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Abstract. The solution concept of iterated strict dominance for static
games with complete information recursively deletes choices that are in-
ferior. Here, we devise such an algorithm for the more general case of
incomplete information. The ensuing solution concept of generalized it-
erated strict dominance is characterized in terms of common belief in
rationality as well as in terms of best response sets. Besides, we pro-
vide doxastic conditions that are necessary and sufficient for modelling
complete information from a one-person perspective.
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1 Introduction

The most basic game-theoretic model of an interactive decision situation is a
static game with complete information. Accordingly, a set of players with a
choice set for every player is given as well as the payoff structure of the game
defined by specifying for every player a unique utility function that maps choice
combinations to payoff values. Such a model describes the essential features of
an interactive situation. In game theory different solution concepts are then pro-
posed which identify for every player some choices – in line with a reasonability
criterion or decision rule – as the solution of the game.

According to a fundamental idea in game theory a choice that fares worse
than some other choice or some randomization over choices against every possible
combination of opponents’ choices is called strictly dominated and is deemed to
be an unreasonable option for the corresponding player. The widespread solution
concept of iterated strict dominance builds on this idea. In a first round all
strictly dominated choices are eliminated for every player. The ensuing reduced
game is then considered and in a second round all strictly dominated choices are
eliminated for every player therein. It is continued in this fashion until no more
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strict dominance relations can be identified. The surviving choices for each player
of this algorithm form the solution of the game. For finite games iterated strict
dominance exhibits the convenient properties of stopping after finitely many
rounds, resulting in a non-empty output, and being order-independent. In fact,
historically the idea of iteratively eliminating strictly dominated choices can be
traced back to the early days of game theory (e.g. Nash, 1951, pp. 292–293).

In static games with complete information players do not face any uncertainty
about the payoff structure. All utility functions are commonly known among the
players. However, in many interactive decision situations in the real world this
assumption is not satisfied. For instance, a firm does typically not know the cost
structure and thus the profit function of a competitor or a participant in an
auction is usually not certain about the valuation of the other participants. It
is thus relevant to explore strategic decision situations involving payoff uncer-
tainty too. The corresponding game-theoretic framework is provided by static
games with incomplete information. A direct way to accommodate payoff un-
certainty simply specifies a set of – rather than unique – utility functions for
every player. Complete information can thus be viewed as the special case of
incomplete information, where all sets of utility functions are singletons.

The analysis of incomplete information has been pioneered by Harsanyi
(1967-68). He models payoff uncertainty by the notion of a type and proposes
the solution concept of Bayesian equilibrium. Intuitively, his solution concept
embeds a best response property in a type structure that determines the belief
hierarchies on the players’ utility functions based on a common prior. In relation
to the special case of complete information, Bayesian equilibrium can actually
be shown to constitute the incomplete information counterpart to correlated
equilibrium (cf. Battigalli and Siniscalchi, 2003a; Bach and Perea, 2017).

While Bayesian equilibrium has become the most prevalent solution concept
for incomplete information games, more recently, the idea of rationalizability –
due to Bernheim (1984) and Pearce (1984) – has been generalized to incom-
plete information games. In particular, the solution concepts of weak and strong
∆-rationalizability have been introduced by Battigalli (2003), and further anal-
ysed by Battigalli and Siniscalchi (2003a) and (2007), Battigalli et al. (2011),
Battigalli and Prestipino (2013), as well as Dekel and Siniscalchi (2015). Intu-
itively, ∆-rationalizability concepts iteratively delete choice utility pairs by some
best response requirement and allow for exogenous restrictions on the first-order
beliefs. ∆-rationalizability has been applied to auctions by Battigalli and Sinis-
calchi (2003b), to signaling games by Battigalli (2006), as well as to static im-
plementation by Ollar and Penta (2017). A backward inductive variant of ratio-
nalizability for dynamic games with incomplete information has been proposed
by Penta (2017) and applied to dynamic implementation by Penta (2015). Yet
other incomplete information generalizations of rationalizability are given by Ely
and Pȩski (2006)’s interim independent rationalizability as well as by Dekel et al.
(2007)’s interim correlated rationalizability. While the former solution concept in
its iterative procedure requires a player’s belief about the opponents’ choices con-
ditional on the opponents’ types to be independent, the latter solution concept
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does not impose any independence restriction. In contrast to ∆-rationalizability
the two incomplete information notions of interim rationalizability fix the belief
hierarchies on utilities. This constitutes the essential difference between interim
independent rationalizability and interim correlated rationalizability on the one
hand and ∆-rationalizability on the other hand.

Actually, Battigalli and Siniscalchi (1999) as well as Battigalli (2003) indicate
that ∆-rationalizability notions are equivalent to iterated strict dominance pro-
cedures for the class of static games. A characterization of ∆-rationalizability in
terms of an iterated elimination procedure based on the notion of ∆-dominance
is given by Cappelletti (2010) and for the special case of no exogenous belief
restrictions in terms of so-called interim iterated dominance by Battigalli et.
(2011). A similar iterated elimination procedure has also been formulated and
used in the context of mechanism design by Bergemann and Morris (2003).

Here, we propose a simple solution concept for incomplete information games
called generalized iterated strict dominance as a direct analogue to the complete
information solution concept of iterated strict dominance. Intuitively, a game is
expressed from a one-person perspective in terms of decision problems which are
then iteratively reduced by some strict dominance requirement and the resulting
output yields choice utility function pairs for every player. Our solution concept
as well as the incomplete information framework is kept entirely non-doxastic.
Neither types nor beliefs appear in any form. In this sense, our approach is basic
and as sparse as possible. Doxastic notions only appear in the reasoning realm
based on epistemic models for games. A clear dichotomy between the classical
sphere – game model as well as solution concept – and the epistemic sphere –
epistemic model and reasoning concept – thus ensues. Moreover, we epistemically
characterize generalized iterated strict dominance in terms of common belief
in rationality and also give a characterization in terms of best response sets.
Besides, we provide doxastic correctness conditions on belief hierarchies, within
the mind of a single reasoner, that are necessary and sufficient for modelling the
special case of complete information.

Compared to ∆-rationalizability, generalized iterated strict dominance does
not invoke any best response requirements or beliefs whatsoever. By merely using
strict dominance arguments our solution concept constitutes a very elementary
and practical tool for the class of games with payoff uncertainty. In terms of
output generalized iterated strict dominance coincides with ∆-rationalizability,
if no exogenous belief restrictions are admitted. Also, without such doxastic re-
strictions, generalized iterated strict dominance becomes essentially equivalent
to some particular way of iterating ∆-dominance. In terms of formulation gen-
eralized iterated strict dominance – by using the notion of decision problem and
by being constructed in a type-free incomplete information framework – differs
from the ∆-rationalizability and ∆-dominance concepts.

The pioneering work on incomplete information by Harsanyi (1967-68) is
based on a one-person perspective. Accordingly, the strategic situation is anal-
ysed entirely from the viewpoint of a single player. For instance, as Harsanyi
(1967-68, p. 170) writes it is some [. . .] player j (from whose point of view we
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are analyzing the game) [. . .], and Harsanyi (1967-68, p. 175) states that [. . .]
we are interested only in the decision rules that player j himself will follow [. . .].
Philosophically, a one-person perspective approach treats game theory as an in-
teractive extension of decision theory. While game theoretic notions are of course
inherently interactive, one-person perspective modelling formalizes solution con-
cepts or reasoning patterns entirely within the mind of a single player. Such
an approach departs from the the standard way game theory proceeds, which
simultaneously imposes conditions on the beliefs and actions of all players. The
typical multi-player modelling results in the notion of state which fixes for every
player his actual choice as well as his actual beliefs. In contrast, a one-person
perspective modus operandi utterly dispenses with states as only the actual
beliefs of a single player are modelled – doxastic conditions concerning the op-
ponents only enter as conditions on the actual higher-order beliefs of one player.
Intuitively, a person involved in an interactive choice situation deliberates about
the thinking of his opponents and their possible choices. All of these interactive
cognitive processes occur solely in his mind. Philosophically, a one-person per-
spective approach thus appears to be a rather natural way of conducting game
theory.

Inspired by Harsanyi (1967-68) and the above philosophical considerations we
take a one-person perspective approach here. Notably, we construct the solution
concept of generalized iterated strict dominance based on a one-person perspec-
tive representation of a game in terms of decision problems. In the reasoning
realm our definition of the pivotal notion of rational choice under common be-
lief in rationality in the context of payoff uncertainty merely imposes conditions
on the reasoner himself. Also, our characterization of the special case of payoff
certainty only restricts the thinking of a single player.

We keep our formal framework as basic and accessible as possible. In partic-
ular, games with incomplete information are defined in a minimal way without
invoking any types and are thus belief-free. Doxastic notions are left entirely
for the reasoning realm of epistemic models. The intended simplicity and prac-
ticability of our framework and solution concept is supposed to facilitate and
encourage the use of generalized iterated strict dominance for applications in
economics or beyond such as management or political theory. For instance, in
pricing games firms may have no information about their competitors’ charac-
teristics such as their cost structures. Furthermore, in auctions participants can
be uncertain about each others’ valuations, which is indeed typically assumed
in public auctions or internet auctions. More generally, incomplete information
settings of mechanism design or implementation could be analysed with this
non-equilibrium solution concept.

The idea of generalized iterated strict dominance is now illustrated by means
of an example. Suppose that Alice as well as Bob are both attending a party
and have to decide what colour to wear. Their wardrobes are similar in the sense
that only garments of three colours can be found inside: blue, red, and yellow.
While Alice prefers blue to red to yellow, she cannot remember the precise colour
preferences of Bob. Alice merely recalls that he either prefers red to yellow to blue
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or yellow to blue to red. Both players dislike most wearing a garment of equal
colour at the party. This interactive decision situation – or game – is represented
from a one-person perspective by the decision problem ΓAlice(uAlice) for Alice
and the two decision problems ΓBob(uBob) and ΓBob(u

′
Bob) for Bob in Figure 1,

where a decision problem contains choices of the respective player, choices of his
opponent, as well as payoffs for choice combinations.

ΓAlice(uAlice)

blue red yellow
blue 0 3 3
red 2 0 2

yellow 1 1 0

ΓBob(uBob)

blue red yellow
blue 0 1 1
red 3 0 3

yellow 2 2 0

ΓBob(u
′
Bob)

blue red yellow
blue 0 2 2
red 1 0 1

yellow 3 3 0

Fig. 1. One-person perspective representation in terms of decision problems.

In its first round generalized iterated strict dominance searches for strict domi-
nance relations for each of the decision problems. Given Alice’s utility function
uAlice, her choice yellow is strictly dominated by the randomized choice that
assigns probability 0.4 to blue and 0.6 to red, and hence yellow is eliminated
in Alice’s decision problem ΓAlice(uAlice). Given Bob’s utility function uBob, his
choice blue is strictly dominated by the randomized choice that assigns prob-
ability 0.4 to red and 0.6 to yellow, and thus blue is deleted in Bob’s decision
problem ΓBob(uBob). Given Bob’s utility function u′Bob, his choice red is strictly
dominated by the randomized choice that assigns probability 0.6 to blue and
0.4 to yellow, and hence red is eliminated in Bob’s decision problem ΓBob(u

′
Bob).

Now, for all decision problems of Alice – in fact there merely exists a single one
– yellow has been eliminated, and is consequently also deleted in both of Bob’s
decision problems. For Bob there exists no choice that has been eliminated for all
of his decision problems, and hence all of his choices are kept in Alice’s decision
problem. In the second round of the algorithm, for Bob’s utility function u′Bob,
his choice blue is strictly dominated by yellow against Alice’s reduced choice set
consisting of blue and red only. Thus, blue is deleted in Bob’s decision problem
ΓBob(u

′
Bob). Since blue has already been identified as a strictly dominated choice

for uBob in the preceding step, it is the case that for all decision problems of
Bob blue is a strictly dominated choice and is hence also eliminated in Alice’s
decision problem ΓAlice(uAlice). However, in the third round red then emerges
as a strictly dominated choice for Alice given her utility function uAlice, since it
is strictly dominated by blue against Bob’s reduced choice set consisting of red
and yellow only, and blue remains as her unique choice in her decision problem
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ΓAlice(uAlice). Consequently, in the fourth round, given Bob’s utility function
uBob his choice yellow becomes a strictly dominated choice, as it is strictly dom-
inated by red against Alice’s reduced choice set consisting of blue only. It is thus
the case that in decision problem ΓBob(uBob) for Bob’s utility function uBob
the choice red survives, and in his decision problem ΓBob(u

′
Bob) for his utility

function u′Bob the choice yellow remains. Therefore, generalized iterated strict
dominance yields {(blue, uAlice)} × {(red, uBob), (yellow, u′Bob)} as the solution
of the game. In other words, Alice will choose a blue dress for the party, while
Bob will appear in a red suit, if he prefers red to yellow to blue, and in a yellow
suit, if he prefers yellow to blue to red.

We proceed as follows. First of all, in Section 2, the formal framework is
laid out and some basic notation fixed. In particular, incomplete information
as well as common belief in rationality are defined and illustrated by means
of an example. Then, in Section 3, the solution concept of generalized iterated
strict dominance is constructed as an algorithm on decision problems using strict
dominance arguments. Roughly speaking, for a given player a decision problem
is formed for each of his payoff structures in every round, with all opponents’
choices being deleted that are strictly dominated in every decision problem of
the respective opponent in the previous round, and subsequently the player’s
choices that are then strictly dominated are eliminated. An example illustrates
the application of generalized iterated strict dominance to specific games. More-
over, in Section 4, two characterizations of our solution concept are provided. In
terms of reasoning the output of generalized iterated strict dominance is shown
to be equivalent to rational choice under common belief in rationality (Theorem
1). Also, a characterization of generalized iterated strict dominance – without
recourse to any iterative procedure – is given by means of best response sets
(Theorem 2). Finally, in Section 5, the special case of complete information is
considered. A characterization of complete information is given in terms of dox-
astic correctness conditions imposed on a single player’s reasoning (Theorem 3).
Thereby a purely doxastic foundation is provided for payoff uncertainty from a
one-person perspective. Besides, our solution concept is shown to coincide with
iterated strict dominance for static games with complete information in terms
of output.

2 Preliminaries

A static game with incomplete information can be formally represented by a
tuple

Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
where I denotes a finite set of players, Ci denotes player i’s finite choice set,
and Ui denotes the finite set of player i’s possible utility functions. Every utility
function ui ∈ Ui is of the form ui : ×j∈ICj → R.

In order to express beliefs and interactive beliefs about choices and utility
functions an epistemic structure needs to be added to the game. Formally, let Γ =
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I, (Ci)i∈I , Ui)i∈I

)
be a static game with incomplete information. An epistemic

model of Γ is a tuple
MΓ =

(
(Ti)i∈I , (bi)i∈I

)
where Ti is a finite set of types, and bi : Ti → ∆(C−i × T−i × U−i) assigns to
every type ti ∈ Ti a probability measure bi[ti] on the set of opponents’ choice type
utility function combinations. Note that for every type an infinite belief hierarchy
about the respective opponents’ choices and utility functions can be derived.
Also, marginal beliefs can be inferred from a type. For instance, every type
ti ∈ Ti induces a belief on the opponents’ choice combinations by marginalizing
the probability measure bi[ti] on the space C−i. For simplicity sake, no additional
notation is introduced for marginal beliefs. In the sequel, it should always be clear
from the context which belief bi[ti] refers to.

In our epistemic approach payoff uncertainty is treated symmetrically to
strategic uncertainty. As the latter concerns the respective opponents’ choices,
the former is also defined in terms of the probability measures in the epistemic
models with respect to the respective opponents’ utility functions only. A player’s
own choices and utility functions enter his reasoning exclusively via higher-order
beliefs. In particular, players thus entertain no uncertainty about their own util-
ity functions in our epistemic approach. This treatment is in line with Harsanyi
(1967-68), who also assumes that each player knows his own utility function,
and more generally, that the uncertainty concerns the opponents of the player
from whose point of view the game is analysed.1 However, the special case of
players being uncertain about their own payoffs could be accommodated by ex-
tending the space of uncertainty for every player i ∈ I from C−i × T−i ×U−i to
C−i × T−i × (×j∈IUj). Alternatively, a reasoner’s actual utility function could
be defined as the expectation over the set Ui. This modelling choice does not
affect the subsequent results. In our treatment, a type only specifies the epis-
temic mental state of a player, not his utility function. In this sense we follow
Harsanyi’s (1967-68) approach, which separates the utility component from the
epistemic component.2

Some further notions and notation are now introduced. For that purpose
consider a game Γ , an epistemic modelMΓ of it, and fix two players i, j ∈ I such
that i 6= j. A type ti ∈ Ti of i is said to deem possible some choice type utility
function combination (c−i, t−i, u−i) of his opponents, if bi[ti] assigns positive
probability to (c−i, t−i, u−i). Analogously, ti deems possible some type tj of his
opponent, if bi[ti] assigns positive probability to tj . For each choice-type-utility
function combination (ci, ti, ui), the expected utility is given by vi(ci, ti, ui) =∑
c−i∈C−i

bi[ti](c−i) · ui(ci, c−i). A choice ci ∈ Ci is said to be optimal for the

type utility function pair (ti, ui), if vi(ci, ti, ui) ≥ vi(c
′
i, ti, ui) for all c′i ∈ Ci.

Moreover, a type ti ∈ Ti is said to believe in the opponents’ rationality, if ti
only deems possible choice type utility function combinations (c−i, t−i, u−i) such
that cj is optimal for (tj , uj) for every opponent j ∈ I \ {i}. Interactive belief
in rationality with payoff uncertainty can then be defined by iterating belief in

1 Cf. Harsanyi (1967-68), p. 163 and p. 170.
2 Cf. Harsanyi (1967-68), pp. 169-171.
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rationality. A type ti ∈ Ti expresses 1-fold belief in rationality, if ti believes
in the opponents’ rationality, and k-fold belief in rationality for some k > 1,
if ti only assigns positive probability to types tj ∈ Tj for all j ∈ I \ {i} such
that tj expresses (k − 1)-fold belief in rationality. Common belief in rationality
then ensues as interactive belief in rationality throughout the reasoner’s belief
hierarchy. Formally, a type ti ∈ Ti expresses common belief in rationality, if ti
expresses k-fold belief in rationality for all k ≥ 1.

In a game a player reasons about his opponents as well as the game and
then makes a choice. While reasoning patterns can be modelled as conditions
on belief hierarchies, a decision rule connects the reasoning with a choice. The
basic decision rule of rational choice under common belief in rationality can be
defined in the context of payoff uncertainty as follows.

Definition 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete

information, i ∈ I some player, and ui ∈ Ui some utility function of player i. A
choice ci ∈ Ci of player i is rational for utility function ui under common belief
in rationality, if there exists an epistemic model MΓ of Γ with a type ti ∈ Ti
of player i such that ci is optimal for (ti, ui) and ti expresses common belief in
rationality.

Note that the decision rule of rational choice for some utility function under
common belief in rationality is formulated here from a one-person perspective in
Definition 1. Indeed, conditions are exclusively imposed on the reasoner himself:
his mind i.e. his type (or equivalently his implicit belief hierarchy), his prefer-
ences, and his choice. No conditions on other players’ actual thinking or choices
are invoked.

The epistemic notion of common belief in rationality for incomplete infor-
mation games has been formalized and employed in different forms for epis-
temic foundations of the ∆-rationalizability variants by Battigalli and Sinis-
calchi (1999), (2002), and (2007), Battigalli et al. (2011), as well as Battigalli
and Prestipino (2013). Besides, Battigalli et al. (2011) also give an epistemic
foundation of interim correlated rationalizability in terms of common belief in
rationality.

An illustration of the concept of common belief in rationality is provided by
the following example.

Example 1. Consider the static game with incomplete information between Alice
and Bob depicted in Figure 2. Let the utility functions of Alice represented in the
first and second matrices of Figure 2 be denoted by uA and the ones represented
by the third and fourth matrices by u′A. Similarly, let the utility functions of Bob
represented in the first and third matrices in Figure 2 be denoted by uB and the
ones represented by the second and fourth matrices by u′B .

Suppose the epistemic model MΓ of Γ given by the sets of types TAlice =
{tA, t′A}, TBob = {tB , t′B}, and the following induced belief functions

– bAlice[tA] = (e, tB , uB),
– bAlice[t

′
A] = (d, t′B , u

′
B),
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Alice

Bob
d e f

a 3, 3 2, 2 1, 0
b 2, 2 1, 1 3, 0
c 0, 1 0, 3 0, 0

Alice

Bob
d e f

a 3, 1 2, 2 1, 0
b 2, 3 1, 1 3, 0
c 0, 1 0, 1 0, 0

Alice

Bob
d e f

a 1, 3 3, 2 1, 0
b 2, 2 1, 1 1, 0
c 0, 1 0, 3 0, 0

Alice

Bob
d e f

a 1, 1 3, 2 1, 0
b 2, 3 1, 1 1, 0
c 0, 1 0, 1 0, 0

Fig. 2. A two player static game with incomplete information.

– bBob[tB ] = (a, tA, uA),

– bBob[t
′
B ] = 1

2 (a, t′A, uA) + 1
2 (b, t′A, u

′
A).

Accordingly, type tA assigns probability 1 to the choice type utility function
combination (e, tB , uB). Analogously, the induced beliefs of types t′A and tB are
obtained. Bob’s type t′B assigns probability 1

2 to the choice type utility function
combination (a, t′A, uA) and probability 1

2 to the choice type utility function
combination (b, t′A, u

′
A). Note that Alice’s type tA does not believe in Bob’s

rationality, as e is not optimal for the type utility function pair (tB , uB) she
believes him to be characterized by. In particular, it follows that tA does not
express common belief in rationality. However, Alice’s type t′A expresses common
belief in rationality. Indeed, t′A believes in Bob’s rationality, as d is optimal for
Bob’s type utility function pair (t′B , u

′
B). Also, t′B believes in Alice’s rationality,

since a is optimal for Alice’s type utility function pair (t′A, uA) and b is optimal
for Alice’s type utility function pair (t′A, u

′
A). As t′A only deems possible Bob’s

type t′B , and t′B only deems possible Alice’s type t′A, it follows inductively that t′A
expresses common belief in rationality. Hence, a is rational for uA under common
belief in rationality, b is rational for u′A under common belief in rationality, and
d is rational for u′B under common belief in rationality. ♣

3 Generalized Iterated Strict Dominance

Games can be expressed from a one-person perspective based on the notion of
decision problems. Formally, given a game Γ =

(
I, (Ci)i∈I , (Ui)i∈I

)
, a player

i ∈ I, and a utility function ui ∈ Ui, a decision problem Γi(ui) = (Di, D−i, ui)
for player i consists of choices Di ⊆ Ci for i, choice combinations D−i ⊆ C−i
for i’s opponents, as well as the utility function ui restricted to Di ×D−i. The
special case of Γi(ui) = (Ci, C−i, ui) is called a full decision problem of player i.
A game can then be expressed as a set of full decision problems for every player,
and the tuple

(⋃
ui∈Ui

{(Ci, C−i, ui)}
)
i∈I constitutes the one-person perspective

form of Γ .

In decision problems, choice rules such as strict dominance can be formally
defined. Indeed, given a utility function ui ∈ Ui for player i and his corre-
sponding decision problem Γi(ui) = (Di, D−i, ui), a choice ci ∈ Di is called
strictly dominated, if there exists a probability measure ri ∈ ∆(Di) such that
ui(ci, c−i) <

∑
c′i∈Di

ri(c
′
i) · ui(c′i, c−i) for all c−i ∈ D−i.
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With the notions of decision problem and strict dominance on decision prob-
lems, the solution concept of generalized iterated strict dominance is defined as
follows.

Definition 2. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete

information and
(⋃

ui∈Ui
{(Ci, C−i, ui)}

)
i∈I the one-person perspective form of

Γ .

Round 1. For every player i ∈ I and for every utility function ui ∈ Ui consider
the initial decision problem Γ 0

i (ui) :=
(
C0
i (ui), C

0
−i(ui), ui

)
, where C0

i (ui) :=
Ci and C

0
−i(ui) := C−i.

Step 1.1 Set C1
−i(ui) := C0

−i(ui).
Step 1.2 Form Γ 1

i (ui) :=
(
C1
i (ui), C

1
−i(ui), ui

)
, where C1

i (ui) ⊆ C0
i (ui)

only contains choices ci ∈ Ci for player i that are not strictly dominated
in the decision problem

(
C0
i (ui), C

1
−i(ui), ui

)
.

Round k > 1. For every player i ∈ I and for every utility function ui ∈ Ui
consider the reduced decision problem Γ k−1i (ui) :=

(
Ck−1i (ui), C

k−1
−i (ui), ui

)
.

Step k.1 Form Ck−i(ui) ⊆ Ck−1−i (ui) by eliminating from Ck−1−i (ui) every

opponents’ choice combination c−i ∈ Ck−1−i (ui) that contains for some
opponent j ∈ I \ {i} a choice cj ∈ Cj for which there exists no utility
function uj ∈ Uj such that cj ∈ Ck−1j (uj).

Step k.2 Form Γ ki (ui) :=
(
Cki (ui), C

k
−i(ui), ui

)
, where Cki (ui) ⊆ Ck−1i (ui)

only contains choices ci ∈ Ck−1i (ui) for player i that are not strictly
dominated in the decision problem

(
Ck−1i (ui), C

k
−i(ui), ui

)
.

The set GISD := ×i∈IGISDi ⊆ ×i∈I(Ci × Ui) constitutes the output of gener-
alized iterated strict dominance, where for every player i ∈ I the set GISDi ⊆
Ci × Ui only contains choice utility function pairs (ci, ui) ∈ Ci × Ui such that
ci ∈ Cki (ui) for all k ≥ 0.

The algorithm is initiated from the one-person perspective form of the game
and iteratively eliminates strictly dominated choices from decision problems for
all players. In every round a decision problem for a player is formed by first
eliminating all opponents’ choices that are strictly dominated in every decision
problem for that opponent in the previous round, and subsequently eliminating
the player’s choices that are strictly dominated. In fact, for every player the
algorithm yields a set of choice utility function pairs as output. Due to the
presence of incomplete information the algorithm thus identifies choices relative
to payoffs.

The following remark draws attention to some useful properties of the gen-
eralized iterated strict dominance algorithm.

Remark 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete in-

formation. The solution concept of generalized iterated strict dominance yields
a non-empty output, i.e. GISD 6= ∅, is finite, i.e. there exists n ∈ N such that
Γ ki (ui) = Γni (ui) for all k ≥ n, for all utility functions ui ∈ Ui, and for all players
i ∈ I, as well as qualifies as order-independent, i.e. the final output of generalized
iterated strict dominance does not depend on the specific order of elimination.
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The non-emptiness of the algorithm follows from the fact that at no round it is
possible to delete all choices for a given player by definition of strict dominance.
As there are only finitely many choices for every player, the algorithm stops
after finitely many rounds. As a choice remains strictly dominated if a decision
problem is reduced, the order of elimination does not affect the eventual output
of the algorithm.

Finally, generalized iterated strict dominance is illustrated by applying the
algorithm to the two player game introduced in Example 1.

Example 2. Consider again the two player static game with incomplete infor-
mation from Example 1. In order to apply generalized iterated strict dominance
the game is first expressed in its one-person perspective form. Accordingly, a
decision problem for every player and for each of the respective utility functions
is formed in Figure 3, where the choices of the respective decision making player
are represented as rows and the opponent’s choices as columns.

Γ 0
A(uA)

d e f
a 3 2 1
b 2 1 3
c 0 0 0

Γ 0
A(u′

A)

d e f
a 1 3 1
b 2 1 1
c 0 0 0

Γ 0
B(uB)

a b c
d 3 2 1
e 2 1 3
f 0 0 0

Γ 0
B(u′

B)

a b c
d 1 3 1
e 2 1 1
f 0 0 0

Fig. 3. Initial decision problems for Alice and Bob.

In both Γ 0
A(uA) and Γ 0

A(u′A) the choice c is strictly dominated by b. For Bob
the choice f is strictly dominated by e in his decision problems Γ 0

B(uB) and
Γ 0
B(u′B). There are no further choices that can be ruled out for Alice or Bob

with strict dominance given either of their utility functions. The 1-fold reduced
decision problems Γ 1

A and Γ 1
B result as in Figure 4.

Γ 1
A(uA)

d e f
a 3 2 1
b 2 1 3

Γ 1
A(u′

A)

d e f
a 1 3 1
b 2 1 1

Γ 1
B(uB)

a b c
d 3 2 1
e 2 1 3

Γ 1
B(u′

B)

a b c
d 1 3 1
e 2 1 1

Fig. 4. 1-fold reduced decision problems for Alice and Bob.

In both Γ 1
A(uA) and Γ 1

A(u′A) those choices of Bob are eliminated that are
strictly dominated in all initial decision problems Γ 0

B for Bob, i.e. choice f .
Then, the choice b can be deleted for Alice given uA as it is strictly dominated
by a in ({a, b}, {d, e}, uA), but not given u′A as it is not strictly dominated in
({a, b}, {d, e}, u′A). Moreover, in both Γ 1

B(uB) and Γ 1
B(u′B) those choices of Alice

are eliminated that are strictly dominated in all initial decision problems Γ 0
A for

Alice, i.e. choice c. Then, the choice e can be deleted for Bob given uB as it
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is strictly dominated by d in ({d, e}, {a, b}, uB), but not given u′B as it is not
strictly dominated in ({d, e}, {a, b}, u′B). The 2-fold reduced decision problems
Γ 2
A and Γ 2

B result as in Figure 5.

Γ 2
A(uA)

d e
a 3 2 Γ 2

A(u′
A)

d e
a 1 3
b 2 1

Γ 2
B(uB)

a b
d 3 2 Γ 2

B(u′
B)

a b
d 1 3
e 2 1

Fig. 5. 2-fold reduced decision problems for Alice and Bob.

Since there are no strict dominance relations in any of the 2-fold reduced
decision problems Γ 2

A and Γ 2
B , the algorithm stops and returns the set GISD =

GISDAlice × GISDBob = {(a, uA), (a, u′A), (b, u′A)} × {(d, uB), (d, u′B), (e, u′B)}
as a solution to this two player game with incomplete information. ♣

4 Characterization

A fundamental result in game theory – so-called Pearce’s Lemma – due to Pearce
(1984, Lemma 3) connects strict dominance and rationality. Accordingly, a choice
in a two-player static game with complete information is strictly dominated, if
and only if, it is irrational i.e. not optimal for any belief about the opponent’s
choices. Formally, a choice ci ∈ Ci of some player i ∈ I is called optimal for a
belief p ∈ ∆(C−i) about the opponents’ choices, if

∑
c−i∈C−i

p(c−i) ·ui(ci, c−i) ≥∑
c−i∈C−i

p(c−i) ·ui(c′i, c−i) for all c′i ∈ Ci. Similarly, in a game with incomplete
information, a choice ci ∈ Ci is said to be optimal for a belief utility function
pair (pi, ui), where pi ∈ ∆(C−i) and ui ∈ Ui, if

∑
c−i∈C−i

pi(c−i) · ui(ci, c−i) ≥∑
c−i∈C−i

pi(c−i) · ui(c′i, c−i) for all c′i ∈ Ci.
A slight generalization of Pearce’s Lemma to finite incomplete information

games in one-person perspective form is given by the following result.

Lemma 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete infor-

mation,
(⋃

ui∈Ui
{(Ci, C−i, ui)}

)
i∈I the one-person perspective form of Γ , i ∈ I

some player, ui ∈ Ui some utility function of player i, and Γi(ui) =
(
Di, D−i, ui

)
some decision problem of player i. A choice ci ∈ Di is strictly dominated in
Γi(ui), if and only if, there exists no probability measure p ∈ ∆(D−i) such that
ci is optimal for (p, ui) in Γi(ui).

Proof. Consider the game Γ ′ =
(
{i, j}, {D′i, D′j}, {u′i, u′j}

)
, whereD′i = Di,D

′
j =

{dd−i

j : d−i ∈ D−i}, u′i(di, d
d−i

j ) = ui(di, d−i) for all di ∈ D′i and for all d
d−i

j ∈
D′j , as well as u′j(di, d

d−i

j ) = 0 for all di ∈ D′i and for all d
d−i

j ∈ D′j . Note that a
choice ci ∈ Di is strictly dominated in the decision problem Γi(ui), if and only if,
it is strictly dominated in the two person game Γ ′. By Pearce’s Lemma applied
to Γ ′, it then follows that ci is strictly dominated in Γi(ui), if and only if, there
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exists no probability measure pi ∈ ∆(D−i) such that ci is optimal for (pi, ui) in
Γi(ui). �

Equipped with the generalized version of Pearce’s Lemma the solution con-
cept of generalized iterated strict dominance can be epistemically characterized
by common belief in rationality for static games with incomplete information.

Theorem 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete

information, i ∈ I some player, ci ∈ Ci some choice for player i, and ui ∈ Ui
some utility function of player i. The choice ci is rational for ui under common
belief in rationality, if and only if, (ci, ui) ∈ GISDi.

Proof. For the only if direction of the theorem define a set (Ci × Ui)CBR :=
{(ci, ui) ∈ Ci × Ui : ci is rational for ui under common belief in rationality} for
every player i ∈ I. It is shown, by induction on k ≥ 0, that for every player i ∈ I
and for every choice utility function pair (ci, ui) ∈ (Ci×Ui)CBR, it is the case that
ci ∈ Cki (ui). Note that ci ∈ C0

i (ui) directly holds for all (ci, ui) ∈ (Ci × Ui)CBR
and for all i ∈ I, as C0

i (ui) = Ci for all ui ∈ Ui and for all i ∈ I. Now
consider some k ≥ 0 and suppose that ci ∈ Cki (ui) holds for every player i ∈ I
and for every choice utility function pair (ci, ui) ∈ (Ci × Ui)

CBR. Let i ∈ I
be some player and take some (ci, ui) ∈ (Ci × Ui)CBR. Then, there exists an
epistemic model MΓ of Γ with a type ti ∈ Ti that expresses common belief in
rationality such that ci is optimal for (ti, ui). Take some (cj , tj , uj) ∈ Cj × Tj ×
Uj such that bi[ti](cj , tj , uj) > 0. As ti expresses common belief in rationality,
tj expresses common belief in rationality too, and cj is optimal for (tj , uj).
Thus, (cj , uj) ∈ (Cj × Uj)CBR, and, by the inductive assumption, cj ∈ Ckj (uj).

Hence, for every choice cj ∈ supp(bi[ti]) it is the case that cj ∈ Ckj (uj) for
some utility function uj ∈ Uj , and thus ti only assigns positive probability to
choices cj contained in a decision problem Γ kj (uj) for some uj ∈ Uj for every
opponent j ∈ I \ {i}. Consequently, ti only assigns positive probability to choice
combinations in Ck+1

−i (ui). Since ci is optimal for (ti, ui), it follows from Lemma

1 that ci ∈ Ck+1
i (ui). Therefore, by induction, (ci, ui) ∈ GISDi obtains.

For the if direction of the theorem, suppose that the algorithm stops after
k ≥ 0 rounds. Then, for every (ci, ui) ∈ GISDi it is the case that ci ∈ Cki (ui).
By Lemma 1, ci is optimal for some (pi, ui), where pi ∈ ∆

(
Ck−i(ui)

)
. Observe

that every c−i ∈ Ck−i(ui) only contains, for every player j ∈ I \ {i}, choices
cj ∈ Cj such that (cj , u

cj
j ) ∈ GISDj for some u

cj
j ∈ Uj . Define a probability

measure p
(ci,ui)
i ∈ ∆(GISD−i) by

p
(ci,ui)
i (c−i, u−i) =

{
pi(c−i), if c−i ∈ Ck−i(ui) and u−i = u

c−i

−i
0, otherwise

for all (c−i, u−i) ∈ C−i×U−i. Construct an epistemic modelMΓ = {(Ti)i∈I , (bi)i∈I}
of Γ , where Ti := {t(ci,ui)

i : (ci, ui) ∈ GISDi} for all i ∈ I and

bi[t
(ci,ui)
i ](c−i, t−i, u−i) =
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p
(ci,ui)
i (c−i, u−i), if (c−i, u−i) ∈ GISD−i and tj = t

(cj ,uj)
j for all j ∈ I \ {i}

0, otherwise

for all (c−i, t−i, u−i) ∈ C−i × T−i × U−i, for all t
(ci,ui)
i ∈ Ti and for all i ∈ I.

Observe that, by construction, for every player i ∈ I and for every (ci, ui) ∈
GISDi, the choice ci is optimal for (t

(ci,ui)
i , ui). Hence, every type t

(ci,ui)
i believes

in the opponents’ rationality. It then follows inductively that every such type

t
(ci,ui)
i also expresses common belief in rationality. Therefore, for every choice

utility function pair (ci, ui) ∈ GISDi, there exists a type t
(ci,ui)
i within MΓ

such that t
(ci,ui)
i expresses common belief in rationality and ci is optimal for(

t
(ci,ui)
i , ui

)
. Hence, ci is rational for ui under common belief in rationality. �

In terms of reasoning generalized iterated strict dominance thus corresponds
to common belief in rationality. In fact, similar epistemic characterizations have
been provided for the incomplete information solution concept of∆-rationalizability
in the literature. Notably, Battigalli and Siniscalchi (1999, Proposition 4), Batti-
galli (2003, Proposition 3.8) as well as Battigalli et al. (2011, p. 15) establish an
equivalence between common belief in rationality and ∆-rationalizability.3 It fol-
lows from these results in the literature and Theorem 1 that ∆-rationalizability
and generalized iterated strict dominance are output equivalent, if no exogenous
restrictions on the players’ beliefs are imposed. The solution concept of interim
correlated rationalizability due to Dekel et al. (2007) can also be epistemically
characterized – for fixed marginal belief hierarchies on utilities – in terms of com-
mon belief in rationality (Battigalli et al., 2011, Theorem 1). Due to the rigid-
ity of marginal belief hierarchies on utilities, interim correlated rationalizability
cannot be directly compared to ∆-rationalizability or generalized iterated strict
dominance. However, if interim correlated rationalizability is applied to a given
game for all possible marginal belief hierarchies on utilities, then the union of the
corresponding solutions are equal to the output of ∆-rationalizability without
any exogenous doxastic restrictions, and thus also to the output of generalized
iterated strict dominance.

Besides the epistemic characterization in terms of iterated mutual belief in
rationality, the solution concept of iterated strict dominance can also be charac-
terized without recourse to any iterative procedure. An illuminating way of doing
so is based on Pearce’s (1984, Definition 2) complete information notion of best
response property. Intuitively, a tuple of sets of choices of all players exhibits the
best response property, whenever for every player the respective set only con-
tains choices that are optimal for some belief about the opponents’ choices only
assigning positive probability to choices from the opponents’ respective sets. In
the context of incomplete information the idea of best response sets can then be
formally defined as follows.

3 The special case of ∆-rationalizability which does not impose any exogenous restric-
tions on the players’ beliefs is also called belief-free rationalizability and is explicitly
characterized in terms of common belief in rationality by Battigalli et al. (2011, p.
14) too.
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Definition 3. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete

information, and Di ⊆ Ci × Ui a set of choice utility function pairs for every
player i ∈ I. A tuple (Di)i∈I is called best response set tuple, if there exists,
for every player i ∈ I and for every choice utility function pair (ci, ui) ∈ Di, a
probability measure µi ∈ ∆(D−i) such that ci is optimal for (µi, ui).

Similarly to Pearce’s (1984, Proposition 2) characterization of his iterated
procedure of rationalizability, our solution concept of generalized iterated strict
dominance can also be shown to be equivalent to a best response set formulation.

Theorem 2. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete

information, i ∈ I some player, ci ∈ Ci some choice of player i, and ui ∈ Ui
some utility function of player i. There exists a best response set tuple (Di)i∈I
such that (ci, ui) ∈ Di, if and only if, (ci, ui) ∈ GISDi.

Proof. For the only if direction of the theorem it is shown, by induction on
k ≥ 0, that ci ∈ Cki (ui) for all (ci, ui) ∈ Di, for all k ≥ 0 and for all i ∈ I. Let
i ∈ I be some player and (ci, ui) ∈ Di. It then holds that ci ∈ C0

i (ui) = Ci.
Now, consider some (ci, ui) ∈ Di and assume that k ≥ 0 is such that cj ∈ Ckj (uj)
for every j ∈ I and for every (cj , uj) ∈ Dj . Fix some (ci, ui) ∈ Di, and note
that ci is optimal for (µi, ui), where µi ∈ ∆(D−i) is some probability measure.
By the inductive assumption, cj ∈ Ckj (uj) for every (cj , uj) ∈ Dj and for every
j ∈ I \ {i}. Hence, µi only assigns positive probability to opponents’ choices
cj ∈ Cj which are contained in Ckj (uj) for some uj ∈ Uj . Therefore, µi only

assigns positive probability to opponents’ choice combinations c−i ∈ Ck+1
−i (ui).

It follows, by Lemma 1, that ci is not strictly dominated in the decision problem(
Cki (ui), C

k+1
−i (ui), ui

)
. Thus, ci ∈ Ck+1

i (ui) and, by induction on k ≥ 0, it holds
that (ci, ui) ∈ GISDi.

For the if direction of the theorem, it is shown that (GISDi)i∈I is a best
response set tuple. For every uj ∈ Uj , let C∗j (uj) := {cj ∈ Cj : (cj , uj) ∈
GISDj} and C∗j := {cj ∈ Cj : (cj , uj) ∈ GISDj for some uj ∈ Uj}. Fix
(ci, ui) ∈ GISDi. Consequently, ci is not strictly dominated in the decision
problem

(
C∗i (ui), C

∗
−i, ui

)
. By Lemma 1, ci is optimal for (pi, ui) for some pi ∈

∆(C∗−i). Hence, ci is optimal for (µi, ui) for some µi ∈ ∆(GISD−i). Therefore
(GISDi)i∈I is a best response set tuple. �

Besides, it is actually the case that the algorithm of generalized iterated strict
dominance always yields the largest best response set tuple as output.

Corollary 1. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete

information. The set GISD ⊆ ×i∈I(Ci × Ui) is the largest best response set
tuple.

Proof. Let i ∈ I be some player. By the proof of the if -direction of Theorem 2,
(GISDj)j∈I is a best response set tuple. Consider some element (ci, ui) ∈ Di of
a best response set tuple (Dj)j∈I for player i. By Theorems 1 and 2, it follows
that (ci, ui) ∈ GISDi. Hence, GISDi is the largest best response set tuple for
player i. �
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Accordingly, every best response set tuple is included in GISD and thus the set
GISD can be interpreted as the largest fixed point of the generalized iterated
strict dominance algorithm.

Since the solution concept of generalized iterated strict dominance corre-
sponds to common belief in terms of reasoning by Theorem 1, it directly follows
that rational choice for some utility function under common belief in rationality
can also be given a non-iterative characterization in terms of the best response
property.

Remark 2. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete infor-

mation, i ∈ I some player, ci ∈ Ci some choice of player i, and ui ∈ Ui some
utility function of player i. There exists a best response set tuple (Di)i∈I such
that (ci, ui) ∈ Di, if and only if, ci is rational for ui under common belief in
rationality.

5 Complete Information

The assumption of complete information eliminates any uncertainty about the
payoff structure of the game. Formally, complete information constitutes the
special case of incomplete information with the sets of utility functions all being
singletons for every player. In line with a one-person perspective approach the
question can be posed what conditions on the thinking of the reasoner in incom-
plete information games dissolve payoff uncertainty in his mind. Before tackling
this issue, the notion of complete information needs to be formally defined within
the framework of epistemic models.

Intuitively, complete information signifies that there exists no uncertainty
about any opponent’s utility function at any level of the reasoner’s interactive
thinking. Given some player i ∈ I, a type utility function pair (ti, ui) ∈ Ti × Ui
can then be said to express complete information, if there exists for every oppo-
nent j ∈ I \{i} a utility function uj ∈ Uj such that ti’s marginal belief hierarchy
tUi on utilities is generated by

(
ui, (uj)j∈I\{i}

)
. That is, bi[ti]

(
(uj)j∈I\{i}

)
= 1,

for every opponent j ∈ I \ {i} player i only deems possible types tj ∈ Tj such
that bj [tj ]

(
(uk)k∈I\{j}

)
= 1, and for every opponent j ∈ I \ {i} player i only

deems possible types tj ∈ Tj that for every opponent k ∈ I \ {j} only deem
possible types tk ∈ Tk such that bk[tk]

(
(ul)l∈I\{k}

)
= 1, etc. Note that complete

information is not defined simply for a type but for a type utility function tuple
with the reasoner’s actual utility function.

Also, the notion of correct beliefs needs to be invoked in the context of the
players’ utility functions. A type utility function tuple (ti, ui) is said to believe
some opponent j to be correct about his utility function and marginal belief hi-
erarchy tUi on utilities, if ti only deems possible types tj such that bj [tj ](ui) = 1
and bj [tj ] assigns probability 1 to tUi . Compared to complete information correct
beliefs are defined for a type utility function tuple instead of merely for a type,
since correct beliefs in the context of payoff uncertainty also concern the rea-
soner’s utility function. With complete information and correct beliefs formally
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defined, the following theorem characterizes complete information by means of
three doxastic correctness conditions.

Theorem 3. Let Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
be a static game with incomplete

information, MΓ some epistemic model of it, i ∈ I some player, ti ∈ Ti some
type of player i, and ui ∈ Ui some utility function of player i. The type utility
function tuple (ti, ui) expresses complete information, if and only if,

– for every opponent j ∈ I \ {i}, type ti only deems possible types tj ∈ Tj
that are correct about i’s utility function ui and marginal belief hierarchy on
utilities (Condition 1),

– for every opponent j ∈ I\{i}, type ti only deems possible type utility function
pairs (tj , uj) ∈ Tj ×Uj that only deem possible types t′i ∈ Ti that are correct
about j’s utilities and j’s marginal belief hierarchy on utilities (Condition
2),

– for all opponents j ∈ I \ {i} and k ∈ \{i, j}, type ti only deems possible
types tj ∈ Tj that have the same marginal belief on k’s utilities and on k’s
marginal belief hierarchies on utilities as ti has (Condition 3).

Proof. Since only ti’s marginal belief hierarchy on utilities is affected by incom-
plete information and the three doxastic conditions, attention can be restricted
to the induced marginal type tUi .

For the if direction of the theorem suppose that i’s utility function is ui ∈ Ui
and that ti satisfies the three conditions. It is first shown that ti’s marginal type
tUi only deems possible a unique marginal type tUj and a unique utility function

uj ∈ Uj for every opponent j ∈ I \ {i}. Towards a contradiction assume that tUi
assigns positive probability to at least two marginal type utility function pairs
(tUj , uj) and (tUj

′
, u′j) for some opponent j ∈ I \ {i}. Since ti believes that j is

correct about his utility function and marginal belief hierarchy on utilities, ti be-
lieves that j only deems possible (tUi , ui). Consequently, the marginal type utility

function pairs (tUj , uj) and (tUj
′
, u′j) both only deem possible (tUi , ui). Consider

marginal type tUj and note that (tUj , uj) believes that i deems it possible that

j is characterized by the marginal type utility function tuple (tUj
′
, u′j). Hence,

(tUj , uj) does not believe that i is correct about his utility function and marginal
belief hierarchy on utilities. It follows that ti deems it possible that j does not
believe that i is correct about his utility function and marginal belief hierarchy
on utilities, a contradiction. For every opponent j ∈ I \ {i}, type ti’s marginal
type tUi thus assigns probability 1 to a single marginal type utility function tuple
(tUj , uj) and the corresponding type tj assigns probability 1 to (tUi , ui). By the
third condition in Theorem 3 it is ensured that for each opponent the respective
other opponents share the same marginal belief on utilities, thus it follows, by
induction, that ti’s marginal belief hierarchy on utilities is generated by (uj)j∈I ,
and therefore (ti, ui) expresses complete information.

For the only if direction of the theorem, suppose that (ti, ui) expresses com-
plete information and let (uj)j∈I ∈ ×j∈IUj be the tuple of utility functions
generating ti’s marginal belief hierarchy on utilities. Then, it directly follows by
construction that the three doxastic correctness conditions hold. �
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From a conceptual point of view complete information can thus be modelled en-
tirely within the mind of the reasoner satisfying the three conditions of Theorem
3 instead of restricting the game specification. Accordingly, the specific case of
payoff certainty can also be obtained subjectively. In contrast, the objective re-
alization of complete information restricts all players’ sets of utility functions to
singletons. Consequently, Theorem 3 can be interpreted as providing reasoning
foundations for the complete information assumption in games from a one-person
perspective.

From a technical point of view the question emerges whether the three doxas-
tic correctness conditions in Theorem 3 are independent from each other. Since
these conditions only affect the marginal belief hierarchies on types and util-
ity functions, the independence issue can be investigated without reference to
choices of any underlying game.

First of all, consider some three player game with I = {Alice,Bob, Claire},
UAlice = {uAlice}, UBob = {uBob}, and UClaire = {uClaire, u′Claire}, as well as
some epistemic model of the game with TAlice = {tAlice}, TBob = {tBob}, and
TClaire = {tClaire}. The induced probability measures are defined as bAlice[tAlice] =(
(tBob, uBob), (tClaire, uClaire)

)
, bBob[tBob] =

(
(tAlice, uAlice), (tClaire, u

′
Claire)

)
,

and bClaire[tClaire] =
(
(tAlice, uAlice), (tBob, uBob)

)
. Observe that the pair (tAlice, uAlice)

satisfies Condition 1 and Condition 2 but violates Condition 3.
Secondly, consider some two player game with I = {Alice,Bob}, UAlice =

{uAlice}, and UBob = {uBob, u′Bob}, as well as some epistemic model of the game
with TAlice = {tAlice}, and TBob = {tBob}. The induced probability measures
are defined as bAlice[tAlice] = 1

2 (tBob, uBob) + 1
2 (tBob, u

′
Bob), and bBob[tBob] =

(tAlice, uAlice). Observes that the pair (tAlice, uAlice) satisfies Condition 1 and
Condition 3 but violates Condition 2.

Thirdly, consider some two player game with I = {Alice,Bob}, UAlice =
{uAlice, u′Alice}, and UBob = {uBob}, as well as some epistemic model of the game
with TAlice = {tAlice}, and TBob = {tBob}. The induced probability measures
are defined as bAlice[tAlice] = (tBob, uBob), and bBob[tBob] = 1

2 (tAlice, uAlice) +
1
2 (tAlice, u

′
Alice). Observe that the pair (tAlice, uAlice) satisfies Condition 2 and

Condition 3 but violates Condition 1.
It can thus be concluded that the three doxastic correctness conditions are

independent from each other.
Generalized iterated strict dominance joins the class of solution concepts

for static games with incomplete information. In fact, for complete information
games the algorithm is equivalent to iterated strict dominance. To recall the
definition of iterated strict dominance, let Γ =

(
I, (Ci)i∈I , ({ui})i∈I

)
be a static

game with complete information, and consider the sets C0
i := Ci and

Cki := Ck−1i \ {ci ∈ Ci : there exists ri ∈ ∆(Ck−1i )

such that ui(ci, c−i) <
∑
c′i∈Ci

ri(c
′
i) · ui(c′i, c−i) for all c−i ∈ Ck−1−i }

for all k > 0 and for all i ∈ I. The output of iterated strict dominance is then
defined as ISD := ×i∈IISDi ⊆ ×i∈ICi, where ISDi :=

⋂
k≥0 C

k
i for every
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player i ∈ I. With complete information there is for every player i and for every
round k a unique decision problem Γ ki (ui) =

(
Cki (ui), C

k
−i(ui), ui

)
, as payoff

uncertainty vanishes. Thus, Ck−i(ui) = ×j∈I\{i}Ckj , Cki (ui) = Cki , and Definition
2 then becomes a formulation of iterated strict dominance in terms of decision
problems. The following remark thus holds.

Remark 3. Let Γ =
(
I, (Ci)i∈I , ({ui})i∈I

)
be a static game with complete infor-

mation. Then, ×i∈IGISDi = ×i∈I(ISDi × {ui}).

Accordingly, generalized iterated strict dominance for incomplete information
games with a single utility function for every player is equivalent to iterated strict
dominance for complete information games. Therefore, our solution concept of
generalized iterated strict dominance qualifies as the incomplete information
analogue of iterated strict dominance for static games.
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