
AGENTS, CONTEXTS, AND LOGIC.

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy

by

Anthony John Hepple

November 17, 2010

Abstract

There is an emerging computational landscape in which processing is becoming increas-

ingly concurrent due to the numberof devices, the interconnection of these devices, and

the use of multi-core processors. As the landscape changes, so do its inhabitants. No

longer do users see technology as an intrusion into their daily lives, indeed many novel

applications for computing technology are being found andareasof ourlives are already

dependent upon such technology. Since we expect this trend to continue, they must

lead to the ubiquity of computing devices.

The aim of this thesis is to tackle one of the many challenges that such a land-

scape presents—that of programming coherent, reliable software at a high level of

abstraction. Such software must be able to cope with the dynamic nature of its envi-

ronment, adapt to the changing needsof its users, and do so without excessive human

intervention.

The view adopted here is to take a principled approach to programming, that is

inspired by formal logical methods and agent theory, and involves the direct execu-

tion of temporal logic specifications. As part of this work, a robust implementation of

METATEM,the agent-oriented programming language based on executable specifica-

tions, was developed and applied. This direction, when combined with concepts such

as contexts, preferences and constraints, provides a promising means of capturing the

essence of context-sensitive software, typical of pervasive and ubiquitous computing

scenarios.

This thesis provides a formal semantics for the executable specification language,

and its extensions, and describes the implementation of a concrete system. The work

demonstrates the flexibility, power, and clarity of this approach and hencejustifies its

candidacy for programming a future generation of computer systems.

Dedication

To Abigail and Sophie, thank you for the cycle rides and other great distractions, your

exuberance and enthusiasm have been invaluable.

ili

iv

Acknowledgements

Firstly, I thank Professor Michael Fisher, for his patient support, considerable knowl-

edge, unerring direction and the many other ways he helped me throughoutthis project

and influenced this work. I am very grateful for the opportunity to work with him and

for the time, comittment and dedication he has provided to myself and this project.

There are many others within the Department of Computer Science that I am

also grateful to. In particular I would like to thank Dr. Louise Dennis for her input

and collaboration, and my internal examiner, Dr. Peter McBurney, for his thorough

and constructive criticism of my work. I also thank the members of the Logic and

Computation Group,especially my fellow PhD students, for creating a welcoming and

supportive environment.

Thanks also go to my external examiner, Professor Simon Dobson (University of

St. Andrews), for his careful examination of my thesis and insightful comments during

my viva.

Finally, I would like to thank my parents and Deborah for allowing methis in-

dulgence and for providing me with unconditional practical and emotional support.

I realise that there have been times during this project when my preoccupation has

given them cause for concern and thank them for their unwavering love, support and

encouragement.

Vi

Contents

Abstract

Dedication

Acknowledgements

List of Figures

1

2

Introduction

Td UWreds «ae ee iw ae de we Ew EE RH OR Ee ee mee we

1.2 AdvancéS «in. ae ee aes eins ee Heim ewe wie we we

13 Ubiquity .. 0... te tt et ee ee

1.4 Programming paradigms............... 0000+ eee eeee

1.5 Agency 2....ee

16 Logic 2...

1.7 Thefuture.......ee

1.8 Aimsend achievements .2.6: ei kee e Ew Em ew

Background

2.1 Ubiquity... 2... 0...ee

2.1.1 Trends and drivers-..- 0-0-0002 eee

2.1.2 Limits... ... 2...ee ee

2.1.3 Challenges 0.2... 0.ee

2.2 Context2...

2.2.1 Early experiments-.... 0.00005 00s

2.2.2 The handling of context0200000.

2.2.3 Context modelling 2... 0.000 ee eee

2.2.4 Programming frameworks-0520005

2.2.5 Logical formulations of context2..08.

28 Agenheomeepts .4 in i kai Ew EH Tee ee Hew

2.4 Agent-oriented design methodologies 0.00504 ee

2.5 Agent languages ...2...

Vii

iii

xi

a
“N
I

O
D

Oo
t

o
l

13

13

13

14

14

20

21

23

25

28

29

29

DG: MINER 56 ea eV OG on Re ek eR ek GE

pli SO, Se aS aie eww 6 eee te ee w 2 ae oe ee

DO. (PRONGOOM gk Gor Bw dome fie le eee we we

DAs QAPIs oe ee Se i Pi ee i we eo ew

235,588 JACK 2 el ee ae ae ie Bog ac We ee ee we we

20:0 JACES” oho ORS on eee on ee ee eee ee we ee

Do DACs hg So ee ee eaten: inl 3 Bn ae Gea ie ese eo oe

D6 degent organiegm 2 ek ee e ee e e

METATEM

3-l Declarative agents er ho eRe Sets ee ee te a to Be eee as

3.2 Specifying programs with temporal logic0..

3.2.1 Specifying agent behaviour004

3.2.2 Separated Normal Form2..05 0500.

3.2.3 From specification to execution0..

3.3 Implementation sigorici cig le eeee

B.8.1 Symtax and semgutics ee ie eee ee cee ee

3.3.2 How deliberation is implemented-.-.

3:3.3 Multiplevagentssr sc ee ee we ee ee

3.4 Implementation architecture 000. e ee eee

3:41 Java- packages 2): S625 ik da a ae ee

3:5 “Execution exampleisss 5.2) sc wc he de ec ee WS ee ee

8.6) PXtensions 96.0 eeee WE eck See ww eee

SGA. Sets. 2 eee Seas ies ie Pipi ne Gee eee en ws wk

3.6.2 Meta-predicates’ tas 2 si be Se eee Boe ee

S08 ADU2 Car ow es ee ee nna

3.64 Arithmetiog ya. sees oo nace, pitt n too Bes

8:7. Blockworlds, 5.5 oe os ae Shae apo ekeed NEe oe tae a ee ee

3:6. Current statusi cer. Coa ke se A Gre Pee, on

Agents and Contexts

451, (Context. «#4 eee es Bee ew teow PW we Gh oe we OR Be ew

4.1.1. Eeamples 26-2403 eae @.ce eh s wet hks bw a wt ee es

4.2 Organisation by context.) 8.5 a gk ie whl eee ww nw we ew

4:3 Operational semantics @ S40 Ges ek ae ecu ee he ee ew ew

ese le INOGALION:: al sik ae © cots Ba ee Pe Be ew ee et we ww

A.3.2 add/2 atid remove/2 : 20...

4.3.3. addToContent/1 and enterContext/1...............

Biee a re ear eas eat we cae ws all's a

4.3.5 removeFromContent/1 and leaveContext/1

Vili

30

30

31

32

32

32

33

33

42

44

56

57

57

61

62

62

64

65

70

70

75

75

76

76

76

77

ASG Message passing . 4.65 ee tet mia ERE RE oe 77

4.3.7 Negated built-in predicates2.0-.0000. 77

4.4 Representing organisations... . 2... . eeee 78

24.1 SiaritigOPM2c oat wi ewe ew ht ee 78

4.4.2 Joint intentions 0... eee ee ee 80

4.4.3 Roles .. 1... .ee 82

444 Teams 0... 0...eee 84

A Common Semantics of Organisation 87

5.1 Motivation 2....87

5.1.1 Proposal... 2.0...ee 88

5.2 Inttodicitie the Concepts . ei ee ea eeeweee 88

5.2.1 Content and Context Sets... . 2.2... ...2. 2.00. ee eee 91

5.2.2 Constraints 92

5.2.3 Properties of groups and constraints-.... 93

5.3 A simple BDI language: AGENTSPEAK”-..0000004 95

5.4 Using the concepts .. 2...ee 96

5.4.1 Shared beliefs .. 1.2.2... 0... 000 eee ee eee eee 99

5.4.2 Permissions and obligations05500% 100

5.4.3 Case study 1: Cookery agents...............00040. 100

5.4.4 Case study 2: Self deploying agents-.. 103

5.5 Summary of proposal. «: 0 sei wi ee ows EH ERM REE we ws 106

Case Studies 107

6.1 Shopping scenario .. 1...ee 107

61.1 Basie Scenario. . 22 sw iw eee ne ee wee eH ee es 107

6.1.2 Increased reasoning and an additional context 109

6.1.3 Adapting to unexpected human behaviour............. 110

6.1.4 Introducing Alice—Bob’s friend and lunch date 113

6.1.5 Results, outcomes andruns-..2.+5250006, 115

6.2 Surveillance scenario...2.116

O21 Seope «naiuieieewet ure teem ee ee 117

6.2.2 Context modelling 2.2... ... ee ee ee 118

6.2.3. The surveillance area... 2....ee 119

6.2.4 Surveillance example: Architecture...-44. 121

6.2.5 Surveillance example: Environment...............-.. 121

6.2.6 Scenario One—Fusion agent as coordinator............ 124

6.2.7 Scenario Two— Sensor agents as service provider. 127

6.2.8 Scale, elaboration and performance.........-.----+-5 127

1x

7 Evaluation 131

7.1 Experiments... . 1... . 2...eeee 132

7.1.1 Extended surveillance scenarios.00 0000s 132

7.1.2 Complex surveillance scenarios00-000% 137

Tee RG we a i ee a eeee139

Te. Wembliiy . . cw ee 8 Ree he Rw pee ee ww RT 141

TA. Implementation. g04 0600 soe weww142

8 Conclusions 145

8.1 Future work . 2... ..149

A Documentation 151

ok TERRDWE Ble: , ec ee i ee Re a ge oe 151

A.2 Java documentation 2... 0... eeee 154

B Source code from Chapter 6 155

Bil DOb.G268t.. si cage ie eae smeeeeee 155

Ba2 délegate.dfent. coe tec bet we em ee we es 157

B.3 environment.agent 2... . eeeee 159

BA fusionagent...4 62 0 ee ewwe 161

Bibliography 164

Index 176

List of Figures

2.1

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.9

5.6

5.7

5.8

5.9

6.1

6.2

6.3

6.4

6.5

tod

7.2

7.3

Events can be reduced to beliefs. 2... 2.0... 0.. 0000000. 16

Typical asynchronous agent execution.-000. 56

A database of unique terms are maintained by the TermFactory. 59

Interfaces and abstract classes encourage immutable implementations. . 60

The components of a typical multi-agent system. 60

A selection of possible organisation structures. 72

The fundamental forms of multicast messaging. 74

Communicating joint intentions upon joining ateam............ 81

Roles according to abilities. ©...2... 82

Sharing plans and information. 002000000. 94

Syntax of AGENTSPEAK™.. 2...ee 95

Operational Semantics of AGENTSPEAK™............000004 96

Mapping our Framework to AGENTSPEAK...........-.+0005 97

AGENTSPEAK™ extended to multi-agents.080. 98

A simple cooperative agent defined in AgentSpeak. 100

A cook with multiple constraints...050 00500. 102

The structural view during deployment.2-. 105

The dynamic nature of search and rescue.Be ee eee 105

A snapshot of one possible structural configuration of agents. 111

A snapshotillustrating multiple contexts and members. 114

Example of contextual agent structure... .. 2... 0... eee eee 119

A sketch of a surveillance area. . 2...ee 120

A sketch of a surveillance area with added complexity. 122

Scenario One extended. ... 1... 2...ee 134

Layering the filtration of messages. 2-2-2222 eee eee 135

A visualisation tool for the control and monitoring of agents. 143

xi

xii

Chapter 1

Introduction

So manyareasof our lives are enhanced by computers and the software they run. Soft-

ware is often, and appropriately, referred to as a tool, particularly when it supports

its user’s activity by making that activity easier in some way, commonly resulting in

a time-saving benefit. Possibly the most popular example of software as a tool is the

word-processor. In comparison with its mechanical predecessor —the typewriter—

word-processing software greatly speeds up the task of preparing documents. However,

the word-processor does not only provide time savings, it also adds to the functionality

of its predecessor. The ability to rearrange content, change its style and print multiple

copies are simple features that give word-processors great advantages over typewriters.

Yet the humble word-processor brought other moresignificant features which were con-

sidered to be intelligent when they were first introduced; features such as automated

grammarchecking andcorrection, that are taken for granted today, provided a remark-

able additional benefit to users. Like all good tools, when used correctly, computers

enable users to perform tasks that may not just be more time-consuming without the

tool but may not even be possible without them. This increasing level of sophistication

and apparentintelligence must influence the way that computing devices are perceived

by their users.

Software is available for a wide variety of purposes. For example, a computer can

provide help with financial transactions, directing traffic, communication and mathe-

matical modelling. As diverse and varied these applications of computing technology

are, it is notable that each software tool remains singular in purpose and that they

generally operate in isolation. With the exception of applications with closely related

purposes,! the integration of applications with others of essentially different purposes

is not generally considered during their design, is usually only possible with the use of

an API andis therefore a difficult task that requires expert knowledge.

1Such as collections of enterprise level applications and suites of personal productivity tools.

1.1 Trends

The introduction of computers into wider society (wider than specific industrial, aca-

demic and defense applications) is a recent event, in fact there are some sections of even

the most developed societies that do not yet interact directly with computers— as well

as Luddite attitudes we can identify a significant numberof the older generationsin all

societies —and yet the scale and modeofinteraction that does take place has changed

remarkably in just a few decades. Thefirst computers were individually vast, occupying

whole buildings but affording little convenience to their sole user. Advances in oper-

ating systems enabled mainframe computers to share their processing power around

several users, allowing each user to interact in an apparently simultaneous way via

individual terminals. Advancements in hardware led to the personal computer and a

return to a one-to-one correspondence between devices and users. The present-day sees

the numberof devices exceeding the numberof users. Not only is it commonfor users to

interact with many devices (an enthusiastic adopter of technology can bebristling with

pocket size devices and own several larger machines) but it is also common for devices

to interact with many users. Although computing devices are more numerous, more

portable andless costly than in any timein history, and despite novel and imaginative

advancements in human-computer interaction that often make these interactions more

intuitive, the interaction of man and machineis still very much deliberate (on man’s

part at least). Not only is this interaction deliberate but its nature is interventional.

Its mode originates from mechanical typewriters and early (albeit pioneering) work

carried out by Xerox Laboratories. The keyboard and mouse have evolved since their

introduction, they have changed in shape, size and construction, even merging into

other hardware (e.g. touch sensitive displays) making our interaction with computer

systems more convenient, arguably moreefficient, but no less deliberate. Adhering to

this form of interaction with conventional systems requires conscious cognitive effort in

the form of intent, focus, skills to operate the hardware, and knowledge of the system’s

purpose. All of this is in addition to any effort induced by the context of use. It is

inconceivable therefore that the user is not aware of the system.

If we contrast this with the use of other successful tools, for example a pencil whose

use is apparently subconscious, we are unaware of the tool whenusingit, thus enabling

all of one’s focus to be applied directly to the activity. As for any tool, the design of

software strives for this level of usability.

1.2. Advances

Strong evidence of the potential for software to achieve this level of usability is provided

by examples of applications which demonstrate— albeit in isolation —many features

associated with context-aware computing. Further still, many of these novel applica-

tions are backedby significant commercial organisations that not only have an interest

in following trends but also the power to influence future usage trends.

Latitude? is an application for GPS enabled mobile phones that maintains your loca-

tion and activity on a shared map, enabling a userto see their friends’ locations and

share their own with them.

Bump?allows users of Apple’s iPhone to exchange contact details by bumping two

iPhones together. (Bumpis available now.)

Layar* overlays information from the Internet onto a real-time image of its users’

surroundings (captured by a smart-phone’s built-in camera). Popular sites with user-

contributed content, such as encyclopedia and photograph sharing sites, are used to

augment your actual view of the world.

ShopSavvy°®enables shoppers to scan the bar-code of any product using a phone’s

built-in camera, view the results of an Internet search for the item and, if available,

buy the item at a more competitive price.

Barclays® bank have, since early 2009, been issuing payment cardsthat allow contact-

less transactions. Once a significant number of account holders have a card with this

capability, they hope to be able to persuaderetailers to invest in the necessary point-

of-sale equipment. When contactless payment is established the payment card will no

longer be restricted to its current form. It could, for example, be embedded within a

mobile phone.

Fuel Prices’ is another smart phone application that locates the five cheapest petrol

stations in the vicinity of its user. It uses the phone’s GPSfunctionality to determine

the location of its user and a database of credit-card transactions to determine current

prices. (Fuel Prices UKis available now.)

Each of these examples is deployed or in the later stages of development andall appear

to have been warmly received by users.®

These examples support the argument that the increased intelligence exhibited by

software is transforming software from esoteric tools that support well- and pre-defined

*nttp://www.google.com/latitude

3http: //www.bumptechnologies.com

“nttp://layar.com
'http://www.biggu.com/apps/shopsavvy-android/

Shttp://www.barclays.com/contactless

"http: //www.mubaloo.com/pages/mubaloo_fuelprices.php

8Although there have been someconcernsfrom privacy activists about Google’s latitude application.

http: //www.privacyinternational.org/article.shtml?cmd [347] =x-347-563567

3

human activity into more sophisticated, autonomous and multi-purpose systems that

enhance more general humanactivity with fewer deliberate human-computer interac-

tions. Today, computing devices and the software they execute (without which they

would be useless) are increasingly referred to, not as tools, but as assistants.

1.3 Ubiquity

In the previous section we discussed computers as tools that support human activity in

a passive manner, acting only when explicitly commanded to do so. However, software

is expected to be more than a tool, it has become an ever-present assistant. A personal

assistant. Many people have their mobile telephones at hand for 24hrs a day. The term

‘smart phone’ flatters the telephone functionality of these small-form personal comput-

ers, as this is no longer the predominant function of the device (as is demonstrated by

some of the applications mentioned in Section 1.2).

Imagine that you maintain an electronic shopping list. Whentravelling home, you

notice a shopping centre and decide it would be convenient to buy some items from your

list. Whilst walking through the shopping centre, your personal assistant, unprompted

by you, is negotiating with nearby stores in order to find the items on yourlist at

a competitive price and convenient location. Whenever in the vicinity of stores with

appropriate stock, your assistant alerts you and when making a purchase yourlist is

automatically updated as the assistant is also your payment device.

Such a scenario is not the sole domain of science fiction writers; similar scenarios

have been attracting the attention of computer scientists since Weiser’s visions [128]

in 1993. He imagined computer systems disappearing into our environment such that

their presence and their use, like any ubiquitous object, is taken for granted. Pervasive

computingis one realisation of Weiser’s foresight. A pervasive system is one that, rather

than residing on one clearly defined device (or network of devices) and being constrained

to the boundaries of that device, pervades the environmentof its user(s), making use of

resources available to it in an apparently ad hoc fashion. It is characterised by wireless

networked devices forming an open network in which software with a high degree of

autonomy and intelligence can sense and adapt to the changing context of its users’

actions. Many novel applications of pervasive system technology have been proposed,

including smart houses,assisted living, location awareness and calm technologies [130].

The shopping scenario introduced above is used later in this thesis, for illustrative

and evaluative purposes. Whilst the author believes this to be a realistic future appli-

cation of computing technology, it was not their intention to narrow the scopeof this

work to such an application, nor to propose it as an exemplar. As stated, its purpose

was to serve as just one case-study that demonstrates certain characteristics of context-

aware systems and exposes someof the difficulties that must be overcomeif we are to

program reliable systems within a highly distributed computing environment.

4

1.4 Programming paradigms

Imperative programming languages have been dominant since the birth of the the

software industry. Their origins can be traced back to the assembly languages of com-

puters with the dominant von Neumann architecture. Imperative languages have of

course evolved, gaining new constructs and syntax, in response to both the needsof de-

velopers and the applications they create. Techniques for restricting the scope of data,

and improving the modelling of the real-world are exemplified by imperative program-

ming in its latest guise— object-oriented programming. At the same time imperative

languages have adopted constructs for splitting application code into multiple threads

of execution and dealing with the problems that arise when these threads have shared

access to data. However, despite their improved syntax and additional constructs, they

remain imperative in nature. The programmer must describe both what their code

must achieve and how it must achieve it. That is, in writing imperative code, the

programmer must explicitly give the logic and execution order of all statements. An

algorithm is both the goal and a solution, leading to an inevitable confusion of the two.

Since it is usually of no consequence to the user how their software satisfies their

requirements, only that it does so, it is desirable to be able express just these re-

quirements in a succinct and precise manner. Indeed, this is often the output of the

requirements analysis process of many software engineering methodologies, and is used

to verify that software is implementedcorrectly. Unfortunately, automated methodsfor

verifying that imperative implementations match their specifications, where possible,

are not practical for most applications.

In contrast, declarative languages and in particular, logical declarative languages,

provide a goal-driven approach to programming which, in most cases, relieves the pro-

grammerof the burden of describing the path to a solution but instead allows them

to focus on describing properties of the solution. In essence, a program of declarative

logic statements is a formal theory where execution of that theory consists of one or

more deductions that are consistent with the theory. Such languages tend to provide

far greater clarity of programming akin to that of a formal specification of require-

ments. Furthermore, the lack of side-effects in declarative languages lends themselves

to concurrent programming, where side-effects are difficult to manage. But perhaps

the greatest motivation for the use of a declarative approach to programming is the

potential for automated verification, possible due to the close correspondence between

specification and implementation languages.

1.5 Agency

Given the prevailing trends of computing hardware (interconnection, cost and perfor-

mance), those of programming (greater abstraction and human-orientation), and those

5

of intelligence and ubiquity associated with the use of computing, the popular concept

of agency is a complementary choice for engineering distributed systems [20].

Of the many challenges highlighted by the Ubiquitous Computing Grand Chal-

lenge [66] it is the high-level modelling and specification of such systems that this

project focused on. Current software engineering techniques and tools do not have use-

ful abstractions for, and are unable to express many of the desired behavioursof, intel-

ligent distributed systems, such as context-awareness. Thus we took an agent-oriented

stance towards the modelling of these systems, which was, we believed, sensible due

to the autonomous and proactive nature of agents. Proactive, autonomous, adaptive

and fault-tolerant are adjectives commonly used to describe distributed context-aware

systems.

All but the most trivial of agent-based systems are modelled as multi-agent sys-

tems where each agent has distinct goals, and therefore purpose, and enjoys individual

autonomy. Agents combine, often in a co-operative way to satisfy the end-user require-

ments of a given application. It is inconceivable that a pervasive computer system for

example, that is modelled using an agent-oriented approach, will not comprise many,

many agents.

The agent abstraction is often modelled as isolated pairs of agent and environment,

with each agent being aware of other agents only by sensing changes in their envi-

ronment brought about by the actions of those other agents. Direct communication

between agents greatly facilitates their ability to cooperate but many in the agent re-

search community believe that an organisational abstraction must be introduced to the

multi-agent modelling process if individual agent’s efforts are to support a system’s

global aim. Thus, how agents in a multi-agent system are organised is a key problem

that currently holds much attention from the agent research community [9, 98]. In

Chapter 4 and, in more detail in [74], reviews of some of the many proposed agent

organisation strategies are presented, with the aim of uncovering the key concepts of

agent-organisation.

Finally, the agent research community is motivated not only by the potential of this

field but also by its successes. Agent-based techniques have been used with great effect

in applications as critical as air traffic control [125] and space-craft management [101].

1.6 Logic

Traditional Predicate Calculus [82] forms the basis for most logic-based programming

languages. The most wide-spread example of these languages is Prolog, whose programs

contain facts and clauses, and are ‘queried’ rather than executed. Knowledge,in Prolog,

bears nodirect relationship to time and therefore concurrency can only be modelled by

applying meaning to standard predicate symbols, with an inevitable loss of clarity and

concision. Pnueli proposed a logical method of reasoning about time-dependent events

6

that allows the specification and verification of concurrent programs. His temporallogic

of programs [102] has inspired much workin this particular aspect of formal methods

and hasled to the concept of directly executable specifications. In METATEM [47], the

language employed to support this thesis, statements of temporal logic are ‘executed’

by a process of repeated deductions that result in a sequence oflogical interpretations.

Each interpretation represents a distinct moment in time that is logically consistent

with all previous moments. Such a model, o, is represented by

o= (80, 81, $2, 83, -- .

whereeach state, s;, represents a moment in time and where so represents the start-

ing/initial state. Thus, the model has, from any state, a finite past and an infinite

future.

Discrete, linear-time, temporal logic provides several operators for reasoning over

the interpretations of temporal states. Three common operators are the ‘CQ’ (“at the

next moment in time”), ‘L]’ (“at all future moments in time”) and ‘0’ (“at some future

moment in time”) operators. Formal semantics for these operators (in a model o at a

moment 7) are given below.

(7,1) F Ov iff (itl Fe

(o,i) - Ow iff there exists 7 >i such that (o,j) F ~

(o,i) —- Od iff forall j >%. (0,7) FY

Thus,using this logic, the dynamic behaviours of an agent can be expressedintuitively.

Statements of future intentions can be written with great clarity and concision, for

example

academic = Ulwriting

Owriting = published

published = (academic

METATEMis a programming language in which programs are temporal logic specifi-

cations and multiple programs can be executed asynchronously, with message-passing

communication. Using only the modal operators 0, } and © to convey temporalse-

mantics of always, eventually and in the nert moment respectively, this language is

well suited to capture high-level requirements of a class of systems characterised by

continuous concurrent execution [48].

1.7 The future

The changing landscape of computing brings with it many challenges; understanding

these challenges is the first step towards solving them. Thus much justified effort has

7

been directed to characterising the pervasive systemsof the future. Research by Coutaz,

Dobsonetal. [25, 40, 39, 41] and the UK’s Ubiquitous Computing Grand Challenge [65],

each describe requirements for clear, focused and principled design and development of

such systems.

Key characteristics that occur repeatedly in these and other authoritative works

include:

Context: The requirementfor software to modify its behaviour appropriately when the

behaviour of entities in its local environment changes requires rich models of context

and tractable methods of reasoning about contezt.

Mobility: An infrastructure comprised of a multitude of wirelessly connected mobile

devices with limited resources implies that software must also be mobilised, allowing it

to migrate for efficiency, security and reliability reasons. Movement not only produces

changes in location, but also in context and possibly in context- or resource-dependent

behaviour.

Responsibility: Any action made by a system, in a dynamic environment without

central authority, is made without full and certain knowledge of the system’s state.

Actions may produce undesirable environment states or unwanted side-effects which

adaptive systems should be able to detect and mitigate the effects of.

Organisation: Pervasive/Ubiquitous computing suggests a proliferation of single pur-

pose agents which, with organisation, collectively perform useful tasks. Thus, “inter-

connection is more important than data” [41]. So, whilst each agent may be described

as autonomous it must have a clear structural position if the interaction necessary to

ensure security, efficient communication and much more, is to be produced.

Uncertainty: In dynamic and unpredictable environments, individual events cannot

be reliably used as the triggers for system behaviour. Similarly, in systems composed

of multiple autonomous entities, each with the ability to provide information about its

environment, we must expect discrepancies and uncertainties to occur.

Dependability: Widespread deployment and adoption of such technology will not be

achieved until high levels of dependability are reached. Many application areas expected

to exploit this technology are of a safety critical nature or carry security and privacy

risks which require levels of dependability only possible through formal techniques.

These are radical changes to the current dominant computing platform, which if

realised, will enable software to become less dependent upon user interactions, more

adaptable to subtle changes in context of use.

8

In summary, the author believes that a declarative language based upon temporal

logic provides an opportunity for software development to adaptto these trends, harness

the potential of the concurrency implied by these systems, with accuracy and concision.

All of this, while potentially benefiting from the advantages of formal methods such as

true verification in the future. Thus, this thesis evaluates to what extent METATEM

can be extended with multi-agent organisation concepts and context notions in order

to provide a basis for the principled programming of pervasive systems.

1.8 Aims and achievements

As is to be expected, the general evaluation aim as described above, can be divided

into many and varied sub-tasks. Whilst this document aims to present a palatable

summaryof the project, there have been many other outputs of the project and these

sub-tasks. Furthermore, the life of a PhD student is not entirely occupied by their

project (despite its domineering influence), he or she is encouraged to participate in

Departmental activities in relation to both teaching and research, such as conducting

undergraduate seminars and publishing research papers. This final introductory section

describes some of the aims, achievements and outputs that are not explicitly mentioned

elsewhere in the thesis. Additionally, this project was able to support two final-year

undergraduate projects and a vacation project, which were co-supervised by Michael

Fisher and the author.

Clearly, the argument for the use of a given technology is supported by both theory

and practice, therefore with the aim of evaluating the use of METATEM with respect to

pervasive computing, and of adding weight to the argumentsofthis thesis, a robust, re-

liable and efficient implementation of an agent interpreter was essential to the success of

the project. This realisation put significant focus on the design, coding and documenta-

tion of the METATEM interpreter and germinated at least two undergraduate software

projects. Whilst this thesis, rightly focuses on the fundamentals of the approach, it

perhaps does not convey the amount of effort expended by those involved in its design

and implementation, nor the potential future utility of a perspicuous and maintainable

code base. Specifically, the project has directly led to the following software outputs.

e A Java interpreter for multiple METATEM agents.

e A standalone Java API for creating, manipulating and evaluating temporallogic

formulas.

e A graphical visualisation tool for observing, analysing and debugging multi-agent

structures, at run-time.®

°This tool was developed by final-year student Michael Ceislar when he joined the project with the

help of an EPSRC Vacation Bursary.

Finally, a numberof research papers have been co-written, published and presented

with fellow group members. This invaluable experience has also led to a number of

peer-review requests, which have been gratefully accepted. In chronological order,

these research activities and outputs were;

Presented at the 9** European Agent Systems Summer School (EASSS’07).

Hepple, A., Dennis, L. A. and Fisher, M. A CommonBasis for Agent Organisation

in BDI Languages. In Proceedings of 1% International Workshop on Languages,

Methodologies and Development Tools for Multi-agent Systems. Lecture Notes in

Artificial Intelligence 5118, pages 177-188, Springer 2008.

— Chapter 4 contains the key points from this paper.

Dennis, L. A., Hepple, A. and Fisher, M. Language Constructs for Multi-Agent

Programming. In Proceedings of 8International Workshop on Computational

Logic in Multi-Agent Systems (CLIMA). Lecture Notes in Artificial Intelligence

5056, pages 137-156, Springer 2008.

— Chapter 5 correspondsclosely to the purpose and content of this paper.

Presentation of the above at both the LADS workshop and the European Work-

shop on Multi-Agent Systems (EUMAS)in 2007.

Peer-review for Journal Knowledge Engineering Review, Cambridge University

Press.

Peer-review for EASSS’09.

Fisher, M., Dennis, L. A. and Hepple, A. Modular Multi-Agent Design. De-

partment of Computer Science, University of Liverpool Technical Report number

ULCS-09-002, January 2009.

Peer-review for International Workshop, Programming Multi-Agent Systems(Pro-

MAS).

Peer-review for EASSS’10.

Fisher, M. and Hepple, A. Executing Logical Agent Specifications. Chapter in

Multi-Agent Programming: Languages Platforms and Applications, Volume 2,

Springer 2009.

— This publication has provided material for Chapter 3 and influenced other

chapters.

Fisher, M. and Hepple, A. Executable Specifications for Pervasive Systems. Sub-

mitted to Journal ACM Transactions on Autonomous and Adaptive Systems.

10

— This paper has been prepared using material from Chapters 6 and7.

At the time of writing, more information, including copies of papers, downloads and

links to external sources, can be found at

http://www.csc.liv.ac.uk/~anthony .

To clarify the aims of the thesis and the structure of this document the chapters

contained herein can be summarisedas follows. Chapters 1 and 2 discuss the underlying

trends in computing that led to our adoption of a principled agent-oriented approach

to the programmingof context-sensitive applications. Chapter 2 continues, by describ-

ing some of the ways in which the concept of context has been interpreted, modelled

and used, before giving further background information about some agent-oriented pro-

gramming languages that are comparable to the one we adopt. Chapter 3 provides a

detailed description of the METATEM language, its implementation created for this

project and the language extensions which it provides, whilst Chapter 4 elaborates on

these extensions, providing their formal semantics and demonstrating how they can be

used to model concepts of agent organisation. Chapter 5 can be regarded as a comple-

mentary addendum tothethesis as it does not address the issue of context directly but

argues for a common underlying basis for agent organisation across a certain category

of agent programming languages. Chapters 6 and 7 demonstrate and evaluate our ap-

proach by undertaking two pervasive computing case-studies. Finally, Chapter 8 draws

some conclusions and makes suggestion for the direction of future work.

11

12

Chapter 2

Background

2.1 Ubiquity

This chapter describes with more detail the nature of the emerging trend for ubiquity

and mobile devices. It outlines the challenges faced by those who wish to develop and

deploy novel applications and touches on someofthe, already significant, body of work

that has been published. Ubiquity and pervasive computing scenarios present many

and varied challenges that will no doubt keep manyresearchers occupied for many years

to come. This chapter defines the scope of the author’s research within the wider field

by clarifying which of these challenges it aims to contribute to.

2.1.1 Trends and drivers

The availability of small, inexpensive and low energy computing devices is one of many

premises supporting the argument that we are on the verge of a significant shift in

system engineering — if only driven by industry’s inevitable desire to find applications

for button sized (or smaller) devices[67].

Many novel applications of pervasive system technology have been proposed, in-

cluding smart houses, assisted living, location awareness and calm technologies [130].

It is not only new applications that pervasive technology will bring, it promises to en-

hance the way we use conventional applications — reducing the system’s dependency

on our deliberate intervention and freeing us to concentrate on higher level activities.

Groupware will benefit from the automatic entry of appointments, deduced from re-

lated activities such as telephone conversations. Point of sale equipment will be aware

that to sell alcohol to a minoris illegal, and reject such a transaction. Information

will be accessible on all manner of objects, presenting itself in a form and at a time

appropriate to the user without prompting— step onto a train platform and a customer

information panel seamlessly queries the itinerary held on a discrete device woven into

your jacket, and displays the time of the next train to your destination.

13

2.1.2 Limits

As the distribution of computing devices within our every day environment approaches

ubiquity and the scenarios mentioned in Section 1.3 become more common, so the

key problems that must be overcometo realise the potential of ubiquitous computing

becomeclearer. With clarity in the characterisation of problems comesan indication of

their scale. Indeed, two of the original six Grand Challenges set by the UK Computing

Research Committee! were directly related to ubiquitous computing. UK-UbiNet is an

EPSRCfundedproject that has declared a manifesto that invites researchers to rise to

the challenge [65].

Meeting the Grand Challenge requires a multi-disciplined effort and involves many

aspects of computer science. Techniques are being developed to deal with aspects such

as low energy wireless networking, sensor technologies and ad hoc networking, but it

is two sub-projects of the UK-UbiNet project that this doctoral project complements;

Agent Technologies and Model-checking ubiquity [66].

If, as is expected, developments in hardware provides us with the ability to create

reliable low-power ad-hoc networks and such systems becomesocially acceptable then

we still need to develop the means of specifying and expressing the behaviour we want

(and don’t want) from such systems. Thereare also interesting opportunities for novel

forms of human-computerinteraction and radically new user experiences, howeverit is

the programming problem that is clearly the main barrier and so becamethe focus of

this research.

Conventional approaches to engineering distributed software systems take a cen-

tralised view of the system, typically employing a client/server model to organise the

components. In pervasive computing scenarios, as outlined above, a central authority

will not be practical — the number of components (clients) is expected to increase

beyond practical limits, components will be transient (joining, changing roles within,

and leaving, a system in a highly dynamic fashion), continuous communication chan-

nels between components and a central authority cannot be relied upon and, crucially,

components will require high levels of autonomy.

The programming problem is aggravated by the paradigms, languages and tools

currently used. The predominant event driven, object oriented tool sets are not suitable

for software that must be pro-active, adaptive, autonomous and context aware.

2.1.3. Challenges

In order to progress this project it was important to understand what characteristics

are required of a pervasive systems programming language. This is the very question

considered by Dobson and Nixonin [40] and [41], resulting in an informallist of require-

1They have since been merged into one. For more information on the grand challenges:

http: //www.ukcrc.org.uk/grand_challenges/current/index.cfm

14

ments. This section describes these requirements and relates them to the techniques

used during the author’s research.

Dobson and Nixon’s “wish-list” [41] can be summarised as follows.

(a)

(b)

(c)

(d)

(e)

Events are too noisy to serve directly as a basis for programming.

In dynamic, unpredictable environments of the kind that pervasive systems are

expected to operate in, individual events can not bereliably used as the triggers

for system behaviour. Thesignificance, accuracy and volumeof events make them

unsuitable for describing system behaviour without considering other properties

of the system.

Don’t take anyone’s word for anything.

In systems composed of multiple autonomousentities, each with the ability to

provide information (sensed or otherwise generated) about the environment, we

must expect discrepancies to occur.

Interconnection is more important than data.

Whilst the access to knowledge (sources) is important, it is essential that the

reliability and significance of sources are considered. A disconnected component

must depend upon its own source (sensor) for information, whilst a highly con-

nected component should have somestrategy for exploiting those connections and

need not have its own source.

Any decision needs a mitigation strategy.

Any action made by a system, in a dynamic environment without central au-

thority, is made without certain knowledge of the system’s state. Actions may

produce undesirable environment states or unwanted side-effects which adaptive

systems should be able to detect and mitigate the effectsof.

Everything interesting comes from composition.

Any framework for building distributed-intelligence must provide a well-founded

basis for the composition of systems from independent components such that their

interactions are well understood before deployment.

Let us examine each of these points separately.

Events are too noisy (a)

Individual events, such as the transition of a user from one zone to another, cannot be

used in isolation to trigger system behaviour. For instance, in a meeting room scenario,

it cannot be assumed a meetingis over if an individual sensor reports that an attendee

has left the room—they may have hung their jacket (containing their identifier) on

the back of the door or strayed into an area of sensor inaccuracy [41]. Instead, the

15

Belief revision > new belief
—_>

eventsyy Relevancyfilter >

ney
>

Figure 2.1: Events can be reducedtobeliefs.

event must be considered against a broader context before a decision is taken to act.

It is contexts and the properties of human reasoning that the agent-oriented paradigm

to be introduced in Section 2.3 employs. Rather than being event driven, and risk

being overrun byall minutiae of events, agents are driven by more abstract notions. In

this abstraction systems behave according to their beliefs and changesin their beliefs,

giving a stronger basis for acting than events alone. Beliefs are derived not only from

sensor data but also as a result of reasoning with existing beliefs, the general concept

is depicted in Figure 2.1. In practice the relevancy check might be performed by an

agent acting on behalf of all the agents in a given context, protecting them from the

disabling effects of excess communication.

In termsof logic, significant work [30] has been carried out on the extension of

epistemic logic with attributes that indicate an agent’s degree of certainty that a given

belief is true. In this way beliefs arising from less relevant (perhaps more distant or

less trusted) sources can be assigned lower probabilities and subsequently used to filter

the noisy events.

Don’t take anyone’s word for anything (b)

This statement refers to the noise level expected in data from environmental sen-

sors—high levels of noise means that atomic environment perceptions cannot always

be trusted. Two distinct approaches to this problem exist; the consensus estimate, and

assigning trust values to the sources of perceptions.

An agent-oriented approach is the closest to the latter. If considering a critical

system behaviour that is dependent upon a percept which can be sensed by a number

of sensors, a multi-agent approach might model the behaviour and each of the sensors

as an agent. The levels of trust between data consumers and data producers would then

be expressed by inter-agent relationships and constraints on inter-agent interactions.

Interconnection is more important than data (c)

Pervasive computing applications will not simply emerge, once our physical environ-

ment has been saturated with sensor devices. The data itself, without a model rich in

relationships is not sufficient to allow applications to derive the enormous amounts of

knowledge required of intelligent behaviour. Many modeltypes have been proposedto,

for example, reason about time, communication and security, however any pervasive

16

computing application is expected to involve many,if not all, of these aspects. There-

fore any general pervasive computing platform will need to be flexible enough to allow

the construction of a wide variety of models. If the abstract entity used to describe

these systemsis to be the ‘agent’ and systems are to be comprised of multiple agents,

then the agents must be organised into appropriate structures.

In Chapter 4 the author demonstrates that by providing agents with appropriately

flexible constructs, agents themselves can become become groups, collections or net-

works, indeed whatever structure is appropriate for the application.

Any decision needs a mitigation strategy (d)

In dynamic systems composed of asynchronously executing autonomous components

it must be expected that an action made for a given purpose may bring about some

unforeseen side-effect or simply not achieve the desired outcome. Theability to cope

with such situationsis one of the main aimsof adaptive behaviourresearch, an area that

agent-oriented techniques have contributed to. Agents have goals describing desirable

system states and plans to achieve the goals. Unlike objects, which react to system

states with the same action (method) each time they encounter that state, agents

commonly have a numberof plans for dealing with the same system state. If an agent’s

plan fails to achieve a goal it is able to try ‘plan b’. Commonly an agent also has

failure plans which apply when unable to achieve a goal, the purposeof the failure plan

is often to ‘revise’ the goal and ‘undo’ any unwantedside-effects of its failed attempts.

Everything interesting comes from composition (e)

This statement may appear to be philosophically inspired but is also supported by

the success of simplification techniques such as divide-and-conquer. Computing trends,

both hardware and software have been following a component-built model for many

years. However, where Dobson’s and Nixon’s concept of composition differs from the

conventional interfacing of software components or the networking of personal com-

puters, is its impromptu,flexible and yet reliable nature. Components are currently

designed to fit narrow requirements and mostly require manual adaptation if those re-

quirements change. Components in pervasive environments will be flexible enough to

combine with a wider variety of other components, giving the potential for interesting

composites. This requirement has manysimilarities with the goal of open agent so-

cieties, in which agents, unknown at compilation time, may enter and interact using

open protocols.

17

2.2 Context

Perhaps not surprisingly, context appears to be a concept with numerousdefinitions.

The dictionary-style definitions encountered during this work arelisted here.

1. The weaving together of words and sentences.

This literary meaning of context suggests that context is the collective meaning

given by words and sentences such that this meaning is not conveyed by any

individual word present.

The connection or coherence between the parts of a discourse.

This meaning is more appropriate for the purposes of agent interaction but is

perhaps too general to be a useful definition.

. The body of information that is presumed to be available to the par-

ticipants of a speech situation.

This definition suggests that context is largely factual in nature and static for a

given interaction.

. The physical and social situation in which interacting entities find

themselves.

In contrast to definition 3 above, this definition defines context as the situation,

as opposed to the knowledge inherent in the situation.

The discourse that surrounds a language unit and helps to determine

its interpretation.

From Linguistics, this definition highlights the effect context can have on the

meaning of an interaction.

Clearly some of the above definitions are more relevant to this work than others but

each add to our understanding of the concept. Naturally, there have been attempts from

within the computing community, to define context. We can add the two prominent

onesto ourlist:

6. Where you are, who you are with and what resources are nearby.

Schilit, Adams and Want, in [115], informally describe context this way. It is

the author’s opinion that this overstates the influence of location and physical

surroundings which, although often significant, are not necessarily so. Also, it

seems sensible to add “what you are doing” to this description.

Any information that can be used to characterize the situation of an

entity.

This popular definition of context from Dey [36] goes on to describe an entity as

“a person, place, or object that is considered relevant to the interaction between

a user and an application, including the user and applications themselves”.

18

It was felt necessary to define context for the scopeof this project in orderto give clarity

to this work. After consideration of the above definitions and the project objectives

the following definition was assumed:

Context: The connection or association between the participants of an interaction

and any characterising information.

2.2.1 Early experiments

The Xerox PARClaboratory originated the idea of Ubiquitous Computing based upon

the belief that by exploiting contextual information such as the spatial arrangement of

devices and users, and novel modesof interaction, that future computer systems may

be able to provide more valuable services collectively, than they can individually [127].

The PARCTAB,a handheld, tablet shaped, wireless device with touch sensitive screen,

formed the centre-piece of the laboratory’s pioneering work in the early 1990s. The

PARCTAB experiment provided valuable insight into many of the problems that face

ubiquitous computing researchers today. Problems that one might expect such as user-

interface design and power management, were indeed encountered but were not re-

garded ascritical. Rather, in [127] they state that

“Creating such an intuitive and distributed system [as envisioned by Weiser

in [130]] requires two key ingredients: communication and context.”

The PARCTAB project demonstrated an early example of technologies that have since

become widespread, such as the incremental search techniques exemplified by the T9™

predictive text feature of mobile telephones.

The architecture of the PARCTAB system was, of course, influenced by hardware

limitations at the time. Consequently the hand-held devices, equipped with little pro-

cessing power or memory in comparison to equivalently sized devices today, werelittle

more than “thin clients” for applications that resided elsewhere on the network. Partly

as a consequenceof the limited mobile resources but also by design choice, each mobile

device was partnered with a software agent. These agents were responsible for forward-

ing events between the tablet and applications but also for providing applications with

information about the context of a tablet and its user. Significantly, the terms context

and agent came together in this very first Ubiquitous Computing experiment. Exam-

ples of contextual information managed by the agents included location, the proximity

of other devices, the presence of people, time, and the state of the network file system.

While some context-aware applications were developed [115], the use of context was

relatively conservative. Context was often limited to modification of menu choices or

simply presentation of context information so that the user could make more informed

decisions, for example about whether or not to disturb a colleague.

19

Language choice

The developers of PARCTAB did consider the suitability of available programming lan-

guages before embarking on their experiment but did not have the luxury of suitable

special-purpose languages. Instead they chose, what at the time, was a state-of-the-art

general purpose object-oriented language—Modula-3. A choice which, on evaluation,

proved unpopular with developers. Developers, they concluded, preferred a choice of

languages with familiar constructs. These conclusions support the argument that any

language innovations must provide marked benefits (as opposed to incremental ones) if

they are to be adopted.

Overall, the PARCTAB experiment was an important landmark in context-aware

computing as it generated interest and ideas in the area, and influenced some commer-

cial products on the market today.

2.2.2 The handling of context

In a branch oflinguistics that studies the use of language in social interactions and the

semantic contributions that context provides, called pragmatics, philosophers attempt

to understand how ambiguities of language are overcome by employing a number of

non-linguistic concepts such as presupposed knowledge, environmental circumstances

and speaker intent. The study of pragmatics is motivated by the many ambiguities

that sentences presented in isolation can contain. For example, consider the sentence:

“You are heading in the right direction.” Presupposed knowledge held by both the

speaker and the spoken-to may include an absolute direction (e.g. north, south, east

or west) and a target destination, in the context of spatial directions. Or, in a different

context, presupposed knowledge may include a mutually understood goal or solution

to a problem, and an activity that the addressee is currently undertaking to achieve

that goal. Context then, as defined by those studying pragmatics, is the body of

presupposed information that fixes the meaning of discourse. One challenge that is

common to both computer scientists and linguists but perhaps more acute for those

computerscientists interested in automated reasoning, is the identification of knowledge

and its assignation as common-knowledge.” Even with respect to information systems

the nature of common-knowledge will vary dramatically between applications. For

instance, environmental circumstances will differ for an auction-based trading platform

and a medical monitoring system.

In [120] the author argues that the linguistic aim of any speech act is an attempt to

modify the body of presupposed information. The theory of agency has been strongly

influenced by the work of linguists and particularly by the theory of speech acts [116].

?Similar to the concept of presupposed-knowledge, the concept of common-knowledgeis used in the

field of knowledge representation, a sub-field of computer science. For the purposes of comparison,

one can think of common-knowledgeas explicitly shared presupposed knowledge within a monotonic

reasoning framework.

20

To the extent that the Foundation for Intelligent and Physical Agents (FIPA) have

defined a standard Agent Communication Language based upon the theory of speech

acts. The relationship between the semantics of agent communication and the han-

dling/modelling of context is clearly a intimate one.

Attempts to formalise context understandably vary in their treatment of and ap-

proach to context, based upon a their chosen definitions of context. This section aims

to describe the variety of contributions from both philosophers and computerscientists,

hence describing the author’s view of the state-of-the-art in contextual modelling and

reasoning.

A pragmatic view of context

In [119], and concerning the study of speech acts in a social context, the author proposes

a model in which context is treated as a first-class concept and combined with Kripke

semantics of possible worlds to produce a semantics that interprets propositions from

speech-acts and context, and subsequently truth values from possible-worlds. Simplis-

tically, a speech-act combines with a context to give a proposition:

speech_act x context ++ prop

and truth values are obtained with an interpretation function Z with Kripke semantics:

T(prop) ++ {true, false}.

Such a treatment of context could be viewed as the extraction of information from 7,

whereasa simpler system might involve a direct mapping from speech-acts to proposi-

tions and a correspondingly expanded modelof possible worlds within Z. However, the

use of contextual knowledgein the derivation of propositions recognises the subtle but

real difference between presupposed/contextual and the rest of the knowledge used for

any given computation.

2.2.3 Context modelling

Such is the general consensus that context will perform a key part in the long term

transformation of software engineering, that a significant amountofeffort has been, and

is being, channelled towards the modelling of context. Here we refer to the modelling

of context in isolation from (but with regard for) software and program code. In [8]

Bettini et al identify some requirements from their ideal context modelling technique.

It is not surprising that the list of requirements bears striking comparisons with the

requirements of an ideal pervasive computing programming framework, as discussed

on page 15 of this thesis, and serves to reaffirm context’s place in the programming of

pervasive systems. Bettini et al require that an ideal context modelling technique be

able to:

21

e deal with heterogeneity and mobility with respect to contextual information

sources;

e express relationships and dependencies between types of context information;

e express the timeliness of context information, such that past, present and future

context information is identifiable;

e express the quality of contextual information due to the likeliness of imperfec-

tion;

e support reasoning with the modelled data;

e provide usable modelling formalisms to facilitate both real-world modelling

and manipulation by software applications; and

e support efficient context provisioning such that even in the presence of mas-

sive amounts of context information, relevant information can bereadily identified

and accessed.

No single technique claimsto satisfy all of these requirements. The Context Toolkit [37]

enjoyed early prominence with its concept of observable context ‘widgets’ and in [26]

Coutaz and Rey extended these concepts with their Theory of Contextors, that involved

mappingrelationships between context-providing ‘observables’. Their work makesa de-

liberate distinction between the concepts of a situation and a context; the former being

described as a temporal snapshot of observables and the latter being composed of the

changes in observables over time. However, as this field of research has developed three

other approaches have emerged, each of which are currently being actively pursued,

namely object-role based, spatial models and ontology based. The remainderof this

section briefly describes an example of each of these approaches and their respective

advantages.

Object-role based

Object-role modelling is a technique that arose from database modelling which allows

formal description of concepts via intuitive languages and diagrams. A prominent

form of object-based modelling of context is the Context Modelling Language (CML),

described in [73]. CML uses an XMLbased languageto describe the detail of contextual

concepts in detail but also uses a form of predicate logic to reason about higher-level

context abstractions called ‘situations’. The formality of CML andits semantics enable

the context information to be fed to fact-based reasoning engines. Strengths of object-

role modelling include its support for graphical modelling and the fact that it is based

upon a mature modelling technique which is familiar to a broad base of developers.

22

Spatial models

Physical location is an essential feature of context in many context-aware applications.

Spatial models often tend to be fact-based models, such as object-role, that include a

location fact and in which entities are structured according to location. Location can be

symbolic or can be based upon a coordinate system. Spatial models effectively elevate

location to the primary context; thus applications whose primary concernis location

can benefit from efficient context provisioning due to the complementary way in which

data is structured and the potential for pruning the search space based upon location.

An example of this type of spatial models is the Augmented World Model [97].

Ontology based models

Ontology based models consider context to be knowledge, supporting context definition

number 3 above. Hence the popularity of OWL-DL which,as a carefully chosen subset

of OWLanda description logic, offers complete reasoning and is well supported by au-

tomated reasoning tools. Furthermore, ontologies are ideally suited for sharing context

information in pervasive and non-pervasive computing environments. The SOUPA [18]

ontology has been proposedspecifically for pervasive computing applications.

In summary, these approaches to handling context consider context as an extraneous

information type which is queried and may beheld centrally. In contrast, and like the

literary definition number1 above, we considerit to be woven into the system’s model.

Other techniques

In addition to the models described above, which directly tackle context, there are other

modelling techniques that provide an appealing means of expressing and modelling

context even thoughthis is not their primary purpose. Milner’s Bigraphical model[83] is

a nice example of such a technique. Bigraphs are an attempt to combinea spacial model

of entities, with a model of connectivity, in a rigourous algebraic way but also providing

an appealing graphical representation. The graphsprovidean intuitive way for humans

to model and analyse the spacial relationships and communication connections that

exist between autonomousentities in a system, whilst the algebra allows the graphs to

be transformed in a consistent way. In this approach a graph (or sub-graph) can be

viewed as a context for the activity of a node in the graph. As wewill see, bigraphs

share somesimilarities to the modelling approach adopted by this thesis. However,

bigraphsare necessarily restricted to the semantics of locality and connectivity whereas

our approach aims to have more general application.

2.2.4 Programming frameworks

Having reached a consensus that context, as a concept, is vitally useful when describing

the behaviour of entities in intelligent and distributed computing environments, an

23

understandable reaction is to modify existing programming frameworks in order to

accommodate context as a first-class entity. Although this approach is not the one

taken by this work, the evaluation of and comparison with, such an approach was

important to the completion of this project. This section describes, amongst others,

the Java Context Awareness Framework, a mature extension of the popular object-

oriented programming language.

Extending Java with context

The Context Toolkit [37] was one of thefirst attempts at a middleware for storing and

disseminating context data that allowed context-sensitive applications to built without

this overhead. The Context Toolkit provides simple context ‘widgets’ and an API for

distributing and accessing them in a networked environment. Although conceptually

useful [96], the Context Toolkit did not employ popular software development standards

and currently does not appear to be maintained.

The Java Context Awareness Framework (JCAF) [3] arose from the need for a

generic programming framework that supports the programming of context-aware ap-

plications with conventional languages. It aims to be a light-weight set of interfaces

that allows the expression of context-based events, communications and actions with

constructs from the Java programming language and uses well-known patterns such

as the event model. JCAF facilitates the creation of distributed service-oriented and

event-based applications and does not target any specific application domain. It pro-

vides a Run-time Infrastructure that gathers together a numberof context information

processing services, and an Application Programming Interface (API) for developing

the context-consumingclients [3].

JCAFapplications are able to make requests for contextual data on a client-server

basis or subscribe to relevant context events. Sharing of sensitive data has been con-

sidered and basic access control implemented. JCAF upholds the worthy design prin-

ciple of semantic-free modelling abstraction with respect to context, however this is

easily achieved by allowing context data to be any Java object that implements the

ContextEntity interface. Interestingly, JCAF allows quality measures to be assigned

to context information, indicating for example, its age, accuracy or the dependability of

its source. A context-providing service maintains contextual information for a distinct

environment; when an application’s domain contains multiple distinct environments,

these services are networked in a peer-to-peer topology and able to query one another,

presumably to locate information they have been asked for but do not possess.

Within each context-providing service runs an entity component corresponding to

a context-sensitive entity in the application domain andin turn, each entity holds any

number of context data items. Each service entity is a Java process that is responsible

for monitoring and responding to changes of context in the application entity. This

24

is achieved with notions of context monitors and context actuators, each of which is

represented by a Java interface.

Interestingly, some similarities exist between the context entities of the JCAF run-

time and the way in which contextually related agents are structured in the proposals

detailed by this thesis. Related entities are held in a container, this container controls

the life-cycle of entities it contains. Also, entity components are described as ‘working

together to achieve their tasks’, although it is not suggested that any level of agent-

like co-operation is occurring, merely that an object methodinterface is held by each.

Furthermore, a similar recursive relationship exists between context entities and context

items, whereby entities are themselves context items. Thus, an entity can comprise of

further entities.

During evaluation of this framework a context-aware hospital bed application was

investigated, here examples of context entities included patients, places, beds, medicines

and monitoring equipment. An entity container correspondsto a hospital and examples

of context data items are location (e.g. coordinates), a patient’s name, and treatment

activity [2]. Other applications investigated include proximity based user authenti-

cation and a novel information system for informing collaborating workers of their

colleagues’ current activities [4].

Whilst JCAF does not attempt to address the problem offinding novel programming

constructs appropriate for programming context awareness, nor does it attempt to

provide a means for any automatedverification of system properties or satisfaction of

requirements, it does achieve a credible infrastructure which could feasibly be deployed

across an organisation’s existing network, upon which a variety of applications could

access, share, generate and modify contextual data.

2.2.5 Logical formulations of context

This section discusses context in more depth. In particular, the popularity of context as

a concept for supporting reasoning and capturing general intelligence. We summarise

important attempts to formalize context, for example by McCarthy [92].

Context in AI

Perhaps the first significant proposal for a logical formalisation of context, whereby

context is explicitly expressed in the syntax of a languageof logic, came from McCarthy,

Guhaand Lenat in [92, 71]. Their aim was to enhance AIlogic with qualities of human

reasoning, such as context-based assumptions and the results were incorporated into

the Cyc common-sense database [70]. In attempting this aim they introduced a context

object and a relation ist, such that ist(c, p) asserts that proposition p is true in context

c, for the purpose of expressing common-sensein the form of context-dependent axioms

and thus allowing state (within an explicit context) to be expressed more concisely with

25

fewer assumptions. This formalisation requires all formulas to be asserted within a

context, including the ist relations, hence a hierarchical relationship between contexts

exists which can be harmlessly infinite [92]. The authorsrealised that time is a frequent

attribute of context, but rather than employ modal operators in the language, they

chose to describe time and other attributes of context as a term in a function which

specialises a context, i.e.

ist(specialize-time(t, c), p)

which says that proposition p is true at time ¢ in context c. Clearly the proposed

language was not designed for dynamic reasoning, howeverits authors did consider the

acts of entering and leaving context, basing their proposals on therelation ist(c, p)

having the meaning c => p.

Despite its relative obscurity today, this work provides significant background to

this thesis as it highlights some of the difficulties that present themselves when trying

to apply deductive techniques to aspects of human reasoning such as context awareness.

Situation calculus

Situation calculus provides a calculus for representing and reasoning about change. It

describes the world in terms of fluents (properties whose values are subject to possible

change), actions that can be performed and situations that arise from a sequence of

actions. Changes to the world are modelled as a sequenceof situations leading to time

t, where each situation appends actions to the previous situation and each situation

encodes a complete history of actions from time t = 0.

The language is based upon second-order predicate logic with three term types:

actions, AC, situations, S, and objects, O, where each type can be represented by

constant or variable symbols. The special constant sO denotesthe initial situation and

the function do is of the form

do: ACxS#HS

hence do(a, s0) denotes the situation resulting from performingthe action a in theinitial

situation s, and do(b,do(a,s0)) denotes the subsequent situation following action b.

Thusdirectly encoded within a situation is the sequence of actions that characterise it.

Fluents can be predicates or functions with arity of one or more and in each case the

final argumentis a situation. The value of predicate fluents are specified by domain

axioms knownas effect axioms that state in which situations and after actions, fluents

changetheir values. Other domain axioms, called “action precondition axioms”, specify

when(in which situations) an action is valid or invalid

Poss: AC x S + {true, false}.

Foundational and domain axioms combined enable the value of fluents to be calculated

for any situation. This valuation of fluents is akin to the interpretation of a possible

26

world in Kripke semantics but the situations within situation calculus are unique for

any system and have only one temporal occurrence —a situation cannot berevisited.

Though the situation calculus does not aim to address the context and does not

provide an explicit construct for context, it does encodes a verbose form of context by

providing, for each situation, a complete history of events that led to that situation.

GOLOG

Clearly the situation calculus in its pure form is impractical for the programming of

reactive non-terminating systems with infinite execution time, as this requires situa-

tions to have ever increasing, potentially infinite, lengths. Nevertheless, the GOLOG

programming language was developed from the theory of situation calculus and,like

METATEM,it too is a specification language which aims to capture a high-level of

behavioural abstraction.

Based uponthe situation calculus but also extending it, GOLOG provides an inter-

preter for specifications that attempts to generate a sequence of actions which satisfy

the specification. Amongtheinitial extensions to situation calculus were procedural

declarations and a non-determinism operator [90]. Perhaps the most significant prac-

tical difference between this GOLOG interpreter and the METATEM interpreter that

was implemented to support this thesis, is the static nature of a GOLOG interpreta-

tion. That is, a sequence of actions are determined ahead of execution, whereas the

METATEMinterpreter is able to react to run-time events and modify its future execu-

tion accordingly. The initial GOLOG languagelendsitself to implementation by Prolog

and multiple implementations exist, including an agent-oriented concurrent version

called CONGOLOG [21]. Finally, INDIGOLOG [32] introduces the possibility of reactive

behaviour by interleaving the execution of actions, allowing ‘agents’ to sense and react

at run-time.

Further descriptions of GOLOG, including its implementation and application, are

provided in Section 2.5 where a survey of respected agent languages is provided.

27

2.3 Agent concepts

The nature of hardware and software platforms is changing rapidly. There are trends

of increased distribution, openness and mobility, increasing modes of connectivity and

communication, and novel human-computerinteractions. This increased sophistication

provides the opportunity to develop software for ever more complex scenarios. Scenarios

in which software applications are expected to cope with unpredictable environments,

act with increased autonomy and adapt to the users’ changing context of use with

minimal explicit user intervention, and which are themselves distributed over many

hardware components.

This work is concerned with the development of a programming framework for ap-

plications to be deployed in such complex environments. The popular agent metaphor

of autonomousentities acting and sensing in some environment has been adopted due

to the ability of agents to act independently, to react to unexpected situations and to

co-operate with other agents, making it a natural choice. However, the agent abstrac-

tion is often modelled as isolated pairs of agent and environment, with each agent being

aware of other agents only by sensing changesin their environment brought about by

the actions of those other agents. Complexity is introduced by the presence of other

autonomousentities, by restrictions on time and memoryresources and by incomplete,

heterogeneous or contradictory, information; indeed by anything that introduces en-

vironmental dynamics. Hence, many believe that a further abstraction is required to

capture the complex relationships between an agent, the environment and the other

agents in that environment [98]. Thus, this section covers the background of agency

relevant to this work, with a particular emphasis on abstractions for organising multiple

agents.

The term ‘agent’ has many andvaried uses, including a category of software applica-

tion, an extension of an object and an intelligent mobile entity. For the purposesof this

work an agent is characterised as an autonomoussoftware component having certain

goals and being able to communicate with other agents in order to accomplish these

goals [135]. The key reason why an agent-based approach is advantageous for mod-

elling and programming autonomous systems, is that it permits the clear and concise

representation, not just of what the autonomous components within the system do, but

why they do it. This allows us to abstract away from low-level control aspects and to

concentrate on the key feature of autonomy, namely the goals the component has and

the choices it makes towards achieving its goals. Dennett’s theory of Intentionality [34]

provided the underpinning philosophy for modelling a system in terms of agents, where

each agent is ascribed beliefs and goals, which in turn determine the agent’s intentions.

Such agents then make decisions about what action to perform, given their beliefs

and goals/intentions. This kind of approach has been popularised through the influ-

ential BDI (Belief-Desire-Intention) model of agent-based systems [110] and a number

28

of programming languages based upon this model have been developed [15]. Across

these languages, some agreement on the core attributes of an individual BDI agent has

emerged.

Agents have beliefs, with which they can represent their environment and other

agents. They are just beliefs, they may not be true now or at any time in the past

or present, but are considered to be the agent’s best understanding with its available

information. In BDI agent languages, beliefs are often formalised with a modallogic of

belief [110, 111, 112]. Agents are driven to act autonomously by a motivational aspect

that also influences their action when faced with a choice. Commonly this motivation

is represented by goals which encode a desirable (for the agent) environmental state.

To achieve its goals without aimless random behaviour, an agent has plans which aim,

but do not guarantee, to achieve goal states.

2.4 Agent-oriented design methodologies

Although the scope of this thesis does not extend to methodsof agent-oriented system

design, a possible avenue of future work (described in Section 8.1) does. For this

reason it is worth noting someof the significant design methodologies proposed. The

methodologies Prometheus, Gaia and Tropos? stand out amongst a small number of

proposals, due to the authority of their authorship and/or their popularity of use.

Prometheus [100] has been developed with collaboration from the vendors of JACK

(described in the next section) and aims to provide a comprehensive process for the

specification, design and implementation of agent-oriented systems. Prometheusis a

practical methodology aimed at student and industrial audiences and is well supported

by development tools. In contrast Gaia [136], taking its inspiration (and name) from

Lovelock’s popular view of the earth’s eco-system, takes a more theoretical view of

multi-agent design. Gaia applies software engineering principles to the design of both

the agent and the society of agents. Gaia allows the specification of liveness and safety

properties, commonly associated with temporal-logic based specifications. Tropos [16]

combines knowledge engineering and software engineering principles, paying particular

attention to the analysis of human-agent interactions and thus encouraging a good

understanding of the problem domain.

2.5 Agent languages

As mentioned, a numberof agent languages have been inspired by the BDIarchitec-

ture, some of which are also formalised using logical languages. Most have inspired

implementations in executable programming languages. This section surveys a number

3The Greek origin of each of methodology nameis believed to be coincidental.

29

of respected implementations, indicating their logical credentials, their prominent fea-

tures and intended applications. The reader can find more detailed information in [15]

and [14].

2.5.1 dMARS

The Distributed Multi-agent Reasoning System (MARS) languageis a true successor

to the Procedural Reasoning System [63]—the forefather of all BDI-based program-

ming languages. Whilst not having a logical basis these systemsare significant because

of their close adherence to the BDI architecture and their robust commercially accepted

implementations. A dMARSagent has four main data structures: a plan library; a be-

lief base; an event queue; and an intention stack. Deliberative behaviour is described

by a numberofselection functions;

An eventselection function, responsible for selecting an event to respond to.

A plan selection function, responsible for selecting appropriate plans with respect

to selected events, current intentions and the belief base.

An intention selection function, responsible for identifying which of the identified

intentions to act upon.

Plans comprise of trigger event, a contezt which serves to modify the plan to suit the

agent’s circumstances, and a body of actions [112]. Although dMARShas reached the

end of its maintenance period, it remains one of the most successful agent systems

built, being used for many significant commercial applications such as control systems,

supply chain management andair traffic control [64].

2.5.2 GOLOG

GOLOGis an extension of McCarthy’s situation calculus (see Section 2.2.5) in which

agent programsare specified as situations. Recall that a situation in situation calculus

is a list of all actions that have led to it, as opposed to a list of properties which charac-

terise the situation. However, instead of explicitly stating an agent’s entire execution,

a GOLOGspecification may contain seguencing(;), test, iteration and non-deterministic

choice(|) of actions, and of other GOLOG programs(procedures). Thus, the following

program

Proc serve(n) go-floor(n) ; turnoff(n) ; open ; close endProc.

Proc go_floor(n) (current — floor =n) ? | up(n) | down(n) endProc.

Proc serve-a-floor(mn) [next_floor(n) ? ; serve(n)] endProc.

Proc control [while (Sn)on(n) do serve_a_floor endWhile] ; park endProc.

Proc park if current_floor = 0 then open else down(O) ; open endIf endProc.

30

from [90], in conjunction with the definition of domain fluents and axioms, describes

the behaviourofa lift. Execution is a form of theorem proving, akin to that of Prolog,

whereby a sequence of primitive actions is attempted and variables instantiated. A

successful execution producesa satisfying sequence of (grounded) actions. Concurrent

GOLOG (CONGOLOG)is an extension in which the execution of multiple GOLOGpro-

cesses are interleaved and wherefine-grained control of the interleavingis possible [31].

GOLOG has a popular following with robotics enthusiasts and cognitive robotics re-

searchers, following another extension, LEGOLOG[89].

2.5.3 AgentSpeak

AgentSpeak, was proposed by Rao in [109] as a logically sound variant of the BDI

architecture popularised by the Procedural Reasoning System (PRS) and dMARS.

AgentSpeak was given an operational semantics using a restricted first order modal

logic. Retaining concepts of events, actions and a belief-base this language drewsig-

nificant attention which, in turn, generated several implementations [11, 91, 132]. Of

these implementations, the Jason interpreter is the most developed [13]. In addition

to the BDI features of AgentSpeak, Jason adds inter-agent communication based upon

speech act theory, physical distribution of agents and a framework for designing agent

organisations [12]. The syntax used by Jason is reminiscent of Prolog, with horn-clause

heads representing goals and events, whilst the body represents a plan. Clauses can be

both guarded and annotated, allowing significant flexibility during plan selection and

event handling. The following Jason code, provided with the Jason download,illus-

trates how a ‘cleaning’ robot might react to the event of new knowledge, i.e. finding

garbage.

+garbage(ri) : checking(slots)

<- !stop(check);

Itake(garb,r2) ;

!continue (check).

If this event is selected, and providing the robot is currently checking for garbage

(checking(slots) is in its belief-base), then the agent/robot will attempt the body of

the plan. In this case involving three sub-goals. The second example below,illustrates

a plan for achieving a newly adoptedgoal.

+!stop(check) : true

<- ?pos(ri,X,Y);

+pos(back,X,Y);

-checking(slots).

31

This plan is always relevant as the guard is true and the bodyinvolves querying the

belief-base (7?) and adding (+), and removing (-), beliefs to/from the belief-base.

AgentSpeak has neither targeted nor attracted commercial applications. However,

it has a growing academic following, encouraged largely by the well-maintained Jason

interpreter.

2.5.4 3APL

3APL, pronounced ‘triple-a-p-l’, also follows the BDI architecture faithfully. It ex-

plicitly caters for concepts of belief, capabilities, goals and plans. Beliefs, goals and

(additionally) rules are declared as horn-clauses, whilst capabilities correspond to the

fluent axiomsofsituation calculus. A key feature of 3APL is its programmable deliber-

ation cycle which uses a meta-language to allow revision of goals and custom ordering

of goals [27]. The well maintained implementation from researchers at the University of

Utrecht allows agent communication and distribution, as well as the ability to execute

arbitrary Java code. 3APL does not target any specific application area and has(to the

author’s knowlege) not been applied industrially, it does however have a wide academic

user-base.

2.5.5 JACK

JACKis another language inspired by PRS and dMARSinto adopting the BDIarchitec-

ture. In fact, JACK is a commercial spin-off from the Australian Artificial Intelligence

Institute, who devised and developed both PRS and dMARS.As one might expect

from a programming language that targets commercial applications, JACK supports

the developer with tools such as an IDE and graphical plan development. JACK’s

syntax is a conservative extension of Java syntax, which not only enables agent code to

be translated into pure Java, but also makes the language accessible to existing Java

developers. However, it does mean that providing formal semantics for JACK is not

possible at this time. Communication between JACK agents is not limited to plain

messages, they can also share capabilities by sending ‘bundles’ of plans. Extensions

to JACK support FIPA communication and agent teamwork. Interestingly, the JACK

Teams extension adds the concepts of team and role in a way that models a team as

a specialisation of an agent, retaining all the agent concepts of plans, capabilities and

beliefs, etc. but allowing a ‘team agent’ to have sub-teams [133]. As we will see later,

this is similar to the approach to teamwork taken by METATEM.

2.5.6 Jadex

Jadex is the final agent programming language surveyed to be faithful to the PRS

example. One of its motivating aims is to make agent-oriented programming easier

and moreaccessible. To this end, beliefs are given an object-oriented representation,

32

such that the belief-base consists of sets of (name, object) pairings and can be queried

by a set-oriented query language. Goals too, are explicitly stored in a queryable goal-

base, a feature not present in most BDI style agent languages without a meta-level

reasoning extensions. Agents have a static definition by means of an XMLfile, whilst

plans are defined in pure Java [103]. No formal semantics for Jadex has been defined.

The language is well developed and supported via an open-source community project.

2.5.7 JIAC

JIAC (Java Intelligent Agents Componentware) does not have logical foundations and

deviates further from the BDI architecture than the other languages mentioned. The

JIAC framework places emphasis on satisfying industrial requirements such as comply-

ing with software standards, security and scalability. It combines the academic agent-

oriented paradigm with industy standard service-oriented techniques and is mentioned

here due to its success in recent agent programming competitions [28] and industrial

funding [78].

2.6 Agent organisation

This section summarises some of the popular and diverse approaches to agent organi-

sation that have been proposed, as an introduction to the agent-organisation adopted

by this work, a more detailed description of which appears in Chapter 4.

Joint intentions With a respected philosophical view on agent co-operation, Co-

hen and Levesque produced a significant paper ‘Teamwork’ [24] extending previous

work (88, 22, 23]. They persuasively argue that a team of agents should not be mod-

elled as an aggregate agent and propose new (logical) concepts of joint intentions, joint

commitments and joint persistent goals to ensure that teamwork does not break down

due to any divergence of individual team members’ beliefs or intentions. The authors’

proposals oblige agents working in a team to retain team goals until it is mutually agreed

amongst team members that a goal has now been achieved, is no longer relevant, or

is impossible. This level of commitment is stronger than an agent’s commitment to

its individual goals which are dropped the moment it (individually) believes they are

satisfied. Joint intentions can be reduced to individual intentions if supplemented with

mutual beliefs.

Teams Tidhar[124] introduced the concept of team-oriented programming withsocial

structure. Essentially this is an agent-centred approach that defines joint goals and

intentions for teams but stops short of forcing individual team members to adopt those

goals and intentions. An attempt to clarify the definition of a ‘team’ and what team

formation entails is made using concepts such as ‘mind-set synchronisation’ and ‘role

33

assignment’. Team behaviour is defined by a temporal ordering of plans which guide

(but do not constrain) agent behaviour. A social structure is proposed by the creation

of command and control teams whichassign roles, identify sub-teams and permit inter-

team relationships. In [17], the authors formalise their ideas of social structure with

concepts of commitment expressed using modal logic. This allows the formal expression

of commitment between teams, such as

team A intends to achieve task B for the sake of team C.

Pynadath et al. [108] describe their interpretation of team-oriented programming

that aims to organise groups of heterogeneous agents to achieve team goals. A frame-

work for defining teamsis given that provides the following concepts:

Team—an agent without domain abilities;

Team-ready—agents with domain abilities that interface with team agents;

Sub-goal—a goal that contributes to the team goal; and

Task—the allocation of a sub-goal to a team-ready agent.

An implementation of their framework, TEAMCORE,provides organisational func-

tionality such as multicast communication between agents, assigning tasks, maintaining

group beliefs and maintaining hierarchies of agents (by role). Heterogeneous agents are

accommodated by wrapper agents that act as proxies for the domain agent.

Roles Ferberetal. [44] present the case for an organisational-centred approach to the

design and engineering of complex multi-agent systems. They cite disadvantages of the

predominant agent-centred approaches such as: lack of access rights control; inability

to accommodate heterogeneous agents; and inappropriate abstraction for describing

organisational scenarios. The authors propose a model for designing language inde-

pendent multi-agent systems in terms of agents, roles and groups. Agents and groups

are proposedasdistinct first class entities although it is suggested that an agent ought

to be able to transform itself into a group. (We will see later that this is close to our

approach.)

In [45], Ferber continues to argue for an organisational-centred approach, advo-

cating the complete omission of mental states at the organisational level, defining an

organisation of agents in terms of its capabilities, constraints, roles, group tasks and

interaction protocols. Clearly articulated here is a manifesto of design principles.

Hiibner et al. believed that the agent organisational frameworks proposed prior

to their 2002 paper [81] overlooked the significant relationship between structural and

functional properties of an organisation. Thus, in [81], they propose a three compo-

nent approach to the specification of agent organisations that combines independent

34

structural and functional specifications with a deontic specification, the latter defining

among other things the roles (structural) having permission to carry out group tasks

(functional). The approach provides a proliferation of constructs for specifying multi-

agent systems, including the ability to concisely express many additional aspects, such

as

e the ability to specify compatibility of group membership, akin to the membersof

a government expressing a conflict of interest.

e enabling the cardinality of group membership to be defined and thus defining a

well formed group as a group who’s membershipis betweenits specified minimum

and maximumsize.

e control of the organisation’s goal(s), with an ability to specify sequential, branch-

ing and parallel execution of sub-goals.

e the ability to express a variance in the agents’ permissions over time.

It is argued that such an approach improves the efficiency of multi-agent systems by

focusing agents on the organisation’s goals. Indeed, we note that of all the proposals

discussed in this section this approach provides the developer with the widest vocabu-

lary with which to express agent behaviour whendefining the organisation.

Institutions Esteva, Sierra et al. have made formal [43] and practical [42, 126] con-

tributions to this method of agent organisation that enjoys much current popularity [98].

An electronic institution aims to provide an open framework in which agents can con-

tribute to the goals of society without sacrificing its own self-interest; the implication

being that an autonomousagent will be motivated to participate in the institution by

its desire to satisfy it own goals, but that its participation will be structured by the

framework in such a way that institutional goals are achieved. A key concept is that

of institutional norms.

In [43], the institution remains independent of agent-architecture by modelling

agents as roles, of which there are two types—internal and external (to the insti-

tution) —with different rights. A dialogue defines valid locutions, a scene is a unit of

interaction within an institution and a performative structure defines an objective as

a network of scenes. In an attempt to allow more agent autonomy these ideas were

refined and in [126] more concepts were introduced, including landmarks that can be

used to guide agents through an interaction when a prescriptive dialogue is considered

too constraining.

Perhaps the most noteworthy aspect of these proposals is the change of focus from

the agents themselves onto the interactions that take place between agents. In recog-

nition that in an open multi-agent system, it may not be possibleto verify the internal

computation of an individual agent, only its interactions with other agents.

30

Summary

It should be noted that none of the above organisational approaches can comprehen-

sively modelall forms of co-operative multi-agent systems. Rather they represent at-

tempts to discover practical and beneficial ways of specifying distributed computational

systems, andfacilitating the focus of computation on a system’s main purpose whilst

not compromising the autonomy of the system’s components. In achieving this aim it

may be convenient to categorise groupsof agents in terms of cohesion and co-operation.

For instance, a group of agents may be individually autonomous,existing as a group

solely due to their proximity to one another rather than their co-operation. In contrast,

the word team, implies a high degree of co-operation and adhesion with an organisation

fitting somewhere in between. As Cohenstated in [24]

“teamwork is more than co-ordinated individual behaviour”.

Thus, the more expressive proposals reviewed here enable the specification of more

cohesive groups but often at significant cost to the agents involved.

36

Chapter 3

METATEM

This chapter describes the foundational theory of a formal temporal specification and

execution language, and the subsequent incremental additions to the theory that this

work and others has made. The language in question is inspired by automated formal

verification techniques, temporal logics and concepts of agency. Coined METATEM,due

to its aim of providing a meta-level programmingfacility and its use of temporallogic,

this allows high-level temporal specifications of a system to be directly executed [6].

Thus, conventional error-prone techniques for the translation of specification to lower-

level executable code can be avoided. Latterly known as CONCURRENT METATEM,due

to the support of multiple asynchronously-executing specifications, it has evolved over

a numberofyears of research and experimental implementations[49, 51, 60, 48, 57, 52].

The chapter begins by putting forward the case for a declarative approach to pro-

grammingin general, but particularly for the applications considered by this project.

It introduces the fundamentals of the temporallogic utilised, then goes on to describe

the basic temporal semantics of METATEM. The implementation developed in support

of this thesis is then described, includingillustrative examples of its syntax and use,

before a larger complete example brings the chapter to a close.

3.1 Declarative agents

Many programming languages or frameworks based on the idea of describing how an

agent behavesin different situations! have been proposed (some of which are discussed

in Section 2.5) but these languages/frameworks have typically involved descriptions of

the form

if in Situation! then do...

if in Situation2 then do...

. and so on...

1The term situation here is used in a general sense to refer to the combination of an agents internal

attributes (beliefs, goals, etc.) and its external influences such as perceptions of its environment.

37

These explicit, ahead of time descriptions illustrate the close relationship between be-

haviour and their situation but are problematic for a numberof reasons. For example:

e when these situations are not mutually exclusive an agent might be forced into

an inconsistent state if it has prescriptive behaviour based on several situations;

e errors in perception or inconsistencies caused by conflicting behaviours in over-

lapping situations may lead to errors in the agent, reducing its fault-tolerance;

e it assumesthat the set of situations affecting the agent can be identified (fully.

and correctly) in advance—in an open system this is, of course, impossible; and

e assumingall situations can be correctly identified in advance and that the agent’s

behaviourin all possible combinations can be described, doingso is only practical

for a small numberofsituations.

Declarative programming provides a solution to these problems. It has been well es-

tablished in academic communities for decades but has also enjoyed commercial promi-

nence, most notably for the success of expert systems [114]. The most popularly declar-

ative approach to programmingis that of logic programming, exemplified by Prolog [86],

but other approaches are also popular. For example, functional and constraint-based

languages.

Logic programming languages such as Prolog essentially contain a set of rules and a

set of facts, each correspondingto different types of formula within predicate logic. An

execution involves querying this ‘knowledge base’ by presenting a predicate of unknown

value and attempting to reduce it to the terms of known value. Some reductionsfail,

and so backtracking is employed to force alternative reductions. The goal of execution

is to demonstrate that the query is satisfiable and to provide grounded terms for any

variables that appear in the query. Whilst later implementations of Prolog provide

enhancements such as the programmatic modification of the knowledge base and the

possibility to interact with backtracking, Prolog is typically used as a ‘plugged-in’ rea-

soning engine for applications developed with more conventional imperative languages,

wherethe Prolog engine is used to make isolated queries based upon a static knowledge

base.

Declarative agent programming requires more sophistication due to the dynamic

and reactive nature of agents. An agent does not maintain a static knowledge base

of facts. It reasons with changing beliefs and attempts multiple goals concurrently.

However, logic programming does have a valuable characteristic that is well suited to

agent programming. Goals, in logic programs, are not satisfied by an explicit sequence

of rules and/or facts. Likewise, by merely describing what the agent wishes to achieve

(its ‘goals’), and by discretely providing plans with the ability to affect/modify the

38

agent’s behaviour on the way to these goals, some of the problemsidentified above can

be alleviated.

Efforts to develop parallel logic programming languages (such as Parlog [68], P-

Prolog [137] and Concurrent Proglog [117]) have been made. Practical problemsin-

cluded inefficiency of memory management and scheduling overhead. Whilst reasoning

complexity restricts them to either and- or or-parallelism [104].

3.2 Specifying programs with temporal logic

The benefits of adequate, unambiguousandprecise specifications in any engineering ac-

tivity is well established. Such a specification formalises the requirements of a project’s

output, providing a reference point against which the product can be assessed. Any

software that claimsto satisfy its specification has likely undergone a processof verifica-

tion during whichit is scrutinised with respect to each aspect of its specification. When

this scrutiny is performed manually or when the specification is incomplete, confidence

in the efficacy of verification is lost.

In addition, certain categories of software require a high level of confidence, or even

formal proof, that the outputsatisfies the specification. In these situations practitioners

look for automated techniques and formalspecification languages to achieve high levels

of assurance. This section describes how temporal logic is used to create an agent

specification language that allows an agent specification to be executed directly. This

technique not only makes the human interpretation of specifications redundant but also

reduces the often error-introducing processes of design and implementation. Dueto its

strict logical foundations, this techniqueresults in agent executions that are guaranteed

to satisfy their specification, providing of course that the specification is satisfiable to

begin with.

3.2.1 Specifying agent behaviour

As discussed in Section 1.6, the temporal logic employed, PTL,is a variant of classical

logic which has been extended with operators having temporal semantics. This section

formally introducesthis logic, that we will call PTL.

Syntax

Being based upon propositional logic, the well formed formulas of PTL contain a sig-

nature of propositional constants, (P), the propositional symbols true and false, and

the usual connectives =, V, A and >. To these we add a special symbol, start, and

the temporal operators © (next), > (sometime), HJ (always), Y/ (until) and W (unless).

A well formed formula wff, is defined inductively in the familiar way. Let a be a

formula:

39

if a € P then a is a wf,

the symbols true,false and start are wff,

if a is a wff then a is a wff,

if a and @ are wff then a V @ is a wf,

if a and £ are wff then aA £ is a wff,

if a is a wff then Oais a wif,

if a is a wff then La is a wff,

if a is a wff then Oais a wff,

if a and @ are wff then al/@ is a wff,

if a and £# are wff then aW8is a wff, and finally

if a and @ are wff then a > is a wff.

Semantics

Kripke models are used to provide semantics to modallogics, the intuition they use is

that of possible worlds. Thus, if we define our language of temporal logic, PTL, with

syntax as described above, a Kripke model, M,is defined by M = (W, R,z) where

e W isa set of worlds

e Risa binary relations such that RC W x W

e x is an interpretation function such that 7: W x P+ {true, false}

However, since we are concerned only with linear models of time and hence R is serial

relation, we can represent the set of all possible worlds by the natural numbers, N,

and use its semantics of accessibility and ordering. Hence, the model for our language

becomes M = (N,7z), where

e each memberofN is a discrete temporal world

e 7x is an interpretation function such that 7: N x P+> {true, false}

and weuse the expression (M,i) F 7 to denote that formula ~ is satisfied in temporal

world i of model M. In this way, the semantics of formulas in our language PTL are

40

described formally as follows:

F start iff i=0

,i)Fw iff » € P and x(i,w) =true

,i) Faw iff a € P and r(i,y) = false

M,i)Fwvd iff (M,i) Ey or (M,i) Fo

Myi)FOu iff (Mji+lFy

M,i)F Ow iff there exists 7 € N such that {7 >i and (M,j7) F wy}

(M, i)

(M, i)

(M, #)

(M, 7)

(M, 7)

(M,i)E WA iff (M,i) Fy and (M,i)F ¢

(M, i)

(M, 7%)

(M, ‘)

(M,i)- Oy iff for all j € N {if j >i then (M,j) FY}

(M, i)M,i)EwU¢_ iff there exists 7 € N such that {7 >i and(M,j) F ¢} and,

for allk Ee N fifi < k <j then (M,k) F y}

(M,i)E YW iff (Mji)EDU@ or (M,i) FOU

Intuitively, the formula Oy) is interpreted as ‘in the next moment in time, w is true’.

Similarly, the formula $7) is taken to mean ‘eventually, at some future moment, 7 will

be true’, Oy) means ‘from this moment onwards, 7 is always true’, ~U d means that

‘at some future moment ¢ will be true, and until then y will true’, and finally, ~y W@

meansthat ‘2 will be true in all future moments unless and until such time that ¢ is

satisfied’.

Hence, for an arbitrary linear path through a Kripke model, a number of temporal

formulas are satisfied. For example, given the path of Kripke worlds depicted here

z
Pp Pp p p

q

one can say that the formulas p, Up, Op and ¢q aresatisfied with respect to each of the

states, that Ogis satisfied with respect to state 2 and q is satisfied in state 3. Note,

that from this point onwards the term state will be used to describe what is analogous

to a Kripke world, as this term is in keeping with the use of the term when defining

the semantics of programming languages.

If we were to interpret positive predicates in such a model as the actionsof an agent,

then the path

z
q q p

Al

corresponds to an agent performing actions q, and action p alternately. Let us assume

that this is desirable behaviour and that we wish to specify it. Le. we want to write a

temporal formula with respect to thefirst state, which exactly specifies this behaviour.

Such a formula might be

q\ Op \ O04dA OO Op.

There are a numberof problems with this as a specification and in particular an agent

specification;

1. A complete model of behaviouris rarely available.

2. It does not allow for alternative valid executions (e.g. other paths from a Kripke

model).

3. It cannot capture the infinitely alternating nature of q andp.

Consider instead, the specification

q A O(¢ > Op) A Of = Qa),

it is satisfied by the above four states yet it describes a longer sequence of states

(infinitely longer) and it captures the consequential (and consecutive) relationship be-

tween actions p and q in a way in which the previous specification did not. Concurrent

METATEMisan agent specification language that allows agents to be specified by an

implied conjunction of temporal formulas similar to this last example. As can be shown,

by defining a normal form which includesa reference to a starting state, these formulas

can be used to generate a sequenceof states that, if possible, satisfies the formulas.

Given a formula y,of logic £L, we construct a model M, for y such that

M Fe yy.

Typically, many different models that satisfy y may exist but by defining a normal

form and applyling constraints and heuristics, a valid model can be generated if y is

satisfiable.

3.2.2 Separated Normal Form

An irreducible set of formula types called Separated Normal Form (SNF) wasfirst

proposedin [46] and further developed in [50]. Any PTL/TL formula can be translated

to SNF formulas such that the SNF formulas are equivalent to the original but, of

course, in a different form. SNF employs only three temporal operators, QO, > and UO,

having strong nezt, reflexive sometime and always respectively, with LD) used only once

42

to range over a conjunction ofall sub-formulas. To this we added a non-temporalrule

form to help reduce the size of a specification. Our standard form is defined as

where each R,is a ‘rule’ of one of the following forms

m

a start rule start => \V ly

b=1

p q

a next rule \ ke => of Ve |

a sometime rule \\ ke => Ol

8

or a non-temporal rule \ ky => VV lg

f=l

and where I,,ke,la,ke,lg and | are literals. Thus, start rules allow a number ofal-

ternative interpretations for a given execution’s first state. Next rules provide choice

points during state transition such that, if in any state all of k,,...,kp are true, then

in the next state at least one of 1,...,J, must be satisfied. Sometime rules provide

goals that direct decision making at these choice points, by providing a constraint on

a future state such that, if in any state all of k,,...,k, are true then a future choice

must satisfy J. Finally, non-temporal rules provide a way of expanding a choice with

non-temporal aspects. In summary, the normal form requires that all negations apply

only to literals, that all temporal operators other than © and ¢ are removed, and that

all occurrences of the © operator apply only to literals. An example specification, with

an implied always conjunction omitted, is given below.

start seek

start (move V turn)

seek 0found

(clear A ~found) O(move V turn)

{
b
Y

d
o
y

(=clear A afound) On-move

Removal of 7/ and W

It should be noted that although SNF usesa restricted set of temporal operators, it

does not restrict expressivity as the ‘until’ and ‘unless’ operators can be re-written

in terms of ‘next’ and ‘sometime’ before subsequent transformation into normal form.

43

Each re-write rule involves introduction of a new proposition, named x in the examples

below.

aWb = x£A(x>(bV(adAQCsz)))

aulb = xA(x>(bV(aAOz))) A(z => 9b)

3.2.3. From specification to execution

Given a specification, the idea is to execute it by building a concrete modelfor it, hence

model-building for temporal formulae was developed using a principle referred to as the

imperative future by the authors of[62, 6], essentially comprising forward chaining from

initial conditions and building the future, state by state.

Basic execution

Recall that we consider an agent execution to be a linear sequence of states starting

from an initial state that has no predecessor and which satisfies the special symbol,

start. Given a temporal description, using the above language, execution takes the

following approach:

e ensure that all formulas conform to SNF and perform any transformations as

necessary [50];

e from the initial constraints, as determined by the ‘start rules’, forward chain

through the set of temporal rules constraining the nezt state of the agent; and

e constrain the execution by attempting to satisfy eventualities (aka goals), such

as Og (i.e. g eventually becomes true). (This, in turn, involves some strategy for

choosing between such eventualities, where necessary.)

Later in this section we describe the execution algorithm more formally but first let us

look at some simple examplesof its execution.

Examples of basic execution

Several basic examples are now considered,in order to describe how execution of simple

specifications occur.

Example 1

Consider a machine capable of converting raw material into useful ‘widgets’, that has

a hopper for its raw material feed which, when empty, prevents the machine from

producing widgets. A simple specification for an agent controlling such a machine,

presented in the normal form described above, is as follows (each rule is followed by an

informal description of its meaning):

44

start => hopper_empty

The hopperis initially empty.

true => power

The machine has uninterrupted power.

hopper_-empty => ©fill_hopper

If the hopper is empty, then it must berefilled in the next momentin time.

fill_hopper = OC(material V hopper_-empty)

Filling the hopperis not always successful.

(material \ power) => Quwidget

If the machine has power and raw material then, in the next moment

in time a widget will be produced.

Execution begins with the construction of an initial state which is constrained by the

start rules and any present-time rules. Thus, in the start state our machine has an

empty hopper and power:

start

O

hopper_empty
power

Theinterpretation of each state is used to derive constraints on the next state. Applying

the above rules to this initial state produces the constraint fill-hopper, which must

be true in any successor state. The METATEM execution algorithm now attempts to

build a state that satisfies this constraint and is logically consistent with the agent’s

present-time rules. In this example we have only one present-time rule, which does not

contradict our constraints but does introduce another constraint, hence state 1 is built:

start 1

O O

hopper_empty _fill_hopper
power power

State 1 provides the METATEM agent with its first choice point. Evaluation of the

agent’s rules constrains the next state to satisfy the disjunction

((material A power) V (hopper-empty A power)).

Without any preferences or goals to guide its decision, the METATEM agentis able to

choose either alternative and makes a non-deterministic choice between disjuncts. For

this example we will assume that material is made true in state 2:

45

2

O

start 1 material
O power

hopper_empty _fill_hopper hig -
power power

In this state, our machine has both the power and material necessary to produce a

widget in the next state:

2 3

O O

start 1 aerial widget
O O power power

~ s

hopper_empty _fill_hopper ~~. <
power power

Note. Without explicit rules, be they temporal or non-temporal, the machine no

longer believes it has its raw material. Hence, evaluation of the agent’s temporal rules

with the interpretation of state 3 produces no constraints and the agent will produce

no further states.

Example 2

This example illustrates the backtracking nature of the METATEMalgorithm whenit

encounters a state that has no logically consistent future. Staying with our widget

machine, we modify its non-temporal rule and provide an additional rule (which is

obviously valid, but is useful for explanatory purposes):

true => (power V mpower)

Power can now be switched ‘on’or ‘off’.

(fill_hopper \ power) => COfalse

Filling the hopper with the power switched on causes irrecoverable

problems in the next state!

Execution now begins in one of twostates,

(hopper_-empty \ power) or (hopper_empty A ~power)

due to the conjunction introduced by the modified present-time rule. Let us assume

that the formeris chosen, though it is inconsequential to our example. Again our agent

has a choice when constructing the next state, it can fill the hopper with the power on

or with the poweroff. Each of these choices has a consistent present but only one has

a consistent future! Let us assume that the ‘wrong’ choice is made and the ‘correct’

choice is retained for future exploration;

46

start 1

O

ope.
O< fill_hopper

x

hopper_emptya~
power)

~power
fill_hopper

Now,evaluation of state 1’s interpretation constrainsall future states to include false—

this state has no future. It is at this point, when no consistent choices remain, that

METATEM backtracks to a previous state in order to explore any remaining choices.

Note that, in this example, the agent’s ability to fill its hopper is considered to be

reversible. However, as will be discussed later, this METATEM implementation distin-

guishes between reversible actions and those that cannot be reversed and hence prevent

backtracking from states in which they hold true. This is an example of how the seman-

tics of concurrency and agency have influenced the purely logical origins of Concurrent

METATEM.The sending of messages is an important example of an irreversible action.

Execution then completes in much the same wayas the previous example:

start 1 2 3

wR O
power ie

O fill_hopper O< power

hopper_empty aera —-~
power O power

fill_hopper a.~
~power

At this point it should be emphasised that the above executions are, in each case, only

one of many possible models that satisfy the given temporal specification. Indeed, many

models exist that produce no widgets at all. To ensure the productivity of our widget

machine we must introduce a goal in the form of an eventuality. For the next example

we return to our conversational agent to demonstrate the use of temporal eventualities.

Example 3

For this example, a simple protocol for a successful conversation between two courteous

agents is specified:

true = O(speak V listen)

Attentive agents are always speakingorlistening...

speak => —listen

listen => speak

47

...but never at the same time.

listen => Ospeak

Will speak after listening...

speak = Cllisten

and always pausetolisten, after speaking.

The model resulting from execution of this specification is one which alternates between

listening and speaking in successive states;

start 1 2 8 4

O O O O Os
speak listen speak listen

Although intuitively we may expect to see multiple listening states between each speak-

ing state, the METATEM algorithm endeavours to satisfy outstanding eventualities

(goals) at the earliest opportunity. That is, providing it is logically consistent to do so,

an eventuality (such as “()speak”) will be made true without being explicitly stated in

the consequents of a nezt rule. There are no conflicting commitments and therefore

there is no need to delay its achievement.

Execution algorithm

Having described the intuition of the forward-chaining execution of a METATEM agent,

we now describe it formally. Recall that an agent specification is a PTL formula, let us

call it y, and that execution means constructing a sequence of states o, that satisfies

(0,0) Fe.

That is, we are attempting to construct a modelfor the formula that correspondsto the

set of rules. If we subdivide y into the sets Initial, Next, and Sometime. Where Initial

contains rules of the form “start > ...”, Next contains rules of the form “... > ©...”,
“Sometime contains rules of the form “... > 9...”, and of course

(ip = Initial A Next A Sometime

and identify two lists; E, the outstanding eventualities for each state (such that E; are

the eventualities outstanding at state i) and S, the Boolean assignments of propositions

for each state (S; for state 7). Then the execution proceeds according to the following

algorithm [54].?

1. Make a (consistent) choice of Boolean assignments for propositions as described

by the Initial set of rules; label this as Sp and let Eg =< >

?For simplicity, we will assume that all the sometime rules within Sometime are of the form A >

6+B, where ‘0+’ is the non-reflexive version meaning “at some point from the next moment in time

onwards”; clearly, Op + (p V OTp).

48

2. Given S; and E;, proceed to construct $;41 and Ej;+as follows:

(a) Let C = {F|(P => OF) € Next and S; F P}

i.e., C represents the constraints on $;,, derived from the Next clauses.

(b) Let Ein. = Ex(G | (Q => 7G) € Sometime and S; F Q)

ie., Ej41 is the previouslist of outstanding eventualities, with all the newly

generated eventualities appended.

(c) For each V € Ej41, starting at the head of thelist,

if (V A C)is consistent,

then update C to (C A V) and remove V from E£j+1.

else leave V within Fj+1.

(d) Choose an assignment consistent with C andlabel this S;,;. If there are no

consistent assignments then backtrack to a previous choice point.

(e) Loop check:

if V has occurred continuously in all of F;, Ej-1, ..., Ei-n

then fail and backtrack to a previous choice point

else go to (2)

The core METATEM execution mechanism,as defined above, with the strategy involving

attempting the oldest outstanding eventualities first, at the choice in step 2b, and

forcing backtracking at step 2e if the same outstanding eventualities occur for N states

continuously (where N is related to the bound on thesize of a finite model for the

logic), is complete, i.e., an execution (a model) will be produced if, and only if, the

original formulais satisfiable. The proof of this theorem for basic METATEM can be

foundin [5, 6].

Strategies and deliberation

Wherethere are multiple outstanding eventualities, and where only a subset of these

can besatisfied at the same time, then some strategy for deciding which eventualities

to satisfy now, and which to hold over until future states, is required. As shown in the

previous section, the specification precludes both speak and listen being true at the

same point in time. Thus, if it is specified that both Olisten and speak are to be

made true many times, then when to make speak true, when to make listen true, and

when to makeneither true must be determined.

Thebasic strategy for deciding between conflicting eventualities is provided directly

by the original METATEM execution algorithm. This is to choose to satisfy the even-

tuality that has been outstanding (i.e. needing to besatisfied, but as yet unsatisfied)

the longest. This has the important benefit that it ensures that no eventuality remains

49

outstanding forever, unless it is the case that the specification is unsatisfiable [6], and

ensures the correctness of the basic execution.

There are, however, a numberof other moresophisticated mechanismsfor handling

such strategies that have been developed. The most general is that described in [51]

which maintains the outstanding eventualities at any moment in time as a list. The

eventualities will then be attempted in list-order. Thus, in the basic METATEM case

the list has a natural ordering based on the age of the eventualities. When an even-

tuality is satisfied, it is removed from the list; when a new eventuality is generated,

it is added to the end of thelist, effectively forming a queue of eventualities. An al-

ternative strategy is to attempt all eventualities at the first opportunity, regardless

of whether or not any other eventualities remain unsatisfied. This strategy prioritises

newly instantiated eventualities with the aim of satisfying them before they become

outstanding; this strategy can be likened to a humanstrategy of tackling the ‘here-

and-now’. These strategies are general strategies and are applied prior to execution. A

more advantageous strategy should be flexible enough to allow an agent to modify its

deliberation strategy at runtime. With this aim, a ‘prefer’ directive has been proposed

to provide a convenient way to express a priority ordering for all predicates (actions,

commitments, eventualities, etc.) [77]. Section 3.3 of this chapter describes how this

project’s METATEM implementation enables agents to modify this ordering dynami-

cally, using the ‘prefer’ and other directives, allowing them to adapt their behaviour

and/or strategy according to the context of their activity.

3.3 Implementation algorithm

The algorithm presented in Section 3.2.3 is the theoretical basis of METATEM.This sec-

tion presents its practical implementation, via the platform-independent programming

language, Java. In addition to the underlying theory, this implementation provides

some enhancements, also described here. There have been a numberof prototype im-

plementations of Concurrent METATEM before, but none that contain all the features

of this project’s implementation or written for long-term evaluation and maintenance.

Specifically, this section presents the syntax, semantics and execution algorithm of the

implementation and howit differs from the language described in Section 3.2.

3.3.1 Syntax and semantics

The implemented version of METATEM differs in certain details from the fundamental

language described earlier. It allows more formula types, set term types with appropri-

ate semantics and provides some agent-specific constructs to facilitate the specification

of multi-agent systems. Asit allows first-order predicates and implied quantification of

variables, so the specific normal form used is more complex. The implemented version

50

of each rule from the Separated Normal Form is given below along withillustrative ex-

amples in first-order temporal logic and, with the implied quantification, an equivalent

example in the syntax required by the implementation.

Start rule:

General

Example

Code

Step rule:

General

Example

Code

Sometimerule:

General

Example

Code

start = az. \/ p(2)
i=1

start => Az.[p(x) V q(x)]

start => p(X) | q(X);

VE. [| pil) A 3D. A ACH 7)|
i=l j=0

Ver. | [(2) A dy.q(y, x)|

p(x) & q(Y,X)

a b

VE. [Ari@)3 \ a, 7)|
i=l j=0

Va. | [P() A Ay.q(y, x)

p(X) & q(Y,X)

=>

=>

I Vv

=>

I Vv
©) Az. V rp (2; z)

k=1

O 3z[r(z,2) Vv s(2,)]|

NEXT r(Z,X) | s(Z,X);

Odzr(Z, m)

Oadz.r(z, x)|

SOMETIME r(Z,X);

Note that the sometime rule here has the reflexive semantics introduced earlier.? In

addition to the rule types common to SNF, the implementation allows the use of non-

temporal rules and a further two temporal operators: until and unless. These new

operators may only be used on theright-hand side of rules and preclude the use of

other temporal operators in the same rule. These additional rules are now presented

in the same manner as the above rules.

3Recall that the algorithm presented used the non-reflexive or,

51

Non-temporal (present-time) rule:

a b é

General Vz. [| pil2) Ady. \\ CAUE 7)| = VV no)
i=1 j=0 k=1

Example Va. | [(2) Aay.q(y)]| = [r(a)v s(z)]|

Code p(X) & q(Y) => r(X) | s(X);

Until rule: (and similarly for unless)

a b

General VE. [\ pi(Z) A Fy. \ qj (,| Ze [r(z) u sa]
1 j=0

Example Wan | [P(2) A Ay.q(z,y)]| = [r(z)U s(z)]|

Code p(X) & q(X,Y) => r(X) UNTIL s(X);

Note the we are able to omit explicit quantification symbols from the program code by

applying the following assumptions.

e Any variable appearing positively in the antecedents, and either positively or

negatively in the consequents, of a rule is universally quantified.

e Any variable that appears either only in the antecedents or only in the conse-

quents, is treated as existentially quantified.

e Any variables whose appearances in the antecedents are all negative are treated

as existentially quantified, and all negated literals containing the variable are

ignored.

e Anyvariable appearing only in the consequents of a rule (including those that have

an ignored negative counterpart in the antecedents) are treated as existentially

quantified.

The adoption of these assumptions along with the algorithm used for execution means

we can enforce a numberof restrictions on, for example, the valid appearances of

existential variables. These restrictions are now listed along with some explanation of

their purpose. Each of these restrictions is enforced by the implementation by validation

checks and subsequent parse errors, prior to execution.

52

1. Non-temporal rules must not contain negations in their antecedents.

These rules types are fired recursively, expanding the predicate constraints on a

state after each recursive call. The presence of negations in the antecedents can

cause difficulties when a rule containing such a negation is fired prematurely and

so preventing the complete generation of choices.

2. Sometime, until and unless rules must not contain negations in their

antecedents.

Dueto the fact that these rules are re-written in terms of , © and non-temporal

rules, prior to execution, they too are subject to restriction number1.

3. No negated existential variables may appear in the consequents of any

rule.

As dx.>p(x) can betrivially satisfied according to the open-world principle, such

predicates are prohibited to prevent misleading code.

4. Non-temporal rules must not contain existential variables in their con-

sequents.

Existential variables in the consequents of rules are grounded by Skolemisation.

This restriction prevents the infinite generation of terms by an endless loop of

term generation andrule firing.

Recall that if the consequent of a fired sometime rule cannot besatisfied imme-

diately, it is appended to a list of outstanding eventualities, where it remains until

satisfied. Thusthis list of ‘goals’ is naturally ordered by their ages. With this list view,

our basic strategy for deciding which eventualities to satisfy next is an ‘oldest-first’

strategy based on this natural order. Thus, if the agent can re-order this list between

states then it can have a quite sophisticated strategy for deliberation, i.e. for dynami-

cally choosing what to tackle next. This approach is discussed further in [51, 53] but,

unless we put some constraints on the re-ordering we might apply, then there is a strong

danger that the completeness of the execution mechanism will be lost [53}.

In the current implementation, rather than using this quite strong, but dangerous,

approach we adopt simpler, and more easily analysable, mechanisms for controlling

(or at least influencing) the choice of eventuality to satisfy. These mechanisms are

characterised by the predicates/directives atLeast, atMost and prefer.

The atLeast predicate places a minimum constraint on the numberof instances

of positive predicates, whilst atMost places a maximum constraint on the number of

instances of positive predicates in a given temporal state, in the style of the capacity

constraints described by [38]. Besides providing the developer with the ability to influ-

ence an agent’s reasoning, when applied judiciously atMost and atLeast can simplify

the fragment of the logic considered and hence can increase the execution performance

of a METATEMagent.

53

As an example of the use of predicate constraints we provide some code snippets

from an example included with the METATEM download, which specifies the behaviour

of a lift. Thelift respondsto calls from floors above and below it and, when more than

one call remains outstanding, it must decide which call to serve first, changing direction

if necessary. Each discrete moment in time of our temporal model denotesthelift’s

arrival at a floor and the transition between temporal states is analogous to thelift’s

transition between floors. The following rules specify that the lift starts at the ground

floor and mustsatisfy all calls before it can achieve the waiting state:

start => atFloor(0);

true => SOMETIME waiting;

call(X) => ~waiting;

Clearly, it is desirable that the lift visits a floor in each state of our model. This

behaviour could be specified by the rule

true => NEXT atFloor(X);

which states that there must exist an X such that atFloor (X)is satisfied in each moment

in time. However, our lift must visit one and only one of a limited numberof valid

floors. The aboveruleis logically too general as it allows multiple X’s in any moment in

time and implies an infinite domain of X.4 Therefore ourlift specification does not use

the rule given immediately above, but instead employs predicate constraints. These

ensure that the lift visits one and only one floor at each moment, without introducing

an existential variable. The following declarations in an agent description file achieve

this.

at_most 1 atFloor true;

at_least 1 atFloor true;

These are examplesof ‘at most’ and ‘at least’ directives which constraint the numberof

positive predicates with a specified symbolin a state. These constraints can be given a

satisfying condition that determines when the constraint is applied. In both examples

shown,the satisfying condition is true, hence these constraints apply in all moments.

Thus, due to the two directives, exactly 1 predicate with the symbol atFloor must

appearin all states.

3.3.2 How deliberation is implemented

The construction of each temporal state during the execution of a METATEM specifica-

tion generates a logical interpretation that is used to evaluate the antecedents of each

“Indeed, the current implementation considers existential variables on the right-hand side of future

rules on an open-world principle, implementing a form of Skolemisation by, when necessary, creating

new terms. In this example ourlift could disappear to an imaginaryfloor!

54

temporal rule. The consequentsof all the rules that fire are conjoined (and transformed

into disjunctive normal form) to represent the agent’s choices for the next temporal

state, each conjunction being a distinct choice, one of which is chosen and becomes

the interpretation of the next temporal state, from which the next set of choices are

derived. This process is repeated, and conjunctions that are not chosen are retained as

alternative choices to be taken in the event of backtracking. As mentioned earlier, a

numberof fundamental properties of the formulae in each conjunction affect the choice

made. For example, an agent will always satisfy a commitmentif it is consistent to do

so, and will avoid introducing commitments (temporal ‘sometime’ formulas) if ableto,

by making a choice containing only literal predicates. These preferences are built-in

to METATEM,however the prefer construct allows the developer to modify the out-

come of METATEM’s choice procedure by re-ordering the list of choices according to

a declared pair of predicates (e.g. prefer (win, lose) after the fundamental ordering

has been applied. We refer to the prefer construct as a deliberation meta-predicate

and the architecture of the current METATEM allows the implementation of further

deliberation meta-predicates as ‘plug-ins’.

Each of these constructs can be declared as applicable in all circumstances or as

context dependent, that is, only applicable when a given arbitrary formula evaluates

positively. Furthermore, each preference is assigned an integer weighting, within the

(arbitrary) range of 1-99, which allows a fine-grained ordering of preferences. 5

For example, the following snippets are two alternative applications of the prefer

construct to the lift example described above, to encourage thelift to continue moving

in the same direction when appropriate:

prefer downTo to upTo when moving(down) weight 50;

prefer upTo to downTo when moving(up) weight 50;

Alternatively:

prefer ("downTo","upTo", "moving (down) ",50)

prefer ("upTo","downTo", "moving (up) ",50)

Thefirst two directives above are examples of those that appear in the preamble of an

agent definition file, these preferences apply from time, t = 0. The latter two directives

are examples of meta-predicates that, when appearing in the consequents of a temporal

NEXTrule, will provide the agent with the declared preference from the temporalstate

following the state in which the rule was fired. The former type is simply a syntactic

convenience for a rule of the type

start => prefer("downTo","upTo", "moving (down) ",50)

Oncea preferenceis appliedit is upheld for all future states and there is no mechanism

>We reserve the weighting values 0 and 100 for built-in preferences.

5d

agent] O O O CY eons

agent2 06 O O OC) nor rome

agent3 O O Ove

agent TE ns ware oO oO O Own

Figure 3.1: Typical asynchronous agent execution.

for explicitly deleting it, instead preferences can be overridden by an otherwise iden-

tical preference which declares a higher priority value or counteracted by an opposing

preference. However, the use of context dependent preferences is encouraged asleav-

ing a context provides the effect of deleting a preference but with the benefit that the

preference will be reinstated upon entering the relevant context. Webelieve this is a

natural interpretation of preferences.

3.3.3 Multiple agents

METATEMsupports the asynchronous, concurrent execution of multiple agents which

are able to send one another messages that are guaranteed to arrive at some future

moment in time. Each agent has its own concept of time and the duration of each

time step for an individual agent is neither fixed nor constant throughout execution.

Conceptually then, the transition of multiple agents between successive temporal states

is as depicted in Figure 3.1.

Note. The form of asynchronous execution seen in Figure 3.1 is a little problematic

for propositional temporal logic to represent straight-forwardly. However, as described

in [49] a temporal logic based on the Real Numbers rather than the Natural Numbers,

provides an appropriate semantic basis. Importantly, the propositional fragment of

such a Temporal Logic of the Reals requiredstill remains decidable [84].

An agent sends a message to another agent by firing a rule whose consequents

contain the action predicate send(Recipient, Message) true in one of its own states.

This guarantees that at some future moment the predicate receive(From, Message)

will be true in at least one state of the recipient agent (where Recipient, From and

Message are all terms and are substituted by the recipient agent’s name, the sending

agent’s name and the message content, respectively). The send predicate is an example

of a special ‘action’ predicate which, when madetrue, prevents subsequent backtracking

over the state in which it holds. For this reason, the use of a deliberate—act style

of programming is encouraged in which an agent explores multiple execution paths,

performing only retractable internal actions, backtracking when necessary, before taking

a non-retractable action.

56

Although METATEMagentsexist as individual threads within a single Java virtual

machinethere are no other predefined agent containers or agent spaces that maintain a

centralised structuring of multiple agents. Instead METATEM follows an agent-centred

approach to multi-agent development with the only implemented interactions between

autonomous agents being message passing. Support for the abstract structuring of

agent societies is provided by internal (to each agent) constructs and is discussed in

detail in the next chapter.

3.4 Implementation architecture

This section gives a detailed overview of how METATEM has been implemented. The

most significant aspects of the Java implementation are described along with rationale

for their design. The purposeofthis section is to support any future developmentof the

code, whether its aim is maintenance or advancement. It aims to outline the responsi-

bilities of the most important Java classes, their functionality and their dependencies.

As such,it is aimed at a reader with the intent not only to program agents but also to

program METATEMand with knowledge of object-oriented programming with Java.

3.4.1 Java packages

The implementation is fully modularised to reduce maintenance effort but also to in-

crease the potential for use of each module in other projects. This section lists each

Java package, giving for each, an overview of its purpose and describing any significant

programming strategies or patterns that have been used. Complete documentation of

each package and theclasses they comprise can be accessed at

http://www.csc.liv.ac.uk/~anthony/metatem/javadoc/index.html

metatem

This is the parent package for all packages and classes, it contains the executable

class metatem.Main, two interfaces with project-wide scope MultiAgentSystem and

MutiAgentView corresponding to the model and view of the MVC pattern, and an

implementation of a model, BasicMAS.

metatem.agent

The classes and sub-packages contained in metatem.agent describe the core agent be-

haviours. Significant members of this class are the abstract metatem.agent.Agent,

the concrete metatem.agent .BasicAgent and metatem.agent .AgentSpecification.

Agent implements both metatem.temporal.Term and java.lang.Runnable,naturally

reflecting its status and behaviourin the abstract language. Throughout the implemen-

tation but particularly with the Agent class, care has been taken to provide thorough

57

encapsulation of data, by providing appropriate access modifiers to all class members.

With this in mind, the only public method that Agent exposes which modifies its state,

is Agent .send(Message). In order to provide agent observers with useful information,

it was necessary to provide them with an interface of public methods, but these have

been implemented to return deep copies or immutable values of an agent’s state.

Finally, the class metatem.agent.SNFRule uses Java’s reflection to perform vali-

dation on rules found whilst parsing the input files. Creating an additional validation

check requires only the addition of a method with the signature

static void <method_name> (Formula, Formula)

throws InvalidRuleException;

that throws an appropriate exception if the two supplied formulas do not form the head

and tail of a valid SNF rule.

metatem.agent.ability

Contains interfaces, abstract classes and someconcrete classes that provide METATEM

agents with the ability to act in their environment. All agent abilities must implement

exactly one of the interfaces

metatem.agent.ability.InternalAbility

metatem.agent.ability.ExternalAbility

the first of these provides an undo method, allowing an agent to take reparative action

in the event of backtracking over a state in which the action was performed. The latter

simply identifies the action as non-retractable and prevents backtracking.

metatem.agent.communication

A collection of classes and exception that enable agents to communicate by message

passing and facilitate the maintenance of an ‘inbox’.

metatem.parser

A numberofclasses generated by the parser generator Javacc,®° from the parser de-

scription file src/metatem/parser/Parser.jj. Javacc is a combined lexer and parser

tool for compiling pure Java compilers.

metatem.temporal

An API for temporal logic that has been designed and built for METATEM butis

entirely independent of the other packages. This package effectively encapsulates the

logical aspects of a METATEM agent, as well as term matching, arithmetic and set

Snttp://javacc.dev.java.net/

58

<<Java Class>>

©InvalidSubstitutionException

«<Java Class>> ~pairs <«<Java Class>>

©Substitution 0,.* |@ SubstitutionPair

rite9

<<Java Class>>

©@ Variable

-singletonTermFactory 0.1 ,Sterm O..1

«<Java Class>> ~database [<<Java Interface>>

@TermFactory 0.2 @ Term

Figure 3.2: A database of unique terms are maintained by the TermFactory.

manipulation. The package strongly adheres to the ‘program to interfaces’ maxim

and also provides many custom exceptions that serve to improve the robustness and

readability of code. Generation of unique terms is guaranteed by use of the Singleton

and Factory patterns, see Figure 3.2, and MatchingEngine provides a pluggable engine

for an agent to delegate all of its logic operations. Note that agent-centric behaviours

such as ordering of choices, remain the responsibility of the Agent object. A degree of

confidence in the correctness of these packages is achieved through strict enforcement

of interfaces, the Adapter Pattern and the immutability of all formulas. Figure 3.3

illustrates this clearly.

metatem.tools

A package for classes that provide support for the development of METATEM programs.

This package contains the agent visualiser classes.

These packages, along with a numberof resourcefiles, are packaged as as metatem. jar

which itself comprises the files agent. jar, temporal. jar and tools. jar, correspond-

ing roughly to the Java packages described above. Together with a Java runtime envi-

ronment, they form the METATEM runtime environment. An agent system is declared

in a numberof text files and any custom agent abilities are provided by additional

Java classes. Figure 3.4 illustrates then, the essential components required to form a

multi-agent system and the dependencyrelationship between them.

59

<<Java Class>>

<<Java Class>>

©Constant
metatemtemporal

<sJava Class>>

©Function metatemtemporal

<<Java Class>> &FormulaAdapter
@Negation metatemtemporal <<Java Class>>

metatemtemporal é SJunciion<T>|

vA metatemtemporal

<<Java Class>> <<Java Class?> of

@NextFormula}——I> @3 AnstractPrefxUnaryFormula
metatemtemporal metatemtemporal

: £ x
<<Java Class>> <<Java Class>> <<Java Interface>> <<Java Interface>>

@SometimeFormula @ StandardPredicate @ Formula @ Parameterised
metatemtemporal metatemtemporal metatemtemporal metatemtemporal

<<Java Class>> <<Java Class>> «<Java Interface>>
@ln Is @ Predicate

metatemtemporal metatemtemporal metatemtemporal

ea)
<<JavaInterface>>
@ BuiltinPredicate

metatemtemporal

<<Java Class>>

@ArithmeticExpression
metatemtemporal

Figure 3.3: Interfaces and abstract classes encourage immutable implementations.

System | Agent Rule Java

file |i] spec |i} file |!|| ability

Metatem Runtime

|
agent.jar | temporal.jar

|

| tools.jar

Java Runtime
 Operating System

Figure 3.4: The componentsof a typical multi-agent system.

60

3.5 Execution example

As has been shown in Sections 3.3 and 3.4, the Java METATEMinterpreter resulting

from this project faithfully provides semantics for many of the language constructsfirst

developed by Barringer et al. in [6]. This section contains a step-by-step execution of

a simple multi-agent example as anillustration of these semantics.

Polite conversation

A simple agent specification which describes the art of polite conversation might be:

// Start a conversation.

start => speak;

// Pay attention, always speak or listen

true => speak | listen;

// but do not try to do both at the same time,

speak & listen => false;

// eventually speak after listening, and

listen => SOMETIME speak;

// always listen after speaking.

speak => NEXT listen;

On execution of this specification, as a single-agent system, the choice for the first state

is clear. Logging output begins:

[speaker] state 0: [speak]

The first NEXT rule specifies that either speak or listen must besatisfied in the next

moment, providing a choice for the execution algorithm. However, having just spoken

in state 0, the second NEXTfires, specifying that, the agent must listen in the next

moment in time. Thus, the execution is constrained by this rule and continues as

follows:

[speaker] state 0: [speak]

[speaker] state 1: [listen]

Now, the samechoice is encountered for the next moment in time but this time no NEXT

rules are fired by state 1 and both speak and listen arelogically consistent choices for

state 2. However, the SOMETIMErule isfired, creating a commitment to satisfy speak.

So, with no competing commitmentsor constraints, the execution algorithm satisfies it

immediately

61

[speaker] state 0: [speak]

[speaker] state 1: [listen]

[speaker] state 2: [speak]

and execution continues, alternating between speaking andlistening, for ever.

3.6 Extensions

During the interpreter’s design and implementation a number of modifications, de-

viations and elaborations to the theoretical METATEM language were made. Such

extensions were often made for convenience or pragmatic reasons but also out of per-

ceived necessity and include diverse features such as the restriction of predicates in

non-temporalrules and the provision of programmer-defined add-onsets.

This section aims to describe a numberof these extensions in order that

e their syntactic useis clear,

e their semantics can be effectively understood, and

e their implementation is documented where necessary.

Note, that formal semantics for some of these extensions are given in Section 4.3

3.6.1 Sets

The implementation has provided agents with the ability to create, maintain, manip-

ulate and query sets of terms. Terms, of course, include agents themselves. So, in

addition to the pre-defined sets content, context and known (the use of which will

be explained later), an agent’s specification can declare further sets using the syntax

demonstrated by this example

set termi : { term2,term3,term4 }

where termi is the term used as a reference to the implementedset (referred to as the

‘set name’ from here onwards) and { term2,term3,term4 is the set’s initial contents

and is omitted when an empty set is needed. Any numberof additional sets can be

declared, providing a unique term is used to refer to each set.

Having declared a set, the set name can be used anywhereit is valid for a constant

term to appear, indeed, the set name is a constant term and will be matched against

variables and other terms in the usual way when appearing in standard predicates.

There are however, a number of non-standard predicates called ‘built-in’ or ‘ability’

predicates where the set nameis used to refer to the actual set. They are identified

here, in Prolog fashion, by their predicate symbol and the numberof termsthey require.

62

add/2 and remove/2

This predicate, when appearing on theright handside of rules, behaves as an internal

ability, allowing the addition of a term to a set. When appearing on theleft handside

of rules it behaves as a standard predicate. So, assuming that friends is a set name,

the following rule can be read as “if david has been addedto ourset of friends then

add nick to the set in the next moment”.

add(david, friends) => NEXT add(nick, friends);

Crucially, this predicate may be used to add another agent to the pre-defined sets

content, context and known but unlike the external abilities addToContent/1 and

enterContext/1 which have the sameeffect on the executing agents, the add/2 pred-

icate does not have a reciprocal effect on agent being added. The predicate remove/2

has the expected converse effect on sets.

in/2

The in/2 predicate is an example of a built-in predicate that allows the querying of

both explicit sets and referenced sets. It may only appear on the left hand sides of

next rules and has two distinct purposes, determined by whetherthefirst argumentis

a constant or a variable.

1. To evaluate set membership.

2. To retrieve an element of a set.

When a constant term is provided this predicate is used to evaluate set member-

ship, such that in(david,friends) evaluates to true if and only if friends is a

set name and david is a memberof the actual set that friends refers to. Alter-

natively, if after matching, the first argument remains a free variable, this predicate’s

boolean value is dependent upon whetheror not the set is empty and is used to pro-

vide a substitution containing all possible variable-constant pairings. For example:

in(t,{a,b,c}) is false,

in(t,s) is true iff t is a member of a set with name s, and

in(X,friends) is true and generates the substitution [X\david, X\nick].

size/2

Similar to the in/2 predicate this predicate provides boolean queries of the size of a

set and also generates a substitution pair when the first argument is not grounded:

size(2,{a,b,c}) is false, and

size(X,friends) is true and generates the substitution [X\2].

63

3.6.2 Meta-predicates

The implementation provides a numberof predicates that, rather than having domain-

level meaning, they operate on or refer to, an agent’s execution. These are termed

meta-predicates and includethe following examples.

addGoal/i and addRule/1

As their symbols suggests, these predicates provides a mechanism for dynamically

adding goals and rules during execution. As neither goals nor rules are constant terms,

the argument to addGoal and addRule must be a quoted term. This term is dis-quoted

and parsed using the system parser. Thusthe following two rules have similar outcomes

p => SOMETIME q;

p => NEXT addGoal("q");

but the utility of addGoal/1 and addRule/1 is only realised when sending goals and

plans to other agents.

[sender] send(receiver,sharedGoal("q"))

[receiver] receive(From,sharedGoal(G)) => NEXT addGoal(G);

[sender] send(receiver,sharedPlan("in(sender,context) => jump"))

[receiver] receive(From,sharedPlan(P)) => NEXT addRule(P);

atMost/3 and atLeast/3

These predicates allow the dynamic addition of predicate constraints, as discussed on

page 53, when appearing on the right handside of next rules. Its three arguments are

the integer constraint, the symbolto be constrained and a quoted formula. This quoted

formula is parsed and evaluated as a contextual condition that determines when the

constraint applies.

overdrawn => NEXT atMost(1,spend,"prudent") ;

prefer/4

Preferences too, can be added dynamically. This meta-ability ensures that the delib-

eration preference that it describes applies to the the deliberation cycle immediately

following its satisfaction. Then, the agent to which the following predicate belongs

overdrawn => prefer(spend,save,"impulsive",60);

prefers spending over saving after going overdrawn and when feeling impulsive, with a

weight of 60.

64

3.6.3 Abilities

Abilities are provided which allow an agent to print to standard out, send messages to

other agents and set a delay timer. Furthermore, a Java interface is provided to allow

developers to define their own agent abilities with arbitrary Java code. Indeed,this is

to be encouraged for all but the simplest of agent-systems. However, only one ability

is mentioned here, essential for all successful societies—the ability to reproduce.

createAgent/3

This predicate provides an agent with the ability to create a new agent. Arguments

to this predicate define the new agent’s name, its temporal specification andits initial

relationship to the agent that creates it. It accepts up to three arguments:

createAgent (<name_prefix>, content|context|known, <spec>)

wherethe third argumentis optional and, if present, must be a quoted string. Some

examples and their purposeare given here:

createAgent (group, content, "app/subgroup.agent")

Creates a new agent whose name will have the prefix ‘group’ and whosespecification

is defined by the file subgroup.agent. The newly created agent will, in at least its first

state, reside in the content of the creating agent.

createAgent (self, context)

Creates a new agent that is a ‘clone’ of the creating agent. The newly created agent

has the sameinitial specification as its creator. The nameof the newly created agent

will be prefixed with the nameof its creator’ andit will, in at least its first state, reside

in the context of the creating agent.

createAgent (clone, known)

Creates an agent which has the sameinitial specification as the agent that creates it.

The nameof the newly created agent will be prefixed by the string ’clone’ andit will,

in at least its first state, have content:{}, context:{} and known:{<creator>}.

In all cases, the newly created agent will be added to its creators known set and

vice-versa. Once the new agent is created and its execution has been started, the

creating agent receives a message of the form:

receive(self, newAgent (<agent>))

"Note that the term self is a keyword that is replaced at runtime with the executing agent’s name

which, in this case, is the name of the creator.

65

3.6.4 Arithmetic

The implementation also supports arithmetic. Using the is/2 built-in predicate, integer

arithmetic expressions containing the operators x, +, \ and —, are evaluated in the same

manner as the Prolog functor with the same name.

3.7 Blockworld

The popular blockworld scenario provides a suitable illustration of the implementa-

tion’s backtracking andofits efficiency. A single-agent example, requiring a significant

numberof rules, this example generates a non-trivial numberof choices at each state.

By performing classical forward-chaining and back-tracking, an agent typically solves

a four-block puzzle in about one minute. Part of the specification is listed here.

at_most 1 move true;

at_least 1 move ~solved;

//if a block is not moved it remains on the same block

on(X,Y) & ~moving(X) => NEXT on(X,Y) ;

//if a block is clear and is not covered it remains clear

clear(X) & move(Z,Y) & X=\=Y => NEXT clear(X) ;

//a block can’t be in two places at once

on(X,Y) & on(X,Z) & Y=\=Z => false ;

//if a block is clear then it is either moved or not moved

block(X) & clear(X) & clear(Y) & X=\=Y => move(X,Y) | ~move(X,Y) ;

//if a block is moved and the destination clear

//then the block has a new location...

move(X,Y) & clear(X) & clear(Y) => NEXT on(X,Y) ;

//...and the previously covered block is now clear

on(X,Y) & move(X,Z) & clear(X) & clear(Z) => NEXT clear(Y) ;

begin => SOMETIME solved ;

Finally, logging output showingthefinal states of the agent robot, is listed below. Note

that these are the states that lead to a solution of the blockworld problem, following

a series of failed attempts and subsequent backtracking. For brevity, only the final

backtracking logging statement is included here.

66

[robot]

[robot]

[robot]

[robot]

[robot]

[robot]

state 1 has no consistent choices remaining, backtracking...

state 1: [moved(c,table) ~ clear(c) ~ clear(b) ~ on(d,a) ~

on(c,table) ~ block(b) ~ block(a) ~ clear(d) ~ block(d) ~

block(c) ~ on(b,table) ~ on(a,table) ~ clear(table) ~

move(d,table) ~ moving(d) ~ movement]

state 2: [clear(b) ~ clear(a) ~ moved(d,table) ~ clear(c) ~

on(a,table) ~ moved(c,table) ~ clear(d) ~ on(c,table) ~

on(d,table) ~ block(b) ~*~ block(a) ~ block(d) ~* block(c) ~

on(b,table) ~ clear(table) ~ move(b,a) ~ moving(b) ~ movement]

state 3: [on(d,table) ~ clear(table) ~ clear(d) ~

on(a,table) ~ moved(c,table) ~ on(c,table) ~ clear(b) ~

moved(b,a) ~ on(b,a) ~ clear(c) ~ moved(d,table) ~

block(b) * block(a) ~ block(d) ~ block(c) ~*~ move(c,b) ~

moving(c) ~ movement]

state 4: [on(d,table) ~ clear(c) ~ moved(c,b) ~ moved(b,a) ~

on(b,a) ~ clear(d) ~ on(a,table) ~ moved(c,table) ~

clear(table) ~ moved(d,table) ~ block(b) ~ block(a) ~

block(d) ~*~ block(c) ~ on(c,b) ~ move(d,c) ~ moving(d) ~

movement]

state 5: [solved ~ clear(d) ~*~ moved(d,c) ~ clear(table) ~

moved(b,a) ~ moved(c,b) ~ moved(d,table) ~ on(c,b) ~

block(b) * on(b,a) ~ block(a) * block(d) * block(c) ~

on(d,c) ~*~ on(a,table) ~ moved(c,table)]

3.8 Current status

At the time of writing, the implementation is considered to be complete and stable,

with respect to the basic features of the language and the additional features described

above. It has been released for general consumption andis available for download from

http://www.csc.liv.ac.uk/~anthony/metatem.html .

The only system requirement is a Java run-time environment supporting a byte-code

version of 1.6 or greater. The download includes

e metatem.jar, a package of files containing all the METATEM runtimeclasses,

enabling convenient integration with other Java projects,

e an examples directory containing specification examples from this thesis and

various other publications,

e comprehensive documentation of the API that allows developers to extend

anagent or execute arbitrary Java code,

67

e a syntax specification in BNF of the three METATEM inputfile types,

e an experimental visualisation tool, and

e the source code.

The implementation is described by a chapter in the second volume of Multi-Agent

Programming [59] and is used to complement a forthcoming text book from Fisher [54]

on formal methods for temporal logic. The system has also been used to implement a

virtual cow-herding team, to evaluate its potential use as an entry into the annual Multi-

agent programmingcontest [19]. As a result, we have METATEM users and development

is expected to continue, both to support its users and provide enhancements.

While describing the Concurrent METATEM implementation in this chapter, some

aspects concerning context have been deliberately omitted. These will be addressed in

the next chapter.

68

Chapter 4

Agents and Contexts

Beginning within the context of executable temporal logics [6], Fisher et al. produced

a series of papers [60, 58, 52] that developed the METATEM language into a gener-

alised approach for expressing dynamic distributed computations. The languageitself

is covered in detail in Chapter 3; this chapter describes its agent-organisation features.

These features were first proposed by Fisher and Kakoudakis in [60] and subsequently

supported by [56, 58, 57, 77, 76] and [74]. As the aim of this project was to implement,

extend, apply and evaluate these features, this chapter pays them appropriately high

attention.

4.1 Context

As described earlier, we need something more than individual agent specifications if we

are to model multi-agent behaviour. Our approach employs the notion of context and

employs it as a first-class entity in the language, such that context has the potential

to trigger changes in behaviour, and provide a means by which an agent can evaluate

the relative merits of its choices with respect to its personal attributes such as goals,

preferences andbeliefs. In this approach a contextis not prescriptive, it does not change

basic abilities but aims to enhance an agent’s effectiveness and appropriateness for the

contexts in which it finds itself, at run-time. Agents are not halted by inconsistent

combinations of context, are able to respond to unexpected changes in context and are

practical to specify.

With the agent metaphor in mind, contexts might naturally influence an agent’s

behaviour when attempting to achieve its goals. Consider an agent trying to achieve

some tasks. It might be in a context that provides additional capabilities, for example

it has access to resources provided by other agents or by sources within the environment

which are intrinsic to that context. Alternatively, the agent might be within a context

that restricts its behaviour, for example through regulatory or resource restrictions,

or through norms/roles of behaviour within that context. In this case the agent’s

behaviour is again modified. Importantly, the agent can be in both these contexts at

69

the same time. Thus the agent’s behaviour can beaffected in quite complex ways by

being within such multiple contexts, making any imperative expression of behaviour

problematic.

4.1.1 Example

We can see an analogy with practical human reasoning where contexts can both ‘en-

hance’ and ‘prune’ a human’s preferred choices. Humansrarely make entirely rational

decisions but have a vital ability to assess the contextual relevance of their choices and

modify their rational behaviour when appropriate to do so. Importantly, such behaviour

modification does not necessarily come from within. Consider, for example, someone

who is a memberof a golf club. By being within the golf club context, the player might

well get improvedfacilities/capabilities/skills in relation to hitting the golf ball. Thus,

being in the golf club resources context can enhance the player’s choices. However,

being in the golf club also restricts aspects, such as dress code and even gender. Hence,

being in the golf club etiquette context imposes various norms/rules and regulations of

behaviour on the player. This may well lead to the player having behaviour that is not

rational in other circumstances, but is perfectly explainable by the context in which the

player resides. For example, consider the behaviourof a golfer who adheresto the dress

code by wearing argyle patterned jumpers and plus fours. For an example that is more

analogous to inter-agent interactions, consider the difference in demeanour, language

and veracity, between two humansinside and outside a court of law. Behaviour in both

individuals will be affected by the wearing of a wig! by either individual.

4.2 Organisation by context

Given the basic principles of an agent’s internal architecture and the popularity of

multi-agent organisation abstractions any language constructs providedfor the purposes

of agent organisation should ideally allow the modelling of the all the organisational

abstractions reviewed in Section 2.6, as well as be adaptable to future trends.

The notion of context, as that part of an agent’s environment that provides the

greatest meaning to its actions and hence should have a significant influence on its

deliberation process, is the fundamental notion underlying METATEM’s agent organ-

isation strategy. Specifically, it provides an agent with two sets, named context and

content, of agents. Structurally, an agent’s content set describes those agents that it

contains and its context set describes those agents that it is contained by. However,

it is useful to assign other, non-structural, meanings to the relationships between an

agent and the agents in its context and content sets. For example, agents that have

a subordinate relationship may form the content set while an agent’s context set may

Tn Britain, wigs are worn by judges and others significant court officials, as a symbolof their office.

70

represent those agents it is submissive to. Alternatively, an agent’s context may repre-

sent agents with whom it wishes to co-operate, whilst its content are those agents who

wish to co-operate with it. Most generally, we say that an agent’s context is the set

of agents that have some influence on the agent’s behaviour, and its content is the set

of agents over which it has some influence. The formal definition of an agent for our

purposesis [60]

Agent ::= behaviour: specification

content: P(Agent)

context: P(Agent)

where P(Agent) are sets of agents and specification is the individual agent’s behaviour

described by our language of temporal logic. Crucially, the membership of these sets

changes over time and an agent has access to the sets. Thus, an agent is able to

adapt its behaviour at any moment in time, according to the membership ofthesesets.

Graphically, we depict an individual agent as residing in a context and enclosing a

content; thus the agent is the oval in:

context

The addition of content and context sets to each agent providessignificant flexibility for

agent organisation. Agent teams, groupsor organisations, which might alternatively be

seen as separate entities, are now just agents with non-empty content. This allows these

organisations to be hierarchical and dynamic, and provides possibilities for a multitude

of other co-ordinated behaviours. Similarly, agents can have several agents within their

context. Not only does this allow agents to be part of several organisational structures

simultaneously, but it allows the agent to benefit from context representing diverse

attributes/behaviours. So an agent might be in a context related to its physical locality

(i.e. agents in that set are ‘close’ to each other), yet also might be in a context that

provides certain roles or abilities. Intriguingly, agents can be within many, overlapping

and diverse, contexts. This gives the ability to produce complex organisations, in a way

similar to multiple inheritance in traditional object/concept systems. For example, see

Figure 4.1 for sample configurations.

An important aspect is that this whole structure is very dynamic. To reflect the

nature of contemporary applications, agents must be able to move in and out of content

and context sets and new agents (and, hence, organisations) should be easily created

and/or discarded. Accordingly, no restrictions on set membership are enforced. An

71

Multiple contents Multiple contexts
©

Or OS
OO

Hierarchy Groups

es co)
a as

Figure 4.1: A selection of possible organisation structures.

agent may be a memberof another agent’s content and context sets simultaneously

and cyclical relationships are not prohibited. This allows for a range of structures,

from the transient to the permanent. From the above it is clear that there is no

enforced distinction between an agent and an agent organisation. All are agents; all

may betreated similarly.

Finally, it is essential that the agent’s internal behaviour, be it a program or a

specification, have direct access to both the content and context sets. As we will see

below, this allows each agent to become more than just a ‘dumb’ container. It can

restructure, share information and behaviour with, and control access to its content.

Intuition

This approach is simple: everything is an agent and every agent has the potential to

contain other agents. Yet it can also be comprehensive in its ability to accommodate

multi-agent concepts. For example, we can think of several basic varieties of agent (60,

52] (where @ represents the emptyset):

e A simple agent: contents = @.

e A simple ‘container’ context: behaviour = 9.

e An independent agent: contert = Q.

e A more complex context: contents # @ and behaviour # 0.

72

In this final variety we have the possibility for the agent/context to move beyond simply

being a container and to exhibit behaviour/control in its own right. As we will see in

the examples below,this is very useful for a variety of complex scenarios. In particular,

an agent can only directly communicate with members of its contents or contexts; it

cannot cooperate with arbitrary agents outside these.? Since communication must pass

through a context, and since contexts are themselves agents potentially with behaviour,

then communications can be modified, blocked, duplicated, re-directed,etc., if required

by the context’s specification.

While it may seem counter-intuitive for an organisation to have beliefs and goals,

many of the models surveyed in Section 2.6 required team constructs such as tasks or

goals that can naturally be viewed as belonging to a team/group agent. Some also

required control agents to managerole assignment and communication which in this

framework can be handledby the containing agent itself if so desired. On the other hand

it is possible to distinguish between agents (with empty content) and organisations

(with non-empty content) and for a programmerto exclude certain constructs from

organisations in order to allow an organisation-centred approach,if required.

This model of contexts as agents and agents as contexts has been developed else-

where (e.g. [60]) and a correspondence with some aspects of Milner’s bigraphs [93, 94]

has been established [76]. The remainder of this chapter outlines the intended seman-

tics of this approach and demonstrates its ability to represent a wide range of group,

team and organisational structures from the multi-agent systems domain.

Semantics

Access to the context and content sets is given by meansof intuitive predicates that

allow a numberof interesting behaviours to be specified. Those predicates are:

addToContent/1 enterContext/1 entered/2 in/2

removeFromContent/1 leaveContext/1 left/2

In addition to point-to-point messages, agents are able to send a numberof multicast

messages to the membersof their context and content sets, including whatis effectively

a broadcast to all agents who have the same context. These three forms of multiple-

recipient messaging are fundamental to this agent-organisation abstraction and are

depicted in Figure 4.2. This section deals with the formal semantics of the above

constructs and messaging.

Message passing is modelled in METATEM bythe action predicate send/2 which,

when applied as send(R,M), is true at the moment in time that message M is sent to

2A third set, known has been implemented as ‘list of contacts’, which contains all agents that

have ever been members of content or context. There is no specific intuition intended for members of

the known set, it is intended simply as a programming convenience.

73

Forall X in Content . send(X,message)

Se

Forall X in Context . send(X,message)

ce
X in Context . send(X,broadcast(message))

a
Figure 4.2: The fundamental forms of multicast messaging.

recipient R. The complementary receive/2 predicate becomes true in the recipient

agent’s state at some timein the future. That is, receive(F,M), indicates receipt of

message M from agent F. Thefirst two diagramsin Figure 4.2 illustrate an agent com-

municating directly with their content and context respectively, but more interesting

multicasts can be achieved with modified message terms and cooperative members of

the content or context sets. For example (and as depicted by the third diagram in

Figure 4.2) a memberof a groupis able to ‘broadcast’ a message to all other agents

within the group without holding a reference to the group members andretaining its

anonymity. Program code for this example and others is given in Section 4.4.

74

4.3. Operational semantics

For clarity then, this section provides operational semantics for some of the key con-

structs discussed in this, and the previous, chapters. The semantics describe modifi-

cations to the state of a virtual agent that result from a numberof operations. The

temporal aspects of an agent’s operations are intentionally disregarded, not because

their semantics have been described in Section 1.6, but becauseall of the operations

described here occur between two contiguous time states, therefore the temporal char-

acter of the operations are equivalent.

The purpose of these semantics is to give unambiguous meaning to language con-

structs. The constructs for which semantics are given affect the sets of terms that

an agent maintains in its state, and also the logical evaluation of an agent’s temporal

states. For these reasons, a notation was chosen that describes the way each construct

manipulates the sets (and affects the logical evaluation of temporal states) belonging

to a virtual agent.

4.3.1 Notation

The semantics about to be presented uses a state-transition notation, where a state

belonging to our virtual agent is denoted by S. However, wedifferentiate between

two types of state; those that correspond directly to an agent’s temporal state, S

and S!, and states that are notional intermediate states occurring between temporal

states and denoted by S’,S”,S’”,.... As an agent conceptually executes one or more

actions simultaneously between temporal states, no sequence should be inferred from

S’,S",S",.... To better illustrate the notation, let us imagine that an agent executes

three instructions, inst!, inst? and inst®, in temporal state S, then apply the semantics

of each instruction to acquire three intermediate states

S inst) So!

inst?
S —— Ss"

inst3 mn
Ss —— §

these states are then combined by a function, Compose, which checks that S’ AS” AS”

is consistent, and if so, forms state S!.

S' = Compose(S’,S”,S"”)

In addition to the its logical state, an agent contains a numberofsets of terms and a

function, set: T +> S, that maps set namesto these sets, and set of messages, inbox,

where each message is a pair of terms denoted (ag,m) and corresponding to an agent

and message respectively. We denote intermediate state changes to these in a similar

way, i.e. set’ and inboz’.

75

4.3.2 add/2 and remove/2

Addition and removal of terms from a set requires that the set name be in the domain

of set

add(t,setname

setname € (dom S.set), S’.set = S.set { [setname > S.set(setname)U{t}]

remove(t,setname) "
xS

setname € (dom S.set), S”.set = S.set {+ [setname — S.set(setname)\{t}]

4.3.3. addToContent/1i and enterContext/1

Unlike the above operations which affect the state of a single agent, these operations

change the state of two agents; the executor and one other. Here, the executing agent

is denoted by the term ex and the other by ag, the state of agent ag is denoted by 7

and 7’ and the state of the executing agent, ex is again denoted by S and S’. These

operations perform a synchronised modification of the content, context and known sets

of two agents, such that when the executor agent adds the other to its content set, a

reciprocal addition to the other’s context set is made.

ez.addToContent(ag) /

S’.set = S.set ¢ [content > S.set(content)U{ag}, known > S.set(known)U{ag}]

ex.addToContent(ag) ey

T

T'.set = T.set { [context + T.set(context)U{ex}, known + T.set(known)U{ez}]

ex.addToContent(ag)
ot Sy

Similarly for entering a context:

ex.enterContext(ag) /

S’.set = S.set + [context > S.set(context)U{ag}, known > S.set(known)U{ag}]

ex.enterConteaxt(ag) j
\
r

T'.set = T.set { [content > T.set(content)U{ex}, known + T.set(known)U{ez}]

ex.enterContext(ag
Sa sir

4.3.4 in/2

Satisfaction of in(ag, content) requires that ag be a memberof content in state S , and

does not changethe agent’s state.

S F in(t,setname
S (+S whee &.= 5

setname € dom S.set, t € S.set(setname)

76

4.3.5 removeFromContent/1 and leaveContext/1

By default, either agent has the ability to remove a structural relationship. These

operationsare similar to their counterparts for creating the relationships, only no mod-

ification of the known set is made.

ex.removeFromContent(ag) ,
,
7

S'.set = S.set t [content + S.set(content)\{ag}]

ex.removeFromContent(ag) .ol
o

T' set = T.set ¢ [context + T.set(context)\{ag}]

ex.removeFromContent(ag
S||T si T

Andsimilarly for leaving a context:

ex.leaveContext(ag
S saa) > S!

S'.set = S.set { [context + S.set(context)\{ag}]

ex.leaveContext(ag) ool
T

T'.set = T.set + [content > T.set(content)\{ag}]

ex.leaveContext(ag)
S || T S’ || T’

4.3.6 Message passing

When an agent sends a message, m, the recipient agent’s in-box is updated beforeits

next reasoning cycle. Again, the agent executing the send predicate is denoted by ez,

and the receiver as ag. Their states are denoted by S and 7 respectively.

ex.send(ag,m)S Si, S=S8'ag € S.set(known)

ex.send(ag,m) 1

(ag,m) € T’.inbox

s 1 T ex.send(ag,m) s! | qT!

For each message received a correspondingpredicate is satisfied in the next state,

V(Ag,M) € T.inbox qT!

T’ E receive(Ag,M)

and the in-box is emptied in each temporalstate.

4.3.7 Negated built-in predicates

The evaluation of standard predicates, grounded, not-grounded, positive or negative,

follows the open-world intuition. That is, any negative non-ground predicates are con-

sidered trivially true. Built-in predicates however are treated differently. For instance,

77

an agent can access its entire in-box, it is, in effect, a closed-world. Therefore, the

predicate -receive(Ag, M) is not considered trivially true (based upon the notion that

somewhere in the world there is an agent that has not sent a message), but instead is

only considered true if no agent has sent a message (the in-box is empty).

S F -receive(Ag,Mg eeesl, 8
S.inbor = 0 S.inbor # 0

S F areceive(Ag,M) Ss!

andS = S’.

This is the case for all built-in predicates.

4.4 Representing organisations

In this section we aim to demonstrate how the abstractions found in manyof the ap-

proaches to agent organisation surveyed in Section 2.6, can be represented appropriately

and intuitively using the METATEM language and the content/context extensions we

have described. Table 4.1 lists these abstractions.

ly
g & /g

| [EL ISS 3/2/8/2
s/ gS V9ss /E/S/8
8) /[s/§/(S/§/8/8, S/B/@
S/¢ S/S/8/E/8/9) kas
SESSSSIES SEESIS

Cavedon Viv V lv v

Cohen & Levesque Vv Vv) lv) lv v

Estevaet al ¥Y Viv \v v

Ferber v AA v

Hubner Vv V\V |v v

Pynadath & Tambe Viv Viv v

Tidhar Viv Vv Vv Vv

Table 4.1: Multi-agent organisation concepts.

4.4.1 Sharing information

Shared beliefs

Being a memberofall but the least cohesive groups requires that some shared beliefs

exist between its members. Making the contentious assumption that all agents are

honest and that joining the group is both individual rational and grouprational, let

78

agent i hold a belief set BS;. When an agent joins a group? j it receives beliefs BS;

from the group and addsthem to its own belief base (invoking its own belief revision

mechanism in case of conflicting beliefs). The agent in receipt of the new beliefs may

or may not disseminate them to the agents in its content, depending on the nature and

purpose of the group. Once held, beliefs are retained until revised.

Joint beliefs

Joint beliefs are stronger than shared beliefs. To maintain the levels of cohesion found

in teams each member must not only believe a joint belief but must also believe that

its team membersalso believe it. Let us assume the agent is capable of internal actions

such as addBelief (Belief, RelevantTo) adding Belief to its belief base, and recording

the context that Belief is relevant to, and removeBeliefs(Context). Upon joining a

group, an agent is supplied the beliefs relevant to that context, which it stores in its

belief base along with the context in which they hold. This behaviour is captured in

the rule below.

receive(From, membershipConfirmation(BeliefSet)) &

~size(BeliefSet,0), &

(Belief in BeliefSet)

=> NEXT addBelief (Belief ,From);

The presence of such context meta-information can be used to specify boundaries on

agent deliberation, thus mitigating the complexity caused by introducing anothervari-

able. Whenleaving a context an agent might either choose to drop the beliefs relevant

to that context or to retain them.

Note METATEM does not have a dedicated belief revision process other than the

inherent prevention of logical inconsistencies. However, by the creation of a custom

ability, for example, a developer can provide an agent with arbitrary logical or non-

logical belief revision functions. In fact, this was the mechanism used to create the

addBelief action from the example above.

Shared capabilities

Let agent Ag; have a goal G, for which a plan P exists. However, Ag; does not have

plan P and therefore must find an agent that does. Twooptions available to Ag; are

to find an agent Ag;, who has P, and either: request that Ag; carries out the plan; or

request that Ag; sends P to Ag; so that Ag; can carry out the plan itself. The first

possibility suggests a closer degree of co-operation between agents i and j, perhaps

5Let us refer to such an agent as a group to distinguish it from the agent within its content .

79

even the sub-ordination of agent 7 by agent i. Whereas, in the second possibility, agent

i benefits from information supplied by j.

In the first scenario we might envisage a group in which a member(or the group

agent itself) asks another member to execute the plan. In the second case, we can

envisage agents i and j sharing a plan. This second scenario is typical if groups are

to capture certain capabilities— agents who join the content of such a group agent are

sent (or at least can request) plans shared amongst the group. Either scenario can be

modelled using our approach.

4.4.2 Joint intentions

An agent acting in an independentself-interested way need not inform any other entity

of its beliefs, or changes to them. On the other hand, an agent whois working, as part

of a team, towards a goal shared byitself and all other members of the team has both

an obligation and a rational interest in sharing relevant beliefs with the other team

members [24]. This gives an agent a persistent goal with respect to a team. Such that

the agent must intend the goal whilst it is the team’s mutual belief that the goalis valid

(not yet achieved, achievable and relevant) —it must not give up on a goal nor assume

the goal has been achieved, independently. The implications of this impact on agent’s

individual behaviour when it learns, from sources external to the group, that the goal

is no longer valid. In such a situation the team/group agent maintains its commitment

to the invalid goal but informs its team members of the antecedent(s) that lead it to

believe the goal is invalid. Only when the agent receives confirmation that the entire

team shareits belief does it drop its commitment.

Extension of an agent’s attributes with an intention that reflects the strength of

relationship between team members may be a natural way to implement this concept

but is likely to involve undesirable modification of an agent’s internal architecture.

Also, it is far from clear that strong notions of co-operation such as joint intentions

can be practically implemented without an agent relinquishing some autonomy to an

external entity of some kind, whatever it may be called; agent, team or context. We

believe our grouping approachis sufficient to implement joint intentions, mutualbeliefs,

commongoals and other strongly co-operative concepts by strengthening the semantics

of the in/2 predicate. By ensuring that all agents’ context and content sets are always

consistent, that is for two agents a and b, agent b is a memberof a’s content set if and

only if agent a is a memberof agent b’s context set;4

ina(b, content) <= inp(a, context) (4.1)

Applying this restriction to our extended METATEM allowsus to specify strongly co-

operative behaviour. For example, consider the scenario given in Figure 4.3, consisting

“Clearly this is only possible for a system of homogeneous agents or for one in which the developer

is able to specify the behaviourof all agents.

80

of a team agent T and member agent B. When the new member A joins the team,it

accepts goal JI and confirmsits receipt of (and commitment to) the joint intention JI.

During membership, and until the team agent informs its members that JJ should be

dropped, the membershavea responsibility to maintain the intention and act rationally

with respect to it. This may mean informing the team of any information relevant to

the jointly held intention;

belief(B) &

in(X,context) &

relevantTo(B,X)

=> NEXT send(X,inform(B)) ;

Informing the team if it discovers, independently, that the goal has been achieved;

achieved(G) &

in(X,context) &

relevantTo(G,X)

=> NEXT send(X,achieved(G));

But dogmatically maintaining the intention regardless of any internalbeliefs;

goal(G) &

in(X,context) &

relevantTo(G,X) &

~receive(X,drop(G))

=> NEXT goal(G);

Thus, an agent is obliged to inform its team of beliefs relevant to jointly held

intentions and will maintain a goal whilst it remains contextually relevant.

Figure 4.3: Communicating joint intentions upon joining a team.

81

Agent T. Evaluates group beliefs and communicates both the adoption, and drop-

ping, of intentions when mutual agreement is established. Since T has details of the

agents in its content and can send messagesto interrogate them, it can maintain knowl-

edge of common information and behaviours, and reason with this knowledge.

4.4.3. Roles

The concept of a role is a common abstraction used by many authors for a variety of

purposes[81, 45, 126], including:

e to define the collective abilities necessary to achieve a global goal;

e to constrain or modify agent behaviour for conformance with team norms; and

e to describe a hierarchy of authority in an organisation of agents and hencecreate

a permissions structure.

Roles are most obviously integrated into our framework as further agents whose content

is those agents fulfilling the role and whose context is the organisation to which the

role belongs. However in somecases, in particular strict hierarchies, it may be possible

to associate roles directly with the organisational agent. Below we examinea variety

of such role types and consider in more detail how each could fit into our model.

Ability roles

Let plan P be a complex plan that requires abilities x,y and z if it is to be fulfilled. An

agent A is created (without any domain abilities of its own) to gather together agents

that have the necessary abilities. Agent A might generate a new agent in its content

for each of the abilities required to fulfil plan P.

Multi-agent system
arbitrary agent

Figure 4.4: Roles according to abilities.

When agents with abilities x, y or z join the content of agent A, A adds them to the

content of the appropriate group (agent), analogous to assigning roles.

82

A talented agent might become a memberof several ability sets. The ability set,

itself an agent, may be a simple container or could exhibit complex behaviourof its own.

One basic behaviour might be to periodically request (of the agents in its content) the

execution of its designated ability. Note that, in the case of an ability that is hard to

carry out, it may be provident to include many agents with that ability. Similarly, the

desired ability might be a complex ability that must be subjected to further planning,

resulting in a numberof nested abilities.

Roles in society

Joining an institution, organisation or team of agents commonly involves the adoption of

the normsof that institution, organisation or team. Whether these norms are expressed

as beliefs, goals, preferences or communication protocols, our approach allows them

to be transmitted between group members, particularly at the time of joining. For

example, if team membership requires that members acknowledge receipt of messages

then each new memberof a group might be given the new rule (behaviour)

receive (From, Message)

=> NEXT send(From, acknowledge (Message)) ;

A stronger constraint might require an agent to believe all messages received from its

context:

receive(From,Message) &

in(From, context)

=> addBelief (Message);

Without the strength of (4.1), agents cannot be certain that another agent will

keep within given constraints or comply with normsofthe society, the most it can do

is demand formal acknowledgment of its request and a commitment to do so. Group

membership can be denied if an agent fails to satisfy the entry criteria.

Authority roles

None of the structures discussed usefully reflect hierarchies of authority. Each allow

almost arbitrary group membership, with transitive and cyclic structures possible mak-

ing them unsuitable for expressing a hierarchy of authority, which by its nature must

be acyclic with exactly one root.

A common usefor such a hierarchy is for creating channels of communication. Our

approach to grouping enables communication restrictions for free, as agents may only

communicate with their immediate superiors (context), or their direct subordinates

(content). Communication to peers (by multicast) can only be achieved by sending a

83

single broadcast message to the agent commonto the contexts of the intendedrecipients.

The receiving [superior] agent will, if it deems it appropriate, forward the message to

the other agents in its content.

4.4.4 Teams

The team abstraction aims to provide an intuitive approach to the specification of

highly coordinated multi-agent behaviour. As such, any concept of a team must make

more detailed reference to (required) team and agent abilities than other coordination

abstractions. Any team entity would be expected to define

e the roles required to make a well-formed team,

e permitted/restricted communications between team members,

e team resources—knowledge,beliefs,abilities, and

e team goals and plans.

However, we don’t advocate the use of a team entity or construct, instead we view an

agent and team as equals. Each having identifiable behaviour, a degree of autonomy

and a single voice for communication. In METATEM,a team is declared as an agent

with a non-empty content set, a number of rules that coordinate the team members,

and possibly some behaviourof its own. Consider the example of a professional football

team, it plays for a club, against an opponent and aims to win matches in order to

maximise profits for the club’s shareholders. The team is composed of three sub-

teams (defence, midfield and forwards), a coach and a group of substitutes. METATEM

encourages the developer to treat each of these entities as agents, consequently the

team is declared as follows;

football_team {

context : club, opponent, shareholders;

content : defence, midfield, forwards, manager, substitutes;

}

Here, the membersof the content set are analogous to the concept of roles. Note that we

don’t explicitly declare them asroles, nor do wedeclare that this initial context/content

sets should be fixed throughout the team’s life, however it is possible to apply such

constraints in rule form. For example, if the a defence is deemed necessary for a

functioning team then we wouldlike to specify that DinContent(defense) holds. This

translates to

~in(defence,content) => false;

84

in our normal form.

Defining the team’s actions is optional, if team behaviour is considered to be the

collective behaviour of its individual members then the agent need not declare any

actions, its temporal specification will describe only the internal behaviour of the team

such as membership protocols and communication constraints. In our example, we

consider the team to be capable of entering tournaments, and reasoning that once

entered, it will eventually play a match;

action enterTournament : examples.football.EnterTournament ;

enterTournament (X)

=> SOMETIME play_in(X);

The team agent can declare (and therefore) disseminate team knowledge in the form

of a set of beliefs, that can be given to all membersas describedin section 4.4.1;

set teamBeliefs : {teammname(athletico),league(one),... }

We believe that many benefits follow from treating the team and agent as one

and the same entity. For instance, any language that support dynamic creation of

agents during run-time, will also support the creation of teams formed ‘spontaneously’.

Also, the ability to substitute agents with (sub)teamsin a role, and vice versa, greatly

increases the flexibility of design and could be viewed as a way of increasing the scale

of a system.

In this chapter, constructs for modelling context-dependent behaviour with the

METATEM agent programming language have been described. We have given clear

semantics andillustrated their appeal as a flexible approach to a variety of agent

organisation abstractions. These organisation abstractions have been captured with a

few basic constructs of the METATEM language. None of the organisation concepts or

abstractions are built into the language and METATEM doesnot enforce a particular

definition of any of them. Instead, the general notions of content and context are

used, along with appropriate and flexible constructs, to capture a variety of agent

organisation concepts. In the remaining chapters we aim to demonstrate that this

approach is appropriate for the principled specification of pervasive and ubiquitous

computing systems, due to its simplicity, flexibility and logical foundations.

85

86

Chapter 5

A Common Semantics of

Organisation

This chapter concerns the proposal of implementing simple, yet flexible, constructs

for extending multi-agent programming languages based on the BDI model. It forms

an argument for using the content and context components described earlier in the

thesis as a general abstraction to facilitate agent-organisation in many logic-based BDI

languages. We argue that the two sets, along with a constraint construct, provide

sufficient expressive power to allow us to represent, simply and with semantic clarity,

a wide range of organisational structures for multi-agent systems. It should be noted,

that this chapter represents an addendum tothe project’s thesis and is derived from a

collaboration with Michael Fisher and Louise Dennis.

The chapter begins by outlining the motivation for these proposals. It then infor-

mally introduces the approach and provides its formal semantics, through modification

of an operational semantics based on the core of AgentSpeak, 3APL and METATEM.

In addition, we provide illustrative examples by simulating both constraints and con-

tent/context sets within the Jason interpreter for AgentSpeak.

5.1 Motivation

Whenresearchers and developers experimented with agent-oriented languages and used

them for a wider variety of applications it becameclear that open multi-agent systems

did not scale well without a further abstraction to capture the working relationships

between agents, groups of agents and their environment [61, 105]. Furthermore, only

a cursory study of human societies is needed to realise that increased levels of produc-

tivity and efficiency are realised by societies with effective frameworks that encourage

cooperative behaviour amongst their populations. The study of agent interaction, co-

operation and organisation is therefore of current interest in the agent research commu-

nity [98, 69] but, although a wide variety of BDI languages have been developed [15], few

have strong and flexible mechanisms for organising multiple agents, and those that do

87

provide no agreement on their organisational mechanisms. Thus, while BDI languages

have converged to a commoncorerelating to the activity of individual agents [35], no

such convergence is apparent in terms of multi-agent structuring and organisation.

5.1.1 Proposal

Before looking at the detail of our proposals let us recall the agent organisation tech-

niques, reviewed in Chapter 2, that we aim to support.

Cohen and Levesque [24] argue that a team of agents should be modelled with

new (logical) concepts of joint intentions, joint commitments and joint persistent goals

to increase the cohesion of team members. Tidhar [124] introduced the concept of

team-oriented programming that employs a weaker notion (weaker than Cohen and

Levesque’s) of joint intentions and joint goals. Ferber et al. [44] present a model for

designing multi-agent systems in terms of agents, roles and groups, where agents and

groups are proposed asdistinct first class entities. Sierra et al. [43, 126] formalised the

institutions abstraction founded on institutional norms.

In this chapter we consider extending basic BDI languages with simple, yet powerful,

constructs that allow the development of a wide range of organisational structures.

Thus, in the following section, we introduce the concepts behind the new constructs, in

particular showing how theyrelate to typical BDI language semantics. To clarify this

further, in Section 5.3, we provide the core semantics of a subset of AgentSpeak [109, 12]

incorporating the new concepts; we call this language AGENTSPEAK. To show how

these concepts can be used, in Section 5.4, we outline how a variety of organisational

structures can be expressed using these simple constructs, present several case studies,

and even provide some implementations within AgentSpeak.

We begin by introducing the concepts; we do this by first considering the core

operational aspects of BDI languages, describe some agent-organisational abstractions

and then show how our new concepts affect agent operation.

5.2 Introducing the concepts

Although all BDI languages have a family resemblance, their syntax and semantics can

vary immensely. Wetherefore use a loose unifying framework for our discussion into

which we believe most BDI languages will fit,| though not always elegantly.

Our semantic framework assumes that a BDI language specifies the behaviour of

an agent in terms of the agent’s current state, S, which changes over time and fixed

specification, SP, which does not. Thus, an agent is viewed asa tuple << S,SP >. S

consists, amongst otherthings,of a set of beliefs, Bel. The BDI programming language

‘Indeed, in [35] such a framework was used to provide a common semantic basis for 3APL, AgentS-

peak, METATEM,etc.

88

then has a process for determining whether a given belief b follows from the current

state which we will write as S — b, since these are often logical mechanisms.

The BDI programminglanguage has a specific operation, select_instruction, which

acts on the state according to the specification in order to determine the next instruc-

tion to be executed and another, modify, which modifies the state according to the

specification and the selected instruction. The execution of an agent can therefore be

viewed as repeated application of the transition rule

< S,SP >< modify(SP, S,select_instruction(SP,S)),SP > . (5.1)

We assume that both S and SP are made up of a numberofsets or stacks (e.g., of

beliefs) and use the notation S[S; \ S2] to indicate the state S in which the set 5S) has

been replaced by So.

Note

This framework should not be interpreted as assuming that a given BDI language

has explicit constructs for select_instruction and modify, but that most BDI lan-

guages can be expressed in terms of the operation of appropriate versions of these

functions. Indeed, the fact that languages implement their own interpretations of the

BDI paradigm’s concepts (such as plan selection, intention choice and belief revision),

requires that our semantics abstract away the semantics of these operations. This is

the reason for our choice of semantic framework, which includes a number of abstract

functions to denote language-specific operations. Clearly, if a given language cannot be

expressed in termsof these functions then the semantics that follow cannot be applied

to that language.

Wealso assume that a BDI language contains a set of plans (or rules), Plans, which

are used by the select_instruction operation. These plans may either be a part of

S or SP. We assumesuch plans are triggered in some fashion by S. In some cases

they are triggered by the composition of the beliefs (e.g., METATEM [52]), in some by

the goals (e.g., 3APL [75, 29]) and in some by explicit trigger events (e.g., Jason [12]

interpreter for AgentSpeak [109]).

To simplify matters, we use an abstraction of a plan, describing it using a horn-

clause notation, as

te {g}b .

Thus, plans comprise; a trigger, t; a guard (checked against the agent’s beliefs), g; and

a body, b, which specifies an instruction (or sequence of instructions) to be executed.

In languages where only beliefs are used to trigger plans this can be written as

Te {ghd .

89

In order to trigger plans, the language requires some component of the current state S

which activates the trigger. We treat this as a set, 7’, and write the triggering process

as T ky7.

Finally, we will use the notation Ag -, p to indicate that a plan, p, is applicable

for an agent, Ag. The semantics of this for a basic? BDI agent is

app-cond(t + {g}b, Ag)
Ag Fa Le {g}b

where app-_condare the agent language’s applicability conditions. In most languages

(5.2)

app.cond(t + {g}b, Ag) = ((T Fr t) A(S Fg)-

Notes

Again we do not necessarily expect these operations associated with plans to be explicit

in the languages, for example T may be a stack of goals and T -; g may bethe process

of matching the head(or prefix) of this stack. There may also be other applicability

checking processes within the language, for example, the applicability of actions—we

represent all of these within Ag F, . Application of a plan results in an instruction to

modify the state either directly (when +b appears in the body of the plan and is an

instruction to add b to Bel, for example) or indirectly, when the body of the plan is

integrated into an intention or other part of the state which is subsequently used for

further planning or to govern subsequent actions and changesofbelief.

This is the case for METATEM,in which plans do not take the form ¢ + {g}b and

plan selection does not select only one plan. Thus, to provide an operational semantics

of METATEM inthe style of rule-base BDI languages, the general SNF rule form of

antecedent => consequent accommodates trigger events and beliefs in the antecedents,

as follows

GA gb,

and, to accommodate METATEM’s synchronousexecution of multiple plans we provide

semantics that makes onestate transition per ‘rule’, then compose two or moreof these

to form a single temporaltransition.

Given the above, we below consider the two aspects we wish to introduce to general

BDI programming languages. The only restrictions it puts on any underlying language

is that, as in most BDI-based languages (and as described above), there are logical

mechanismsfor explicitly describing beliefs and goals, and possibly plans and intentions.

Of course, a form of message-passing between agents is also required. These features

are standard in most agent languages.

?1.e., a BDI agent whose semantics has not been modified with the constructs we describe later.

90

5.2.1 Content and Context Sets

Assuming that the underlying language can describe the behaviourof an agent as above,

we now extend the concept of agent with the sets described in Chapters 3 and 4, named

Content and Context.? The concept and intuition behind these sets have been covered

in Chapter 4 but to recap, and to give them a distintly organisational flavouring, we

might view the membersof an agent’s Content as those agents that it has recruited,

and the membersof its Context as those agents it has been recruited by. Alternatively,

an agent might be used to represent a location and the members of its Content the

agents at that location.

The proposals prohibit cyclical structures and require that all structural changes

occur with the consent of those agents whose Content or Context sets are affected.

Semantics

The simplicity of the above approach allows us to provide a few general operational

rules for managing the content and context sets. We extend the agent’s state, S, with

a content set, (Cn), and a context set, (Cx), and add four new instructions into the

language tag©” (add ag to the content set), —ag°" (remove ag from the content set)

and +ag@*, —ag©* for adding and removing agents from the context set. We also add

four new constructs into the trigger component, 7’:

entered_content(ag

left_content

(ag)

entered_context(ag)

(ag)

(ag)left_context(ag

Add two new constructs into our language of guards:

in_content(ag)

in_context(ag)

We then extend the modify operation with therules:

modify(SP,S,+ag@") = S[Cn\ Cnu {ag}, T \ T Uentered_content(ag)] (5.3)

modify(SP,S,—ag@") = S[Cn \ Cn — {ag}, T \ T Uleft-content(ag)] (5.4)

and two analogous ones for the context. These rules extend both the state’s con-

tent/context and the trigger set, T. This allows plans to be triggered by changes in

these sets. (e.g., plans of the form

entered_content(Ag) «+ {in_content(Ag)}send(self, Ag, plan)

’The third set, Known, is omitted for brevity as it is not essential to the requirements of the proposal.

Its inclusion would, of course, provide convenience, as doesits inclusion in Concurrent METATEM.

91

may be written which are triggered by the addition of a new agent Ag to the content

set, into sending that agent a plan).

We also extend thebelief inference process to include checking membership of Cn

and Cx:
age Cn

S — in_content(ag)

ag € Cz

S — in_contert(ag) —

It should be noted that in many languages it may be possible to streamline these

(5.5)

(5.6)

extensions (e.g., by merging the triggering of plans and the update of content/context

sets — see Section 5.3).

5.2.2 Constraints

The second basic component we suggest is necessary for many meaningful multi-agent

structures is that of constraints. A constraint consists of additional guards that may be

appended to plans/rules and actions andis typically provided by an agent’s context.

This, for example, allows permissions to be modelled.

Semantics

As with groups we extend the agent’s state, S, with a constraint set, C. C is treated

as a set of pairs of a trigger and a guard, written [t = g]. Depending on the lan-

guage, it may be desirable to add other pairs to this set, for instance if actions may

have guards and there is an applicability process for actions then action/guard pairs

may also be useful within constraints. Again, we add new instructions into the lan-

guage +new-_constraint© (add new-_constraint to C) and —new-constraint© (remove

new-_constraint from C), which are analogous to the previous add/remove operators.

We then extend our applicability checking process, Ag Fa to

V[it>g/])EC. SEgq’ app-cond(t + {g}b, Ag)
 wsAg Fat — {0}

So, in many languages, this becomes

Wits gl€C. SEg Tht Skg as

Ag Fat + {g}b
Similar modifications can be madeto the operational semantics of action applicability

(internal or external) and any other relevant components of S and SP.

It should be noted that constraints make relatively little sense in a single agent

environment (where guards on plans and actions are sufficient) it is only in a multi-agent

environment where a member of Context may wish to provide guards to a pre-existing

plan or action that such constraints become useful.

Before going on to providing the semantics of a more comprehensive language (in Sec-

tion 5.3), we first consider the properties of such semantic extensions.

92

5.2.3 Properties of groups and constraints

In addition to the generic operational semantics for groups and constraints we present

here some properties that ideally any system implementing them should obey. We

discuss when these hold in a system that implements these concepts using our suggested

rules.

Firstly one agent should believe that anotheris in its Content/Contextif, and only

if, that agent is actually in its Content/Context. We expressthis as:

CONTAINS(ag) => BEL(in-content(ag)) (5.9)

CONTAINED_BY(ag) = BEL(in-contezxt(ag)) (5.10)

BEL(in_content(ag)) = CONTAINS(ag) (5.11)

BEL(in-contert(ag)) = CONTAINED_BY(ag) . (5.12)

For the operational semantics presented above we interpret CONTAINS(ag) as

ag € Cn, CONTAINED_BY(ag) as ag € Cx and BEL(@¢) as S F ¢.

Let us assume that the the formulae in_content(ag) and in_context(ag) are “re-

served” in an implementation, i.e., such formulae can not appear in the belief base

either when an agentis initialised or through any belief revision process and that there

is no way they can be inferred through belief inference except by the use of (5.5) and

(5.6). (Many BDI languages have mechanisms for reserving key-words which could

be extended for this purpose.) If this is the case then (5.9-5.12) follow directly from

rules (5.5) and (5.6). If it is not possible to restrict the formulae that an agent might

believe (e.g., it will accept any formulaas a belief if sent it by a trusted external agent)

then any system adopting our operational semantics only satisfies (5.9 and 5.10), unless

additional safeguards are implemented.

Turning to constraints, we would expect any well-behaved system implementing

constraints to satisfy

(Ag Fa P) = ((Ag Fa P) A(C = 9) (5.18)

i.e., if a plan is applicable given some constraints, then it is also applicable if there are

no constraints. In our operational semantics this follows from (5.7) if we observe that

when C = @ the condition V[t + g'] € C.S — g’ reduces to T and that C is not referred

to elsewhere in the rule.

Rao and Georgeff [113] state a numberof interesting properties they suggest BDI

languages might wish to satisfy and it would be tempting to examine someof these in

relation to groups(in particular those relating intentions andbeliefs (with INTEND(¢)

interpreted as ¢ € T')). However this work assumes that intentions are expressed as

temporal formulae and that belief inference includes temporal and causal reasoning.

Our triggers are not expressed in this way and in fact may include formulae (such as

93

entered_content(ag)) which refer to events that have occurred rather than states of the

world the agent wishes to bring about.

As mentioned previously, an agent’s internal behaviour, be it a program or a spec-

ification, must have direct access to both the Content and Context, allowing each

agent to become more than just a ‘dumb’ container. An agent can then provide ac-

cess to, provide services for, and share information or behaviours with, its Content,

as is demonstrated by Fig. 5.1; here agent 7 moves into the separate context of agents

i and k (perhaps i represents an auctioneer agent who provides j with the bidding

rules, whilst k is the agent on whose behalf j is bidding). Our proposals encourage the

sharing of plans, beliefs and constraints as structural changes take place but also allow

the dissemination of new knowledge. Indeed we can state the following, very general,

result.

I
send(inform(P))

Figure 5.1: Sharing plans and information.

Theorem 1 Jf agent A moves into a new context C and

e the context agent C, is willing to send plans/beliefs/constraints/etc to A, and

e agent A incorporates these plans/beliefs/constraints/etc sent from its new contect,

then A has the new plans/beliefs/constraints/etc provided by its new context.

Aside. There is an obvious counterpart of Theorem 1 whereby A can ask its context

for information (plans/beliefs/etc). Once it moves into a new context then A has access

to the new information/capabilities provided by its context.

Theorem 1 above has many caveats! However, these mainly cover situations where

agents choose not to cooperate. In a cooperative scenario, where an agent provides

plans/beliefs/constraints/etc to any new membersof its content, and where agents

accept those items from their new context, then Theorem 1 says that an agent effectively

has the information and capabilities provided by its context (in addition to its own).

94

Importantly, this is seamless. The particular example of constraints is informative.

Constraints effectively prohibit certain planning choices. Thus, through Theorem 1 we

know that an agent with certain choices (e.g. of how to achieve a goal) will inherit the

constraints (restrictions) from its context. If the agent is in multiple contexts, the agent

must make choices satisfying all the constraints received from its contexts. Effectively,

the agent is constrained by the unionofall its contexts and so its behaviour mustfollow

the intersection of behaviours allowed by each context.

This aspect is exhibited in the cookery example in Section 5.4.3, but is also closely

linked to organisational aspects such as norms in that the agent’s choices are modified

by the contexts (organisations) in which it finds itself.

5.3 A simple BDI language: AGENTSPEAK—

We will conclude our discussion of formal semantics with a simple example showing

how our framework provides a practical methodology for extending existing BDI lan-

guages. Let us consider an extremely simple agent programming language based on

AgentSpeak [109, 12]; we will call this language AGENTSPEAK.

Syntax

Our language uses groundfirst-order formulae for beliefs, actions and goals. A plan

is a triple of a goal, a guard and a stack of instructions (called here deeds following

AIL [35]). An Agent is a triple of a set of beliefs, a stack of deeds and a set of plans.

This is shown in Fig. 5.2.

belief := Ground first-order formula

action := Groundfirst-order formula

goal := Groundfirst-order formula

plan := goal: set(belief) < stack(deed)

agent := < set(belief), stack(deed), set(plan) >

deed := action | +belief | —belief | +!goal

Figure 5.2: Syntax of AGENTSPEAK~.

Operational Semantics

An operational semantics for AGENTSPEAK_ is provided in the form of the four tran-

sition rules in Fig. 5.3. In these semantics do(a) is an operation in an agent’s interface

that causes it to perform the action, a, and then returns a set of messages in the form

of deeds, +!received(sender, ¢), which instruct the agent to handle the message ¢ from

95

agent sender. In this language, therefore, perception has to be handled by an explicit

perception action which then returns messages from the environment as if from an-

other agent. Finally, ‘;’ represents the cons function on stacks, ‘Q’ represents the join

function, and ‘random’ indicates random selection of an element from a set.

do(a) = msg (5.14)

< B,a;D,P >< B,msgQ@D,P > .

5.15
< B,+b;D,P >< BU {b},D,P > 05-25)

wl
< B,-b;D,P >< B- {b},D,P> om)

body = random({b|g: GbE PAG B}) (5.17)

< B,+!9;D,P >-< B,body@D,P >

Figure 5.3: Operational Semantics of AGENTSPEAK.

Note

This is not intended as a practical example of a BDI language. For a start the language

is entirely grounded and makes no use of unification. Secondly the rather crude use of

the deed stack to organise both planning and message handling/perception is likely to

cause quite strange behaviourin any real agent setting, as no distinction (and therefore

priority) is made between beliefs, perceptions or messages.

Extension to the Simple BDI Language

Fig. 5.4 shows how this language fits into our earlier framework. Modifying these

semantics according to our content/context and constraints framework now gives us

the language semantics shownin Fig. 5.5

In fact this extension can be improved upon based onthe details of our languages.

For instance we can omit the entered_content() andleft_content() and use +ag©” and

—ag@" as plantriggers if we like, changing (5.24) to

body = random({b| + ag°": G HbE PAG C BAV[+ag(=> G'] € C.G’ C B}

< B,+ag©"; D, Cn, Cx,C, P >< B, body@D, CnvU {ag}, Cx, C, P >

(5.28)

5.4 Using the concepts

We will briefly discuss some examples of the use of constraints and content/context

sets (sometimes termed groups) in organisational and multi-agent settings. We begin

96

Framework AGENTSPEAK™

SP Pp

S <B,D>

T D

SEb bCB

TE t t = hd(D)

app-_cond(gl : g + b) gCB

modify((B, D), P, +b) (BU {b}, D)

modify((B, D), P, —b) (B — {b}, D)

modify((B, D), P, ds) (B,dsQ@D)

select_instruction((B, a; D), P) do(a)

select_instruction((B, +b; D), P) 0

select_instruction((B,—b; D), P) —b

P)select_instruction((B,+!g;D), random({b|p € P A Ag Fa p})

Figure 5.4: Mapping our Framework to AGENTSPEAK~.

do(a)=msg Via=G)eEeCc.GCB

5.1
< B,a;D,Cn,C2z,C,P >< B,msg@D, Cn, C2z,C,P > i518)

(5.19)< B, +b; D, On, Cz, C, P >< BU {0}, D, On, Oz,0,P >

(5.20)
< B,-b; D,Cn,Cx,C,P >< B- {b}, D, Cn, Cz,C, P >

(5.21)
< B,+c°; D,Cn, Cz, C,P >< B,D,Cn,Ca2,C VU {c}, P >

(5.22)
< B,-c°; D, Cn, Cz,C, P >< B,D,Cn,Cz,C — {c},P >

body = random({b|g:G@HbEPAGC BAV|g = G'] € C.G' C B}) (5.23)

< B,+!g9;D,Cn, Cx, C, P >-< B, body@D, Cn, Cx, C, P >

< B,+ag@"; D, Cn, Cz, C, P >< B, +!entered_content(ag); D,Cn U {ag}, Cx, C, P >
(5.24)

< B,-ag@"; D, Cn, Cz, C, P >< B, +!left_content(ag); D,Cn — {ag}, Cxz,C,P >
(5.25)

< B,+ag@*; D, Cn, Cr, C, P >< B,+!entered_context(ag); D, Cn, Cx U {ag}, C, P >
(5.26)

< B,-ag@*; D,Cn, Czr,C, P >< B, +!left_contert(ag); D, Cn, Cx — {ag}, C, P >
(5.27)

Figure 5.5: AGENTSPEAK~ extended to multi-agents.

98

by considering a few common aspects of agent organisations, and then examine two

case studies in more detail.

The purposeof these examples and case-studies is to bothillustrate the capability of

our proposals for implementing agent organisation concepts and demonstrate that the

proposals can be practically adopted by an existing BDI programming language. This

is achieved by demonstrating the concepts of shared belief, permissions and obligations

(in Sections 5.4.1 and 5.4.2), by combining these and other concepts into two more

elaborate case-studies (in Sections 5.4.3 and 5.4.4) and by using code for the Jason

interpreter for AgentSpeak, throughout. We believe that these examples demonstrate

that content/context sets can provide a powerful, flexible and intuitive way of handing

agent organisation at a level of abstraction and concision that is appropriate for a

common semantics of organisations. Note that a more comprehensive review of how

many agent organisational approaches can be modelled using our constructs is provided

in [74].

5.4.1 Shared beliefs

Being a memberofall but the least cohesive groups/organisations requires that some

shared beliefs exist between the members. Making the (contentious) assumption that

all agents are honest and that joining a groupis both individual rational and group ra-

tional, let agent i hold a belief set BS; and assume the programming language contains

the instruction addBelief (Beliefs) with the semantics

modify(SP, S, addBelief(Bs)) = S[Bel \ Bel U Bs].

Suppose a (group) agent i has the plan:

entered_content(Ag) + {in-content(Ag)}send(i, Ag, inform(BS;))

and agent 7 has the plan:

received(Ag, j, inform(BS;)) + {in_-context(Ag) }addBelief(BS;)

taken together these plans mean that if j joins the Content of i it gets sent thebeliefs

BS; which it adds to its own belief base. This allows shared beliefs to be established.

The agent in receipt of the new beliefs may or may not disseminate them to the

agents in its Content, depending on the nature and purpose of the group structure.

Once held, beliefs are retained until contradicted or revised (for example, on leaving

the group). It is worth noting here that these behaviours are merely suggestions of

how our proposals can be used to implement shared beliefs, providing the developer

has authorship ofall agents.

99

5.4.2 Permissions and obligations

A numberof multi-agent proposals include concepts of permissions and obligations [15].

An agent within a group setting may or may not have the permission to perform a

particular action or communicate in a particular fashion. This can be easily represented

using constraints: for instance if agents in group, G, may not perform action a then

the constraint [a = 1] can be communicated to them when they join G’s Content.

It should be noted that in order for such a message to be converted into an actual

constraint, the receiving agent would also need the plan:

received(Ag,i, constrain([a => g])) < {in-context(Ag)} + [a => g]° .

This design deliberately allows varying degrees of autonomy among agents to be handled

by the programmer.

Obligations are where a group memberis obliged to behave in a particular fash-

ion. This can be modelled if plans are treated as modifiable by the underlying agent

language. Obligations can then be communicated as new plans.

|itieial belieis, «seen */

cooperative.

|nee Tules ------nnn */

check_constraint (Plan, Arg)

:- not constraint_fails(Plan,Arg).

[* soonrncnnn basic plans -------------------- */

/* How an agent responds to a group membership invitation */

+!join(Group) [source(Group)] : cooperative

<- .my_name(Me);
+context (Group);

.printin("I believe I have the context of ", Group);

.send(Group, achieve, accept(Me, Group)).

Figure 5.6: A simple cooperative agent defined in AgentSpeak.

5.4.3 Case study 1: Cookery agents

We now describe an implementation case study in which we demonstrate the concepts

using AgentSpeak and Jason. It concerns a simple cook agent whois provided with a

numberof plans by a chef agent, each for cooking a different meal. The cook’s choice

of plan is constrained by the Context in which it cooks.

100

Scenario

The chef of a restaurant hires a cook and providesa list of dishes from which the cook

is free to choose when asked to prepare a meal. Asdiners arrive, their preferences are

noted and the cook endeavours to choose a mealthat satisfies all of the diners. Our cook

was implemented as a simple, cooperative agent with the ability to enter the Context

of other agents but without any domain abilities —it can’t cook —see Fig. 5.6.

When hired, the cook agent receives plans for making risotto, steak and pizza.

AgentSpeak code defining this behaviour is shown below.

+content (Agent) [source(self)]

<- .print("Sending ", Agent, " plans...");

.send(Agent, tellHow, "+!cook(risotto)

: check_constraint (cook,risotto)

<- make(risotto).");

.send(Agent, tellHow, "+!cook(steak)

: check_constraint (cook, steak)

<- make(steak).");

.send(Agent, tellHow, "+!cook(pizza)

: check_constraint (cook, pizza)

<- make(pizza).").

(Note that this sending of plansis triggered by the cook entering its Content.) When

asked to prepare a meal without the constraints of any diners it prepares risotto; see

Fig. 5.7(b). A meat eating diner then imposestheir dislike for risotto by providing the

cook with the constraint

constraint_fails(cook,risotto).

Now acting in the context of this meat eater, rather than making risotto, the chef

prepares steak; see Fig. 5.7(c). Finally, a vegetarian diner invites the chef to join its

Content and imposes the constraint constraint_fails (cook, steak), see Fig. 5.7(d).

The agent, now a memberof three contexts, must decide an appropriate course of action

within the supplied constraints— it must not commit to cooking risotto or steak! Thus

it is constrained to choose to prepare pizza; see below.

+content (Agent) [source(self)]

<- .print("Sending ", Agent, " my constraints") ;

.send(Agent, tell, constraint_fails(cook,steak)).

Full execution output for this example is given below.

101

cook(pizza)

cook(risotto)

cook(steak)

cook(Meal) <— cook(risotto)

constraint_fails

(cook,steak)

constraint_fails
(cook, risotto)

meatEater vegetarian
meatEater

cook(Meal) <— cook(steak) cook(Meal) <— cook(pizza)
Figure 5.7: A cook with multiple constraints.

[chef] saying: inviting cook to join my content

[cook] saying: I believe I have the context of chef

[chef] saying: Sending cook plans...

[chef] saying: I consider cook to be in my content

[cook] doing: make(risotto)

cook is making risotto

(meatEater] saying: inviting cook to join my content

[cook] saying: I believe I have the context of meatEater

[meatEater] saying: Sending cook my constraints

[meatEater] saying: I consider cook to be a member of my content

[cook] doing: make(steak)

kcook is making steak*

[vegetarian] saying: inviting cook to join my group

[cook] saying: I believe I have the context of vegetarian

[vegetarian] saying: Sending cook my constraints

102

[vegetarian] saying: I consider cook to be in my content

[cook] doing: make(pizza)

COOk is making pizza

5.4.4 Case study 2: Self deploying agents

This example demonstrates the potential for software services that migrate across ge-

ographical spaces and deploy themselves in their new location.

Scenario

Co-ordination of disaster and rescue missionsis a challenging problem for the authorities

involved [85]. The deployment location, the numberand nature of agencies (commis-

sioned or voluntary) involved cannot be foreseen and speed of deploymentis critical.

Establishing fast and reliable communication channels between all parties, no matter

what their individual resources are, is essential for effective co-ordination.

In our example, disaster recovery head quarters has a co-ordination agent, hq, that

is mobilised to a wired network in the proximity of the disaster. hq has domain knowl-

edge but no local knowledge or resources—it does not know which agencies are on

the scene and cannot communicate outside of its host network. In orderto effectively

co-ordinate the rescue effort hq must seek help from a variety of helper agents that

can carry communication to the operational agencies and provide information about

local resources. Examples of help provided by such agents might be: WiFi communica-

tion; environmental sensors; public display points; media communications; and utility

providers. The suitability of these agents might be determined by proximity, ability or

cost.

On arrival hq broadcasts a ‘services needed’ message requesting that agents with

certain capabilities offer their services. The following code snippetillustrates an agent’s

generic recruitment plan, used to broadcast requests for services to the entire agent

space, along with the plan to recruit a WiFi service.

/* Broadcast for local services*/

+!lrecruit (Service)

<- .broadcast(askIf, has_ability(Agent, Service)).

!recruit (wifi).

Co-operative agents respond to hq’s plea for help by sending a reply stating their

abilities and confirming their willingness to join the group rescue effort. Below, we

show an agent’s plan for responding to requests for help.

/* Confirm ability and willingness to join */

+!help(Group, Service)

103

.my_name(Me) and has_ability(Me, Service)

<- .send(Group, tell, has_ability(Me, Service));

.send(Group, achieve, accept(Me, Group)).

thelp(hq, wifi).

The plan has a guard that ensures only genuinely able agents respond, it confirmsits

ability and requests group membership. Note that in this case, the helper agent does

not consider itself to be a memberof the group until the groupitself directly informs

it of its membership —a hierarchical structure whereby membership is controlled by

the group is appropriate in this scenario but our proposals also allow agents to control

their own Context, as shownin Fig. 5.6.

On acknowledgement of group membership hq holds the belief content(wifi), wifi

holds the belief contert(hq) and wifi is provided with authentication procedures to

apply to incoming connections; see below.

+!accept (Agent, Group) [source (Agent)]

: is_useful (Agent, _) [source(self)]

<- +content (Agent);

.send(Agent, tell, context(Group)).

+content (Agent) [source(self)]

<- is_useful(Agent, communicator) ;

.send(Agent, tellHow, authentication).

Broadcasts of this nature are unavoidable when an agent has no knowledgeof the system

ahead of deployment. However the context/content mechanism provides a convenient

and intuitive alternative that enables moreefficient multicast communication; for ex-

ample, our agent hg may haverecruited a number of communicator agents to whom

it wants to broadcast information, by creating a new agent to act as a container for

the communicator agents, hq is able to send a message to all communicators —using

the container agent as a proxy— with the send(group, broadcast(message)) message,

where the agent group receiving the broadcast(message) message distributes it to all

membersof its Content. Oncestructures are formed, multicast communication of the

following type become the norm:

send(communicators, broadcast(found(Survivor, Location))).

send(locators, broadcast(is_clear(Zone))).

Fig. 5.8 shows someof the structural changes that take place during deployment of our

simple disaster management system.

One of the difficulties of disaster management wherelife saving rescueis required,is

the prioritisation of rescue attempts and subsequentallocation of resources, particularly

104

Migration(~\ Serves |~\ ~TN

(O88 Oly, se | (eo : |

i
Figure 5.8: The structural view during deployment.

responding

SY

ny
Figure 5.9: The dynamic nature of search and rescue.

when the number, location and needs of victims changes throughout the rescue mission.

Continuous re-assessment of the mission’s priorities must take place yet pragmatic de-

cisions must be made to ensure rescue teamsare effectively deployed and do not, for

example, waste time travelling between rescue sites. The context of a rescue team’s

current activity, their specialisms and location must be considered before allocating

them to a rescue site. Our grouping constructs provide the flexibility to model the

dynamic nature of these contexts and provides a useful bound for reasoning—reducing

the search space for suitable rescue teams. Fig. 5.9 illustrates how our proposal intu-

itively deals with this situation. The diagram shows rescue agent Ag; standing by in

zonel ready to be deployed and its subsequent change of context if it were to respond to

a call. Another agent Ago that has both air andfire specialisms is currently attending a

rescue site. Using this formalism it is easy to express autonomous behaviour on behalf

of the rescue agents;

105

constraint_fails(respond, _) :-

in_context (responding), in_context(on_site).

Giving the agents the above rule prevents them from responding to rescue requests

whilst either on route to, or at the scene of a rescue, when combined with the plan

below.

+!respond(Rescue) : check_constraint(respond, Rescue)

<- lattend(Rescue).

5.5 Summary of proposal

In this chapter we have proposed a simple extension to BDI languages that permits the

development of complex multi-agent organisations. We have shown how the addition

of both content and context sets, and constraints is semantically simple and appealing.

The key aspect, particularly with contexts and constraints is that an agent’s behaviour

may be modified, seamlessly, when the agent moves between contexts.

Although we provided a semantic definition for a simple BDI language, we gave

this only for illustrative purposes. We expect that developers’ favourite logical agent

languages could be extended in this way. Importantly, the semantic rules show how

this logical extension can be added(relatively easily) to any appropriate BDI language.

Finally, we provided some simple examples here, which complement those of Chap-

ter 4, and illustrate and justify our statement that many agent organisational aspects

can be modelling using our two simple concepts. These examples demonstrate how

leading organisational and team-working concepts such asroles, joint-intentions and

groups fit within our framework, a framework that, if incorporated into BDI languages

will enable a consistent agent-organisation semantics across languages.

106

Chapter 6

Case Studies

This chapter describes the application of METATEM to twopervasive computing scenar-

ios. The general purposeof each of these case-studies was that of evaluating METATEM,

but particular emphasis was placed on evaluating the suitability of the agent structuring

mechanism, the helpfulness of the context and content metaphorandtheeffectiveness of

the various constructs provided by this project’s implementation. Thefirst case-study

involves aspects of agency and ubiquity, when a shopper’s smart phoneinteracts with a

shopping centre’s networkservices in order to provide an assisted shopping experience.

The second case-study concerns the surveillance of a moving target by the cooperation

of a loosely connected network of sensors. For each case-study the scenario is described

before a solution and its rationale is given, including supporting code snippets and

output examples.

6.1 Shopping scenario

This case-study was chosen for a numberof reasons. Firstly, it seems clear from the

points made in Section 2.1, that the chosen scenario is likely to becomereality soon

(if it has not already been achieved). Secondly, it presents a number of problems

typical of pervasive computing applications andfinally, whilst this scenario— at a high-

level of abstraction— presents no fundamentally complex computation problems, the

problems it does present combine to produce a challenging case-study for the purposes

of this project. The case-study was tackled in an iterative way, beginning with a

simple scenario with little complexity, which was repeatedly extended, introducing

new situations, interactions and features during each iteration, resulting in a complex

final implementation. This section describes the intuition behind each of the iterations

and some of the design choices madein each case.

6.1.1 Basic scenario

Bob maintains a shopping list on his smartphone, the list has two items on it, bread

and milk. Whilst driving home, Bob notices a shopping centre and decides it would be

107

convenient to buy some items from his list. Whilst walking through the shopping centre,

Bob’s smartphone is broadcasting messages to nearby stores in order to find stores that

have stock of bread or milk. Bob’s smartphone alerts him to the presence of a store that

sells milk and reminds him that he needs milk. Bob visits the store and buys some milk.

Bob’s shopping list is updated when his smartphone receives a copy of the electronic

receipt from his payment card. Bob continues on his way, and is later prompted to buy

bread in a similar way.

This scenario demonstrates the seamless interaction between mobile devices, service

providers and users that is expected of pervasive computing applications. Within

METATEMtheagents specified are

phone, bob, shopping-centre, store_1, ..., store_5, and p-_card.

These agents combine to create a fully connected structural relationship, of which the

following is a snapshot example:

Contentstooping.centre = {atore_l,...,store.b, phone}

Contextshopping.centre = 0

Contentphone = {bob}

Contextphone = {shopping-centre, store_1}

Contentpop = {p_card}

Contextyon = {phone}

For this basic scenario, when Bob enters the shopping centre the phone receives a

broadcast message, inviting it to become a member of the centre’s Content set. The

followinglines of code are an extract from the agent specification for phone, they ensure

that driving to the shopping centre results in subsequent arrival and that he leaves

when finished shopping. The third ‘rule’ demonstrates a programming convenience

for bringing execution to an end; the predicate end is a special formula which, when

satisfied, forcibly stops an agent’s execution.

// Make it a short drive to the shopping centre and then to home

drive(shoppingcentre) & ~enterContext (shopping_centre)

=> NEXT enterContext (shoppingcentre);

done(shopping) => NEXT leaveContext(shopping_centre);

in(home,context) => NEXT end;

Once a member, the phone, prompted by its shopping list, broadcasts the messages

has(store, bread) and has(store, milk) at regular intervals within the context of the

1METATEMis designed for non-terminating systems and hence the theory provides no elegant means

of bringing an executing system to a halt. The end predicate was introduced as an alternative to killing

the Java Virtual Machine and as a way of enabling agents to perform a dying wish.

108

shopping_centre, requesting a response from those stores that stock bread or milk

respectively. The shopping_centre forwards the messagesto a selection of stores within

easy reach of the smartphone’s current location. Each time a response is received the

phone agent alerts Bob. I.e. all stores that Bob passes-by and that sell items his

shoppinglist, are recommended by his smartphone.

Drawbacks

Little intelligence or pro-activity is employed by Bob’s smartphonein this first, simple

iteration. Bob must walk-by a store for it to be recommended and he may missa useful

store if his route through the shopping centre is not a total traversal of the centre.

No comparison of stores is performed and none of Bob’s preferences are considered.

Subsequent iterations improve these aspects.

6.1.2 Increased reasoning and an additional context

Bob maintains a shopping list on his smartphone, the list has two items on it, bread

and milk. On entering a shopping centre, Bob’s smartphone queries local stores in a

similar way to the basic scenario, but this time it does not react to each individual re-

sponse and responses themselves are more detailed; a response contains cost and location

data. Bob’s smartphone receives responses from many stores, and only when multiple

responses have been received does Bob’s smartphone alert him to a single store, within

a short walk, that has stock of both bread and milk. Bob visits the store and makes the

purchase. His list updates as before.

In this scenario Bob’s smartphone not only relieves Bob of the task of finding the items

he wants to buy but also the tasks of achieving good value and a convenient location.

In displaying this intelligent behaviour, the system has changed from an integrated

messaging system into a personal shopper. Additional agents are specified, including

shop, browse, and personal_shopper.

The structure remains similar to that of the basic scenario, however, when first

entering the shopping centre a personal_shopper agent is created for Bob, this agent

performs a task previously undertaken by the phone agent —store discovery—but

also performsthe price and location comparisons. However, this personal shopper does

not actually shop, it must not make a final decision and does not have the crucial

ability to pay. The personal_shopper agent is a service provided by the shopping

centre which has an advisory role only and cannot be trusted to make purchasing

decisions. We believe it is important to reflect this distribution of task and decision

taking responsibilities in the design of the system and have therefore introduced a

further two agents; browse and shop. These agents capture a mode of behaviour rather

than a fundamental behaviour—they can be viewedasroles that Bob takes on during

the natural course of a shoppingtrip.

109

When Bob enters the shopping centre, his phone agent belongs not only to the

shopping_centre context but also to a browse context, illustrated by Figure 6.1. This

browse context suppresses the phone’s reaction to incoming recommendations from the

personal_shopper by providing an appropriate preference. Instead of alerting Bob to

each and every recommendation, when browsing, the phone agent retains these quotes

until a useful number (for comparison purposes) are received. When phoneis able to

make an informed recommendation it moves from the browse context into the shop

context. This change of context triggers a change in priority of the phone’s preferences

which in turn, results in an alert being sent to Bob when the next recommendation

is generated. Bob acknowledges the alert, accepts the recommendation, and proceeds

with the purchase as before.

// Sample code from the personal_shopper specification

receive(Client, want (Product))

=> NEXT send(context, broadcast (query (Product)) ;

// Preference from the phone’s specification

prefer browse to shop when in(browse, context)

// counting recommendations

recomm(X,Product) & (Y is X+1)

=> NEXT recomm(X,Product) | recomm(Y,Product);

recomm(X,Product) & ~receive(personal_shopper, hasStock(S,L,Product,P)

& hasStock(S1,Li,Product,P1) & S=\=S1i

=> NEXT recomm(X,Product);

// Intuitive expression of shopping behaviour

need(P) & in(shopping_centre, context) => browse(P) UNTIL shop(P);

shop(P) => SOMETIME buy(P);

Drawbacks

There are no competing contexts that produce interesting behaviours. Again, only

stores that Bob passes-by are included in the search —the ‘system’ does not help Bob

discover any stores that he cannot discover himself. The system is reliant upon a fixed

sequence of events— enter, browse, shop, buy, leave — and cannot adapt to alternative

sequences of events.

6.1.3 Adapting to unexpected human behaviour

As in the basic scenario, but this time, Bob visits the recommended store but for some

reason, that is not determinable by the electronic components of our system, Bob does

110

Figure 6.1: A snapshot of one possible structural configuration of agents.

not want to buy his bread and milk from the recommended store. On leaving the store,

Bob’s smartphoneis aware that Bob is leaving the recommended store and that the items

on the list have not been bought, as the electronic receipt has not been propagated. The

smartphone provides Bob with another store suggestion which Bob accepts, visits and

buys his provisions from. After the purchase Bob’s phone updates the shopping list and

records Bob’s preference for the alternative store (over the original store).

This scenario demonstrates the essential adaptation requirement that is commonly asso-

ciated with pervasive computing situations. With so many autonomousentities within

a system, the need to adapt to, and mitigate unexpected (and possibly undesirable)

outcomes is compelling [41].

For this section an entirely new ‘browse’ context was created, triggering a repeat of

the browse, compare, shop behaviour. This time however, Bob’sdislike for the rejected

store is expressed as a preference, which is shared with the shopping assistant agent,

by his smartphone. METATEMallows the quoting of terms within messages, allowing

the transmission of agent concepts such as preferences, goals and beliefs. However, the

recipient receives simple text string that carried no formal indication of the sender’s

intended semantics. The recipient agent’s specification must therefore contain explicit

interpretation of messages that convey such concepts. The current implementation of

METATEM facilitates this with a numberof built-in predicates that allow an agent

to dynamically modify its specification by disquoting such strings. Examples of these

include addGoal, addRule and addPref. This iteration also called for the dynamic

disposal and generation of agents, using the build-in createAgent ability.

left(Store, context) & hasStock(S, L, Product, P) & need(Product)

=> NEXT send(shopping_centre, query(Product)) ;

receive(Client, query (Product))

111

=> NEXT createAgent (browse, content, "src/shopping.agent") ;

receive(self, newAgent(Ag)) & wants(Client, Product)

=> NEXT send(newAgent, wants(Client, Product));

The secondary intention of this scenario was to test and demonstrate the backtracking

behaviour of METATEM agents. This apparently simple objective turns out to be a

little more difficult than expected due to the side-effects of changing contexts; when

the changes from the browse context to the shop context it draws a metaphorical

‘line in the sand’ of time, over which it cannot cross when backtracking. Thus, in

scenario 6.1.2 at least, the phone agent makes a decision (whilst in the browse context)

that it cannot revise. A numberof alternative implementations to that of scenario 6.1.2

were considered, to allow the smartphoneto effectively make another recommendation

to Bob, whilst retaining the conceptually-helpful browse and shop contexts. These

included

1. the phone agent storing its alternative recommendations as instantiated predi-

cates, as opposed to uninstantiated choices, and therefore not needing to back-

track.

2. the phone agent receiving an ordered list of recommendations, thus rendering

the browse agent redundant after phone has moved into the content of the shop

agent.

3. the phone remaining in the browse context when it enters the shop context,

ensuring that the Contentprowse and Contextprowse sets do not change,allowingit

and it alone to backtrack — (comparison of alternative products and deliberation

over which recommendation to make can then be delegated to the browse agent).

4. creation of an entirely new browse context, triggering a repeat of the browse,

compare, shop behaviour. But this time with a preference that expresses Bob’s

dislike of the rejected store.

5. the phone deferring the purchase recommendation until after it has entered the

shop context, generating its choices after the contextual change and thus paving

the way for future backtracking (assuming no other external interactions take

place).

Despite the dubious intuition of deciding to shop then deciding what to buy, option (5)

has the most appealasit fulfills the objective of demonstrating backtracking. However,

after all that is said above, backtracking may not be appropriate here. Bob does not

walk backwards out of the first store, he does not undo his decision not to buyhis

provisions from thefirst store. It does not seem appropriate for one agent to backtrack

112

over time, when other agents (that do not backtrack) have not been inactive during

the sameperiod of time. Also, we can envisage difficulties creating a specification of

the phone agent that is able to make a recommendation to Bob without performing an

‘external’ action. Option (4) is therefore the chosen implementation.

6.1.4 Introducing Alice— Bob’s friend and lunch date

Whilst Bob is shopping, his friend Alice is also shopping. She needs to stop for lunch

and would prefer not to eat alone. She asks her phoneto poll the local area for members

of her contact list and Bob’s nameis returned. Alice confirms that she would like to

eat with Bob and delegates the arrangements to her phone. Once Bob has agreed,

Alice’s phone negotiates a restaurant with Bob’s smartphone that satisfies both Bob’s

and Alice’s preferences and fits in with their shopping plans. This scenario increases

the complexity of the scenario significantly by introducing a second user-agent and thus

transforming the communications between a shopper’s agent and a store, from a two-

party to a three-party protocol.

Sensor networks are a common feature of many people’s vision of ubiquitous and per-

vasive computing, particularly with respect to the term Ambient Intelligence. This

iteration emulates a common use of sensor networks— to identify the location of hu-

man users—to elaborate the scenario and in so doing demonstrating how the highly

connected nature of pervasive systems can be handled by our approach to system spec-

ification. This, the most complex of the scenarios attempted, required the specification

of further agents. These included alice, dine, lunch, and restaurant along with the

use of the new concepts: joint goal for finding a suitable lunch venue; and constraint

to prevent shopping alerts while at lunch.

Structurally, this scenario begins to demonstrate the complexity of relationship

between entities in pervasive computing environments; the difficulty in drawing the

dynamicrelationships between relatively few agents illustrates this point. Nevertheless,

a snapshot of the structure for this scenario is presented here.

Contentshopping-centre = {phone,store_1, ..., store_5, restaurant, alice}

Contentbrowse = {bob}

Contentgine = {bob, alice}

Contextrestaurant = {shopping-centre}

Contentrestaurant = {bob, alice}

Contextpop = {shop, browse, dine, restaurant}

Bobis proceeding with his shopping expedition when the message from Alice is received,

inviting him to lunch. Once accepted, the phoneentersa further browse context (note

113

Figure 6.2: A snapshotillustrating multiple contexts and members.

that it may already be in a browse context with respect to the shopping items he intends

to buy), this time with the objective of finding a suitable place to eat. Furthermore,

Alice’s device (Alice and her device are represented as one agent, alice, for convenience)

is also a memberof this browse context. Anillustration of how this configuration at any

one momentis depicted in Figure 6.2. Alice’s device issues a goal of finding a restaurant

and this goal is propagated by the browse context, until it is shared by phone. A lunch

venue is found in much the same way as stores are discovered, that is, restaurants are

proposed and accepted (or rejected). When the numberof acceptances received by the

browse context equals the size of its content set, the restaurant is considered to be

agreed upon. Note that restaurant proposals can be rejected automatically by phone

and/or alice, due to preferences, but that an acceptance can only be made by explicit

user intervention.

Lunch provides a context in which all participants are expected to behave within a

few informally defined boundaries. For example, it is normally considered unsociable

to use a mobile telephone, rude to be late, and courteous to offer to pay. The author

does not seek to advocate the use of technology to transfer behaviours that are clearly,

and always shall be, the sole domain of human activity, to machines. However, it seems

that using technology to assist humans, makingit easier for them to conform to social

conventions is an acceptable use of technology. Thus, our dine agent is specified with a

constraint that it propagates to all members, preventing them from producing shopping

alerts during membership and therefore whilst Bob and Alice are at lunch, neither are

interrupted by shoppingalerts.

// Example code from the agent responsible for arranging lunch

count (accept (meetAt (Rest, Time)), X) & size(content, X)

=> NEXT book(Rest, Time, X);

book(R, T, X) => NEXT send(R, confirm(T, X));

book(R, T, X) & in(X, content) => NEXT send(X, confirm(T, X));

114

// Constrain alerts when lunching

enter(lunch, context) => NEXT atMost(0, alert, “in(lunch, context)");

6.1.5 Results, outcomes and runs

During the development of this implementation, the specification and testing of simple

agents (and less-simple butstill isolated agents), indicated that the language and its

implementation had great potential. Often single-agent systems (or multiple agents de-

rived from a single specification), these agents provided invaluable testing of individual

features of the implementation, whilst simultaneously expounding many of the bene-

fits of declarative logic programming— concise, formal expressions with clear semantics

that are amenable to automated formal methods. This case-study wasthefirst attempt

to use the implementation for the developmentof a truly multi-agent system, compris-

ing of many agents with significantly different specifications. The scenarios described

here were significantly more involved with respect to communication, reasoning, use of

meta- and action-predicates, than the test scenarios that preceded it. Generally, it was

found that an increased complexity in the scenario being modelled, led to (at least) a

corresponding increase in programmingdifficulty.

Some of the encountered difficulties could be overcome. For instance, when the

restrictions of SNF caused the bloating of specifications with blocks of hand-written

rules expressing behaviours that could not be concisely expressed with fewer rules. The

resulting specifications inevitably contained human error and consequently bugs which

were difficult to identify (at least by the same human that introduced the bug). To

overcome this, the implementation’s input parser was given the capability to re-write

rules such as

p(a) & p(b) => p(b) UNTIL p(c);

p(X) & q(Y) => q(X) UNLESS p(Y);

into SNF automatically. Also, many bugs within the implementation itself were iden-

tified and fixed, resulting in a high-degree of confidence in its correctness.

The simplest of the scenarios described above was specified without notable difh-

culty and the interpreter was able to generate an execution that satisfied each agent’s

specification. As the scenario is entirely virtual, no real output exists. Instead, the

execution is evaluated by monitoring the logical state of each agent as logged by the

interpreter. Logging output includes positive predicates, the state of content and

context sets, and any meta-predicates, for each temporal state. The following text is

a snippet of logging output from the shopping scenario.”

?Note that if a temporal state is logically equivalent to the previous,it is not logged.

115

[java] INFO: [store_1] state 0: [location(store_1,a2) ~ sells(bread,20)]
content :{} context:{} known:{} Meta-predicates: []
[java] INFO: [store_2] state 0: [sells(bread,25) ~ location(store_2,c1) ~

sells (milk,15)] content:{} context:{} known:{} Meta-predicates: []

[java] INFO: [shopping_centre] state 0: [haveShops] content:{store_4,
store_3,store_2,store_1,store_5} context:{} known:{} Meta-predicates: []

[java] INFO: [bob] state 0: [todo(shopping) ~ drive(home)] content: {p_card}
context: {phone} known: {shopping_centre,home} Meta-predicates: [at_most(1,drive),

at_most(1,arrive), prefer(arrive,drive,drive(X1) ,50)]
[java] INFO: [bob] state 1: [drive(shopping_centre,home) ~ divert ~

todo(shopping) ~ togo(home)] content:{p_card} context:{phone} known: {shopping_
centre,home} Meta-predicates: [at_most(1,drive), at_most(1,arrive), prefer

(arrive,drive,drive(X1) ,50)]

[java] INFO: [bob] state 2: [drive(shopping_centre) ~ togo(home) ~

todo(shopping)] content:{p_card} context:{phone} known: {shopping_centre, home}
Meta-predicates: [at_most(1,drive), at_most(1,arrive), prefer(arrive,drive,

drive(X1) ,50)]
[java] INFO: [bob] state 3: [drive(shopping_centre) ~ enterContext (shopping_

centre) ~ togo(home) ~ todo(shopping)] content:{p_card} context: {shopping_

centre,phone} known: {shopping_centre,home} Meta-predicates: [at_most(1,drive),

at_most(1,arrive), prefer(arrive,drive,drive(X1) ,50)]

[java]

Following the initial implementation, satisfying each agent’s specification became in-

creasingly difficult, to the extent that goal-directed expressions were sometimessacri-

ficed in favour of an explicit description of a sequenceof states using successive temporal

NEXT rules. Clearly this is not desirable, as emulating an imperative language is not

an aim of this research. However, such circumstances do highlight the purpose of high-

level specification languages such as METATEM,andremindsdevelopers to encapsulate

appropriate instructions within conventional Java classes and abstract them to a single

agent action. METATEM provides a mechanism for doing just this, termed internal-

and external-abilities. They are not without their drawbacks however, as execution

of any code external to an agent’s forward-chaining execution algorithm can prevent

backtracking and affects any potential correctness claims and/or formal analysis. These

aspects will be discussed further in Chapter 7.

6.2 Surveillance scenario

Surveillance is a useful technique for many activities and is not necessarily indica-

tive of sinister intentions. Observation of endangered species, continuous inspection

of assets in hostile or inaccessible environments and health monitoring are examples

of surveillance applications. Furthermore, they are surveillance application in which

sensor networks could be employed and therefore can be described as applications of

pervasive computing. By sensor networks, we mean large numbersof simple, distributed

and autonomous sensors, which collectively form ad hoc wireless networks. Initially,

research efforts in the area of sensor networks were concentrated on issues related to

116

the lower levels of the network protocol stack, as indicated by [1], a survey of the state

of sensor network art in 2002. More recently, attention appears to be more widely

spread [131], including more abstract modelling of sensors, such as the notable use of

algebraic topology by Ghrist et al. Using this abstract mathematical technique they

have been able to determine the extent to which a domain is coverage by sensors [33]

and count surveillance targets [7], without the knowledge of sensor co-ordinates. We do

not attempt the same problems as Ghrist et al, but we do take a similar approach to

dealing with sensor networks—taking an abstract view of a collection of similar simple

entities and attempting to describe properties of the collection as a whole. In ourcase,

we are interested in the properties of a collection (or organisation) of agents.

Recall that, agent-oriented programming languages aim to provide a system devel-

oper with constructs that allow them to define the behaviour of complex systems in

terms of one or more autonomously acting entities that have clear individual aims. By

adopting concepts associated with humanrationality, such as beliefs, preferences and

goals, these languagesalso aim to provide a closer correspondence betweentheintuitive

behaviour of a system andits source code. This case-study has been chosen,in part, to

evaluate the extent to which METATEM can achieve these aims, and also to evaluate

its suitability for use with sensor networks.

6.2.1 Scope

No specific surveillance scenario was intended for this case-study, instead a general

scenario in which the area under surveillance is adequately served by sensors (there

are no blind spots), the target is always visible but its movement is not predictable

and that objects (moving or stationary) exist which have the effect of adding noise

to the sensor data. For each surveillance target there exists a unique process that

collects, aggregates and interprets data from multiple sensors—a process known as

the ‘data fusion’ process. Importantly, the framework of sensors and fusion processes

is considered to be a fully distributed one with no central thread of control. It is

also assumed that sensors can be mobile themselves and that the fusion process has no

prior knowledgeof sensors. In fact, the numberof sensors available and their individual

attributes, including location and accuracy, will be considered to be dynamic.

This scenario is an interesting one for the application of multi-agent technology for

the following reasons:

e the scenario contains many asynchronous processes;

e the system must exhibit adaptive behaviour in response to

— unpredictable target movements,

— sensorfailure, and

117

— dynamic introduction of sensors;

e relationships exist between sensor and fusion processes, and these relationships

are based not only upon structure but also responsibility; and

e multiple sensors and fusion processes can be viewed as working cooperatively to

achieve the surveillance goal.

The aim of this case study is to demonstrate the application of a combination

of the multi-agent metaphor and executable temporal specification (that METATEM

provides), to applications involving many distributed devices. For this reason agent-

organisation abstractions were employed wherepractical during the design of solutions.

6.2.2 Context modelling

Context modelling is a popular technique studied by software engineers who wish to

differentiate subtle behaviouraldifferences in systems [122]. These behavioursare often

in responseto, or in anticipation of, human activity. Since two aims of agent research

are to endow software agents with aspects of humanintelligence and to provide them

with social abilities, the author believes that the context in which an agent is acting

should bea first-class construct within an agent programming language and have direct

influence on an agent’s deliberation mechanism. Not simply an information type that

is stored in somecentrally held repository.

As discussed in previous chapters, METATEM implementation has built-in con-

structs that are intended to provide support for context modelling,it is an agent-centred

multi-agent language in which the Agent is the primary entity and a multi-agent sys-

tem is considered to be a society of agents and agents alone. In fact, whereas some

agent-oriented languages support other entities from the object and agent paradigms

(such as artifacts, objects, services and teams), METATEM supports their modelling

but considers them to be agents—with appropriate behaviour and levels of auton-

omy. Context in METATEM is conceived as the more abstract (and flexible?) notion

of something that has an influence over an agent in a system. An agent is considered

to reside in (or be contained by) zero or more contexts, each of which are themselves

agents. Furthermore, an agent itself can be the context for another agent, in which

case it is said to contain that agent. Thus contextual information is interlaced with

the very agents of the system, their structural relationships, their behaviour and their

communication.

Toillustrate this intuition, let us considerall entities in the surveillance area scenario

to be agents (sensors, fusion processes, the surveillance environment and even the

target) then the diagram in Figure 6.3 exemplifies the contextual relationships between

METATEMagents. The diagram depicts an all encompassing environment agent which

contains all other agents, a single fusion agent and a numberofdifferent sensor agents

118

Figure 6.3: Snapshot of the contextual relationships between agents in the surveillance

system.

(all labelled s for simplicity). The interpretation of these diagrams differs with each

application, of course, but Figure 6.3 is intended to depict a fusion process that is

operating in an environment with five available sensors, and which is currently receiving

valid data from two of those sensors —those that are currently in range of the target.

As the target moves around the area undersurveillance and in doing so movesinto and

out of the range of sensors, the sensor agents move into and out of the fusion agent’s

body whilst remaining, either directly or indirectly, within the environment unless they

become unavailable for any reason, such as breakdown. The figure has no explicit

representation of the target, however, in this example each fusion agent tracks at most

one target, therefore the target’s location is directly reflected by the contents of the

fusion agent.

At an abstract level, the containing relationship denotes that the agent being con-

tained is in some way influenced by its container, whilst the containing agent has some

influence over the agents it contains. Note that a given application will apply more

concrete semantics to the relationship between the container agent and the agents it

contains, and that these might be semantics of authority, obligation, ownership or

anything else appropriate to the application concerned. In the surveillance case, the

relationship between fusion agent and sensor agents is considered to be that of a co-

operative team, in which the fusion agent represents the team leader and the sensor

agents the team members. Sensors cooperate when they receive requests for sensor

data and are obliged to provide valid and timely data for their respective locations.

6.2.3. The surveillance area

The surveillance area itself is a two-dimensional bounded grid that is divided into

regions, around which a target moves in an unpredictable way. Sensors have a limited

range that extends in a 360° arc from their centre. Sensors detect all objects within

119

their range, and attribute a coordinate pair and an identifying colour to all objects

they detect. Sensors are distributed around the area such that each sensor belongs to a

single region. The range of a sensor’s observations may extend across the boundaryof a

region but a sensoris regarded as ‘covering’ a single region determined by the location

of that sensor. Sensors are aware of the region they cover. The case-study begins with

a simple surveillance area that is divided into three regions named north, central and

south, occupied by four sensors whoselocations are fixed and positioned to give total

coverage of the surveillance area, and a single target. This simple surveillance area is

sketched in Figure 6.4.

north

central

south

Figure 6.4: The surveillance area uses a coordinate system andis divided into regions.

This illustration shows four sensors whose ranges overlap regions and the ranges of

other sensors.

To aid the evaluation of sensor and fusion agents the target object was initially

given predictable behaviour, following a rectangular path around the perimeterof the

surveillance area at a constant speed. This guaranteed that the target moved into

and out of the ranges of all sensors during its route and placed it inside regions of

overlapping sensor coverage. Collectively, the sensors are able to provide continuous

detection of any object as it moves around thesurveillance area. It is the job of the

data fusion agent to collate detection data pertaining to an individual target object

and provide a reliable location for a target irrespective of possible anomalies in sensor

data.

Scalability

A simple, uncomplicated andstatic surveillance area is useful for the demonstration

and exposition of our techniques but in order to demonstrate the utility, flexibility and

120

robustness of the approach the surveillance area was scaled up and in doing so increased

the complexity due to:

e a larger coordinate space,

more sensors,

multiple targets,

non-target objects,

mobile sensors, and

e incomplete sensor coverages

An illustration of a scaled-up scenario is depicted in Figure 6.5. In addition to the

obvious increase in computational complexity that these aspects introduce, a number

of interesting issues arise that can be tackled intuitively with the agent paradigm,

providing solutions which are supported by METATEM’s agent grouping constructs.

Such solutions include the abstraction of large numbers of neighbouring/co-located

sensors into a single sensor agent, the division of the environment into sub-agents

corresponding to regions, and the encouragement of mobile sensors to adopt strategic

positions on behalf of a fusion agent; these solutions are discussed in more detail later.

6.2.4 Surveillance example: Architecture

The CONCURRENT METATEMtakes an agent-centred view of multi-agent programming

in which all entities identified during analysis of a problem are considered to be agents

for the purposes of implementation. An entity may be a concrete agent with theability

to directly interact with the environment, or an abstract agent that interacts only with

other agents. A concrete agent often has a counterpart entity identified during analysis

whilst abstract agents often help provide the fabric of an agent society by facilitating

multi-agent concepts such as coordination, cooperation, normative behaviour andjoint

beliefs. A multi-agent system comprising of only concrete agents implies flat structure,

provides little insight into the relationships of influence that exist between agents and

gives no indication of any hierarchies that may exist.

6.2.5 Surveillance example: Environment

As this is a simulated surveillance area, the environment is represented as an agent

that is responsible for modelling the surveillance area and for providing sensors with

raw data about objects within the modelled area. The surveillance area is a bounded

environment that sensors and objects stay within at all times. Thus, the environment

agent is a natural container for sensor and fusion agents.

121

north

north

west

west

south west

(0,0)

south

north

east

east

south

east

Figure 6.5: The addition of multiple targets, mobile sensors and incomplete coverage,

add to the complexity of the surveillance task.

122

METATEMagentsare able to call upon arbitrary blocks of Java code by declaring an

ability that corresponds to a Java class. For instance, the environment agent declares

the ability surveillance as follows

ability surveillance : surveillance.CreateSurveillanceArea;

where the file CreateSurveillanceArea.class appears in the classpath of the host

Java run-time environment. This ability is then available to the environment agents as

a predicate in logical rules. For example, the following rules employ the surveillance

ability in two circumstances. Thefirst rule creates the environment and the second

starts the simulations thread.

start => surveillance(create);

receive(self ,surveillanceArea(Area))

=> NEXT surveillance (begin, Area) ;

Note that the abilities can be modified by arguments and that Java objects can be

received by agents as terms of predicates and subsequently passed to abilities and/or

other agents.°

The environmentis also able to place sensors into specified regions of the surveillance

area by instantiating the surveillanceability with appropriate terms

. => NEXT surveillance(attach, Sensor, Area, Region);

and inform a fusion agent of its surveillance target

. => NEXT send(FusionAg, target(Colour, Region));

For simplicity, the solution focused on the problem of tracking an identified target’s

movements, as opposed to the identification of a target. For this reason, our environ-

ment agent provides the fusion agent with the target’s distinguishing feature(its colour)

and initial location. Once this initialisation is complete, the environment agent pro-

vides a communication link between sensor and fusion agents according to the following

generalrule.

communication: {

// Broadcast all ‘broadcast’ messages to all members of content:

receive(X, broadcast(M)) & inContent(X) & inContent(Y) & X=\=Y

=> NEXT send(Y, M);

The following sections describe two approaches to the solution, which differ in the

abstraction used to express the relationship between fusion and sensor agents.

3 Although passing of Java objects and terms other than basic string terms is possible, this is not

encouraged as it implies some common knowledge of the meaning of the transferred term.

123

6.2.6 Scenario One— Fusion agent as coordinator

In this, the first of two contrasting interpretations of the content and context constructs,

the fusion agent assumes therole of coordinator over a ‘team’ of sensor agents. The

fusion agent, and its objective, are the primary context under which the sensor agents

are operating, therefore the fusion agent assumes the container role and the sensor

agents are the contained. The fusion agent coordinates the movement of sensor agents

into and out of its content according to the relevance and usefulness of their data.

Specifying the system

Recall that METATEM requires a simple system file that declares the name of each

agent, its corresponding specification file and the initial relationships between agents.

The file declares an initial containing relationship between the environment and all

other agents. It is reproduced herein its entirety.

agent environment: "Surveillance/environment.agent";

agent sensor1: "Surveillance/sensor.agent";

agent sensor2: "Surveillance/sensor.agent";

agent sensor3: "Surveillance/sensor.agent";

agent target: "Surveillance/fusion.agent";

environment {

Content: sensori, sensor2, sensor3, target;

Note that an environment agent has been declared. In fact this is a wrapper around a

Java simulation of the surveillance area. Its behaviour described by METATEM code

is limited to configuration rules and the communication infrastructure it provides to

the other agents. It is not only convenient to consider the environment to be an

agent but also natural if one does not distinguish between messages and perceptions—

each are external influences that an autonomous agent assigns its own meaning to.

Consequently METATEM agents do not have a percept construct, only a simple flexible

message system. However, for this simple situation, it is not useful for the sensor and

fusion agents to have a reference to the environment agent in their context set as they

do not have anyaffect on it.

Specifying the sensor agents

A sensor agent is informedof its regional location by the environment. The following

rules specify that the sensor agent retains this knowledge and must not believe that it

is in two places at once.

124

// The environment will inform me of my location...

receive(environment, attached(self ,Location))

=> NEXT myLocationIs (Location);

// ... and I must remember it.

myLocationIs(L1) & ~receive(environment, attached(self,L2))

=> NEXT myLocationIs(L1);

// I cannot be in more than one location.

myLocationIs(L1) & myLocationIs(L2) & Li=\=L2 => false;

A sensor agent receives regular messages from the environment that correspond to raw

sensor data. These take the form

receive(environment, sensor (Data))

where Data is a complex term of in one of two forms;

data(noise)

or

data(Colour,X,Y).

As a sensor makes no judgement on the usefulness of its data (it does not recognise

noise) all data is forwarded to those fusion agents in its context. How sensor agents

come to reside in a fusion agent’s context set is explained later.p

communication : {

// All sensor data is passed to my Context agent(s).

// (Any number of fusion agents.)

receive(environment, sensor(Data)) & inContext (FusionAg)

=> NEXT send(FusionAég, Data);

}

Other messages a sensor agent may receive are broadcast requests from fusion agents

that are tracking a target in the vicinity of the sensor, and direct messages from fusion

agents who no longer require their data (for whatever reason). In these situations, fully

cooperative behaviour on behalf of the sensor is specified.

obligations : {

// Always oblige when asked to provide sensor data

receive(environment, requestDataFor (FusionAg,Location))

125

& myLocationIs(Location) => enterContext (FusionAg);

// Always leave a context when no longer needed

receive(FusionAg, redundant) => leaveContext (FusionAg);

}

Hence, agents enter and leave contexts when requested to.4 Note that this does not

prevent sensor agents from leaving of their own free will.

Specifying the fusion agents

The fusion agents have the most sophisticated specifications. Each must track a target

using varying amounts and frequency of data from sensors which may be transmitting

only noise.

The temporal semantics of METATEM allows us to describe somedesirable proper-

ties of the fusion agent with considerable concision. For example,all sensors in a fusion

agent’s content are categorised in each moment of time, as either sending data, sending

only noise or sending nothingat all. A sensor that is categorised as sending only noise

three times without sending any valid data in the intermediate time steps, is dropped

from Content

nothingFrom(Sensor) & onlyNoiseFrom(Sensor) => false;

onlyNoiseFrom(Sensor) & dataFrom(Sensor) => false;

nothingFrom(Sensor) & dataFrom(Sensor) => false;

dataFrom(Sensor) => NEXT noisesFrom(0,Sensor);

onlyNoiseFrom(Sensor) & noisesFrom(X,Sensor) & (Y is X+1)

=> NEXT noisesFrom(Y,Sensor);

nothingFrom(Sensor) & noisesFrom(X,Sensor)

=> NEXT noisesFrom(X,Sensor);

inContent(Sensor) & noisesFrom(3,Sensor)

=> NEXT send(Sensor, redundant);

When the target moves or when the numberof sensors in Content reaches a critical

level, the fusion agent must recruit sensors located in the vicinity of the target’s new

location. It translates the target’s coordinates into a region and broadcasts a request

for sensors in that region.

targetCoord(X,Y) & (Y<10) => targetIn(south);

“This could be made more complex by introducing some non-trivial negotiation at this point.

126

targetIn(Region) => NEXT targetPreviouslyIn(Region);

targetIn(Region) & ~targetPreviouslyIn(Region)

=> NEXT targetMovedInto (Region);

targetIn(Region) & targetPreviouslyIn (Region)

=> NEXT ~targetMovedInto(Region);

// When moving into a region, broadcast a request for sensors

targetMovedInto (Region)

=> send(environment, broadcast (requestDataFor(self, Region)));

Finally, as the fusion agents and sensor agents execute asynchronously, the fusion agent

cannot rely upon fresh sensor data for each of its reasoning cycles. Instead it can only

believe that the target remains in its previous location.

receive(Sensor, data(Colour,X,Y)) & tracking(Colour)

=> dataReceived;

targetCoord(X,Y) & ~dataReceived => NEXT targetCoord(X,Y);

Listings of METATEM codefor this case-study are provided in Appendix B.

6.2.7 Scenario Two— Sensor agents as service provider

The second abstraction of agent relationships gives sensors the role of service provider

and fusion agents the role of client. In this configuration sensor agents also represent

environmental sensors and provide a software interface for other agents to access the

sensor data. The key difference between this abstraction and the previous is that

fusion agents (the client of the sensor agents’ services) enters the context of a sensor

agent when they want to use the sensor’s service. In essence, this is a role-reversal in

comparison to Scenario One. Recall that Scenario One involved a coordination target

agent that invited sensor agents into its content and ejected them when it no longer

needed them. Now sensor agents invite fusion agents to use their service and fusion

agents leave whentheservice is of no use.

For the initial, small scale, implementations with a single target and three regions,

the METATEM code for this scenario differed little from that of Scenario One; the

exchange of content for context and the useof different structural modification con-

structs was all that was needed, however, there are somesignificant conceptual differ-

ences between the two approaches that have ramifications on the scaling of our case

study.

6.2.8 Scale, elaboration and performance

The case-study provides many opportunities to evaluate the scalability of the imple-

mentation, and several options for expansion were identified. For example, increasing

127

the numberof regions within the surveillance area (whilst the area’s size remains un-

changed), increasing the size of each region, increasing the number of sensors and

increasing the numberof targets. Upon implementation of such expansions an inter-

esting weakness tended to manifested itself, related to the handling of large volumes

of messages by individual agents. A influx of messages during a single reasoning step

of a fusion agent (for example) could cause sufficient delay for the target’s position to

be permanently lost. A bottle-neck of communication was being formed. The success

of solutions to this problem relies on minimising the number of messages received by

any agent whosespecification includes rules containing disjunctions (choices) that are

fired by receipt of messages. The two architectures employed different solutions to this

problem and each are discussed in Chapter7.

This section is concluded with a sample of logging output that illustrates the number

of messages that the target must handle during deliberation and gives someidea of the

practicality of the implementation.

[java] INFO: [target] state(191): [(tracking(red) ~ inContext(sensor6) ~
enteredContext(sensor6) ~ inContext(sensor8) ~ enteredContext(sensor8) ~

inContext(sensor7) ~ enteredContext (sensor7))]

[java] INFO: [target] state(192): [(nothingFrom(sensor6) ~

noisesFrom(0,sensor6) ~ tracking(red) ~ noisesFrom(0,sensor7) ~

noisesFrom(0,sensor8) ~ nothingFrom(sensor8) ~ nothingFrom(sensor7) ~

inContext(sensor6) ~ inContext(sensor8) ~ inContext(sensor7))]

{java] * Target red has moved to java.awt.Point[x=5,y=3]
[java] * Target green has moved to java.awt.Point[x=15,y=3]
[java] * Target yellow has moved to java.awt.Point [x=17,y=30]
[java] * Target black has moved to java.awt.Point [x=8, y=25]
[java] INFO: [target] state(201): [(moisesFrom(0,sensor7) ~

nothingFrom(sensor6) ~ tracking(red) ~ noisesFrom(0,sensor8) ~

noisesFrom(0,sensor6) ~ nothingFrom(sensor8) ~ nothingFrom(sensor7) ~

receive(sensor7 ,data(red,5,3)) ~ receive(sensor6,data(green,15,3)) ~

receive(sensor6,data(red,5,3)) ~ receive(sensor8,data(green,15,3)) ~

inContext(sensor6) ~ inContext(sensor8) ~ inContext(sensor7) ~ dataReceived)]

[java] * Target red has moved to java.awt.Point [x=6,y=4]
[java] * Target green has moved to java.awt.Point [x=16, y=4]

[java] INFO: [target] state(202): [(noiseFrom(sensor8) ~ targetCoord(5,3) ~
dataFrom(sensor7) ~ dataFrom(sensor6) ~ noisesFrom(0,sensor7) ~

tracking(red) ~ noisesFrom(0,sensor8) ~ noisesFrom(0,sensor6) ~

noiseFrom(sensor6) ~ inContext(sensor6) ~ inContext(sensor8) ~

inContext(sensor7) ~ targetIn(south) ~ onlyNoiseFrom(sensor8))]

[java] INFO: [target] state(203): [(targetMovedInto(south) ~ targetInSight ~

noisesFrom(0,sensor6) ~ noisesFrom(0,sensor7) ~ nothingFrom(sensor6) ~

tracking(red) ~ nothingFrom(sensor8) ~ nothingFrom(sensor7) ~

noisesFrom(1,sensor8) ~ targetCoord(5,3) ~ targetPreviouslyIn(south) ~

inContext(sensor6) ~ inContext(sensor8) ~ inContext(sensor7) ~

targetIn(south) ~ send(environment, broadcast (requestDataFor (target ,south))))]

[java] INFO: [target] state(204): [(nothingFrom(sensor6) ~

nothingFrom(sensor8) ~ nothingFrom(sensor7) ~ targetInSight

noisesFrom(0,sensor7) ~ tracking(red) ~ noisesFrom(0,sensor6) ~

noisesFrom(1,sensor8) ~ targetCoord(5,3) ~ targetPreviouslyIn(south) ~

inContext(sensor6) ~ inContext(sensor8) ~ inContext(sensor7) ~ targetIn(south))]

a

128

{java] INFO: [target] state(206): [(nothingFrom(sensor6) ~
nothingFrom(sensor8) ~ nothingFrom(sensor7) ~ targetInSight
noisesFrom(0,sensor7) ~ tracking(red) ~ noisesFrom(0,sensor6) ~

noisesFrom(1,sensor8) ~ targetCoord(5,3) ~ targetPreviouslyIn(south) ~
receive(sensor6,data(red,6,4)) ~ receive(sensor7,data(red,6,4)) ~

receive(sensor6,data(green,16,4)) ~ receive(sensor8,data(green,16,4)) ~

inContext(sensor6) ~ inContext(sensor8) ~ inContext(sensor7) ~ dataReceived ~

targetIn(south))]
[java] * Target red has moved to java.awt.Point [x=6,y=5]
[java] * Target green has moved to java.awt.Point [x=16,y=5]
[java] INFO: [target] state(207): [(noiseFrom(sensor8) ~ targetCoord(6,4) ~

dataFrom(sensor6) ~ dataFrom(sensor7) ~ targetInSight ~ noisesFrom(0,sensor7) ~
tracking(red) ~ noiseFrom(sensor6) ~ noisesFrom(0,sensor6) ~
noisesFrom(1,sensor8) ~ targetPreviouslyIn(south) ~ inContext(sensor6) ~
inContext(sensor8) ~ inContext(sensor7) ~ targetIn(south) ~
onlyNoiseFrom(sensor8))]

a

129

130

Chapter 7

Evaluation

This project has considered a pressing problem for distributed systems designers, theo-

retical computer scientists and software engineers; that of how to handle the complexity

of an increasingly distributed and mobile pool of resources in a way that allows the de-

velopment of useful, intuitive and more context-aware software. This chapter evaluates,

with respect to this problem, a numberof facets of the approach taken by this project.

Weevaluate the multi-agent abstraction and the METATEM implementation, both with

respect to the most-challenging of the case-studies (surveillance) and context-sensitive

applications in general.

The purposeof this evaluation is not to appraise any single interpretation of agent

theory, or to evaluate the METATEM implementation in terms of conventional perfor-

mance measures, such as consumption of computing space and time. The project’s

goal is not to obtain an optimum solution for any individual pervasive computing sce-

nario and therefore this does not form part of our evaluation either. Rather, we are

most interested in evaluating whether or not METATEM,with its agent grouping struc-

tures and other additional features can appropriately and usefully employ multi-agent

abstractions in the implementation of pervasive computing systems. Also of consid-

eration, is the suitability of the current METATEM interpreter and tools for assisting

future research in this area.

The surveillance scenario proved to be an exacting case-study (as, perhaps, is to

be expected of all pervasive computing case-studies), providing ample opportunities

to apply multi-agent abstractions but being unforgiving of specification errors. Both

case-studies provided good working experience of the METATEM language and this

experience has contributed to one of the current targets of this research area— that

of formulating an appropriate design methodology for the language. The surveillance

scenario is highly dynamic in nature but can becriticised as mono-contextual, as any

multi-context situations in which an agent finds itself, involve similar context types.

However, the shopping scenario provided ample opportunity for evaluation of multi-

context situations involving contexts of differing type. Throughout our experimenta-

131

tion, the METATEM interpreter was subject to close scrutiny, enabling errors to be

corrected, weaknesses to be identified and new features to be implemented and/or pro-

posed.

7.1 Experiments

Three experiments involving increasingly sophisticated surveillance areas, were designed

to provide some empirical evidence to support, or to refute, the utility claims of this

approach. The two alternative configurations of agents employed when modelling the

surveillance application, and described in Sections 6.2.6 and 6.2.7, were then applied to

each of the three surveillance areas. As the surveillance areas increased in complexity,

each scenario needed modification to cope with the increased load, and to enable the

agents to adapt to a wider rangeof situations. These modifications were made in such

a way that upheld each scenario’s original paradigm and employed popular concepts

of multi-agent organisation whenever possible. This section describes the experiments

and some of the measures necessary to adapt each scenario to the increased complexity.

7.1.1 Extended surveillance scenarios

The simple surveillance area described in Chapter 6 was extended twice to form an

extended and a complex environment. Table 7.1 details these extensions. In each

Surveillance area Simple Extended Complex

No. of sensors 3 8 16

No. of target objects 1 2 4

No. of non-target objects 0 4 8

Sensor detection range —» reducing —>

Table 7.1: Comparison of simple, extended and complex surveillance areas.

experiment the target object takes a predictable path around thesurveillance area—

either moving clockwise or anticlockwise around the perimeter of the area. This was

felt necessary to aid the evaluation of the fusion agent’s performance. Thefusion agent,

of course, has no prior knowledge of the target object’s movements. In contrast, non-

target objects move erratically around the surveillance area with no regular pattern.!

In all experiments objects moved to adjacent positions in the grid every 3.7 seconds. An

intentional asynchrony between object movement and sensor reading was introduced

by passing raw data, from the environment to sensors, every 4.0 seconds.

‘The erratic movements of non-target objects are hard-coded and therefore repeatable across ex-

periments.

132

Each of the two basic specifications for the two scenarios coped well with the sim-

ple surveillance area. The respective fusion agent was able to maintain an accurate

belief about the location of its target object for an hour of execution. Note that we

consider the fusion agent’s belief about the location of its target to be accurate if the

interval between the target moving to that location and the agent holding thebelief

targetCoord(X,Y) is no more than five seconds. The following snippet from the ex-

ecution log demonstrates the fusion agent, named target here, taking two seconds to

update its state with the red target object’s new position.

[java] * Target red has moved to java.awt.Point[x=0, y=5]

[java] 15-May-2009 22:03:52 metatem.agent.BasicAgent logState

[java] INFO: [target] state(315): [(noisesFrom(0,sensor3) ~

nothingFrom(sensor3) ~ targetInSight ~ targetCoord(0,4) ~

tracking(red) ~ targetPreviouslyIn(south) ~ targetIn(south) ~

receive(sensor3,data(red,0,5)) ~ inContent(sensor3) ~ dataReceived)]

[java] 15-May-2009 22:03:52 metatem.agent.BasicAgent logState

[java] INFO: [target] state(316): [(targetInSight ~ tracking(red) ~

targetIn(south) ~ noisesFrom(0,sensor3) ~ inContent(sensor3) ~

targetPreviouslyIn(south) ~ dataFrom(sensor3) ~ targetCoord(0,5))]

When the extended surveillance area with two target objects, four non-target objects

and eight sensors, is introduced, the increased volume of messages from sensors quickly

overwhelms the fusion agents. Each temporal state takes longer to compute, due to

the increased number of messages containing data about its target object and the

non-target objects. A fusion agent must decide upon exactly one coordinate for its

target object per temporal state and as the number of messages increases the number

of choices it has also increases. As each temporal state takes longer to compute the

backlog of messages that collect in an agent’s inbox increases further, exacerbating the

problem in subsequent states until the fusion agent is overwhelmed and loses track of

its target. This occurs quickly — within one minutein each of the two scenarios, but

the solution to this problem was different in each case.

Adapting Scenario One to the extended surveillance area

Recall that Scenario Oneinvolves a fusion agent forming a container around the sensor

agents that it believes are within range of its target object or are located within the

same region of the surveillance area. Sensors remain in content until they send three

consecutive noisy messages. This behaviour was not adequate for the extended sce-

nario as the size of the content set and the number of messagesit generates increases

the computation time for each temporal state beyond practical levels. A numberof

solutions for this problem wereconsidered,including;

133

e increasing the numberof regions that sub-divide the surveillance area;

e removing noisy sensors sooner;

e acting upon only a sample of the total messages received;

e creating a messagefilter; and

e grouping concrete sensors into abstract sensors.

Increasing the number of regions was considered inappropriate as it was thought to

increase the risk of losing a target. Removing noisy sensors sooner was ruled out for

the same reason. Taking a sample of the total messages received might prove useful if

a method of guaranteeing that messages from agents are dealt with fairly, i.e. messages

from no individual agent are overlooked indefinitely. But it was assumed that the cost

of ensuring fairness would be comparable to (and possibly greater than) the cost of

acting upon all messages.

The chosen solution for this problem involved filtering messages and was imple-

mented by the creation of sub-agents to which the fusion agent delegated the gross

data capture from concrete sensor agents. These fusion delegates maintained a group

of sensor agents from which they were responsible for receiving all data. The dele-

gate agent performed a crudefiltering only (it did not make any judgement on the

accuracy of sensor data) and passed only relevant messages on to the fusion agent.

Figure 7.1 illustrates the structural changes made in adapting Scenario One to the

extended

Figure 7.1: Scenario One adapted for the extended surveillance area.

extended surveillance area andillustrates the reduction in the number of multicast

message recipients and the number of messages received by each fusion agent. The

abstraction of fusion agent as coordinator is maintained as it continues to orchestrate

the movement of sensors into delegate groups. Delegate agents reuse code that is em-

ployed by fusion agents for detecting noisy sensor messages and remove sensors from

their contents when a threshold— which could be mandated by the fusion agent — of

consecutive noisy messages is reached.

134

An interesting elaboration of this solution was necessary when a target agent re-

ceived a suddeninflux of sensor agents into its content. In such situation a delegate

agent is formed to group the incoming sensors, in the manner described above. How-

ever, it was observed that these groups (having higher than an average number of

content agents) formed a bottle-neck of communication due to the numberof messages

they received from sensors. The solution employed for this problem involved creat-

ing a second layer offiltration to ease the burden on the delegate agent itself. This

layer was contained by the delegate agent itself and remained independentof the fusion

agent. Figure 7.2 depicts the location of this extra layer. This layer cascades sensor

data about only one target, but does not make any judgement about the accuracy of

individual pieces of data when passing on multiple, contradictory pieces of data. The

Figure 7.2: Layering the filtration of messages to reduce message processing for the

delegate agents.

success of this technique relies on minimising the number of messages received by any

agent whose specification includes rules containing disjunctions (choices) that are fired

by receipt of messages. In our case-study, the bulk of messages are received by the

filter agent and this agent has a deliberately lean specification. It is the delegate agent

whose state generation is most complex due to the numberof temporal rules containing

disjunctions.

It should be noted that any increase in the numberof agents in a system introduces

new threads, which in turn increases the thread scheduling overhead. Thus, since an

agent’s execution is a logical one, a METATEMsystem is not a high performance system

with respect to execution time and that accommodation for this must be madein order

to conduct practical experiments. A number of measures were taken to increase the

processing resourcesallocated to delegate and fusion agents, including the prioritisation

of their threads and forcing other threads to yield. Clearly these platform-level tweaks

are far from ideal and the fact that they are effected externally to the agent system

135

specification (in this case by native Java code modification) can be seen as both an

advantage and a drawback.

Adapting Scenario Two to the extended surveillance area

Although Scenario Two suffered from the same problem with respect to messaging,

the structural and metaphoric relationships between fusion and sensor agents was such

that a different solution was needed.

Fusion agents in this scenario are viewed as roamingclients, moving into the context

of sensor agents in order to makeuseof their services. For the simple surveillance area,

sensor agents played a passive supporting role in the tracking of target objects—they

passed on all sensor data and in doingso forced the fusion agent to discriminate between

relevant, irrelevant, accurate and inaccurate data. Scenario Two was modified to cope

with the extended surveillance area by asking the sensors to perform less passiverole,

giving them some authority to withhold data from the fusion agents in their content,

or rather, informing them of the object being tracked and explicitly requesting data

pertaining to that object only. The following snippets of METATEM code capture some

of this behaviour.

// When a fusion agent enters the context of a sensor, it provides

// the sensor with the colour of the object it is tracking.

enteredContext (Sensor) & tracking(Colour)

=> NEXT send(Sensor, tracking(self, Colour));

// When a sensor receives this information from a fusion agent, it

// retains the knowledge while the agent remains in its content.

receive(FusionAg, tracking(FusionAg, Colour))

=> NEXT relevantTo(Colour, FusionAg);

relevantTo(Colour, FusionAg) & in(FusionAg, context)

=> NEXT relevantTo(Colour, FusionAg);

receive(environment, sensor(target (Colour ,X,Y)))

& in(FusionAg, context)

& relevantTo (Colour ,FusionAg)

=> NEXT send(FusionAg, target(Colour,X,Y));

A sensor agent now hasa list of objects that are being tracked by the membersofits

content, and will only send messages (to an agent in its content) if a corresponding

agent/object pair exists in this list. Structurally, this scenario has not been changed

for the extended surveillance area, instead it should be viewed as a distribution of

responsibility across the existing structure.

136

There was one major consequence in the behaviour of the fusion agent as a result

of this change. The fusion agent no longer received noisy messages, therefore its strat-

egy for leaving the context of sensors—based upon the receipt of consecutive noisy

messages—was renderedineffective. This resulted in an accumulation of sensor agents

in the fusion agent’s context until, after one passage aroundthe surveillance area,all

sensor agents are members. Whilst this did not cause a real problem in our exper-

iments, as fusion agents were not inundated with noisy messages, it is clearly not a

solution that scales to surveillance areas larger than those in our modest experiments.

The solution employed for this involved the fusion agent retaining knowledgeof the

location of sensors. The fusion agent then leaves the context of sensors that have not

recently sent a message, whoselocation is in a different region to that of the target and

whoseregional location is not adjacent to the target’s region.

// Inform agents entering content where the sensor is.

enteredContent (FusionAg) & myLocationIs (Location)

=> NEXT send(FusionAg, located(self,Location))

in(Sensor, context) & silencesFrom(X,Sensor) & (5 < X)

& targetIn(TargetLocation)

& located(Sensor,SensorLocation) & TargetLocation=\=SensorLocation

& ~adjacent (TargetLocation,SensorLocation)

=> NEXT leaveContext (Sensor) ;

With these modifications the two scenarios are able to cope with the increased com-

plexity introduced by the extended scenario. Each fusion agent is able to track its

target object accurately for several circuits of the surveillance area.

7.1.2 Complex surveillance scenarios

The complex surveillance area saw the numberof sensors, target objects and non-target

objects double in relation to the extended version. Each sensor had a much reduced

detection range, resulting in increased movement of objects between sensors. An object

will often come into, pass through and go beyond, the range of a sensor in less than

ten seconds. Also, objects were morelikely to stray into areas of no sensor coverage.

It was felt that the successful tracking of targets in this complex scenario was

only possible if sensors were given the mobility to physically track the target object’s

movements. Thus increasing the duration that an object stays within an individual

sensor’s range. But this implies a one-to-one mapping between sensors and objects,

whereas previously a sensor supported the tracking of multiple objects—the focus of a

sensor was a single region of the surveillance area as opposed to a single object. With

multiple (four) target objects, each with a corresponding fusion agent, the physical

137

tracking of objects by sensors strongly suggests a division of labour and formation of

sensor teams. It was with concepts of shared goals, and team leadership in mind that

each scenario was modified to cope with the complex surveillance area. Some general

enhancements to the simulated environment were made. In particular, sensors were

given an ability to move aroundthe grid-like coordinate space of the surveillance area

by using METATEM’s API to create an ability predicate. This ability predicate move,

when madetrue by a sensor agent, effects a translation on that sensor’s location in

the environment. For example, the predicate move(1,0) corresponds to a movement

one unit eastward. No limit was placed on the values of the two arguments to move in

order to ensure that sensors can ‘travel’ at least as fast as the object it is tasked with

tracking.

The complex environment requires sensors to exhibit more intelligence than the

previous environments. Sensors must move autonomously as giving fusion agents the

responsibility of directingall its sensorsis likely to place an unfair burden them. Sensors

must also differentiate between fusion agents in its content, one or more of which may

have conflicting desires for its services.

Adapting Scenario One to the complex surveillance area

Recall that Scenario One assumes a containment relationship by a fusion agent on

multiple sensor agents. For this reason and the implication that sensor agents work for

fusion agents, fusion agents are a natural choice as team leader agents. As a memberof

each sensor’s context, the fusion agent is positioned well to disseminate beliefs, goals

and plans to sensor agents (the team members).

The greatest challenge presented by this situation was the recruitment of sensors.

In the complex surveillance area there exists sixteen sensors, four target objects and

hence four fusion agents. A simple division of sensors into four equal teams is not an

appropriate real-world solution as the numberof objects being tracked at any moment

in timeis likely to vary. An appropriate solution is one that encourages flexible team

sizes, making full use of sensor agents when demandis low (by allowing larger teams)

but also ensuring that sensor agents are available to track a new target. Fusion agents

have, up to this point, been entirely ignorant of other fusion agents. Now a fusion

agent must consider the needs of other fusion agents and/or the movement of the

objects the other fusion agents are tracking. This consideration need not take the

form of explicit representation of another agent’s beliefs but does imply that a fusion

agent must be willing to accept that a sensor agent may not be available to track its

target and accept that sensors may leave their content despite being within range of

its target (to track another fusion agent’s target for example). Attempts to achieve this

level of cooperation between sensors began by employing broadcast messaging, with the

purpose of informing one anotherof their current target. It was hoped, in this way, that

138

a sensor agent might be able to reason over the decision to switch their tracking target, if

they received messages informing them that anothersensoris tracking (or not tracking)

the same object. However, this solution presented practical difficulties as a consequence

of the number of messages, thought to be due to the necessary synchronisation of the

(Java implemented) in-boxes.

Adapting Scenario Two to the complex surveillance area

Throughout Scenario Two we have regarded sensors as service providers that are ap-

proached by fusion agents for the service they provide. If any suggestion of hierarchy

exists in the relationship between sensor and fusion agent then the ‘higher’ groundis

occupied by the sensor. Thus, unlike the previous scenario, it is not natural for the

fusion agent to adopt the role of team leader. For this scenario, we adopted a peer

relationship between fusion and sensor agents and chose to create a new agent to fulfill

the team role.

This tracking team comprises of two distinct memberships; sensor agents and fusion

agents. Each memberis interested in tracking a common object. Sensor agents may be

members of multiple teams —if it is able to detect more than one target object — but

fusion agents belong to exactly one team. In fact the creation of the team agent is

performed by the fusion agent when it receives notification from the environmentofits

target object.

receive(enviornment, target(T,Location))

=> NEXT create(trackingTeam);

receive(self, newTeam(Team)) & tracking(Target) & targetIn(Region)

=> NEXT send(Team, target (Target ,Region)) ;

The generated team then recruits sensors from appropriate regions. This structure

provided a convenient way to combine team leadership and a coarsefiltering of sensor

messages, greatly reducing the work load of the fusion agent. On analysis of multiple

executions, the fusion agent in this experiment has a low work load relative to the

number of sensors in the example.

7.2 Results

In evaluating the implemented scenarios we were interested in ensuring that the system

requirements were upheld by the specification, i.e. that all target objects were tracked

accurately and that METATEM wasable to generate a valid model for each execution.

But we are most interested in evaluating the benefit of taking an agent-oriented ap-

proach, indeeda principled andlogical approach to agency, andin particular theflexible

agent grouping mechanism that the current METATEM implementation provides.

139

First we present, in Table 7.2, a summary of somestatistical data collected from

repeated executions of the two scenario for each of the surveillance areas. The data

provides someinsight into the execution performanceof each scenario and helps inform

implementation design by indicating which agents, if any, may be under or over bur-

dened. Whilst it is clear that METATEM doesnot provide a performance advantage, of

Scenario Scenario One Scenario Two

simple extended complex simple extended complex

Predicates / state

fusion agents 8 12 29 8 15 14

sensor agents 2 4 10 2 6 11

delegate agents - 8 - - - -

team agents - - - - - 20

Tracking lag / sec <l 3 >5 <1 5 >5

Table 7.2: Average values for various performance measures.

any kind, over conventional asynchronous programming techniques. We do believe this

work demonstrates that the declaration of temporal specifications is an appropriate one

for programming agents and also provides an advantage for the high-level programming

of asynchronousprocesses in pervasive computing applications such as the surveillance

area studied. These advantages include:

e specification closely matches intuition of behaviour;

e behaviour is assured through direct execution of specifications;

e code is clear and concise;

e its closeness to agent-oriented techniques, in particular the autonomy of agents;

and

e it provides a meansof describing adaptable behaviour.

For instance, less than twenty lines of code specifies the sensor’s behaviour in both the

simple and extended experiments. The sensorfulfills obligations to provide sensor data

to its context and gracefully stops providing data whentold it is no longer of service. An

indication of the generality of the sensor .agent codeis given by the fact that minimal

changes were necessary when scaling between the simple and extended experiments.

Modification of METATEM’s declarative code, when necessary, can be achieved with

140

greater ease than the modification of a procedural program, as semantics is unaffected

by declaration ordering. For this reason the runtime modification of declarative (and

interpreted) programsis possible.

7.3 Usability

One of the claimed benefits of an agent-oriented, as opposed to object-oriented, ap-

proach to software design and development, is the ability to achieve a closer correspon-

dence between the intuition of the problem being solved and the resultant solution’s

source code [134]. This argumentis certainly borne byisolated snippets of METATEM

code, where the unambiguousnature of its operators correspond closely to human in-

terpretations, and where its predicates are directly related to predicates of natural

languages. From this perspective, the barriers to entry for new METATEM developers

are low, in comparison to new C++ developers, for example.

However, whilst it is possible, with care, to read a large block (of the order of one

hundred lines) of imperative language code andassimilate it sufficiently to predictits

purpose and even find sometypesof error, reading a similarly sized block of declarative

language code such as METATEM’s doesnotlead to the same understanding. Of course,

one should not expect to gain an intimate appreciation of a METATEM program,that

could potentially provide an infinite number of possible executions. Particularly as

it may not be clear to the developer how the solution is to be achieved —only the

character of the solution may be known. Yet understanding blocks of code a fraction

of this size, for the purposes of debugging, proved to be quite difficult.

Following our experiences of using concurrent METATEM andthose ofits early

users, the place of METATEMasa high-level specification language, used in conjunc-

tion with other, more computationally efficient lower-level languages, cannot be over

emphasised. This argument is supported by Michael Cieslar’s work [19] which used

the system extensively. During his work, Michael found METATEMappropriate for

modelling complex multi-agent systems, but also found it both necessary and useful

to create a majority of Java code, and a thin, clear layer of METATEM codeto ‘tie’ it

together. Whilst it is difficult to give a general rule for the ideal proportions of ‘high-

level specification’ and ‘low-level computation’ code, our experience would suggest that

if specification code represents aroundfive percent of the total numberoflines written,

then this is a manageable amount that is also likely to provide the desired benefits.

An interesting comparison with AgentSpeak can be made by analysing the Jason entry

to the 2008 Multi-Agent Programming Contest [80], in which approximately fifteen

percent, of the five thousand lines written, were written in AgentSpeak (the remainder

being written in Java). The difference between the METATEMproportion and the Jason

proportion can be explained by the nature and syntax of an AgentSpeak plan, which

is a more self-contained and ordered unit, and is executed as such. Thus AgentSpeak

141

has a degree of plan structuring that METATEM doesnot, allows a Jason developer to

more easily manage a greater proportion of high-level (AgentSpeak) code.

7.4 Implementation

There have been other implementations of METATEM in various guises and implemen-

tation languages, each of which served their immediate purposes well, but were not

maintained beyond them. The history of these implementations indicated that con-

structing a reliable and maintainable implementation was a difficult task. Therefore,

in an attempt to prevent this project’s main output from suffering a similar fate, good

software engineering principles were adopted throughout.

The benefits of having a code-base that is appropriately modularised, consistently

styled, fully documented, employs recognised programming patters, and defines its own

meaningful exceptions (handling them gracefully on most occasions), have already been

realised. At no time has the code grownout of control, colleagues have found the source

code accessible and whenerrorsare identified, fixes are easy to apply. Having the code

controlled by the version control system, Subversion?, has provided security and further

increases its accessibility.

Improvements can, of course, always be made and the immature graphical agent

viewer is a good candidate for future work. The viewer provides a graphical view of

agents, in the, now conventional, METATEMstyle (see Figure 7.3) and promises to be of

great value to debugging of agent systems. Tools such as this, including simple syntax

highlighting editors would greatly increase the potential uptake of the language, par-

ticularly if an online version were made available for students. Indeed, integrating the

current interpreter and visualiser into a browser applet is feasible. Another significant

aspect of the system’s implementation, that also affects its usability, is its deliberation

performance. Care must be taken not to introduce unnecessary disjunctions as their

impact on deliberation time is substantial. The blocks-world scenario is a classic plan-

ning problem in AI that has been shown to be NP-hard [72] and therefore provided an

ideal performance test for the implementation. Using the blocks-world solution as a

benchmark, the implementation’s memory and CPU usage has been profiled, and this

has led to a numberofefficiency improvements. However, the emphasis during devel-

opment has been consistently placed on producing correct and maintainable code, with

execution efficiency being of secondary concern. The execution of temporal formulas

by forward chaining is inherently inefficient due to the nature of the underlying logic

and particularly so if no specific optimisation measures are taken. There are no doubt

opportunities for improving the execution speeds. For these reasons, optimising the

implementation for both memory and CPU usage, may well be a fruitful future activ-

*nttp: //subversion. apache. org/

142

File Controls Help

i Z
Start Pause| fj en

née Reload

rAgent rAgent Details:

rAGENSLISt=

role ‘

> contained
team
group1

Conair? (©) = group2

me rAgent Name————_

O© :View Log Pause

End Resume

rContent

agS

r Context.

team

Known

ags

rState Controls

role :- [Interpretation (inContent(agS) * inContext(team) * inKnown(ag5))]Messages:[]] at
State: role :- (Interpretation: (inContent(ag5) * inContext(team) “ inKnown(ag5))]Messages:[]] ey

€: role :- [Interpretation: (inContent(ag5) “ inContext(team) “ inKnown(ag5))|Messages'[]] [=|
role :- [Interpretation:{inContent(ag5) “ inContext(team) “ InKnown(ag5))|Messages.[]] ¥

Figure 7.3: A visualisation tool for the control and monitoring of agents.

ity. Specifically, the conjoining of disjunctions when generating an agent’s choices is an

area where improvements could be made, perhaps by caching the results of frequently

performed conjoining operations.

143

144

Chapter 8

Conclusions

This thesis has brought together formal specification, agent-oriented programming and

modelling of agent organisations to demonstrate a simple and semantically coherent

framework for programming pervasive computing systems comprising many ‘agents’.

The implementation has been shown to be useful in areas in which conventional pro-

gramming frameworks find it difficult, such as concurrency and distribution. It has

provided a reliable and maintainable programming platform, vital to the future devel-

opment of this technique.

Chapters 1 and 2 described the central concepts of the thesis, which its title makes

plain, but did so within a context of ubiquitous and pervasive computing. We have seen

how the applications of computing are widening andtheir support for every-day human

activity is increasing. Smart phone applications such as Layar and others mentioned

in Section 1.2 illustrate the power available to hand-held devices today, and give us

glimpses of the potential applications of tomorrow,if only we can harnessthecollective

power of these devices. We have seen that current programming paradigms are not

equipped with the constructs to model essential concepts such as autonomy, context

and adaptivity, at least, not as first-class entities of the language. These chapters de-

scribed some respected agent-oriented programming languages that are inspired by the

archetypal Procedural Reasoning System, and surveyed a variety of existing techniques

for modelling, reasoning about and programming with, context. Finally, we introduced

a temporallogical framework that later gave our agents a heart beat.

In Chapter 3 we described the foundational theory behind concurrent METATEM,

an agent-oriented, declarative, specification language that allows multiple agent spec-

ifications to be asynchronously executed. Having provided temporal semantics, this

chapter goes on to demonstrate and formalise the execution algorithm of an agent. An

execution which, providinga fair ordering of goals is applied, is guaranteed to complete,

if possible. Though we do not pursuethis topic further here, this opens up the potential

for automated verification of an agent specification. Chapter 3 describes the implemen-

tation provided by this project, how it differs from previous implementations dueto its

145

robust execution and maintainable code-base, as well as the extended features it pro-

vides. Features that include maintenance and manipulation of sets of terms, a range

of built-in predicates, an abilities interface for executing arbitrary blocks of Java code,

meta-predicates for dynamic modification of an agents specification and deliberation

preferences.

It has been shown, in Chapter 4 that the METATEM language andtherefore this

implementation is able to model a range of multi-agent concepts such as sharing capa-

bilities, teamwork and roles. Concepts which, we believe, are complementary to any

agent-oriented solution to the problem of programming pervasive systems. Two dis-

tinct views of agent organisation exist within the research community; an agent-centred

view, in which all entities identified during analysis of a domain are considered to be

agents for the purposes of implementation, and an organisation-centred view, in which

an organisation is a first-class entity with different attributes to that of an agent. In

the latter, an organisation entity can be likened to a supporting environment in which

agents can operate, as is exemplified by the institution abstraction, but crucially, where

the organisation/institution does not exhibit autonomy, hold beliefs or otherwise be-

have in an agent-like fashion. On the other hand, an agent-centred viewpoint accepts

that organisations of all kinds can be ascribed beliefs and act autonomously. This

viewpoint is particularly useful for less infrastructural concepts such as teams, where

a clear argument for team beliefs and goals exists. This work subscribes to an agent-

centred view of agent-oriented programming, in which all entities identified during

analysis of a problem are considered to be agents for the purposes of implementation.

In Chapter 5 we showed that this does not preclude the ability to represent a range

of agent organisations, and provides the additional benefit that an organisation entity

can simultaneously be treated as an agent, and vice versa.

As a diversion from the main thread of research, Chapter 5 demonstrates that the

simplicity and semantic clarity of the content/context constructs along with a mecha-

nism for imposing constraints, could be used in order to provide a common underlying

semantics for the implementation of agent organisation across BDI based agent pro-

gramming languages. This in turn, would provide consistency of agent-organisation

semantics across languages and hence increased support for development and analysis

tools such as verification. Chapter 5 also provided further demonstration of the use of

context for simple multi-agent applications. It should be madeclear, that although it

is possible in principle, to verify an agent specification, the introduction of any external

influence on an agent, or any accessit is given to its external environment, including the

message passing, significantly reduces the possibility of automatic verification. Perhaps

limiting it to only highly restricted fragments of an individual agent’s behaviour.

Throughout this thesis some of the many relevant contributions to this research

area, and closely related areas, have been included. Someof these contributions, such

146

as Cohen and Levesque’s theory of teamwork [24] and other cooperation/organisation

theories, provide a background that is essential for the full understanding of this work

but do not represent competing or alternative approaches to this work. Others, such

as the Jason interpreter for AgentSpeak, infrastructures for managing context infor-

mation (e.g. JCAF [3] and the Context Toolkit [37]) and Milner’s bigraph theory of

interacting processes, represent competing or alternative approaches to the program-

ming problems addressed by this work but which differ in one or more aspect from this

work. Furthermore, there exist other techniques for employing temporal logic, such as

deduction by resolution and model checking [54] that are closely linked to, but neither

foundational to, nor competing with, this work. Thus,as far as the authoris aware, the

approach taken by this work is unique due to its combination of the direct execution

of temporallogic, the use of multi-agent abstractions and the consideration of context

as a first-class programming construct.

It cannot be denied that many other problems, in addition to the programming

problem, are presenting barriers to the realisation of Weiser’s ‘disappearing hardware’

vision [130]. Hardware technologies do appear to be well progressed, devices are in-

deed becoming smaller and gaining more processing capacity. Advances in hardware

technologies also prevent power-consumption levels from rising in line with processing

capacity, but improvements of many orders of magnitude muststill be made if button-

sized devices are to be endowed with the level of processing power required by current

software. The security and dependability of systems (not withstanding human factors)

is improving, with the help of, for example, cryptographic methods. Yet there still

exists a void between the trustworthiness of encryption and the amount the publicis

willing to trust it. The shape of human-computer interaction must also change sub-

stantially if computers are to operate more autonomously. The fact that the prevalent

mode of human-computer interaction currently involves a one hundred key keyboard

and mouse is as much a testament to their success asit is to the difficulty of finding a

compelling alternative. This project recognises these challenges but considers them to

be parallel concerns, focusing instead on the programming problem. Thus, assuming

that a secure and reliable hardware infrastructure that is open to a myriad of heteroge-

neous devices and mobile devices is a possibility, in Chapters 6 and 7 we demonstrated

that concurrent METATEM hasthe potential to provide a high-level specification of

system-wide behaviour of typical pervasive computing applications, and in a way not

possible with conventional imperative languages. This is also the view reflected by a

small but growing numberofusers.

System characteristics

Section 2.1.3 describes a numberof characteristics of pervasive computing systems,

proposed by Dobson and Nixon [40, 41]. This list of characteristics was used to inform

147

decision making throughout the duration of this project and is repeated below, along

with any conclusions about this work, that we draw with respect to each item on the

list.

(a)

(b)

(c)

(d)

Events are too noisy to serve directly as a basis for programming.

Although an event-driven programming model may not be the ideal, this state-

ment does imply that events remain a useful metaphor. It may be that the popular

event/event-listener architectures can be employed to good effect, in sub-system

components. Indeed, our approach uses the agent metaphorsof percepts, beliefs

and messagesfor the high level system-wide programming, but also allows conven-

tional event-driven models to be employed at lower levels (as add-on Java code,

for example). Webelieve this provides not only a better basis for programming

but also a moreflexible one.

Don’t take anyone’s word for anything.

Trust is an important concept in the real-world and also in the world of multi-

agent research. This statement actually refers to the inaccuracy and noise that

must be expected from electronic sensors embedded within an environment, but

it has a deliberately human tone. We believe that taking an abstract approach to

the accuracy of sensors, by modelling the sensors as trustworthy (or otherwise)

agents is natural and appropriate.

Interconnection is more important than data.

We have argued that agents and the relationships between agents are suitable

abstractions to describe the high-level of interconnection that such system will

undoubtedly possess. The agent-organisation techniques discussed and demon-

strated in this work lead us to conclude that they are indeed suitable for some

scenarios. However, it may be that alternative techniques for coordinating or

analysing interconnected entities, such as algebraic topology [33, 7], are more

useful in other scenarios.

Any decision needs a mitigation strategy.

Again, the architecture of BDI agent languages provide an inherent advantage for

adapting to changing circumstances by meansofbelief revision and theselection

of alternative plans. Furthermore, the forward chaining execution of a METATEM

agent employs backtracking when an undesirable (logically inconsistent) state is

reached. However, this aloneis not true mitigation —in its crudest form it is sim-

ply trial-and-error. Agent languages require explicit consideration of mitigating

actions and these tend to be implementedas plans, triggered by the failure of reg-

ular plans. A METATEM agent also has the concept of a reversible action, i.e. a

complementary ‘undo’ action that is performed in the event of backtracking over

148

an action. Of course, only internal actions can be considered as truly defeasible

and the powerof these external undo actions to actually mitigate is also highly

dependent upon circumstances. In conclusion, our approach does facilitate the

programming of basic mitigation strategies, but an additional theory such as a

defeasibility of actions theory, is likely to be more advantageous.

(e) Everything interesting comes from composition.

The approach taken by this work places system composition at the forefront of

system design, by the integration of inter-agent relationships into the specification

of agents. This approach allows a wide variety of multi-agent compositions, some

of which have been demonstrated to be of use when programming typical perva-

sive computing scenarios in an agent-oriented way. It is hoped that future work

will allow the run-time interactions between components (agents) to be better

understood (analysed) at design time.

8.1 Future work

This work has provided valuable insight into the use of METATEM for typical multi-

agent systems that contain many (ten or more) agents, as is expected when modelling

pervasive computing scenarios as multi-agent systems. However, it has also emphasised

the need for further work in this area.

It is recommendedthat investigation into this approach be continued. In particular,

the surveillance case-study is worth pursuing, with a numberof general aims. The

adaptation of agents (to increased message passing load) by creation of sub- and group-

agents, has been demonstratedin this work andit is hoped that such adaptation can be

further automated, perhaps with the aim of producing a design pattern of adaptation

for METATEMagents.

Although this work pushed the execution of multiple agents to the practical limits

for METATEMin its current guise, it is hoped that with optimisation of the interpreter

and moreintelligent specification of agents, that the multi-agent systems simulated

can be scaled up. Although it must be recognised that direct execution of a logical

specification is by its very nature a time inefficient process.

Of course, the scaling up of experiments not only presents difficulties for the execu-

tion environment but also for the design of more complex scenarios. With this in mind,

work has begun on devising and formalising a visual design methodology, specifically

targeting the contextual structuring of agents. Initial work [55] has concentrated on

a process of refinement whereby agent specifications are iteratively refined in such a

way that the original specification is a logical entailment of the refined specification.

The content/context approach naturally supports both top-down and bottom-uprefine-

ments, where agents are either decomposed to create new content agents, or composed

149

to form new context agents. This work has raised questions regarding the accessibility

of an agent specification and the extent to which agent autonomy mustbesacrificed in

order to benefit from automated verification. Even so, this is an interesting develop-

ment that deserves further attention.

150

Appendix A

Documentation

A.1l READMEfile

Concurrent MetateM

This software is an implementation of the agent programming

language MetateM [Fisher et al.] in which agents are

specified using a declarative language of temporal logic

rules and meta-statements. Multiple agent specifications

are interpreted asynchronously and agents are able to

communicate by message passing.

For an introduction to agent and MetateM theory, see the

following file included with this download:

metatem_intro.pdf

This download should contain the following directories and

contents:

/lib -all necessary executable files to create

your own multi-agent systems.

/doc -developer documentation generated by javadoc,

including a description of the agent-ability

API that enables a MetateM agent’s interaction

with the real world.

-the introduction to MetateM theory mentioned above.

-the grammar of system and agent files, in BNF.

/examples -some elementary single- and multi-agent examples.

151

/arc -the (mainly Java) source code for this implementation.

For all else, please contact the developers:

hepplea@liverpool.ac.uk

System requirements

The minimum system requirement are a working Java Runtime environment,

version 1.6 or later, access to a command line and a text editor. If

your agents are to be of any practical use then you will also need a

Java development kit to compile your agents’ abilities.

Getting started

There are many ways to execute MetateM. Currently the way we advise is

via the command line.

To try one of the packaged examples, use the following command from the

?examples’ directory (replacing ’helloworld.sys’ with the system

specification file of your choice):

$ java -jar ../lib/metatem.jar helloworld.sys

Or, having appended ’metatem/lib/metatem.jar’ to your operating

system’s CLASSPATH variable (see below for help with this), with the

slightly abbreviated command

$ java metatem.Main helloworld.sys

Finally, you can use the supplied GUI to load a system file (remember

that this software comes with no warranty ;-) as follows (where again,

?metatem/lib’ is in your CLASSPATH):

$ java metatem.tools.Launch

152

Once you have successfully executed an example, you can use them as

a basis for creating your own multi-agent systems, by referring to

the documentation on-line and in the ’metatem/doc’ directory of this

download.

Other information

The following will not be found in this download but can be found

on-line:

- A first MetateM tutorial.

- Frequently asked questions.

Appending the metatem jar file to your CLASSPATH:

Windows

> set CLASSPATH=CLASSPATH;<path>\metatem\lib\metatem. jar

Unix

$ export CLASSPATH=$CLASSPATH: <path>/metatem/lib/metatem. jar

Where <path> is replaced with the full path to the directory

where you unzipped the MetateM download.

Please see the file COPYING for details of licensing.

$1d$

153

A.2 Java documentation

http:/Awww.csc.liv.ac.uk/~anthony/metatem/javadoc/overview-summary.html

Overview Package Class Use Tree Deprecated Index Help MetateM
PREY NEXT FRAMES NOFRAMES All Classes

MetateM—Multi-agent Language Interpreter

This documentation describes the implementation of an interpreter for a multi-agent
specification language called MetateM, an agent-oriented programming language in which the
first-class entities are agents whose behaviouris specified by a mixture of temporal logic and
meta-statements; for a detailed introduction to MetateM theory and this implementation see

here, otherwise see below.

See:

Description

Packages

This is the parent package for all packages and classes
metatem that comprise the MetateM multi-agent specification

language.

The classes and sub-packages contained in metatem.agent
enStntpre describe the agent-onented behawour of an agent.

Interfaces, abstract classes and some concrete classes that

metatem.agent.ability provide MetateM agents with the ability to act in their

; environment.

A collection of classes that enable agents to communicate
Inetatem.agent.communication ;

Ss eae by messagepassing.

These classes have been generated by the parser
Imetatem.parser generator Javacc, from the parser description file

srcim etatem/parser/Parser.jj.

metatem.temporal is an API for temporal logic that is

 Inetatem.temporal intended to be entirely independent of the other metatem
packages.

This is the parent package for all packages and classes
Inetatem.tools that provide support for the development of MetateM

programs.

This documentation describes the implementation of an interpreter for a multi-agent

specification language called MetateM, an agent-oriented programming language in which the

first-class entities are agents whose behaviour is specified by a mixture of temporal logic and

meta-statements; for a detailed introduction to MetateM theory and this implementation see

here, otherwise see below.

A MetateM agent is capable of executing arbitrary Java code (and thus, by integration with Java,

arbitrary code of any language) through the use of the API described by the package
metatem.agent.ability. The class metatem.agent.abilty.AbstractAbility will be of particular

Interest to a MetateM developer who wants to endow their agents with existing abilities or

create custom abilities of their own.

Overview Package Class Use Tree Deprecated Index Help MetateM

PREY NEXT FRAMES NOFRAMES All Clazses

154

Appendix B

Source code from Chapter 6

B.1_ bob.agent

type agent;

logging FINE;

//Bob can only drive to one place at a time, drive(destination).

at_most 1 drive ;

at_most i arrive ;

prefer arrive to drive when drive(X) weight 50;

initial : {

start => drive(home);

start => todo(shopping);

start => ~doing(shopping);

// Bob should go shopping at sometime, at the shopping

// will not be done unless he does it.

todo(shopping) => todo(shopping) UNTIL doing(shopping);

todo(shopping) => ~done(shopping) UNLESS doing(shopping);

// Bob cannot do shopping until he is in the shopping_centre

~in(shopping_centre,context) => NEXT ~doing(shopping);

// Bob must drive to the shopping centre

todo(shopping) => SOMETIME drive(shopping_centre);

155

// If driving one moment then the next moment we should be driving

// to the same destination, arriving at that destination or

// driving to another destination.

drive(X) => NEXT arrive(X) | drive(X) | drive(Y,X);

drive(X) => SOMETIME arrive(X);

drive(X) & ~entered(X,context) => NEXT ~arrive(X);

// Bob will consider a shopping diversion when driving,

// apart from when he is driving to work.

drive(X) & todo(shopping) & X=\=shopping_centre

=> NEXT drive(shopping_centre,X) | drive(X);

drive(Y,X) => divert;

drive(X) & divert => false;

drive(X) & X=work => NEXT drive(X) | arrive(X);

drive(Y,X) => togo(X) UNTIL drive(X);

// Whilst shopping, the agent cannot drive

arrive(X) & togo(Y) => ~drive(Y) UNTIL depart (X);

in(X,context) => NEXT ~depart(X);

arrive(X) => “drive(X); // stop driving when arriving

drive(X) & arrive(Y) => false; // also applies when X=Y

left (shopping_centre,context) => NEXT depart (shoppingcentre);

left (shopping_centre,context) => NEXT drive(X); // hopefully home

// The following rules are for the purposes of the simulation and

// are placed here for convenience. Ideally they would be built

// into an environment

// Stop bob from arriving home before he has been shopping

arrive(home) => false | done(shopping);

doing(X) => doing(X) UNTIL done(X);

// Force Bob to go shopping

drive(X) & todo(shopping) & X=\=shopping_centre

=> NEXT drive(shopping_centre,X);

156

// Make it a short drive to the shopping centre and then to home

drive(shopping_centre) & ~enterContext (shopping_centre)

=> NEXT enterContext (shopping_centre);

done(shopping) => NEXT leaveContext (shopping_centre);

in(home,context) => NEXT end;

B.2 delegate.agent

type agent;

ability send : metatem.agent.ability.Send;

ability print : metatem.agent.ability.Print;

logging OFF;

/* A delegate agent represents a group of sensors on behalf of

* a fusion agent. It has been delegated the responsibility of

* receiving the sensor data from the sensor agents and will

* forward, to the fusion agent, only relevant messages.

* It can be viewed as the fusion agent’s secretary, filtering

* unwanted mail.

*/

basics : f{

// Soon after creation, this agent should receive a message

// from its creator.

receive(FusionAgent, tracking(Target)) & inContext (FusionAgent)

=> NEXT tracking(Target);

// The agent is created for a specific set of agents and

// a single target.

tracking(Target) => NEXT tracking(Target);

receive(FusionAgent, addToContent (SensorAgent)) & inContext (FusionAgent)

=> NEXT addToContent (SensorAgent);

// When sensor agents have all been ejected this agent

// will leave the Content of the fusion agent and die.

157

send(Sensor, redundant) & inContent(Sensor) & size(Content,1)

=> NEXT end;

receiving_data : f

// Messages from content agents are not received every moment,

// but multiple messages (about multiple targets/noise) can be

// received in a single moment. Sensors are given a status of

// either sending data, only noise or nothing, which refer to

// the immediate past.

nothingFrom(Sensor) & onlyNoiseFrom(Sensor) => false;

onlyNoiseFrom(Sensor) & dataFrom(Sensor) => false;

nothingFrom(Sensor) & dataFrom(Sensor) => false;

inContent(Sensor) & ~receive(Sensor, Message)

=> NEXT nothingFrom(Sensor);

inContent(Sensor) & receive(Sensor, data(Colour,X,Y)) &

tracking (Colour)

=> NEXT dataFrom(Sensor);

inContent(Sensor) & receive(Sensor, data(noise))

=> NEXT noiseFrom(Sensor);

inContent(Sensor) & receive(Sensor, data(Colouri,X,Y)) &

tracking(Colour2) & Colouri=\=Colour2

=> NEXT noiseFrom(Sensor);

noiseFrom(Sensor) & ~dataFrom(Sensor) => onlyNoiseFrom(Sensor);

// Count the number of times an agent sends noise and ask the sensor

// to leave your context if it sends noise three consecutive times

enteredContent (Sensor) => NEXT noisesFrom(0,Sensor);

dataFrom(Sensor) => NEXT noisesFrom(0,Sensor);

onlyNoiseFrom(Sensor) & noisesFrom(X,Sensor) & (Y is X+1)

=> NEXT noisesFrom(Y,Sensor);

nothingFrom(Sensor) & noisesFrom(X,Sensor)

=> NEXT noisesFrom(X,Sensor);

158

noisesFrom(X,Sensor) & noisesFrom(Y,Sensor) & X=\=Y

=> false;

inContent (Sensor) & noisesFrom(3,Sensor) => NEXT send(Sensor, redundant);

filtering « 1

B

//

//

//

//

//

//

// Only pass on data about the target identified by tracking(target),

// and only send one message per time step.

receive(Sensor, data(Colour,X,Y)) & tracking(Colour) & inContext (FusionAg)

=> NEXT send(FusionAg, data(Colour,X,Y)) | ignore(targetCoord(X,Y));

inContext(FusionAg) & send(FusionAg, Message1) & send(FusionAg, Message2)

& Messagei =\= Message2

=> false;

.3 environment.agent

This agent has the responsibility of creating

the SurveillanceArea instance co-ordinating the

initial registration of agents. It isn’t exactly

a wrapper because the SurveillanceArea instance

does send messages directly to sensor agents once

the sensor agents are registered.

type agent;

ability surveillance : surveillance.CreateSurveillanceArea;

ability print : metatem.agent.ability.Print;

ability send : metatem.agent.ability.Send;

lo

lo

gging INFO;

cations : {

start => location(north);

start => location(south);

start => location(central);

// Once a location always a location

159

location(L) => NEXT location(L);

configuration : f{

// Start by creating and starting the surveillance area

start => surveillance(create);

receive(self,surveillanceArea(Area))

=> NEXT surveillance (begin, Area);

// surveillanceArea(X) => NEXT ALWAYS surveillanceArea(X)

receive(self,surveillanceArea(Area)) => NEXT surveillanceArea(Area);

surveillanceArea(Area) => NEXT surveillanceArea(Area);

// Ensure that if we have a surveillance area then all agents

// are either attached or already attached to a sensor.

// Agents and sensors are explicitly matched at the moment.

receive(self ,surveillanceArea(Area))

=> NEXT surveillance(attach, sensori, Area, north, point(2,27));

receive(self,surveillanceArea(Area))

=> NEXT surveillance(attach, sensor2, Area, north, point(18,28));

receive(self,surveillanceArea(Area))

=> NEXT surveillance(attach, sensor3, Area, north, point(10,20));

receive(self,surveillanceArea(Area))

=> NEXT surveillance(attach, sensor4, Area, central, point(2,15));

receive(self,surveillanceArea(Area))

=> NEXT surveillance(attach, sensor5, Area, central, point(18,15));

receive(self,surveillanceArea(Area))

=> NEXT surveillance(attach, sensor6, Area, south, point(10,10));

receive(self ,surveillanceArea(Area))

=> NEXT surveillance(attach, sensor7, Area, south, point(2,2));

receive(self,surveillanceArea(Area))

=> NEXT surveillance(attach, sensor8, Area, south, point(18,2));

// Remember which agents are attached and its location.

receive(self,attached(X,L)) => NEXT attached(X,L);

attached(X,L) & ~receive(environment, detached (X))

=> NEXT attached(X,L);

160

attached(X,L) => attached(X);

// An agent must not be attached more than once.

attached(Sensor) & surveillance(attach, Sensor, Area, Location, Point)

=> false;

attached(X,L1) & attached(X,L2) & Li=\=L2 => false;

// Once the area is started, get location of target(s).

receive(self,areaStarted(Area)) => NEXT surveillance(targets, Area) ;

// Inform the fusion agent of the target’s colour and location

// whenever this information is received from the environment.

receive(self,target (red, Location))

=> NEXT send(target1, target (red,Location));

receive(self,target (green, Location))

=> NEXT send(target2, target (green,Location)) ;

communication: {

// Broadcast all ’broadcast’ messages to all members of content:

receive(X, broadcast(M)) & inContent(X) & inContent(Y) & X=\=Y

=> NEXT send(Y, M);

B.4 fusion.agent

type agent;

ability send : metatem.agent.ability.Send;

ability createGroup : surveillance.CreateGroup;

logging FINE;

at_most 1 tracking;

at_most i targetCoord;

delegates : { }

basics : {

161

// A fusion agent must be given a target to track,

// but can only track one target at a time.

receive(environment, target(T,Location)) => NEXT tracking(T);

// Only stop tracking if the environment proposes

// another target

tracking(X) & ~receive(environment,target(Y,L))

=> NEXT tracking(X);

// On receipt of a new target, broadcast for sensors within

// range of the target

receive(environment, target (T,Location))

=> NEXT send(environment, broadcast (requestDataFor (self ,Location)));

targetCoord(X,Y) => NEXT targetInSight;

receivingdata: {

// Messages from content agents are not received every moment,

// but multiple messages (about multiple targets/noise) can be

// received in a single moment. Sensors are given a status of

// either sending data, only noise or nothing, which refer to

// the immediate past.

nothingFrom(Sensor) & onlyNoiseFrom(Sensor) => false;

onlyNoiseFrom(Sensor) & dataFrom(Sensor) => false;

nothingFrom(Sensor) & dataFrom(Sensor) => false;

inContent(Sensor) & ~receive(Sensor, Message)

=> NEXT nothingFrom(Sensor);

inContent(Sensor) & receive(Sensor, data(Colour,X,Y)) &

tracking (Colour)

=> NEXT dataFrom(Sensor);

inContent(Sensor) & receive(Sensor, data(noise))

=> NEXT noiseFrom(Sensor);

inContent (Sensor) & receive(Sensor, data(Colouri,X,Y)) &

162

tracking(Colour2) & Colour1=\=Colour2

=> NEXT noiseFrom(Sensor);

noiseFrom(Sensor) => onlyNoiseFrom(Sensor) | dataFrom(Sensor);

dataFrom(Sensor) => ~onlyNoiseFrom(Sensor);

// Count the number of times an agent sends noise and ask the sensor

// to leave your context if it sends noise three consecutive times

enteredContent (Sensor) => NEXT noisesFrom(0,Sensor);

dataFrom(Sensor) => NEXT noisesFrom(0,Sensor);

onlyNoiseFrom(Sensor) & noisesFrom(X,Sensor) & (Y is X+t1)

=> NEXT noisesFrom(Y,Sensor);

nothingFrom(Sensor) & noisesFrom(X,Sensor)

=> NEXT noisesFrom(X,Sensor);

noisesFrom(X,Sensor) & noisesFrom(Y,Sensor) & X=\=Y

=> false;

inContent(Sensor) & noisesFrom(3,Sensor) => NEXT send(Sensor, redundant) ;

tracking : {

// Sensor agents send messages containing sensor data of the form

// data(Colour,X,Y) or data(noise) if no targets are detected

receive(Sensor, data(Colour,X,Y)) & tracking(Colour)

=> NEXT targetCoord(X,Y) | ~targetCoord(X,yY);

// The general location of a target is split into the regions

// north, central and south. Note that origin (0,0) is in the

// south west and that these regions do not overlap.

targetCoord(X,Y) & (Y<10) => targetIn(south);

targetCoord(X,Y) & (Y<20) & (9<Y) => targetIn(central);

targetCoord(X,Y) & (19<Y) => targetIn(north);

// The general movement between regions is tracked.

targetIn(Region) => NEXT targetPreviouslyIn(Region);

targetIn(Region) & ~targetPreviouslyIn(Region)

=> NEXT targetMovedInto (Region);

targetIn(Region) & targetPreviouslyIn(Region)

=> NEXT ~targetMovedInto (Region) ;

163

// When moving into a region, broadcast a request for sensors

// in that region

targetMovedInto (Region)

=> send(environment, broadcast (requestDataFor(self, Region)));

// When no data is received in the next state the fusion agent

// assumes the target has not moved

targetCoord(X,Y) & tracking(Colour) & ~receive(Sensor, data(Colour,X,Y))

=> NEXT targetCoord(X,Y);

managingsensors : {

// Create a group when content size exceeds 2.

size(Content,X) & size(delegates,Y) & (Z is X-Y) & (2<Z) &

“awaitingGroup & ~createdGroup

=> NEXT createGroup(sensorGroup);

createGroup(X) => createdGroup;

createGroup(X) & “receive(self, newGroup(Y)) => NEXT awaitingGroup;

awaitingGroup & ~receive(self, newGroup(X)) => NEXT awaitingGroup;

receive(self, newGroup(X)) => NEXT ~“awaitingGroup;

// When a new group is received add all sensors in content.

// (Not, the group itself or any other groups previously formed.)

receive(self, newGroup(X)) & inContent(Y) & X=\=Y & ~in(Y,delegates)

=> NEXT send(X, addToContent(Y));

receive(self, newGroup(X)) & inContent(Y) & X=\=Y & ~in(Y,delegates)

=> NEXT removeFromContent(Y);

receive(self, newGroup(X)) => NEXT add(X,delegates);

// Tell the newly created delegate agent which target data to pass on.

receive(self, newGroup(X)) & tracking(Y)

=> NEXT send(X, tracking(Y));

164

Bibliography

[1]

[5]

[6]

[8]

Ian Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. A

survey on sensor networks. JEEE Communications Magazine, 40(8):102-114,

2002.

Jakob Bardram. Applications of Context-Aware Computing in Hospital Work:

Examples and Design Principles. In SAC ’04: Proceedings of the 2004 ACM

symposium on Applied computing, pages 1574-1579, New York, NY, USA, 2004.

ACM.

Jakob Bardram. The Java Context Awareness Framework (JCAF) A Service In-

frastructure and Programming Framework for Context-Aware Applications. In In

Proceedings of the 3rd International Conference on Pervasive Computing (Perva-

sive 2005), Lecture Notes in Computer Science, pages 98-115, Munich, Germany,

2005. Springer Verlag.

Jakob Bardram and Thomas Hansen. The AWARE Architecture: Supporting

Context-mediated Social Awareness in Mobile Cooperation. In CSCW ’04: Pro-

ceedings of the 2004 ACM conference on Computer supported cooperative work,

pages 192-201, New York, NY, USA, 2004. ACM.

Howard Barringer, Michael Fisher, Dov Gabbay, Graham Gough, and Richard

Owens. METATEM: An Introduction. Formal Aspects of Computing, 7(5):533-

549, 1995.

Howard Barringer, Michael Fisher, Dov Gabbay, Richard Owens, and Mark

Reynolds, editors. The Imperative Future: Principles of Executable Temporal

Logic. Research Studies Press, May 1996.

Yuliy Baryshnikov and Robert Ghrist. Target Enumeration via Euler Character-

istic Integrals. SIAM Journal on Applied Mathematics, 70(3):825-844, 2009.

Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska, Daniela

Nicklas, Anand Ranganathan, and Daniele Riboni. A Survey of Context Mod-

elling and Reasoning Techniques. Pervasive and Mobile Computing, 6(2):161-180,

June 2009.

165

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

Olivier Boissier, Julian Padget, Viginia Dignum, Gabriella Lindemann, Eric

Matson, Sascha Ossowski, Jaime Sichman, and Javier Vazquez-Salceda, editors.

Coordination, Organization, Institutions and Norms in agent systems (COIN).

Springer-Verlag, 2006.

Rafael Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge. Verifying

Multi-Agent Programs by Model Checking. Journal of Autonomous Agents and

Multi-Agent Systems, 12(2):239-256, 2006.

Rafael Bordini and Jomi Hiibner. BDI Agent Programming in AgentSpeak Using

Jason (Tutorial Paper). In Francesca Toni and Paolo Torroni, editors, CLIMA

VI, volume 3900 of Lecture Notes in Computer Science, pages 143-164. Springer,

2005.

Rafael Bordini, Jomi Hiibner, and Renata Vieira. Jason and the Golden Fleece

of Agent-Oriented Programming. In Bordiniet al. [15], pages 3-37.

Rafael Bordini, Michael Wooldridge, and Jomi Htibner. Programming Multi-

Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technology).

John Wiley & Sons, 2007.

Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fallah Seghrouchni,

editors. Multi-Agent Programming: Languages, Tools and Applications. Springer

Publishing Company, Incorporated, 2009.

Rafail Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fallah Seghrouchni,

editors. Multi-Agent Programming: Languages, Platforms and Applications, vol-

ume 15 of Multiagent Systems, Artificial Societies, and Simulated Organizations.

Springer-Verlag, Heidelberg, Germany, 2005.

Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-

lopoulos. Tropos: An Agent-Oriented Software Development Methodology. Au-

tonomous Agents and Multi-Agent Systems, 8:203-236, 2004.

Lawrence Cavedon, Anand Rao, and Gil Tidhar. Social and Individual Com-

mitment. In PRICAI ’96: Proceedings from the Workshop on Intelligent Agent

Systems, Theoretical and Practical Issues, pages 152-163, London, UK, 1997.

Springer-Verlag.

Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi. SOUPA: Standard

Ontology for Ubiquitous and Pervasive Applications. Mobile and Ubiquitous Sys-

tems, Annual International Conference on, 0:258-267, 2004.

166

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Michael Cieslar. Adapting METATEMfor the Multi-Agent Programming Contest.

Manuscript, 2009. Honours Year Project, Dept. Computer Science University of

Liverpool.

Helder Coelho. Future Challenges for Autonomous Systems. In Artificial In-

telligence An International Perspective, volume 5640/2009 of Lecture Notes in

Computer Science. Springer, 2009.

Cognative Robotics Research Group WWWPage, June 2010. http://www.cs.

toronto.edu/cogrobo/main/systems/index.html.

Philip Cohen and Hector Levesque. Intention is Choice with Commitment. Artif.

Intell., 42(2-3):213-261, 1990.

Philip Cohen and Hector Levesque. Confirmations and Joint Action. In IJCAI,

pages 951-959, 1991.

Philip Cohen and Hector Levesque. Teamwork. Technical Report 504, Centre for

Study of Language and Information, SRI International, Menlo Park, CA, 1991.

Joélle Coutaz, James Crowley, Simon Dobson, and David Garlan. Context is

Key. Communication of the ACM (CACM), 48(3):49-53, 2005.

Joélle Coutaz and Gaétan Rey. Foundations for a Theory of Contextors. In Pro-

ceedings of Computer-Aided Design of User Interfaces (III), pages 13-32. Kluwer

Academic Publishers, 2002.

Mehdi Dastani, Frank de Boer, Frank Dignum, and John-Jules Ch. Meyer. Pro-

gramming Agent Deliberation: An Approach Illustrated Using the 3APL Lan-

guage. In AAMAS ’03: Proceedings of the 2nd international joint conference on

Autonomous agents and multiagent systems, pages 97-104, New York, NY, USA,

2003. ACM.

Mehdi Dastani, Jiirgen Dix, and Peter Novaék. The Multi-Agent Programming

Contest WWWPage, June 2010. http://www.multiagentcontest.org.

Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer. Program-

ming Multi-Agent Systems in 3APL. In Bordinietal. [15].

Nivea de Carvalho Ferreira, Michael Fisher, and Wieve van der Hoek. A Logical

Implementation of Uncertain Agents. In Carlos Bento, Amilcar Cardoso, and

Gaél Dias, editors, Progress in Artificial Intelligence, volume 3808 of Lecture

Notes in Computer Science, pages 536-547. Springer, 2005.

167

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[39]

[41]

Giuseppe De Giacomo, Yves Lespérance, and Hector Levesque. ConGolog, A

Concurrent Programming Language Based on the Situation Calculus. Artificial

Intelligence, 121(1-2):109-169, 2000.

Giuseppe De Giacomo, Yves Lespérance, Hector Levesque, and Sebastian Sar-

dina. IndiGolog: A High-Level Programming Language for Embedded Reasoning

Agents, pages 31-72. In Bordiniet al. [14], 2009.

Vin de Silva and Robert Ghrist. Coordinate-free Coverage in Sensor Networks

with Controlled Boundaries via Homology. The International Journal of Robotics

Research, 25(12):1205-1222, December 2006.

Daniel Dennett. The Intentional Stance (Bradford Books). The MIT Press, Cam-

bridge, MA, March 1987.

Louise Dennis, Berndt Farwer, Rafael Bordini, Michael Fisher, and Michael

Wooldridge. A Common Semantic Basis for BDI Languages. In Proc. Seventh In-

ternational Workshop on Programming Multiagent Systems (ProMAS), Lecture

Notes in Artificial Intelligence. Springer Verlag, 2007.

Anind Dey. Understanding and Using Context. Personal and Ubiquitous Com-

puting, 5:4-7, 2001.

Anind Dey, Daniel Salber, and Gregory Abowd. A Conceptual Framework and

a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications.

Human-Computer Interaction (HCI), 16 (2-4), 2001.

Clare Dixon, Michael Fisher, and Boris Konev. Temporal Logic with Capacity

Constraints. In Proc. 6th International Symposium on Frontiers of Combining

Systems, volume 4720 of Lecture Notes in Computer Science, pages 163-177.

Springer, 2007.

Simon Dobson, Spyros Denazis, Antonio Fernandez, Dominique Gaiti, Erol Ge-

lenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco

Zambonelli. A Survey of Autonomic Communications. ACM Trans. Auton.

Adapt. Syst., 1(2):223-259, 2006.

Simon Dobson and Paddy Nixon. More Principled Design of Pervasive Computing

Systems. In Engineering Human Computer Interaction and Interactive Systems,

volume 3425/2005. Springer Berlin, 2005.

Simon Dobson and Paddy Nixon. Whole-system Programming of Adaptive Ambi-

ent Intelligence. In Proceedings of HCI International, volume6. Springer-Verlag,

2007.

168

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Marc Esteva, David de la Cruz, and Carles Sierra. ISLANDER:anelectronic

institutions editor. In AAMAS ’02: Proceedings of the 1st international joint

conference on Autonomous agents and multiagent systems, pages 1045-1052, New

York, NY, USA, 2002. ACM.

Marc Esteva, Juan-Antonio Rodrguez-Aguilar, Carles Sierra, Pere Garcia, and

Josep Arcos. On the Formal Specification of Electronic Institutions, volume 1991,

pages 126-147. Spriger, 2001.

Jacques Ferber and Olivier Gutknecht. A Meta-modelfor the Analysis and Design

of Organizations in Multi-agent Aystems. In Proceedings of the 3rd International

Conference on Multi-Agent Systems (ICMAS98), pages 128-135, 1998.

Jacques Ferber, Olivier Gutknecht, and Fabien Michel. From Agents to Organiza-

tions: An Organizational View of Multi-agent Systems. In AOSE, pages 214-230,

2003.

Michael Fisher. A Normal Form for First-Order Temporal Formulae. In C'‘ADE-

11: Proceedings of the 11th International Conference on Automated Deduction,

pages 370-384, London, UK, 1992. Springer-Verlag.

Michael Fisher. Concurrent METATEM—Alanguage for modelling reactive sys-

tems. In Parallel Architectures and Languages Europe (PARLE), LNCS,pages

185-196. Springer, 1993.

Michael Fisher. A Survey of Concurrent METATEM—The Language andits

Applications. In Proceedings of International Conference on Temporal Logic,

ICTL’94, volume 827 of Lecture Notes in Computer Science, pages 480-505.

Springer, 1994.

Michael Fisher. A Temporal Semantics for Concurrent METATEM. Journal of

Symbolic Computation, 22(5/6):627-648, 1996.

Michael Fisher. A Normal Form for Temporal Logics and its Applications in

Theorem-Proving and Execution. Journal of Logic and Computation, 7(4):429-

456, August 1997.

Michael Fisher. Implementing BDI-like Systems by Direct Execution. In Proceed-

ings of the 15th International Joint Conference on Artificial Intelligence (IJCAI),

volume 1, pages 316-321, San Fransisco, CA, USA, 1997. Morgan Kaufmann.

Michael Fisher. METATEM: The Story so Far. In Programming Multi-Agent

Systems II (PROMAS), volume 3862 of Lecture Notes in Artificial Intelligence,

pages 3-22, Heidelberg, Germany, 2005. Springer-Verlag.

169

[53] Michael Fisher. Agent Deliberation in an Executable Temporal Framework. Tech-

nical Report ULCS-08-014, Department of Computer Science, University of Liv-

erpool, UK, July 2008.

[54] Michael Fisher. An Introduction to Practical Formal Methods using Temporal

Logic. In preparation.

[55] Michael Fisher, Louise Dennis, and Anthony Hepple. Modula Multi-Agent De-

sign. Technical Report ULCS-09-002, Department of Computer Science, Univer-

sity of Liverpool, January 2009.

[56] Michael Fisher, Chiara Ghidini, and Benjamin Hirsch. Organising Logic-Based

Agents. In Formal Approaches to Agent-Based Systems, volume 2699 of Lecture

Notes in Computer Science, pages 15-27. Springer-Verlag, October 2003.

[57| Michael Fisher, Chiara Ghidini, and Benjamin Hirsch. Organising Computation

through Dynamic Grouping. In Objects, Agents, and Features, pages 117-136,

2004.

[58] Michael Fisher, Chiara Ghidini, and Benjamin Hirsch. Programming Groups of

Rational Agents. In Computational Logic in Multi-Agent Sytems (CLIMA-IV),

volume 3259 of Lecture Notes in Computer Science. Springer-Verlag, November

2004.

[59] Michael Fisher and Anthony Hepple. Executing Logical Agent Specifications,

pages 3-29. In Bordiniet al. [14], 2009.

[60] Michael Fisher and Antony Kakoudakis. Flexible Agent Grouping in Executable

Temporal Logic. In Proceedings of Twelfth International Symposium on Lan-

guages for Intensional Programming (ISLIP). World Scientific Press, 1999.

[61] Mark Fox. An Organizational View of Distributed Systems. IEEE Transactions

on Systems, Man, and Cybernetics, 11, 1981.

[62} Dov Gabbay. Declarative Past and Imperative Future: Executable Temporal

Logic for Interactive Systems. In Behnam Banieqbal, Howard Barringer, and

Amir Pnueli, editors, Proceedings of Colloquium on Temporal Logic in Specifi-

cation, pages 402-450, Altrincham, U.K., 1987. Published in Lecture Notes in

Computer Science, volume 398, Springer-Verlag.

[63] Michael Georgeff and Amy Lansky. Reactive Reasoning and Planning. In AAAI,

pages 677-682, 1987.

[64] Michael Georgeff and Anand Rao. A profile of the Australian Artificial In-

telligence Institute. IEEE Expert: Intelligent Systems and Their Applications,

11(6):89-92, 1996.

170

[65]

[66]

[69]

[70]

[71]

[72]

[73]

[74]

[76]

[77]

Ubiquitous Computing: Experience, Design and Science (Ubiquitous Computing

Grand Challenge: Manifesto), Februrary 2006. http: //www-dse.doc.ic.ac.uk/

Projects/UbiNet/GC/Manifesto/manifesto.pdf.

Ubiquitous Computing Grand Challenge WWW page. http://www-dse.doc.

ic.ac.uk/Projects/UbiNet/GC/index.html.

Adam Greenfield. Everyware. New Riders Publishing, 2006.

Steve Gregory. Parallel logic programming in PARLOG: the language and its

implementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1987.

Davide Grossi, Frank Dignum, Mehdi Dastani, and Lambér Royakkers. Foun-

dations of Organizational Structures in Multiagent Systems. In Proc. 4th Inter-

national Joint Conference on Autonomous Agents and Multiagent Systems (AA-

MAS), pages 690-697. ACM,2005.

Ramanathan Guha. Conterts: A formalization and Some Applications. PhD

thesis, Stanford University, 1991.

Ramanathan Guha and Douglas Lenat. Language, Representation And Contexts.

Journal of Information Processing, 15(3):340-349, 1992.

Naresh Gupta and Dana Nau. On the Complexity of Blocks-World Planning.

Artif. Intell., 56(2-3):223-254, 1992.

Karen Henricksen and Jadwiga Indulska. Developing context-aware pervasive

computing applications: Models and approach. Pervasive and Mobile Computing,

2(1):37-64, 2006.

Anthony Hepple, Louise Dennis, and Michael Fisher. A Common Basis for Agent

Organisations in BDI Languages. In Proc. Languages, Methodologies and Devel-

opment Tools for Multi-agent Systems, pages 171-188. Springer, 2008.

Koen Hindriks, Frank de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer.

Agent Programming in 3APL. Autonomous Agents and Multi-Agent Systems,

2(4):357-401, 1999.

Benjamin Hirsch. Programming Rational Agents. PhD thesis, University of Liv-

erpool, June 2005.

Benjamin Hirsch, Michael Fisher, Chiara Ghidini, and Paolo Busetta. Organising

Software in Active Environments. In Computational Logic in Multi-Agent Systems

(CLIMA-V), volume 3487 of Lecture Notes in Computer Science. Springer-Verlag,

2005.

171

[78]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Benjamin Hirsch, Thomas Konnerth, and Axel Hefler. Merging Agents and

Services—the JIAC Agent Platform. In Rafael Bordini, Mehdi Dastani, Jiirgen

Dix, and Amal El Fallah Seghrouchni, editors, Multi-Agent Programming:

Lanaguages, Platforms and Applications, pages 159-185. Springer, 2009.

Brayan Horling and Victor Lesser. A Survey of Multi-Agent Organizational

Paradigms. Technical report, Univerisy of Massachusetts, May 2005.

Jomi Hiibner, Rafael Bordini, and Gauthier Picard. Using Jason and Moise T to

Develop a Team of Cowboys. In Koen Hindriks, Alexander Pokahr, and Sebastian

Sardinia, editors, ProMAS, volume 5442 of Lecture Notes in Computer Science,

pages 238-242. Springer, 2008.

Jomi Fred Hiibner, Jaime Simao Sichman,and Olivier Boissier. A Model for the

Structural, Functional, and Deontic Specification of Organizations in Multiagent

Systems. In SBIA ’02: Proceedings of the 16th Brazilian Symposium on Artificial

Intelligence, pages 118-128, London, UK, 2002. Springer-Verlag.

Darrel Ince. An Introduction to Discrete Mathematics and Formal System Spec-

ification. Clarendon Press, New York, NY, USA, 1988.

Ole Hggh Jensen and Robin Milner. Bigraphs and mobile processes (revised).

Technical Report 570, Computer Laboratory, University of Cambridge, February

2004.

Yonit Kesten, Zohar Manna, and Amir Pnueli. Temporal Verification of Simula-

tion and Refinement. In A Decade of Concurrency, volume 803 of LNCS, pages

273-346. SV, 1994.

Hiroaki Kitano and Satoshi Tadokoro. RoboCup Rescue: A Grand Challenge for

Multiagent and Intelligent Systems. AI Magazine, 22(1):39-52, 2001.

Robert Kowalski. The early years of logic programming. ACM Communications,

31(1):38-43, 1988.

Victor Lesser. Reflections on the Nature of Multi-Agent Coordination and Its

Implications for an Agent Architecture. In Autonomous Agents and Multi-Agent

Systems, volume 1, pages 89-111. Springer, March 1998.

Hector Levesque, Philip Cohen, and José Nunes. On Acting Together. In Pro-

ceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90),

pages 94-99, 1990.

Hector Levesque and Maurice Pagnucco. Legolog: Inexpensive experiments in

cognitive robotics. In Proceedings of the 2nd International Cognitive Robotics

Workshop, Berlin, Germany, August 2000.

172

[90]

[91]

[93]

[94]

[95]

[96]

[97]

[99]

[100]

Hector Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard

Scherl. GOLOG: A Logic Programming Language for Dynamic Domains. Journal

of Logic Programming, 31:59-84, 1997.

Rodrigo Machado and Rafael Bordini. Running AgentSpeak(L) Agents on

SIM_AGENT. In Intelligent Agents VIII, 8th International Workshop, ATAL

2001 Seattle, WA, USA, August 1-3, 2001, Revised Papers, volume 2333 of Lec-

ture Notes in Computer Science. Springer, 2002.

John McCarthy. Notes on Formalizing Context. In IJCAI’93: Proceedings of the

13th international joint conference on Artifical intelligence, pages 555-560, San

Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

Robin Milner. Bigraphical Reactive Systems. In Proc. 12th International Con-

ference on Concurrency Theory (CONCUR), volume 2154 of Lecture Notes in

Computer Science, pages 16-35. Springer, 2001.

Robin Milner. Pure bigraphs: Structure and dynamics. Inf. Comput., 204(1):60-

122, 2006.

Robin Milner. Ubiquitous Computing: Shall we Understand It? Computer

Journal, 49(4):383-389, 2006.

Kris Nagel, Cory Kidd, Thomas I’Connell, Anind Dey, and Gregory Abowd. The

Family Intercom: Developing a Context-Aware Audio Communication System.

In Proceedings of Ubicomp 2001, pages 176-183, 2001.

Daniela Nicklas and Bernhard Mitschang. The NEXUS Augmented World Model:

An Extensible Approach for Mobile, Spatially Aware Applications. In OOJS,

pages 392-404, 2001.

Pablo Noriega, Javier VAzquez-Salceda, Guido Boella, Olivier Boissier, Virginia

Dignum, Nicoletta Fornara, and Eric Matson, editors. Coordination, Organiza-

tion, Institutions and Norms in agent systems (COIN) II, volume 4386 of Lecture

Notes in Computer Science. Springer-Verlag, 2007.

Timothy Norman, Alun Preece, Stuart Chalmers, Nicholas Jennings, Michael

Luck, Viet Dang, Thuc Nguyen, Vikas Deora, Jianhua Shao, Alex Gray, and

Nick Fiddian. Conoise: Agent-based Formation of Virtual Organisations. In

Proceedings of the 23rd SGAI International Conference on Innovative Techniques

and Applications of Artificial Intelligence, pages 353-366. Springer-Verlag, 2003.

Lin Padgham and Michael Winikoff. Developing Intelligent Agent Systems: A

Practical Guide. John Wiley and Sons, 2004.

173

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Barney Pell, Douglas Bernard, Steve Chien, Erann Gat, Nicola Muscettola,

P. Pandurang Nayak, Michael Wagner, and Brian Williams. An Autonomous

Spacecraft Agent Prototype. In Autonomous Robots, pages 253-261. ACM Press,

1997.

Amir Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium on

Foundations of Computer Science, pages 46-57, 1977.

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A BDI

Reasoning Engine. In Bordiniet al. [15], pages 149-174.

Enrico Pontelli. Adventures in Parallel Logic Programming. http://www.cs.

nmsu.edu/~epontell/advent .html, June 1996.

Michael Prietula, Kathleen Carley, and Les Gasser, editors. Simulating Organi-

zations: Computational Models of Institutions and Groups. MIT Press, 1998.

David Pynadath and Milind Tambe. Team Coordination among Distributed

Agents: Analyzing Key Teamwork Theories and Models. In In Proceedings of

the AAAI Spring Symposium on Intelligent Distributed and Embedded Systems,

2002.

David Pynadath and Milind Tambe. The Communicative Multiagent Team De-

cision Problem: Analyzing Teamwork Theories and Models. Journal of Artificial

Intelligence Research (JAIR), 16:389-423, 2002.

David Pynadath, Milind Tambe, Nicolas Chauvat, and Lawrence Cavedon. To-

ward Team-Oriented Programming. In 6th International Workshop on Intelligent

Agents VI, Agent Theories, Architectures, and Languages (ATAL), volume 1757

of Lecture Notes In Computer Science, pages 233-247. Springer-Verlag, 1999.

Anand Rao. AgentSpeak(L): BDI agents speak out in a logical computable lan-

guage. Lecture Notes in Computer Science, 1038, 1996.

Anand Rao and Michael Georgeff. Modeling Rational Agents within a BDI-

Architecture. In Richard Fikes and Eric Sandewall, editors, International Con-

ference on Principles of Knowledge Representation and Reasoning (KR), Cam-

bridge, Massachusetts, April 1991. Morgan Kaufmann.

Anand Rao and Michael Georgeff. An Abstract Architecture for Rational Agents.

In Charles Rich, William Swartout, and Bernhard Nebel, editors, Proceedings of

the 3rd International Conference on Principles of Knowledge Representation and

Reasoning (KR’92), pages 439-449. Morgan Kaufman, 1992.

174

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Anand Raoand Michael Georgeff. BDI Agents: From Theory to Practice. In Pro-

ceedings of the 1st International Conference on Multi-Agent Systems (ICMAS),

pages 312-319, Washington, DC, USA, 1995. IEEE Press.

Anand Rao and Michael Georgeff. Decision Procedures for BDI Logics. Journal

of Logic and Computation, 8(3):293-343, 1998.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

Bill Schilit, Norman Adams, and Roy Want. Context-Aware Computing Applica-

tions. In WMCSA ’94: Proceedings of the 1994 Workshop on Mobile Computing

Systems and Applications, pages 85-90, Washington, DC, USA, 1994. IEEE Com-

puter Society.

John Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge

University Press, Cambridge, UK, 1969.

Ehud Shapiro. Concurrent Prolog: A Progress Report. In Fundamentals of

Artificial Intelligence: An Advanced Course, held in Vignieu, France, July 1985,

pages 277-313, London, UK, 1986. Springer-Verlag.

Ira Smith and Philip Cohen. Toward a Semantics for an Agent Communications

Language Based on Speech-Acts. In Proc. American National Conference on

Artificial Intelligence (AAAI), pages 24-31, 1996.

Robert Stalnaker. Pragmatics. Synthese, 22:272-289, 1970.

Robert Stalnaker. Contezt and Content. Oxford University Press, 1999.

Roy Sterritt and Michael Hinchey. Radical Concepts for Self-Managing Ubiqui-

tous and Pervasive Computing Environments. 3825, 2006 2006.

Thomas Strang and Claudia Popien. A Context Modeling Survey. In Workshop

on Advanced Context Modelling, Reasoning and Management, UbiComp 2004 -

The Sixth International Conference on Ubiquitous Computing, September 2004.

Milind Tambe. Teamwork in Real-world Dynamic Environments. In Proceedings

of the 1st International Conference on Multi-Agent Systems. MIT Press, 1995.

Gil Tidhar. Team-Oriented Programming: Preliminary Report. Technical Report

1993-41, Australian Artificial Intelligence Institute, April 1993.

Kagan Tumer and Adrian Agogino. Distributed Agent-based Air Traffic Flow

Management. In AAMAS ’07: Proceedings of the 6th international joint confer-

ence on Autonomous agents and multiagent systems, pages 1-8, New York, NY,

USA, 2007. ACM.

175

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

(137]

Javier VAzquez-Salceda, Virginia Dignum, and Frank Dignum. Organizing Mul-

tiagent Systems. Journal of Autonomous Agents and Multi-Agent Systems,

11(3):307-360, 2005.

Roy Want, Bill Schilit, Norman Adams, Rich Gold, Karin Petersen, David Gold-

berg, John Ellis, and Mark Weiser. The Parctab Ubiquitous Computing Experi-

ment, pages 45-101. Springer US, 1996.

Mark Weiser. Some Computer Science Issues in Ubiquitous Computing. Commun.

ACM,36(7):74-84, July 1993.

Mark Weiser. The World is not a Desktop. Interactions, 1(1):7-8, January 1994.

Mark Weiser. The Computer for the 21st Century. SIGMOBILE Mobile Com-

puting and Communications Review, 3(3):3-11, July 1999.

Matt Welsh, Tarek Abdelzaher, and others, editors. ACM Transactions on Sensor

Networks (TOSN), volume 7. ACM, New York, NY, USA.

Michael Winikoff. An AgentSpeak meta-interpreter and its applications. In In

Proceedings of the 3rd international Workshop on Programming Multi-Agent Sys-

tems, pages 123-138. Springer, 2005.

Michael Winikoff. JACK Intelligent Agents: An Industrial Strength Platform. In

Bordiniet al. [15], pages 175-193.

Michael Wooldridge. Introduction to MultiAgent Systems. John Wiley & Sons,

June 2002.

Michael Wooldridge and Nicholas Jennings. Intelligent Agents: Theory and Prac-

tice. The Knowledge Engineering Review, 10(2):115-152, 1995.

Michael Wooldridge, Nicholas Jennings, and David Kinny. The Gaia Methodology

for Agent-Oriented Analysis and Design. Autonomous Agents and Multi-Agent

Systems, 3:285-312, 2000.

Rong Yang. P-PROLOG: A Parallel Logic Programming Language. World Sci-

entific Publishing Co., Inc., River Edge, NJ, USA, 1987.

176

Index

A

abilities, 34, 58, 59, 65, 69, 71, 82-84, 101,

103, 118, 123, 146

receive, 56, 64, 65, 74, 79, 81, 83,

110, 111, 123, 125-128, 136, 139

send, 58, 73, 77, 81, 83, 110, 111, 114,

123, 125, 126, 128, 136, 137, 139

external, 58, 63, 113, 116

internal, 56, 58, 63, 116

actions, 6, 8, 30, 31, 41, 42, 47, 50, 70,

75, 79, 85, 92, 95, 148, see also

abilities

adaptation, 17, 110-111, 149

agency, 5-6, 20, 28-29, 37, 47, 107, 139

agent

autonomy, 6, 28, 35, 80, 84, 100, 118,

140, 150

organisation, 6, 8, 9, 11, 33-36, 69-73,

78, 82-148

AgentSpeak, 31, 32, 87-89, 95, 99, 101,

141, 147

AgentSpeak, 88, 100

always, see temporal logic, operators, al-

ways

ambient intelligence, 113

autonomy, 4, 14, 36, 145, 146, see also

agent, autonomy

B

backtracking, 38, 46, 47, 49, 55, 56, 58, 66,

112, 116, 148

beliefs, 16, 28, 32-34, 37, 38, 69, 73, 78-81,

83-85, 88-90, 93-95, 99, 111, 117,

121, 138, 146, 148

built-in predicate, 62-66, 77-78, 111, 146

add, 63, 76

addToContent, 63, 76

enterContext, 63, 76

in, 63, 76, 80

is, 66

leaveContext, 77

remove, 63, 76

removeFromContent, 77

size, 63

C

capabilities, 32, 34, 69, 70, 79-80, 94, 103,

146

commitment, 33, 34, 48, 50, 55, 61, 80, 81,

83, see also temporal logic, oper-

ators, sometime

communication, 1, 6, 8, 14, 16, 21, 23, 28,

53, 58, 73, 83-85, 103, 104, 115,

118, 128, 135, see also message

passing, see also messaging

case-study, 123

completeness, 49, 53, 145

complexity, 28, 39, 79, 131, 132, 137

of case-study, 107, 113, 115, 121

concurrency, 6, 9, 47, 145

constraints, 53

cooperation, 87, 107, 121, 138, 147

D

deliberation, 70, 79

in METATEM,49, 53, 54

meta-predicates, 55

177

atLeast, 53, 64

atMost, 53, 64

prefer, 53, 55, 64

disjunctive normal form, 55

E

eventuality, 44, 47

execution, 5, 52, 53, 108, 115, 116, 133,

135, 1389, 140, 142

algorithm, 44, 50, 145

concurrent, 7, 56

example, 61-62

METATEM cf. GOLOG, 27

of goals, 35

of GOLOG,30

of meta-predicates, 64

of METATEM,37, 38, 44-149

of plans, 90

output, 101

semantics, 89

time, 27

M

message passing, 56-58, 73, 77, 146, 149,

see also abilities, receive, see also

abilities, send

meta-predicates, 55, 64, 115, 146, see also

deliberation, meta-predicates

addGoal, 64, 111

addRule, 64, 111

N

next, see temporallogic, operators, next

NEXT, 51, 55, 61, 116, see also temporal

logic, operators, next

O

organisation, see agent, organisation

P

predicate constraints, 53, 54, 64

preferences, 45, 53, 55, 56, 64, 69, 83, 101,

109-111, 113, 114, 117, 146, see

also deliberation, meta-predicates

S

satisfiability, 50

Separated Normal Form, see temporallogic,

Separated Normal Form

sometime, see temporal logic, operators,

sometime

SOMETIME, 51, 61, see also temporallogic,

operators, sometime

aD

temporal logic, 6-9, 37-39, 44, 51, 56, 58,

68, 71, 147

operators, 7, 39-44, 51

always, 7, 39-43, 84

next, 7, 39-43, 48, 49, 51, 53, 61

sometime, 7, 39-44, 48, 49, 51, 53,

55

unless, 39-41, 43, 44, 51-53

until, 39-41, 43, 44, 51-53

Separated Normal Form (SNF), 42, 51

U

ubiquity, 4, 6, 138, 14, 107

unless, see temporal logic, operators, un-

less

UNLESS,see also temporallogic, operators,

unless

until, see temporal logic, operators, until

UNTIL, see also temporal logic, operators,

until

V

verification, 5, 7, 9, 25, 37, 39, 145, 146,

150

W

Weiser, Mark, 4, 19, 147

178

