible likelihood, giving rise to an improper posterior 

distribution (Dumouchel and Watemaux, 1992; Spiegelhalter, 1995a, Section 9.2; Daniels, 1999; 

Kass and Wasserman, 1996, pages 1359 and 1361). A similar problem can arise if an inverse 

gamma prior is used with an extreme scale-parameter value. The latter approach is common in 

applications requiring vague prior distributions. The resulting minimally informative priors are 

described as just proper (Spiegelhalter et a l, 1995a, Section 9.2; Congdon, 2001, p20), but 

problems can nevertheless occur with very large inverse-gamma scale parameter values. A 

number of solutions have been suggested including the use of the Pareto prior distribution for the 

variance components in random coefficient modelling applications (Spiegelhalter et al. 1995a, 

Section 9.2.2).
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A. 1.1.1 The Pareto distribution

One solution to the impropriety problem discussed in the preceding paragraph is to adopt the 

bounded uniform prior p{cr^)~ Uni(0,r) (Spiegelhalter et al., 1995a, Section 9.2.2). The Pareto 

distribution

t  ~ Pareto{a,c)-^ p{z) = occ^r~^^^^\T > c [A.l]

with parameters {k/2, generates the required uniform prior, t  ( t  = is the precision 

parameter. Thus the prior distribution cr^~Uni(0, r) can be obtained using the specification 

T~Pareto(l, r ’), while the prior (7~Uni(0, r) can be generated using T~Pareto(0.5, r^). These 

relationships follow from the change o f variables rule. Thus

\d(T^ j

which is a constant given a = 1, while

X . , J  dzp{a) = p{z)
d(j ̂

[A.3]
=

which is a constant given a = 0.5. These two variance component prior distributions are among 

several that were examined in the RATS Gibbs-sampling trial analyses.

A.2 M ethods

The Metropolis-based MCMC simulation method is described in detail in Section 2.2. The 

Metropolis results are derived from three parallel chains each consisting of 5000 samples obtained 

using a run-time thinning ratio of 1:400. GEE, classical mixed model regression and Gibbs 

sampler analyses were performed using SAS PROC GENMOD (Version 6.12), SAS PROC 

MIXED (Version 6.12) and WinBUGS (Version 1.3), respectively. Each of the Gibbs sampler 

results is derived from a single chain of length 10000, not including a bum-in run of 2000 

samples. The Gibbs sampler results listed in Table A.l are naïve in the sense that the single chain
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MCMC output was used in the absence of formal convergence testing. Visual inspection of the 

single-chain trace plots suggested satisfactory behaviour, however, as indicated by a rapid 

movement over parameter space. The following BUGS code was used to perform the Gibbs 

sampling analysis with T~Pareto(l, r'*)

model
{
for( i in 1 : N )

{
for( j in 1 ; T )

{
Y [i, j] -  dnorm(mu[i, j],tau.c) 
m u[i, j] < a!pha[i] + beta[i] * x[j]
}

alpha[i] ~ dnorm(alpha.c,alpha.tau) 
beta[i] ~ dnorm(beta.c,beta.tau)
}

tau.c ~ dpar(1.0,1 .OE-6) 
sigma <-1 / sqrt(tau.c) 
alpha.c ~ dnorm(0.0,1.0E-6) 
alpha.tau ~ dpar(1.0,1.OE-6) 
beta.c ~ dnorm(0.0,1.0E-6) 
beta.tau ~ dpar(1.0,1.OE-6)
}

while the analysis based on r~Pareto(0.5, f^ )  was performed using the code

model
{
for( i in 1 : N )

{
for( j in 1 : T )

{
Y[i,j] ~ dnorm(mu[i,j],tau.c) 
mu[i,j] <- alpha[i] + beta[i] * x[j]
}

alpha[i] ~ dnorm(alpha.c,alpha.tau) 
beta[i] ~ dnorm(beta.c,beta.tau)
}

tau.c ~ dpar(0.5,1 .OE-6) 
sigma <-1 / sqrt(tau.c) 
alpha.c ~ dnorm(0.0,1 .OE-6) 
alpha.tau -  dpar(0.5,1.0E-6) 
beta.c -  dnorm(0.0,1.OE-6) 
beta.tau -  dpar(0.5,1.0E-6)
}
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A.3 Results and Discussion

A.3.1 RATS growth curve parameter estimates and standard errors

The population intercept and slope median/mean estimates given by each of the methods are close, 

relative to their respective standard errors, with the exception of the GEE[AR(1)] intercept (Table

A.l). The standard error estimates are similar, with the result that the 95% posterior 

intervals/confidence intervals are close, with the exception of the interval given for the intercept 

by the GEE[AR(1)] calculation, which is shifted to a lower value due to the shift in the mean 

estimate.

A.3.2 Sensitivity to changes in the form of the precision-parameter priors

The RATS posterior mean, median and 95% posterior interval estimates obtained with Gibbs 

sampling are insensitive to changes in the form of the noninformative precision/variance 

parameter priors (Table A .l). This insensitivity might be expected because the two random 

coefficient precision parameter estimates are well removed form zero. For example, using priors 

of the form r  ~ Pareto(1.0,10'^) for each of the precision parameter priors, the Gibbs sampler 95% 

posterior intervals for Ta and Tp are 0.0041 to 0.018 (median, 0.0083) and 1.84 to 7.09 (median, 

3.66), respectively. The remaining four precision-parameter priors led to 95% posterior intervals 

further removed from zero, although the differences between the five sets of simulation results 

were negligible in this respect. (The remaining four Gibbs sampler simulations generated 95% 

posterior interval lower limits in the range of 0.0043 to 0.0049 for Tg and 1.96 to 2.12 for Tp.)
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TABLE A.l .  A comparison of methods for longitudinal data analysis. RAT growth curve 

parameter estimates, standard errors, 95% posterior intervals and confidence intervals

Parameter Method
Estimate Std.

Error
2.5%
limit

97.5%
limitMean Median

Intercept MM-reg (diag) 106.6 2.24 102.0 111.1
MM-reg(un) 106.6 2.30 101.9 111.3
GEE[indl 106.6 2.26 102.1 111.0
GEE[ar(l)] 103.7 2.15 99.5 108.0
Gibbs [U(logCT)] 106.6 106.7 2.27 102.2 111.0
Gibbs [U(loga^)] 106.6 106.6 2.29 102.1 111.2
Gibbs T~Par(l,10‘V 106.6 106.6 2.38 101.9 111.2
Gibbs x~Par(0.5,10'^) 106.5 106.6 2.33 102.0 111.1
Gibbs T-Gam(10 \l0 '^) 106.6 106.6 2.28 102.0 111.0
Metropolis 106.5 106.7 2.28 101.4 110.5

Slope MM-Reg (diag) 6.19 0.10 5.98 6.40
MM-Reg(un) 6.19 0.11 5.97 6.40
GEEfindl 6.19 0.10 5.98 6.39
GEE[ar(l)l 6.17 0.10 5.97 6.36
Gibbs [U(loga)l 6.18 6.18 0.11 5.97 6.39
Gibbs [U(loga^)l 6.18 6.18 0.11 5.98 6.39
Gibbs T~Par(l,10'^) 6.19 6.19 0.11 5.97 6.40
Gibbs T~Par(0.5,10'^) 6.19 6.19 0.11 5.97 6.40
Gibbs T~ Gam( 10-^10'^) 6.19 6.19 0.11 5.98 6.39
Metropolis 6.18 6.18 0.11 5.97 6.40

Two REML mixed-model regression (MM-reg) analyses were performed, one using a diagonal 

random-coefficients covariance matrix (diag), the other assuming an unstructured covariance 

matrix structure (un). GEE calculations were performed using two alternative working correlation 

matrix structures, namely an independent structure [ind] and a first-order autoregressive structure 

[ar(l)]. (A GEE calculation based on an unstructured working correlation matrix failed to 

converge.) Among the Gibbs sampler simulation results are those obtained with variance 

component priors p(\oga) oc constant [abbreviated U(logcr)], which is equivalent to p{p) oc l/c, and 

pijoga^) oc constant [abbreviated U(Iogo^)], which is equivalent to picP') ocl/o^.
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Appendix B. Parameter estimator shrinkage. A comparison of 

nonlinear regression and MCMC results

Fig. B.l shows six individual normalised ADC time courses taken from Chapter 3 (see Figs. 3.1 

and 3.2), together with a set of 100 random time-course profiles generated by sampling the 

posterior distribution. Superimposed on each figure are two individual-specific fitted ADC 

profiles, one based on the nonlinear regression parameter estimates obtained by fitting each ADC 

profile individually, the other derived from the MCMC random-coefficient medians, as obtained 

by modelling all ten Vdc-ADC response profiles simultaneously (see Chapter 3). The 

corresponding transition rate estimates are included in the figure. These individual-specific 

median transition rates are listed again in Table B .l, together with their 2.5% and 97.5% posterior 

quantités. The population median normalised ADC transition rate is -1 .1 8  m in'\ with 2.5% and 

97.5% posterior quantités at -4 .6 9  and -0 .45 , respectively. The subset of results presented in Fig.

B.l were selected to demonstrate a fundamental property o f the individual-specific parameter 

estimates provided by a Bayesian random coefficients analysis, namely parameter shrinkage. This 

behaviour is discussed in Section 1.4.1.3 (in relation to the empirical Bayes property of mixed 

model regression estimators), in Section 1.4.2.2 (in the context of Bayes estimators), and again in 

Section 4.4.4 with reference to the sparse data problem. Referring to the sparse data issue, a

Fig. B.l. Overlaid plots showing the normalised ADC data acquired fi*om each of six animals 

(continuous irregular line), together with a pair of individual-specific calculated ADC response 

profiles, one based on the nonlinear regression parameter estimates obtained by fitting each ADC 

profile individually (broken black curve), the other derived from the MCMC random-coefficient 

medians, as obtained by modelling all ten V dc-ADC response profiles simultaneously 

(continuous black curve; the MCMC median curve generated for animal 10 is visually 

indistinguishable from the nonlinear regression profile). The MCMC and nonlinear-regression 

transition-rate estimates are included in each panel. Also shown is a set of 100 animal-specific 

random profiles obtained by sampling the posterior distribution (grey broken lines).
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Fig. B .l. ADC transition-rate parameter shrinkage
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Table B.L Comparison of the ADC median transition rates obtained by MCMC simulation 

and the values given by a nonlinear regression analysis of the individual profiles

Animal ID and Method 2.5% quantile 
(min*)

Median (estimate) 
(min*)

97.5% quantile 
(min*)

SI mcmc -37.53 -1.382* -0.585
SI nlin -11.740 -3.013 (-3.053) -0.790
S3 mcmc -229.9 -10.38* -3.629
S3 nlin No estimate -17.35 (-17.35) No estimate
S8 mcmc -29.663 -1.1955* -0.416
S8 nlin -31.033 -4.133 (-4.217) -0.568
S9 mcmc -1.459 -0.653 -0.395
S9 nlin -0.999 -0.556 (-0.559) -0.313
SIO mcmc -2.743 -1.009 -0.504
SIO nlin -1.711 -0.987 (-0.991) -0.574

The MCMC individual-specific normalised ADC transition rate estimates were calculated using 

/4  = exp( ( % 3  + /% ) /4(«4 + %4 ,) . Section 3.2.2.3 provides notation and regression model 

details. The normalised nonlinear regression median rate estimates and quantités (nlin) were 

generated by first sampling from a MVN distribution with mean vector equal to the nonlinear 

regression estimate, and covariance matrix calculated using the asymptotic standard errors and the 

asymptotic correlation matrix provided by the nonlinear regression program. The resulting sample 

was subsequently used with the preceding expression for rate to generate a second stage random 

transition-rate sample, and thus to obtain the required statistics. The estimates in brackets were

calculated using the nonlinear regression parameter estimates. The population median rate is -1.18

•  -1 mm .

*The ADC transition is inadequately sampled and the MCMC estimate has shrunk towards the 

population median.
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dominant feature of the ADC data acquired in the focal ischaemia study presented in Chapters 3 

and 4 is an undersampling of the ADC transition in a subset of animals, due to the rapidity of the 

transition relative to the sampling rate. Fig. B.l shows that in those cases in which an adequate 

sampling of the ADC transition is obtained (animals 9 and 10), the discrepancy between the 

nonlinear regression and MCMC transition rate estimates is not marked. In contrast, when the 

transition is poorly sampled (animals 1, 3 and 8) a greater discrepancy is observed with the 

MCMC estimates exhibiting shrinkage towards the population median.

These results serve to illustrate the point that a formal random coefficients modelling analysis 

yields parameter estimates and associated statistics based on an optimum use of the information 

provided by the experiment. Each subject-specific coefficient is a weighted average of the value 

obtained by fitting the response profiles individually and the mean value, with a weighting 

determined by the sampling adequacy and the relative magnitude of the within-subject and 

between-subject variances. In those individuals in which the response is well defined, the estimate 

is dominated by the data acquired for that individual, while in those cases in which relatively little 

information is available, the mean behaviour is used to modify the individual-specific value to 

give an improved estimate. It should be noted in this context that the V dc-A D C  analysis was 

performed using uniform priors for the fixed- and random-effect coefficients, thus ensuring that all 

parameter estimates are dominated by the data. Parameter shrinkage behaviour is shared by both 

non-Bayesian and Bayesian random coefficient models. In the former context Laird and Ware

(1982) describe the behaviour as Empirical Bayes (see pages 966-7).

Random coefficients modelling is especially advantageous when dealing with models that are 

underdetermined or ill-conditioned in an ordinary regression sense. For example, the V dc-ADC  

dataset includes several cases that are not amenable to individual analysis, and attempts to fit these 

individual DC-potential and ADC profile pairs ended in failure, either because the ADC transition 

is corrupted with noise and/or is sampled inadequately or because the biphasic nature of the DC- 

potential response is poorly identified. For example, in one case (animal 7) the nonlinear
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regression routine failed to converge due to an inadequate sampling of the ADC transition, caused 

by its rapidity coupled with noise corruption. The DC-potential data acquired from animal 8 are 

problematic because the response lacks the marked biphasic character of the remaining DC- 

potential profiles (see Fig. 3.21 and Fig. 3.27, top left panel), with the result that the two-term 

logistic model is extremely ill-conditioned, as applied to these data in isolation. On the other hand, 

the Bayesian random coefficients model succeeded in providing the required subject-specific 

posterior median estimates and associated intervals. This is attributable to the proper use of 

distributional information derived from the sample as a whole. Thus, a formal modelling of the 

distribution of each of the random coefficients influences the individual-specific parameter 

estimates and moderates the effect of spurious observations. This property is referred to as 

information borrowing.

Despite information borrowing, some random coefficient models remain ill-conditioned or 

underdetermined. Bayesian random coefficient models (hierarchical models) offer an additional 

mechanism for dealing with the problem, namely the use of informative priors. Ill-conditioned 

random coefficient models are, for example, a common occurrence in pharmacokinetics. In some 

cases this is due to undersampling; sometimes it arises because the physiological model under 

investigation is fundamentally under-identified. It has been suggested that informative priors 

derived from well established physiological data provide a useful solution to this problem 

(Gelman et al., 1996a). Thus, the constraints imposed by adopting carefully constructed 

informative priors provides a mechanism for turning an ill-conditioned problem into one that is 

well-conditioned (see Section 1.4.3).
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Appendix C. Hierarchical centering

C.l Introduction

Sections 1.6.3 and 1.6.4 of the Introduction deal with the convergence and poor performance 

problems that are a common occurrence in MCMC simulation work. A variety of solutions have 

been proposed, a summary of which is included with an emphasis on hierarchical centering in 

random coefficients modelling applications. This appendix demonstrates the substantial 

improvement in performance that can be achieved by adopting a hierarchical centered formulism. 

To this end a well-known multilevel dataset is used to compare the Gibbs sampler output obtained 

with a naïve, non-centered random-coefficients model with the output generated using an 

equivalent hierarchical centered model specification. The example is a variance components 

problem described by Littell et al. (1996, p i55) and is based on a study, performed in a 

semiconductor plant, to establish the cause of variability in semiconductor oxide thickness. The 

experimental design stipulated that 3 silicon wafers were drawn from each of 8 randomly selected 

lots (each lot consisting of 25 wafers). Oxide thickness was measured at 3 randomly selected sites 

on each wafer. Following Littell et al. (1996) the model is

Tÿi: +^7(;)+*̂ A:(ÿ)’  ̂— 1,2,...,8, y = 1,2,3, ^ = 1,2,3, [C.l]

where a,~N(0, (%/) is the random lot effect, Wj^~N(0, gJ )  is the random wafer variation and 

5A(y)~N(0, G^) the random site (residual within wafer) variation.

C.2 Gibbs sampling (WinBUGS) simulation

The non-centered simulation analysis was performed using the WinBUGS code

model
{
for(i in 1 : lots)

{
for( j in 1 : wafers)

{
for( k in 1 : sites)

{
y[i, j, k] ~ dnorm(p[iJ], tau.site)
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}
p[ij]<-mu + l[i] + w[i,j] 
w[i,j] -  dnorm(0, tau.wafer)
}

l[i]~dnorm(0,tau.lot)
}

sigma2.lot <-1 / tau. lot 
sigma2.wafer <-1 / tau.wafer 
sigma2.site <-1 / tau.site 
tau.lot ~ dgamma(0.001, 0.001) 
tau.wafer ~ dgamma(0.001, 0.001) 
tau.site ~ dgamma(0.001, 0.001) 
mu ~ dnorm(0.0, 1.0E-10)
}

while the hierarchical centered model was implemented using the WinBUGS code

modei
{
for(i in 1 : lots)

{
l[i]~dnorm(mu,tau.lot) 
for( j in 1 : wafers)

{
w[i,j] ~ dnorm(l[i], tau.wafer) 
for( k in 1 : sites )

{
y[i, j, k] ~ dnorm(w[iJ], tau.site) 
}

}
}

sigma2.lot <-1 / tau.lot 
sigma2.wafer < 1 / tau.wafer 
sigma2.site < 1 / tau.site 
tau.lot -  dgamma(0.001, 0.001 ) 
tau.wafer ~ dgamma(0.001, 0.001) 
tau.site ~ dgamma(0.001, 0.001) 
mu ~ dnorm(0.0, 1.0E-10)
}

A single chain of 10000 samples was generated for each model subsequent to a 5000 sample burn- 

in run.

C.3 Results and Discussion

Figure C.l a shows the MCMC chain trace plots obtained for ten selected parameters, as generated 

using the hierarchical centered model. The corresponding trace plots generated without
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hierarchical centering are shown in Fig. C.lb. The latter indicate an extremely slow movement 

over parameter space, and are typical of the badly behaved chains encountered with non-centered 

random-coefficient models. The hierarchical centered simulation yields a dramatic improvement 

in parameter space coverage. This visual impression of the enhanced performance afforded by 

hierarchical centering is reflected in the within-chain autocorrelation data listed in Table C.l. The 

naïve, non-centered model within-chain lag(5) autocorrelations are substantial with some close to 

unity while, in contrast, the hierarchical centered model yields negligible lag(5) autocorrelation 

coefficients. The centered-model single-chain variance component estimates are consistent with 

those provided by Littell et al. (1996). [MCMC median estimates (95% posterior intervals in 

parenthesis): = 138.0 (44.7, 562.6); = 37.1 (17.4, 88.6); 12.8 (8.7, 20.1). SAS PROC

MIXED (Littell et al., 1996, pl56): a^=  129.9; (7̂  ̂= 35.9; (%/= 12.6.]
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Fig. C.l a. A comparison of centered and non-centered multilevel- 

model Gibbs sampler performance. Centered model output.
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Trace plots are shown for ten selected parameters (//, /„ /=1,2, 3; Wÿ, z-1, 2, 3 andy-1, 

2), as obtained using the hierarchical centered model.
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Fig. C.lb. A comparison of centered and non-centered multilevel- 

model Gibbs sampler performance. Non-centered model output.
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Trace plots are shown for ten selected parameters («, /„ z-1 ,2 ,3 ; Wÿ, z-1, 2,3 and y-1, 

2), as obtained using the non-centered model.
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Table C.l. Multilevel model MCMC simulation performance. A comparison of the Gibbs 

sampler within-chain autocorrelation coefficients obtained with and without hierarchical 

centering

/[I] /121 T3] M l,11 M l,21 M2,11 M2,21 M3,H M3,21
C lag(l) 0.123 0.153 0.112 0.080 0.128 0.050 0.059 0.054 0.047

lag(5) 0.002 0.012 0.003 -0.019 0.024 0.013 -0.010 3.0e-4 -0.006
NC lag(l) 0.997 0.997 0.997 0.764 0.771 0.768 0.772 0.775 0.766

lag(5) 0.987 0.987 0.986 0.506 0.515 0.537 0.532 0.531 0.520

The lag 1 and lag 5 within-chain autocorrelation coefficients are listed for nine selected parameters 

(4  /=1,2,3; Wip z=l,2,3 and y-1,2), as obtained using the centered (C) and non-centered (NC) 

hierarchical models.
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A p p en d ix  D . p -V alu es as evid en ce aga in st th e  n u ll hypothesis. The  

in verse  p ro b a b ility  prob lem  

D .l Introduction

The motivation for this appraisal of p-values and their use as evidence against the null hypothesis is 

the realisation that their misuse might be widespread among clinicians, with a resulting potential to 

mislead medical practitioners involved in making important clinical decisions. On occasions these 

decisions are life determining. In each of the four tertiary referral centres in which the candidate 

has worked, clinicians undertake a dual research and clinical role. In this setting clinicians are 

faced with unusual and challenging problems, and current research has a potential to impact on 

patient management. Consequently, a misunderstanding of some aspects of statistical inference is 

potentially harmful. An abundance of statistical texts have been written aimed specifically at 

biomedical and clinical researchers, but many simply add to the problem. An impression of the 

nature of the p-value problem is provided by the following quotes. Goodman (1999a) published a 

paper on the p-value fallacy in which he asserts that the common statistical procedure, based on p- 

values is widely perceived as a mathematically coherent approach to inference. But it is an 

amalgam o f incompatible elements, whose utility fo r  scientific inference has been the subject o f 

intense debate among statisticians fo r almost 70 years. Browne (1995) discusses the concept of 

probability as a measure of belief and concludes that the problem is that neither classical nor 

Bayesian methods are able to provide the kind o f answers clinicians want. That classical methods 

are flawed is undeniable - 1 wish I  had an alternative. Edwards (1992, p i 80) stated that what used 

to be calledjudgement is now called prejudice, and what used to be called prejudice is now called 

a null hypothesis... it is dangerous nonsense (dressed up as the 'scientific method'), and will cause 

much trouble before it is widely appreciated as such. Jeffreys (1980, p453) states ûvàtlhave 

always considered the arguments for the use o fP  absurd. They amount to saying that a hypothesis 

that may or may not be true is rejected because a greater departure from the trial value was 

improbable; that is, that it has not predicted something that has not happened. Several solutions
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have been suggested, aimed at clinical and epidemiological audiences. The purpose of this 

appendix is to provide a brief outline of the relevant literature.

D.2 M athem atical and subjective probability. Deductive and inductive 

reasoning

A misunderstanding of the distinction between mathematical and subjective probability underlies 

the common misuse of the p-value. The former refers to the objective or physical probability that 

applies to sequences of events. It has little meaning in the context of single events. Mathematical 

probability is underpinned by a set of consistent axioms and a probability calculus. In contrast, 

subjective probability refers to belief and relative degrees of belief. Subjective probability applies 

to any declarative statement, including hypotheses, and it applies to single events.

Fundamental to understanding the role of the p-value in scientific inference is the distinction 

between deductive and inductive reasoning. The distinction is important because Fisher's 

significance test forms a basis for an inductive scientific philosophy while the Neyman-Pearson 

hypothesis test is deductive. These two approaches are distinct and, possibly, irreconcilable. Yet 

the common approach to statistical inference in biomedical research is based on some improper 

combination of the two. Deductive reasoning involves a flow of logic from the hypothesis (the null 

hypothesis, for example) to the observations. In contrast, the inductive process involves a reasoning 

in which the flow of logic is from a particular observation to some general theory, hypothesis or 

fundamental truth.

D.3 Experim ents and statistical inference. Bayes, Fisher, Neym an & 

Pearson

The majority of experimental biomedical studies, including some phase I and phase II clinical 

trials, involving statistical inference are of a type in which the researcher seeks to determine the 

"truth" in relation to some hypothesis, i.e., the probability of the hypothesis, conditional on the data
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provided by the experiment. It appears that the majority of clinical researchers work under the 

assumption that an absolute probability can be provided. Unfortunately, this goal is unattainable. 

Given prob(U|//), where D  are the data provided by the experiment and 77 is the hypothesis, the 

researcher seeks to make inductive statements of inverse probability (i.e., prob(77|D). The resulting 

probability is subjective and necessarily uncertain.

Although Bayes theorem provides a formal method for performing probability inversion, several 

alternative approaches to statistical inference have been suggested. Popper (1974) dismissed formal 

induction and argued that scientific inference should be entirely deductive. He worked within a 

refutation/falsification framework in which the researcher makes predictive statements, constructed 

by deduction and based on the theory or hypothesis under investigation. Testable predictions are 

central to the process; these are compared with experimental observations. If the hypothesis passes 

every test it is temporarily retained. On the other hand it is discarded if the comparison results in 

falsification.

Fisher’s significance test

Fisher advocated the significance test [as distinct from the NP acceptance procedure (see Fisher, 

1973, p79 et seq.)] as a basis for statistical inference in the natural sciences, based on ideas that 

were formulated and developed over several decades, starting in earnest when he moved to the 

Rothamsted Experimental Research Station in 1919 (Green, 2003). Inductive reasoning was central 

to his view of the scientific method. He believed that reasoned argument should be used, together 

with relevant experimental evidence, to make the case for some general theory. Although Fisher 

used the p-value as a measure of evidence, Fisher's p-value is subjective; it has no meaning as an 

absolute probability and their is no obligation to compare the p-value with some predefined critical 

value. A sufficiently small p-value is presented as evidence against some (null) hypothesis, and it 

is used in conjunction with other information to present a reasoned argument for some proposal.

The procedure is necessarily subjective and distinct from the deductive approach outlined by 

Neyman-Pearson. The latter is based on a formal hypothesis testing (acceptance test) philosophy.
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Neyman-Pearson hypothesis testing

Neyman and Pearson (1933) were motivated to provide a rule, based on a statistical test, for 

deciding whether a hypothesis should be rejected. Their procedure requires that the null (Hq) and 

alternative hypotheses (Hi) are specified, together with the Type I error rate (a, the probability that 

the null hypothesis is rejected when true, under repetition of the process), and Type II error rate (|3, 

the probability that the alternative hypothesis is rejected when true, under replication). Finally, a 

critical region is defined for the statistic on which the test is based. The Neyman-Pearson (NP) 

deductive approach replaces Fisher's subjective measure of evidence with a strict decision rule, 

based on the frequencies of the possible outcomes under repetition of the experiment. NP clarify 

the point by stating (1933, p291) that as fa r as a particular hypothesis is concerned, no test based 

upon the theory ofprobability can by itselfprovide any valuable evidence o f the truth or falsehood 

o f that hypothesis. NP further state that (p291) without hoping to know whether each separate 

hypothesis is true or false, we may search fo r rules to govern our behaviour with regard to them, in 

following which we insure that, in the long run o f experience, we shall not be too often wrong. The 

NP decision rule tells us nothing as to whether in a particular case H is  true... But... i f  we behave 

according to such a rule, then in the long run we shall reject H  when it is true not more, say, than 

once in a hundred times, and in addition we may have evidence that we shall reject H  sufficiently 

often when it is false.

The Fisher Neyman-Pearson debate

Fisher and NP debated fiercely the relative merits of the philosophies underlying their competing 

methods, a debate that continues to receive attention (see Lehmann, 1993). It is extraordinary, 

therefore, that these two apparently irreconcilable methods appear to have become amalgamated. In 

a paper aimed at psychologists, Macdonald (1997, p333) states that what has become 

institutionalized in psychology is not Fisherian statistics. It is an incoherent mishmash o f some o f  

Fisher's ideas on the one hand and some o f the ideas o f  Neyman and Pearson on the other. 

reason for this adulteration is, of course, that the p-value underlies both methods.
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Fisher was strongly opposed to the notion of a decision-making rule as part of the scientific 

process. In a comment on the difference between the NP philosophy and his own position, Fisher 

(1973, p80) stated that the differences between these two situations seem to the author many and 

wide, and I  do not think it would have been possible to overlook them had the authors (NP) o f this 

reinterpretation had any real familiarity with work in the natural sciences. In addition, he 

suggested (Fisher, 1935, p40) that although some uncertain inferences can be rigorously expressed 

in terms o f mathematical probability, it does not follow that mathematical probability is an 

adequate concept fo r  the rigorous expression o f mcertain inferences o f every kind. He clarified his 

position with the statements (Fisher, 1935, p40) that inferences o f the classical theory o f 

probability are all deductive in character. They are statements about the behaviour of... samples,

... drawn from populations which are fully known. ...A mathematical quantity o f a different kind.. 

appears to take its p lace .. as a measure o f rational belief when we are reasoning from the sample 

to the population. Thus it has been suggested that (Macdonald, 1997, p337) the extent to which a 

statistical inference applies to a new situation goes beyond statistical theory. Those wishing to 

generalize from  one situation to another are forced into subjective judgements which depend on 

their knowledge, experience and intuition. Fisher (1973, p50) stated that in choosing the grounds 

upon which a general hypothesis should be rejected, personal judgement may and should properly 

be exercised. In addition, he made the assertion that mathematical probability is inadequate to 

express the nature and extent o f  our uncertainty in the face o f certain types o f observational 

material, while in all cases the concept o f mathematical likelihood will supply very helpful 

guidance, i f  we are prepared to give up our irrational urge to express ourselves only in terms o f  

mathematical probability (Fisher's correspondence with D.J. Finney, 1954; taken from Bennett, 

1990, p92). Others have expressed a similar view, including Macdonald (1997, p343), who states 

that the Fisherian approach... views statistical testing as an aid to scientific inference and not as a 

characterization o f it. By purporting to account fo r the entire process o f belief revision in terms o f  

probability models Bayesian approaches attempt the impossible and necessarily fail. Fisher's 

hostility to the entire NP method is epitomised in his rejection of the concept that the scientific 

worker can regard himself as an inert item in a vast co-operative concern working according to
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accepted rules, and the notion of the worker's supposed duty mechanically to make a succession o f 

automatic decisions, deriving spurious authority from the ... mathematics o f the theory o f decision 

functions (Fisher, 1973, p i04).

Fisher and NP were clear that central to their disagreement was the distinction between inductive 

behaviour (based on the accept/reject decision) and inductive inference (see Fisher, 1973, pl05; 

Goodman, 1993, p488; Lehmann, 1993, pl243, and references therein for additional information). 

Fisher was confident regarding the validity of his approach to statistical inference as it applies to 

the natural sciences. Nevertheless, he expressed some reservation regarding the role of extreme 

values (i.e., the tails of the distribution). He stated that this feature is indeed not very defensible 

save as an approximation (Fisher, 1973, p71). Furthermore, it might appear a strange contradiction 

that Fisher should argue forcibly for the inductive approach in which the evidence provided by an 

experiment is used in conjunction with other relevant information to reach a conclusion, and yet he 

rejected the formal Bayesian treatment of prior information (Fisher, 1970, pages 9 and 20-1).

Among the ramifications arising from the present-day amalgamation of the Fisher and NP methods 

is a misconception regarding the p-value as a measure of evidence. Some researchers appear, for 

example, to suppose a legitimate dual role for the p-value, based on an interpretation of the 

observed (exact) p-value as a post-study error rate (i.e., an observed error rate) and, simultaneously, 

as an inductive measure of evidence. Among the important issues is the validity of this 

interpretation. Goodman (1993, p489-490) argues that the link between the p-value and the Type I 

error rate is broken by quoting exact p-values, and that the (exact) p-value is not an error rate. But 

statisticians disagree over this point (see, for example, the discussion involving Hinkley, 1987; 

Casella and Berger, 1987b, pl34; Berger and Sellke, 1987b, pl36; Berger and Delampady, 1987a, 

p 329, 1987b, p 348; Cox, 1987). Related to this issue is the connection between the p-value and 

power in hypothesis testing, and specificity/sensitivity in diagnostic testing. Several researchers 

have discussed the relationship between diagnostic and statistical tests (Diamond and Forrester, 

1983; Browner and Newman, 1987; Goodman, 1993, p489, 1999a; Poole, 2001, p292). For
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example, it has been stated that the p-value is the false-positive rate (1-specificity). But this 

statement assumes the validity of the error rate interpretation of an exact p-value (see Table 2 in 

Diamond et al., 1983).

A related issue that has been addressed by a number of statisticians concerns the possibility, or 

otherwise, of reconciling the Fisher and NP methods, and thus to achieve some kind of unification, 

despite the apparent contradiction that lay at the centre of the NP-Fisher controversy. Among the 

texts that discuss this issue is the paper by Lehmann (1993), who concludes that components of the 

two approaches might be adopted to produce a unified method.

D.4 Do p-values overstate the evidence against the null hypothesis?

Recognising that a majority of clinical/biomedical researchers appear to use p-values as a measure 

of evidence, the question arises regarding the strength of evidence afforded by a given p-value. 

Among numerous papers on using the p-value as a measure o f evidence against the null hypothesis, 

Berger and Sellke (1987a*) have examined the problem in considerable detail. The following is a 

summary of some of their key results. (Additional information is provided by Berger and 

Delampady, 1987a*.) Given the competing hypotheses Hq:6 = 6o and H\\d ^  6q, together with their 

prior probabilities (ttq, 0 < ttq < 1 for Hq and n\ = (I-ttq) for H\), BSi proceed by supposing that the 

mass on H\ is distributed according to some density g{6). In many applications the point null 

hypothesis H q\6  -  6q is used as an approximation to the narrow interval hypothesis H q\\6  -6q\<£ 

for some small value of e. Given these definitions, the marginal density of X  is

77î(x) = / ( x|^o)^ o+ ( 1 - ^ oH W  [D.l]

where /  {x\6f) is the density of the observed data, given 6q, and

 ̂Berger and Sellke (1987a) is abbreviated BSi in the following pages, while their rejoinder (Berger 

and Sellke, 1987b) is abbreviated BS2 . Similarly Berger and Delampady (1987a) is abbreviated 

BDi, while the accompanying rejoinder (Berger and Delampady, 1987b) is abbreviated BD2 .
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m^(x) = \m e ) g ( ,e ) d e .  [D.2]

It follows that the posterior probability takes the form 

Pr(/7o I x) = f{x \ 60)71^/ m{x)
- 1

2 I ( l - ^ o )
^ 0  /W ^ o )

Thus, the posterior odds and Bayes factor* are given by

Pr(74|x) ^  ttq /(x |^o)
1-Pr(74|%) (1-;T o) m J x )

[D.3]

[D.4]

and

y w o )

respectively. In general, Pr(77ok) is given by

Pr(77ol^)=., . . , . [D.6]

To summarise, the BS% treatment is based on the creation of a dichotomy, introduced via the prior 

(point prior mass on Hq and diffuse mass on H\, with prior weights uq and n{). Thus the posterior 

can be viewed in terms of a dichotomy, as obtained by applying Bayes theorem to the dichotomous 

prior. This approach is adopted solely for the purpose of comparing the p-values provided by the 

NP acceptance procedure with a Bayesian measure of evidence. P{Hq\x) > 0.5 indicates that the 

evidence is in favour of 74, although subsidiary cost-benefit considerations might cause the analyst 

to adopt a different threshold. It might be noted that several statisticians have criticised this 

approach (for example, Casella and Berger, 1987a, pi 10-111, 1987b, pl33, 1987c, p345; 

Vardeman, 1987), as indicated later in this appendix.

 ̂ The term weight o f evidence is given to the logarithm of the Bayes factor, which offers the 

advantage of being additive (Lee, 1989, pl27)
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BSi (pi 15) proceed to examine an example involving the normal densities g ~ Y(6>o,c7 )̂ and

X  ~ N{6,g  ̂ / n) ), i.e., the case in which equality is assumed in the sample variance and the prior 

variance of the distribution under the alternative hypothesis. It is readily shown that in this case

Pr(7/o|x) =
" 1—1

1 + i l z f o l ( i  + exp{/^ / [2(1 + )]}
7t(\

[D7]

BSi provide a table of Pr(74k) values for several combinations of t and n with uq fixed at 0.5 

(Table 1; additional information is provided in BD%, Table 1). The table shows, for example, that 

given fixed t = 1.96, Pr(74k) increases from 0.52 with « = 50 to 0.82 with n = 1000. This result 

demonstrates the point that the traditional frequentist approach can lead to a rejection of Ho at the 

0.05 level although Pr(74k) favours H q. In addition, the example illustrates the point that, given 

fixed t (fixed p-value), Pr(74k) tends to unity as n tends to infinity (the Jeffreys-Lindley paradox).

The main focus of the BSi paper is the provision of lower bounds on the Bayes factor and Pr(74|%) 

for various classes of prior distributions, including the class of all normal prior distributions. They

show that, in the latter case, the Bayes factor lower bound is given by Ve M > 1, which 

provides a posterior probability lower bound of

j^ ( l-^ o )e x p (Z ^ /2 )  '
, t > \ .  [D.8]

^0 ^[^ t

Thus, given t= 1.96 and ttq = tti = 0.5, the lower bound on Pr(F4|%) is 0.321, again indicating that 

the p-value can be misleading as a measure of evidence against 74. BSi also show that a lower 

bound on Pr(74|x) equal to 0.227 is obtained by taking the prior density on H\ to be symmetric and 

distributed in a manner that is biased most favourably towards H\ (BS, Table 2). Although the p- 

value and posterior probability are distinct, and equality is not expected, the difference between the 

two is alarming given the manner in which many researchers use the p-value as a measure of 

evidence against the null hypothesis. The reason for this disagreement is the manner in which the 

p-value is based on the observed statistic together with more extreme values in the tails of the 

distribution while, in contrast, Pr(74|%) depends on the observed data and prior. Including unobserved 

and more extreme data exaggerates the strength of evidence against the null (see, for example, BS],
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pl 14; BDi, p329; Berger and Berry, 1988). In a rejoinder to comments on their paper, BD% (p348) 

question whether it is really fa ir to Hq to hurl against it not just the mild evidence xo (i.e., the 

observations), but also all the much stronger extreme values, when these extreme values did not 

occur.

The central problem with the p-value is that the observed value might be a rare occurrence under 

both Ho and Hi (Morris, 1987; Sellke et al., 2001), in which case it is unreasonable to conclude that 

the data provide evidence against H q. The fact is that the p-value can be misleading in several 

circumstances, including those in which Hi is unlikely, a priori. It is also misleading when the 

sample size is small (inadequate power), and when the sample size is large. In the latter context 

several statisticians have pointed out that a critical value of 0.05 is far too lenient when n is large, 

since any arbitrarily small difference becomes statistically significant with very large n. 

Accordingly, it is suggested that the critical value should be adjusted downwards as n increases, 

possibly balancing the Type I and Type II error rates (Zellner, 1987, p340).

The results obtained for the two-sided precise null hypothesis and one-sided diffuse null appear to 

differ markedly since, in the latter case, it is possible to reconcile the posterior probability and p- 

value (Casella, and Berger, 1987a*; Lee, 1989, pl28). Given this discrepancy, no consensus exists 

regarding the relevance of the BSi two-sided, precise null results, as applied to statistical inference 

in experimental research. Several statisticians and epidemiologists have recommended that p- 

values should be abandoned as the standard vehicle for presenting evidence in research 

publications [see, for example, Rothman (1978, 1998), Diamond and Forrester (1983), Gardner 

and Altman (1988), Goodman (1999a, 2001) and Poole, 2001] while others take the position that 

the p-value provides a reasonable measure of evidence against the null hypothesis, as it applies to

 ̂ Casella and Berger, 1987a, is abbreviated CBi in the following pages, while their rejoinder 

(Casella and Berger, 1987b) is abbreviated CB2 . Their comment (Casella and Berger, 1987c) on 

Berger and Delampady (1987a) is abbreviated CB3 .
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the majority of experiments (see, for example, CBi, CB3). The reasons for this apparent 

disagreement are examined in the following paragraphs.

The inescapable conclusion appears to be that p-values overstate the evidence against the point null 

hypothesis. But no consensus exists on the relevance of this observation to applied statistics, the 

argument being that point null hypotheses are contrived and of little practical relevance. Thus it is 

suggested that many important problems are one-sided with no strong prior belief in the point null 

Ho'.d = 6q (CBi, p i06; CB3, p345). CBi (p i06) comment on the typical experiment and state that 

saddling an experimenter with a two-sided test would not he appropriate. This point has been 

discussed at length (see, for example, BS2 , pl36 and BDi, p326-7, which refers to CBi). BS2  

suggest that the precise null applies to what they call testing problems, i.e., problems in which there 

can be real belief in the null hypothesis, with the implication that some precise theory is being 

tested. They suggest that, in contrast, most one-sided problems are concerned with estimation 

studies in which the investigator wishes to determine the magnitude of an effect (also referred to as 

decision problems (BS2 , pl36; BDi, p327), although the latter might be confused with aspects of 

the NP method). Thus, it appears that there is some agreement regarding the assertion that diffuse 

one-sided tests are appropriate in some settings. Having argued that the one-sided test applies to the 

majority of practical problems, CBi state that, for many classes of prior distributions, the infimum 

of the Bayesian posterior probability of Hq is equal to the p-value, and that in other cases the 

infimum is less than the p-value. This result might be interpreted as a vindication of the use of p- 

values as a measure of evidence. On the other hand, Berger and Mortera (1999, p543) question the 

validity of using the lower bound in isolation since, given a posterior probability interval covering a 

considerable range with 0.05 as the lower limit, this amounts to providing a summary measure that 

is the least favourable to the null. Putting this argument aside, the cause of the apparent discrepancy 

between the BSj/BDi results on point null hypotheses and the CBi results on the one-sided problem 

requires investigation. Among the important differences is the manner in which the point null 

treatment uses a prior in which a proportion of the prior density is concentrated at the point null, 

with the remaining density distributed over H\. In contrast the CBi one-sided treatment is based on



-262-

diffüse prior distributions. Not surprisingly the two-sided precise null results are dominated by the 

point prior mass on Hq, and the apparent discrepancy between the results obtained by BSi and BDi 

on the one hand and CBi on the other is largely attributable to the difference in priors (see, for 

example, CBi, p i 10-111; CBg, p344; Morris, 1987, p i 32). Only if Hq is a wide interval with prior 

mass distributed uniformly over it does the p-value agree with Pr(74|%) (BS2 , p i37). The question 

therefore shifts from one regarding the relevance of point null tests, and on to the relative merits of 

diffuse priors versus those that include a concentration of mass at a single point. Convincing 

arguments have been made for both types of prior. To summarise, in addition to the distinction 

between precise null tests and diffuse tests it is necessary to distinguish between concentrated mass 

priors and diffuse priors. The validity of the point mass prior appears to depend on the context.

Commenting on the point null result, Vardeman (1987) suggests that there should be little surprise 

in finding that essentially anything can be found for Pr(74|x), depending on how one is allowed to 

move prior mass around on Hq and Hi. The essential question is whether precise null tests with 

concentrated priors are meaningful in any practical context, as opposed to a mathematical 

convenience. CB3, (p344) argue that a great many practitioners should not be testing point nulls 

(see CBi, pl06, for additional discussion). Similarly, Vardeman (1987) suggests that the notion of a 

concentration of prior mass at a single point is completely unappealing and incompatible with the 

usual scientific scenario. He states that, although a unimodal distribution about a best value is 

reasonable, extra mass at Hq is wrong. These objections to the point null test with concentrated 

prior density might appear convincing, but several rejoinders deserve consideration. The first is the 

assertion that, regardless of the validity of point hypotheses, researchers use point nulls routinely 

and so precise null tests should be done properly (BSi, pi 14). Secondly, the precise null is a good 

approximation to the narrow interval null HQ.\d - 9q \ < s, with s sufficiently small (BSi, p i 14 and 

119). This approximation is adequate provided the likelihood is reasonably constant over the 

interval of 74 (Lee, 1989, p l3 1-133). Sellke et al. (2001) state that the point null hypothesis is a 

good approximation to the small interval null 7 4 .#  - 4 | < e provided s < ai(4^n). It is clear, 

therefore, that a range of cases exists, with point null hypotheses at one extreme and diffuse nulls at
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the other. Hence we may conclude that the p-value is not useful over the entire range to which it is 

applied. It is, therefore, appropriate to examine in greater depth the validity of the point null with 

concentrated mass.

It has been argued that the point null applies in several kinds of study, including bioequivalence 

studies, data-dredging (data fishing) investigations and screening studies. In each case the prior 

expectation might be of a tiny effect or no effect. In this situation the point null test with prior mass 

concentrated on the null is appropriate, and the p-value overstates the evidence against Hq. Several 

questions arise. Should the analyst always use a prior that gives equal weight to Hq and H\, 

assuming objectivity is required as opposed to the expression of informative prior opinion? What 

kind of prior should be used i f  H\ is implausible? To address these issues it is useful to note the 

assertion that at least three types of point null can be defined (CB3, p345), namely, point null 

tests of convenience, precise null tests in which the null does correspond to a concentration of 

prior belief and precise null hypotheses that describe an interesting and unique feature, but with 

no special prior belief. The B Si/B D j results apply to the second type. With this in mind it is useful 

to list several points of disagreement among statisticians. Agreement between the p-value and 

Bayesian posterior probability (lower bound) occurs in the one-sided case when a diffuse prior is 

adopted because the prior probability on Hq is low (i.e., a relatively small proportion of the area 

under the prior probability density function lies close to Hq\ see BD% reply to CB3, p350-l, 

including Table 1). In this case, the data contribute relatively little evidence and do little to update 

prior probability; the p-value agrees with the Bayesian posterior probability because the latter is 

dominated by the prior. The p-value hides the fact that much of the evidence against Hq is due to its 

prior probability being small. The counter argument is that p-values appear to fail when prior mass 

is concentrated on Hq, but this concentration of prior mass is not reasonable (CB3; CBi, pi 10). One 

might conclude that situations do arise in which a point null test is reasonable, and that a 

concentration of prior density on the null is valid in these cases (BS2 , pl36-7). For example, it has 

been argued that precise hypothesis testing (as opposed to studies involving estimation, using the 

terminology of BS2 , pl36, and B D i, p327, referred to above) has a place because there can be real
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belief that the precise null is approximately true (BS2 , p 136-7). On the other hand, in those cases in 

which a concentration of prior density on the null is unreasonable, then the point null formalism is 

unreasonable at the outset. Hence the need to distinguish between studies in which existing 

experience is suggestive of a non-trivial effect, on the one hand, and data fishing, observational and 

screening studies on the other. The form of prior that applies in these two extremes is distinct, but 

the p-value based hypothesis test treats the two identically.

D.5 The Bayes factor and its lower bound

When dealing with simple hypotheses the Bayes factor offers the advantage that it reduces to a 

likelihood ratio and thus avoids the need to assign prior probability. Unfortunately, many 

hypotheses of interest are composite and a complete separation of prior information and the 

evidence provided by the data is not then possible (see, for example, Lee, 1989, p i26). The 

composite case dependence on prior probability can, however, be avoided by using the lower 

bound on the Bayes factor. Among several lower bounds that have been suggested is the minimum 

Bayes factor (^min) which applies to the normal model. It is the likelihood of Hq relative to the best 

alternative, i.e., the maximum likelihood alternative. Thus it is the minimum likelihood ratio, and is 

calculated by taking the null and alternative hypotheses, each with a density concentrated entirely 

at the point most favoured by the data (Edwards et al., 1963, p228; Pratt, 1987, pl23). As such it 

provides the worst case against the null hypothesis. For normal models 5min = exp(-Z^/2) (Lee,

1989 pl39; Goodman, 1993,1999b). Substitution into [D.6] yields the corresponding minimum 

posterior probability (Fmin)- If Bmm (or, alternatively, f^in) does not lead to a rejection of H q, then 

the weaker evidence derived from a full Bayesian analysis cannot do so.

An alternative approach, based on a class of flexible p-value distributions under H\, yields the 

Bayes factor lower bound -e p  ln(p), p  < Me (Sellke et al., 2001, p66). [Goodman (2001, Table 1) 

compares this lower bound with and the p-value]. Substitution into [D.6] yields the 

corresponding lower bound on Pr(74|%) (Fib)- The following results are obtained by taking prior 

odds equal to unity and? = 1.96. Using exp(-Z^2): 0.147, Pmin = 0.128; using -ep  ln{p)\ Bw, =
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0.407, Pib = 0.289; using (see [D.8] and related text): Pib=0.473, Pib= 0.321. The

following miscellaneous points might be noted. Firstly, although is superior to the p-value as a 

measure of evidence in many cases, it is, nevertheless, a lower bound and might, therefore, fail to 

provide an accurate indication of the evidence against Hq. Thus, although the lower bound might be 

suggestive of evidence against Hq, the researcher remains uncertain regarding the validity of Hq 

rejection (BSi, pl21). The upper bound is required, but this depends on the prior probability 

distribution adopted for the alternative hypothesis. It is, therefore, subjective. Secondly, it is 

interesting to observe that the p-value obtained by replacing t with Z-1 is close to the Bayes factor 

lower bound obtained for one class of reasonable H\ prior distribution (BSi, pl20. Fig. 4). Thus it 

is suggested that Zobs= 2 indicates no more than mild evidence against Hq, while Zobs= 3 indicates 

significant evidence (BSi, pl20).

To conclude, it has been noted (BS%, pi 14) that although a p-value of 0.05 was never intended as 

an absolute indicator of evidence against Hq, many researchers do use hypothesis testing in this 

manner. Nelder (1999, p257) has discussed the problem, referring to the non-scientific... obsession 

with significance tests. He suggests that many editors and referees will not accept papers unless 

they contain these non-scientific modes o f inference, and that authors know this and act 

accordingly. He asserts (p261) that the most important task before u s ... is to demolish the p-value 

culture.
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