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Abstract

Image registration is one of the major areas of current research and applications in image pro-
cessing. It is the process of finding an optimal geometric transformation between corresponding
images. During the past few years, research in the field of image registration mainly falls into
two categories: the design of new models for accurately registering the given images and the
efficient solution of the resulting equations. The work presented in this thesis falls into both
categories.

Recently, variational models have been successfully proven to be very valuable tools in a large
number of image registration applications. Nomnlinear systems of coupled partial differential
equations (PDEs) emerge when one derives their formal Euler-Lagrange equations. As is well-
known, the number of unknowns in a discretisation of the nonlinear systems can be large for
high-resolution digital images. Thus, highly efficient methods become more and more important
in order to perform the registration in a reasonable amount of time. Among fast iterative
methods, multilevel techniques, e.g. nonlinear multigrid and multi-resolution methods, offer
the potential of optimal efficiency.

This thesis presents four variational image registration models and five numerical solutions
based on multilevel strategies to improve and obtain fast registration results.

First, this thesis presents a novel affine image registration model in a variational and multi-
resolution framework. Several numerical tests show that the new model and the proposed
numerical approach appear to be reliable and robust in i) solving the affine image registration
problems and ii) providing a good initial guess for deformable image registration models.

Second, this thesis presents an efficient multigrid approach for variational image registration
models based on the sum of squared differences (SSD) between images. A unified approach for
designing fixed-point (FP) type smoothers is proposed and analysed by the local Fourier analysis
(LFA) using Fischer—Modersitzki’s diffusion and curvature image registration models [46, 47].
Numerical experiments not only show that the proposed multigrid approach is h-independent
convergence, but it is also more effective than those in a large class of existing iterative methods
developed by [46, 47, 48, 65, 89, 90, 131, 135, 145].

Third, this thesis presents a discontinuity-preserving image registration model based on
the modified total variation (TV) regularisation with the so-called potential function. As a
consequence, the new model can be simply interpreted as a half way model between the diffusive

and TV regularisations for solving both smooth and non-smooth registration problems. In

vi



order to solve the resulting Euler-Lagrange equations, several iterative methods are proposed
and tested using both realistic and synthetic images. Numerical experiments show that a full
approximation scheme nonlinear multigrid (FAS-NMG) method based on a new FP smoothing
scheme is much faster than standard unilevel methods like semi-implicit (SI) and additive
operator splitting (AOS) time marching approaches in convergence and delivering the same
numerical results.

Moreover, this thesis also presents a new curvature model for solving both smooth and
non-smooth registration problems. In contrast to other commonly used variational models, a
theoretical result shows that the new curvature model no longer requires an additional affine
linear pre-registration step. Associated with the new model is the apparent difficulty in devel-
oping a fast solution as the Euler-Lagrange equations of two coupled PDEs is highly nonlinear
and of fourth order so standard unilevel methods are not appropriate. To tackle these difficul-
ties, several FP type smoothers including the so-called primal-dual fized-point (PDFP) method
are proposed with a FAS-NMG framework and analysed by the LFA. As expected, the PDFP
type smoother appears to be a potential smoother. Numerical tests using both synthetic and
realistic images not only confirm that the proposed curvature model is more robust in reg-
istration quality for a wide range of applications than the approximate curvature models of
[47, 48, 79, 78, 73, 75, 74], but also that the FAS-NMG approach based on the proposed PDFP
type smoother is fast and accurate in delivering visually-pleasing registration results.

Finally, this thesis presents an improved monomodal image registration model combining a
non-parametric intensity and geometric transformation, as an alternative model to using mutual
information for a typical case of multimodal iimages where the given images have the similar
features, but different intensity variations. It is modelled by modifying the sum of squared
differences and applying the new curvature model to constrain both intensity and geometric
transformations. In order to solve the resulting Euler-Lagrange equations, this work extends
the PDFP type smoother and uses as a recommended smoother for a FAS-NMG approach.
Compared with the variational model introduced by [106], numerical results show that the new
registration model and the FAS-NMG approach based on the PDFP type smoother are reliable
to provide satisfactory registration results for practical applications.

Overall this thesis is concerned with effective variational model and efficient numerical meth-

ods for image registration.
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Chapter 1

Introduction

1.1 Introduction to image registration

One of the major problems in current image processing is image registration, sometimes also
called image fusion, image matching or image warping. It is the process of finding an optimal
geometric transformation between corresponding images. It can also be viewed as the process
of overlaying two or more images of the same or similar scene taken at different times, from
different perspectives, and/or by different imaging machineries. Therefore, this procedure is

required whenever a series of corresponding images needs to be compared or integrated.

Figure 1.1: Two squares, LEFT: reference image, RIGHT: template image.

More precisely, the image registration problem can be phrased generally in only a few words:
given a so-called reference and a so-called template image, find a suitable transformation such
that the transformed template image becomes similar to the reference. Unfortunately, the
problem is easy to state, but it is hard to solve. The main reason is that the image registration
problem is known to be a highly ill-posed one in the sense of Hadamard as will be explained in
§2.4 and §3.2. A more subtle point is illustrated in Figure 1.1!, showing a white rectangle on the
black background. For simplicity, we only allow rigid-body transformations, the special type
of affine linear transformations consists of translation and rotation. We immediately find two
different solutions: a pure translation and a translation followed by a rotation of 360 degrees
around the center of the image. These solutions are equivalent. Without additional knowledge

it 1s not possible to decide which one to use. Therefore, a typical treatment has to be taken, as

! Adapted from [104, p. 3]



discussed later in §3.2.

Image registration can be classified broadly into two main physical categories: rigid and non-
rigid registration, or mathematical categories: linear and nonlinear registration, or complexity
categories: parametric and non-parametric registration. In several applications, rigid registra-
tion approaches, which involve a rigid-body transformation (with only 3 unknown parameters
for 2 dimensional problems), cannot always provide a satisfactory result, particularly in med-
ical applications (e.g. deformable or soft tissue images), while on the other hand non-rigid or
deformable registration approaches may not be quick enough for ready use (e.g. variational
registration models reviewed by [104] may include nonlinear transformations (non-parametric)
whose number of unknowns for a discrete image is proportional to the number of image pixels!).
Therefore, it is still a challenge to design a robust registration model and its numerical solutions
suitable for real-life applications. For an overview on image registration approaches, we refer

to [16, 49, 68, 100, 104, 124] and references therein.

1.2 Applications of image registration

There are several applications that require a registration step ranging from art, astronomy,
astro-physics, biology, chemistry, criminology, genetic, physics, and other areas involving imag-
ing techniques. More specific applications are, for example, remote sensing (registration of
satellite images taken over a region during different seasons or years can be used to detect
environment change over time), security (comparing current images with a data base), robotic
(tracking of objects), and in particular medicine, where computational anatomy, computer-aided
diagnosis, fusion of different modalities, intervention and treatment planning, monitoring of dis-
eases, motion correction, radiation therapy or treatment verification demand registration. Since
imaging techniques, like computer tomography (CT), diffusion tensor imaging (DTI), magnetic
resonance imaging (MRI), positron emission tomography (PET), single-photo emission com-
puter tomography (SPECT) or ultrasound (US) under a fascinating or ongoing improvement in
the last decade, a tremendous increase in the utilisation of the various modalities in medicine

takes place; see also in [16, 41, 42, 49, 56, 68, 82, 100, 124, 116].

1.3 Image registration studies - Chapters of this thesis

Research in the field of image registration mainly falls into two categories: the design of new
models for accurately registering the given images and the efficient solution of the resulting
equations. The work presented in this thesis falls into both categories and is organized as

follows:

e Chapter 2 provides various mathematical tools which will be used throughout the rest

of the thesis. It includes:

— Useful preliminary definitions, theorems, and examples of normed linear spaces and

functions of bounded variation.



— An introduction into calculus of variations.
— A brief discussion of ill-posed inverse problems and regularisation.

— A discussion of the discretisation of partial differential equations (PDEs) on regular

domains using finite difference methods.

— A review of basic iterative methods for solving linear and nonlinear systems.

— An introduction into multigrid methods as iterative solvers for discrete elliptic PDEs
including algorithms for linear and nonlinear multigrid methods.

o Chapter 3 details a state-of-the-art registration framework. It includes:

— The general variational formulation of image registration.

— A brief review of similarity measures, including the sum of squared differences (SSD)

and the mutual information (MI).

— A brief review and discussion of deformation models (regularisations) commonly
used in deformable image registration, including the elastic model [8, 15, 104], the
diffusion model [33, 46, 89, 91, 104, 131], the Fischer and Modersitzki’s cuvature
model [47, 48, 49, 89, 91, 104], the Henn and Witsch’s curvature model [79, 78, 73,
75, 74], and the total variation (TV) model [51, 53, 142].

— A discussion of general solution schemes, including the optimise-discretise and discretise-

optimise approaches.
— A brief survey of multigrid methods for deformable image registration.

e Chapter 4 presents a robust affine image registration (RAR) method in a variational

and multi-resolution framework. It includes:

— Details of affine image registration, solution methods by the Gauss-Newton (GN)
and Levenberg-Marquardt (LM) approaches, and some registration results using the

GN and LM methods.

Details of four initialisation techniques to improve the GN and LM methods.

Details of the RAR method in the variational and multi-resolution framework.

I

Tests showing the robustness of the RAR method.

e Chapter 5 presents a robust multigrid approach for variational image registration models.

It includes:
— A discussion of the nonlinear fitting term that restricts the class of numerical methods
for variational image registration models.

— Details of the diffusion model and its numerical methods, including a discretisation

and a brief review of previous works on non-multigrid and multigrid methods.



— Details of the proposed nonlinear multigrid method for the diffusion model, including
the new and robust fixed-point (FP) smoother and its smoothing analysis by the LFA
(local Fourier analysis).

— Details of the curvature model and its efficient FP method that we have been used
as a potential smoother in the nonlinear multigrid framework.

— Tests showing the effectiveness of the proposed nonlinear multigrid methods with
the new FP smoothers for the diffusion and curvature models, including several

comparisons with other numerical approaches commonly used in the literatures.

e Chapter 6 presents a discontinuity-preserving image registration model and its fast so-

lution. It include:

— A discussion of the commonly used regularisation methods that provide either smooth
or non-smooth deformation fields.

— Details of the proposed variational model for preserving discontinuities of deforma-
tions fields.

— Details of a finite difference discretisation and four numerical solutions of the result-
ing equations.

— Details of the proposed nonlinear multigrid method.

— Tests showing the effectiveness of the proposed model and multigrid method, includ-

ing several comparisons with other registration models and numerical solutions.

e Chapter 7 presents a fourth-order variational image registration model and its fast multi-

grid method. It includes:

— A discussion of the commonly used PDE-based image registration models that pro-
vide either smooth or non-smooth deformation fields.

— Details and discussions of a new PDE model resulting from the proposed curvature
regularisation.

— A discussion of five numerical solutions of the resulting PDE system.

— Details of the proposed nonlinear multigrid method, including the LFA of the new
smoother and the nonlinear multigrid algorithimn.

— Tests showing the robustness of the new PDE model and the proposed nonlinear

multigrid method.

e Chapter 8 presents an iimproved monomodal image registration model and its fast solu-

tion. It includes:

— A review and discussion of image registration models combining an intensity and
geometric transformation, as an alternative way to using mutual information for a
typical case of multimodal images having the similar features, but different intensity

variations.



— Details of the proposed variational model, including the Euler-Lagrange system and

its primal-dual formulation.

— Details of the numerical solution for the primal-dual formulation, including a poten-

tial FP method and a nonlinear multigrid algorithm.

— Tests showing the robustness of the new variational model and the proposed nonlinear

multigrid method.

e Chapter 9 summarises our work and covers possible future research directions.

All experiments presented in the thesis were run in MATLAB R2008a on a Dell Precision
T7400 with quad-core Intel Xeon processors and 4 Gigabytes of RAM.



Chapter 2

Mathematical Preliminaries

This chapter introduces various materials which will be used throughout the rest of the thesis.

b |

Normed linear spaces

Definition 2.1.1 (Linear vector space). A linear vector space over a field I (usually of real or

complex numbers) is a set V together with two binary operations, operations that combine two

entities to yield a third, called vector addition and scalar multiplication such that, the following

conditions hold:

. Closure of vector addition: If u,v € V, then u+v € V.

Commutativity of addition: If u,v € V, then u+v =v +u.
Associativity of addition: If u,v,w €V, then (u+v) +w =u + (v + w).

Identity element of addition: There exists an element 0 € V', called the zero vector, such

that v+ 0=v forallveV.

FEzistence of additive inverse: For eachw € V, there exists —u € V' such that u+(—u) = 0.
Closure of scalar multiplication: If A € F and uw € V', then Au € V.

Associativity of scalar multiplication: If u € V and \,0 € F', then A\(u) = (A\0)w.

Scalar multiplication is distribute: If u,v € V and \,0 € I, then (A + 0)u = Au+ Bu and
AMu+v) = Au+ Av.

Identity element of scalar multiplication: There exists an element 1 € V', called the mul-

tiplicative identity, such that 1v =wv for allve V.

A subset of a linear vector space V' which is also a linear vector space over the same field

and under the same operators of addition and scalar multiplication is called a linear subspace

of V.

Example 2.1.1 FEzamples of linear vector spaces are



o The spaces R? and C® for all d € N.

e The space C*(Q,R?) of all functions on the domain Q C R whose partial derivatives of

order up to k are continuous.

Definition 2.1.2 (Norm). A norm on a linear vector space V is a real-valued function |||

defined on V' such that
L |lu|l > 0 if u#0.
2. |[Aull = || ||u|| for all scalars A and vectors wu.
3. lu+ || < lul| + ||v|| for all u,v € V.

A semi-norm is defined similarly to above except that axiom 1 is replaced by |[u]| > 0, and

therefore it is possible for a semi-norm to be equal to zero for some u # 0.

Definition 2.1.3 (Normed linear space). A normed linear space is a linear vector space V

equipped with a norm ||-|.

Example 2.1.2 (p-norm). Consider x €R?, then for any real number p > 1 the p-norm of x

ts defined by
n 1/p
Il = (Sla)

where for p = 2 we recover the Euclidean norm defined by

n
[¥llga = vx-x =/ 3 af.
i=1

Note that the p-norm can be extended to vectors having an infinite number of components,
yielding the IP-space defined as the set of all infinite sequences of real or complex numbers with

finite p-norm.

Example 2.1.3 (LP-norm). Consider a function f defined on a domain Q and 1 < p < oc.

Then .
11 = [ 160Pax)

defines the LP-norm of f on . Note that this is a generalisation of the previous example since
f is now allowed to have not only countably-infinitely many components but arbitrarily many

components. The spacial case when p = oo is defined as

Ifllp= = Sliplf(X)I-

Definition 2.1.4 (Inner product). An inner product on a linear vector space V' is a function

(-,)y defined on V x V which satisfies:

1. (u,v)y, = (v,u)y, for allu,v eV



2. (M, v)y, = A{u,v)y .
8. (u+v,w)y, = (u,w)y, + (v,w), .
4. {u,u),, >0 when u # 0.

Example 2.1.4 The classical ezample of an inner product is the function (-,-)z4 defined on
n
R? x R? by (x,y)ga =y ' x =Y 3:y; for all x,y €R™.
i=1
We note that any inner product on a linear vector space V induces a norm defined by
lull,, = (u, u)%,/ ?. This also means that an inner product space, a linear vector space together

with an inner product defined on it, is a special type of normed spaces.

Definition 2.1.5 (Cauchy sequence). A sequence {uy}y., in a normed linear space is said to
be a Cauchy sequence if for all € > 0 there exists a Ko € N such that any k,l > Ko implies that
lur —wl < e

Definition 2.1.6 (Banach space). A normed linear space L is said to be complete if every
Cauchy sequence in L converges to an element in L. A complete normed linear space is called

Banach space.

Similarly, a complete inner product space is known as Hibert space. Two relevant examples
of Hilbert spaces are the space R? together with the Euclidean inner product and the space

L2(Q) together with the inner product defined by (f, D2 = Jo F(x)g(x)dx.

Definition 2.1.7 (Linear operator). An operator A : V. — W, where V and W are vector

spaces, is linear if A(avy + bve) = aAvy 4+ bAvy for all vi,ve € V and all scalars a,b.
Example 2.1.5 A linear operator mapping R" to R™ is defined by a matriz A of size m x n,
then given x € R", y = Ax € R™.
Definition 2.1.8 (Convex set). A set S is convez if for allu,v € S

Au+(1-MNves
for all X € [0,1].

Definition 2.1.9 (Convex function). A function [ defined on a convex set is convex if for all
u,v € S

FOu+ (1 =Av) <Af(uw)+ (1= N)f(v)
for all X € [0,1]. It is called strictly convex provided that the strict inequality holds for x # y
and A € (0,1).

Example 2.1.6 The total variation (TV) of u : Q C R? — R denoted by I'V (u) and defined

as follows:
J'V(u)z/QIVu(xﬂdx

is convex; see more details for the TV of w in §2.3.



2.2 Introduction into calculus of variations

In this section we address a class of minimisation problems where we search for an appropriate
function rather than a value of some variable, that makes a given quantity (usually an energy or
action integral) stationary. Because a function is varied, these problems are called variational
and solved by the so-called calculus of variations. The calculus of variations involves problems
in which the quantity to be minimised (or maximised) appears as a certain definite integral of
an unknown function and/or its derivatives.

Consider the general minimisation problem
minJ (u), (2.1)
u

where J : U —R be a general functional! and & denotes a solution space consisting of admissible
functions minimising J (for example, u € C?(€, RY) with u = ug on 99). We denote by V a
test space consisting of all functions which can be written as the difference between any two
admissible functions,

V={vlv=u—tuand u,uel}. (2.2)

We start first by describing a particular subset of .

Definition 2.2.1 (Neighbourhood). Given a solution space U, a function w € U, and £ > 0,

then B.(u) denotes the neighbourhood of  as
B.(@) = {u e U] Ju—1ll < }.
With the general functional given by (2.1), a local minimiser can be defined as follows.

Definition 2.2.2 (Local minimiser). Given a solution space U and a functional J : U =R,
€ U is said to be a local minimiser of J if for every ¢ > 0 there exists a 6 > 0 such that

@
T (@) < T (u) for allu € B.(q).

To define the necessary condition for a local minimiser of 7, the existence of a directional

derivative is required.

Definition 2.2.3 (Gdteauz derivative). Given a solution space U, a test space V, and a func-

tional J : U —R, J is Gateauz-differentiable for w € U in the direction of v € V if
1. there exists a number € > 0 such that u, = u + ev €U for all || <€, and
2. the function J(€) = J(u.) is differentiable at ¢ = 0.
The first order Géteauzx derivative (or directional derivative or first variation) of J for w in the

direction of v is defined by

dfute) . Jute)-Jw

de eep €0 €

3J (u;v) = J'(0) =

LA function which depends on one or more functions rather than on discrete variable is referred to as a
Sfunctional.



Now, a stationary point can be defined as follows.

Definition 2.2.4 (Stationary point). Let a solution space U, a test space V, and a functional
J U =R be given. Suppose that for some u € U, J is Gateauz-differentiable for all test
function v € V. Then U is said to be a stationary point of J if 6.7 (@;v) =0 for all v € V.

We now give a necessary condition for a minimiser which can be formulated by linking a

stationary point to a minimiser.

Theorem 2.2.1 (Necessary condition for a local minimiser). Let a solution space U with an
admissible function @ € U, a functional J : U —R, and a test space V be given. Assume that
J is Gateaux-differentiable for w and all test function v € V. Then:

If @ is a local minimiser of J, then U is a stationary point of J.

Proof. The proof of this theorem can be found in [5, 36, 88]. =
With this theorem we can investigate the condition for a stationary point of some functional

J in more detail. Here we specify and consider the general functional J defined by
T = [ Pl u(x), Vu@lix, (2.3
Q

where Q ¢ R, d > 1, is a bounded open set and / is a functional depending on x =(%15
oo xq) , u: R — R, and Vu(x) = (du/dzy, ..., du/dxq)". Assume that J is Gateaux-
differentiable in all directions of the respective test space. Thus F is assumed to have continuous
partial derivatives with respect to its arguments.

We introduce the following notation before giving the condition for a stationary point of 7.

We denote
VuF=0F/ou=F, (2.4)

to be the gradient of F' respect to u to distinguish the usual gradient denoted by VF = (0F/0x1,

..y OF/3z4) 7. In similar way, the gradient of /' with respect to Vu is given by
Vvl = (OF/Oug,,...,0F/du,,)" € RY (2.5)

For this moment we will restrict the solution space ¢ by prescribing a specific boundary condi-

tion, i.e.
U= {uel|u=con dQ} (2.6)

and then the corresponding test space is given by
V={veV|v=0ond0}. (2.7)

However, the following result can not only be extended to the general spaces ¢/ and V, but also

to the vectorial case where w = (uy,us,...,uq) ' : R* — R?

10



Lemma 2.2.1 (Stationary of J). A function u € U is a stationary point of the general func-
tional J (2.3) if
/ (Vul' =V - Vo, Fv)gadx =0 (2.8)
Q

holds for all test function v € V.

Proof. Let € € R. Setting the Gateaux derivative of 7 for u in the direction of v to zero leads

to
0= 67 (uv) = 2L+
de -
* / dF[x,u(x) + ev(x), Vu(x) + eVo(x)] dx
Q de e=0 '
B / OF  9(u+ ev)
" Jo O(u+ev)  Oe e
d oF O(ug,, + €vy,,)
+mZ=:1 <a(u1'm + €ev,,) e ) e=0 o
oF ¢ 9F =
= " EU + vmzzjlau—zm’l}aym dx for all v € V,

where we used in (*) an interchange of differentiation and integration followed by application

of the chain rule. By using the Gauss (divergence) theorem we get

or i 9 OF
0= [ ——vdx— v
~/Q au vax /Q mz=l aTm 8uﬂrm vdx * /BQ <vv b’ n>Rd vdx

" / (V' =V - Vgul, v)gs dx + / (VvuF, nge vdx (2.9)
Q o0

holding for all test functions v € V. Since every test function fulfills v = 0 on 92, the boundary
integral vanishes and the proof is completed. m

It is clear that (2.8) holds for an arbitrary test function only if V, /' — V - Vy,, vanishes.
This assertion is included in the well-known theorem; see [5, 36, 88] for example. Therefore,

u €U is a stationary point of the Gateaux-differentiable functional J (2.3) if
Vb =V - Vg, k' =0on Q. (2.10)

By applying Theorem 2.2.1 (2.10) is then a necessary condition for a (local) minimiser of (2.1).
Typically d > 1 and (2.10) leads to a (partial) differential equation, known as the Fuler-
Lagrange equation. Together with boundary conditions, e.g. described by U, we are faced
with a boundary value problem with the minimisation problem in (2.1) called its variational
formulation [5, 36, 88]. If the boundary conditions are imposed explicitly on a solution space
U as in Lemma 2.2.1, they are called essential condition. If, in contrast, boundary conditions
are not given explicitly in the definition of U, we are dealing with natural conditions. These
conditions depend on the general functional [J or, to be exact, on its integrand /. For an

illustration we recall (2.9). In its context we discussed the circumstances under which
/ (Veut,n)pavdx =0 (2.11)
o9
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holds when using the restricted spaces & and V. However, the same equality can be achieved
when using the general spaces U and V, for instance with a boundary condition on a part of
the boundary only or even without any boundary condition.

In summary every solution «* € U of the general minimisation problem (2.1) with a Gateaux-
differentiable functional J as given by (2.3) is a solution of the boundary value problem con-

sisting of the Euler-Lagrange equation
Vub' =V - Vg, '=00n

subject to boundary conditions which can be either the essential type (when incorporated in

the definition of the solution space U) or natural type
(Veut,n)ga = 0 on 90Q.
Here, n=(n4, ..., nq) denotes the outer normal unit vector of Q.

Example 2.2.1 Letd =2, Q= [0,1%, ¥ = |Vu.|2 where uw = u(x). The variational formula-
tion of
min/ |Vu|? dx
v Ja

is equivalent to the boundary value problem given by

—Au=0 on
ou
a—n——OonaQ.

Example 2.2.2 Letd =2, Q = [0,1]?, I = |Vu| where u = u(x). The variational formulation
of
min / |Vu| dx
u S Q

is equivalent to the boundary value problem given by

Vu
-V:-—=0 Q
\Y% V| on
du
—_—= on0.
o 0 on

2.3 Functions of bounded variation
Let © be a bounded open subset of R? and let « € L(€). Define the total variation of u as

[ 104 =sup{ [ uV- il 0 = (o1, 00) € GORY!
Q Q
and ||¢i||lp~ < 1fori=1,...d}, (2.12)

d
where V.o = 37 %(x), dx is the Lebesgue measure? and C§ (€2, RY) is the space of continuously

1=
differentiable functions with compact support in 2.

2In Euclidean space, the standard way to assign a measure (length, area or volume) to a given subset is
through the Lebesgue measure. Hence, sets with finite Lebesgue measure and called Lebesgue measurable. In
real analysis, this measure is used to define Lebesgue integration.

12



As described in [55] for a particular and interesting case of u € C!(2, R%), integration by

parts gives

d du
uVopdx=— [ Y —pidx (2.13)
Q q i=10;

for every ¢ € C§(Q,R%)? and

/QIDUI=/Q|VUIdX- (2.14)

A function u € L*(R) is said to have bounded variation in Q if [, |Du| < co. We define
BV(Q) as the space of all functions in L!(2) with bounded variation.

Example 2.3.1 The following functions f1, f2 and f3 defined by

f1(z) = sinz, (2.15)

1/4, for z € [0,7/8)
) 1/2, for x € [n/8,m/4)
f2(z) = 3/4, forx € [n/4,37/8) ’
1, forxz € [3n/8,7/2]

(2.16)

3@ ==, (2.17)

belong to BV (Q) with Q = [0, 7/2] and have the same total variation equal to one. The function

f4 defined by
[0, fore=0
f4(w) ~ { sin 1/;1;, fo'r T € (0,0,) with a > 0

has infinite total variation and does not belong to BV (Q) with Q = [0,a] for all a > 0.

(2.18)

048 0-5
e
0.6
= I 0
0.4
/ 05
0.2 =1
—f2
—f3 -1
0
0 0.5 1 1.5 0 0.5 1 1.5
0<x<m/2 0<x<m/2

Figure 2.1: Left: three bounded variation functions with the same total variation equal to one. Right:
a function with infinite total variation.

We shall conclude this subsection by giving the coarea formula.
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Theorem 2.3.1 (Coarea formula). Let Q C R? be an open set and let w € BV (Q). Let
Ly ={x € Q| u(x) <A} be the level domain. Then

/ \Du’:/ Per(Lx, Q)d\,
Q —o0

where Per(Ly, ) = fQ |Dyr.| is the perimeter of Ly in Q and xLy is a characteristic (or

indicator) function of Ly.

Proof. The proof could be found in [55]. m

2.4 Ill-posed inverse problems and regularisation

Ill-posed inverse problems are formulated and solved on a daily basis in several areas such
as astrophysics, geophysics, and in particular image processing. A simple way to visualize an
inverse problem is to imagine that we are given a black box and we wish to find out its contents.
We are not allowed to open it but we are allowed to carry out any experiments for output data
to find the unknown input creating this data. In inverse problems we call the unknown input
as the solution or model and the results of an experiment as the data. The experiment itself
is referred as the forward modelling. Usually an experiment cannot guarantee to determine a
unique solution, i.e. there could be more than one solution which would produce the same data.
In order to select the most reasonable solution, we need to impose a constraint which is known
mathematically as regularisation. Regularisation produces a solution satisfying some specific
criteria using priori information and penalises unwanted solutions.

In mathematics we have a classical definition of an ill-posed problem. According to the
famous French mathematician Hadamard (1902) a problem is ull-posed if one of the following

conditions does not hold

e the solution exists
e the solution is unique

e the solution depends continuously on the data (i.e. a small change in the data does not

lead to a large change in the solution)

and is well-posed if all conditions are satisfied. However, Hadamard did not deal with any
numerical solutions of ill-posed problems as he believed that the ill-posedness arose from an
incorrect physical representation of the problem. In 1963 the Russian mathematician Andrei
N. Tikhonov introduced the foundations of the theory of ill-posed problem solutions and he
developed the concept of regularisation which was based on an approximation of an ill-posed

problem by a number of well-posed problems.

Example 2.4.1 Let'H be a Hilbert space, let m(t) € H be the model and letd = (dy,...,dy)" €

RN be a vector of the measured data. Suppose that the relation between m and d is given by

14



the Fredholm integral equation of the first kind as follows:
d; = / K(si;t)m(t)dt + € (2.19)
D

where K (s;t) is a smooth kernel (i.e. the kernel does not posses singularities), ¢; is the mea-
surement noise assumed to be Gaussian with mean 0 and standard deviation o, and D is the
domain of integration. Our goal is to find the model m from the given noisy data. By some

quadrature rule:
M
/ K(sj;tym(t)dt & Y wiK (s, t:)m(t:) Aty (2.20)
D i=1
it leads to the discrete system
d=Au+e¢ (2.21)
where Aji = w;iK(s;,t;)At; and u = m(t;) € RM. We can see that the matriz A : RM — RN
is typically ill-conditioned since the data contain noise. Therefore a regularisation method is
needed for the solution of the problem.

Let us try to select from all possible solutions the one which is the simplest in some sense,

for example, it has the smallest Euclidean norm:
R(u) = [[uf* =u'u (2.22)
Thus we have the following problem: find u that minimises R(u) subject to the constraint

N N
&2 0
D(u) = [[d - Aul? = ||df = Y& = o*3" <?£> = o?N ="1. (2.23)

i=1 i=1

We then can transform this problem into an optimisation problem:
min {J,(u) = R(u) + o (D(u) = 1)} (2.24)

and use a standard optimisation method to solve this problem for some regularisation parameter
a > 0. Here the function J,(u) is referred to as the global objective function, D is the misfit
function or fitting term, and R is known as the regulariser or the model objective function.
The parameter o determines how well the solution should fit the data. As o becomes large the

solution fits less well to the data and as « becomes very small, the solution starts to fit noise.

2.5 Discrete PDEs and notation

In several situations one has to solve a discrete version of a continuous partial differential
equation (PDE), because the equation cannot be solved analytically or because data is only
known at a certain number of discrete locations. A continuous linear boundary value problem
in d-dimensions is denoted by
L%u(x) = f(x) for x = (x1,...,2q4) € Q, (2.25)
Llu(x) = ff(x) for x = (z1,...,24) €T, (2.26)

where Q is a bounded and open domain in R? and I' = 9Q is its boundary.
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Example 2.5.1 One such ezample would be Poisson’s equation in a two-dimensional problem
with Dirichlet boundary conditions
—Au(x) = f%x) inQ, (2.27)
u(x) = fl(x) onT. (2.28)
Similarly a continuous nonlinear boundary value problem is defined by
N%(x) = f9(x) for x = (z1,...,74) € Q, (2.29)
Lu(x) = fF(x) for x = (z1,...,zq4) €T. (2.30)

Example 2.5.2 An example of nonlinear boundary value problems resulting from the well-

known variational image denoising model by Rudin, Osher and Fatemi [118] is given as follows:

—aV - _V_u(zc)— u(x) = z(x) in
v ( Nu(x)|2+ﬂ)+ (x) = =(x) in Q. (2:31)
82(;:() =0 on T, (2.32)

where «, 3 > 0. Here 2(x) is the noisy image and u(x) is the true image which we wish to

recover.

There are various ways that a continuous PDE can be discretised, for example using the
finite element method or the finite volume method. For image registration purposes, an image
domain 2 C R? is usually rectangular and the values of f are known at uniformly distributed
points in the domain. Therefore, the natural choice for discretising the domain is to use the
finite difference method.

Let us consider only two-dimensional problems because it is easy to extend to higher di-
mensions. Assuming that Q = (a,b) X (¢, d) is rectangular we impose a cartesian grid (or mesh)
with grid spacing h = (b—a)/n in z-direction and k = (d —¢)/m in y-direction. In the so-called
vertex-centered discretisation grid points are placed at the vertices of the mesh so that there
are (n+1) x (m+1) grid points including points on the boundary with grid point (7, j) located
at (z;,9;) = (a+ih,b+ jk) for 0 <i <nand 0 < j < m. In the so-called cell-centered discreti-
sation grid points are placed at the centre of the grid cells so that there are n x m grid points
(none lying on the boundary) and grid point (i, ) is located at (z;,y;) = (a+ 252h, c+ %k)
for 1 <i < nand1 < j < m. The interior of the discrete grid is denoted by Q" and the
boundary by I'* or 90", Figure 2.2 shows examples of vertex- and cell-centered discretisations
of a square domain.

Once the grid is in place the operators in the PDE can be approximated locally using

Taylor’s series expansion, e.g.

Ou h? 9%u h3 B3u ht 04u
u(@+hy) = w(z,y) +ha=(2,y) + 55 (2,9) + 5y 55 (@, W+ raaleny)  (233)
and
h? 9w h3 3w h* 94

du
-—h — Al _ w ) — s c 34
u(@ —h,y) = ulz,y) —ho—(2,9) + 5 55 (z,9) 3T 923 (@9) + 754 (e—,y)  (2.34)
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Figure 2.2: Vertex-centered (left) and cell-centered (right) discretisations of a square domain. Filled
circles indicate grid points within the square domain.

where z—h < e <z < €4 < z+h. The operator % at the grid point (4, j) can be approximated

in 3 ways, the first order forward and backward difference operators defined respectively by

5:(}111)1',]' _ (U)i+1,jh— (u)i and 55(5%1‘ _ (Wi 'h(“)i—lJ (2.35)

or the second order central difference approximation

Oo(u)ig  (wisr,j — (u)ica,y
- s 57 ; (2.36)

where (u); ; = u(w;,y;) is the value of u at the grid point (¢, j). Approximations to higher order

derivatives can be constructed in a similar way for example a second order approximation to

-g—i—% at (i,7) is given by
(Wit1 = 2(;});,3' + Wity (2.37)

The discrete analogue of the continuous problem on the discrete domain is denoted by

Lun(x) = f2(x)  forx=(z1,...,24) € O, (2.38)

Liup(x) = ff(x) for x = (z1,...,2q4) € Iy, (2.39)

where uy, is a grid function on Q, UT,, L} and L] are operators on the space of grid functions
and f;’ and f] are discrete representations of f and f'. Usually the boundary condition can

be eliminated and (2.38) and (2.39) can be written simply as
Lyup = fh. (2.40)

Example 2.5.3 Consider Poisson’s equation on the unit square with Dirichlet boundary con-
dition

Lyup(x) = f(x) =0 forx=(z1,...,24) € [h.
Assume that the domain is discretised using a vertez-centered grid with h = k = 1/n then at
interior grid points not adjacent to the boundary a second order central difference approzimation

is given by

4(“)71.j = (u)i+1.j = (u)ifl.j — (u)i.j—H - (u)i.j—l = (fh,)i.j- (2.41)

(L/Luh,)ij = h2
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At point adjacent to the right boundary, for example, (u),41,; will be replaced by the boundary
value (fi)n ;, i-e.

(Lhuh)n.j = 4(”)71‘j - (u)nfl.j ;2(u)n.j+l . (u)n,j—l _ (fh)n,,j~ (242)

Similarly considerations give Lyup at other points adjacent to the boundary, therefore we have

Lyuyp, = fn where uy, is a grid function on the interior grid points only.

Remark 2.5.1 For image registration purposes and other image processing applications, Q rep-
resents an image domain; see §3.1 for the definition of an image. There are different approaches
to the discretisation and choice of the image domain Q2. Some authors, e.g. [83, 52, 58], use
a vertex rather than a cell-centered discretisation of Q. Also the choice of Q is somewhat ar-
bitrary. However, there are two common choices. The first is to take Q to be the unit square
whatever the size of the image, i.e. Q = [0,1] x [0,1] and (h,k) = (1/n,1/m). The other is
to take € to be such that the grid spacing in each direction is 1, e.g. if the image is of size
512 x 256 then Q@ = [0,512] x [0,256]. For simplicity, the unit square Q = [0,1] x [0, 1] with the
grid spacing h = k = 1/n is adopted and used in all numerical sections throughout this thesis
wn order to be consistent with the majority of papers that have been seen on this subject, e.g.
[47, 57, 62, 76, 83, 91]. Note that if Q) is the unit square then the value of h is related to image
resolution. For example, the value of h in the 256 x 256 case will be half what it was in the
128 x 128 case and the discrete image of the 256 x 256 case will be closer to the original or

continuous image than that of the 128 x 128 case.

2.5.1 Stencil notation

Let p € Z? define a grid point on a d-dimensional grid G. In stencil notation the left hand side
of the discrete equation Lpun = fi, at p is defined by
(Lnun)p = D Lpg(un)prg- (2.43)
qeZ
The stencil entry L, , is non-zero when Ljuy, at grid point p € G is dependant on the value of
up, at the grip point p+ g, the structure of an operator L is defined as all ¢ such that there exists
a p € G such that L, , is non-zero and is denoted by S;. The stencil for L; at p is displayed

as an array containing all non-zero L, 4, e.g. a typical stencil in 2 dimensions has the form

0 Lp.(().l) 0
Lp(—10) Lp00) Lp10
Lip,0,-1) 0

Example 2.5.4 Returning to Example 2.5.8 we saw at grid points not adjacent the boundary

we can write

1
Lywn(z,y) =15 | =1 4 =1 fun(z,9) = fulz,y) (2.44)
' 0 -1 0
and, for example, at points adjacent to the right boundary
1 0 -1 0
Lpun (1'7 y) = h—2 =l 4 0 Uh,(l‘,y) = fh (Ivy)v (245)
' 0 -1 0
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where wy, now includes points on the right boundary.

2.5.2 Matrix notation

It may sometimes also be useful to write Lpu, = f, in terms of matrix notation. This can
be done by stacking the grid function u;, into a vector u, with the so-called lexicographical
ordering; up is stacked along rows of the grid starting at the bottom left point and ending at
the top right. The right hand side vector is stacked in a similar manner into a vector f,. The

discrete linear equation can then be written as Apuy, = f},; see §2.6.6.

Example 2.5.5 In the example of Poisson’s equation considered previously we see that in a
general row L of Ay one has a;; = 4/h? and a1 = aj141 = —1/h?% with all other entries
in the row zero, with appropriate modifications for boundary points. h2Ay is therefore the
(n —1) x (n —1) block tri-diagonal matriz with blocks of size (n — 1) x (n — 1) where the off
diagonal blocks are the negative identity and the diagonal blocks are tridiagonal with 4 on the

diagonal and —1 on the off diagonals.

2.5.3 Boundary conditions

So far we have only mentioned Dirichlet boundary conditions on vertex-centered grids, we briefly

now describe how to deal with Neumann boundary conditions and cell-centered grids.

Neumann boundary conditions for vertex-centered grids

Let us assume that we have a Neumann boundary condition g—’;(r,y) = f(z,y) on the right
boundary of a vertex centered grid. We assume that the discrete equation Liup(z,y) = fi*(z,y)
extends to the points on the right boundary. The equation at these grid points will involve ghost
grid points outside the domain. These ghost grid points can be eliminated using the Neumann

boundary condition

(Wnt1j — (Wa-1,5 _ )
oh = (fr)n‘y (246)

Example 2.5.6 If we take the example of Poisson’s equation on the unit square then at the

right boundary, we have

(Lh“h)n-j _ 4(“)77.]' - 2(1L)77~1.J' h_2('1lr)n.j+1 - ('zlv)‘n‘jfl _ (f}?)”d n %(f}{)n‘j‘ (247)

Neumann boundary conditions for cell-centered grids

In the case of a cell-centered grid we have no points on the boundary, so in general the equation
at interior points which are adjacent to the boundary will involve ghost points outside of the
domain, which need to be eliminated using the boundary condition. If we have a Neumann
boundary condition at this right boundary, for example, we can write it as

w = (M) (2.48)
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2.5.4 Nonlinear equations

Nonlinear PDEs are treated in much the same way as linear equations, the various operators
in the equation are approximated locally on a discrete grid using the finite difference method.

The discrete nonlinear equation is denoted by

Ntu(x) = f(x)  for x= (z1,...,24) € U, (2.49)

Liu(x) = f(x) for x = (z1,...,24) € [ (2.50)

Similarly the boundary conditions are usually eliminated and then the discrete nonlinear equa-

tion can be written simply as
Np(un) = fa (2.51)

It may be possible to write the nonlinear equation in a matrix notation, e.g. Ay, (uz)uy, = fj.

For more on finite difference methods for PDEs see for example [103, 128].

2.6 Basic iterative methods

This section introduces a class of iterative methods for solving a general linear system of equa-

tions
Ax =Db, (2.52)

where x € RY and A is a matrix of size N x N. These iterative methods start with some initial

approximation x(°) and then generate a sequence {x(’“)}zczl via the relation
x®) = Tx*-1 4 ¢, (2.53)

The relation matrix T and the vector ¢ come from a splitting A = M — N of the matrix A

where M is nonsingular. With this splitting the original system (2.52) can then be written as
Ax=M-N)x=b
or
x=M'N)x+M'b=Tx+c (2.54)

where T = M~'N and ¢ = M 'b.
Each application of an iterative methods which updates x*~1 to x(*) is known as an

iteration or a relaxation sweep.

2.6.1 Jacobi method

The Jacobi method consists of solving the ith equation of Ax = b for z; to get

N
—Qi;T; b; <
$i:Z<M>+—forz:1,...,N. (2.55)

° g Qiq

=1

J#i



Then given x(*~1) for £ > 1, x*) is generated by

N (k—1)
—Q;; T b, 5
xf.k)=§:(J—J)'f‘fforl:l""vN' (2.56)

P @i A5
ge=1
J#i
Note that we require a;; # 0 for each i = 1, ..., N. If one or more a;; = 0 and the system

is nonsingular then a reordering can be performed so that no a;; equals 0. To write Ax = b
in the form x = Tx + ¢ we write A as A = D — L — U where D is a diagonal matrix whose
diagonal is the same as that of A, —L is the strictly lower triangle part of A and —U is the

strictly upper triangle part of A. Therefore, we have
Ax=(D-L-U)x=b

or
x=DYL+U)x+D b, (2.57)
i.e. we use matrix splitting A = M — N where M =D and N = L + U. The matrix form of

the Jacobi method is then given by

x®) = T,x*-1 4 ¢, (2.58)
where T; = D"Y(L + U) and ¢; = D !b.
Algorithm for Jacobi method

The Jacobi algorithm for finding an approximate solution to Ax = b given an initial approxi-
mation x(?) is given below (Algorithm 2.6.1). A maximum number of iterations IM AX to be

performed and a tolerance ¢ > 0 to terminate the algorithm must be specified.
Algorithm 2.6.1 (Jacobi Method)

[x] — JAC(A,b, 20 IMAX, ¢)

1. Set k=1, N = size(x(o)), done = False
2. While done = False do steps 3-4
3. Fori=1,..., N,

. N [ apk=1) ’
e Set mf =% (—”af )+n—”—

i=1

J#i
4. If [|b — Ax™|]z < € OR [|x®) —x* V||, < ¢ OR k > IMAX,

o Set done = True and x = x®
else

eSetk=k+1
end

Weighted Jacobi method

In the weighted Jacobi method, given the current approximation x(*~1) the new Jacobi steps

are computed using

® _ v —ayy bi

—(k LV Radi) 7 5

& = E (# +a—“forz:1,....,N (2.59)
j=1 )
i
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as before, however X*) is now just an intermediate value. The new approximation x(*) is given

by
%) = (1 — w)xl®—1) 4 xle) (2.60)

where 0 < w < 2 is a weighted factor to be chosen. Of course when w = 1 we have the original

Jacobi method. In matrix form the weighted Jacobi method is given by
x® = (1 =)+ wTy)x*Y 4 wey (2.61)

which is equivalent to
¥ = Ty x4 ey, (2:62)

where T, = (1 —w)I+wD YL+ U) and c;, = wM!b.

2.6.2 Gauss-Seidel method

When computing xgk) in the Jacobi method we have already computed :cgk), ng)’ xgli)l
which should be better approximations to zi, 2, ..., z;—1 than xﬁ’“‘”, xékwl), . 1:?:1).
Therefore the Jacobi method should be improved if we rewrite the equation for :vz(-k) as
i1 N
rgm = s fori=1,...,N. (2.63)
Qg
This is known as the Gauss-Seidel method. Rewriting the above equation as
i—1 N
au‘ISk) + Zaiﬂ;'k) _ _ Z aijl'g-k;l) +b;
j=1 j=i+1
leads to the matrix form of the Gauss-Seidel method as
(D - L)x® = Ux*V 1 b,
or equivalently
x®) = T(;Sx(k‘l) + cgs (2.64)

where Tgs = (D—L)"'U and cgs = (D— L) 'b. Gauss-Seidel is therefore based on a matrix
splitting with M =D — L and N = U.

Algorithm for Gauss-Seidel method

The algorithm for the Gauss-Seidel method is the same as the algorithmn for the Jacobi method,

except that step 3 is replaced by (2.63).

2.6.3 SOR method

; ; ; k—1 ‘ . —(k
In the successive over relaxation (SOR) method given 357( ) the intermediate values 15 ) are

computed using Gauss-Seidel and these values are used to evaluate x*) as follows: A,

x®) = (1 — w)x®=1 4 oz (2.65)
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where w > 0 is known as the relaxation parameter. If 0 < w < 1 this iterative scheme is called
under-relaxation and is used to obtain convergence when the Gauss-Seidel does not converge.
If w > 11it is called over-relaxation and it is used to accelerate convergence of the system which

are converge by the Gauss-Seidel method. SOR is based on the matrix splitting
wA = (D —wL) — (wU + (1 —w)D)
and can be defined by the recurrence
x® = Tsorx® Y + csop (2.66)

where Tsor = (D —wL) 1 (wU + (1 —w)D) and csor = w(D — wL) 'b.

2.6.4 Block methods

Assume that the vector x is partitioned into several disjoint sub-vectors (not necessarily of
equal size)

X = (xl’x2)"-7xs)T'

Then Ax = b can be written in the block form as follows:

A A o0 Ay X1 b,
Az A ... Ay Xo bo
) D . =t - (2.67)
Asl ASZ e As.s Xs bs
A —r’
A x b

where the block A, is of size N, x N, (N, being the size of x,) and the vector b, is of size

Np. Thus, for any vector x partitioned as in (2.67),
(Ax)i =) Aix;
j=1

in which (y); denotes the i-th component of the vector 7 according to the above partitioning.
Assuming that the diagonal blocks are nonsingular the Jacobi and Gauss-Seidel methods can
easily extended to the block level. In the block Jacobi method for i =1, ..., s, x; is updated

as follows:

N
X1(~k) = A;l Z — Aijxj(»k_l) +b; |. (268)
j=1
i
Similarly in the block Gauss-Seidel method x; is updated as
i—1 s
Tl DU e L 26
j=1 j=i+1

If we define Dg, Ug and Lp for the splitting A = Dg — L — Up as block analogues of

D, UandL,ie.
Ay
Ay
DB = . )
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0 0 A12 - Als
ARsi D 0 ... A,
UB = = . . . I} LB == 5 . )

Ag Ay ... 0 0

then (2.68) can be re-written as
xf-k) :A;il((LB+UB)X(k_1))i+A;-1bi7 1=1,...,s
which leads to the block Jacobi method described by the recurrence
x® =D (Lp + Up)x* VY 4+ D3'b (2.70)

and similarly Block Gauss-Seidel by the recurrence

x® = (Dp - Lp) 'Upx*~V + (Dp — Lz) 'b. (2.71)

Note that an important difference between block relaxation schemes and point relaxation
schemes is that now A;; is a matrix instead of a scalar a;;. As a result, solving linear sys-
tem with A;; in (2.68) and (2.69) for updating x; may be much more expensive because the
matrix inversion of the diagonal block A;; is required instead of the inverse of the scalar a;;.
Obviously the larger the vectors x; are, the more expensive each step of the methods is likely to
be, on the other hand the payoff may be faster convergence of the iterative method. Neverthe-
less, the number of iterations required to achieve convergence often decreases rapidly because

they update the whole set of components at each time [121].

2.6.5 Convergence

The methods considered in this section all define a sequence of iterates x*) = Tx*~1 4 ¢,
which upon convergence produce a solution of the original system Ax = b. In the following it
is shown that the iteration x*) = Tx*~1 4 ¢ converges if and only if the spectral radius of T

is less than one. First the definition of a convergence matrix is required.

Definition 2.6.1 (Convergence Matriz) A square matriz A is said to be convergent z'fklim Ak =
oo

0.
The following theorem, the proof of which can be found in [121], is also required.

Theorem 2.6.1 A matriz A is convergent if and only if p(A) < 1, where p(A) is the spectral
radius of A.

Finally we also need the following theorem.

Theorem 2.6.2 For any initial guess solution x°) € RN the sequence {x(k’)}:ozl defined by
x®) = Tx*Y 4 ¢ for all k > 1 converges to the unique solution of x = Tx + ¢ if and only if

p(T) < 1.
Below some useful theorems on convergence are stated without proofs.
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Theorem 2.6.3 If a matriz A has positive diagonal entries and all other entries are negative

or zero then only one of the following statements holds
1. 0< p(Tas) < p(Ty) < 1
2. 1< p(Ty) < p(Tgs)
8. p(Ty)=p(Tgs) =0
4. p(Ty) =p(Tgs) =1
where T ; and Tgg are the iteration matrices for Jacobi and Gauss-Seidel respectively.

This theorem implies that for such matrices if one of Jacobi or Gauss-Seidel converges then
so does the other and similarly divergence of one implies divergence of the other. If both
converge then Gauss-Seidel converges faster then Jacobi. For the next theorems we need to

define a regular splitting of A.

Definition 2.6.2 (Regular Splitting) A = M — N s a reqular splitting of A if M is nonsin-

gular and M~ and N are nonnegative.

Theorem 2.6.4 If M and N are regular splitting of A and T = M~IN then p(T) < 1 if and

only if A is nonsingular and A= is nonnegative.

Theorem 2.6.5 If all the diagonal elements of A are non-zero then p(Tsor) > |w — 1| and

hence SOR converge only when 0 < w < 2.

Theorem 2.6.6 If A is positive definite, i.e. x' Ax > 0 for all X, and 0 < w < 2 then the

SOR method converge for any initial quess x(0).

Theorem 2.6.7 If A is positive definite and tri-diagonal then p(Tgs) = p(T;)? and the op-

timal w for SOR is
2

14 +/1—p(T)?

0 =
for which p(Tsor) = w — 1.

2.6.6 Numerical implementation

If we have a system of equations Au = f arising from the discretisation of a PDE using a finite
difference method on a rectangular domain then the matrix A is likely to be well structured and
sparse, which means storage of A will not usually be required. The updating of each entry of u
will typically involve just a few other entries. To illustrate this the numerical implementation
of Jacobi and Gauss-Seidel methods is outlined for the case of Poisson’s equation with Dirichlet
boundary conditions on the unit square introduced in §2.6. For ease of presentation a grid

function will be used.
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Figure 2.3: Red-Black ordering of grid points: red points are shown as starts and black are shown as

circles.

Jacobi method

In the weighted Jacobi method if a grid point (7, j) is not adjacent to the boundary then (u); ;

is updated as follows:

i B h2 fii + (u T(kfl) + (u E/ifl.)%_ i (k—1) + (k::l)
0 = (L~ ) 4o | DN Wty # Wag + Whgr Wyt | 1 7y
where for example (u)l(f;l]) is the entry of the previous approximation (u")*~1) corresponding

to the grid point (i 4+ 1,7). For points adjacent to the boundary appropriate modifications to

(2.72) should be made.

Gauss-Seidel method

Unlike in the Jacobi method the order in which entries of u” are updated is significant when
using the Gauss-Seidel method. Two different ordering schemes (corresponding to two different

ways of stacking u" into a vector) for Gauss-Seidel are outlined below.

Lexicographic ordering

A lexicographic ordering of the grid points involves ordering the points in increasing order from
left to right and up the rows so that the approximation at the bottom left point (1, 1) is updated
first followed by the approximation at the point (2,1) and so on with the approximation at the
top right point (n — 1,m — 1) updated last. A Gauss-Seidel scheme used with lexicographic
ordering is denoted GS-LEX and the entry u” corresponding to grid point (i,7) (not adjacent

to the boundary) is updated as follows:

2(f). . (k—1) (k+1) 2\ (k—1) (k+1)
(U),(k,) _ R2(f)ig + (W)izr; + (U)Zl'j + (w)ii ey + (w)iy g . (2.73)

Note that because of the lexicographic ordering entries corresponding to points to the left of
and below (i, j) have already been updated whereas entries corresponding to points to the right

of and above (i, 7) have not.

Red-Black ordering

When a red-black ordering of the grid points is used the grid is coloured in a checkerboard

fashion as shown in Figure 2.3, entries of u” corresponding to the red points are updated first
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followed by entries of u corresponding to the black points. A Gauss-Seidel scheme with red-
black ordering of the grid points is denoted GS-RB. Entries of «" corresponding to red grid
points are updated by

R+ @8 + @Y + @ + Y
W = (g + Wiy +( )141.J (w)ijp1 + ()i (2.71)

and then entries corresponding to black grid points are updated by

k k k K
w® = h2(f)ig + (u’)z(‘+)1‘j + (u)fe)l.j + (u)z('.j)+l + (u)f'.j)fl
it = 5 .

(2.75)

Because a five point approximation to the PDE is being used, the updating of each entry
associated with a red point involves only entries associated to black points and vice-versa.
This means that after each sweep of GS-RB the residual r* = f"* — L"u" is zero at the black
points. When each red point is updated using only black points and vice-versa, GS-RB has an
advantage over GS-LEX in terms of parallel computing since all the entries of u” corresponding
to red points can be computed in parallel followed by all entries of 4" correspondingly to black
points. Note that because points are updated in different orders, one step of GS-LEX will not

produce an identical result to one step of GS-RB with the same intimal guess.

Line relaxation

If «" is stacked into a vector u lexicographically and the vector u is divided into (n — 1)
subvectors where each of them is of size (n— 1), then the subvector w; will contain all the values
of u" corresponding to row [ of the grid, hence performing a block Jacobi or Gauss-Seidel
iteration on this block system is equivalent to relaxing a whole row of the grid collectively, this

is known as z-line relaxation. For example, the Gauss-Seidel updating of u; is done as follows:
(w)® = A R+ ()™ + (wg0) ), (2.76)

where Ay is a tri-diagonal matrix with 4 on the diagonal and —1 on the off diagonals. If
u" is stacked along columns of the grid and the resulting vector partitioned as above the
block relaxation methods relax whole columns of the grid collectively, this is known as y-line
relaxation. A sweep of an alternating line relaxation counsists of an z-line relaxation sweep
followed by a y-line relaxation sweep. A line analogue of the red-black pointwise relaxation
for line Gauss-Seidel is the zebra line relaxation; here either rows or columns of the grid are
coloured alternately white and black, then the white lines are relaxed followed by the black
lines. In most cases the approximation at a point on a white line will depend only on other
points on that line and points on the adjacent black lines. Hence a parallel implementation of

zebra line Gauss-Seidel will be possible.

2.6.7 Local nonlinear relaxation methods

If we have a discrete nonlinear PDE N’ (u”) = f" on a grid ), which has in total N grid points

then we have in general a system of nonlinear equations:

Wilui, uz,...,un) =0, i=1,2,...,N. (2.77)
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Analogous to the linear case a nonlinear Jacobi iteration involves solving the ith equation for
the +h unknown

k k k k k k
Wil u® a0 By g (2.78)

where k denotes the current approximation, k£ + 1 denotes the new approximation and we start

with some initial guess «(%). Similarly a nonlinear Gauss-Seidel iteration is given by

Wi(ugkﬂ), uék“), e ,ugﬁl),uf-kﬂ), uf-f_)l, . ug\,f)) =0, i=12,...,N, (2.79)
where of course uy, ..., u;—1 are known before w; is updated. Both these methods will involve

solving a nonlinear equation in one unknown to update each wu;.
For finding the root « of a scalar equation W (u) = 0, the standard Newton iteration is
defined by
w™tD) = o) _ W (™) /W (W™) m=1,2,...,

where 49 is the initial iterate and W'(a) # 0. Using this scheme to solve for ugkﬂ) in (2.78)

and (2.79), it follows that

k+1,
u(k+l<1vl+1) u£k+1,m) _ W?(ui il M))

i A (k+Lm),
Clauf™)
where "
C(u(-k-H’m)) _ 3W1(u£ + ,m))
' 81/,1'
(k+1,0) _ (k) . .1 g .
and u, = w,’ is the the initial guess. Here the dependence on w; (j # i) has been

suppressed for notational convenience. For the case (2.79) we imply, for instance, that

km)y __ k+1 k+1 k+1 k,m k k
Wi(u( )):Wi(u(l ),ué ),...,ug_l ),ul(- 7),u1(-+)1,...,u§\,)).

(3

We note that using one step of Newton’s method, it yields

o
W0 = o _ Walus ) (2.80)

i =g T T T Ty B

Cu)
where

_ W)
- (3%1' '
The resulting iteration are known as Jacobi-Newton and Gauss-Seidel-Newton. Refer to [21]
and [134, p. 151].

In the case where we have a semi-linear system of equations so that at each grid point we

Cu®) (2.81)

have

ajuy +...+ayun + W,-(ul,u2, w9 8 ,UN) =0, (282)

where W is a nonlinear equation, the Jacobi-Newton iteration is performed by substituting in

ugk’) for j # 4 and then replacing W;(u; ¥*V)) by

lVi(uEk)) = C(’LLgk))(u(.k+l) _ (u(.k))_

3
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u; is then updated by

ugk“) = —a—i T ({(ul(k)) [(alugk) + s ai,luf-li)l + az‘+1'u1(-i)1 =+ s T aNug\I;))
W) - )] (2.83)
Alternatively we can simply substitute uf-k) into W; as follows:
uz(-kH) = —& [(aluﬁk) + et aqﬁ;wz(-li)l + aqt+1'u7(¢i)1 + ... aNug\]f))
+W7-(ugk)7...,uf-k),.‘.,ul()k))}, (2.84)

which is known as the Jacobi-Picard iteration. A Gauss-Seidel-Picard iteration can be defined

in a similar way.

Remark 2.6.1 As in the case of linear PDEs, we expect that a discrete nonlinear PDE at a
particular point will be defined in terms of w at that grid point and a small number of neigh-

bouring points.

2.7 Multigrid methods

Multigrid (MG) methods, first developed by A. Brandt in the 1970s, have been proven to be fast
efficient solvers for a wide range of linear and nonlinear elliptic PDEs discretised on structured
and unstructured grids in several applications. The basic idea of a MG method is to smooth
high frequency components of the error of the solution in the Fourier modes by performing a
few steps with a so-called smoother (an iterative relaxation technique like the ones discussed in
the previous section) such that a smooth error term can be well represented and approximated
on a coarser grid. After a linear or nonlinear residual equation has been solved accurately on
the coarse grid, a coarse-grid correction is interpolated back to the fine grid and used to correct
the fine grid approximation. Finally, the smoother is performed again in order to remove some
new high frequency components of the error introduced by the interpolation. Recursive use of
the idea leads to a MG method; see §2.7.5.

In the following sections, the basic principles including the main components of MG methods

are briefly described.

2.7.1 Basic principles of multigrid methods

The two basic principles of MG methods are error smoothing and coarse-grid correction.

Error smoothing

Several basic relaxation techniques are slow to converge like the ones discussed in the previous
section when they are used to solve discrete elliptic PDEs which are discretised on cartesian
grids. However they do (if applied appropriately) posses what is known as the smoothing

property. In Fourier modes, these iterative techniques eliminate rapidly the high frequency
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components of the error of the solution but may not be effective at removing the low frequency
components of the error (leading to slow convergence for being stand-alone solvers). However,
a smooth quality can be well represented and approximated on a coarser grid, which leads to

the second principle on which MG methods are built.

Coarse-grid correction

Consider a linear system
Au=f. (2.85)

Let v be an approximation to the exact solution u. Then the error of the solution is defined
by:
e=u-—v. (2.86)

Applying A to both sides of (2.86) leads to the so-called residual or defect equation given by
Ae=A(u—v)=Au—Av=f—-Av=r. (2.87)

From here we see that if the residual equation (2.87) is solved exactly, then one can obtain u
through u = v + e. However, solving the residual equation (2.87) is as expensive as solving
the original equation (2.85). To tackle this problem we first replace A by an appropriate and
simpler approximation A in such a way that the approximation of the error € can be cheaply
computed and used to correct v, and then repeat the process until it reaches the convergence.

To illustrate precisely the main idea of MG methods, let us now focus on the linear system
Lyuy, = fy, resulting from an elliptic PDE on the fine grid Q" with grid spacing (h, k). Let
vy, be an approximation solution computed by performing a few steps with a smoother (pre-

smoothing step) on the fine-grid problem. Then, the residual equation is given by

Lyen = fr — Lpvy =4, (2.88)

where e, = uj, — vy, is the error of the solution, which should not be computed directly on the
fine grid. Since high frequency components of the error in pre-smoothing step have already
been removed by the smoother, we can transfer the following residual equation to the coarse

grid Qf with grid spacing (H, K) as follows
Lypen =1, — Lygey = 1:17‘/,, =TrH. (289)

Here Ly is assumed to be an appropriate approximation of L; on the coarse grid, which is
usually the original operator discretised on Q| and 1}/ and I}, are two transfer operators
capable to convert vectors between Q" and Q. After the residual equation system (2.89) on
the coarse grid have been solved exactly with a method of our choice, the coarse-grid correction
ey is then interpolated back to the fine grid one e; by the interpolation operator Il (i.e.
e = ./,h,eH) that can now be used for updating the approximated solution v, of the original

linear system on the fine grid by v;'*" = vj + ¢, (coarse-grid correction step). The last
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step for a MG method is to perform the smoother again to remove high frequency parts of the
interpolated error (post-smoothing step).
Overall the MG procedure, which is discussed above and also known as the two—grid cor-

rection scheme, can be summarised as follows
1. Pre-smoothing step:

¢ Solve approximately Lyun = f, by performing a few steps with a smoother to obtain

the approximation v;, on the fine grid Q"
2. Coarse-grid correction step:

¢ Compute the fine grid residual 7, = f5 — Ljvy, and transport to the coarse grid QF
by rg =1 ,5{ Th

¢ Solve accurately (or exactly) the residual equation Lyey = ry on the coarse grid
QH

¢ Interpolate the error from the coarse grid to the fine grid by e, = [% ey

¢ Correct the fine grid approximation by v, = v + ¢y,
3. Post-smoothing step:

¢ Solve approximately Lpup = fr with the initial guess v;, by performing a few steps

with the smoother on the fine grid Q"

Remark 2.7.1 A similar MG procedure can be used for a nonlinear system Npun = fn by

using the nonlinear residual equation, which is introduced later in §2.7.8.

Clearly this MG procedure will only be effective if the error e, can be well represented and
approximated on a coarser grid, i.e. it is smooth. The combination of iterative methods which
are slow to converge but nevertheless smooth the error, with coarse grid correction is the main
idea behind MG methods.

The next three subsections discuss more precisely what is meant by coarse grids, restriction

and interpolation operators, and smoothing properties.

2.7.2 Coarsening

MG methods are based on the use of coarse grids to accelerate iterative methods. This section
describes in more detail what is meant by a coarse grid. Here we assume that we have a
cartesian grid Q" with grid spacing (h, k) called the fine grid and construct a coarse grid Qff

with grid spacing (H, K).
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Figure 2.4: Fine and coarse grids in the vertex-centered case (left) and the cell-centered case (right).
Coarse grid lines are full, additional fine grid lines are dashed. Circles are fine grid points, stars are
coarse grid points in the cell-centered case and points which are both coarse and fine in the vertex
centered case.

Standard coarsening

Standard coarsening is the simplest and most frequent way to construct a coarse grid Q7 by
doubling the grid spacing in all directions, i.e. (H,K) = (2h,2k). In the case of a vertex-
centered grid, if Q" has (n + 1) x (m + 1) grid points including boundary points then Q will
have (n/2+1) x (m/241) grid points including boundary points and the coarse grid points will
be a subset of the set of the fine grid points. For example the coarse grid point (1,1) located at
(a+ 2h,c+ 2k) is the same as the fine grid point (2,2). On the other hand, for a cell-centered
discretisation, if the fine grid has n x m grid points then the coarse grid has n/2 x m/2 grid
points. It is different from the vertex-centered case that the coarse grid points will not coincide
with fine grid points; see Figure 2.4 for an example of fine and coarse vertex-centered and

cell-centered grids.

Other coarsening

Other types of coarsening aside from standard coarsening can be used, for example the grid
spacing can be doubled in just one direction e.g. (H,K) = (h,2k) this is known as semi-
coarsening. Semi-coarsening is used in anisotropic problems where pointwise smoothers smooth

the error in only one direction.

2.7.3 Transfer operators

As is well known, in addition to a smoother, transfer operators are also the main MG com-
ponents, which are used to transfer grid functions between different grids. Transferring grid
functions from a fine to a coarse grid is known as restriction. On the other hand, transferring
erid functions from a coarse to a fine grid is called interpolation or prolongation. In the following
we consider only the transfer operators for standard coarsening in the vertex- and cell-centered

cases.



Restriction for vertex-centered grids

The most obvious restriction operator is the so-called injection, which is defined in two dimen-

sions as follows:

vy = 1wy, (2.90)

where

(ve)ij = (vn)2i2;, (2.91)

i.e. the coarse grid function vy at a grid point (z,7) takes its value directly from the corre-

sponding fine grid value. We note that the stencil notation is given by
H
Lt =1 -

An alternative restriction operator is the so-called full weighting operator, which is defined by

VH = l,flvh (2-92)
where
1
(ve)ij = 6 [(vn)2i—1,2j—1 + (vn)2i—1,2j41 + (V) 2i41,2j—1 + (Vh)2i+1,2j+1
2 ((vn)2i2j—1 + (Vn)2i,25+1 + (Vn)2i—1,2j + (Vn)2i+1,25) + 4(Vn)2i.2;] , (2.93)
and the stencil is defined by
H
1 1 2 1
1 = w1242
6l121],

i.e. the value of the coarse grid function vy at a grid point (4, 7) is a nine point weighted average
of the value of the fine grid function at that point and the eight points surrounding it on the
fine grid. Another restriction operator is the so-called half-weighting operator, which is a five

point weighted average, defined in two dimensions by

vy = I,flvh (2.94)
where
1
(ve)ij = 3 [(vn)2i2j—1 + (Vn)2i2j+1 + (Vn)2i—1,25 + (Vn)2i+1,2j41 + 4(vh)24,2;] (2.95)
and the stencil is .
1 01 0
B = A
010],

Interpolation for vertex-centered grids

The most commonly used interpolation operator is the so-called bilinear interpolation, which is

defined by
I (2.96)
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where

(vn)2i,2; = (vm)i s
()sis125 = 5 (O)es + (rr)isns)
()aiaiss = 3 (@r)ig + (o) o)
(Vh)2i+1,2j4+1 = %((Q’H)i.j + (va)i+1j + (VH)ig+1 + (vH)it1,5+1) (2.97)

for 0<i<n/2—1and0<i<m/2—1, which can be represented by the stencil

h

1
1
1

SRS ]

1
2
L1y

This means that for fine grid points which are also coarse grid points the value of the fine grid
function is transferred directly from the coarse grid value. For fine grid points on a horizontal
coarse grid line but not a vertical one the fine grid value is the average of the values at the 2
coarse grid points. Similarly, we can use the analogous result for fine grid points on a vertical
coarse grid line but not a horizontal one. For fine grid points in the middle of four coarse grid

points the fine grid value is the average of the coarse grid values at the 4 points.

Restriction for cell-centered grids

For a cell-centered discretisation, each cell of the coarse grid Q2 contains within it 4 fine grid
cells and each grid point of QF is surrounded by 4 grid points of Q. The four cell average
restriction operator evaluates the value of a coarse grid function vy at a coarse grid point by
taking the average value of the fine grid function vy, at four fine grid points surrounding it. This

restriction operator can be defined formally by

vy = 1y, (2.98)
where
(vi )iy = i ((vn)2i—1,2j—1 + (vn)2i—1,25 + (Vn)2i25-1 + (vn)2i25) (2.99)
which can be given by the stencil
1"
e 1],

Interpolation for cell-centered grids

The simplest cell-centered interpolation operator simply transfers the value at a coarse grid

point directly to the four grid points contained within that coarse grid cell, i.e.
v = 1oy (2.100)

where

(vn)2i2; = (vn)2i2j—1 = (Vn)2i—12j = (Vn)2i—1,2j—1 = (VH)i; (2.101)

34



fori=1,...,n/2and i =1,...,m/2. The stencil is

h
1 1
1 Ly,
The cell-centered bilinear interpolation operator is defined in a similar way as discussed in the

case of the vertex-centered discretisation as follows:
vp = 1oy (2.102)
where

(vn)2i2j = 1_16 9(vr)ij + 3 ((vm)it1 + (VH)ij+1) + (VH)it1,j+1]

1
(Vn)2ig1,25 = 16 O(va)it1; +3((va)ij + Va)ir1,5+1) + (VH)ij+1)
1
(vn)2i2j+1 = 72 O(wa)ij+1 +3((va)iy + (va)ij+1) + (va)it1,4]
1
(Vn)2it1.2j41 = 6 O(a)it1.541 + 3 ((vE)ivr; + Wr)ij+1) + (vE)i ] (2.103)

fori=1,...,n/2—1and i=1,...,m/2 — 1, which can be represented by the stencil

h

16

— W W =
WO O W
W O O© W
—_ W W =

Order of interpolation and restriction

An interpolation operator is said to have order k£ + 1 if it can transfer exactly polynomials of
order k, i.e. if the exact values of a polynomial are given at the coarse grid points, the exact
value of the polynomial can be found at all fine grid points by interpolating with the given
operator. The order of a restriction operator is equal to the order of its transpose. For example
bilinear interpolation in both the vertex and cell-centered cased has order 2.

When constructing MG methods the summation of the order of the restriction and in-
terpolation operators should be, as a general rule, greater than the order of the PDE being

considered.

2.7.4 Local Fourier analysis (LFA)

The main idea of the smoothing analysis is to estimate how fast the high frequency components
of the error of the solution in the Fourier modes are eliminated by a given smoother (an iterative
relaxation method used to smooth the error). As is well known the so-called local Fourier
analysis (LFA) is a power tool for analysing the MG methods, in particular the smoothing
effect of any smoother.

In two-dimensional cases, the LFA studies the actions of linear operators with constant

coefficients (i.e. operators Lj, whose stencil entries L, , are not dependant on position p in the



grid) on the grid functions characterized by
0n(8,%x) = l0%/P = (l012i/hi02u;/k (§ = /T) (2.104)

over an infinite grid
W= {x= (i yy) = (ih,3k)I(i,5) € 2}
with grid spacing h = (h, k) = (1/n,1/m) for a vertex-centered discretisation (for a cell-centered
discretisation the grid points (z;,y;) are in different positions).
Assuming that the frequency 8 = (61, 62) varies continuously in R?, it is not difficult to see

that
oh(0,%x) = pr(8',x) for x € (2.105)

when the differences between #; and #] and ¢, and 6} are multiple of 27. Due to the periodic
nature of the grid functions ¢ (8, x), it is enough to consider ¢y, (8, x) for all 8 € [-7,7)? = ©
[134]. With respect to standard coarsening, low frequency components are pp(6,x) such that
0 = (01,02) € Oy = [—7/2,m/2)? and high frequency components are @y (0,%) such that
0 = (01,02) € Onign = [—m, m)?\[~7/2,7/2)%. The following theorem forms a basis for most of

results in the LFA.

Theorem 2.7.1 For 8 € ©, all grid functions ¢r(0,%) are eigenfunctions of any discrete

linear operator Ly with constant coefficients and the relation

Lnen(0,x) = Ly(0)n(8,x) with x € Q5° (2.106)
holds with
Ln(8) = ) Lge®. (2.107)
qEeZ?

Proof. The proof of this theorem can be found in [134]. m
With the result of Theorem 2.7.1 it is straight forward to analyse the smoothing properties
of a given smoother used to solve a discrete PDE Lju, = f;. Here we need to assume that one

step of this smoother can be written locally as
LEop®™ + Ly v = fa, (2.108)

where v!? and v}’*" are respectively the approximation solutions before and after applying the

smoother step and
Ly =Lf+ L. (2.109)

Subtracting (2.108) from the original discrete system Lju, = fi leads to

L g 4 ol =, (2.110)
which is equivalent to
=
new = — —h eold — Gy epld. (2.111)
Lh,
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Recall that €5 = v9"d — ), and €} = v**" — u;, are the errors of the approximation solutions
before and after applying the smoother step, respectively.
From (2.110) and Theorem 2.7.1 we can see that all grid functions @y (6, x) are eigenfunctions

of S = —L, /L and

Shon(0,%) = Sy (8)pn(8,%) = — §§(0)¢h(0,x) for L} (6) # 0. (2.112)
n(6)

The local smoothing factor pee of a given smoother is therefore defined by
tioc = sup{|Sh(8)| | @ € Onign}. (2.113)
For a smoother to be effective, we hope w0 < 1 and practically . = 0.75 for instance.

Example 2.7.1 Let us consider the GS-LEX method applied to the discrete Poisson’s equation
as represented by (2.48). We can see that

0 -1 0
0 0 -1
0 0 O

1

0
L,T:— -1 4 (mdL,,::h—2

0 -1

o o o

Therefore the local smoothing factor for this relazation method is given by
ttioc = 5up{|Sh(8)] | 8 € Opign} (2.114)

where Z,“:(B) = Z% (4 —e 11 —g7if2) Zf(@) = & (- - €%2) and

5 (8) elf1  eif2
;:—(0) 4_€7i91 _6—i92'

5.(6) = -

It is shown in [184] that the supremum of (2.114) is attained precisely at 8 = (6,,02) =
(7/2,cos~(4/5)) leading to pjoe = 0.5.

Remark 2.7.2 1. Although the Jacobi and GS-LEX methods including their line analogues
can be written in the form (2.108), the GS-RB method cannot. However, LFA can still be
used to analyse GS-RB type smoothers but the analysis is more involved; see [134, 140]

for more details.

2. As noted by [184] any general discrete operator, nonlinear with nonconstant coefficients,
can be linearised locally and can be replaced locally (by freezing the coefficients) by an
operator with constant coefficients. In other word, LFA is still a very useful tool for

analysing MG methods for nonlinear problems.

2.7.5 Multigrid cycles

In §2.7.1 we explained the MG principles and introduced the two—grid correction scheme. Each
coarse-gird correction step requires the residual equation to be solved exactly on the coarse
grid QF . Although QF = Q2" has 4 times fewer grid points than Q" for standard coarsening.

a direct solver for the coarse-grid problem is still likely to be prohibitively expensive when the
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discrete system is large. We could use a uni-grid iterative relaxation method, e.g. a given
smoother. However, a better approach might be to use coarse-grid correction again, i.e. solve
the residual equation on Q%" by relaxing on its residual equation on the next coarser grid Q%" (a
grid whose grid spacing is twice that of Q2"). This process can be used recursively to solve the
residual equations until we reach some very coarse grid QP in such a way that the corresponding
residual equation can be solved exactly using a direct method at a very low computational cost.
If on each coarse grid p coarse-grid correction steps are used to approximately solve the residual
equation we have what is known as a u—cycle MG step. A u—cycle MG step to update the

approximation to a linear system Lpus = fi on the finest grid Q" is denoted by
[Uh] = A'IGCYC(Uhv fh7 Lh) Vi, V2, ,U)

where Smoother represents the results from one step of a given smoother and may be sum-
marised in Algorithm 2.7.1. For practical applications only =1 or 2 is used. These methods
are known as the MG V- and W-cycle, respectively. The diagrams of grids for a 4-grid MG V-

and W-cycle are shown in Figure 2.5.
Algorithm 2.7.1 (MG cycle)

Denote MG parameters as follows:
v1  pre-smoothing steps on each level
v post-smoothing steps on each level

(4 the number of multigrid cycles on each level (I =1 for V—cycling and | = 2 for W—cycling).

[‘Uh,] = A[GCYC(UIU fh7 Lh7 vy, V2, /’L)

VoW

Figure 2.5: Left-Right: Illustration of grids for a 4-grid MG V-cycle (1 = 1) and MG W-cycle (p = 2).
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o If Q" = coarset grid, solve Lpun, = f, using a direct solver and then stop.
Else continue with following step.

e Pre-smoothing:
For k = 1 to v, [v,] « Smoother(vy, fn, L)

e Restriction to the coarse grid:
vg — I oy

e Set the initial solution for the coarse-grid problem:
vg «— 0

e Compute the new right-hand side for the coarse-grid problem:
fu = I (fa = Luon)

e Implement the p—cycle MG step on the coarse-grid problem:
For k =1 to p, [vg] «— MGCY C (v, fu,Lu,v1,va, 1)

e Add the coarse-grid corrections:
v — vp + Ifyvn

e Post-smoothing:
For k =1 to va, [vn] « Smoother(vn, fu, Ln)

2.7.6 Full multigrid methods

A full multigrid (FMG) method is designed to provide reliable initial solutions for iterative
solvers including MG methods. The idea is to solve first the original problem at the coarsest
grid and then interpolate the obtained solution as the excellent initial solution to the next finer
grid problem level by level until it reaches the finest grid. This can be shown in Figure 2.6 for

a 4-grid problem and summarised as follows:
Algorithm 2.7.2 (FMG method)

Denote FMG parameters as follows:
v1  pre-smoothing steps on each level
vy post-smoothing steps on each level

/4 the number of multigrid cycles on each level (I = 1 for V—cycling and | = 2 for W—cycling).

[vh] =5 FMG('Uhvfh, thyhl/?yﬂ)

o If Q" = coarset grid, solve Lyuy, = fi using a direct solver and then stop.
Else continue with following step.
e Restriction to the coarse grid:
vy — Iitop, fo = I fi
e Implement the FMG step on the next coarser grid:
[va] < FMG (va, fu,Lu,v1,v2, 1)
e Interpolation to the next finer grid:
Vp I;II(UH
e Implement the MG p—cycle on the next finer grid :
[ve] «— MGCY C (v, fu, Ln,v1,V2, 1)

2.7.7 Computational work

To estimate a computational work of a V- (or W-) cycle MG method it is usually expressed

in terms of work units (WUs). Here we define a WU as the computational cost of performing
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// = FMG interpolation

Figure 2.6: The scheme illustrates the typical structure of a FMG method.

a smoother or relaxation step on the finest grid. In general the cost of transfer operators can
be neglected since it is no more than 20% of the cost of the entire cycle. A V-cycle for a
d-dimensional problem with vy = vy = 1, where v; and v, are the numbers of pre- and post-
smoothing steps, requires p—% WUs per each grid (2?¢. Thus the total costs of one V-cycle used

n coarse grids can be estimated by

2
V-cycle costs = 2 {1 EE i b SRR 2””} < T—o=nd WUs.

For instance, a single V-cycle has a cost of about % WUs for a 2-dimensional problem.

2.7.8 Full approximation scheme nonlinear multigrid method

Full approximation scheme nonlinear multigrid (FAS-NMG) method has become an efficient
approach for solving nonlinear problems. Here instead of a discrete linear PDE we have a

discrete nonlinear PDE,
Npup = fn (2.115)

involving the nonlinear operator N, acting on up. Let vy, be the result computed by performing
a few steps with a nonlinear smoother like the ones discussed in §2.6.7 on the fine grid €.

Therefore the nonlinear residual equation on the fine grid (2, is given by
Npup — Npvp = Np(vp + en) — Npon = frp — Npvp = 14, (2.116)

where e, = up — vy, is the error of the solution and r, = fr — Npvp, is the nonlinear residual.
In order to correct the approximated solution v, on €, one needs to compute the error ep.
However, the error cannot be computed directly on 2. We then need to transfer the following

nonlinear residual equation to the coarse grid Qg as follows

N (vh +en) = ra + Npop, — Nu(vw +en) =ru + Nuvy (2.117)
—_— Y/
Npup fn Npyupy fu

After the nonlinear residual equation (2.117) on the coarse grid have been solved with a method
of our choice, the coarse-grid correction ey = uy — vy is then interpolated back to the fine grid
e, that can now be used for updating the approximated solution vj, of the original nonlinear

system on the fine grid v}*" = vj, + €;,. As discussed for the linear case in §2.7.1 the last step



is to perform the nonlinear smoother again to remove high frequency parts of the interpolated
€erTor.

Obviously we can extend the 2-grid FAS-NMG method represented by the above procedure
to a MG method. We employ coarse-grid correction recursively to solve the nonlinear residual
equation until we reach to some very coarse grid. We note first that we may have to solve the
nonlinear residual equation using a given nonlinear smoother or another iterative method on
the coarsest grid. We also note further that we use the initial guess vy for a solution to the
nonlinear residual equation on Qg because we are working with the full approximation scheme.
This is different from the linear case where we use an initial guess 0 for the solution to the
residual equation on Q.

Finally, a FAS-NMG method can be summarised as represented in Algorithm 2.7.3. Recall
that Smoother means a nonlinear smoother (i.e. a nonlinear relaxation technique) with suitable

smoothing properties.
Algorithm 2.7.3 (FAS-NMG method)

Denote FAS-NMG parameters as follows:
v1  pre-smoothing steps on each level
vy post-smoothing steps on each level

/¢ the number of multigrid cycles on each level (I = 1 for V—cycling and [ = 2 for W—cycling).

[vp] — FASCY C(vn, fu, Nn,v1, 2, 1)

o If Q" = coarset grid, solve Nju;, = fj, using a given nonlinear smoother.
or another iterative method. Else continue with following step.
e Pre-smoothing:
For k = 1 to v, [vs] «— Smoother(vy, fr, Ni)
e Restriction to the coarse grid:
VH — I,I,iw,,rH = I,fl(fh, — Npun)
e Set the initial solution for the coarse-grid problem:
UH — VH
e Compute the new right-hand side for the coarse-grid problem:
fo <~ rag + Nyvy
e Implement the p—cycle FAS-NMG step on the coarse-grid problem:
For k =1 to p, [vg] «— FASCYC (vu, fu,Nu,v1,va, 1)
e Add the coarse-grid corrections:
Vp — Up + 11’11(1’11 —TH)
e Post-smoothing:
For k = 1 to va, [un] < Smoother (v, fi, Ni)
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Chapter 3

Variational Image Registration

This chapter presents a general framework for image registration. This framework is based on
a variational formulation of the registration problem and its solution schemes to be considered
are based on the so-called optimise-discretise and discretise-optimise approaches. This general

concept will be specified for various registration techniques in the next chapters.

3.1 Images

Physically, an image is a set of measurements obtained by integration of some density field, e.g.
radiation, over a finite area or volume. In some applications images are vector valued, as colour
images for example. In this thesis, they are restricted to scalar or gray intensity images and
modelled as continuous mappings from an image domain Q@ C R? into V C R], where d € N
represents the spatial dimension of the iinages which is usually d = 2 (images) or d = 3 (volune
data set) with smooth boundary 9{2. This means that an image [ :  — V associates with

each spatial position x = (z1,z2,... 7ur,i)T € () its gray intensity value I(x).

3.2 Variational formulation of the registration problem

A general framework of the image registration can be formulated as follows: Given two images
of the same object (or similar ones) which are referred to as a reference R and a template I,

we search for a vector valued transformation ¢ defined by
pu)() R =RY,  p(u)(x): x = x+u(x)
that depends on the unknown deformation or displacement field
u:R? — RY, X (x) = (ug(x), un(X),. .., ug(x)) "
such that the transformed template
Top(u(x)) =T(x+u(x) =1Tu(x)=1Tu

becomes similar to the reference R. Once the corresponding location ¢(u(x)) = x + u (x) is

calculated for each spatial location x € (2, an interpolation or approximation step, e.g. d-linear
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interpolation, is required to assign the image intensity values for the transformed template T,
at non-grid locations within image boundaries; see Figure 3.1. For locations outside the image
boundaries, the image intensities are usually set to be a constant value (typically zero [104]).
Note that the term w is used to model the transformation ¢ because it can view as how a point
in the transformed template T, is moved away from its original position. Thus the problem
of finding the transformation ¢ and the deformation field w that the transformed template T,
matches the reference R is equivalent. Here the geometric transformation ¢ can be alternatively

defined by p(u)(x) : x — x — u (x); see [104].

P(u(x)) = x + u(x)

gramsEniiiupcans

Figure 3.1: The concept of the image registration visualised as the mapping between two images 7" and
T.. An interpolation scheme has to be employed to assign the image intensity values in the transformed
image T, if the transformed position ¢(u(x)) = x + u (x) does not lie on the integer x = (z1,z2)"
grid point.

All registration strategies require a suitable similarity functional (sometimes also called
similarity or distance measure) D which measures the disparity or similarity between the trans-
formed template T, and the reference R over the image domain. Thus, the image registration

problem can be formulated as the minimisation problem of D in the following manner:

min®D (u) (3.1)

u
As is known, the image registration problem (3.1) is a nonlinear and ill-posed one in the sense
of Hadamard because the direct minimisation of D will not guarantee a unique solution for w.
It becomes necessary to impose a deformation model 'R, which is also known as a regularising
constraint or regulariser, on the solution u for penalising unwanted and irregular solutions using
priori knowledge. This approach is mathematically known as regularisation. As a consequence,

the image registration problem can be posed as a minimisation problem of the joint functional:
min{J,(u) = D (u) + aR (u)}. (3.2)
u

Here o > 0 is the regularisation parameter that compromises similarity and regularity, and «
is searched over a set U of admissible functions minimising J,. The set U is generally assumed
to be a Hilbert space ‘H equipped with its usual scalar product

(w, M)y = /S;u(x)~77(x) dX:/ (u(x),1m(X))ga dx.

Q
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Recall that (-,-)z4 denotes the Euclidean scalar product.

In general we expect minimisers of the energy functional 7, to exist. A necessary condition
for a (local) minimiser w of J, is that the Gateaux derivative (or the first variation) 6.7, (u; n)
of J, must vanish for all variational directions € H, i.e.

ja(u + 677) e ja(n)

€

=0. (3.3)

] d
0Ja(u;n) = e Jo(u + en)|_o = lim

Note that if 6Jo(u;n) = (VuTa: M)y VaTa defines the gradient of the joint functional 7.
Then, the necessary condition of optimality is readily equivalent to V. 7, = 0, which is known
as the Euler-Lagrange equation associated with the minimisation problem (3.2) and can be
easily computed when 7, is represented in a simple form. For registration purposes, the joint

functional 7, is generally defined by
Ja(u) = / F(x,u(x), Vu (x))dx (3.4)
Q

with a functional ¥ assumed to have continuous partial derivatives with respect to each of its
arguments. One can show by extending the results from Lemma 2.2.1 to the vectorial case that

its Euler-Lagrange PDEs becomes
Vub =V -VguF =0o0n Q. (3.5)

Here we denote by Vo £ = (0F/0uy,...,0F/8u4)" the gradient of /' with respect to its second
argument u (x) and in a similar way the gradient of F with respect to Vu (x), i.e. its third
argument, is given by

OF/ouy -+ OF/Ouiq

Vvuj"!: = Rdxd’

aF/au,U ey 8F/6u,1d
where w; ; is an abbreviation for du;/dz;. As in the scalar case represented in §2.2, the bound-
ary conditions of (3.5) are essential conditions when they are imposed explicitly. If, in contrast,
boundary conditions are not given explicitly, we are dealing with natural conditions correspond-

ing to the minimisation problem (3.2):
(Vouw F,m)ga =000 00, 1 =1,...,d. (3.6)

Recall that n denotes the outer normal unit vector of 9¢2.

We can see that for an image registration problem the task of finding a minimiser u of J,
and the task of solving the Euler-Lagrange equation for u is equivalent. Together with boundary
conditions, in this context (3.2) is called the variational formulation of the registration problem
(3.5). Without loss of generality we assume that the registration problem is described in the
two-dimensional case (d = 2) throughout this thesis, but it is readily extendable to the three-
dimensional case (d = 3). We also assume further that = [0,1]? ¢ R? and V = [0, 1] for 2D

gray intensity images.
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3.3 Similarity measures

As mentioned in the previous section, a similarity measure is related to image similarity and
used to provide a quantitative measure for the quality of the transformation. Several approaches
have been proposed. These measures are based on either the so-called feature- or intensity-
based approaches. For the first approach the calculations are based on a number of outstanding
correspondences which are well-selected manually or automatically from the given images, such
as landmarks! or a combination of curves and surfaces. It is recommended when both images
contain enough distinctive and easily detectable features; see [104, p.31 and 44]. In contrast to
the first approach, the latter approach is more general and robust than the first approach. The
basic idea is to use the whole (full raw) information of the given images and can be defined in

terms of functionals in 1, and R as follows:
Du)=D(u,R)= / Fp(I'(x+u(x)),R(x))dx.
Q
Due to its robustness the second approach is adopted in this thesis.

3.3.1 Sum of squared differences (SSD)

When the image intensities of the given images are comparable (i.e., in a monomodal registration
scenario), the proper choice of similarity measures is the so-called sum of squared differences
(SSD) [46, 47, 48, 49, 51, 53, 54, 62, 65, 59, 60, 61, 76, 72, 79, 78, 73, 75, 83, 89, 90, 94, 104,
131, 145] :

DSSD () = %A (1 (x +u (%)) — R(x))2dx, (3.7)

which is adopted mainly in this thesis, and its Gateaux derivative is given by
$TYSSD SSD
OD (’LL;'U): <v'up ’T]>'H ? (38)

where

VuD5P = (13, — R) Vol (3.9)

3.3.2 Mutual information (MTI)

In general, if the images are recorded with different imaging devices or modalities (i.e. in a
multimodal registration scenario), the D55P functional is not appropriate. The main reason is
that the same structure may have totally different intensity values. In this case, the common
choice of similarity measures is the so-called mutual information (MI). For convenience, let
i1 = R(x) and i; = I'(x + u(x)) be the intensity values of the reference and the transformed
template. We suppose that i; and is are (continuous) random variables whose probability

density functions? are given by pf(i;) and pZL=(is), respectively. We denote by pfTu(iy, i)

LA landmark or maker is the location of a typically outstanding feature of an image, such as the tip of a
finger or the point of maximum curvature.

2A probability density function (abbreviated as pdf, or just density) of a continuous random variable is a
function that describes the relative likelihood for this random variable to occur at a given point in the observation

space.
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the joint density , which summarises the co-occurrence of events from 7; and i, and describes
how random the joint variable (i;,i5) is. The MI is defined by the Kullback-Leibler distance
between the joint distribution pfT=(i;,i5) and the product distribution p®(i;) - pI=(iz) of the
random variables i; and i, as follows:

DM (u) = / Py (i1, i2) log (M) diydiy, (3.10)

®2 Pl (i) - pu*(iz)

which is non-negative. Note that DM! (u) = 0 if and only if i; and i, are independent, i.e.,
pRTu(iy ip) = pR(iy) - pLu(iy). It follows directly that if they are independent, the random
variable #; can tell us nothing about the random variable i,. Thus the MI is a measure of
similarity between the given images. This signifies that we have to maximise DM! (u) or equiv-
alently minimise DM (u) = —DM! (u). Following the approach of [37, 80, 81] one can show

that its Gateaux derivative is given by

5D M (u;v)=(V,D M 5), , (3.11)
where
1 oL
VuD™M = — ol =] (R, 1) Valu 12
IQlW*%](, ) (3.12)
with
oL 1 ApR-Tu(iy,ip) 1 9ple(iy) (3.13)
diy  ppTe(iy,iz)  Oia put(iz) Oia '

Here |Q)| denotes the area of Q2 and v : R? — R is a smooth bidimensional density kernel used

to estimate the joint density of the images R and 15, i.e.
o 1 R .
B iy} = ﬁ/ Y(R(x) — i1, Tu(x) — i2)dx, (3.14)
Q
with + denoting the convolution operator:

[p*q} (;’1,32) = / p(zl — il,ZQ — ig)q(il,iz)dilclig. (315)
R2

Estimating the joint density

In image registration, two approaches are popular to estimate the joint density. The first ap-
proach is based on histograms and the second is based on Parzen-window estimators. Histogram-
based estimators are commonly used in registration. However, it is known to have inferior ap-
proximation properties because the histogram is generally based on rounding and thus leads to
nondifferential function which is not suitable for optimisation purposes [105, 127]. Nevertheless,
there are some recent works developed to overcome these difficulties; see [95] for example. This
section focuses only on the latter approach.

A basic idea of a Parzen-window estimator is to work with a smooth kernel function which
basically spreads out sampled data. The Parzen-window estimator has better approximation
properties and can give a smooth estimator which is much better suited for optimisation pur-

poses involving partial derivatives. Let ¢ > 0 be the width of the Parzen-window kernel. The
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Parzen-window estimator for a probability density function p(z) given m samples X, Xo, ...,

X, is defined by

Fo() = =3 Kolz — X, (3.16)

with K being a symmetric kernel function such that [ K (u)du =1 and K,(u) = (1/0)K (u/0).

For our estimator we follow the approach of [37, 38, 71] by applying the Gaussian kernel

Ky(u) = \/2;7 exp (—2“—05) where the optimal value of o is determined by maximising the

pseudo-likelihood® P(o) :

m

Plo) = _Hﬁo(xn. (3.17)

Since this pseudo-likelihood has a trivial maximum at ¢ = 0, it has been suggested to use

leave-one-out cross validation by replacing p, in (3.17) by

- I

Doi = mj:%:#m(x —Xi) (3.18)
leading to minimise the Kullback-Leibler distance between p,(z) and p(z). For registration
purposes, the cross validation scheme is applied twice to determine o and o7 for the reference
and the transformed template, respectively. We select ¢ = max{a® o7} to define a 2D Parzen-
window kernel v, (i1,i2) = K, (i1)K,(iz) and the joint image intensity probability pftT« is

estimated by

m

1

~R Ty 7+ " . T .

A = — )Y K (R(X;)—i1)K,(1u(X;) — 3.19
P Gnvia) = D HK) = 1)Ko LX) = ) (3.19)
where X ={Xy,Xs,...,X,,} denote the sample of size m selected from grid points resulting

from the discretisation of 2. We note that the marginal densities p¥(i;) and pZ« (iz) are obtained

R, Ty

by integrating p,; over rows and columns, respectively, i.e.

pR(i1) :/pﬁ‘T“(il,ig)dig and pI»(ip) = /p,‘f~Tu(z'1,z'2)di1. (3.20)
R R

3.4 Regularisations

As is well-known, the actual choice of R can considerably affect on the deformation field (the
solution) and the registered image. Unfortunately, choosing an appropriate R that fits all
applications is generally difficult. Thus, care has to be taken for each application area, as
image registration is inherently ill-posed as already pointed out in §3.2.

In this section the variational models with well-known K, which have been proven to be

very useful and commonly used in many registration applications, are briefly reviewed.

3Pseudo-likelihood is a measure in statistics that serves as an approximation of the distribution of a random
variable.
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3.4.1 Elastic regularisation

The elastic regularisation is the most popular choice, which is based on the linearised elastic

potential of © and given by

R‘”a“(u):/n((p/@ i (Dot + B, 1)” + (A/2)(V - w)?)dx, (3.21)

l,m=1

where its Gateaux derivative is given by
SRES (u;v) <V 'R"las,n%{, (3.22)
with

VR = —pAu— (A + 1)V - Vau

= ( - ((/\ + 2/1»)8371.1'11‘1 + /Jiamz:r,zul + (/\ + /Jr)aarleUQ) )

9
((’\ + f‘)al‘wm u + /-Lamla:lu2 + (/\ + 2#)8;,32;,-,2’11,2) (3~3)

subject to the boundary condition (u (Vu+ (Vu)") + Mdiag(V - u),n), , = 0 on 9Q. Here
@ > 0 and A > 0 are the so-called Lamé constants which reflect material properties. This
variational model, of course, allows only elastic deformations, and penalises others, in particular
affine linear ones; see more details in [8, 15, 104] and references therein.

3.4.2 Diftusive regularisation

The diffusive regularisation introduced by Fischer and Modersitzki [46] is the simplest choice

of R, which is based on the L? norm of Vu; and given by,
RS g = - / |V |? dx. (3.24)
=1

For this variational model one can show that its Gateaux derivative is given by

SR (u; v) <V e 77)7{’ (3.25)
with
Vo RUE — _Agy = ( :ig; > (3.26)

subject to the Neumann boundary condition (Vu,m)5. = 0 on 9€Q2. We note that this regulari-
sation technique can be viewed as a typical case of the elastic regularisation when non-physical
parameters, ¢ = 1 and A = —1 , are applied. Also, it is well-known as the classical method of
Horn and Schunck [84] for optical flow computation in order to smooth the deformation field

u.

3.4.3 Fischer and Modersitzki’s curvature model based regularisation

For registration purposes, the curvature-type regularisation was introduced originally by Fischer
and Modersitzki [47, 48]. Their variational model is based on an approximation of the mean

curvature of the surface of w; given by

2 2
REMeurv gy — lZ /(En/(uz))%{x = 12 (Auy)?dx (3.27)
2ic1Ja 2121 Ja
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where its Gateaux derivative is given by

6RFM(‘\11V <V RFMCLHV ,”>H, (328)
with
2
VuRFMcurv _ A2u — ( 222; ) (329)

subject to the typical boundary conditions Vu; = VAw; = 0 on 92. Due to the second-order
derivatives represented in the energy functional (3.27), this variational model leads to smoother
deformation fields than those of (3.21) and (3.24) based on the first derivatives. Moreover, it
does not require an additional affine linear pre-registration step to be successful. Here v, is
understood as a surface represented by (x1,z2,w;(z1,2z2)) where initially w;(z1,22) = 2z and
then the mean curvature of the surface of v; is given by

2 2
Kar (ul) =V YV _ (1+ulr1)“111x1 7271[”711_,2 ul_r1I2+(l+u,.r2 )11“212 (3 30)
\/1+lv“l]2 (1+ul2m1+u?!2)3/2 . ;

Assuming that Vu; &~ 0 yields kg (w;) &~ Rg(u;) = Auy.

3.4.4 Henn and Witsh’s curvature model based regularisation

Henn and Witsh [73, 78] introduced a typical curvature-based regularisation. Their variational
model is based on an approximation of the sum of the squared principal curvatures rp, (u;) and

kp, (ur) of the surface of w; and defined by

RHWcurV(u) — _Z /i]\[ ul))Q = QRG(UZ))dX

2j=1.
2
= 21 1/ AUZ — 2 r111 rz # = ulrl.tz )dx (331)
and its Gateaux derivative is given by
6RH\’chrv(u; 'U)Z <vuRH\chrv7n>H : (332)
with
Feur ; A%y
HWcurv __ .. 1
V. R =A‘u= ( Ay, > (3.33)
subject to the higher-order boundary conditions B (u;) = 0 and Ba(u;) = 0 on 9€2 where
0 c') 827” 2 2 aZ’LLl 8271.1
o = Ay = — =t ) |, 34
Bl (UZ) aTLAUZ 83 8;1710;[2 (nl 772) & 82;172 82.’1.'1 Ty Mz (3 3 )
32ul .
By (w) = FrY (3.35)

and s denotes the tangential component vertical to n. We note that the kernel of the energy
functional (3.31) consists only of the affine linear displacements, and consequently the energy
is invariant under planar rotation and translation. We also note that assuming Vu; =~ 0 leads

to

Kp, (W) + K, (w) = (rp, (w) + £p, (w))* = 26p, (w)rp, (w)

‘ ' u Wy Wl E 7“2..‘ .
= (rar(w))® — 2Kg(w) = (V- (22—))? — 2(— (1”'\27“"2); i

V14|V |?

~ (Rar(w))? — 2Ke(w) = (Aw)? = 2(uy, , wi,,., —ui, . ), (3.36)
1%*1 2%2 1T2
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where K¢ (w) = (u, _ w —ulrlrz) is the approximation of K¢(v;), the Gaussian curvature

r1Tq EDED)

of the surface of u;.

3.4.5 Total variation regularisation

Total variation regularisation introduced by [51, 53, 115] is based on the so-called TV semi-norm

of Vu; and given by

2 2
RPTV (u) = l; /Q |V 5 dx :121 i Ui, Fui o+ Bdx. (3.37)

One can show that its Gateaux derivative is given by

R (uyv)= {V RPTY, iz (3.38)
with .
-V- ( Uy )
Vo RV = s (3.39)
—v ’ ( |vv“2]ﬁ )

subject to the Neumann boundary condition (Vu;,n)z. =0 on 9Q. Here 5> 0 is a small real
parameter for avoiding non-differentiable at zero; see more details in [51, 53, 115, 118].

As is known, Relas, RAME RFMeurv qy  RHWeurv hroduce globally smooth deformation fields;
see [33, 46, 47, 48, 49, 79, 78, 73, 75, 74, 89, 91, 104, 131]. While they are useful for several
applications, they become poor if discontinuities or steep gradients in the deformation fields are
expected (e.g. resulting from multiple moving objects or partially occluded objects). In order
to preserve discontinuities of the deformation field, R®TV helps to preserve piecewise constant
smoothness, which is much weaker than those global smoothness of Relas, RAIff RFMeurv =5y
REWeurv However, R#TY may not be suitable for some particular image registration problems,
which require deformation fields having very strong smoothing properties; see [51, 53, 142]. Tt is
still a challenge to design a regularisation technique or deformation model R suitable for both
smooth and non-smooth registration problems. This task will be one of our main contributions

in this thesis; see Chapter 6 — 7 later.

3.5 General solution schemes

Classified by the order of its major ingredients, there are two main types of numerical schemes
to compute a numerical solution of the minimisation problem (3.2) for a given regularisation
parameter «. The first is the so-called optimise-discretise approach and the second is the so-
called discretise-optimise approach. The main idea of the first approach is to compute the
Euler-Lagrange equations in the continuous domain as discussed in the previous sections and
then solve its discretised version on the corresponding discrete domain by a method of our
choices, e.g. a so-called parabolic and elliptic approach. On the other hand the latter approach
aims to discretise the joint functional 7, and then solve the discrete minimisation problem by

standard optimisation techniques, e.g. steepest descent or Newton-type methods.



3.5.1 The optimise-discretise approach

For the optimise-discretise approach, the main aim is to solve the Euler-Lagrange equation,

which generally turns out to be a nonlinear system of PDEs:
flu) +aA(u)=0 (3.40)

subject to the appropriate boundary conditions. In other words, the approach aims to satisfy
the necessary condition for a minimiser of the joint functional (3.2).

Note that on one hand the first term f (usually nonlinear) is related to the Gateaux deriva-
tive of the particular similarity measure D, which can be viewed as the external forces in
leading similar regions of the images into correspondences. On the other hand, the second term
A, which is the partial differential operator (linear or nonlinear) and viewed as the internal
forces (or constraints) resulting from the Gateaux derivative of R, is used to regularise the
deformation field w and resist the external forces until the equilibrium state governed by the
Euler-Lagrange equation (3.40) is archived.

There are various numerical techniques for solving (3.40). These techniques can be broadly
divided into two main categories: the parabolic and elliptic approaches. A parabolic approach
(also known as gradient descent or time marching approach) performs by introducing the ar-
tificial time variable ¢ and then determining the steady state solution of the system of time-
dependent PDEs, e.g. if f is nonlinear and A is linear, the semi-implicit scheme can be defined

by
w(tET)) — ()

T

= f(u(t®)) + aA(u(t**D)) (3.41)

where k € No, u(f) = u(x;t), and 7 > 0 denotes the time length used to discretise dyu(t); see
[46, 47, 48, 78, 73, 90, 91, 104, 131]. For an elliptic approach it performs by directly solving the
nonlinear system of PDEs with a method of our choice, e.g. if both f and A are nonlinear, the

fixed-point (F'P) iteration of (3.40) can be defined by

@) + aAfu](ul+1) = 0 (3.42)
where both f and A are linearised at the current approximation w) and v € Ny denotes the
FP step; see [53, 54, 76, 94, 145].
3.5.2 The discretise-optimise approach

In this section, we shall briefly give the main idea of the discretise-optimise approach based in
the Newton-type schemes. To this end, let us first consider the discrete minimisation problem
corresponding to (3.2):

ugu{ja(u) =D (u) + aR (u)}. (3.43)
The next step is to linearise J, around the current approximation u*) (k € Ny) by the Taylor
expansion given by

Ja(@® +5u®) = To(u®) + I 5 (u®)su® + a(éu("))THja(u("))ﬁu(") (3.44)
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and define an (outer) iteration by
wHD) = 4B L () 5y (k). (3.45)

Here J 7 (ul®), H; (u¥)) are the Jacobian and the Hessian of Jo at u®) and ¢®) > 0 is
the line-search parameter used to guarantee the reduction of J, in each outer step k. For
Newton-type methods, the perturbation u(*) is determined by solving the normal equation

1= i
iHja(u("’))Ou(k) =-J5 (u®) (3.46)

by a method of our choices (e.g. linear MG methods), considered as the inner step. Here
ija (u®)) is an approximate Hessian; see [60, 59, 65, 72, 76, 77, 83, 89].

Practically, no matter which method is used, both approaches are integrated with a so-called
multi-resolution technique in order to provide reliable initial guesses, avoid getting in the trap

of unwanted minimisers and save computational times [32, 86, 94, 99, 120, 130, 132].

3.6 A brief survey of existing multigrid methods

One of the main aims in this thesis is to propose efficient numerical methods for solving Euler-
Lagrange equations as given by (3.40) consisting coupled and nonlinear PDEs and resulting
from the variational formulation (3.2). Among fast iterative methods, multigrid approaches
have been successfully used as fast registration algorithms for high-resolution digital images by

offering the potential of optimal efficiency. They may classify into 2 categories:

1) Linear multigrid framework. Haber and Modersitzki [65] used the discretise-optimise
framework by combining an inexact Gauss-Newton (GN) method with a linear multigrid
method as a coupled outer-inner iteration method for solving the elastic image registration
problem. Henn [73] considered the curvature image registration in the optimise-discretise
framework and introduced a coupled outer-inner iteration method like (3.41) with the
inner solver provided by a linear multigrid method for solving the system of the fourth-
order linear PDEs. Homke [83] concentrated on the elastic image registration and used
the discretise-optimise approach based on a regularised GN method with a trust region
approach in which one normal equation corresponding to a linear subproblem is solved
iteratively with a linear multigrid method. Kostler et al. [89] introduced a combined
diffusion- and curvature-based regulariser for optical flow and deformable image registra-
tion problems and solved the resulting minimisation problem represented in terms of (3.2)
with the discretise-optimise framework by combining an inexact GN method with a linear
multigrid approach. Stiirmer et al. [131] considered the diffusion image registration in the
optimise-discretise framework and solved the system of nonlinear PDEs using a coupled
outer-inner iteration method like (3.41), where the inner iteration is solved by a linear

multigrid method commonly used for heat equations.

Nonlinear multigrid framework. The use of the nonlinear multigrid (NMG) methods

Do
S

can be found in works of [53, 54, 76, 145]. In particular, Frohn-Schauf et al. [53] considered

52



the direct minimisation of the data term DSSP (3.7) in the Newton framework and applied
the total variation (TV) regularisation at a Newton perturbation step; further they solved
the resulting nonlinear system by the full approximation scheme nonlinear multigrid (FAS-
NMG) method due to Brandt [11] with an augmentation method and a line relaxation
smoother. Gao et al. [54] used the optimise-discretise framework to solve the diffusion
image registration problem, where the full multigrid (FMG) method with the Newton-
Gauss-Seidel smoother (i.e. global linearisation by Newton’s iteration and Gauss-Seidel
(GS) iteration for the resulting linear systems [94, 134]) is used to solve the system of
nonlinear PDEs. Henn and Witsch [76] solved the elastic image registration problem in
the optimise-discretise framework using a FAS-NMG method with the Jacobi smoother
plus a line-search procedure to avoid effects on the regularisation parameter «. Finally,
Zikic et al. [145] used the optimise-discretise framework with the FMG method to solve
the diffusion image registration problem, where the system of nonlinear PDEs is solved by

a fixed-point (FP) type of smoothers within the semi-implicit time marching approach.

We also remark that the 2D optical flow formulation (that does not use D5SP) suitable for
registering closely related images (e.g. video sequences) can be solved by multigrid techniques;

see [19, 18].
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Chapter 4

A Robust Affine Image
Registration Method

As already pointed out in §1.1, rigid image registration alone cannot always provide a satisfac-
tory registration result, particularly in many medical applications (e.g. one cannot ensure the
patient sits in the identical position with respect to the equipment each time), while non-rigid
or deformable image registration may not be quick enough for ready use.

This chapter is mainly concerned with affine image registration because it is applicable to
a large class of deformable image registration methods by providing the good initial positions
for the image to be registered. Moreover, as is well-known, an affine method is always many
orders of magnitude faster than a variational image registration approach using non-parametric
transformations due to much less unknowns involved; see [85, 86, 96, 104, 125, 132, 141, 143]

and the references therein.

4.1 Introduction

For affine registration the SSD functional, which is viewed as the nonlinear least-squared (NLS)
model, is usually applied when the image intensities of the given images are comparable. Al-
though there are only 6 parameters for affine transformations, iterative methods to solve the
underling nonlinear minimisation can suffer from convergence problems if good initial guesses
are not possible (i.e. even after we attempt to devise good initial guesses). A theoretical reason
may be that image registration problem is ill-posed in the sense of Hadamard. The information
provided by the given images and the least-squared model are not sufficient to ensure the exis-
tence, uniqueness, and stability of a solution [76]. This motivates us to introduce regularisation
into affine registration for constraining affine parameters, as one would do for other ill-posed
problems [27, 104, 112, 137]. The result is a refined affine registration model that can be solved
by converging methods for a large class of imaging problems.

The rest of the chapter is organized as follows. We introduce the affine and the diffusion
image registration respectively in §4.2 and §4.3, and then present four methods to improve

affine registration in §4.4. A regularised affine registration (RAR) model is presented in §4.5,



followed by a regularisation parameter selection algorithm in §4.6. Some numerical experiments

on the performance of the proposed method are presented in §4.7 before conclusions in §4.8.

4.2 The preliminaries, affine image registration and solu-
tion methods

Assuming that in continuous variables the given images can be represented by the continuous
mappings R, T : Q CR?* — V C RJ. It is customary to consider Q = [0,1]? and V = [0, 1]
for gray-scale images. In practice, two discrete images of the same size n; x ny are given: the
reference R and the template 1'.

For each pixel x = (z1,22) ", denote by ¢ = ¢(x) : Q — Q the unknown coordinate trans-
formation that produces the alignment between the reference R and the transformed version of
the template

F=Top=1,(x) = 1(¢(x)). (4.1)

We hope to achieve that /'~ R or /' — R ~ 0. Here the transformation ¢ has 2 components

p(x) = (1(x),2(x)) - (4.2)

As already mentioned in §3.2, all registration strategies require a suitable similarity measure
D in order to measure how similar these two images are under the transformation ¢. This means

that the general registration problem aim is to minimise this measure in order to determine :
Find ¢ = (p1,92) " such that D[1},, R, ¢]=D[p] is minimal. (4.3)

We adopt the SSD or the least-squared function D defined by

Dty Rogl = 5 [ (2(0(x) = RG)Pax =3 |1 = RI, = Dl (1.4)

as the objective function, where |-, denotes the Ly—mnorm.

4.2.1 Affine transformation

Affine transformation is one of the most commonly used methods in registering two images;
see [85, 86, 96, 104, 132, 141, 143] and references therein. Although only linear, it models
a combination of effects stemming from four simple transformations: translating, rotating,
scaling and shearing. An affine transformation corrects some global distortions in the images
to be registered. In this section, we first introduce the model and then discuss two numerical
methods for solving it.
An affine registration model assumes that the above transformation ¢ is linear i.e.
P(x) = pa(x) = { i: ((33 } = [ Z; ;’: } {2 }+ { Zz } = Ax+b, (4.5)

a; a a . . .
1 2] and b= |"?| are the affine transformation matrix and the translation
a

a4 as g
vector respectively, for all x € 2. Here for optimisation purpose, the vector

where A =

T 6
a= (al,(Lz,(1,3,([4761,5,(1(5) e R®

55



will be used shortly. Clearly the inverse transform is simply x = A~ (¢, —b) if A is invertible.
Note that A can be decomposed into a product of a rotation, a scaling, a shear in z;— (and/or

x5—) direction or a combination of these simple transformations

_lar az2| _ |cos® —sinf| | sz O 1 8 y
L Lu aJ - {sin@ cosﬁ} { 0 Ssuy } [ 0 1 ([4:6)
rotation scaling sh:arar

where § is the rotation angle, s;,,s,, are the scaling parameters, and S;, is the shear factor
in zj—direction. Clearly this kind of decomposition is not unique. It is clear that both a
rigid-body transformation with s, = s, = 1 and S,, = 0 taking the form

A— {al az} _ {cos@ -sin()}

ay as sinf  cos#

and a similarity transformation with 0 < s,, = s,, and S, = 0 taking the form
a;  as cos —sinf| | sy, O
A= = |
as as sinf®  cos# 0 sa
are affine in special cases. From (4.4), the problem with such a ¢, is the affine image registration,

formulated as follows:

mD 5
min [a] (4.7)

where D[a] = Dlga] = 3[[1(a) — Rl7, = 3]1'(Ax +b) — R[],

Now consider how the registration problem (4.7) is solved by the so-called discretise-optimise

approach as discussed in §3.5.2. Let T and R denote the discrete images of /' and R in terms
of n1 x ng arrays of image intensities. For ease of presentation, let T and R, of dimension

N = nynsy, be pixel-wise ordered in a lexicographical order and denoted as follows:
T = (#1,54% biviigsoert T and R= : Ty gy 0T T 4.8
- ( 1,15 62,15 «oo5 biq,igyceey ’n,1<n2) an = (T1.1772,17“-7’1.1,'127"'7711.712) ) ( . )

where 1 < i; < n; and 1 < iy < ny. Each element in the grid vectors T and R represents a
pixel’s gray intensity between black (0) and white (1). Given an affine transformation ¢, =

(¢ay, Pas) |, the discrete form of the transformed template image F' can be expressed as:

F(a) = (t111+472+113- 01+"5+05vt2(11+ﬂ2+03‘ 2a4+as+ags -y
P
) (4.9)

t(11i1+{121'2+03‘ ajgi1+asistagy -ty tal'n1+02712+(1,3. ajni+asnz+ag
where £ : R® — RY. Then minimisation problem (4.7) is equivalent to the following

N
. L 1 1
minDfa] N = 3|[F(a) -~ R[5 = 5/ld(a)||7 = gi;d?(a)-, (4.10)

where the factor N = nyns = 1/(h1h2) due to the discretisation procedure with hy, ha (the
spatial mesh lengths) can be ignored here but will be used later in §4.5, and d(a) = £'(a) —R €

RY is the so-called residual vector. The first order condition of (4.10) is
g(a) = VaDla] =J' (a)(#'(a) —R) = J'd(a) = 0, (4.11)
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where g(a) € RS and the Jacobian matrix J given by

ad;
Jij=-— for1<i<N,1<j<6. (4.12)
Oaj

Solving (4.11) for a is a nonlinear problem and its solution requires an iterative approach.
Let al*) be a at the kth iteration. Here, we must find a perturbation sa* first and then update
the solution vector by

alk+l) = (k) 4 5a(k), (4.13)

For a full Newton method, the perturbation da'*) is determined by solving
H(a®))sa® = —g(a®)), (4.14)

where the Hessian of D is denoted by
N
H(a) =J' (a)J(a) + Y _di(a)V?d;(a). (4.15)
i=1

As pointed by [104, p.79], this Newton method may be not suitable in registering two images
for practical applications because computing higher order derivatives is time consuming and
numerically unstable. In order to improve on the Newton method, we can take advantages of

the particular structure of H to design a Newton variant to compute sal®.

4.2.2 The Gauss-Newton (GN) method

Note that the Hessian matrix is precisely H(a) = J' (a)J(a) if d; = 0 for all ¢ (i.e. the residuals
are zero at the solution a*) or if V2d;(a) = 0 when d; is a linear function of a. This suggests
that in other cases the Hessian matrix may also be approximated by this formula [129]. The

resulting approximation leads to the Gauss-Newton (GN) method, defined by
H(a®)sa®= —g(a®), (4.16)

where one uses the matrix H(a®)= JT(a*))J(a®) to approximate H(a®).
The above GN method requires damping to ensure convergence, because we may not be
able to provide a good initial solution, close to a minimum of D. The damped GN method can

be generated by
alk+1) = g(k) 4 ¢(k) 55 (k) (4.17)

where the positive scalar ¢(¥) is the so-called line-search parameter used to ensure that a GN

step adequately reduces D and to rule out an unacceptable short step. More precisely, ¢(*) is

determined by
¢® = minD(@® + ¢sa®)).
¢

Solving this line-search problem is by a backtracking algorithm which begins with ¢(*) = 1, and
then, if a®) + 5a®) is not acceptable, reduces a*) until an acceptable a®) + ¢(®)5a* is found.
The acceptability is decided by the so-called Wolfe or Armijo-Goldstein conditions safeguarding

upper and lower bounds; see [39, 50, 87, 109].
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4.2.3 The Levenberg-Marquardt (LM) method

The GN method (4.16) assumes that ﬁ(a(k)) is well-conditioned or at least non-singular. To

remove this assumption, an improved formulation by adding a positive multiple of the identity
matrix I, H(a(*))= [7(a®)J(a®)) + 1], is the Levenberg-Marquardt (LM) method:

7 @*)3@®) + u®Ogsa® = —ga®). (4.18)

() is adjusted to guarantee that the search

At iteration k, the positive LM parameter u
direction da'*) in (4.18) is a descent direction!. Then we obtain a steepest descent direction for
large 4«*), when the current iterate is far from the solution. On the other hand, this descent
direction is approximately a GN search direction for small x¥), when the iterates get close
enough to the solution. Using a frame work of trust region strategies, the LM parameter p(*)

is determined in such a way that
1813 = 1137 @*)3(@®) + 1M [-g(@®)][13 < ™ (4.19)

where n(¥) > 0 is a prescribed trust region radius. A new LM step is then generated by
a®+l) = a®) 1 5a®) As remarked by [41, 42, 70, 72|, this numerical scheme is related to
Tikhonov regularisation (see §4.5 later) and is sometimes called the regularising Levenberg-

Marquardt method as shown in (4.43).

4.2.4 Some registration results using the GN and LM methods

In this section, some registration results using the GN method (§4.2.2) and the LM method
(§4.2.3) are presented, to illustrate the non-robustness of both GN and LM methods.

Two examples are provided with the first one to show that both methods are capable
of correctly registering 2 images and the second one to show that both methods can fail to
converge to an acceptable solution, i.e. fail to register 2 images (in particular our examples
will differ in outliers). In both examples, the images are of size 128 x 128 and for both GN
and LM, we use the termination criterion ||da||2 < ¢ = 10~% within the maximum of iterations
IMAX= 300. The bilinear interpolation technique was applied in all examples for computing
the transformed template image #'(a) = T,,. Here the relative residual is used as the error

(k))

indicator: error = ||g(a'™’)||2.

Example 4.2.1 (A successful case) We consider the registration problem for a pair of MR
images of a human head®, with the reference image R and the template image T respectively
in Figure 4.1 (a) — (b). Using the initial guess a® = (1,0,0,0,1,0)" (i.e. we start with
wo(x) = x), both the GN and LM methods can successfully register this example as shown
respectively in Figure 4.1 (c) — (d).

Example 4.2.2 (An unsuccessful case) Here we consider another pair of MR images (sim-

ilar to Example 4.2.1), as shown in Figure 4.2 (a)—(b), where T contains tumor like circles. As

15a is a descent direction if da' g(a) < 0.
2Source: http://www.cis.rit.edu/class /schp730/lect /lect-1.htm
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(error = 2.77 x 1077) (error = 3.38 x 1077)

Figure 4.1: Example 4.2.1: Successful registration results of the MR images of a human head. The
first row shows the reference image R (a), the template image T (b). The second row presents the
registered images F(;N(a(%)) (¢) and Fry(a®°7) (d) obtained from using the GN and LM methods,

respectively.

in Ezample 4.2.1, the initial guess solution a(®) = (1,0,0,0,1,0)" is used. It turns out that both
GN and LM methods get stuck (at a local minimum of D) and fail to obtain correctly converged
solutions, as shown in Figure 4.2 (a)— (b). Here we are certain about reaching a local minimum
because the residual error is small, and the registration failure because we can observe the large

visual difference between F(a) and R (i.e. the matching error is not the smallest possible).

Based on Examples 4.2.1 and 4.2.2 and other tests, we confirm that (as is known) both
methods are not robust enough as their convergence strongly depends on initial guess solutions.

Various ways of finding good initial guess solutions will be discussed shortly in §4.4.

4.3 Deformable image registration

Having discussed a parametric registration model, we now give a brief review of a non-parametric
mode] — the variational diffusion model for deformable registration [46, 104]. We shall show
that, although the nonlinear multigrid method [11, 12, 134, 139, 140] is effective in solving the
model, an affine pre-registration step can further speed up the solution. Hence it is of interest
to look for reliable affine methods. We first review the general Tikhonov regularisation idea

[27, 104, 112, 137].
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(error =1.88 x 1077) (error =2.47 x 1077)

Figure 4.2: Example 4.2.2: Unsuccessful registration results of the MR images of a human head. The
first row shows the reference image R (a), the template image T (b). The second row presents the
registered images Fan(a®®) (¢) and Fru(a'*®®) (d) obtained from using the GN and LM methods,

respectively.

4.3.1 Variational approach

As an inverse problem, the general registration problem (4.3) denoted by minD[y] is ill-posed
%)

and can be converted to a well-posed problem by Tikhonov regularisation leading to
min{Ja () = D(p) + oR(x — ¢)} (4.20)
7.3

where the positive regulariser K may be chosen differently [104], and « > 0 is the regularisation
parameter, which controls the fitting of the registered image, as measured by the first term
D(¢), and the regularity of the solution, as measured by the second term R(x — ¢).

To have a consistent notation with the original idea for the diffusion image registration, we
define the new deformation variable u(x) = x — ¢ (x), and then the geometric transformation
¢ = ¢(x) depends on the deformation field u = u(x). As mentioned in [104, p.77], the problem
of finding the transformation ¢ = p(x) = x — u(x) and the deformation field v = u(x) =
x — ¢(x) represented by (4.20) is equivalent. Then the variational problem (4.20) becomes

11211{[7{, (u) = D(u) + aR(u)}, (4.21)
fo (T (x —u(x)) — R(x))? dx.

where D(u) = %
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4.3.2 Diffusion image registration

The diffusion image registration introduced by Fischer and Modersitzki [46] chose the following

diffusive regulariser

1
R(u) = 5/(|vu1|2 + | Vug|?)dx, (4.22)
Q
subject to Neumann boundary conditions, i.e.,
((')’LL[
— =0 forxedQand {=1,2. (4.23)
on

Here, n denotes the unit outer normal vector on 9€2. The Euler-Lagrange equation for the

variational problem (4.21) is the following
—aAu(x) — (I'(x —u(x)) — R(x)) - VI (x—u(x)) =0, x€Q, (4.24)

where the Gateaux-derivatives of D and R are used and A denotes the Laplace operator with

Au (x) = (Auy (x) , Aug (x))T. Note that (4.24) denotes a system of two nounlinear PDEs.

4.3.3 Numerical treatment and results

In [46], the cell-centered finite difference scheme is recommended to discretise the parabolic
version of (4.24) i.e.

i aAu(x) + (1'(x —u(x)) — R(x)) - Vi 1'(x — u(x))

and solve the discrete system by the so-called additive operator splitting (AOS) method which
is a semi-implicit time marching method.

Here the finite difference method is first applied with (4.24), followed by some results from
a full approximation scheme nonlinear multigrid (with full multigrid initialisation) method,
denoted by FAS-FMG, as in [11, 12, 134, 139, 140]. The basic steps are briefly summarised as
follows: (i) Convert the original fine grid problem to a hierarchy of coarser levels with standard
coarsening. The linearised Guass-Seidel smoother consisting of outer and inner iterations is
employed for (4.24), while on the coarsest level the AOS-scheme of [46] is used. We take the
number of pre- and post-smoothing (outer) steps to be 3, and the number of inner iterations
to be 2. (ii) Use the standard bi-linear interpolation and restriction operators; see the coming

chapter for more details.

Example 4.3.1 We consider the deformable registration problem of the X-Ray images of a
human hand®. Figures 4.3 (a) — (b) show the reference R and template T images. Clearly one
can tell that the two images are not related by affine transforms. However we use an affine
transform to provide a good initial guess which we denote by TSR, in Figure 4.3 (c), obtained
from the affine method as in §4.2.2.

Then the registered images F (uw) obtained from (4.24) with the FAS-FMG method with and
without the affine pre-registration step are shown, respectively, in Figures 4.3 (e) — (f). The

3Source: http://www.math.mu-luebeck.de/safir/
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(c) affine initial: TH® (a(50))

Figure 4.3: Example 4.3.1: Deformable registration results of the X-Ray images of a human hand,
showing the importance of a pre-registration step. Left: (a) Reference R, (c) the linearly registered
template (initial template) using the GN method TH% (a®®), and (e) the registered image F(u®) by
FMG-FAS with (c). Right: (b) Template T, (d) the initial image F(u'®) after FMG step, and (f) the
(failed) registered image F(u'®) with (d).

latter method (without using the affine pre-registration step) is not only much slower than the
former with the affine step (only 2 FAS cycles), but also it failed to register properly Figures
4.3 (f). Here we remark that without the affine pre-registration step, essentially, it is the FMG

method that struggles on the coarsest grid.

Through the above example, we see that a deformable registration approach can benefit

from an affine pre-registration step whose convergence is of course of importance.

4.4 'Techniques to improve affine registration methods

The convergence of both GN and LM methods depends on suitable initial guesses, as shown in

§4.2.4. This section reviews first some existing methods that can provide a better initial guess
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than the simple a®) = (1,0,0,0,1,0)" for the GN affine model (4.16), and then shows their

numerical tests for both GN and LM methods.

4.4.1 Method 1 — Approximation based on image centers

Each of the two input images has a center location, defined by the pixel gray levels (or fea-
tures dependent). If the two centers are quite different, re-positioning the center will give
the affine registration problem a good initial guess for translation, i.e. the vector given by
a® = (1,0, ago), 0, l,a,,go))T, where a:(;m and aéo) denote the re-positioning information.

This method can be summarised as follows:
T R

(i) Estimate the centers c¢', ¢t of the two input images I', R respectively:

T = €| _ JoxT(x)dx (= ngl tigi, 21 Zjil tijj)
— S s— T T
Cg Jo T(x)dx ia Zjil tij d (4 95)
R — | _ JoxRx)dx _ (Ei2 252 reyi 2y 332 7i5d) =E [X]
£ = = = = = .
Cg fn R(x)dx Zf=11 _,i1 Ti,j R
- . 0 0
(ii) From the center differences, set aé ) = el =¢f, a,((3 ) = ct—

4.4.2 Method 2 — Approximation based on the rigid-body model

The next idea of providing a good initial guess for (4.7) is to reduce the number of parameters:
assume there exists a rigid transformation between 7" and R. Then we have a parametric model
¢(x) = Ax + b with only 3 parameters (see (4.6)):

A= {“1 "’2} = [Cose _Si“()}, b = {”3] (4.26)

ay as sinf  cos® ag
Here the above Method 1 could be used to initialise b while setting #(°) = 0. Once this model

is solved, the coefficients of a(®) will be updated for the affine model.

4.4.3 Method 3 — Approximation based on principal axes transforma-
tion

The principal azes transformation (PAT) method was introduced to image processing by Hu
since 1962 (see [104, 125] and references therein). It is an approximate registration approach
using statistical features, the image center and an eigen decomposition of the covariance matrix,

derived from the input images. Define the 2 x 2 covariance matrix of an image / by
Cov; = Er[(x—c)(x—c!)T], (4.27)

where ¢! is the image center defined by (4.25). Since matrix Cov; is real, syminetric, and

positive semi-definite, it permits an eigenvalue decomposition [104]

o 2 _ _ |cospr —Sillp[ N 1.1 0 ¥
Covy = D(p1)S2D(~p1), u(m)—me COSP,}, S {O m} (4.28)

where D(pr) denotes a rotation matrix, Yy is a scaling matrix, and o7 ; and o7 2 are standard

deviations.
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Now for images R,7’, let c¢® and ¢’ be the centers from (4.25). Then the following will be

the approximate coefficients for an affine transform
A=D(ppr)SrY D (pr)", b=cT — Ach. (4.29)

Finally the coefficients from (4.29) will be used to initialise a(®) for the affine model.

4.4.4 Method 4 — Multi-resolution approach

Multi-resolution strategy is commonly used to provide reliable initial guesses for registration
algorithms [86, 94, 99, 120, 130, 132]. The idea is to register the coarse resolution (low) images
first and then interpolate the coarse solutions level by level to the finest resolution (high). The
basic idea is essentially the same as a full multigrid method as in [11, 12, 134, 139, 140] and
done in §4.3.3.

Suppose that we operate with L levels in total (using standard coarsening [134]), with £ = 1
the coarsest level and ¢ = L the finest level. Here the size of the coarsest level 1 is chosen as
32 x 32 or 64 x 64, and the bi-linear interpolation is used. Although the full weighting operator
may be used for restriction, the usual practice is to use a Gaussian-like kernel typically consisted
of a 5 x 5 template of weights as follows. Take the reference image R = R, as example. Define

a coarsening operation from Ry to Ry_1, i.e. Ry = coarsen (Ry), by

2 2
Ry (i)=Y Y w(ky)w(ky)Re (20 + k1,25 + ks) |

k1=—2 ka=—2
where w (0) = 2/5, w(£l) = 1/4, and w (£2) = 1/4 — w(0)/2. On level ¢ a standard NLS
method (either GN or LM) is used to compute the affine transformation up to some tolerance
(e.g. tol = 1072), which is denoted by a, < Solver_Step(Te, Ry, a¢). Then the whole procedure
of Method 4 may be denoted by aj «— multiresolution(T,Rp,ar, L) with a recursion step

sumimarised below:

Algorithm 4.4.1 (Multi-resolution approach)

Implement — a, < multiresolution(T¢, Ry, ap,€)  as follows:
e If V=1

— Set a; = (1,0,0,0, 1,0)'r or use Methods 1-3 to work out an initial ay,

— ay — Solver_Step(T¢, Ry, ap).

— Ty = coarsen (T;), Ry_| = coarsen(Ry).
— ay_1 — multiresolution(T¢_1,R¢_1,80 1,0 —1)

— ay — interpolate(a, 1) as follows:
a;i, = a;,_, for i = 1,2,4,5 (the elements of the affine transformation matrix) and

a;, = 2a;, , for i = 3,6 (the elements of the translation matrix).

— ay «— Solver_Step(Ty, Ry, ay).
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(a) Method 1 Fgy(a®2)) (b) Method 2 Fgn(al7®)

(error = 2.34 x 1079) (error = 1.79 x 1079)

(¢) Method 3 Fgn(al4®)) (d) Method 4 Fgn(al®®)

(error = 6.93 x 1077) (error =7.01 x 1077)

Figure 4.4: Example 4.2.2 re-solved: Correct registration results using the GN method with Methods
1 — 4 providing initial guess solutions respectively for (a), (b), (¢) and (d).

4.4.5 Applications of Methods 1 — 4 to GN and LM methods

To illustrate the performance of Methods 1 —4, we give two successful examples: firstly re-solve
Example 4.2.2 and secondly consider a new Example 4.4.1.

Recall from Figure 4.2 that both GN and LM methods failed to converge to the desirable
solution for Example 4.2.2 with a simple initial guess. Now with Methods 1 — 4 to provide
initial guesses, both GN and LM methods work successfully — we show the registered results

from GN in Figure 4.4 (while the LM results are virtually identical).

Example 4.4.1 Here we consider the deformable registration problem for a pair of MR images
of a human head, with Figure 4.5 (a)—(b) showing the reference image R and the template
image T in size 128 x 128.

As this is a deformable (not affine) problem, we can only use Methods 1 — 4 to provide
an initial guess solution for the affine model, whose solution is then used for the diffusion
registration method of §4.3.3. Figure 4.5 (¢) — (d) shows the results of affine GN and LM
methods with Method 4 providing the initial guess, with the GN taking only 5 iterations and
the LM taking 11 iterations on the finest resolution. Further, using Figure 4.5 (¢) — (d) as
initial quesses, the diffusion registration method of §4.3.3 with o = 0.058 gives the respectively

registered images as depicted in Figure 4.5 (e) — (f).

Of the four methods, Method 4 is believed to be the best because Methods 1 — 2 are not

as general as 3 — 4, and Method 3 is unable to resolve shear components [125]. However, even
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(a) Reference R (b) Template T

(d) LM with Method 4

Figure 4.5: Example 4.4.1: Correct registration results of the MR images of a human head (deformable
model of §4.3.2 with initial solutions provided by Method 4) as in row 1. The second row displays the
helpful pre-registration images obtained from (c) the GN method Tgn and (d) the LM method Tim.
The last row (e) — (f) shows the deformable model (via FAS) registered images starting with (c¢) — (d)
respectively.

Method 4 cannot provide good initial guesses for some examples, as shown later in Example
4.7.2. Although one can think about designing better ways than Methods 1 —4 to provide more
reliable and robust initial guesses for the affine model, our idea below is to propose a modified

affine model that is less demanding than the standard model for initial guesses.

4.5 A regularised affine registration model

We propose to regularise the minimising functional. Although the regularisation idea is widely
known for non-parametric transformation models (as in §4.3.1), it is not usually applied to
paranetric registration problems because the number of unknowns is relatively small compared

with those of non-parametric transformations.
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Motivated by (4.20), we solve, instead of (4.3), the following minimisation problem:

lgi‘n{ja(‘vpa) = ND(pa) + aR(x — Soa)}v (4.30)

where the regulariser R for affine image registration is proposed to take the form

2 2
Ry = %Z:l [#i — ¢a, (x )”me %21 fQ |V (@i — pa; (%)) sz)dQ,
P 2
R(z—¢a)={ Ra= %; i — ¢a, X)|I2, = 1 > Jo (5 = pay (%))2)d, (4.31)
R3=Ri[x—pal + Ro[x— pa],
Ri=1%al;

Here the regularisers R, Ry, and R3 are motivated by regularisation, differing only in norms

for functions, which are respectively the Sobolev semi-norm H} Lo—norm, and Sobolev

semi’
norm H!. R, is a simple option, using the 2—norm for a. Clearly the new regularised affine
registration (RAR) model (4.30) reduces to be the classical one (4.3) when @ = 0. As already
pointed out in §4.3.1, the regularisation parameter @ balances the influence of D and R. An
efficient method to select the optimal & will be discussed in the next section. For affine problems
where the true solutions require large translations, one may argue that such regularisation might
restrict solutions from reaching true solutions. Fortunately our tests will show that this is not
the case.

We now express the proposed regularisers in an analytical form in the terms of the six-

T
parameter vector a = (a1, ag, as,ay,as,ag) € RS as follows:

1
Ria) = ; ((1 —a)? +ad+al+(1 —a5)2>, (4.32)
1 2 2 ’2 2
Ra(a) = 5 <a3—1+—2+a3+“—4+5+a6
1
+ 5 (a1a2 + CL4CL5) + ayasz + agaz + asas + asag
2 1 2
—= (a1 +as) — 5(02 +a4)—(a3+a6)+5 3 (4.33)
1/4 4 4
5 01+ a2+ +3a4+3a5+ab
1
+ 5 (@1a2 + asas) + ara3 + azaz + asae + asag
8 1 8
o §(al +as) — 5((12 +cL4)—(a3+a6)—|—§ R (4.34)
1
Ry(a) = 3 (a + a3 + a3 +aj + a3 +af). (4.35)

Further apply the GN approach to solve the discrete minimisation problem:

IIEI%%{Ja(a) =D(a) +aNR(a) = D(a) + aR(a)}, (4.36)

67



where the factor N = n? for a square image n xn is now needed in a multi-resolution setting with
a =alN, since the discrete data term D as in (4.10) does not contain step-lengths information.

The GN perturbation da*) for (4.36) is then given by

Hy, (a¥)sa® = —gg, (a®) (4.37)
where
Hy (a®)=J"(@®)J@*) + aHg (a®) (4.38)
and
g7.(a®) = g(@a®) + aV,R[a®] (4.39)

are the approximated Hessian and the gradient of J, at a®), and V,R[a®] and Hg(a®)
are respectively the gradient and the Hessian of R at al*). Note that for R = R; we may
approximate Hr, (a*)) by I because it helps Hy, (a®)) to be a symmetric positive definite
matrix. As before, once we have the GN update (5a(k), we can also apply the line-search idea:
alk+1) = a(k) 4 (k) 5a(®)

A connection between our RAR method and the LM method from §4.2.3 can be explained as
follows. Consider the regulariser R4 with a fixed o. Our RAR method defines the perturbation

given by
[I7(@*)J(@a®) + o1)da® = —[g(a®) + a1a®™)], (4.40)

which is a solution of the following minimisation problem:
min S [1P(@%) + 3 (a(k)> sa® — Rl + Slla® + 523, (4.41)

If the second term in (4.41) is replaced by %||6a("’)|[§, i.e. we set al®) = 0, we recover the old

LM perturbation (4.18):
(BT (@™ J(a®) + aljsa™ = —g(a®), (4.42)
which is a solution of the minimisation problem:

5{;gi§6%||f*’(a(“) +3(a®) s~ RIZ + 31523, (4.43)

Although the second term in (4.43) can be viewed as a regulariser, a Tikhonov-like term,
for the perturbation da, the main problem with using this latter type of regularisers is that
we cannot directly control the characteristics of the solution. In other words, this approach
does not take account into @ priori information about the characteristics of solutions, which
is the main task of regularisation. In contrast, our RAR approach regularises the current step

(a(k) + 5a) and so does control the characteristics of the solution.

4.6 A cooling method for the RAR parameter

As will be shown in §4.7, our RAR model is more robust than the standard affine model due

to being less demanding on good initial guesses. However the standard model does not need a
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regularisation parameter o. Here an algorithm to select the optimal « on the finest level L is
presented first, followed by the idea to a multi-resolution setting to minimise the extra work.

There are many ways to select & — one option is to use the ‘cooling’ process (i.e. contin-
uation) in an adaptive manner (see Haber and Oldenberg [66], Newman and Hoversten [108],
Chen et al [29], and Lelievre and Oldenberg [92]). The basic idea is to start with a high initial
value of a and then slowly reduce « in such a way that the solution obtained using it is an
excellent starting point for the next minimisation problem, in order to decrease J,.

The initial oy is first estimated so that alHR(agm) dominates the JT(ago))J(agm) compo-

nent in (4.38), where a§°) is the initial guess solution. At the (I + 1)th step we set
a1 = noy € [ao, a1, (4.44)

where 7 is a constant, usually chosen to be about 0.5, and g is a small positive number, e.g.

5 x 1075, Subsequently, we apply a;;; and the initial guess solution obtained by the previous

iteration al( +)1 = a; with the associated inner loop to obtain the minimum a;4; within some

tolerance. As mentioned in [66], since the functional 7, changes at each outer loop iteration, the

demand of decreasing the value of the same functional is not reasonable we impose the so-called

consistent condition to ensure that the solution a;; and parameter a;,; are acceptable:

J, (ay) = D(ay) + g1 R(ay). (4.45)

X1

(a141) = D(a41) + iR(agr) < J.

appa
If this condition is not satisfied, we increase 7 (usually to 0.9) and re-start the step. Our
experience suggests that the criterion given by

a1 —
max{||a+1||, |lal|}

<6 (4.46)

is suitable, where 6 > 0 is small (normally set to 5 x 10~%). The process of solving the problem

(4.36) for a with a given « (by the new RAR solver) will be denoted by
a; — Solver_RAR(Ty, Ry, ay, a, tol)

for tolerance tol and the maximum number of iterations IMAX.

Finally, we summarise this unilevel cooling process as follows:
Algorithm 4.6.1 (Registration through cooling)
[a*, a*] «— cooling(T,R,a® o)
e Setl=1,n=05a=a, a=5x10""and aq = al?. Set IMAX= 25 and tol = 102,
e Outer iteration: For [ =1,2,3, ...

—1. Set ay4+1 = nay in [ag, o]
—2. Inner iteration: Aoy — Solver RAR(T, R, a;, a4, tol).

=3. It J,,,, (@new) < J.,,, (a1)

X141
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—3.1. Set aj41 = apew, n=0.5,{=10+1, and go to 4
Else
—3.2. Set n=10.9, and go to 4

—4. Check for convergence using the criterion (4.46).

If not satisfied, then return to 1, else, exit to the next step to stop.
e Set a* = a,¢, and o* = o.

In the above algorithm, one notes that each minimisation may not to be solved exactly
within IMAX iterations. Even so, the algorithm can be expensive for large images due to

accumulated cost. Then our first robust algorithm will be the following.
Algorithm 4.6.2 (The basic RAR method)

1. Imput tol, given images T, R. Set a =1 (optional).

2. Obtain the optimal regularisation parameter o« (through cooling) via Algorithm 4.6.1:

[a® a] — cooling(T, R, a, ).
3. Solve the RAR problem (4.36) on the finest level:

a — Solver _RAR(T, R, a, a, tol).

In order to save computational work, we propose to use a hierarchy of L grids (with level
L the finest and level 1 the coarsest one) as in §4.4.4. The optimal « is searched only on the
coarsest level 1, followed by the idea of §4.4.4 to provide finer level initial guesses. The whole

procedure is summarised in Algorithm 4.6.3.

Algorithm 4.6.3 (Multilevel strategy for optimal a and reliable initial solution)
[a¢, av] — RAR_multiresolution(T¢, Ry, ag, ag, ¢, tol)

o IfV=1

— a; = (1,0,0,0,1,0)" or use Methods 1 — 3 in §4.4 to work out an initial a,
— ag=C [C >0 should be large enough e.g. C = 1000]

— [ag, aq] — cooling(Te, Ry, ag, o)
o Else

— Ty_ = coarsen (Ty), Ry 1 = coarsen(Ry)

— [ag_1,¢0 1] — RAR multiresolution(Ty_y, Re_1,a7_1,0¢ 1,¢ —1,tol)
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— ay «— interpolate(a, 1) as follows:
a;, = a;,_, fori =1,2,4,5 (the elements of the affine transformation matrix) and

a;, = 2a;, , for i = 3,6 (the elements of the translation matrix).
— ap = 4oy [Recall that ap = En? and n; = 2n;_4]

— a; «— Solver _RAR(Ty, Ry, as, ay, tol IMAX)
Algorithm 4.6.4 (The refined RAR method)

1. Input tol and set Ty, =T, Ry = R on the finest level. Set toln, MAXN.

2. Obtain the optimal regularisation parameter o (on the coarsest level 1 through cooling)

and a good initial solution (through multi-resolution) via Algorithm 4.6.3:

[a®, a] — RAR_multiresolution(T, Ry, ar,or, L).
3. Solve the RAR problem (4.36) on the finest level | = L using the found a:

a; < Solver _.RAR(Ty, Ry, ag, ay, toln, MAXN).

4.7 Numerical experiments

In this section, some results to illustrate the proposed algorithms are presented. The first
example (Example 4.7.1) is used to defend the integrity of the RAR method, i.e. problems
that possess genuinely large components in a are not penalised by the proposed method (the
regularisation). The second example (Example 4.7.2) is employed to shown that, for a nontrivial
affine problem, the standard affine model even when Method 4 (§4.4.4) can fail to register
properly while the RAR models (especially Algorithm 4.6.4) can register successfully. The final
example (Example 4.7.3)aims to show that, for the deformable problem (Example 4.4.1), the
RAR method can provide a better initial solution than Method 4 (§4.4.4) which leads to even

fewer number of FAS cycles by a deformable method (§4.3).

Example 4.7.1 We consider a pair of synthetic images as in Figure 4.6 (a) — (b) with the
images of size 512 x 512. Clearly one expects a will require large values.

Using Algorithm 4.6.4 with Ry, we find that ag,=(0.2561, 0.4800, —134.4109, —0.2399,
0.8000, 275.9836) T which is evidently not penalised by regularisation. Similar solutions are
obtained by Ro, Rz, Ry4. The successfully registered images using these 4 regularisers are re-
spectively shown in Figure 4.6 (c), (d), (e) and (f). Here ag, is the solution obtained from the

requlariser R .

Example 4.7.2 We consider an affine registration problem for a pair of MR images of a human
head as in Figure 4.7 (a) — (b), where ny = ny = 256. We compare the GN and LM methods
with Method 4 (Algorithm 4.4.1) with our RAR method (Algorithm 4.6.4).
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(c) FRAR((L%?)) (d) Frar (a%f))

(e) FR’\R("g?) (f) FRAR@%?)

Figure 4.6: Example 4.7.1: Correct registration results (requiring large affine parameters) of a pair
of synthetic images by our RAR model. The first row shows the reference (a) R and (b) the template
T. The second and third rows show the registered images (¢) — (f) from our 4 regularisers R1 — Ry,

respectively.

Since max{||a* —ag,||2/||a*||2]i = 1,2,3,4} = 0.0069, this means that our method converges
to the true solution. Moreover, the registered images obtained from 4 different regularisers shown
in Figure 4.8 (a) — (d) are almost identical. Comparing those results obtained from the GN and
LM methods (see Figure 4.7 (¢) — (d)) and our RAR method (see Figure 4.8 (a) — (d)), one

notes that the proposed latter method is more robust than the former methods.

Example 4.7.3 Finally, we re-solve Example 4.4.1 to show that Algorithm 4.6.4 is better than
Algorithm 4.4.1 in affine pre-registration for the purpose of using a deformable model (via FAS
algorithm).

Here we show in Figure 4.9 (a) — (d) the four respective pre-registration images from our 4
reqularisers, and they appear identical. Indeed, using any of them to start FAS (§4.3.3) gives
the same result as shown in Figure 4.9 (e)—(f) using (a)— (b) respectively. Moreover the details
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Figure 4.7: Example 4.7.2: Failed registration results of GN and LM with Method 4 (Algorithm 4.4.1).
The first row shows the reference image: (a) R and the template image: (b) T. The second row presents
the registered images: (¢) Fon(a*?) and (d) Fm(a'®).

from Figure 4.9 (a) — (d) are visually more pleasing than Figure 4.5 (e) — (f) (especially at the

upper region,).

To show the quantitative gain from using our Algorithm 4.6.4, we now present the compa-
rable results in Table 4.1 for clarity, where ‘Out.Iters’ (same as [ in step 3.1 of Algorithm 4.6.1)
is the number of the outer iterations by Algorithin 4.6.2 and ‘Avg.Iters’ means the average of
the number of inner iterations, given by

The number of accumulated iterations by Solver_RAR on the finest level

Avg.Iters = — : o : - ——,
The number of updates for parameter « (via steps 3.1 and 3.2 in Algorithm 4.6.1)

Clearly apart form the quality improvement over standard models (as illustrated before),
much speed gain can be observed in Table 4.1 with our recommended Algorithm 4.6.4.

To summarise, in these and other tests, we have compared the performance of Algorithm
4.6.2 with 4.6.4. While both give comparable results, Algorithm 4.6.4 is much cheaper due to

using a coarse level to work out for a.

4.8 Conclusions

Parametric registration via a nonlinear least-square model offers a fast registration method.
However the commonly used iterative methods such as the GN and LM methods often have
convergence difficulties, due to lack of good initial solutions, so the resulting nonlinear model

is often not robust.



(a) Frar (a%l”)

Figure 4.8: Example 4.7.2 re-solved: Correct registration results using our RAR method (Algorithm
4.6.4) with 4 regularisers R1 — Ru4, respectively shown in (a) — (d).

In this chapter, we first examined the robustness issue of the GN and LM methods for
affine image registration problems by reviewing four existing methods for getting good initial
guesses. [t turns out that there are always difficult cases for which these initial guesses are
not sufficient. Such cases include getting pre-registration images for deformable registration
problems; we reviewed the diffusion model and used a FAS-NMG method for testing purposes.
Second, we introduced a regularised affine registration (RAR) model that is less demanding
than the standard model for initial guesses. To find the optimal regularisation parameter in an
efficient way, we used a coarse-to-fine approach to initialise the RAR model. Numerical results
showed that the developed multilevel algorithm is generally reliable and robust in i) solving the
affine image registration problems ii) providing a good initial guess for deformable models.

Recently there was new work introduced by Haber and Modersitzki [63] attempting to
combine parametric and non-parametric models and we believe our idea of regularising the

parametric coefficients should be applicable there as well.
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(b) Thag(a%))

Figure 4.9: Example 4.4.1 re-solved and improved: The affine pre-registration steps (a) — (d) using

Algorithm 4.6.4 with different regularisers R1 — R4, respectively. The last row (e) — (f) shows the

respective registered images by FAS method with (a) — (b) as initial solutions (using the (c) — (d) gives
2) are needed than before (i.e. 6).

almost identical solutions). Clearly less FAS cycles (i.e.

Example | Image | Algorithm 4.4.1 (GN) Algorithm 4.6.2 (S1) Algorithm 4.6.4 (S1)
Number | size N Iters/Ini.Cpu/Cpu Out.Iters/Avg.Iters/Cpu  Iters/Ini.Cpu/Cpu
4.7.1 1287 8/0.1/0.4 3/9/1.7 9/0.2/0.5
2567 7/0.2/1.7 3/9/5.7 7/0.3/1.7
5122 9/0.9/9.5 3/10/30.3 10/1.1/9.3
10242 10/3.6/44.9 3/10/125.3 10/3.6/41.2
47.2 1287 7/0.1/0.4 9/12/5.2 11/0.3/0.7
2567 12/0.2/3.5 9/12/51.7 11/0.3/2.6
5122 8/1.1/10.3 9/11/251.5 10/2.0/11.7
10242 24/4.8/139.5 9/11/810.1 12/8.2/58.0

Table 4.1: Comparison of Algorithm 4.4.1, 4.6.2, 4.6.4 using Examples 4.7.1—4.7.2 with varying N.



Chapter 5

A Robust Multigrid Approach
for Variational Image
Registration Models

Variational registration models are non-rigid and deformable imaging techniques for accurate
registration of two images. As with other models for inverse problems using Tikhonov regu-
larisation, they must have a suitably chosen regularisation term as well as a data fitting term.
One distinct feature of registration models is that their fitting term is always highly nonlinear
and this nonlinearity restricts the class of numerical methods that are applicable. This chap-
ter first reviews the current state of art numerical methods for such models and observes that
the nonlinear fitting term is mostly ‘avoided’ in developing fast multigrid methods. It then
proposes a unified approach for designing fixed-point type smoothers for multigrid methods.
The diffusion registration model (second order equations) and a curvature model (fourth order
equations) are used to illustrate our robust methodology. Analysis of the proposed smoothers
and comparisons to other methods are given. As expected of a multigrid method, being many
orders of magnitude faster than the unilevel gradient descent approach, the proposed numerical

approach delivers fast and accurate results for a range of synthetic and real test images.

5.1 Introduction

Given a reference image R and a template image 1', the image registration problem can be

posed as a minimisation problem of the joint energy functional given by
min{ 7, (u) = D3P (u) + aR(u)}. (5.1)
u

Here the image intensities of R and 'I" are assumed to be comparable and we adopt the SSD

functional
DD () = 1 / (1 (x + u (x)) — R (x))2dx, (5.2)
Ja

to quantify distance or similarity of two given images R and 1'. Recall that R and 1" are

modelled as the continuous functions mapping from an image domain Q@ C R? into V C Ry
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and the components u; and us of the deformation field u : R? — R? are the functions of the
variable x = (Il,Iz)T in the image domain Q. Without loss of generality we assume that
Q=1[0,1> c R? and V = [0, 1] for 2D gray-scale images.

In this chapter our main concern is to address the fast and effective solutions of the resulting
PDE systems from (5.1). We consider two regularisers: firstly the diffusion regulariser as

introduced by Fischer and Modersitzki [46]:
dift 2 2
RYMw) = 13" [ V(o) dx (5.3)
I=1JQ
and secondly the curvature regulariser as introduced by Fischer and Modersitzki [47]:

2
RFI\flcurv(u) = %Z/(AUZ)ZC{X (54)
=1/

as respective examples of second order PDEs and fourth order PDESs; our method will also be
applicable to other models that lead to second or fourth order PDEs, e.g. the elastic model
[104], the total variation model [51, 53], the modified total variation model (see Chapter 6
later), and other curvature models [35, 79, 78, 73, 75].

Although the multigrid techniques have been successfully used for numerical solutions for
deformable image registration [53, 54, 65, 76, 73, 83, 89, 131, 145], none of the existing variants
are optimal implementations. The nonlinear fitting term is mostly avoided in these works. We
remark that other imaging models [27, 24, 31, 118] do not have such problems due to the fitting
term; see §3.6 for a brief review of existing multigrid methods for deformable image registration.

The rest of the chapter is organized as follows. In §5.2, we consider our first model problem
of diffusion registration, surveying and discussing its numerical treatments. A new fixed-point
smoother is proposed and analysed in §5.3, for the FAS-NMG approach for the underlying
nonlinear Euler-Lagrange systems. In §5.4,, we consider our second model problem of curvature
registration and demonstrate how to use our proposed method. Experimental results from
medical test images are illustrated in §5.5, in order to show the excellent performance of the

proposed numerical scheme compared with other methods with conclusions summarised in §5.6.

5.2 The diffusion registration model and its numerical
methods

We now introduce our first model and review briefly various solution methods paying partic-
ular attention to robustness of multigrid methods. The model itself is not particularly more

important than other models from [104] but we use it to illustrate the fast solution issues of

lmage registration. Below we use d,, /' = ng: and Oy, ., 1 = 63,‘?;,2.

5.2.1 The diffusion model

The minimiser u© = (ul(x),ug(x))T of the energy functional 7, in (5.1), defined by (5.2) and

(5.3) satisfies the Euler-Lagrange equation [104], given by the following system of two coupled,
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nonlinear, and elliptic partial differential equations (PDEs):
f1(u)
——
N1 (U):~QAU1+( —H)@ull’ —O,

f2(u)
et e
Nz (u) = —aAug + (Tu — R) 81‘2’1‘,1 =0,

subject to the homogenous Neumann’s boundary conditions
Onpu1 = Opug = 0 on 9. (5.6)

Here the nonlinear functions fi(u), fa(u) are from the fitting term DSSP | which is nonlinear
(as remarked) and a key feature of registration models distinct from other imaging models [27].
Refer to [46, 47, 48, 49, 51, 53, 54, 62, 65, 59, 60, 61, 76, 72, 79, 78, 73, 75, 83, 89, 90, 94, 104,
131, 145]. In fact, the nonlinear coupling of the two PDEs is through the term /'(w). Hereby,
A denotes the Laplace operator, and n = (n1,n2)" is the outward unit vector normal to the

image boundary 0€2. Note that the first and second terms in (5.5) are the first variations of the

'DSSD

regulariser term R and the data term , respectively.

5.2.2 Discretisation by a finite difference method

For simplicity, let (uf’)” = u}' (z1,,72,) denote the grid function for { = 1,2 with grid spacing
h = (hi,h2) = (1/n1,1/n2). Applying finite difference schemes based on the cell-centered grid
points to discretise (5.5), the discrete Euler-Lagrange equations at a grid point (i, j) over the

discrete domain,

Q ={x€Qx=(z1,,22,)" = (20 —1)h1/2,(2j —1)h2/2)", 1 <i <y, 1<j<ny}
(5.7)

are given by
N{I(uh)i.j = —alh (U1)1J T fl (u 17“3) g = gf;,j

N3 (uh)ij = —alt(uh)j + f3 (u},u)ij = g5,

with the following notation
—LMw))i g = (/RD(D) 5 )iy = (), @i)ig),
(2);; =2(1+7%), v =hi/hy,
(2),; @) = (
Alhg), = (08 = RED(E, =1 5)/ (2h),
13 (udydh), = (U0 = RE (L = T 1)/ (2h2)),
L =TRG+ Wi, g+ (uh)ig),
()i = (W}, (uh)ig) "

uMivr g+ @W)io1 Y2 W)ijer + V()i

Here g{li“] = ggw = 0 on the finest grid in multigrid setting to be used shortly. We note that the

approximations in (5.8) need to be adjusted at the image boundary 9€2 using the homogeneous
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Neumann boundary conditions

(u?)i.l = (ulh)w, (Uf')i,n,g = (ulh)i.'nzflv (ulh)l.j = (Ulh)zj, (7—1‘?)711.)‘ = (u?)nl~1,j> (5~9)

5.2.3 Review of non-multigrid numerical solvers

The first commonly used method is a gradient descent approach solving, instead of the nonlinear
elliptic system (5.5), the nonlinear parabolic system

Btul = aAul = — (Tu = R) 81,1,1'11 (5 10)

Opug — alug = — (1y — R) 0y, 10 ' '
where u = u (x,t) = (w1 (x,t) ,u2 (x,t))T will converge to the solution of (5.5) when ¢ — oo,
with the initial solution w (x,0), typically u (x,0) = 0. The advantage is that various time-
marching schemes can be used to solve (5.10) in order to circumvent the nonlinearity on the
right-hand side. For example, the semi-implicit scheme can be proceeded as follows (in matrix

vector form obtained from the discretised version of equation (5.10) by §5.2.2)

2
W = (- ar S A) Ll - il W)

=1 . (5.11)
uékH) =(I- aTZAl)*l(uék) — ng(ugk),ugk)))
=1

Here, I is the identity matrix, f; (u},u}) is the discretised version of the second term in (5.5),
7 > 0 is the time-step determined by a forward difference approximation of the time derivative
Oyuy, and Ay is the coefficient matrix from discretisation of the Laplace operator A along the
l-coordinate direction subject to Neumann boundary conditions. We note that the DCT-based
method in [104] and the FT-based method in [91, 135] are optional to exactly solve the linear
system (5.11).

The second method, an additive operator splitting (AOS) scheme in [46, 93, 138], is faster
and more efficient than the standard semi-implicit scheme (5.11). The basic idea is to replace

the inverse of the sum by a sum of inverses. The corresponding iterations are then defined by

i 12 _ J : "
ugkﬂ) ==> (I-2a7A)) . (ugk‘) —7h (ugk‘),uék)))
2/=1 p
13 , (5.12)
uék'H) = 52 (I—2arA;)"" (ué’c) — ng(ugk),u(k)))
=1

which is much cheaper than those obtained from (5.11) because the two tri-diagonal systems in
each component are solved per iteration rather than the 5-band system. We remark that the
AOS scheme is of O(N) (N = niny), while the DCT-based method is of O(N log V).

The third method, the one-cycle multi-resolution (or a coarse-to-fine FMG technique), is
proposed by Lu et al. [94]. The idea is to solve (5.5) first with the Newton-Gauss-Seidel

relaxation method given by

(new) i (old) A’l(u("l"))
1 T T G, N (ue)
1
o (new) _ (old) A/'g(u(Old)) (513)
U T U2 T G, Na(uled)
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on the coarsest (lowest) resolution, and then interpolate the coarse solution with an appropriate
method as a good initial guess solution to the next finer resolution. This process is repeated
until (5.5) has been solved by (5.13) on the finest (highest) or original resolution. Although, this
method provides well matched images in most of the cases and the basic idea is essentially the
same as a FMG method as in [12, 67, 134, 139, 140], one should note that convergence cannot
be proved even for much simpler equations [134]. This is due to the fact that the solution on
the fine level depends strongly on the coarse one. As a consequence, errors introducing from
the interpolation procedure may propagate in such a way that they spoil the overall results
completely.

Although the above three methods are easy to implement on a unilevel and multilevel, they

are not as efficient as a multigrid method.

5.2.4 Review of multigrid solvers and previous work

Multigrid techniques are widely used as fast methods for various PDEs [12, 67, 134, 139, 140].
For deformable image registration models, we give a brief review here [53, 54, 65, 76, 73, 83,
89, 131, 145].

This section first reviews the basic FAS-NMG algorithm before discussing previous work on
solving (5.5). As it turns out, two approaches considered are both more efficient than a unilevel

method but none are robust solvers.

The full approximation scheme (FAS)

For a nonlinear problem, the use of a full approximation scheme (the nonlinear multigrid method
(NMG) by Brandt [11]) is natural. The FAS technique has been tried in various iiage processing

applications; see e.g. [6, 7, 13, 18, 22, 24, 31, 52, 53, 122, 123]. We now denote our system of
two nonlinear PDEs (5.5) by
Nlh uh — g{':’
{ V) =g (5.14)

separating the linear operator £" from the nonlinear operator f/' (I = 1,2) on a general fine
grid with step size h = (hy, hy) on Q.
T . .

Let v = (v{‘,vg) be the result computed by performing a few steps with a smoother
(pre-smoothing step) on the fine-grid problem. Then, the algebraic error e” of the solution
is given by e" = u” — v". The residual equation system is given by

Jvlh (’Uh + eh) _Nlh (’l)”’) — riz _/\/’111 (,vh) — 7,;1
: (5.15)
NP (0 + eh) — NE: (wh) = g — A2 (wh) = r
In order to correct the approximated solution v" on the fine grid, one needs to compute the
error e”. However, the error cannot be computed directly. Since high frequency components of

the error in pre-smoothing step have already been removed by the smoother, we can transfer

80



the following nonlinear system to the coarse grid as follows

N (V" +€e") =7} + N (V") NE (v +ef) =rff + N (v7)
N (uh) gt N (ut) af!
_ (5.16)
Ny (v +e") =rh + NJ (") N (v + eff) = rll + NF (v)
N3 (uh) g5 N (ut) 73

where H = 2h is the new cell size H, x Hy with H; > hy and Hy > hy and ng # 0 on the coarse
grid. After the nonlinear residual equation system on the coarse grid (5.16) have been solved

with a method of our choice, the coarse-grid correction e/ = u” — v¥ is then interpolated

back to the fine grid e that can now be used for updating the approximated solution v” on

the fine grid, i.e. v",, = v" + e" (coarse-grid correction step). The last step for a FAS

new ~_
multigrid is to perform the smoother again to remove high frequency parts of the interpolated
error (post-smoothing step).

In our FAS multigrid for diffusion image registration, standard coarsening is used in com-
puting the coarse-grid domain 2y by doubling the grid size in each space direction, i.e.
h — 2h = H. For intergrid transfer operators between ), and Qp, the averaging and bi-
linear interpolation techniques are used for the restriction and interpolation operators denoted
respectively by 1,‘;{ and 1}3; see more details in [12, 67, 134, 139, 140]. In order to compute the
coarse-grid operator of NJ* (u") consisting of two parts: £ (ul') and f (u?,u}), a so-called
discretisation coarse grid approzimation (DCA) is performed [12, 19, 134, 140]. The idea is to
rediscretise the Euler-Lagrange directly. In the case of £" (uf), the corresponding coarse-grid
part £ (ulH) is obtained by the restriction of «) and a simple adaptation of the grid size
to the discretised Laplacian. For f/ (uf,u%), we first use the restriction operator with both
components of the deformation field w”, «? and %, and the given images, " and I'", and then
compute the corresponding coarse-grid part f{f (uf’, uf). To solve (5.14) numerically, our FAS

multigrid is applied recursively down to the coarsest grid consisting of a small number of grid

points, typically 4 x 4, and may be summarised as follows:
Algorithm 5.2.1 (FAS Multigrid Algorithm)

Denote FAS multigrid parameters as follows:

v1  pre-smoothing steps on each level

vy post-smoothing steps on each level

I the number of multigrid cycles on each level (p= 1 for V—cycling and p= 2 for W—cycling).
(Here we present the V—cycle with pu=1.)

o regularisation parameter

w relaxation parameter

GSiter  the maximum number of iterations using a smoother
hoohoarh o afh b b ple ol ~
[1){' , ﬂé'] — FASCYC (1;,' Jus NGNS L gl ga, R, T v, e, o w, Gb’zter)
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o If Q), = coarset grid (|Q)| =4 x 4), solve (5.14) using time-marching techniques such as
semi-implicit or AOS scheme (§5.2.3) and then stop. Else continue with following step.
e Pre-smoothing:
For z =1 to 1, [v’f,vé‘] «— Smoother (17{', ol gt gt R T o, w, GSiter)
° Restriction to the coarse grid:
vl — IHop, vl — IHu, RHE — IER", TE — JHTE
e Set the initial solution for the coarse-grid problem:
ot 5] — [l of )
e Compute the new right-hand side for the coarse-grid problem:
git = Ii (g1 = MY ('UI»UQ)) + M (of u3 ),
93" — It (g5 = N3 (vl v3)) + N5 (off )
e Implement the FAS multigrid on the coarse- grid problem:
for z =1 to p, [U{{,Uz ] — FASCYC (v ol N NS gt g \RH T " v, 1, 0w, GSlter)
e Add the coarse-grid corrections:
v{‘«—v{’—%[}’,(le—E{{), AR g ( —vz)
e Post-smoothing:
For z =1 to vy, [U{’,Uél] — Smoother (v{',vz,gl, b RETM onw GStter)

For practical applications our FAS-NMG method is stopped if the maximum number of V—
or W—cycles € is reached (usually £; = 20), the mean of the relative residuals obtained from
the Euler-Lagrange equations (5.14) is smaller than a small number 5 > 0 (typically e, = 1078
for a convergent test and only £, = 1072 for a practical application), the relative reduction
of the dissimilarity is smaller than some €3 > 0 (we usually assign €3 = 0.20 meaning that
the relative reduction of the dissimilarity would decrease about 80%), or the change in two
consecutive steps of the data/fitting term D is smaller than a small number ¢4 > 0 (typically

4 = 107%). A pseudo-code implementation of our FAS-NMG method is then summarised in

the following algorithm:
Algorithm 5.2.2 (FAS Multigrid Method)

v" — FASMG (v", 0, F)

. 5 T ;
o Select o, © = (e1,€2,£3,24) and initial guess solutions " ;.. = (v{ ,vé’) on the finest grid

e Set K =0, (v")X =l i, Eo=e24+1,83=c3+1,and &1 =e4 + 1
e While (K < e; AND &, > 52 AND &3 > e3 AND ?;:4 > €4)
- (v")I<+1 = [v” ] — FASCYC (1)1 LR NE ND gt gk RY, T 11,15, 0, w0, G’Sitew)
— &= mean{”g Nh(( h e ||2/Hg /\[1]l ( i,nit'inl) [l2] 1= 1,2}
_ E~3 Dh(Rh Th h h+1)/Dh(Rh Th)
[Recall that D”(R” Tl) ~ 22 (|RM, T |3]
— &1 = |,DI’(R" (uh K+1) Dh(Rh Th n h)|
—K=K+1
e end

As is well known, in addition to restriction and interpolation operators, the above Algorithm
5.2.1 requires a suitable smoother based on some iterative relaxation method which is often the
decisive factor in determining whether or not a multigrid algorithin converges. This issue will

be discussed next after we review the linear multigrid method.
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The linear multigrid method for (5.5)

For a nonlinear problem, a linearisation approach can lead to a coupled outer-inner iteration
method with the inner solver provided by a linear multigrid method. For (5.5), the outer
iteration is introduced either in a GN step [65, 83, 89] or in terms of the semi-implicit time

marching scheme [73, 131] as follows

2 - L
I-ar DA™ = @ — i@, )
et , (5.17)

2
b= O’TZZIAz)uékH) = (ugk) = sz(ugk)., u(k)))

which is a system of two linear elliptic PDEs. Finally each outer step k is solved iteratively
by a linear multigrid. In order to reduce the number of outer steps, a scale space framework
described in [78] can be used for adapting automatically the registration parameters 7 and a.
Although, this numerical scheme is very accurate for providing visually pleasing registration
results, we found experimentally that it is quite slow in fulfilling the necessary condition for
being a minimiser of the variational problem represented by (5.1), i.e. in achieving convergence,
because the linear system has to be solved many times with changing the right-hand side of
(5.17); see Tables 5.2 — 5.3. This is a convenient way of using a multigrid method but is not as

optimal as a nonlinear multigrid method.

The nonlinear multigrid method for (5.5)

The above introduced FAS-NMG algorithm can be readily applied to (5.5). The choice of a
suitable smoother is a key for fast convergence. Below we briefly review four types of smoothers
that have been or can be used for diffusion image registration:

1) The Newton-Gauss-Seidel relaxation smoother. This was used in Gao et al. [54]
for (5.5). Although, there are no numerical results for the convergence of the FMG technique
in their work, we found with several tests that this kind of smoothers provides visually pleasing
registration results within a few multigrid steps. However, it does not perform well as a good
smoother in leading to the convergence of the FAS-NMG technique. Note that this smoother
can be derived directly from (5.13).

2) The fixed-point (FP) iteration based smoothers. The simple linearised iterations
by the following

5.18
R = Oy = B By Lo (5.18)

41 e a
{ —aAu[f I=— (Ly1 — R) Ouy Ly
as discussed in [104, p.79] have been used by researchers; we shall name this method the stan-
dard FP (SDFP) scheme. This SDFP approach encounters a singular system for all fixed-point
step v due to Neumann’s boundary conditions. Without any special treatment for overcoming
the singularity, we found that simple smoothers such as the Jacobi-, GS-, or successive overre-

laxation (SOR)-type methods usually fail to lead to convergence of the FAS-NMG technique:

however we discuss ways of improving this idea below.
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3) The augmented system technique for the SDFP scheme. This was introduced
by Frohn-Schauf et al. [51, 53]. The idea is to convert the singular system to a nonsingular one
by augmenting extra equations. However, it may not lead to satisfaction of the necessary (first
order) condition of a minimiser of the variational problem represented by (5.1). In details, this

smoother builds on the above SDFP method (5.18) with an initial guess u[”)

—al(u [V+l]) =q-fi (u{lyi,ug’]) Gé”] (SDFP) (5.19)
—aL(wy ™M) = g — folul )y = GY

Recall that g1 = go = 0 on the finest grid in multigrid setting and the symbol h and (-); ; in
(5.8) are dropped for simplicity. As already mentioned above, the resulting system is singular
and symmetric in case of Neumann’s boundary conditions approximated by (5.9). The reason
for singularity is row sum zero in boundary points, i.e. the constant functions lie in the kernel
of £. In this case the discrete system has a solution if and only if the discrete compatibility

condition
ny,mo

S Gy =0  fori=1,2

ij=1
is satisfied [12, 51, 53, 134]. Obviously, this condition fails when the given images are substan-
tially different. Recognizing the above difficulties, Frohn-Schauf et al. [51, 53] solved a nearby
problem created by a simple modification, which guarantees that discrete solutions exist for

each fixed-point problem from replacing G}V] (Il=1,2) by

GMI
G v _ G[V] < é’ H> > ;

where I is the n; x ng—vector (1,...,1). Note that if u*+!] solves the new discrete system

{ —Ofﬁ( [V+l]) G“'[lu]

) 5.20
—aL(uy [v+1] ) = G[zu] ( )

then w1 + ¢ also solves the same problem for any ¢. This means that the solution is not
unique. In order to determine the unique solution of the discrete system given by (5.20), they
put a constraint on uwl*+1]. This can be done by applying the zero-mean condition,

ni,m2

ST = <u§”+”,ﬂ> =g=0 forl=1,2 (5.21)

ij=1
We shall denote the above method by MSDFP-FS (a modified SDFP scheme due to Frohn-
Schauf et al.).

4) The modified standard FP scheme. Following the same idea of overcoming singu-

larities, below, we consider 2 alternative ways of modifying the SDFP method (5.18)

() 4 el = G g ol

aﬁ(u[ly+l]) i Y (v[lx/] M. (MSDFP-1) \5:22)
—al(uy ) Hcquy =Gy couy

o 1l _
e i W i (MSDFP-2) (5.23)
(—al + €)uy Gy
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where ¢; (I = 1,2) and € are positive real numbers (very small number for €). We note first that
the modified SDFP method of the first type (MSDFP-1) given by (5.22) can be viewed as a semi-
implicit time marching scheme when ¢; = ¢o = ¢ > 0 is interpreted to be the time-step, as used
by Zikic et al. and Modersitzki [104, p.80]. Second, the second type (MSDFP-2) represented
by (5.23) is the simplest way to stabilise the SDFP method by adding the small number € to all
diagonal elements of £, as used by Brito-Loeza and Chen [13] in a different context. Finally, we
note that determining the optimal values for the FP parameters ¢, ¢z (or ¢), and € in automatic
procedures leading to convergence of the FP method (and a multigrid technique) is not straight-
forward for real-world applications because tuning is needed for different registration problems.

In other tests, we found experimentally that although the approximation solutions obtained
from the MSDFP-FS scheme are visually pleasing, they may not fulfill the necessary condition
for being a minimiser of the variational problem (5.1); see Table 5.2. The reason is that this
numerical scheme solves a nearby problem for each fixed-point step v by changing the right
hand side of (5.19) subject to the zero mean condition (5.21). These difficulties have motivated

us to develop the new smoother in the next section.

5.3 The proposed algorithm with a new and robust smoother

To first design a better smoother for (5.5), we have to re-consider the nonlinear terms in (5.19)
in a new FP scheme. Once this is done, a basic linear iterative solver such as the Jacobi,
GS or SOR method for each corresponding system may be used. Then to improve the model

robustness, we use a multi-resolution idea to choose the regularisation parameter c.

5.3.1 The new FP smoother

Our idea of a new FP scheme is different from the SDFP scheme (5.18) and its variants, by

aiming for full implicitness in both regulariser and data terms. This yields

_Olﬁ(lt[ll,+1]) + fl (u[ll/+1]-/uz[zl/+l]) =q (r y
1] 1] fe1]y - 5.24)
—al(uy )+ fo(uy U )=
Next, we linearise the data term f;(u; e u[;“]) via a first-order Taylor’s expansion of form

(for [ =1,2)

AP WY O g @ W 4 8, A uEheul + 8, W ul)sul,

= fl(“‘l/]v“[;]) + 01[11/]571[11/] +0 .U]du[ulv
= fl(u,[lu] [])+‘7/[V]( ‘[lu+1] [u])+g[ (ul [v+1] u[2,,]) —
where
o () = 8y, AWM Wl = (80, 1000) (Buy L)) + (L) — B)(Buyu L),
and

o12 () = By f(wl W) = (00, L3y11) (B L) + (Lasit = B) (Dugu, Lyi)-
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By (5.25), it leads to the semi-implicitly FP iteration step in terms of a 2 x 2 matrix as follows
NuMul+l = Gul)],  (RFP) (5.26)
where RFP refers to the robust FP scheme (to be tested shortly), w1 = (u[lwll,u[;ﬂ])i

N{ut] = [ —aL + oy (ul) a1z(ull) } 7

azl(u[”]) —al + ng(u[”])

G = [ G+ on@ ! ot )
G[;] + UZI(U[V])U[IV] +0.22(u[y])u[21/]

To solve (5.26), we adopt the block or pointwise collective Gauss-Seidel (PCGS) relaxation
method, i.e. all difference equations are updated simultaneously. A PCGS step is then given
by

(u[u+1])£’fjf1] — (N[u[u]]i’j)fl(G[u[u]])y“';fl/mﬂ (5.27)

where

[ (/b3)(2)i + (o11(w));; (o12(ul)); ;
(021 (ul)); 5 (a/R3)(X)ij + (22(u))i; |’

(G ; +ﬁ(011(“[V]l))’”,{(if[lz])w + (o12 (@) (wh) 5
+(a/h)(E)iy Wl

()

NuM];; =

(GLut5 ™ =
(G1)i + (o ()i ()i + (222wl (w5 i
+(a/B) (D) 1/

To gain more efficiency, one may introduce a relaxation parameter w € (0,2) and iterate the

w—PCGS steps by

(a5 = (U= w) @b+ (Nl )s) GG (5.28)

7

original PCGS result
We note first that the proposed smoother shows the interaction between the actual FP iteration
(5.26) that overcomes the nonlinearity of the operator A at each outer step v and the w—PCGS
method (5.28) that solves the resulting linear system of equations at each corresponding inner
step k. Second, instead of solving the linear system of equations using the inner solver (5.28)
with very high precision, it can perform only a few iterations to obtain an approximation
solution at each outer step. Evidently, this procedure leads to a slight difference of convergence
in the FP scheme when the proposed smoother is used as a stand-alone solver, whereas the
computational costs significantly reduce; see Figure 5.1 (a). Moreover, the relaxation parameter
w also has a strong influence on the convergence speed. As the stand-alone solver of (5.14) we
usually use w > 1, typically w = 1.85, because it results in speeding up the convergence
compared with the PCGS approach (w = 1); see Figure 5.1 (b). For our multigrid algorithm,
however, we use the local Fourier analysis and several experiments to select the optimal value of
w; see §5.3.2 later. Finally we remark that other iterative techniques such as the line relaxation
techniques or the preconditioned conjugate gradient method may also be used as an inner solver.

However, the w—PCGS relaxation method appears a cheaper option for practical applications.
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Figure 5.1: Number of outer iterations v in (5.26) used to drop the mean of relative residuals of (5.24)
to 1078 for different values of (a) GSiter and (b) w at a fixed value of @ = 0.1 for processing the
registration problem in Examples 1 as shown in Figure 5.3 (a) — (b) on a 32 x 32 grid. The red diamond
indicates the optimal choice in each plot.

Implementation of our proposed smoother (5.26) based on the w—PCGS method (5.28) on

a fine grid can be summarised as follows:
Algorithm 5.3.1 (Our Proposed Smoother)

Denote by
a  regularisation parameter
w relaxation parameter

GSiter the maximum number of w—PCGS iterations

[v{l, vé‘] «— Smoother (vf, ol gt gk RM T oy w, GSz’ter)

e Use input parameters to compute (o1 [v"])i,;, (G[v"])i;, and (N[v"]; ;) !
for ,m=1,2,1<i<nq,and 1<j <ny (Here (v")i; = (v1)i;, 05)is)")
e Perform w—PCGS steps
— for k= 1: GSiter
—fori=1:m
—forj=1:n2
— Compute (v")!57 = ()15, (0)157)T) using (5.28)
— end
— end
— end

We remark that the first-order Taylor’s expansion of

Tyovn = Typn (x) = T(x + ul+) = T(x + ul + sul)
~ T(x + u) + 0y, T(x + u)sul! + 8, T (x + ul)sul!, (5.29)
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is used to derive the FP schemes in a different context for a different technique; see [17, 18, 43].
We also wish to remark that the above quantities oy (u["]), UIQ(U[U]) may be refined to derive a
cheaper implementation than our FP method (5.26). We note first that o1 (u") = a15(ul"]).
Second in order to have a simple and stable numerical scheme as pointed out by several works;
see e.g. [89] and [104, p. 56/79], we approximate oy, (ul) by oy, (W) = (84, L)) (Bu,, Lot
for m = 1, 2 since the image difference 1) — R becomes small for well registered images and
the second-order derivatives of 1) (Ou,,u, 1yw), @ problematic part of oy, (ul), are very
sensitive to noise and are hard to estimate robustly. Finally, we note that if discrete image
gradient 0,1, does not vanish at one point, the system matrix of these linearised equations
is strictly or irreducibly diagonally dominant. This guarantees the existence of a unique solution
of each linearised system and global convergence of the Jacobi and GS iterations [117, 121].

Below we analyse the smoothing property of our proposed FP smoother (5.26) based on the

w—PCGS method (5.28).

5.3.2 Local Fourier analysis (LFA)

LFA is a powerful tool to analyse the smoothing properties of iterative algorithms used in MG
methods. Although LFA was originally developed for discrete linear operators with constant
coefficients on infinite grids, it can also be applied to more general nonlinear equations with
varying coefficients such as the discrete version of (5.5). To this end, first an infinite grid is
assumed to eliminate the effect of boundary conditions and second it is also assumed that the
discrete nonlinear operator can be linearised (by freezing coefficients) and replaced locally by
a new operator with constant coefficients [134]. This approach has proved to be very useful in
the understanding of MG methods when solving nonlinear problems; see for instance [6, 7, 13,

22, 23, 65, 61, 69, 89, 126] for interesting examples and discussions.

Measure of h-ellipticity

It is well known that h-ellipticity is crucial for multigrid methods to be effective. It is often used
to decide whether or not pointwise error smoothing procedures (e.g. our proposed smoother
(5.26) based on (5.28)) can be constructed for the discrete operator under consideration. To
this end, we shall show that the linearised system N [@"]u” = G, [@"] in (5.26) at some outer
step provides a sufficient amount of h-ellipticity in a similar way as shown in [65, 89, 134, 140]
for a discrete system of PDEs. Here u" and @" denote the exact solution and the current
approximation and N [@"] and G,[@"] the resulting discrete operators from the linearisation

at @". For simplicity, our analysis is carried out over the infinite grid
O = {x € Qx=(z1,,22,)" = (2i —1)h/2,(25 — 1) h/2)7, i,j € Z*} (5.30)

where h = 1/n denotes the mesh parameter.
Let ¢, (8,x) = exp(ifx/h) -1 be grid functions, where I= (1,1)", 8 = (01,0,)T € © =

(—m, % x € Q°, and i = /—1. It is important to remark that due to the locality nature
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of LFA, our analysis applies to each grid point separately, i.e. we consider the local discrete
system N, (§)u" = Gy (€) centered and defined only within a small neighborhood of each grid
point & = (4,7) and u" (&) = [u?(€),u5(€)]. Applying the discrete operator Ny (€) to the grid
functions ¢, (0,x), i.e. N, (&), (0,%x) = N, (&,0)p,(6,%), yields the Fourier symbol as follows:

—afh(e) +o011(§) o12(§)

Nxn(&,0) = 721 (€) —aLl(6) + 022(€)

(5.31)

(see details related to Fourier symbols of systems of PDEs in [134, 140]). Here ﬁ(@) denotes
the Fourier symbol of the discrete Laplacian operator Lt Following [134, 140], the measure of

h-ellipticity is defined via ﬁh(f, ) as follows:

min{|det(Ny (¢, 8))| : 6€ Opign}

En(N(0)) = max{|det(N4 (€, 9))] : 0 ©} (5.32)
where Oy = O\ ( — 7/2, 7r/2]2 denotes the range of high frequencies and
det(N,(€,0)) = o2(L"(8))? + aci (L"(8)) + co (5.33)
represents the determinant of ﬁh(f ,0) where
e = —(011(§) + 022(€)) and ¢z = 011(§)022(§) — 12(§) 021 (€)-
According to the well-known results, we obtain
—L"(8) = (2/h?) (2 — (cos By + cosby)), Bélgggh(—ﬁh(e)) = —L"(-7/2,0) = 2/h?
and gleag(—ﬁ(e)) = —L"(x,7) = 8/h2. Therefore,
BNE) = g5y ot A
and
Jim 15, (N (8)) = 1o (5.5)

bounded away from 0 for all possible choices a,h > 0 and for all possible values of o1 (§),
a12(€), 021(€), and g22(€) (i.e. the results do not depend on the given images) over the whole
discrete domain €2y,.

As a result, it can be expected that the discrete system Np,[@"]u” = G [u"] is appropriate
to pointwise error smoothing procedures like our proposed smoother (5.26) combining with the

w—PCGS method (5.28).

5.3.3 Smoothing analysis for the proposed smoother

A robust and potential smoother has to take care of the high-frequency components of the error
between the exact solution and the current approximation since the low-frequency components

becomes the high-frequency components on coarser grids and they cannot be reduced on coarser
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grids by the coarse-gird correction procedure. A quantitative measure of the smoothing effi-
ciency for a given algorithm is the smoothing factor denoted by g, from a LFA and numerically
computed for test problems, which is defined as the worst asymptotic error reduction, by per-
forming one smoother step, of all high-frequency error components [134, 140]. Below we shall
analyse the smoothing properties of the proposed smoother via (5.26) and (5.28).

As pointed out in many cases of nonlinear operators with varying coefficients by [6, 7, 13,
22, 23, 65, 61, 69, 89, 126], the smoothing factor is x-dependent. Therefore, it is customary to

look for the maximum over the local smoothing factors of the frozen operator Ny, (€), i.e.
= maxpu 5.36
Hlos = o o (5.36)

To determine s, we consider again the local discrete system Ny, ()u"(¢) = G, (€). By using
the splitting N, (&) = NW(&H—N,[L?] (§)+N£L_] (&), it is possible to write the local inner iterations
of (5.26) (for w =1) as

N @@l 6 + N (@t (6) + N @ah, () = Gh(€) (5.37)

where @, (¢) and @', (¢) stand for the approximations to u"(¢) before and after the inner

smoothing step, respectively and

Ny = | RN @) s N
" (NEPE)y (NE(E),

For a specification of this splitting, we use the stencil notation as follows:

0 0 0 L0000 Lo -1 0

h
L= =1 0 0|, Ly=55]0 10|, Ly=3510 0 -1
0 -1 0 00 0 0 0 0

h
for l=m
+/-1 [0 ek _
for I 7& m (Nh (5))1.771 f”l,an (l, m 17 2),

[ S1,1 S1,2 } . { Y4 (h?/a)o11(€) (h?/)a12(§)
Q1 S22 | (h?/a)oa1(€) YN+ (h?)a)oa ()

By subtracting (5.37) from N (&)u”(¢) = G, (€) and defining €"_ (¢) = u"(€) — u”,,,(€) and

el (&) = ul (&) — ul, (&) we obtain the local system of error equations
NG (€)he, (€) + N (€)Ehen (€) + N} (€)8ha(€) = 0

or
2@ =~ [NV@ +NF@)] N ©eha(©) =Su©eha®  (5:39)
where Shl(f) is the amplification factor. The effect of S;(¢) on the grid functions ¢, (8,x)
within Opi, = O\[—7/2, 7r/2]2 will determine the smoothing properties of the PCGS method
(5.27).
For the w—PCGS approach (5.28), the amplification factor denoted by S;(&,w) can be

defined in a similar way as (5.38) and its Fourier symbol is given by

~

Si(€,0,0) = [N} (€, 0) + N7 (£,0)] (1 — w)N) (€, 8) - wN (€,,0)] € €2 (5.39)
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Here the Fourier symbols of NL+/O/_] (&) are

R1+/0/-1 ¢ g) = (ligj(j;j@e))l,l (131?/2/*1(5,0))1,2 -
(NG (€, 0))20 (N7 (€, )22
Therefore, the local smoothing factor is
pioc = sup{|p(Sh(£,8,w))| : € Opign} (5.41)
where p indicates the spectral radius of §h(§, 6,w). Recall that
[+] _ | =75 (exp(—ib;) + exp(—ibp))) forl=m
(N, (€,0)1m = { 0 vt L (5.42)
=] | —#(exp(if1) +exp(ify))) for l=m
(Nh (57 0))l,m = { 07 fOI’ l 76 i (543)
@
(NLOJ (5,6))1.771 = ﬁ(l,m (544)

will be used to compute (5.39).

To select the optimal value of w and test our smoother we consider one set of medical images
as shown respectively in Figure 5.3 (a) — (b) on a 32 x 32 grid. Figure 5.2 shows the smoothing
factors of the proposed smoother (5.26) based on the w—PCGS approach (5.28) at different
values of w. It indicates that the optimal value w providing . ~ 0.5 is not exactly 1 but very

close to 1, typically w = 0.9725.

W VS.@

loc

oF
L8]

0 05

Figure 5.2: Smoothing factors . at a fixed value of o = 0.1 after 5 outer iterations with GSiter =5
by the proposed smoother (5.26) based on the w—PCGS approach (5.28) with different values of w for
the registration problem in Examples 1 as shown in Figure 5.3 (a) — (b) on a 32 x 32 grid. The red
diamond indicates the optimal value of w.

We remark that we have to deal with a type of anisotropy in solving the linearised system
Np[@"]u" = Gu[@"] (5.26). This anisotropy is not global but local, the jumping coefficients
introduced by oy, (@"). We have oy, (H”’) # 0 at places that correspond to regions where the
transformed image Tih,l changes locally, e.g. at edges. However, from practical experience this
leads to moderate jumps in the coefficients and then the smoothing factors shown in Figure

5.2 are not rigorously justified. They can be considered as a heuristic but reliable estimate
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for actual smoothing properties since we only have moderate jumps. We conducted several

numerical experiments to back up our results from smoothing analysis in §5.5.1.

A nonlinear multigrid algorithm with automatic choice of o

As is typical of Tikhonov regularisation, the energy functional 7, in (5.1) has a regularisation
parameter a. To provide well matched images, we have to carefully select o because it is in
general unknown a priori. In order to find a suitable o automatically, we follow the ‘cooling’
(‘continuation’) process suggested in [29, 32, 66, 65, 78, 92, 108]. The basic idea is to start with
a high initial value of « and then slowly reduce o such that the obtained solution can be used
to be an excellent starting point for the next minimisation problem in order to decrease J,.
An alternative approach can be the L-curve method.

Consider the discrete version of the minimisation problem (5.1) with the same notation
min{J,(u) =D (R, 1 (u)) + aR (u)}. (5.45)

Here D = PSSP and R = R4, Let aq be the initial value, which is sufficiently large. At the
(s + 1)th step we set ot = nal®) € [ag,a;], where n € (0,1) is a constant, usually chosen

to be about 0.5, and g is a small positive number, e.g. 5 x 1075, Subsequently, we apply

a(5t1) and the initial guess solution obtained by the previous iteration uf;:rt}gl = u(®) with the
associated inner loop to obtain the minimum w**!) within some tolerance. As mentioned in
[66], since the functional J, is changing at each outer loop iteration, the demand of decreasing
the value of the same functional is not reasonable. Then, the solution w(*t1) and parameter

a5t are acceptable if they satisfy the so-called consistent condition:
Jatery (@CD) = D@lH)) 4 ol DR (@A) < Fon (@) = D) + a+DR(u).

However, if this condition is not satisfied, we increase n (usually to 0.9) and re-start the step.

Our experience suggests that the stopping criterion given by

D —ut],,

1nax{”u(5+l) g B ”“(S)”z.z} =9 (5.46)

is suitable, where § > 0 is small (normally set to 1072).

Finally, we sumimarise this process as follows:

Algorithm 5.3.2 (Multigrid Image Registration Through Cooling)

[v*, @] « cooling (U(O),a(o),?)



0) r

eSet s =1, v =0 o) = n=20.5.
e Outer iteration: For s =1,2,3, ...
— 1. Set a**H = nal® in [5 x 107°,a¥)]
— 2. Inner iteration: Vnew — FASMG (v(”),a(”l), ?)
= 3. If T at1) (Vnew] < T y(s+1) (v(s))
— 3.1 8et v =v,,.,,n=0.5,s=s+1, and go to 4
Else
— 3.2 Set n=10.9, and go to 4
— 4. Check for convergence using the criterion (5.46)
If not satisfied, then return to 1, else, exit to the next step to stop.

o Set v* = Vpew and @* = al®).

In order to save computational work for high-resolution digital images, the low-tolerance
T = (2,107%,0.1,10%) is applied to reduce the accumulated costs in each minimisation
problem. Then our first algorithm, namely a robust diffusion image registration (RDR) ap-

proach, can be stated as follows:

Algorithm 5.3.3 (The basic RDR method)

1. Input €. Set o = 1 (optional). Set & p; = (20,1075,0.10, 10~ %) (high-tolerance)

2. Obtain the optimal regularisation parameter o (through cooling) via Algorithm 5.3.2:
— [0, a] — cooling (v, o, T o).

3. Solve the discrete minimisation problem (5.45) on the finest level using the found a:
—v— FASMG(v,a, Th)

Although the above algorithm enables us to find a good «, the cost of re-solving the same
problem repeatedly is expensive. We propose to use a hierarchy of L grids (with level L the
finest and level 1 the coarsest one) using a multi-resolution idea to gain efficiency while finding
an effective a. Firstly we shall seek the optimal o on the coarsest level 1 with the grid size of
32 x 32 ounly (believed to be coarse enough) and secondly we use the multilevel continuation

idea [65] to provide the initial guesses for the next finer level.

Algorithm 5.3.4 (Multilevel grid continuation for optimal cand reliable initial solution)

lev lev
[ ],a““”]]<—RDR_multiresolution('U[ ],a["‘”],lev,?)

v

o Iflev=1
_ plevl _ g
—a" =C [C > 0 should be large enough e.g. C' = 100]
— [wl), o)) — cooling(v!'"), alle"], T)

o Else
_ liev=1l (g liev] iy liedyT
— |oltev=1 gllev=1|  RDR_multiresolution(v<' =Y, ol'*=1 [ey — 1,F)
— ypliev] = (I}’,’u{“:”’”,I}j’,vé"""”)T
— alter] = goliev=1] [Recall that o) = @n?., and nie = 2140 1]
— vl — FASMG (v ol'**) )

o Endif
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Finally the overall procedure of finding an optimal « and then starting a nonlinear multigrid

method to solve (5.1) is summarised below as Algorithm 5.3.5:

Algorithm 5.3.5 (The refined RDR multi-resolution method)

1. Input &, and & pi.
2. Obtain the optimal regularisation parameter o (through cooling) and
a good initial solution (through multi-resolution) v via Algorithm 5.3.4:
— [©©,a] « RDR_multiresolution(v'™, o L, 7,)
3. Solve the minimisation problem (5.45) on the finest level lev = L using the found o
and the initial guess solution v(:
— ol — FASMGW®, o, T i)

5.4 An application of (5.25) with the curvature model

To test the robustness of our numerical algorithm for other registration models, in this section,
we shall examine our second test model, namely, the curvature image registration model, as
introduced by Fischer and Modersitzki [47]; see also [48, 49, 89, 91, 104].

The curvature model. Based on an approximation of the mean curvature of the surface
of w;, Fischer-Modersitzki’s curvature approach aims to find a reasonable deformation field u

that minimises the following functional [47, 48]

min{ Ju(u) = PP (u) - BRI ()},

where
12 12
REMeurvigy = —Z/ (Rar(w))?dx = = 3. | (Aw)?dz. (5.47)
215 Ja 251 Ja

This leads to the Euler-Lagrange system of two fourth-order nonlinear PDEs:

2’ psg
{ Juip] e = 0 (Fischer—Modersitzki’s curvature model) (5.48)

fo(u) + aA?uy = 0

subject to the special boundary conditions Vu; = 0, VAu; = 0 on 99, for | = 1,2. We re-
mark that the use of second-order derivatives in the energy functional (5.47) not only provides
smoother deformation fields w than those of (5.3), but also allows for an automatic rigid align-
ment. Here u; is understood as a surface in R? represented by (x, 2, u;(z1,z2)), where initially

uy(xy,z2) = 0, with the mean curvature of the surface of w; is given by

. 1+u? u —2u;  u; u +(14uf )u

G Vu _ g Y e~ M My o 1 Wi, ,

h;\](ltl) = V - — - . (1+u% +“f 1)3/2 o (5—19)
E E

VIH[Vu 2

Observe that |V | ~ 0 yields rar(u) & kar(w) = Auy.

Due to the biharmonic operator which appears in (5.48) it is known that standard iterative
methods lead to poor multigrid efficiency. Therefore, it is a common way to split up the
biharmonic operator into a system of two Poisson-type equations; see [12, 67, 73, 89, 134,

139, 140]. Based on this splitting idea, (5.48) can be converted to the following system using
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additional unknown functions v; = —Awu; and vy = —Aus:

—Aul — v = 0
—Augs —v9 =0
fl (u) = OlAUl =0
fo(u) —alAvy =0

(5.50)

subject to the boundary conditions transferred into Vu; = 0 and Vv; = 0 on 92 where the
data term f; (u) is given by (5.5).
To solve the above continuous system numerically, (5.50) is first discretised by the cell-

centered finite difference scheme over the discrete domain

Qp = {X € le: (xli’x%')T = ((22 - 1)h/2a(2.7_ l)h/2)7 1<i,j< TL}

consist of N = n? cells of size h x h with grid spacing h = (1/n,1/n). Let (22); ; = 2l(z1,, z2,)

] 1
denote the grid function for [ =1, ..., 4, where zlf = u? or vlh for [ = 1,2. Then, the discrete

system of (5.50) at a grid point (4, j) is given by
N(Z")ig = =LM(u)ij — (01)ig = (9)ig

NP (2M)ig = —LP(ud)ig — Wh)ig = (g8)is
, (5.51)
NP (2P)i 5 = Fi(ub,ul)i; — el (vf)i; = (68)i;

NP (ZM)ig = fo(ul ul)ig — LM ()i 5 = (68)

where (2")i; = ((2)ig, (28)i3, (2815 (28)i3) T = ((u} )i, (u3)ig, (01 )iy (08)i5) " and (gf)iy =

0 (Zz 1,...,4) on the finest grid in multigrid setting. Recall that the discrete versions of £" and
fl(ul, ub); ; are given in the same way as represented by §5.2.2 and the approximations used in
(5.51) need to be modified at grid points near the image boundary 9€2; using the homogeneous

Neumann boundary conditions approximated by one-side differences for boundary derivatives:

-

(

Jin = ()2, ()in = (im—1, (F)15 = ()2 (FIng = (#F)n-14- (5.52)

S

A robust smoother based on the linearisation scheme (5.25). As mentioned above,
our aim is to apply our linearisation idea (5.25) in solving the equivalent system (5.50). This

leads to the linearised system
NCV[Z[V]}z[U-Fl] = GCV[ZM], (5.53)

where the symbols h and (-); ; in (5.51) are dropped for simplicity. Here

—L 0 -1 0
—L 0 —1
Cvi, v — :
N [Z ]_ O'll(u[,/]) 0-12(u[V]) —aﬁ 0 (554)
oo (ul)  aga(ul) 0 —al
and
g1
g2
GOviy) — gl ” s [ ) 5.95
=] gg—f](u[l],u,[21)+011(u[”])u[1]+a]2(u[ ‘)@1 (5.55)

g4 — f2(ulu}7u[2l/]) + 0’21(U["])u[1V] + 022(U[V1)U£V]
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As mentioned in §5.3.1, Uél = ou and Ulm = (9,1 (ul))(8,,,1'(ul")) for m = 1,2 are used

to stabilise our numerical scheme. In order to solve (5.53), we again apply the w—PCGS as the

inner solver and its kth step is updated by

(z[V+11)5’3+11 =(1-w) (z[wn)gfj + w(NCV[z[V]]i.j)*l(ch[z[”]])yffl/zl. (5.56)
where
(E)i.j/h2 0 -1 0
V(v _ 0 ( /2 0 ~1 =
N = | @)y (@@ )y oDk 0 (5.57)
(o21(ul))i;  (o22(ul)); ; 0 a(X)i;/h?

2 at (1,1), (n,1), (n,1), and (n,n) (four corners)
(X)i; = ¢ 3forall (1,5), (n,7), (4,1), and (i,n) where 2 < i,j < n—1 (boundary lines) ,
4 for all (z, ) where 2 <4,j < n — 2 (interior points)

(5.58)
(g1)ig + (D) (ulr 1) r1/2
(g2)ij + (D)ig (a1 H/2]
(GO = | (g3)ig — fulul ul )i + (011 (w)); 4w [“]l>uk R PR CED)
+(or2(u?))i (@i + (afh2) (B, (o) k1)
(ga)ij — f2(u[1"]ﬂ[12 )i.j + (o22(ul)));, <uéi>uk o
(a1 ()i (W) + (a/h%)(D)i s U“* e
and
(E) iz l[u+l])£kj+l/2] = (2 1V+1])£+]1J+( l[u+1])£k+ilj]+(%u+l])[k}+l + (2 [u+1])£k]+111 (5.60)

With the above smoother, the curvature model can be solved using Algorithms 5.2.2 and 5.3.5.

Similarly to §5.3.2 one can show by the LFA that (i) lim £, (N5 (€)) = 35, i.e. the linearised
h—0 :

system (5.53) is h—elliptic; and (ii) w &~ 1 (typically w = 0.9725) provides the good smoothing

properties (. ~ 0.5), where the effects of w on smoothing factors of (5.53) in processing the

registration problem shown in Figure 5.3 (a) — (b) are almost identical with Figure 5.2. We also

conducted several numerical tests to confirm that (5.53) is a robust smoother for the FAS-NMG

method to solve the curvature model (5.48); see §5.5.2.

5.5 Numerical experiments

The main aim of this section is to show that our multigrid algorithms with the smoothers
using (5.25) are effective and robust in leading to convergent multigrid methods in the FAS-
NMG framework for both the diffusion and curvature models. In all experiments, the bilinear

interpolation was used to compute the transformed template image 1'(u).
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5.5.1 The diffusion model

We first focus on the performance of Algorithm 5.3.5 for two sets of medical data, Examples!
1 and 2 shown respectively in Figure 5.3 (a) — (b) and (d) — (e). To this end, we consider its
convergence behavior with different resolutions, and then show comparisons with several other
methods. In all experiments for this section v; = 5, vo = 5, GSiter = 5, and w = 0.9725 were

used in this test.

Figure 5.3: Registration results for X-ray and MRI images using the RDR method with Algorithms
5.2.2, 5.3.3, and 5.3.5. Left column: reference R, center column: template 7', right column: the
deformed template image 7T'(u) obtained from Algorithm 5.3.5.

h—independent convergence tests

One of the key properties of multigrid techniques is that their convergence does not depend on
the number of grid points. Thus, in the first test we designed our experiments to investigate
this property with Algorithms 5.2.2, 5.3.3, and 5.3.5, and to back up our theoretical results by
LFA in §5.3.2. The number of multigrid steps (V-cycles) used to drop the mean of the relative
residual below e = 1078, the relative reduction of dissimilarity, and run times (in seconds)
are given in Table 5.1 with different sizes of grid points. The results show that all registration
algorithms not only converge within a few multigrid steps, but they are also accurate because the
dissimilarities between the reference and registered images have been reduced more than 87%
for Example 1 and 94% for Example 2. For overall performance the experimental results suggest
that Algorithm 5.3.5 would be preferred for practical applications because the multi-resolution

idea used in the cooling process for o has been prove to be is very useful for initialisation.

1Source: http://www.math.mu-luebeck.de/safir/



Algorithm 5.2.2 Algorithm 5.3.3 Algorithm 5.3.5

M/R/D/C M/R/D/IC/C M/R/D/1C/C

Example 1 : a = 0.1000

h=1/128 10/2.1 x 10—9/0.1082/4.3 6/1.8 x 109 /0.1082/7.9/10.1 7/3.4 x 10—9/0.1082/2.1/6.2
h=1/256 11/3.6 x 10-2/0.1161/22.5 6/3.1 % 1079/0.1161/41.2/54.2 7/5.1 % 10-9/0.1161/3.9/24.2
h=1/512 11/2.8 x 1079/0.1221/106.4 | 6/2.5 x 10~9/0.1221/180.1/231.9 6/7.5 x 1072/0.1221/7.3/65.1

h = 1/1024 11/8.6 % 10—9/0.1239/472.6 | 6/3.8 x 10—9/0.1239/798.1/1049.3 | 6/8.2 x 10—9/0.1239/26.1/256.4
Example 2 : a=0.1176

ho=1/128 10/8.3 x 10—9/0.0522/4.2 5/1.5 x 102 /0.0522/7.2/10.2 6/4.2 x 109/0.0552/2.9/4.9
h=1/256 11/5.6 x 10~2/0.0582/22.9 6/2.6 x 109 /0.0582/31.3/41.7 7/6.9 x 10~9/0.0582/3.0/17.9
h=1/512 11/7.4 x 10-9/0.0615/108.3 | 7/5.4 x 10~9/0.0615/185.7/2341.9 7/3.3 % 10-9/0.0615/12.5/79.1
h=1/1024 11/3.1 x 1072/0.0633/478.1 | 7/6.9 x 10~9/0.0633/550.1/943.1 7/5.0 x 10~2/0.0633/26.9/321.3

Table 5.1: Registration results of Algorithms 5.2.2, 5.3.3, and 5.3.5 for Example 1 and 2 shown in
Figure 5.3 (a) — (b) and (d) — (e). The letters ‘M’, ‘R’, ‘D’ ‘C’, and ‘IC’ mean the number of multigrid
steps, the relative reduction of residual, the relative reduction of dissimilarity, the total run times, and
the initial run times for determining the optimal a and initial guess u(®), respectively.

Comparison with other multigrid methods

Methods by [46, 65, 89, 131, 145] are some existing unilevel or multigrid techniques used to
solve the diffusion model.

In this section, we took Example 1 as shown in 5.3 (a) — (b) to illustrate a comparison among
our FAS-NMG method with Algorithm 5.2.2 and other six multigrid methods by starting with
the fixed parameters h = 1/256, o = 1/8 and u(?) = 0. Here we used 7 = 1072 and applied the
so-called multi-resolution technique with the gradient descent methods of [46, 131] for fairness.
The FMG or LMG methods in [65, 89, 131] were performed using two pre-smoothing and two-
post smoothing steps with the pointwise GS smoothers until the mean of relative residuals
below a user-supplied threshold (toliyg = 1074).

Table 5.2 sumimarises the results for all multigrid methods. As expected from the exper-
iments, all methods are very fast and accurate in registering the given images because the
dissimilarities between the reference and registered images have been reduced more than 80%
within the first 20 iterations. However our method is not only the fastest way in solving the

problem, but also in dropping the mean of the relative residuals below 10~8.

Methods M/R/D
Multi-resolution + AOS [46] 20/7.1 x 107*/0.1417
Multi-resolution + FMG-V(2,2) [131] 20/5.9 x 107*/0.1428
Multi-resolution 4+ Gauss-Newton + LMG-V(2,2) [65, 89] 20/6.3 x 1077 /0.1344
FAS-NMG-V(5,5) + MSDFP-FS smoother adapted from [51, 53] (§5.2.4) | 20/2.6 x 107°/0.1377
FAS-NMG-V (5,5) + MSDFP-1 smoother adapted from [145, 104] (§5.2.4) | 18/4.5 x 10~ /0.1351
FAS-NMG-V(5,5) + MSDFP-2 smoother adapted from [13] (§5.2.4) 18/7.6 x 107°/0.1383
FAS-NMG-V (5,5) + RFP smoother (5.26) (§5.3.1) 11/2.0 x 107°/0.1329

Table 5.2: A comparison among different multigrid methods by [46, 65, 89, 131, 145] to solve the
diffusion model in the first 20 iterations. The letters ‘M’, ‘R’, and ‘D’ mean the number of iterations
in dropping the mean of the relative residuals resulting form (5.1) to 1078, the mean of the relative
residuals, and the relative reduction of dissimilarity, respectively. Our proposed multigrid method in

the last row is the fastest way.
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Comparison with the AOS method [46]

The AOS method is one of the most widely used gradient descent techniques for diffusion image
registration in the unilevel framework [46, 90, 131]. We also take Example 1 as shown in 5.3
(a) — (b) to illustrate a comparison with our FAS-NMG method. Table 5.3 summarises the
results for Algorithm 5.2.2 and AOS methods with different numbers of grid points. We used
Algorithm 5.2.2 with o = 1/8 for fairness (as Algorithm 5.3.5 will be even better). That is,
we started both methods with the same « and the same initial guess, u© = 0. For the AOS
method, the time-step 7 is required to be sufficiently small for each size of the problem. We
used 7 = 1072 for h = 1/128 — 1/1024. As expected from the experiments, both methods are
very accurate in registering the given images because the dissimilarities between the reference
and registered images have been reduced more than 85%. However the AOS fails to drop the
relative residual to 107® in a few time steps (even for large values of 7 > 1072) and the run
times used by Algorithm 5.2.2 are much faster than those of the AOS technique in delivering

the same level of the relative dissimilarity.

Algorithm 5.2.2 AOS
M/R/D/C M/R/D/C

h=1/128 | 10/8.6 x 107°/0.1248/4.2 (0.07 mins) | 10000/ * /0.1248/934.1 (> 15 mins)
h=1/256 | 11/2.0 x 107°/0.1329/23.1 (0.38 mins) | 10000/ * /0.1329/5500.8 (> 1.5 hours)
h=1/512 | 11/9.4 x 107°/0.1383/105.2 (1.75 mins) | 10000/ * /0.1383/2498.3 (> 6.9 hours)
h=1/1024 | 11/4.7 x 107°/0.1404/427.6 (7.96 mins) x/ * [/ * [* (> 12 hours)

Table 5.3: Registration results of Algorithm 5.2.2 and AOS method [46] for Example 1 shown in Figure
5.3 (a) — (b). * indicates either computation stopped after about 12 hours or failure in dropping the
relative residual to 10~% in 10000 iterations.

Comparison of multigrid methods with different smoothers

Our aim in this section is to show that we have proposed a robust smoother for the FAS-NMG
technique in solving the discrete system represented in (5.14). To end this, we have conducted

several experiments of our FAS multigrid with different kinds of smoothers:

(i) the proposed smoother based on the RFP method (5.26) represented by Algorithm 5.3.1
in §5.3
(ii) the GS smoother based on the SDFP method given by (5.19) in §5.2.4 (the standard FP

method defined by [104, p. 79] with the standard linear (inner) solver)

(iii) the GS smoother based on the MSDFP-FS method given by (5.20) and (5.21) in §5.2.4
(a modified SDFP method adapted from the numerical techniques of Frohn-Schauf et al.

[51, 53] with the standard linear solver)

(iv) the GS smoother based on MSDFP-1 method given by (5.22) in §5.2.4 (a modified SDFP

method of the first type with the standard linear solver)
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(v) the GS smoother based on MSDFP-2 method given by (5.23) in §5.2.4 (a modified SDFP

method of the second type with the standard linear solver)

(vi) line relaxation smoothers based on the RFP method in §5.3 (the RFP method given by

(5.26) with another kind of iterative linear solvers)

(vii) the Newton-Gauss-Seidel smoother used by Gao et al. [54] and given explicitly by Lu et
al. [94] in (5.13) (an alternative way of choice of smoothers used in solving the discrete

Euler-Lagrange equations represented by (5.14))
Omitting the computational results, we remark that these observations can be made:

a) The smoother in (ii) requires more multigrid cycles than the proposed smoother and may

not lead to the convergence of the FAS-NMG technique for small values of a.

b) As expected, the results based on the smoother (iii) do not find a solution that is the
necessary condition of the original variational problem (5.1), although the underlying
MG performs better than with other smoothers (slightly less well than with our RFP

smoother).

¢) The smoother in (iv)-(v) may take many multigrid cycles, not leading to the convergence
of the FAS-NMG technique when the fixed-point parameters ¢;, ¢s (or ¢), and € are not

well-selected (i.e. the NMG becomes sensitive to these parameters).

d) As expected, line relaxation smoothers require less multigrid cycles but more computa-

tional costs than the proposed smoother.

e) The Newton-Gauss-Seidel smoother provides well matched images within a few multigrid
steps, but it may require more multigrid cycles than the proposed smoother in leading to

the convergence of the FAS-NMG technique.

5.5.2 The curvature model

In this section, we aim to show that the FAS-NMG method with the smoother (5.53) based on
our linearisation idea (5.25) is effective and robust to solve the curvature model (5.48) within
the multigrid framework similar to Algorithm 5.2.2.

To this end, we took only one data set of medical images, Examples 1, as shown in Figure
5.3 (a) — (b). We first investigate the convergence behaviour and the registration accuracy
of our FAS-NMG method with different sizes of image resolutions. Second we compare three
numerical solution methods for solving the curvature model (5.48). In all experiments, 2 =

[0,1]2, V = [0,1], vy = 10, vp, = 10, PCGSiter = 10, and w = 0.9725 were used.

h—independent convergence tests

In this test, we started the registration processes with v = 1074, w(") = 0, and h = 1/128, ..., h =

1/1024. The registered image is shown in Figure 5.4 (¢). As expected from our LFA results,
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Figure 5.4: Results from Example 1 as shown in (a) — (b) by the curvature model (5.48) using the
FAS-NMG method with the smoother (5.53). Left to right: the reference R , the template 7', and the
registered image T'(u) by the curvature model (5.48).
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Figure 5.5: Results from Example 1 as shown by Figure 5.3 (a) — (b) by the curvature model (5.48)
using the FAS-NMG method with the smoother (5.53). Left to right: the histories of the mean of
relative residuals (MRR) with respect to the MG steps and the histories of the relative SSD (RSSD)
with respect to the MG steps.

Figure 5.5 (a) — (b) shows that our FAS-NMG approach is h—independent. It takes only a few
MG steps (almost the same number) to drop the mean of the relative residuals below 1078,
Moreover, as shown in Figure 5.5 (b) only one MG step can reduce the dissimilarities between

the reference and the registered image more than 90% for the given registration problem.

Comparison with the other two methods

In this section we aim to investigate the performance of the FAS-NMG method with the
smoother (5.53) and those of other two methods: the FP method (5.53) (the smoother used as
a stand-alone solver) and the DCT-based method by [48]. We note that the FT-based method
by [91, 135] is faster than the DCT-based method with the ratio of 2.3 for directly solving each

linear time-dependent problem resulting from (5.48). Thus, for this class of gradient descent
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techniques it is enough to use only the DCT-based method, which is one of the most widely
used techniques for the curvature model.

To this end, we started all methods with h = 1/256, = 10~* and u(®) = 0. For the
DCT-based method, the time-step 7 was selected to be 7 = 1072 (since the fixed parameters
1/h* = N* = 256*, V = [0, 1] and @ = 10~ were used in the discrete system of (5.48), 7 = 1072
was a reasonable time step).

Compared with the results by other two methods, Figure 5.6 (b) shows that our FAS-NMG
method is very fast in reducing the dissimilarities between the reference and registered images.
Moreover, as shown in Figure 5.6 (a) it takes only a few steps to drop the mean of the relative
residuals (MRR) below 10~8. This is a remarkable result to conclude that its performance in

solving the curvature model (5.48) is much more efficient than those of the other two methods.

(a) (b)
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Figure 5.6: Results from Example 1 as shown by Figure 5.3 (a) — (b) by the curvature model (5.48)
using three numerical solution methods: the FAS-NMG method with the smoother (5.53), the FP
method (5.53), and the DCT-based method by [48]. Left to right: (a) the histories of the mean of
relative residuals (MRR) with respect to the iteration steps and (b) the histories of the relative SSD
(RSSD) with respect to the iteration steps.

From both tests in §5.5.1 and §5.5.2 they confirm that the smoothers based on our lineari-
sation idea by (5.25) are effective and robust in leading to convergent multigrid methods for

both the diffusion and curvature models.

5.6 Conclusions

In this chapter we first reviewed existing iterative methods for the diffusion model and then
addressed the numerical problems of designing an optimal and efficient FAS-NMG technique.
For the commonly used SSD model, we introduced a unified approach for designing FP type
smoothers and used the LFA to analyse their smoothing properties using Fischer-Modersitzki’s
diffusion and curvature image registration models [46, 47]. In order to determine the optimal

«, we applied the coarse-to-fine idea from the previous chapter with the proposed multigrid
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approach and it appears to work well for a range of registration problems. Numerical exper-
iments not only showed that the proposed multigrid approach is h-independent convergence,
but it is also more effective than those in a large class of existing iterative methods developed

by [46, 47, 48, 65, 89, 90, 131, 135, 145].
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Chapter 6

A Discontinuity-Preserving
Image Registration Model and
Its Fast Solution

In §3.4 we remarked that the commonly used regularisers Re's, R4 REMeurv anq RETV yield
u to be either global or piecewise smooth over the image domain. In this chapter we first present
a variational model based on a modified TV regularisation with the so-called potential function,
which can be interpreted as a half way model between diffusion (smooth) and TV (non-smooth)
registration. The idea stems from image restoration, image reconstruction, and optical flow
computation, where smoothing and preserving discontinuities of solutions are both important
[4,2, 3,10, 20, 17, 18, 28, 40, 123]. Second to solve the resulting Euler-Lagrange system of two
coupled, nonlinear PDEs, we present a multilevel strategy and an adaptive parameter selection
procedure similar to the ones seen in Chapter 5. Numerical tests presented in this chapter using
both synthetic and realistic images not only confirm that the proposed model is more robust
in registration quality for a wide range of applications than previous models, but also that
the proposed multilevel approach can deliver an acceptable solution many orders of magnitude

faster than the gradient descent approach, popularly used in image processing.

6.1 Introduction

Let R and I’ denote a reference and a template image, respectively. Here the given images R and
I" are modelled as the continuous functions mapping from an image domain Q = [0, 1] € R? into
V =0,1] € Rf. The registration aims at finding a reasonable deformation field w = (uy, u) T

R? — R?, whose components u; and us are functions of the variable x = (z1, xz)T in the image
domain 2, such that the transformed version of the template iimage 13, = 1% (x) = 1'(x + u(x))
becomes similar to R in a geometrical sense. As already pointed out in §3.2 the registration

problem can be posed as minimisation of the functional:

Ja(w) = DSSP (R, 1) + oR (u) (6.1)

104



where the image intensities of the given images R and 1’ are assumed to be comparable and

a > 0 is the regularisation parameter. Recall that

D0 () = 5 [ (1'(x+u () = RGP (6.2)
and
F@)=(fi(w),fa(w)" = (L= R) 0, Lu,(Iu — R)Bu,Tu)" (6.3)
is related to the first variation of PSSP,

The rest of the chapter is organized as follows. §6.2 introduces a discontinuity-preserving
image registration model. §6.3 discusses the numerical solution methods for the resulting Euler-
Lagrange system. §6.4 presents our multilevel approach based on a FAS-NMG method. Experi-
mental results from synthetic and realistic images are illustrated in §6.6, followed by conclusions

in §6.7.

6.2 A discontinuity-preserving image registration model

Motivated by several regularisation techniques that have proved to be very useful in optical flow
computation [2, 10, 20, 17, 40], image reconstruction [28], and image restoration [4, 3, 9, 123],
one can smooth isotropically each component of w inside homogeneous (or flat) regions corre-
sponding to weak gradients and preserve its discontinuities in inhomogeneous regions presenting
large gradients by replacing |Vz| in (3.37) (where z is u; or us) by the so-called potential func-
tion (or Lorentzian error function used in statistics) ¢ (|Vz|) satisfying some conditions to
preserve discontinuities of z. Consequently, the modified TV (MTV) model can be represented

in terms of a general ¢ (which exclude, ¢(s) = s, the choice of the TV)
2
RMTV(u) = S [ (V) dx. (6.4)
i=1J/o

Due to the sum rule, the following theorem can be used to compute the first variation of

RMTV
Theorem 6.2.1 Let ¢ be a given function and let
=MTV
R (w) = / o (V) dx.
Q

-y —=MTV o
Then the first variation of R (up) is given by

5ﬁMTV(uz:m)= —/Q(V : (%Vw))mdx-k /m
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Proof.
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After applying the divergence theorem, we have

™ pap ) — /Q v (%Vw))mdx " /6 ) <¢'<LVuz|>|§—Zjl,n>R2 s,

X

dx

e=0

which concludes the proof. m

Let R (u) = RMTV (u). Then by the sum rule, (3.8), and Theorem 6.2.1, the Euler-Lagrange

equations of (6.1) are given by

_ "((Vual)
fi(w) —aV - (Hod PN Wyl = . (MTV). (6.6)
f2(u) —aV - (¢|(IVU1;|2| Vuz) =0

subject to the natural boundary condition d,u; = 0 on 92 for [ =1, 2.

We remark first that the boundary condition d,u; = 0 on 91 is used to drop the boundary
integral in (6.5). Second, there exist many choices for the potential function ¢. In order to
define and identify the potential function ¢ [4, 2, 3, 10, 9, 20, 17, 28, 40, 123] for modifying
the TV model, below, we give some commonly used ones for (6.6) and its diffusion coefficient

D(s)=¢"(s)/s (s =|Vz|, 2 = w1 or ug):
e #(s) = 15", D(s) = 5, 1 <p <2 (this ¢ is related to (3.37) when p = 1)
e $(s) =log (1 + 32) ,D(s) = 1+ —=%5 (Perona-Molik’s model)

e (s)= H—_af’ D(s) = o) ) —=2— (Geman-Reynolds’s model)

=2V1+s2-2, D(s F (Aubert’s model)

, =0

e ¢(s) = 2log[cosh (s)], D(s { Qtanh /s 540 (Green’s model)
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Note that the diffusion coefficient (or the stopping function) D(s) has the following basic prop-
erties: (1) D(s)— 0 as s — oo. (2) D(s)— M (0 < M < +00) as s — 0. These mean that
on one hand it preserves discontinuities of u by reducing or stopping the diffusion (smoothing)
process in inhomogeneous regions, on the other hand it smooths w isotropically inside homo-
geneous regions. In other words, TV-like regularisation is used in inhomogeneous regions and
diffusion- or quadratic-like regularisation is used in homogeneous regions.

In this study, we focus only on Perona-Molik’s model defined by ¢ (s) = log (1 + s*) for this

kind of regularisation techniques, and then (6.6) becomes

LNL(u1)

A

QVUI o .
N (u) = fi (u) —aV - (W) =g1 =0,

Ly (u2)

QVUQ = _
No (u) = fo (u) —aV - (m) =g2=0

subject to dpu; = dpup = 0 on Q. Here N; and Ly, (u;) are the nonlinear partial differential
operators (for [ = 1,2), n = (n1, ng)T is the outward unit vector normal to the image boundary
99, and ¢g; = 0 is technical notation for numerical solutions that will be used in the coming

sections. Note that other choices of ¢ can be considered in the similar way.

Remark 6.2.1 Although the regularisation technique (6.4) is not completely new for other
image processing applications, to best of our knowledge it is new for deformable image regis-
tration based on the nonlinear fitting term D5 (6.2). Particularly, the nonlinear data term
fi(w) = 1y — R) 0y, 1y in (6.7) is totally different from those of linear ones used in image re-
construction, image restoration, and optical flow models; c.f. [4, 2, 3, 10, 9, 20, 17, 28, 40, 123].

Therefore, an effective technique of (6.7) is much more challenging.

6.3 Numerical solutions of the PDE system (6.7)

The section will be started firstly by discretising the Euler-Lagrange equations (6.7), followed

by a discussion of numerical solutions for the discrete system.

6.3.1 Finite difference discretisation
Let the discrete domain
Qp={xeQx=(x1,,22,)" =((2i—1)h1/2,(2] —1)h2/2)", 1<i<m, 1<j<mg

consist of n = nyny cells of size hy X hy with grid spacing h = (hy, he) = (1/ny,1/n2) and let
(u)ij = u'(zy,,x2,) denote the grid functions for [ = 1,2. Applying finite difference schemes

based on the cell-centered grid points to discretise (6.7), the discrete system at a grid point
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(,7) is given by
NE(Wh)ij = fl(ul,ud)ij + oLl (ul)i; = (g8)i;

NG ()i = F3(ul ul)ig + oLy (u)ig = (68)ig

subject to the discrete Neumann boundary conditions,

(6.8)

(uf)in = )iz, () )ime = (U )ina—1, (), = @)2gy  (@)ng = (@])ny-14, (6.9)

with the following notation

L (), = - {—’1 ( et )

= hy \ 1+ (88, (u]t)ig /hn)? + (62, (up')i i/ h2)?

Oz, 207, ()i j/h2

L+ (8 (u)i i /h1)? + (88, (ul)i i/ ha)? ”
= (S )i = (5eg (f )i
(xf)i_j = (1+7°) Disl(u)ig] + Dul(w)ig) + v Dial(uf)igl, v = ha/ha,
i)l (W )ivrs + V2 (W )ij+1)

+ Dua[(u)ig) (] )i-15 + 7 Diz ()i ] ()i j—1),
) (@)ic1gl, Di[(@))ig] = DIw)ij)y  Disl(u))is] = Dl(ui)i]
)i =2/ (B + (&, (u)iy)® + (10}, (u])i3)?), 1<i<my, 1<j<m,

) () )iz1,j = (u)ig)

r) (u)ijzr = (u)ig) s

f@lub), = (0 = RE((ULY, ;=1 5)/ (2h)),
B), = (L — RE)((LP 0 =1 -1)/ (2ha)),

1P =T+ (Wh), ;20 + (u3), ),

(@i, (ug)ig) "

I

—~
g
>
~—r
<
Il

Here (g1')i; = (¢4)i; = 0 on the finest grid in multigrid setting.

6.3.2 Method 1 — An explicit time marching (ETM) method

As mentioned in §3.5.1, a time marching scheme is one of convenient ways to solve the resulting
Euler-Lagrange equations like (6.7). The main idea is to introduce an artificial time variable ¢

and compute the steady-state solution of the system of time-dependent PDEs of the form:

{ dpur (x, ) + Ni(u(x,t) = g1(x)
8!“’2( X, )-{—Ng(“( 7)) ZQZ(X) ’

In order to overcome the nonlinearity of NV, the so-called ezplicit scheme can be conveniently

applied, and the iteration is then given by

{ Ouy (X, tgq1) = 91(
Qpua(X,tpt1) = gl

&,
|
S
=
g
»
~

=

k=0,1,2,3,..

&
|
5
g
i



where u(x,%p) is some initial displacement fields, typically u(x, ) = 0.
For the time discretisation we introduce a time-step 7 > 0, and then w is updated at the

time step &£+ 1 by

U2 (X, tk+l ) = U2 (X,

{ wr (X, tgt1) = wi (X, t) + 7 [g1(x) — M (u(x, tk))%
t t

which we simply denote by

(i = () + 7o, = M ()] (6.10)
(us"™ )i = ()i + 7loz,; = Na(w)ig]

We note that this time-marching scheme is easy to implement, but very slow to converge because

the length of the time-step 7 is required to be a very small number for stability reasons.

6.3.3 Method 2 — A semi-implicit time marching (SITM) method

In order to speed up the convergence of (6.10), we may apply the fully implicit scheme, and

then w**+1) is updated by

k k n
@F), 5 = @)y + Tlon,, — M (u®D), ;] o

et 1) ) . , k=0,1,2,3,... (6.11)
(u2 )i,j = (“2 )i.j + 7[927.1- —Nz(u( i3 )i.j]

In order to cope with the nonlinearity of AV, we may linearise (6.11) respect to the &+ 1th time-
step using the method of ‘frozen coefficients’ as well known for variational approaches related
to the TV operator (see e.g. [6, 13, 22, 24, 31, 52, 122, 123]), and obtain the semi-implicit
scheme as given by the following system of linear elliptic PDEs:

k+1 i (k) k+1 k k k
(ugk+1;)1] + 7L [(u 1k V)il (u (k+1i)w = (u Ekz)u +7lg ;= fl(uék;,u%k;)i.j] (6.12)
(ud >U+mch“ (@)1 @S = @)ig + Tlgas, — fo@®, ui)i 4]

where

m _‘(k) >
L8 1)1 @) = (B @) 5 — (S )ig @)y (6.13)

Therefore, the update formula determined by a lexicographical ordering in a matrix vector form

can be written as

k in k) _ k)
u§k+l) = (I +Ta£{\IL [ul(k D 1( + g1 — fl (U(lk "Ué ))) (614)
ug T+ = I+ ralln [ué ¢ 112 V o gy = ng(ug , g )))

where I is the identity matrix.

Since £} [ul ] can be divided into two parts, (6.14) can be simplified further as

WD = (4 7oy £ W) W 4 7y — i (wl, uf)

m= 1 . (615)
8 inem k k
W) = (g ra S L ) @) 4 7gn — 7o, )
m=1
where £1n [u®] = £ [u ]—l—ﬁhmz [w{®], and Lin™ [u )] is a finite difference approximation

of the second-order derivative of “z ) with respect to the mth coordinate (for m = 1, 2).
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6.3.4 Method 3 — An additive operator splitting (AOS) method

The AOS scheme [46, 93, 138] is more efficient than the standard semi-implicit scheme (6.15).
The basic idea is to replace the inverse of the sum by a sum of inverses. The corresponding

iterates are then defined by

2
k+1 inem r, (K k
ug H) = % > (I+ 27’0:4\1& [u; )] ul )+Tg1 —Tfl( Ué )))
k 1712=l . (616)
+1 inzm, o, (k)7y— k
udt = LS (14 2ralie W8N 1 @ 4 7ge — 7w, ul?))

Q

3
Il

—

which is much cheaper than those obtained from (6.15) because the two diagonal systems in

each component are solved per iteration rather than the 5-band system.

Remark 6.3.1 Although each linear elliptic PDE given by (6.12) is solved by a fast solution
method (e.g. a linear multigrid technique), the number of time steps k in fulfilling the necessary
condition for being a minimiser of the variational problem represented by (6.1), i.e. in achieving
a kind of convergence, may not be small; see Table 6.2. The reason is that the gradient descent
technique requires to solve the linear system many times with changing the right-hand side of
(6.12). It is reasonable to develop a new and fast solution method in solving directly the Euler-

Lagrange equations (6.7), which will be explained in the Method 4 and §6.4.

6.3.5 Method 4 — A stabilised fixed-point (SFP) method

As is well-known fixed-point (FP) methods are more robust than those of time marching tech-
niques when appropriate FP schemes are applied, especially for problems related to the TV
operator like (6.7). Due to Neumann boundary conditions, the standard FP scheme of the

discrete system (6.8) given by

ol ) = g1 = fid ) = Gaful] (6.17)
oLy Wbl = gy — fo(ul) W) = Go[ul)]

leads to the singular problem for each FP (or outer iteration step) v (v = 0,1,2,...) and then
a special treatment is required; see §5.2 — 5.3 for the similar problem occurred in the discrete

system resulting from the diffusion model. Here the frozen operator
in /] [v v v v v
['l Ll " )il o (E[ ])7 J(“} +1) = (3 )a(u E +1])i-j

by the so-called Lagged-diffusivity method [26] or Quasi-Newton scheme [137] is used and the
symbol h and (-); ; in (6.17) are dropped for simplicity.
To stabilise the FP scheme (6.17), we again apply the linearisation idea of the data term

given by

Sl )~ fd ub) + ol @l — ) + o @l - b,
where

o1 () = By filul ulh) = (B0, Toy1) Oy L) + (Lyr = B) By L),
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and
12 (W) = By, fi(ul W) = (84, 10401) (Bug L) + (Lair = R) Buguy L)

This yields the linearised system

Nfu"Jul*1 = Gu™, (6.18)
where ulv+1l = (u[ll""l],u[z'”rl])T7
[lin 7, V] V] v
Nul] = NL [y |+ o1 (ut™h) . o1z (ul)
oo (ul) £ Wb + opa(ul)

and

G [ul] + o9y (ul)u H+021(U["]) g
[v] [v]

As mentioned in §5.3.1, 0,; = 0y, and o,

Glul) = ( R e R e Y oia(ul ] )

M _

lm

numerical scheme. We shall call (6.18) the stabilised fixed-point (SFP) method.

As a common way to solve (6.18) for each FP or outer step v, we use the w—PCGS relaxation

= (0w, Ly1)(On,, Ly1) for m = 1,2 is used in our

method with the relaxation parameter w € (0,2) and then its new step is given by

(AT = (1 - w) @M + o[l ) (G P, (6.19)
where
N, = | s+ (@), (o12(ul))
‘ (021 (ul))s s (5N + (@22(uh))i

(Gl ])i s + (011 (ul))i ;@) 5 + (12 (@) (Wi 5

+a(®) s Wl T
(GLut5 ™ =

(Go[ul)); + (021 ()i j ()i j + (22 (@?))i s ()i
+a(sy ])u( Pyl /2]

and

v v v v v .
& i @l TNE = D) 51 (@ A2 ] “]>£-"}+1>

1,J
+ D[ 5 T a2 D[ ) (uf ).

Similarly, as remarked in §5.3.1, the SFP method (6.18) shows the interaction between
the actual FP or outer iteration that overcomes the nonlinearity of the operator N at each
outer step v and the w—PCGS method that solves the resulting linear system of equations at
each corresponding inner step k. Instead of solving the linearised system (6.18) with very high
precision, the w—PCGS method or inner iteration can perform only a few iterations to obtain an
approximate solution at each outer step v. This is likely the so-called inezact lagged-diffusivity
method which have been widely used for solving other problems in image processing applications

related to the TV operator (see e.g. [6, 13, 26, 22, 24, 31, 122, 123]). This procedure leads
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to a slight difference of convergence in the FP scheme when it is used as a stand-alone solver,
whereas the computational costs significantly reduce. Moreover, the relaxation parameter w has
a strong influence on the convergence speed. We usually use w > 1, typically w = 1.85, for both
smooth and non-smooth registration problems because it results in speeding up the convergence
by many orders of magnitude compared with the GS approach (w = 1). We also note that line
relaxation techniques, e.g. alternative line relaxation, are optional for the inner step. However,

they usually require more computational costs than those of the w—PCGS method.

(a)Example 2 - Rel. SSD by 2 methods (b)Example 2 - Rel. Res by 2 methods
Rel. SSD VS. No. Iteration ) Rel. residual VS. No. Iteration
( - - 1 - - . .
= SFP 0 + SFP
-AOS --AOS
0.8 o
E
806 =]
% 8107
& 0.4f 5
4
107
0.2F 1
0 : i : ~ : 10 : ' : : - '
L] 10 15 20 25 30 10 20 30 40 50 60
Number of Iterations Number of Iterations

Figure 6.1: Numerical results by Method 3 (AOS (6.16)) and Method 4 (SFP) for Example 2 (in a
32 x 32 grid as shown in Figure 6.4 (a) — (b)) with 7 = 0.05, & = 0.1, and GSiter = 5. (a) shows the
relative errors in SSD and (b) shows the relative residuals versus iterations. Clearly Method 4 (SFP)
performs much better than Method 3 (AOS).

Finally, the SFP method (6.18) on the fine grid can be summarised as follows:

Algorithm 6.3.1 (Algorithm for the SFP method)

We use these to be smoothing parameters:
oY regularisation parameter
w  relaxation parameter

GSiter the maximum number of w—PCGS iterations

[wy', w3] «— Smoother (wi,wh, gt g5, R", T", o, w, GSiter)

e Use input parameters to compute (o7 (w"))ij, (G(w")i;), and (N(w"); ;)"
for,m=1,2,1<i<ny,and 1 <j<ny (Here (w");; = ((wh)ij, (ws)i;)")
e Perform w—PCGS steps
— for k = 1: GSiter
—fori=1:ny
—forj=1:n2
— Compute (w"){5™ = (i), (wh)5™)T) using (6.19)
— end
— end
— end
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We have so far presented four numerical methods for solving (6.7) where Method 2 is enforced
by Method 3 and Method 1 is less efficient. So it remains to test the overall performances of
the two methods (i.e. Method 3 and 4). We tested them only for the smooth problem Example
2 as shown respectively in Figure 6.4 (a) — (b) for a 32 x 32 grid. The results from this test in
Figure 6.1 (a) — (b) show that the Method 4 performs much better than Method 3 as expected.
We remark the results for the non-smoother problem shown in Figure 6.4 (a) — (b) are similar
to those of the smooth problem.

Although Method 4 is recommended as a unilevel method, our next task is to use Method 4
as a potential smoother in the FAS-NMG framework to speed up the solving of (6.7) with the

multilevel strategy.

6.4 A nonlinear multigrid method

Below we apply the FAS-NMG method to solve the coupled system of nonlinear PDEs,

N (") = g}
{ NP (uh) = g}
involving the nonlinear partial differential operator N}* (uh) (I =1,2) given by (6.8).

In our multigrid method, Method 4 (SFP) given by (6.18) is used as the smoother. The
averaging and bi-linear interpolation techniques are employed respectively as the restriction
and interpolation operators between (2, and Qp, denoted by I/ and /};. The DCA approach
is performed to compute the coarse-grid operator N (u") consisting of two parts: f/(u,u})
and L% (ul'). To solve (6.8) numerically, our FAS-NMG method is applied recursively down
to the coarsest grid consisting of a small number of grid points, typically 4 x 4, and may be

summarised as follows:
Algorithm 6.4.1 (FAS Nonlinear Multigrid Method)

We use these FAS multigrid parameters:

v1  pre-smoothing steps on each level

vy post-smoothing steps on each level

i the number of multigrid cycles on each level (= 1 for V—cycling and p= 2 for W—cycling).
Here we present the V—cycle with pu= 1.

[ regularisation parameter

w  relaxation parameter

GSiter  the maximum number of w—PCGS

w" — FASNMG(w", 0, )
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o Select o, © = (£1,¢€2,€3,€4) and initial guess solutions w0 = (w?, w}) " on the finest grid
e Set K =0, (w")K =wh e Bo=e2+1,83=e3+1,and &1 =4 + 1
e While (K <e; AND €; >3 AND &3 > g3 AND &4 > 4)

= (w")K+l = [w" ]<—FASCYC(w1,wS, t N gt gh RM T b1, 12, o, w, GSiter)

— & = maz{|lg/ N"(( D2/ Nlgtt - h( mmul)llz»l—l 2}

— & = D"(R", T" ,,)KH)/I)’L(R",T")

[Recall that D”(R" T} ~ Ml | R*, T ||2]

By = lD’“(R" 4 ,.)Ml)—D"(R’l 7 m)]

- K=K+1
e end

where

[101,102] — FASCY C(wh, wh NI, g gy RM T" v, vy, 0,w, GSiter)

o If ), = coarset grid (|| =4 x 4), solve (6.8) using time-marching techniques
in §6.3.3 and then stop. Else continue with following step.

e Pre-smoothing:

For z = 1 to vy, [w’l’,wg] «— Smoother (wl,wz,ql' gt RMT" o, w, GSzter)
e Restriction to the coarse grid:

wfl — IFw?, wh — I wh, RE «— IZRF, TR . gt
e Set the initial solution for the coarse-grid problem:

[@ @] — [wi ,wi]
e Compute the new right-hand side for the coarse-grid problem:

gl — Ih (gl — NP (wl,wg)) + M (wif, wi)

95 — I} ( Qh (1vllvw2))+N2 (wf,wf)
e Implement the FAS multigrid on the coarse-grid problem:

For z =1 to p,

[wi, wi] — FASCYC (wi', wi', N{' \N3T, gt , g5, R® , TH 11,13, 0, w, GSiiter)

e Add the coarse-grid corrections:

wh — wh + Ik (wl TE{’), wh — wh + 1% ( —wz)
e Post-smoothing:

For z = 1 to vs, [wi’,wé‘] «— Smoother (w'f,wg,gf,gg, R"T" a,w, GSiter)

For practical applications Algorithm 6.4.1 is stopped whenever the maximum number of
V— or W—cycles ¢, is reached (usually €, = 20), the maximum value of the relative residuals

obtained from the Euler-Lagrange equations is smaller than a small number £ > 0 (typically

)

gy = 1078 for a convergent test and only o = 1072 for a practical application), the relative
reduction of the dissimilarity is smaller than some €3 > 0 (we usually assign €3 = 0.20 meaning
that the relative reduction of the dissimilarity would decrease about 80%), or the change in two
consecutive steps of the data/fitting term D is smaller than a small number 4 > 0 (typically

Eq4 = 1078).

6.5 A robust approach for discontinuity-preserving image
registration (RADPIR)

As is well-known, we have to be carefully select o to provide well registered images because

it is in general unknown a priori. To this end, we follow the cooling process presented in §5.3
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and name this algorithm by a robust approach for discontinuity-preserving image registration
(RADPIR), which can be summarised as follows:

Algorithm 6.5.1 (The basic RADPIR)

1. Input € = (2,107%,0.2,10*) and & = (20,107%,0.2,107®). Set o = 1 (optional).
2. Obtain the optimal regularisation parameter o:

— [w'?, a] « cooling(w, e, T1,).

3. Solve the discrete minimisation problem of (6.1) on the finest level using the found o:
— w — FASNMGw®, o, 1)

where

[w*,a*] « cooling(w,a'?, T)

eSet s=1, w® = w®, o) = a®, n = 0.5.

e Outer iteration: For s =1,2,3,..
— 1. Set T = nal®) in [5 x 1075, o]
— 2. Inner iteration: Whew — FASNMG(w'®), ot 7)
= 3. If T 541 [Whew] < Ja(s+1)[w(5)}

— 3.1 Set w®tY) = Whnew, N = 0.5, s=5+1, and go to 4
Else

— 3.2 Set n=0.9, and go to 4
— 4. Check for convergence using the criterion (5.46)

If not satisfied, then return to 1, else, exit to the next step to stop.
o Set w* = Wnew and o™ = o).

Similarly, we use a hierarchy of L grids (with level L the finest and level 1 the coarsest

one) with the multi-resolution technique in order to increase its performance and the whole
procedure is summarised below:

Algorithm 6.5.2 (The refined RADPIR multi-resolution method)

1. Input €, and & pi.

2. Obtain the optimal regularisation parameter o (through cooling) and
a good initial solution (through multi-resolution) w®:
— [w®, 0] « RADPIR multiresolution(w'™),a!* | L, T,)
3. Solve the minimisation problem of (6.1) on the finest level lev = L using
the optimal value of @ and the good initial solution w®:
—wl* — FASNMG(w®, o, T ;)

where

[w[leu],a[""’]J «— RADPIR multiresolution (w“e"], ale?] ey, ?)
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o Iflev =1

_ w[leu] =0
—ad*l = [C > 0 should be large enough e.g. C' = 100]
_ {w[leu],a[leu]] — cooling(w“e”].a“e“],?)
e Else
= w[leu—l] = (Ilfiu’glewyly{iwgeu})-r
— [w““*”,a“""’” — RADPIR _multiresolution <w“""’”,a“e"’1],le11 -1, ?)
= w[leu] _ (Igfwgleu—l]’Igwgen—l])‘r
— aller] = goliev-1] [Recall that al“’l = @n?,, and ny = 2Mer—1]
— w!'’l — FASNMG(w", ol 7)
e Endif

6.6 Numerical experiments
In this section we demonstrate 3 sets of experimental results

(i) the abilities of RMTV in solving the particular registration problems as represented by

Example 1'-2? shown respectively in Figure 6.2 (a) — (b) and Figure 6.4 (a) — (b);

(ii) the overall performance of the RADPIR approach on two sets of medical data by processing

Example 2 and 3 shown in Figure 6.4 (a) — (b) and (d) — (e);

(iii) a comparison between the RADPID approach and the semi-implicit time marching schemes

as discussed in §6.3.3 on the set of clinical images in Example 2.

In all experiments, the bi-linear interpolation technique was used to compute 1'(w), and
vi =5, vy =5, w=1.85, GSiter = 5 were employed in our FAS-NMG framework with a zero

deformation field as initialisation at the finest level.

6.6.1 Comparison RMTV with different regularisation techniques

In this experiment, our aim is to investigate capabilities of RMTV  RATV and R4 (from
§3.4), which belong to the same class of variational image registration models using 1%¢-order
derivatives in solving Example 1-2. To be a fair comparison, we used the same systematic
formulation as explained in §6.3 — 6.4, in particular Algorithm 6.5.2, for solving the discretised
Euler-Lagrange equations related to RTY and R,

As shown in Figure 6.2 (¢) — (e), on one hand, RMTV and RPTV produced visually pleasing
registration results, while R4 did not. The main reason is that the exact deformation field is
given by a shift of the upper rectangular to the right and a shift of the lower rectangular to the
left; c.f. Figure 6.3 (a) — (b). Therefore, the exact deformation field is piecewise constant with
substantial discontinuities at regions close to the interface between the upper and the lower
rectangular. Consequently, R4 must fail because it tries to smooth the deformation field as

much as possible at those regions; see over smoothing results of the field as shown in Figure 6.3

LAdapted from [51] and [53]
2Source: http://www.math.mu-luebeck.de/safir/
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(c) T [RMTY] (d) Tu [RPTY]

L]

g3 = 0.0007 €3 = 0.0010
(f’) o [R.dlﬁ] (f) i ['/{elus] (q) Ty [’R‘Fl\lcur\’}

g3 = 0.0391 g3 = 0.0217 g3 = 0.0077

Figure 6.2: Registered images for two rectangular blocks shown in (a) R and (b) T of size 32 x 32

(Example 1): results by (¢) RMTY, (d) RPTV with 8 = 0.0001, (e) RYUE, (£) R with (u, \) = (1, 1),
y ’ f

and (g) RFMeu  Recall that &3 means the relative reduction of dissimilarity defined in Algorithm

6.4.1.

(¢). On the other hand, as shown in Figures 6.5 (a) — (¢) RMTY and R4 gave slightly better
registration results than those of ReTY in terms of €3 (the relative reduction of dissimilarity),
but the corresponding deformation fields shown in Figures 6.6 (b) —(¢) are more reasonable than
that of RPTY depicted in Figures 6.6 (a). This is because the exact deformation field is globally
smooth, almost the same shapes as determined by RMTY and RUE, but the results of RPTY
are almost piecewise constant in some parts of the upper regions. Both experiments confirm
that RMTV is a half way between RPTV and R4, In other words, RMTV is compatible with
RPTV for registration problems requiring to preserve discontinuities and it is compatible with
RIM for those registration problems requiring to have global smoothness of the field. In case
of Retas and RFMewrvy we found by applying different numerical techniques given in [104] that
registration results are similar to those of RIF a5 shown in Figures 6.2 (f) — (g), 6.3 (d) — (e),

6.5 (d) — (e), and 6.6 (d) — (e).

117



(b) ROV

Deformation field w = —u

Figure 6.3: Deformation fields for the registration problem shown in Figure 6.2 (a)-(b) (Example 1):
results by (a) RMTY, (b)) RPTV with 8 = 0.0001, (c) RYE, (d) R®™ with (u,\) = (1,1), and (e)

RFMcurv

6.6.2 h—independent convergent tests for Algorithms 6.4.1, 6.5.1, and
6.5.2

One of the key properties of multigrid techniques is that their convergence does not depend on
the number of grid points. Thus, in the second test we designed our experiments on clinical
images by processing Example 2 and 3 as shown in Figure 6.4 (a) — (b) and (d) — (e) with
Algorithms 6.4.1, 6.5.1, and 6.5.2. The number of multigrid steps (V-cycles) used to drop
the relative residual below 1078, the relative reduction of dissimilarity, and the run times
(in seconds) are given in Table 6.1 with different sizes of grid points. The results show that
all registration algorithms not only converge within a few multigrid steps as expected from a
multigrid technique, but they are also accurate because the dissimilarities between the reference
and registered images have been reduced more than 88% for Example 1 and 94% for Example
2. For overall performance the experimental results suggest that Algorithm 6.5.2 would be
preferred for practical applications because the multi-resolution idea used in cooling a has
proved to be very useful for initialisation. It results in speeding up overall run times of Algorithm

6.5.1 around 3 times.

6.6.3 Comparison Algorithm 6.4.1 with two time-marching methods

The main aim of this experiment is to show that the parabolic approach is quite slow in achieving
convergence. We took Example 2 to illustrate this point. Table 6.2 summarises the results for

the standard semi-implicit and AOS time marching schemes with different numbers of grid
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Figure 6.4: Registration results for X-ray and MRI images (Examples 2 (a) — (b)and 3 (d) — (e))
using the RADPIR approach with Algorithms 6.4.1, 6.5.1, and 6.5.2. Left column: reference R,
center column: template T, right column: the deformed template image T'(u) obtained from RADPIR.

points. To be a fair comparison between them, we used those results determined by Algorithm
6.4.1 as shown in Table 6.1. That is, we started all methods with the same o = 0.0909 and
the same initial guess, u(?) = 0. Here, the time-step 7 is required to be sufficiently small for
each size of the problem. We used 7 = 1072 for h = 1/128 — 1/1024. As expected from the
experiments, all methods are accurate in registering the given images because the dissimilarities
between the reference and registered images have been reduced more than 88%. However both
time-marching methods fail to drop the relative residual to 10% in a few time steps (even
large values of 7 are used) and the run times used by Algorithm 6.4.1 are significantly faster in

delivering the same level of the relative dissimilarity.

6.7 Conclusion

In this chapter, we proposed first a novel discontinuity-preserving image registration model,
which can be viewed as a hybrid model between the diffusion and TV models, for solving
both smooth and non-smooth registration problems. Second, we introduced a fully automatic,
fast, and accurate approach based on the FAS-NMG strategy and the automatic procedure
in selecting the optimal o in order to solve the resulting Euler-Lagrange system. Numerical

tests from the previous section confirmed that the proposed model is more flexible than the
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(c) T, [RYH)
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g3 = 0.0853 g3 = 0.0777

Figure 6.5: Registration results for the problem of size 128 x 128 shown in Figure 6.4 (a)-(b) (Example
2): results by (a) RPTY with 8 = 0.001, (b) RMTY, (¢) RUT (d) R with (g, \) = (1,1), and (e)
'/e/FM(‘urv.

diffusion and TV models. Moreover, they also showed that the FAS-NMG technique based on
the proposed FP type smoother is h—independent convergence and much faster than those of
standard unilevel methods such as semi-implicit time marching and AOS schemes in convergence

and delivering the same numerical results.
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Figure 6.6: Deformation fields for the registration problem shown in Figure 6.4 (a)-(b) (Example 2):
results by (a) RPTV with 8 = 0.001, (b) RMTY, (¢) RYT, (d) R'™ with (u,\) = (1,1), and (e)

RFMcurv

Algorithm 6.4.1 Algorithm 6.5.1 Algorithm 6.5.2
M/R/D/C M/R/D/1C/C M/R/D/IC/C

Example 2 : a = 0.0909
h=1/128 8/3.1 x 10-9/0.1012/26.2 1/6.6 % 102 /0.0917/95.4/110.1 6/7.1 x 10—9/0.0917/21.6/41.0
h = 1/256 8/1.8 x 109 /0.1098/134.4 5/3.6 x 102 /0.1098/298.0/365.1 6/3.1 x 10-9/0.1098/29.4/109.5
h=1/512 8/9.5 x 10—9/0.1150/453.3 5/1.4 % 10—9/0.1124/1402.1/1707.5 | 6/4.4 x 10~9/0.1124/57.9/396.1
h=1/1024 8/3.6 x 109 /0.1168/1864.1 5/2.1 x 10~9/0.1168/5137.5/6289.7 | 5/6.5 x 10~ 92/0.1168/171.9/1332.1
Example 3 : «=0.1111
h=1/128 7/8.1 x 10—9/0.0528/22.9 1/1.8 x 10-9/0.0510/69.9/84.6 6/2.8 % 1072/0.0510/18.5/38.0
h = 1/256 9/3.8 x 1079 /0.0595/121.7 5/1.9 x 10~92/0.0510/312.2/386.4 7/3.1 x 1079/0.0510/27.6/121.9
ho=1/512 10/3.8 % 10—2/0.0592/566.2 5/7.8 x 10—9,/0.0544/1274.6/1578.0 | 7/7.1 % 10~9/0.0544/58.9/455.6
h=1/1024 10/5.5 x 10~9/0.0591/2447.9 | 6/2.9 x 10-2/0.0591/4678.5/6069.2 | 7/2.2 x 10~2/0.0592/189.0/1905.3

Table 6.1: Registration results of Algorithms 6.4.1, 6.5.1, and 6.5.2 for processing Examples 2 and 3
shown respectively in Figure 3 (a) — (b)and (d) — (e). The letters ‘M’, ‘R’, ‘D’, ‘C’, and ‘IC’ mean
the number of multigrid steps, the relative reduction of residual, the relative reduction of dissimilarity,
the total run times (in seconds), and the initial run times (in seconds) for determining the optimal «
and initial guess u(?, respectively.
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SITM (6.15)
M/R/D/C

A0S (6.16)
M/R/D/C

h=1/128
h = 1/256
h=1/512
h=1/1024

21973/ % /0.1012/5232.4 (1.45 hours)
19808/  /0.1098/25513.9 (7.08 hours)
*/ % /% [* (> 10 hours)

*/ % / x [* (> 10 hours)

23946/ * /0.1012/3074.1 (0.85 hours)
21197/ + /0.1098/15587.0 (4.32 hours)
*/ % /% [* (> 10 hours)

x/ % / x [* (> 10 hours)

Table 6.2: Registration results of the SITM and AOS methods, represented in (6.15) and (6.16) for
Example 2 shown in Figure 6.4 (a) — (b). * indicates either computation stopped after about 10 hours

or failure in dropping the relative residual to 1078,
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Chapter 7

A Fourth Order Variational
Image Registration Model and
Its Fast Multigrid Algorithm

Several PDE-based variational methods can be used for deformable image registration, mainly
differing in how regularisation to constrain deformation fields is imposed [104]. As mentioned
in the previous chapter, on one hand for smooth registration problems, models of elastic-,
diffusion-, and curvature-based image registration are known to generate globally smooth and
satisfactory deformation fields. On the other hand for non-smooth registration problems, models
based on the total variation (TV) regularisation are better for preserving discontinuities of the
deformation fields.

In this chapter we propose and study a promising model that is based on a novel curvature
type regulariser and appears to deliver excellent results for both registration problems. A related
work due to Fischer and Modersitzki [47] and then refined by Henn and Witsch [78] used an
approximation of the mean curvature and obtained improved results over previous models.
However, this chapter investigates the full curvature model and finds that the new curvature
model is more robust than approximated curvature models and leads to further improvement.

Associated with the new model is the apparent difficulty in developing a fast solution as the
system of two coupled PDEs is highly nonlinear and of fourth order so standard application
of multigrid methods does not work. To end this, we first propose several fixed-point type
smoothers and use both local Fourier analysis and numerical experiments to select the most
effective smoother which turns out to be a primal-dual based method. Finally we use the
recommended smoother with a FAS-NMG algorithm for the new model. Numerical tests using
both synthetic and realistic images not only confirm that the proposed curvature model is more
robust in registration quality for a wide range of applications than previous work [104. 78], but
also that the proposed numerical algorithm is fast and accurate in delivering visnally-pleasing

registration results.



7.1 Introduction

Let R and 1’ denote a reference and a template image, respectively. Here the given images R and
1" are modelled as the continuous functions mapping from an image domain Q = [0,1]? C R?
into V = [0,1] C Rf. As already pointed out in §3.2, the registration problem can be posed as

the following minimisation problem:
min{J,(u) = DSP (R, T,,) + aR (u)} ()

where the image intensities of the given images R and I’ are assumed to be comparable and

a > 0 is the regularisation parameter. Recall that

1
DSSP (y) = 5/ (1 (x4 u(x)) — R(x))* dx, (7.2)
Q
and
f)=(fi (@), fa(w)" = ((Tu—R) &, Tu,(Lu— R)Ou,Tu)" (7.3)
is related to the first variation of PSSP,

Below we review the specific choice of R and the subsequent system in five commonly used

PDE models.
(1) Elastic image registration [8, 15, 104]: Choosing R in (7.1) by
- 2
RIw) = [(0/) 3 Onium + 00,0 + WDV, (1)
Q lm=1

leads to the Euler-Lagrange system of two second-order nonlinear PDEs:

{ J1(w) = a (A4 20) 00,0, w1 + p0ryz,ur + (A4 p)0pyzpuz) = 0

Ja(u) — a (A + 1) 0zyzpus + pOsyzyu2 + (A + 20)0ry0yuz) = 0, (clastic model) (7.5)

subject to (i (Vu + (Vu)") + Adiag(V - u),n)_, = 0 on 9Q.

(2) Diffusion image registration [33, 46, 89, 91, 104, 131]: Choosing R in (7.1) by

RAM (g / |V |? dx, (7.6)
21 1
leads to the Euler-Lagrange system of two second-order nonlinear PDEs:

{ jfz EZ% : 325; z 8 (diffusion model) (7.7)

subject to (Vauy, m)g. = 0 on 962

(3) Fischer-Modersitzki’s curvature image registration [47, 48, 49, 89, 91, 104]: Choosing R
in (7.1) by

RFMcurv(u) / Aul de (78)

=
leads to the Euler-Lagrange system of two fourth-order nonlinear PDEs:
2, —
{ ;‘; Ezg ——:: 2223; ; 8 (Fischer—Modersitzki’s curvature model) (7.9)
subject to the special boundary conditions Vu; = 0, VAw; = 0 on 99, for [ =1,2.
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(4) Henn-Witsch’s curvature image registration [79, 78, 73, 75, 74]. Choosing R in (7.1) by

RHVchrv 2 / Aul -9 u Loy ul12m2 - U2 )dx7 (710)
=1

[
leads to the Euler-Lagrange system of two modified fourth-order nonlinear PDEs:

{ fi(w) + aA%u; =0

Bilu) - aehug =11 (Henn-Witsch’s curvature model) (7.11)

subject to Bj(u;) = 0 on 99 with

0 0 0%y 0% 0%,
B =——Au; — — 2 _p2) 4 ==L .
1(w) on i Js {3x18$2 g — ) (8%2 322:1> nmln“} ’

and
9wy
on?

where s denotes the unit tangential vector (orthogonal to n).

Bz(ul) =

(5) Total variation (TV) image registration [51, 53, 142]: Choosing R in (7.1) by

RETY (u Z / V| 5 dx, (7.12)
leads to the Euler-Lagrange system of two second-order nonlinear PDEs:

{ fi(u) —aV- (I—Vi_nllz) =

0
fZ (u) _ av ( Vuz ) - 0 (TV model) (713)

subject to (Vuy, n)p. = 0 on 92

As pointed out several times in the previous chapters, the first four models are quite dif-
ferent from the fifth one. Firstly, Re'es, R4 REMeurv 5pq RHWewv hroduce globally smooth
deformation fields, although the latter two models are better than the former two. While they
are useful for several applications, they become poor if discontinuities or steep gradients in the
deformation fields are expected (e.g. resulting from matching several moved objects or par-
tially occluded objects). See Figures 7.1-7.2 for a particular registration problem where these
regularisation techniques yield oversmooth deformation fields.

Secondly, RPTV helps to preserve discontinuities of the deformation field in clear contrast
to the first four models; see Figures 7.3-7.4 for example, in particular the piecewise smoothness
shown in Figure 7.4 (c) at the top region. However, R°TV may not be suitable for smooth
registration problems, which are modelled better with the first four methods.

In addition to these five models, the optical flow models [2, 3, 18] are also widely used which
works the best if features have minor changes from R to 7', e.g. in matching sequential frames
in a video.

As is well-known, efficient solution of the coupled nonlinear PDEs resulting from a variational
registration model is an important task. For registration purposes, various numerical techniques

based on unilevel and multilevel methods have been proposed and tested as briefly reviewed in
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Figure 7.1: Registered images for two rectangular blocks shown in (a) R and (b) T of size 32 x 32
(Example 1: results by (¢) R®"™ with (u, \) = (1, 1), (d) R, () RPTY with 8 = 0.01, (f) RFM", (g)
RHWewrv () RNeWCY with 3 = 0.01. A non-smooth deformation example to show that our registration
model RN®YCY gives the satisfactory registration results as good as those from RPTV which is known

to be suitable. Here the regularisation parameter o was well-selected for all registration models.

§3.6. However, the new fourth-order model to be proposed here cannot be solved by existing
methods. The new algorithms will be presented shortly.

The rest of the chapter is organized as follows. §7.2 first presents a new PDE-based image
registration model based on a novel curvature regulariser suitable for both smooth and non-
smooth deformation problems and then discusses unilevel iterative nmumerical methods for it
in §7.3. §7.4 presents a fast multigrid approach after first analysing some iterative solvers as
potential smoothers. Experimental results from real images illustrating the improved results
from the new model and the efficiency from FAS-NMG are shown in §7.5 before conclusions in

§7.6.
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Figure 7.2: Deformation fields for the non-smooth registration problem shown in Figure 7.1 (a)-(b)
(Example 1): results by (a) R®™ with (u,A) = (1,1), (b)) RYE, (¢) RPTY with 8 = 0.01, (d) RFMe,
(e) RV and (f) RNYY with 8 = 0.01. The exact deformation field is given by a shift of the
upper rectangular to the right and a shift of the lower rectangular to the left; c.f. Figure 7.1 (a) — (b).

7.2 A new PDE-based image registration model

Motivated by the attractive properties of the Fischer-Modersitzki’s curvature registration model
(7.8) improving on previous second order models (7.5) and (7.7), we consider an alternative
formulation that uses the full curvature information without approximations and hope to achieve
further improvements in terms of registration quality. It turns out that a model that minimises
the curvatures along level lines is the right model to study while a model uses the (mean)

curvature

2 2
kyv(w) =V Vu _ (buiy Yy o) —20y, gy Mgy oy (I YUy 0,
\/I-HV'LHP (1+"lz_t1 +u2~’r2)3 2

cannot achieve such an aim.

Instead of using xas(u1), we consider the curvature of the level lines to allow displacement
discontinuities

2 2
Vu, (B+ulzl)“l”:1 +(ﬂ+u112 )“lrz.rg
‘v“l‘ﬁ (/3+‘u1211+ul2r2 )3/2 )

—2u;, u; wy
zq leg Clrjxs

k(u) =V -
and propose the following regulariser
2
RNVEY () = 3 [ O(k(w))dx.
1=1Ja

Due to the sum rule, the following theorem can be used to compute the first variation of

RNewCV
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Figure 7.3: Registered images for X-ray images shown in (a) R and (b) T of size 128 x 128 (Example 2):
results by (¢) R with (u, \) = (1, 1), (d) REE, (e) RPTY with 8 = 0.01, (f) RFMeurv (g) REWeury,

NewCv

(h) RNe¥CY_ A smooth deformation example to show that our registration model R gives the

lcurv :RH\’\'(‘m‘\'

satisfactory registration results as good as those from R*™ and , which are known to be

suitable. Here the regularisation parameter o was well-selected for all registration models.

Theorem 7.2.1 Let & be a given function and let

~NewCv

R ('u,):/@(fe(ul))dx.

—NewCv

Then the first variation of R (up) is given by
—NewCv 1 ., Vuy - VO (k(ur))
R i) = /  (=— V' (k(;)) — ——=——Vu 1
O0R (ug;m) /)(\ (]Vu1| Vo' (k(up)) e wp))mdx
+ / &' (k(uy)) <; (I-P)Vn, n> ds
Jag [Vl R2
' 1 ‘
—/ < (I—P)V(ﬁb’(f{(u,)).n> mds, (7.14)
o \|Vuil R2

where 1 is the identity transform and P = \7111‘—51—1”1"—2 = n ® n is the orthogonal projection

onto the normal direction.
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Deformation field w = —u

Figure 7.4: Deformation fields for the smooth registration problem shown in Figure 7.3 (a)-(b) (Ex-
ample 2): results by (a) R°™ with (u, A) = (1, 1), (b) RYE, (¢) RPTY with 8 = 0.01, (d) RFMuY, (e)
REWeurv “and (f) RNV, (¢) shows the piecewise constant smoothness at the top region by RTV.

Proof.
5 NewCv d —NewCv
SR (w;m) d_R )
€ e=0
_4 O (r(u + em))dx
~ de Jg e =
= [ Lotutu+em))| dx
 Ja de ke e=0
) d
= [ ®'(k(w +em))—r(w +en)| dx
i de e=0
d V(u + enr)
_ @' —(V o —= &
/Q (r(u)) 5=( IV (u + em)l) -
d V(ul + 577[)
_ P’ Vi &+ d
/Q (s(u))(V - = IV (u; + eny)] e=0) )
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Figure 7.5: Surface plots of uy for the non-smooth registration problem shown in Figure 7.1 (a)-(b)
(Example 1): results by RN*"°" with (a) 8 =1 and (b) 8 = 0.01. (a) and (b) show smoothing effects
on the surface of u1 at two different values of 3.

or
R tum) = [ @) (V- (g a4 V0 +em)
5T " l |V(ul+em)|de l m
+ V(u +¢ )i—l— ))dx
L e de |V(uy + em)| | —o
1/2

o Vi 2 O(u,, + emay)? + (ui,, + €mas)®]”
- J,#w) (v | (IVuzl oLy 3o, + e, -

L)

/ (I SN
= [ )V - (g - Vi 32 S

V?] Vul
/ q) ul (lvull (VUlw)v’m))dx

e=0

Ay, + €Mz, )” O, + ena,,)
oui,,, + ema,,) e

After applying the divergence theorem, we get

—NewCv / V’I’]l V
Y e _ d
0R (wi;m) /69 &' (k(ur)) < Vul (Vuy N )V, TL>R2 s

_/Q<V(<I>’(m ) lg o= (Vu lw 7 )vm> dx
:/m@’(ﬁ(uz))<|vul|( (\7ul|vv E =)V, n >R2ds
- [ (V@ stw), 0= (Vg ))vm> e
1

= - (b’(l{,(ul)) <W (I = P) Vm, ’I’l:>Rz ds
1 " 1
- /Q <|v—u,|“‘PW(¢’ (n(uz)>>,w>R2d .

—

Here I is the identity transform and P = VU[%LF =7 @7 is the orthogonal projection onto
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the normal direction. By using the divergence theorem with the second term, we have
~—~NewCv

R (wism) = P (k(w)) <|V;ul| (I-P)Vn, n>

ds
oQ 2

R

]' /
n /Q (V- (e (L= P) V' ()

_ /{m <ﬁ L P)V(@’(/ﬁ(ul))7n>R2 nuds

or

~~NewCv

oR (ul;m)zfﬂw-( ! V- VO ()

] & ) = 7

Nl . .
*/m@"‘( z>><|w (I-P) Vnun>R2d

R (I—P)V(‘I’/(ﬂ(uz))7n>w mds,

which concludes the proof. m
Let R (u) = RN*¥C¥(u). Then by the sum rule, (3.8), and Theorem 7.2.1, the Euler-

Vuy))mdx

Lagrange equations of (7.1) are given by

1 Vuy - Vo' (k(uy))
u) +aV- Vo' 1)) - ——=————"=Vu;) =0
fl( ) Q@ (Ivullﬁ (ﬂ(ul)) (|Vu1|g)3 ul)
V1=(‘;:1,V12)T
(new curvature-type model)
1 Vug - VO'(k(uz))
u) + aV Vo' (k(uz)) — ———=——2Vuy) =0
f2( ) (|vu2|6 ( ( 2)) (|VU2|g)3 2)
V2=(;;~V22)T
(7.15)
or in a compact notation
filu) +aV -V =0,
{ folw) +aV - V5 =0, (710)

subject to the natural boundary conditions (Vu;, m)g. = 0 and (V&' (k(w;)), n)g2 = 0 on 0.
Here we remark first that the boundary conditions (Vug, n)g. = 0 and (V@' (x(w;)), n)z. = 0 on
O are used to drop the first and second boundary integrals in (7.14), respectively. Second we
remark that this work mainly considers the case of ®(s) = %82 although the general notation
allows for other choices.

The proposed regularising functional RN®VCV has the following properties: i) RNVCV(Ax +
b) = 0 for A € R?*? and b € R?, i.e RN*YCY has the same property as the original idea

of Fischer-Modersitzki’s curvature approach. ii) It preserves discontinuities of w because the

g Ve (s(ur)
[Vl

for non-smooth deformation problems the new PDE model preserves discontinuities of u by

diffusion coefficients — 0 an — 0 when \Vul|@ — oco. In other words,

1
[Vu|a

reducing or stopping the diffusion (smoothing) process in inhomogeneous regions presenting
large gradients. iii) RN*VCV reduces to R¥MeU in (7.8) if |Vu| ~ 0 and we take g = 1.
However 3 < 1 is required for non-smooth deformation problems. From now on we shall use
the notation RNeVCY to mean the full curvature model (7.15) and its numerical solutions is

discussed next.
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7.3 Numerical solution of the PDE system

While variational models have made many contributions in high-resolution image processing, a
major challenge is to implement fast and stable numerical algorithms for solving the associated
Euler-Lagrange systems. In this section we briefly review possible numerical methods that have
been studied for other models and could be considered for solving (7.16). To proceed, we denote

the discrete domain consisting of N = n? cells of size h x h by
Qn = {x€Qx=(x1,,22,)" = (20 — 1) h/2,(2§ — 1) h/2), 1 <4,j < n}

throughout this section where h = 1/n denotes the grid space.
Finite difference discretisation. We shall use a cell-centered finite difference approxima-
tion for the underlying PDEs. For simplicity, let (ul'); ; = u/'(z1,, T3, ) denote the grid functions

for { = 1,2. After discretising (7.16), the grid system at (4,7) € , is given by
frub ub)i;+aV- (V=0
N’f(u")f,j hoohy
ie. { N,g(“ )’- 0, (7.17)
SR )i +V - (VE)ig = 0 N ()i =0

1
/\f‘( h) i

subject to the discrete boundary conditions,

(“zh')i.l = (u?)i.% (ufl)m = (’“7)1‘,:7,—17 (“?)1.;‘ = (u]')2,5, (U?)w (u?)n 1,55

' (r(u}))in = ' (r(u))iz, ' (k(u}))in = O (w(uf’))in—1,
(P’(’i(u;?))l j= (Pl(ﬂ(u?))ljv @’ (K(u?))n §i= @/(’Q(u?))n~l s
with the following notation for the fitting terms f; from (7.3)
A (ulyul), ;= (L5 — R, )((L’ilj =1 5)/ (2h)),
féL (U?,UZ) ( Yh* - Rh )(( 1J+1 11’_} l)/ (2}1))
1 jh( ( )i‘j’j+(u2)i,j)’
(uh)i,j = ((ul)ig» (u3)ig)"
Here we approximate the term V - (V); ; as follows:
OVE L AVE (Vi = Wi, (Wi = (Vg 7.19)

(B +(B:z°2) = h h
Therefore, we need to calculate V' at the grid points (i + 1,;) and (i,7) and V;* at the grid

points (7,7 + 1) and (¢, j). Below we list the approximation used in our numerical realisations



for estimating V;! at the grid point (i, j):

( h) _ éz__l 6;—1 (u?)iaj/h
e Tl + (2 RY. . /})2 + (0 hY. /B2
VB+ Ok Wi /)2 + (6 (uf)ii/h)
19 0, (' )ii/h
h - b
B+ Bh ()i /R + (5L ()i /1)
u?rl = 6:—1 (u;l)i,j /h’

= ot ()., /b
0 (u'); ;= £ (()izrg = (@)ig) s 8, (uf);; = £ (@)iger — (uf)ig),
Vel = /8 + (0 (ul)ig /12 + (57 (uf o /B2,
(®'(k(w)))e, = [ (K(w)it1,5) — ¥ (K (w)i )]/ b,

(O (k(w)))as = [®' (K(w)ij41) — P (K (ur)iz)]/ b

Discretisation for V;! at the grid point (¢ + 1,5) and V}? at the grid points (4,5 + 1) and (i, 5)

can be given similarly.

7.3.1 Method 1 — A semi-implicit time marching (SITM) method

As discussed in §3.5.1, the main idea of time marching approaches is to introduce an artificial
time variable ¢ and compute the steady-state solution of the system of time-dependent PDEs

of the form:

{ Byuy (x;t) + Ny(u(x;t)) =0
Qyua(x;t) + Nao(u(x;t)) =0

where

l(X; t))) Vi (X; t))

Ni(u(x;t)) = fi(u(x;t)+aV-(— _Vau(x;t) -wm?

u
————— V&' (r(u(x; ¢

Tty © bs0) VeI
In order to overcome the nonlinearity and higher-order derivatives of N;, we linearise the

associated system respect to the (k + 1)th time-step using the method of ‘frozen coefficients’

and define the iteration step as follows:

k k lin ; k k+1
@Fy), = @), — W@t Al(ugk;)(uékil;)i_j = B, (u®),;,
¢ m Rl
W)y = @iy — TN, (D), A (u) @) = Bay(u®), 4,

O
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or in full details

;

k+1 k
V) + @) =

Ar(uf)(u{FY),

k i
@) — Ty (), + aV - (W)——'V‘P'(H(ugm))m]
Uy " )ijlg

By (u®);

(7.20)
oV (Vuék) . V(D/(K(ugk)))Vugk+l))i.j + (U;(gk+1))i.j _
V13
Ao (uf) (@) 5
(Wi — Tlfe(w®);; +aV - —I—V‘P’(R(uék)))ztj}

(=
Vs

Ba(ulk)); ;

which is a semi-implicit time marching scheme for (7.16). Here the symbol A in the previous

section is dropped for simplicity and we denote by

1
k
IVu{®|s

ije

k ’ k
_ V“l( Ve (’f(“z( )))vul(kﬂ))

Vo (r(u))
Va3

N;m(u(k“))i.a‘ = fiu®);; +aV - (

(7.21)
the frozen operator, linearised at a grid point (i, 7). We note that this frozen operator allows
us to solve (7.16) as the system of two second-order PDEs for each time step k because the

coefficients from the higher-order derivatives are frozen in the associated discrete system.

7.3.2 Method 2 — A stabilised semi-implicit time marching (SSITM)
method

Although this above idea of linearisation via semi-implicitness seems reasonable, we found
experimentally that this numerical scheme (7.20) is only stable when 7 is small and small 7
will lead to slow convergence in the overall registration process. The reason for this stability
problem is that the discrete system has a highly nonlinear coefficient &%& that can
easily change its sign for large 7 so neither positive-definiteness nor diagonal (lion[;inance can be

guaranteed for numerical schemes of the underlying system (a matrix form of (7.20))

Al(uik)) 0 ugk-H) _ < Bl(u(k)) )
0 Az(ugk)) uék’“) By(u®™) )
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In order to improve stability, the stabilising terms based on the so-called convexity-splitting

techniques developed in different contexts ([14, 44, 45]) may be added as follows:

NOR T NO! : ) )
yiTF (uy (kL) )ij —arV - (V—J‘—VV%JVQLEHI))U + (“§k+1))1’j = Tf(ugk))i,j + (uglf)J
= 7lfu@®)i; +aV - (ot V' (5(e))s ]
ul®. "(w(ul® :
YT Fuy )i — arv - (La Y2 0ele D gy 0y, o4 D), = “Y:ZT]:(ugk))i.j + (u$)i;

(k)
[Vuy lfa

— 1f2(u®);j + aV - (== V' (5(u$?))i 4]

|Vu “’)|
(7.22)

where v; > 0 and F(w;) is some appropriate partial differential operator arising from the

minimisation of a convex functional, such as [, |Vu|dx or [, |V |*dx.

Note that —W — 1 as |Vul )| — 0 for smooth problems (5 = 1) and W\_ — 0 as
(h+1)
|Vul(k)| — oo for non-smooth problems (8 < 1). Therefore, F(u; (k1) )ij =—V- (‘vv“im‘)

smooths wu isotropically inside homogeneous regions corresponding to weak gradients and pre-
serves discontinuities of w in inhomogeneous regions representing large gradients by reduc-
(k+1)
(k+1) Vu
)1] = -V (

ing or stopping diffusion process. As a consequence, F(u, m)u ap-
l
pears to be an apropriate choice for both smooth and non-smooth registration problems, while

\
.’F(ul(kﬂ))i_j = —A( (k41 ))”» is only suitable for smooth cases.

7.3.3 Method 3 — Fixed-point (FP) methods

As is well-known [137, 27, 30|, fixed-point (FP) methods are usually faster than time marching
approaches when appropriate FP schemes are applied. To try this idea, we use a similar

[v+1] [u+1])

linearisation to the above (7.22) plus a linearised version of fi(u; ', usg via a typical

Taylor’s expansion as follows
Py a0 il b oul + 00 A,y )suy,
= fl(u[l'/],u2 )+ o[u]()u + GM(SU[V]

= fl(u[lul,u[;]) + al[l'/](u[lu+1 - u.[IV]) + al{;] (u[QVH] - u[;]) (7.23)
where
o) = Buy filwl), ul1) = (B0, Loyp1) (Buy L) + Lyt = B) Buyuy L)
and

oty = D il 457 = (B0 L) @ Tut) + (L) = B) Bugu L)
Then a FP scheme of (7.16) can be given by (for v =0,1,2,3,...)

Vu [v+1] [v] [v+1]

—av- (*‘ﬁﬁﬁ—";Vul””)m(a%)U(ul i + (i a0 =
(@) s @ Mes + )i @y = Fr(a)i; — oV - (rater; VO ()i

7.24)
vul.ve (x ul,"] Y 1 v [v+1 (
¥ (LT G, (ol ke + ol =

(515 @i + @i @E ey = Fa(l)i; — @V - (o VO ((w3))s -
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Note that Jl{n3 ({,m = 1,2) can be refined further as mentioned in §5.3.1, i.e. 021] = 052] and

b = (B L) (B L)
Unfortunately, we found experimentally that this FP scheme is neither stable or conver-

gent. This difficulty arises from the unbalanced terms in the resulting discrete system. For

example, fixing 8 = 1072 in the flat regions where |Vul[ = 0 reduces the diffusion coefficient
E%g‘“—”— ~ 0(10%) compared with that of only IV" ouls ~ O(10%) for the TV restoration
B

case [118, 137].

7.3.4 Method 4 — A stabilised fixed-point (SFP) method

In order to improve the FP scheme (7.24), the convexity-splitting idea [14, 44, 45] is again

considered by adding stabilised terms as follows:
v 1L[V]' ! Klu v v v v v
nF ™M) - av. (L‘TWW(T?E_I_VU[ i+ @@ ey + (@l @b ), =
nF N + (@i (u[[f]% + (@D (s )eg = fi(ul)iy,
—aV - (== V' (5(4;")))i 5
[Vui”|g
1% ‘U{V]‘ / K 7L[L‘] v 14 14 v
Pl = 0V (LETEED Gt 4 (ol g + (il s =
e F () 5 + (ol J (U[V])i.j + (U.[qx;])i,j(u[zl/])i.j = fa(ul); ;

—av‘(mv‘bl( r(u [2])))1',1‘

(7.25)

and we shall name this resulting FP scheme as the stabilised fized-point (SFP) method.
As mentioned in Method 2, we also found that .’F(u}”“l) = =V (%) is a suitable
choice for both smooth and non-smooth registration problems. Therefore, our SFP method can

be explicitly expressed as follows:

NSFP[U{V]}U[V+1] — GSFP[U[I/]] (726)
where
v v ~\[V]
NSFP[U[V]] _ _OL'L?FP[UQ ]]i.j (”52]) ['] GSFP[u[u]] _ (91)1[-,]} >
(Ug;])i,j —aL3"P[u uy )i (§2)i.j
~\[v V’LL[V] v v v v
@015 = =¥ (o + ol ag D+ s (s = it
up i
—aV - (——V (s(ul)))i;
Vs Lo
and
Di(ul))
v / [v]
. 5 v Vu; ? - V' (k (u ) " i 4
L s s (uf )iy = V- (([V llu]‘ M v I L2yl M), 5+ (ot g ()
uy g w3

In each SFP outer iteration v, the PCGS relaxation method is used as the inner solver in

our numerical scheme to solve approximately the associated linear system. Here the kth PCGS
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step is given by

—-1 n
(u{u+11)£’f].+” - (NSFP[uIva) (GSFP[U[VI])QJ%W, (7.27)
where
a(Z1)ig /B2 + (1) (o13);
NSFP['U,[V]]L]' - ] 011)i,j [ 12 /)i,J 9 ,
(‘721 )1.1 af )ig /h2 ( )1 J

g
@ﬂ”+w ly, ; G [e+e/e]

. Syl
(GSFP [l 12 ( M (L ])”( o )
(w5 )iy
(M) = @Dy + Du )i,

+ Dia(ul); ),

s[v] v v v v v G
(g)”U+Umﬂﬂ—umﬂﬁmwﬂMﬂU+W@U + (Dur ()i ) L

FW ) e+ D)) el )

Uu(uE })1’ = D(y, by, 1. Dzz(uﬁ”])i.j = Dz(ug”])i,j_l, Uzs(uy’])i.j = Uz(ugu])i.y

We remark that other iterative techniques such as the line relaxation techniques or the pre-
conditioned conjugate gradient method may also be used as an inner solver. However, the
PCGS relaxation method appears a cheaper option. Finally, we note that the stabilising terms
-y V- (Eml—}) and al[l] lead the system (7.26) to be strictly or irreducibly diagonally domi-
nant. This lgugrantees the existence of a unique solution of each linearised system and global

convergence of the Jacobi and GS iterations [117, 121].

7.3.5 Method 5 — A primal-dual fixed-point (PDFP) method

In designing alternative methods for (7.16), we note that the previous four methods tackle the
nonlinearity in some way. Below we consider an idea from reducing the higher-order derivatives.
In fact, higher-order PDEs (in the context of mixed finite elements or in the denoising model
[25]) as well as higher order ordinary differential equations are often reduced to low orders
before numerical solution.

In order to apply this idea to (7.16), our first step is to introduce suitable intermediate

variables (which we shall call dual variables)

o = = (n(1)) =~V [ and va = ~P'(s(u)) = =V - S

leading to the equivalent system of four second-order nonlinear PDEs given by

_ Vu,
Vomul, — =0

Vuy
V. Vuz|s V2 = g2

) Vuy-(—Vo 7.28
fi(u)—aV- (Nvml‘/3 + |lvu1[3 2Vup) = g3 =)
v Vua-( Vv
J2(w) = aV - (ks + P Vie) = g4

subject to the boundary conditions transferred into Vu; = 0 and Vv, = 0 for [ = 1,2 where

g=0 (lA: 1, ..., 4). The next step is to linearise (7.28) by a FP scheme as follows:
NPDFP[z[V]]Z[V+1] _ GPDFP[Z[V]] (729)
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where linearisation for f; (u[l'j'H]7 ug’H])

(u[lrﬂ—l]’ u[2u+1]’ v£u+l]7 v£u+l])*|-

isasin (7.23)’ 41 — (z£1/+l].’ Z£V+1]., z:[”u+1]! Zg[lu_H])T

)

~Lf 0 4 0
7or Y]
NPDFP[ ) — & "52[[32 0 " -1 |
Ui 1 —aly[uy’] ~()
7 o33 0 —alauf]
G (M) = (91, 02,35, 84)
EZ(UEV])
—~ e
Ll[ul[ }]z,l.[, +1] _ V- (Iv_ulFlE “ll +1]) (Zj[‘ +1] _ u}y-{»l] i ’UZ[V-H]),
Y vl v v VUM-(—Vv[V] -
3" = g5 — A W) + ol + olul) + av - (WI%—UV““)’
and
Vuz (- VU

@41—94—f2(u1 ,u2 )+02] M+o[] []+aV (—m—wu E Vu [V])
2

Here discretisation of (7.29) is done as in §7.3. We shall call this numerical scheme by a primal-
dual fixed-point (PDFP) method because it includes the primal variables u;, us and the dual
variables vy, v2 in a FP scheme. We remark that other choices of selecting the dual variables
for (7.16) were also tested, but did not work well. For example, introducing the new variables

Vuy - VO'(k(uy

v, = : Vo' (k(ug)) — |Vu1|?3 ))Vm

V|

and
Vug - VO'(k(usg

V2 = gy VO ) — g ),

[Vuz|s
can only reduce the resulting PDEs to order three systems. We note further that in our
numerical scheme each PDFP outer step is solved using a PCGS relaxation method (as with

Method 4 of §7.3.4) as the inner linear solver. Here, such an inner solution step is given by

(2 [V+1])£kj+1] _ (NPDFP[ [u]] GPDFP[ [u]] [k+1/2] (7.30)
where
EVh, /02 . 0 ~ 0
NPDFP 1], . — [(; (221/1[);,3'/}12 . ]0 -1 ’ (731)
’ (0%1])1‘.1 (0—%2])73]' a(Xy )i /h? . ]0
(‘7211 )i (‘72; )i 0 a(xzy )i.j/h2
=0,
(g1)ij + (2[1 ])7'.]( ul +1])£k]+1/2]
v ; ij 2 ’ ] u[’/“"l] 7[k+1/2]
(GPPFPL:! ]])7{7]:;1/2] - (32)[:] ( i[l)'] ! 2[ 3] J[k+1/2 ' \Fs2
( 3)1j + a(X i ])‘lj( 1 )1]
@) + (B )iy (h T
()is = @Dis ()i + D) + Dialu)i), (7.33)
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and

=[]

v+1]\[k+1/2 = v v = v v G
S0 eI = (/) ((Dis i) B + Du @i ) ()

+(Bia (i) TNy + DNy ) EHE) L (7.39)
Du(u)ig = Duw™)i 15, Do )iy = Diuf)ig 1, Dis(ufM)ig = Du(uM)iy. (7.35)
We note that the approximations in (7.30) — (7.35) need to be adjusted at the image boundary

02, using the homogeneous Neumann boundary conditions i.e.

h _ (,h h _ (h h _(h h h
(z1)in = (1)i2y ()i = (F)im—1, ()15 = ()25, (5F)ng = (F)n-1,5- (7.36)
(a)Example 1 - SSD by 3 methods (b)Example 2 - SSD by 3 methods

Rel. SSD VS. No. Iteration Rel. SSD VS. No. Iteration
1 " SsTM ; % SSITM
-SFP -SFP
0.8 =PDFP 0.8 ~PDFP
206 206
7] n
& 0.4 & 0.4} ]
0.2r L 0.2 1
0 5 10 15 20 25 30 0 5 10 1
Number of Iterations (x 10) Number of Iterations (x 10)
(¢c)Example 1 - RRes by 3 methods (d)Example 2 - RRes by 3 methods
. Rel. residual VS. No. Iteration 5 Rel. residual VS. No. Iteration
10 - . 10 r -
107 107 3
© ©
3 3
@10 3107}
© °
o [:4
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=+SSITM #SSITM
-SFP - SFP
PP el ‘ ‘ . ‘ 1g "L =FDFP .
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Number of Iterations (x 20) Number of Iterations (x 20)

Figure 7.6: Numerical results by Method 2 (SSITM (7.22)), Method 4 (SFP with the FP parameter
v = yi= v,=1/y/B), and Method 5 (PDFP) for Example 1 (in a 32 x 32 grid as shown in Figure 7.1
(a) — (b)) and Example 2 (as shown in Figure 7.3 (a) — (b)). The top two plots show the relative errors
in SSD and the bottom plots show the relative residuals versus iterations. Clearly Method 5 (PDFP)

performs much better than the other two methods.

We have so far presented five numerical methods for solving (7.16) where Method 2 is en-
forced by Method 4 and Method 3 is less efficient. So it remains to test the overall performances
of the three numerical schemes (i.e. Methods 2,4,5). We tested them for both the smooth Ex-

ample 2 and the non-smooth Example 1 as respectively shown in Figure 7.3 (a)-(b) and Figure
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(e)Example 1 - Old vs New Res by Method 5  (f) Example 2 - Old vs New Res by Method 5

P Rel. residual VS. No. Iteration a Rel. residual VS. No. Iteration
10 T ; T ; 10 T
“=Equi. system +Equi. system
~=-Org. system =-Org. system
1072 107
® ®
3 =)
- 2
8107 810"
& @
107 107
X
-8 . . i £ i i . -8
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Number of Iterations (x 20) Number of Iterations (x 20)

Figure 7.7: Comparison of the relative residuals by Method 5 using both the original system
(7.16) and the equivalent system (7.28).

7.1 (a)-(b). The test results shown in Figure 7.6 (a)-(d) show that the new Method 5 performs
much better than the others. In particular, as shown Figure 7.7, Method 5 indeed solves the
original system (7.16) as expected through an equivalent system.

Although the above tests show that Method 5 is recommended as a unilevel method, our
next task is to select a suitable smoother from these methods for designing a convergent MG
method for (7.16). To proceed, we shall use a local Fourier analysis to decide which method (4
or 5) is better suited for our purpose. As it turns out, Method 5 is indeed the better method

but, even so, modification is still needed for it to be an effective smoother.

7.4 A nonlinear multigrid method

Multigrid techniques [12, 67, 134, 139, 140] have been proved to be very useful in the context of
deformable image registration for solving large systems of linear or nonlinear equations arising
from high-resolution digital images and real-life applications as briefly reviewed in §3.6.

As is well-known, a working MG has 3 main components: (i) Smoothing via an iterative
method; (ii) Restriction from a fine grid to a coarse grid; (iii) Interpolation from a coarse grid
to a fine one. On the coarsest grid, an effective unilevel solver is used for accurate solution; here
we shall use Method 5. Without reducing the importance of the restriction and interpolation
operators, the efficiency of every MG method strongly relies on the efficiency of the smoother
used at each level. We shall first discuss the choice of smoothers before presenting the overall

algorithm.

7.4.1 Local Fourier analysis (LFA)

In this section we shall use the LFA is to analyse the smoothing properties of the proposed

smoothers, which are Methods 4 and 5, before considering improvements.
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Analysis of Method 4 (Smoother 1)

Here we will compute the smoothing factor of Method 4 iterations (as our Smoother 1 shortly)
applied to the linearised system N3FF[a"|u" = GJFP[@"] obtained by freezing coefficients in
(7.26) at some outer step. Here u" and u" denote the exact solution and the current approxi-
mation and N$FP[@"] and G$FP[@"] the resulting discrete operators from the linearisation at

w". The analysis is carried out over the infinite grid
QF = {x€Qx=(z1,,22,)" = ((2i = 1)h/2,(2 — 1) h/2)T, i,j € Z?}. (7.37)

Let ¢, (6,x) = exp(i8x/h) - T be grid functions, where I = (1,1)7, 8 = (6,,0,) € © =
(—m, 7%, x € Q°, and i = \/—1. It is important to remark that due to the locality nature of
LFA, our analysis applies to each grid point separately i.e., & is matrix each one of its entries
representing the smoothing factor for each grid point & = (4, j). Hence we define pjo. = p(€)
as the local smoothing factor and f.. as the worst possible value of po. over Q5. Thus for

Method 4 from (7.27)

~SFP SFP
10 = max pt
loc ceOn loc

To determine pSFF we consider the local discrete system NSFP(€)u”(€) = GSFP(¢) centered
£ J h h

loc
and defined only within a small neighborhood of ¢ and w” (&) = [uf(€),u2(€)] . By using the

splitting NJ¥P(¢) = NiFP+(§) + Ni“”"*(g), it is possible to write the local inner iterations of
Method 4 as
NRFPH (€)@, (€) + NRFT™(E)Tia(€) = GRF(€) (7.38)

new

where @', (¢) and @, (€) stand for the approximations to w” () before and after the inner

smoothing step, respectively. Here

NP ey = | —eLT©) aalg) } ngp(@:{—ac’f[“k@ 0

L om® —eiMe 0 —ags© |
h 1 ; ¢ b
—LiM©) = o | ~De@(©) %@+ (h/a)ou(©) 0 |,
0 —Din(w(§)) 0
and
. 1[0 —Diz(@(§)) 0
_gl[‘](g):ﬁ 0 0 —Di3(w(€))
0 0 0

By subtracting (7.38) from N3P (&)u” (¢) = GSFP(¢) and defining e’ (&) = u"(€) — u”,,, (€)

and €7, (&) = u" (&) — ul,;(€) we obtain the local system of error equations

NFPH(&)eh,, (€) + NFFP (€l (&) = 0 (7.39)

new

or
€new(€) = S5 T (€)E01a(€) (7.40)

new

where



is the amplification factor. The effect of SFFF (€) on the grid functions ¢,,(8,x) within Oz, =
©\[-7/2,7/2)° will determine the smoothing properties of Method 4. Thus, —67[“ (€) and
—£th (&) are defined in the Fourier modes by

~£€,0) = S (5(®) + (W /@)ou(€) — Dua(€) exp(~161) — Dia(€) exp(~i62)))

and

_57[‘](5,0) = —%(Dlg,(f)(exp(iﬁl) + exp(i62)))

and the local smoothing factor is
fiine: = sup{|p(S3FF(£,0))| : O€ Opign} (7.41)
where p indicates the spectral radius of
SFP(6,0) = — [N;F™4 (¢, 0)] " [NYFP7(6,0)].
On a discrete grid of [—7/2,7/2], we shall be able to estimate the above factor shortly.

Analysis of Method 5 (Smoother 2)

Now we consider the smoothing factor of Method 5 from (7.29). To this end NEPFP[zh]2h =
GPPFP[z"] will denote the linearised system with 2" and 2" the exact solution and current
approximation. Here the grid function is defined by ¢,(8,x) = exp(i@x/h) -1, where I =

(1,1,1,1)7. The local inner iterations for the PDFP algorithm can therefore be written as

NP (€)Znen (€) + NZPFP ()20 (€) = GLPT(€) (7.42)
where -
(&Moo -1 0
NPDFP+ () _ 0 —£7(¢) ~0 -1 )
B N I G R A C R
@) o3(6) )
[ - o 0 0
- 0 _/hl=l 0 0
N PFP(¢) = i 5 & —al"(e) 0 ’
L0 0 0 —aLy(g)
B ] i 0 0 07
—LMg) = 75| “Pe@@) - e 0,
L 0 =D (@(g)) 0 |
and ~ s -
. 1 [0 —De@) 0
=L(6) = s} 0 0 —Diz(@(€))
L 0 0 0 |
Following the similar process of subtracting (7.42) from NFPPFP(€)2"(¢) = GPPFP(€) one

obtains the system of local error equations NPPFPH(&ygh  (¢) + NYPFP— (el (¢) = 0 or

€., () = SEPFP (€)@l (€) where 8lyy(€) = 2"(€) — Z0(€) and &, (€) = 2"(€) — 2., (€) are

new
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the error functions and SFPFP(¢) = — [N;:DFPJ“(@}?I [NLPFP=(¢)]. Hence, by considering
the grid functions ¢, (8,x), we can represent Z?’H](f, 6) and Zf[ﬂ({, 0) in the Fourier modes
by

~£™(E,0) = 25 (%1(6) ~ Dur(€) exp(~ith) — Din(€) exp(~if2))

and
~E1M(6,0) = — 5 (Dis(€)(exp(i61) + exp(i)).

From here, the PDFP local smoothing factor is defined by
/’L{;?FP = Sup{|p(S£DFp(§7e))| S ehigh}- (743)

The effectiveness of the above 2 smoothers (i.e. Methods 4,5) is now tested by computing
their smooth rates for Examples 1 — 2. The following Table 7.1 summarises the smoothing

factors of Smoother 1 (SFP) and Smoother 2 (PDFP) for Examples 1 — 2. Clearly for the

Smoother | Example 1 (non-smooth) | Example 2 (smooth)
1 0.9410 0.6825
2 0.9412 0.5212

Table 7.1: Smoothing factors poc after 10 outer iterations with PCGSiter = 10 by the SFP- and
PDFP-type smoothers for the smooth and non-smooth registration problems in Examples 1 — 2 as
shown respectively in Figure 7.1 (a) — (b) and 7.3 (a)-(b).

smooth Example 2, both Smoothers 1 and 2 are effective and in particular Smoother 2 is better
than Smoother 1. But for the non-smooth Example 1, they are much less efficient. Next we

consider a method to improve the smoothers and primarily to improve Smoother 2.

7.4.2 A new smoother and its analysis (Smoother 2*)

Recall that u is a matrix of amplification factors, whose maximum defines the smoothing factor
as in (7.41) and (7.43). It turns out that the largest entries of p coincide with locations where
we observe strong jumps of the diffusion coefficients Dy, (¢). Therefore, our idea of modifying
the smoothers is to seek alternative ways to update the solutions where the diffusion coefficients
have large jumps. Denote by set W all those pixels with such large coefficients jumps. The
whole domain €, = W U (2, \W) admits two different iterative solvers.

We consider an under-relaxation idea for the sub-domain W (representing the jumps of

D (€)) by updating all these odd points by

(T = (1 — ) (s 4 w(NFPFP[), )L (@PPFPMIERE (7.44)

i

Standard PCGS step
where w is to be chosen next. As with the previous section, we can analyse the smoothing
factor for the w—PCGS relaxation method in (7.44) by the LFA in the similar way to (7.30).
Here

Mg 0) and - L)17N(¢,0)
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are given by

” 1 - 5 o
~L{")(¢,8) = 75(54(€) — wDn (€) exp(=ifh) — wDra(&) exp(~if2)) (7.45)
and
P 1 e ~
~L17(€,0) = 25 (1 = w)i(6) — wDia (€)(exp(i61) + exp(i6z)). (7.46)
Further with the updated formulae for £, £'171 at set W, the amplification factor p(SPPFP IT)

is similarly defined using the updated formulae for S;PFP 1(¢) = — [NJPFF*(¢)] o [NFPFP=(g)].

Finally the overall smoothing factor is

piioe" " 1 = max { sup {|p(Sy"" (€, 0))] : 0€ Onign},  sup{|p(SyPTT(€,0))| : B€ @high}}
gew EEQ\W

For completeness, we also applied this idea of introducing w in W for Smoother 1 (SFP from
(7.27)) and did a similar LFA analysis. For the same test examples as with Table 7.1, we
now show the improved smoothing rates computed for the modified smoothers in Table 7.2
where we name the modified Smoother 2 (i.e. Method 5, PDFP II) as Smoother 2* and the
modified Smoother 1 (i.e. from Method 4, SFP II) as Smoother 1*. Clearly we see that the
above under-relaxation idea does help improve Smoothers 1, 2; since more improvement can be
observed in Smoother 2* (PDFP II) over Smoother 2 (PDFP), we shall take Smoother 2* as

our recommended smoother.

Smoother | Example 1 (non-smooth) | Example 2 (smooth)
1* (w=0.7) 0.8324 0.6711
2* (w=10.7) 0.7613 0.5210

Table 7.2: Improved smoothing factors pioc after using w under-relaxation idea in sub-domain W
Examples 1 — 2.

7.4.3 Nonlinear multigrid algorithm

FAS-NMG method has become an efficient approach for solving nonlinear problems, in partic-
ular image processing applications. Here instead of a scalar PDE we have a coupled system of
four second-order nonlinear PDEs from (7.28):
N ) = ot
N@h) =g", ie :
N () =
involving the nonlinear partial differential operator A7 (u") given by the left-hand side of
(7.28), where g; = 0 on the finest grid, for I=1,... A4

In our FAS-NMG framework for solving (7.16) via (7.28). Standard coarsening is used first
in computing the coarse-grid domain Qg by doubling the grid size in each space direction,
i.e. h — 2h = H. Second for intergrid transfer operators between 2, and 2y, the averaging

and bi-linear interpolation techniques are used for the restriction and interpolation operators
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denoted respectively by /7 and /};. In order to compute the coarse-grid operator of N}(u”)
consisting of two main parts: f}*(uf,u}) and L}(u}'), the DCA method is used.
Below, we present our recommended Smoother 2* (modified Method 5) as an algorithm

before presentation of the overall algorithm for solving (7.16).
Algorithm 7.4.1 (Recommended Smoother 2* (PDFP II))

Denote by

«  regularisation parameter

w relaxation parameter

K >0 tolerance (typically K = 10)

PCGSiter the maximum number of PCGS iterations

[E"] «— Smoother (E",g’f‘, gél,gé", g R T" o,w, K, PCGSiter)

e Use input parameters to compute (07, )i.j, (GLPFY [Z"])):5,

and (N*FPFP[ZM), )"l for im =1,2and 1 < 4,5 < n
e Perform PCGS steps
— for k = 1: PCGSiter

—fori=1:n

—forj=1:n
— if Dy(W)i,; > K - mean{Dy1(@)i,;, Di2(W )i ;, D3(W):,;} for L =1 or 2
— Set w=10.7
else
— Set w=10.0
end

i

- @ = 1 —w)@ +w@EE

i, i i,J

— Compute(Z" 4 using (7.30
2J

— end
— end
— end

To solve (7.28) numerically, our FAS-NMG method with the proposed MG smoother given
by Algorithm 7.4.1 is applied recursively down to the coarsest grid consisting of a small number
of grid points, typically 8 x 8. A pseudo-code implementation of our FAS multigrid method is

then summarised in the following algorithm:
Algorithm 7.4.2 (FAS-NMG Algorithm)

Denote FAS-NMG parameters as follows:

v1  pre-smoothing steps on each level

va  post-smoothing steps on each level

7 the number of multigrid cycles on each level (= 1 for V—cycling and p = 2 for W—cycling).
[Here we present the V—cycle with pu= 1]

«  regularisation parameter

w  relaxation parameter

K >0 tolerance

PCGSiter the maximum number of iterations using a smoother
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Z" — FASMG (z",0, %)

— s . —h <h —=h —h .
o Select o, € = (¢1,€2,€3,€4) and initial guess solutions Z%,,,,., = (Z%,Z4,Z4,Z4) " on the finest grid

eSet K =0, 2" =2 jia, Bo=e2+ 1,8 =e3+1,and &y =e4 + 1
e While (1{ <e1 ANDE; > e3 AND €3 > e3 AND &4 > 51)
- EZMF — FA.S'C’YC’(_’l,gl,gz,qg,%,Hh T , V1, v2, a,w, PCGSiter)

— & = mean{llg/' = N (E")*H)l2/llgr" - ‘iimm, Hz [ 1=1,4}
— & = DM(R*, Tl nyuaa) [DH(R*, T), [Recall that D" (R", T[")) ~ %HR“,T{?)H%}
— &1 = |Dh Rh Tgh K+41) — Dh(Rh T—Iz)K)I
- K=K+1
e end
where

[z"] — FASCYC(z", g1, 93,95, 91, R", T" ,v1, 15,0, w, K, PCGSiiter)

o If Q) = coarset grid (|2| = 8 x 8), solve (7.28) using Algorithm 7.4.1
and then stop. Else continue with following step.
e Pre-smoothing:
For k£ =1 to vy, [E"] — Smoother(Z", g, g%, g%, g, R", T", 0, w, K, PCGSiter)
° Restriction to the coarse grid
2 — TP 2 — TP 2 — 1Pk, 2 — 1Pz, R® — IERM, TH — [FTH
e Set the initial solution for the coarse-grid problem:
[Z{11~2 azfvzf] ~— [Z{JVMéqu“é!»:/Il{]
° Compute the new right-hand side for the coarse grid problem
91 I ( N"(—h)) + M EH): 02 — I (92 - (z )) + N (Z ¥
g8t — I (g% — N3 (")) + N3! EH)» gt — I (g1t — 4(Z ) + N (ZH)
e Implement the FAS multigrid on the coarse grid problem:
For k =1 top, [EH] — FASCYC( gl gl gH gH RY TH v s, 0w, K, PCGSiter)
e Add the coarse-grid corrections:

e En Iy (F ), mem4ln(E-R)
oz Iy (B -7, w4+ Ih (B -3

e Post-smoothing:
For k =1 to va, [E"] — Smoother(Z", g, g%, g4, ght, R", T", o, w, K, PCGSiter)

For practical applications our FAS-NMG method is stopped if the maximum number of
V— or W—cycles ¢ is reached (usually £; = 10), the mean of the relative residuals obtained
from the Euler-Lagrange equations (7.28) is smaller than a small number ¢, > 0 (typically
g9 = 1073), the relative reduction of the dissimilarity is smaller than some £3 > 0 (we usually
assign €3 = 0.3 meaning that the relative reduction of the dissimilarity would decrease about
70%), or the change in two consecutive steps of the data/fitting term D is smaller than a small

number g4 > 0 (typically g4 = 1079).

7.5 Further numerical experiments
In this section some experiments are provided to

(i) compare the modelling results of our new curvature model RN®VV with two related

approximation models RFMeurv apd RHWeurv,
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(ii) demonstrate the performance of our new FAS-NMG algorithm for RN*VCY with regard to

parameter changes.

Note that our FAS-NMG algorithm also works for the models of RFMeurv apd RHEWeury,
Two typical data sets (a smooth registration problem and a non-smooth registration problem
to be denoted respectively as Example 3! and Example 4) are selected for the experiments,
as shown respectively in Figure 7.8 (a) — (d). Improvements of RFMcuv and REWewrv gyer

non-curvature models can also be found from [47, 48, 79, 78, 73, 75, 74]. In all cases, we use the

bilinear interpolation to compute the transformed template image T,, once the displacement
NewCv

field is found. Below we mainly highlight the further gains from using R

Example 3

A

Figure 7.8: The second set of 2 registration problems. Left to right: reference R and template T'.
Top to bottom: Example 3 (a smooth registration problem) and Example 4 (a non-smooth registration

Example 4

problem).

7.5.1 Comparison with other PDE-based image registration models

In the first experiment, our aim is to investigate capabilities of RFMeurv RHWeurv ayq RNewCv

for registration of the two test Examples 3 —4 in resolution 512 x 512.

The registered results by the three models are shown in Figure 7.9 (a) — (f) with the
deformation results shown in Figures 7.10 (a) — (f). For the smooth registration problem
(Example 3), one can observe that firstly all three methods work fine in producing an acceptable
registration and secondly the registered result by the new model RNewCv is the best from both
the visual effect and the value of £3.

However, for the non-smooth registration problem (Example 4), one can clearly see that

REMewrv 5 REWewrv failed to deliver a good registration (note other models from [104] cannot

Lhttp:/ /www.math.mu-luebeck.de/safir/
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register this hard example either), from Figure 7.9 (d) — (f) and Figure 7.10 (d) — (f), while our
new model RNeVCY evidently produced visually pleasing results. The main reason is that the
exact deformation field should have a non-smooth shift for the left book to the top; c.f. Figure
7.10 (f). Precisely, this field is piecewise constant and substantially discontinuous at regions
close to the interface of the books. Consequently, RFMeUY and REWeur myst fail because they

smooth the field at those regions; see over smoothing results of the field in Figure 7.10 (d) — (e).

’R,Neva RHVVC\U‘V

Both examples confirm that our new model is better and more robust than
and RFMeurv [47 48,79, 78, 73, 75, 74] which are in turn better than a class of other registration

models.

Tu ['R’FMcurv] Tu [RHVVC"”} Tu [RNeva]
(a)&3 = 0.041 (b)E3 = 0.043 ()53 = 0.038(3 = 1)

\ \
N W

Figure 7.9: Registered images for Example 3 — 4 shown in Figure 7.8 (a) — (d). Left to right: results
by (a) RFMU (p) REWS and () RNV, Top to bottom: results from Example 3 (the smooth
registration problem) and Example 4 (the non-smooth registration problem). Recall that €3 means the
relative reduction of the dissimilarity defined in Algorithm 7.4.2.

7.5.2 Tests of our new FAS-NMG algorithm

In the previous section we have used the LFA to inform our theoretical choice of suitable
smoothers for our new FAS-NMG Algorithmm 7.4.2. Here by experiments, we hope to first verify
the reliability of this choice and then to further test the convergence issues of it with regard to

parameters o, 8 in the model and the mesh parameter h.

1) Comparison of smoothers and h—independent convergence tests

We shall re-solve the same Examples 3 —4 as above using an increasing sequence of resolutions
(or a decreasing mesh parameter h) and show the results in Table 7.3. Algorithm 7.4.2 is run
using 3 separate smoothers (1 by Method 4 - SFP, 2 by Mehtod 5 - PDFP I and 2* by a modified

Method 5 - PDFP II respectively). In each case the algorithm is stopped when the mean of
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RFMcurv

RNeva

(8 = 0.005)

Deformation field w = —u

Figure 7.10: Recovered deformation fields for Example 3 — 4 shown in Figure 7.8 (a) — (d). Left to
right: results by (a) RFMe*v, () REV"™ and (c) RNewCY  Top to bottom: results from Example 3
(the smooth registration problem) and Example 4 (the non-smooth registration problem).

the relative residual below 10~¢ with ‘M’ the recorded number multigrid cycles required. Then
to get an measure of speed without using the machine-dependent CPUs, we work out the work
units (WUs) for each case. We also use the relative reduction of dissimilarity 3 to indicate the

quality of registration obtained at cycle ‘M’.

MG with Smoother 1 (SFP) MG with Smoother 2 (PDFP I) | MG with Smoother 27 (PDFP II)
vy/vy/PCGSiter/M/D/WUs vy/vo/PCGSiter/M/D/WUs vy /vy /PCGSiter/M/D/WUs
Example 3 o« = 1/10000,v = 1/B
h=1/128 10/10/10/18/0.0258/480 10/10/10/6/0.0264/160 10/10/10/5/0.0258/133
h = 1/256 10/10/10/ = / = /* 10/10/10/7/0.0388/ 187 10/10/10/6/0.0386/160
h=1/512 10/10/10/ % / = /* 10/10/10/7/0.0379/187 10/10/10/6/0.0379/160
h=1/1024 | 10/10/10/ x / * /* 10/10/10/8/0.0412/213 10/10/10/7/0.0398/187
Example 4 & = 0.75/10000
h=1/128 10/10/15/ = / = /% 10/10/15/11/0.0713/293 10/10/15/8/0.0698/213
h = 1/256 10/10/15/ = / = /% 10/10/15/12/0.0739/320 10/10/15/9/0.0701/240
h=1/512 10/10/15/ % / % /% 10/10/15/12/0.0761/320 10/10/15/10/0.0712/267
h=1/1024 | 10/10/15/ % / = /* 10/10/15/13/0.0793/347 10/10/15/10/0.0753/267

Table 7.3: Registration results of Algorithms 7.4.2 with the proposed smoothers for processing Ex-
amples 3 — 4 shown respectively in Figure 7.8 (a) — (d). The letters ‘M’, ‘D’, and ‘WUs’ mean the
number of multigrid cycles, the relative reduction of dissimilarity (£5), the work units, respectively. x
indicates failure in dropping the mean of the relative residual to 10~ within 20 MG-cycles. Recall that

v is the SFP parameter.

Here we define a work unit used in measured computational work as the work of performing

a smoother or relaxation step on the finest grid defined as follows:

1 WU = (cost of discretisating and constructing the linearised system per grid point

+ cost of PCGS updating per grid point)N (if N is the number of grid points)
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For example, a work unit in performing one step of the PDFP I smoother can be estimated by
1 WU = (150 + 123(PCGSiter)) N

where each grid point in the linearised system (4 x 4) given in (7.30) is solved by the Gaussian
elimination method, which has the cost of % + %2- = % additions and % + (4)? - %
multiplications. Therefore, the total costs of one V-cycle used L coarse grids can be estimated
as follows:

B
V-cycle cost = (11 + 12)(150 + 123(PCGSiter))NZ(1/4)k < 3(1/1 + v9) WUs.
k=0

Here we have ignored the cost of interpolation and restriction procedures as well as the cost of
residual correction procedure because they are relative small compared with that of smoothing
procedures. Recall that vy, ve, and PCGSiter denote respectively the number of pre- and
post-smoothing and PCGS steps.

In the numerical results shown in Table 7.3, one can see six quantities: the numbers of pre-
and post-smoothing and PCGS steps v, v2; the multigrid cycles ‘M’; the relative reduction of
dissimilarity D = €3 and WUs.

As expected from the LFA results in the last section, our numerical results confirm that
Smoothers 2, 2* (as PDFP I and II) are much better than Smoother 1 (SFP) for our FAS-NMG
algorithm, because they not only lead to the convergence within a few MG cycles as expected of
a multigrid technique, but also to the accurate results. The dissimilarities between the reference
and registered images have been reduced more than 90% for both examples.

Overall, as LFA predicts, the above experimental results suggest that Smoother 2* (PDFP
IT) would be preferred for practical applications. In other tests, we note the Smoother 1 can
lead to the MG convergence for both registration problems when the number of pre- and post

smoothing steps v; and v, are doubled.

2) a—dependence tests

Next we assess how our MG algorithm is affected by varying a.. To this end, the MG algorithm
based on Smoother 2* was tested on Example 3 (see and Figure 7.8 (a) — (b)) with the results
shown in Table 7.4. Here the following parameters are used: 3 =1, v; = o = PCGSiter = 10,
and h = 1/256 for all experiments and « is varied from 1/10000 to 1/10. For this example, large
a is not needed as small ones give better results. However, the selection of suitable o is a separate
but important issue because it is in general unknown a priori and it significantly effects on the
qualities of registered images as well as the MG performance. In order to estimate a reasonable
o automatically, we may adapt our MG algorithm and follow the ‘cooling’ process suggested in
[33, 66, 65] which resembles the L-curve method in other inverse problems. Nevertheless, for

the range of « tested in Table 7.4, our FAS-NMG remains efficient.



a |[B]M D
10°%] 1] 6 ]0.0379
1031 7 |0.1528
10721 7 ]0.3019
10011715/ 0.4709

Table 7.4: Results for a—dependence tests of Algorithms 7.4.2 with the PDFP II smoother for Example
3 shown in Figure 7.8(a) — (b). The letters ‘M’ and ‘D’ mean the number of multigrid steps and the
relative reduction of dissimilarity (£3).

3) f—dependence tests

As is well known, the quantities of results and the performances of the MG techniques in solving
the nonlinear system related to the TV regularisation technique are affected significantly by
the values of 3. As already discussed in Section 2, for registration purposes # = 1 is suitable
for smooth registration problems because the diffusion coefficients (51) are almost isotropic in
all regions and then it leads to the smooth deformation fields. On the other hand f << 1
is appropriate for non-smooth registration problems because the diffusion coefficients are zero
in regions representing large gradients of the fields and then it allows discontinuities at those
regions. Here our aim is to see how our MG algorithm is affected by varying the values of 5.
To this end, the MG algorithm based on Smoother 2* was tested on the non-smooth Example
4 as from Figure 7.8 (c) — (d). Here the following parameters are taken: o = 0.75/10000,
v = vy = 10, PCGSiter = 15, and h = 1/256 for all experiments and 3 is varied from 0.005
to 1. Table 7.5 shows that our MG algorithm converges in a few steps. Theoretically 3 should
be selected to be as small as possible. However, in practice, small 5 is not necessary and not
recommendable. As shown in our experiments, 3 = 1072 is enough to solve the non-smooth

registration problem with the accurate results and with it our FAS-NMG algorithm has a fast

convergernce.
a 3 M D
0.75x 1074 [ 5x 1073 | 9 | 0.0701
0.75x 10| 1x102 ] 8 | 0.0893
0.75x10% [ 1x10° | 7 | 0.2324
0.75x 10 ¥ [ 1x10 9] 6 | 0.4557

Table 7.5: Results for 3—dependence tests of Algorithm 7.4.2 with Smoother 2 for Example 4 shown
respectively in Figure 7.8 (¢) — (d). The letters ‘M’ and ‘D’ mean the number of multigrid steps and

the relative reduction of dissimilarity (€3).

7.6 Conclusions

The majority of deformable registration models in the variational framework use the gradient
information (first order derivatives) in their regularisers. For problems requiring less smooth

deformation fields, such models become ineffective and the curvature like information (second
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order derivatives) used in regularisation can improve the registration results, as shown in the
recent works of [47, 48, 79, 78, 73, 75, 74] where higher-order and essentially linear PDEs are
solved.

Different from approximate curvature models of [47, 48, 79, 78, 73, 75, 74], the full cur-
vature model proposed in this chapter does not make assumptions on the deformation fields.
Consequently, our results shown in the previous section improve over previous approximate
curvature models for both smooth and non-smooth registration problems in quality and robust-
ness of image registration. Associated with the full curvature model is the apparent difficulty
in developing a fast solution as the Euler-Lagrange equations of two coupled PDEs is highly
nonlinear and of fourth order so standard unilevel methods are not appropriate. To end this,
we proposed several iterative methods including the so-called primal-dual fixed-point (PDFP)
method. As analysed its smoother properties by the LFA, the PDFP method was recommended
to be a potential smoother in our FAS-NMG framework. Numerical experiments on synthetic
and realistic images not only confirmed that the proposed curvature model is more robust in
registration quality for a wide range of applications than the approximate curvature models of
[47, 48, 79, 78, 73, 75, 74], but also that the FAS-NMG approach based on the proposed PDFP

type smoother is fast and accurate in delivering visually-pleasing registration results.



Chapter 8

An Improved Monomodal Image
Registration Model and Its Fast
Algorithm

In previous chapters the image intensities of two given images are assumed to be comparable
(i.e. in a monomodal registration scenario) and the so-called sum of squared differences is known
as the proper choice to measure image similarities. In this chapter we relax this assumption
and propose first a new variational model combining intensity and geometric transformations,
as an alternative to using mutual information, and then its fast algorithm based on a multigrid
strategy. This variational model allows one to solve a typical case of multimodal image regis-
tration where a given image has the similar features, but different intensity variations. Finally,
we demonstrate the robustness of the proposed variational model and its numerical approach

using clinical images.

8.1 Introduction

Under many real-world conditions, even intensity variations of two given images taken from the
same object on the same scanner within the same protocol can be locally or globally different,
e.g. clinical magnetic resonance (MR) images affected by the signal intensity inhomogeneity
(bias field) due to imperfections in the radio frequency coils and object dependent interactions
(97, 98, 101, 110, 144]. The sum of squared differences (SSD) without any pre-processing steps
(e.g. the intensity normalisation or standardisation methods) is not suitable to measure im-
age similarities as it reduces accuracy and efficiency of an expected registration; see e.g. a
registration problem and its results shown in Figure 8.1 — 8.2. Mutual information (MI), on
the other hand, is more appropriate and invariant to overall intensity scale differences. It is
often adopted to deal with the lack of a model of intensity transformations. However, mutual
information has a number of well-known drawbacks. Firstly, mutual information is known to
be highly non-convex as well as nonlinear and has typically many local minima. Therefore
non-linearity of the registration problem is enhanced by the usage of mutual information. Sec-

ondly the computations of mutual information and its first variation require approximations

153



of the joint density, which summarises the co-occurrence of events from the image intensities
obtained from the given images. Such approximations are usually expensive and seusitive to
some parameters, such as the width of the Parzen-window kernel and the set of local intensity
samples. Finally, due to the mentioned difficulties, there is not a unique or even common im-
plementation for estimating mutual information and its first variation; see more discussions in

[37, 64, 95, 105, 107, 114, 119] and references therein.

Figure 8.1: Numerical results by three similarity measures. Top row: a registration problem consisting
a pair of MR image of a human head shown in (a) reference R and (b) template 7. Middle row: two
registered images (c) T2 by the proposed variational model (8.7) and (d) T55P by SSD. Bottom row:
two registered images (e) TMI"5SP-T by the proposed variational model (8.19) for the standardisation
between R and T2 and (f) TMI by MI. Notice first that the model (8.7) accurately registers the images
without any additional pre-processing steps. Second, the model (8.19) is effective in normalizing (post-

processing) the intensity variations between the images.

Current registration models related to our work are found in [58, 113, 106, 111, 1]. In [58] the
polynomial based intensity transformation is used in the elastic registration with an iterative
scheme that alternates between estimating the coefficients of the polynomial and searching the
nou-parametric transformation minimising the energy functional using the demoms method

133]. These coefficients have the purpose to estimate the adequate intensity changes that
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Figure 8.2: Composite views between the images before and after registration for the problem shown
in Figure 8.1 (a) — (b). (a) composite view between R and T' before registration; (b) composite view
between R and T55P- after registration based on our variational model (8.7). The intensity variations
in (b) between the images are well-matched.

match the intensity values between the images. In [113], a locally linear intensity transforma-
tion with a smoothness constraint on the contrast/brightness parameters is used to model the
elastic registration of multimodal images based on a locally affine transformation with a global
smoothness constraint in a differential multiscale framework. In [106] the non-parametric in-
tensity transformation is used in the elastic registration of monomodal images where the total
variation (TV) energy is applied to constrain the intensity transformations. In [111], the reg-
istration of multimodal images is modelled by a low-order polynomial intensity transformation
and a global affine transformation. In [1], the registration of multimodal images is modelled
using a probabilistic formulation in a multiscale framework. The main aim is to simultaneously
determine the local parameters of the geometric transformation using the B-spline models by
[102] and the local coefficients of the polynomial intensity transformation that lead to successful
registration. These parameters and coefficients are represented as Markov random fields giving
the priori information about the homogeneity of the intensity and geometric changes.

In recent applications, a fast registration method becomes more and more important for
high-resolution digital images. For a nonlinear system like (8.24) (see §8.3 later), the use of
a nonlinear multigrid (NMG) method is natural and has been proven to be very successful in
various image processing applications; see e.g. [6, 7, 13, 22, 33, 34, 53, 54, 61, 65, 76, 145]
for either Euler-Lagrange systems of second- or fourth-order PDEs. Previous work on NMG
techniques for deformable image registration using non-rigid deformations in [33, 34, 53, 54, 76,
145] considers different deformation models or different multigrid components. In (33, 34], the
efficient NMG methods based on the typical fixed-point (FP) iteration method for overcoming
the singular Neumann boundary problems of the discrete systems are presented respectively for

the diffusion- and modified total variation-based image registration. In [53], a special treatment
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for the singular systems due to the Neumann boundary conditions before and during the NMG
method for TV-based image registration is introduced in solving the minimisation problem
of the SSD functional. In [54], a full-multigrid (FMG) method based on the Newton-Gauss-
Seidel smoother and an adaptive smoothing approach for the deformation field is developed in
the context of diffusion image registration. In [76], a NMG method based on the discretised
optimality conditions for elastic image registration is presented. In [145], a FMG method based
on the FP type of smoothers is developed for diffusion image registration subject to Dirichlet
boundary conditions. Although NMG techniques are used for other models of non-rigid image
registration, to the best of our knowledge it has not been applied to solve the more challenging
system of nonlinear PDEs like (8.24) for simultaneously determining the intensity and geometric
transformations.

The rest of this chapter is organized as follows. A new variational image registration model
combining the intensity and geometric transformations is proposed in §8.2 followed by its Euler-
Lagrange equations with the corresponding primal-dual formulation in §8.3. §8.4—8.5 discuss
the numerical implementation and the numerical solution for the primal-dual formulation, in
particular a proposed multilevel approach based on an efficient NMG algorithm. The robustness
of the proposed registration model and its numerical approach is illustrated using clinical data

in §8.6. The last section is devoted for conclusions.

8.2 The proposed variational image registration model

A general framework of the registration problem of monomodal images can be re-formulated as
follows: Given a reference R and a template ‘I, we search simultaneously for a vector-valued

non-parametric transformation ¢ defined by
eu)():RT=RY,  p(u)(x) x> x+u(x) (8.1)
that depends on an unknown deformation or displacement field
u: R — RY, wix —u(x) = (g (x), ua(x),. .., ug(x)) . (8.2)
and an intensity transformation f such that the transformed template
F(Top(u(x))) = f(1'(x+u(x))) = f(Tu(x))
becomes similar to the reference R in a geometric sense, i.e.
R(X) = f(1a()) + (). (8.3)

Here 7(x) is random and uncorrelated noise. Recall that the given images £ and /" are modelled
as the continuous functions mapping from an image domain Q ¢ R? into V C R} and each
component ug of w is the function of the spatial position x = (z1,22...,24)" € Q. Without
loss of generality we assume that the registration problem is described in the two-dimensional

case (d = 2) throughout this chapter, but it is readily extendable to the three-dimensional case
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(d = 3). We also assume further that Q = [0,1]2 C R? and V = [0,1] for 2D gray intensity
images.

If the intensity variations of R and I’ are comparable, the intensity transformation f can
be represented by the identity function and we search only the deformation field w. However,
there are cases in real-life applications, as those found in MR or other medical imaging, where
inhomogeneity of image intensities and noise are present in both images or one of them, and
thus these cases require a more complex intensity function f than those of parametric intensity
transformations like polynomial ones. To design a general-purpose registration model for these
cases, let us model f to be non-parametric and assume that it depends independently on each

position x € 2 with the following intensity relationships

Intensity model I: f(1u(x)) = 1u(x) + c¢(x) (additive intensity correction model) (8.4)

Intensity model II: f(1(x)) = ¢(x)1y(x) (multiplicative intensity correction model) (8.5)

where ¢ : 2 — R is an unknown non-parametric intensity correction. Note that the intensity
model I in (8.5) is exactly the same as introduced by [106].

As usual for a non-parametric and non-rigid registration model, it requires first a suitable
similarity functional to measure disparities between the given images and second a regularisa-
tion technique to rule out unwanted, irregular, and/or nonunique solutions. Since we search
simultaneously for w and ¢, the registration problem can be posed as a minimisation problem

as follows:
min{Ja, o, (6, ¢) = D(u,c) + oy Ry (u) + asRa(c)} (8.6)

where aq, a2 > 0 are the regularisation parameters.

For the choice of the similarity functional D, it is enough to modify the SSD functional from
D (u,0) = § [ (1x+ ) — Rx) dx
Q

to the intensity models I and II in (8.4) and (8.5) as follows:

DD (u,c) = L / (x4 (1)) + e (x) — R (%)) dx, (8.7)
Q
DD (u,c) = %/ﬂ (c(x)1(x+u(x)) — R(x)) dx. (8.8)

We select either D = DFSP or D = DFSP for the variational formulation (8.6).

For the choice of /%1, we adopt here the full curvature regularisation given by

2
Rifw) = R¥(w) = 3 [ @stu)ax, (5.9)
=1Jq
where ®(s) = 1s? using the mean curvature
5 g
2 2
o _ Vu _ (51+“l11)“[f1-f1 —2u, U, Wiy ,r,,+(ﬁl+“lr,))“t1212
wlu) =V s = Brru, 1o, )72 » P> 0, (8.10)

in our variational framework because (i) it does not require an affine pre-registration step and

(i) it is more flexible for both smooth and non-smooth registration problems than common
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regularisers choices such as

RY™() = / () 2 Ougin +0e) + DV wd, (511
R (y) = /\Vul| dx, (8.12)
REMeurv gy — —Z /(Au,)2dx, (8.13)
RIWEUrY (4p) = 32 1/ (Aw)® = 2w, , ., — i, )dx, (a.14)
-
ROV (4 / V], dx. (8.15)

These regularisation techniques are known to be suitable for either smooth or non-smooth
registration problems. Note, in [106] only R was considered.

For the choice of R, instead of selecting the first-order variational models
c) = / [Vel|g,dx =/ 2 +c2, 4 fadx, B2 >0 (8.16)
Q Q

and
REz(¢ /|vc| dx—/( 2, )dx (8.17)
as used and discussed by [106] we propose the second-order variational model based on the

mean curvature k(c) = V- V—Cﬁ as follows:
2

[Vel
c) = / U(k(c))dx, (8.18)
Q
where ¥(¢) = %tQ. The main reasons for this choice Ra(c) = K(c) are as follows:

(1) K(e(x) = ayxy + agze +a3) = 0 for a = (Gl,(lg,ag)T € R?, i.e the non-trivial kernel of
K consists only of the linear transformations, and consequently this energy is invariant
under globally and locally linear intensity corrections. Compared with those of (8.16) and
(8.17) TV(e(x) = arz1 + agzs +az) = 0 or RE2(e(x) = a1z + asze + az) = 0 if and
only if a = 0. This means that both 7V and R%? do not allow non-trivial linear intensity

corrections; see Figure 8.5.

(2) K preserves discontinuities of ¢ because the diffusion coefficients of the Euler-Lagrange
equations resulting from (8.6) are zero in regions representing large gradient of ¢, i.e.
1/|Ve|z, — 0 and Ve VW/( ¢))/|Vel}, — 0 when [Vel|, — oo; see (8.21) and (8.24) in
8.3 later. As a result, the corrected images by K are not blurred, different from those by

RE2; see Figure 8.3.

The above theoretical remarks can be tested through a registration problem with its numerical
results shown in Figure 8.3—8.5. Clearly K(c) is more suitable; as mentioned, in a previous
work of using (8.8), R (u) = R (u) and Ra(c) = 7V(c) were used in [106].

Finally we have some additional remarks:
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error; = 100%
(d) Tu- [RE2(c)]

error; = 1.40% error; = 5.19% error; = 0.23%

Figure 8.3: A numerical test with three regularisation techniques for ¢ to show that our technique K(c)
is better than 7V(c) and R*2(c). Top row: a registration problem consisting a pair of two circles with
a locally linear intensity variation shown in (a) reference R and (b) template 7. Bottom row: three
registered images Tw~ by TV(c), R*2(c), and K(c), respectively. Here error: denotes the percentage

error.

Remark 8.2.1

(1) If oy = 0 and ag > 0, the following minimisation problem

—
[S)

min{ Ja, (u,¢) = D (u,c) + aaRa(c) } (8.19)

gives only the non-parametric intensity correction ¢ for the normalisation or standardisa-
tion between the images, i.e. T(x) + ¢ (x), ¢(x) T(x) = R(x) for fixzing u = ul® | usually
wl® = 0; see e.g. the standardisation between R and TM(w) using (8.19) in Figure 8.1

(e). That is to say, our reduced model (8.19) can be used for standardisation purpose, e.g.

for post-processing MI results.

If ay > 0 and as = 0, the following minimisation problem
min{ J,, (u,c) =D (u,c) + oy Ry (u)} (8.20)
u
gives only the non-parametric deformation field w for the registration between the given
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(a) Exact surface of ¢

-0.2
~0.3

~0.44

-0.5

(c) R*2(c) (d) K(c)

— 7w — a0
5 10 15 20 25 30 1020 5 10 15 20 25 30 102

errory = 0.6545 errory = 0.1158

Figure 8.4: Surface plots of ¢ for the registration problem in Figure 8.3 (a) — (b). (a) the exact surface
of ¢; (b) — (d) the results by TV(c), R¥2(c), and K(c), respectively. Here the errors denotes the 2-norm
of the differences between the exact and approximate solutions.

images, i.e. T(x+u (X)) +c(x) ~ R(x) for fizing ¢ (x) =0 and ¢ (x) T(x+u (x)) ~ R(x)
for fizing c¢(x) = 1.
(3) The new variational model (8.6) can be adapted to solve problems related to optical flow

computation or stereo disparity estimation, e.g. by introducing the energy funcational R

in the variational formulation of optical flow computation.

8.3 The Euler-Lagrange equations and its primal-dual for-
mulation

Consider first the case D = DPSP, Ry (u) = RNVCY(u) and Ry(c) = K(c). According to the

calculus of variations, the resulting Euler-Lagrange equations of the proposed variational image
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c(x‘,13)

-6 c (exact)
o cbyK(c)
-*-c by TV(c)
* c by Diff(c)
5 10 15 20 25 30
x,~direction

Figure 8.5: Plots of the 13th row of c(z1,z2) in Figure 8.4 (a) — (d) by TV(c), R*2(c), and K(c),
respectively.

registration model (8.6) is given by

(Tu + ¢ = R)3u, Tu + a1V - (g V' (5(w1)) — Y"—a%}lﬁvul) =0

flasﬂ)

(Tu + ¢ = R)3u,Tu + a1V - (s V' (K (u2)) — %g&ﬁvu?) =0

$ Vuzlp, (8.21)
fa(u,c)
_ (1 / _ Ve V¥ (s(c) _
(Tu +c R) + OZQV (|VC]ﬁ2 A\Va'% (H(C)) W—Vc) =0
fa(u.c)
subject to the boundary conditions
(Vu,n)g. =0, (V&' (k(w)),n)ge = 0 for I =1, 2 on 00 (8.22)
and
(Ve,n)g. =0, (V¥'(k(c)),n)z. =0 on 0Q. (8.23)

Recall that the first and second terms in (8.21) are related to the first variations of D and R;
(I = 1,2), respectively.

As mentioned in §7.3.5, the primal-dual idea is suitable for solving a system of higher-order
nonlinear PDEs like (8.21). The main idea is to reduce the order and nonlinearity of (8.21)

using the new dual variables. Introducing additional unknown variables (dual variables)

01 = — (1)) =~V Th, vy = @ (5(u2) = Vg, s = —W(k(0) =~V g%
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leads (8.21) to the equivalent system of six second-order nonlinear PDEs given by

( -V |Vu1]g —U1 =g
\Y% fVZZJﬁ —v2 = g2
-V WZICTQ —V3=g3
fr(u,0) —aa V- (k- + Villlvfmsvv” Vuy) = g4 (8.24)
fau,e) —arV - (g0 + V“,gﬁ;?“z u) =
fa (u,0) — gV - (- + Vjéc,a“* Ve) = g

subject to the boundary conditions transferred into
(Vui,n)z2 = (Vug, n)g, = (Ve,n)pe = (Vo,,n) =0 form=1,2,3

where g = (g1, g2, 93, 94, g5, gs) | = 0 on the finest grid for the MG setting in the coming section.
For the case D = DPSP only f; (u,c) (L =1, 2, 3) in (8.21) and (8.24) need modifying and
they are substituted respectively by

fi(u,c) = c(cly — R)Oy, 1y, (8.25)
f2 (u,¢) = c(cly — R)Ou, 1w, (8.26)

and
f3(u,c) = (cly — R)1y. (8.27)

Refer to [106]. In this work D = D{SP is adopted in our numerical implementations because it
is new for the variational model (8.6) and leads to a simple and efficient numerical scheme.

Here we have the following remarks:
Remark 8.3.1

(1) If D = D$P, Ri(c) = Re(u), and Ra(c) = TV(c), the resulting Euler-Lagrange

equations become

fl (U,C) — ((/\ o 2/1‘)3$1l'1u1 + :u’amzflfzul o (>‘ + /1‘)82711‘2u2) =0
0

fe (uv ) — Q1 ((/\ = /J')aﬂ‘l”rzul + f‘aﬂf121u2 + (/\ + 2:“)81‘2302“2) = (8.28)
f3 (U, ) OQV ’VC|52 =0
subject to the boundary conditions
(e (Vu+ (Vu) ") + Adiag(V - u),n)z, = 0 and (Ve,n)g, =0 on Q. (8.29)

This is the PDE-based model used in [106] for combining homogenisation and registration.
(2) If D= D75 and Ra(c) = TV(c), the last equation in (8.21) and the boundary conditions
in (8.23) are replaced respectively by

Ve
f3 (u,c) = QQV‘ |—VC—|,62 =0 (8.30)
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and (Ve,n)g. = 0 on 0Q. The resulting primal-dual formulation is then given by

-V Wiuil‘,lﬁ— —v1 =0
-V |VZZ‘2 —v2 = g2

fi(w,0) = an V- (oot + Troe ;Y”“ Vi) = g3 (8.31)
f2 (u,¢) —a; V- (Wzgfﬁl + VT‘%UZ'?Z VU2) = g4
fa(u,c) = O‘QV ;vc;ﬁz =95

(3) If D = D75P and Ry(c) = RF2(c), the last equation in (8.21) and the boundary conditions
in (8.23) become
fa(u,c) —asAc=10 (8.32)

and (Ve,n)g. = 0 on 09, respectively. Similarly, the resulting primal-dual formulation

is given by replacing the last equation in (8.31) with f3 (u,c) — asAc = gs.

8.4 Finite difference discretisation

For simplicity, let (zlﬁ)” = th’(xli, a:zj) denote the grid functions for T= 1, ..., 6 where
z = (21, 20, 23, 24, 25, %) | = (u1,ug, ¢, vy, v, v3) (8.33)
and let
Qn ={xeQx=(z1,,22;) = ((2i —1)h/2,(25 —1)h/2), 1 <i,j < n} (8.34)

be the discrete domain consisting of N = n? cells of size h x h with the grid mesh h = 1/n.
The cell-centered finite difference approximations are used with the divergence terms V-V for
any vector V' = (V1, V2) in (8.24) at a grid point (7, ) as follows:

oviy Ve M)ivry — M)y | (V2)iger — (Va)iy
(8x1 )ij + (a:cz)” = 7 + h . (8.35)

Therefore, we need to calculate V) at the grid points (i+1, j) and (¢, ) and V5 at the grid points
(z,7+1) and (4,7). We list here the approximations used in our numerical implementations for
estimating Vi at the grid point (7,7) as the following (discretisation for V; at the grid point
(i 4+ 1,7) and V5 at the grid points (i, 7+ 1) and (4, j) can be given similarly):

X Vzl1
/ﬂ(ZlL)7j = (W g '\3*) ind
(V- o= | o
Vz -
Vetle. ‘ﬁ‘ " \/ﬁ* 71 ZL 1]/h)2+( ’2(ZA)7J/h)
L 8, ()i /P

P\ B (B8 )i g/ 1? + (02 ()i /)
= (1/P2)((Z0)e5(22)ig — (BDes (22)ig),
( ;Al)i'jZQDl (:Th)”"'Dll(zTh)l IJ+D12( )11 -1,
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Dpy(21)i; = Dy(# ) Dpy(2})i = DT(%)i.j-ly

Dpy(#)ig = U%q)mj = Di(#)i i1 = Di(e)sg,

Uﬂ Mig = IV(z)ijla.

v o= fBe+ (Bh ()i ) + (S ()i /R, Be = By or B,
(27’11)' ;=0 (ZTh)z.,j/hy (zThrz)”' = 512(2’»'1)1',3'/}%

1
G ()i = £((#)ix1,5 — (2)ig)s 05, (#)ig = £((#)i g1 — ()sg),
Ll =1+ (), 5,5+ (u2), ),
A (s ug, ), o= (0 4 ey = RED((LE ;=11 )] (2R),
3 (uh,ub ), ;= (L + ey = RE((L0 — 105 1)/ (2h),
i (u,ub, ), = (L + ey — RE).
Note that the finite difference approximations for (8.24) need to be modified at grid points near

the image boundary 9¢2, using the homogeneous Neumann boundary conditions approximated

by one-side differences for boundary derivatives:

(#)ig = (2)i2 (#)imn = (#)in-1, ()15 = (#)24s (F)ni = (ZFIn-1,4- (8.36)

8.5 The numerical solution for the formulation (8.24)

To obtain a fast numerical solution of the new formulation (8.24) similar to the so-called primal-
dual fized-point (PDFP) method as described in §7.5 would be desirable; see also [6, 7, 13, 26,
27,122, 136, 137] on FP schemes applied to other variational models involing TV operator.

8.5.1 A potential PDFP method

We now discuss a numerical scheme PDFP to solve the discrete version of (8.24). This is done

in two steps:

I) The outer iteration step. Firstly, we introduce a new fixed-point or outer iteration to
(8.24). This can be done as follows. Our scheme is semi-implicit in both regularisation and
data terms. The semi-implicit scheme for the regularisation terms is iterated by freezing some
coefficients in the similar ways with the Lagged-diffusivity method [26] or Quasi-Newton scheme

[137, 136]. Starting with an initial guess u(” (e.g. ul! = 0) leads to

N[zM]zl+1 = g[21]) (8.37)

164



[1V+1]v"[2y+1]v C[V+1])

where the typical Taylor's expansion for fi(u of type

Al ) gyl ) + 0y, il W), ) sul)
+ B, filul) ul), ol + 8 fi(ul, ul, M)t

f( [V] [1/]) [!;](u[lu+1] _ u[lu]) + o_l[;](u[zu+l] _ u[zu])
+ 013'4 (c["“] — ) (8.38)
is used in the global linearisation scheme. Here

= 9, fil ™, ul, ul) = (84, L0001) (Buy L)

(’1' w + C[V] - R)(aulul,lzu,'/])v (839)
oly) = By ful, Ml ul) = (0 101)) (O L)
+ (Luvr + M = R)(Buzu Lu), (8.40)
oiy = Bofily Mul ull) = Bl (8.41)
for | = 1,2 and
ol = 8y, f3(c), ul W}y = 8, Ly, (8.42)
01[32] = a"t2f3( c[u]u[l’] u[QV]) = auglllulv]y (843)
Ug;;] = 8.1, [u]u ] [u]) =1, (8.44)
[ — Ly [u] 0 0 1 0 0 7
0 —L5[ul] 0 0 - 0
0 0 —L3[c)] 0 0 -1
N[zM] = ” 3 3
[=*] o ol M o) 0 0
N
L ag/l] M O’:[;é] 0 0 —opL3[c]] ]
(8.45)
g = (z£V+1],z£V+1],z£"+ll z["+1] zé”“] z["H])T,
=(u[u+1] u[u+l] [V+1] [u+1] [u+1] [u+1])-|- (8.46)
Gz = Ay A\T 8.47
[Z ]_ (91,92793794 » 95 796 ) ( . )
Vul Yl (— Vvl)

9 = o= Al o, ) 4 ol o 4 ol 4 00w (P k), (.08

v v] [v v] (v v Vu[] V” v]
[V] =g5— fz(u1 ,u[z ], )+a[ ]u[ ] +0[ ]u[ ] +0[3]c[”] + a1V - (%“(H—_V ] ), (8.49)

~v v v v v| [v v| [v v] [y (VU v
B = g5 — Falul, o), M) ol ol 4 ol 4 0y - (TSR VM), (8.50)

and

Dm (21

LM =v. (oo VA" ) (m =1,2,3 and T = m or = m +3). (8.51)
Zm' g,
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II) The inner iteration step. After applying the finite difference approximations repre-
sented in §8.4 with (8.37), the PCGS relaxation method is used as the inner solver to solve

inexactly the associate linear system. Here the kth PCGS step is given by

(P = (NP ) G, B52)

where the symbol of the mesh parameter h is dropped for simplicity. We note that other choices
of iterative techniques such as the line relaxation techniques or the preconditioned conjugate
gradient method are optional. However, they are computationally more expensive than the
PCGS relaxation method.

As discussed in §7.5, the PCGS relaxation method is not suitable to be a potential (multi-
grid) smoother for non-smooth problems. High values of the smoothing factors appear especially
at the jumps of the coefficients D, (z.,[,'{1)4 ; compared with their neighborhood points. To avoid
this situation, we introduce the so-called relaxation parameter w € (0,2), typically w = 0.7,

and iterate the w—PCGS steps at those odd points by

(I = (L= ) (P + N ) (G (8:53)

original PCGS result

with the following notation

[ (=M, 0 0 -1 0 0o ]
VIS W [o] 0 -1 0
: 1 0 0 T 0 0 -1
N[Mi; = 55 2o 2ol (hz [)u] o (5 i g (8-94)
r2olll Rzl p2g ?,] 0 ar (B, 0
Wall Moyl kPl 0 0 a2 (B )is |
and
(g1)ig + (/R EY gl H
(92)i + (1/R2) (BN sl + e/
@A | Wl Rt [V;ﬂfl[k’;sz] (8.55)
(G1)i; + (an/P? )E @)
@)+ (ar/h2)(E3 ), (;“MT””
@G)EUJ] +(a2/h e g]) (v éu+l])£k]+1/2]

Finally our proposed solver can be summarised as follows:

Algorithm 8.5.1 (Our Proposed Iterative Solver: PDFP)

Denote by

« regularisation parameter

w relaxation parameter

K >0 tolerance (typically K = 0.5/y/B* where 5* = min{/, 32})

PCGSiter the maximum number of PCGS iterations
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[E”] «— Solver (E",gh,Rh,T“,a, w, K, PCGSiter)

e Use input parameters to compute (0um )i, (Gr[Z"])i;,
and (N, [2"];;)"  for ,m=1,2,3and 1 <i,j5<n
e Perform PCGS steps
— for k =1: PCGSiter
—fori=1:n
—forj=1:n
— if D (Z0)i; > K - min{Dm1(Zm )i,j» Din2(Fm)irjs D3 (Fm)ij }
form=1,2o0r3
— Set w =0.7
else
— Set w = 1.0
end
- Compute(E")yf;’” using (8.52)
- @ = 1 -w)@N + 0@
— end
— end
— end

8.5.2 A nonlinear multigrid algorithm

Below we apply the FAS-NMG method to solve (8.24), the coupled system of six second-order
nonlinear PDEs given by
N (2") = gt
Nt (2" = g", ie. ; (8.56)
NE(2h) = gb
in a similar way as presented in §7.4. In our FAS-NMG framework, the PDFP method rep-
resented in §8.5.1 is applied as the MG smoother and the standard coarsening is used for
computing the coarse-grid domain Qg by doubling the grid size in each space direction, i.e.
h — 2h = H. For intergrid transfer operators between (2, and Qp, the averaging and bi-linear
interpolation techniques are used for the restriction and interpolation operators denoted respec-
tively by //f and 1. In order to compute the coarse-grid operator of Nlll(zh') given by the
left hand side of (8.24), the DCA method is employed. The pseudo-code implementation of our

FAS-NMG method can be summarised in the following algorithm:
Algorithm 8.5.2 (FAS-NMG Algorithm)

Denote FAS-NMG parameters as follows:

1 pre-smoothing steps on each level

vy post-smoothing steps on each level

o the number of multigrid cycles on each level (u= 1 for V—cycling and p= 2 for W—cycling)
[Here we present the V—cycle with p= 1]

o regularisation parameter

w  relaxation parameter

K >0 tolerance

PCGSiter the maximum number of iterations using a smoother
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Z' — FASMG (z",0,7)

o Select a, © = (e1, €2, 53, e4) and initial guess solutions 27 ;,;,; on the finest grid
e Set K =0, (E )“‘] = zm,,m,, Ea=¢e2+1,635=e3+1,andes =e4+1
e While ( < e1 AND & > £2 AND &3 > €3 AND £4 2> 84)
— ()l <—FASCYC((_") (K1 gk RM T 11,15, 0, w, K, PCGSiter)
&2 = mean{llgf — AZ(Z"))]l2/llgf — N @)l | T=1,.....6}
— & = B (R T (")) /D (R T ) ),
[Recall that D" (R", T! (-)) ~ 22||R*, T" () ||3]
- & =[D"(r" T @")*) - D" (R, 1l @)
- K=K+1
e end

where

[z"] « FASCYC(Z",g", R",T" v1,1n, a,w, K, PCGSiter)

o If Q), = coarset grid (|| = 8 x 8), solve (8.24) using Algorithm 8.5.1
and then stop. Else continue with following step.
e Pre-smoothing:
For k =1 to vy, [Eh] « Solver(z",g", R",T", o, w, K, PCGSiter)
e Restriction to the coarse grid:

2 — If17) (forl=1,...,6), R¥ — I[FR" TH — FT"
e Set the mltlal solution for the coarse-grid problem:

sH _ —H

Z~ — zZ=

i 1
e Compute the new right-hand side for the coarse-grid problem:

g — I (gh = N2E") + N (Z7) (for T=1, ..., 6)
e Implement the FAS-NMG method on the coarse-grid problem:

For k =1 to p, [2"] « FASCYC (z",¢",R",T" ,v1,1n,0,w, K, PCGSiter)
e Add the coarse- grid corrections:

e+ I (B2 -2, (for =1, ..., 6)
° Post bmoothmg

For k = 1 to vs, [Eh] — Solver(z",g", R", T", a,w, K, PCGSiter)

For practical applications our FAS-NMG approach is stopped if the maximum number of
V— or W—cycles ¢; is reached (usually £; = 20), the mean of the relative residuals obtained
from the Euler-Lagrange equations (8.24) is smaller than a small number e > 0 (typically
g9 = 10™%), the relative reduction of the dissimilarity is smaller than some €3 > 0 (we usually
assign €3 = 0.10 meaning that the relative reduction of the dissimilarity would decrease about
90%), or the change in two consecutive steps of the data/fitting term D is smaller than a small

number £4 > 0 (typically e, = 1074).

8.5.3 Local Fourier analysis for the PDFP method

In this section we shall use the LFA is to analyse the smoothing properties of the PDFP
iterations applied to the linearised system Ny, [Z”]zh = G, [2"] obtained by freezing coefficients
in (8.37) at some outer step. Here z" and 2" denote the exact solution and the current

approximation and N[2"] and G[2"] the resulting discrete operators from the linearisation at

z".

168



Let ¢;,(8,x) = exp(i6x/h) - T be grid functions, where I = (1,1,1,1,1,1)7, 8 = (6;,6)" €
O = (—m,7)?, x € 0°, and i = /—1. Similarily, our LFA is performed over the infinite grid

P={x€Qx=(z1,,22;) = ((2i = 1)h/2,(25 — 1) k/2)7, i,j € Z?}. (8.57)
and applied to each grid point £ = (i, 7) separately. Here we denote by
Hloc = ?El%): Hloc

the smoothing factor defined as the worst possible value of the local smoothing factor pjoc = u(€)
over (0, and Np,(€)2"(€) = Gp(€) the local discrete system centered and defined only within a
small neighborhood of ¢ and u” () = [u}(€), w5 (€)).

Let us consider first the case of the PCGS (w = 1) approach. The splitting

N () = N (&) + NP (e) + N e

leads the local inner iterations to

N (©)zh,, () + NP (©)Zh,., (€) + N (©)Zh4(6) = Ga(©) (8.58)

where 27,;(¢) and 2" _, (£) are the approximations to z"(§) before and after the inner smoothing

new

step, respectively. Here

—,C?H](f) 0 0
o Mo o
Ng=| O 0 4O
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
— ﬁ}fH](f) 0 0 s (8.59)
0 —an £3*(g) 0
0 0 —asL3M(g)
[ — i) 0 0
0 £ 0
N ey = 0 0 —cM0g)
i ) (€ o€ o5(8)
091(§) 092(€ 793(€)
L a31(§) 032(§ 033(8)
-1 0 0 W
0 - 0
0 0 -1
—ail [01(5) 0 0 , (8.60)
0 —ay £ (g) 0
0 0 —ap L2190 (¢) J
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[ —ci-g) 0 0
0 —c3 e 0
N ey = 0 0o -5
n &) 0 0 "0
0 0 0
0 0 0
0 0 0 |
0 0 0
0 0 0
el Lfll[—] (€) 0 0 , (8.61)
0 —Ollﬁlzl[_](g) 0
0 0 —ax L5 (e) |
i 0 0 0
-Lﬁ,{ﬂ(g):ﬁ —Din2(Zm (8)) 0 01, (8.62)
0 —Dim1(Zm(8)) 0
(o o o
—ngol(§)=ﬁ 0 Xm() 0], (8.63)
0 0 0
and
1 | 0 —Dms(zi(€) 0
—Ean(f):ﬁ 0 0 —Dm3(zi(€)) |, (8.64)
0 0 0

for m = 1,2,3. Subtracting (8.58) from N (£)z"(¢) = Gy (€) yields the system of local error

equations
N ()eh,, (€) + NP (€)eh,,,(€) + Ny (€)eh,(6) = 0
-
€l (€) = Sh(&)el(©)
where

enq(€) = 2"(€) — Zhyu () and €., (6) = 2"(€) — 2P, (6)
are the error functions and
S(8) = ~ [N} (©) + N (@17 [N ©)] (8.65)
is the amplification factor. Hence, the PDFP local smoothing factor for this case is defined by
pioc = sup{|p(Sn(&,0))| : € Onign} (8.66)
where
Sh(¢,0) = —[NI(¢,0) + NT(¢,0) '[N (¢,0
h(gv ) [ h (Ea )+ h (ga )] [ h (57 )]

is the Fourier symbol of Sj,(¢). Recall that the Fourier symbols of £f’[+](§) and L’?H] (&) denoted
by
1 ; :
—£h[+] (ga 0) = 'h—z (Em (f) - Uml(f) exp(_lel) - U’ITL2(§) exp(_192)) (867)

and
L6, 6) = — 3 (Dms(E) (exp(i61) + exp(i62). (8.68)
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are used to compute (8.66).
For the case of the w—PCGS approach, the PDFP local smoothing factor can be defined in

a similar way as (8.66),
e = sup{|p(Sn(£,0,w))| : 0€ Onign}, (8.69)
where the Fourier symbol of the amplification factor Sy (&, w) is given by
Sh(6,0,w) = [N} (¢, 0) + wN} (6,007 [(1 - )N} (€, 0) —wR (6, 0) € C™°. (8.70)

To select the optimal value of w, we used four registration problems shown in Figure 8.6
on a 32 x 32 grid. Our results indicated that w = 0.7 provides the good smoothing properties
(7, ~ 0.60). We also conducted several numerical tests to comfirm that (8.37) is a potential

smoother for our FAS-NMG method to solve (8.24); see Table 8.1 in §8.6.2.

8.6 Numerical experiments and results

To validate and evaluate our variational registration model (8.6) and the performance of our
Algorithm 8.5.2, we first perform a series of tests to verify the model effectiveness. Second, we
test with respect to different resolutions. In all registration problems, the bilinear interpolation
was used to compute the transformed template image 1'(u) and we stared our MG algorithm

with v, = vy = PCGSiter = 10, 81 = 1, B, = 1072, w9 = 0, and % = 0.

8.6.1 Qualify of registration

In this test, we evaluate the robustness of the proposed registration model (8.6) for the cases
where the required geometric and intensity transformations are very complex.

Shown in Figure 8.6 are results from four clinical cases. In each case, the reference R
and the template 1’ are from different view points and times. Shown across each row are the
reference R and template I’ and the registered image 1. Even in the presence of significant
intensity variations, the registered images are in good agreement with the reference and show
good qualitative registration results.

As shown in Figure 8.7 for results from the second problem in Figure 8.6 (d) and (e),
although the registered images by two regularisation techniques for ¢ are almost identical, the
registration results in Figure 8.7 (¢) and (d) confirm that K(c) is suitable for this hard problem
where very accurate results are required for clinical image analysis; see at the white arrow
locations.

Shown in Figure 8.8 are results from the third problem in Figure 8.6 (¢g) and (k). They
indicate that our PDE-based registration model (8.24) is more robust than that of the previous
work of [106] as given by (8.28). Here D = DPP, (1, A, oy, a2) = (1.00, 1.00, 0.10, 0.05) and

Dirichlet boundary condition w; = 0 (I = 1,2) were used through this test.

171



8.6.2 Multigrid performance

As is well-known, the main property of MG algorithms is that their convergence does not
depend on an increasing sequence of resolutions (or a decreasing mesh parameter k). Thus, in
the second test our experiments was designed to investigate this property.

To do this, we re-solve four registration problems of medical data as shown in the first and
second columns in Figure 8.6 and started the registration processes with h = 1/128, 1/256,
1/512. Here we define a work unit used in measuring computational work as the work of

performing a smoother or relaxation step on the finest grid defined as follows:

1 WU = (cost of discretisating and constructing the linearised system per grid point

+ cost of PCGS updating per grid point) N (if N is the number of grid points)
Thus a work unit in performing one step of our smoother can be estimated by
1 WU = (177 + 284(PCGSiter)) N

where each grid point in the linearised system (6 x 6) given in (8.52) is solved by the Gaussian
3 2 3

elimination method, which have the cost of % + % — 5(6—6) additions and % + (6)% — %

multiplications. Therefore, the total costs of one V-cycle used L coarse grids can be estimated

by

L
o4
V-cycle cost = (v1 + 12)(177 + 284( PCGSiter))N > (1/4)% < (1 +v2) WUs.
k=0

Here we have ignored the cost of interpolation and restriction procedures as well as the cost of
residual correction procedures because they are relative small compared with that of smoothing
procedures. Recall that vy, vy, and PCGSiter denote respectively the number of pre- and
post-smoothing and PCGS steps.

The numerical results are reported in Table 8.1 where one can see three quantities: the
numbers of MG cycles ‘M’; the relative reduction of dissimilarity D = £3; the work units ‘WUs’.

As expected from a MG technique, Table 8.1 shows that our MG algorithm is h—independent.
Moreover, it took only one or two MG steps to solve the registration problems and reduce the

dissimilarities between the reference and registered images more than 85% for all problems.

8.7 Conclusion

This chapter introduced an improved monomodal image registration model combining a non-
parametric intensity and geometric transformation, as an alternative model to using mutual
information for a typical case of multimodal images where the given images have the similar
features, but different intensity variations. We modelled these transformations to be non-
parametric and extended the full curvature model proposed in the previous chapter to constrain
them. In order to solve the resulting Euler-Lagrange system of higher order and nonlinear

PDEs, we applied the idea of the PDFP method and used the LFA to analyse its smoothing
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Example 1
M/D/WUs

Example 2
M/D/WUs

Example 3
M/D/WUs

Example 4
M/D/WUs

h=1/128
h=1/256
h=1/512
h=1/128
h=1/256
h=1/512

Q] = 10_4,a1 = 2(12
1/0.0322/27
1/0.0381/27
1/0.0410/27

5/0.0321/133
5/0.0381/133
5/0.0409/133

] = Qg = 1074
1/0.0264/27
1/0.0301/27
1/0.0357/27

5/0.0263/133
5/0.0300,/133
5/0.0356/133

o = 10‘4,(11 = 2as
2/0.1183/53
2/0.1242/53
2/0.1299/53

6,/0.1182/160
6/0.1241/160
6,/0.1298/160

o] = g = 10A4
1/0.0914/27
1/0.0953/27
2/0.1004/53

5/0.0913/133
5/0.0952/133
6,/0.1003/133

Table 8.1: Registration results of Algorithm 8.5.2 with the proposed solver in Algorithm 8.5.1 for
processing four sets of clinical data shown in the first and second columns of Figure 8.6. The letters
‘M’, ‘D’, and ‘WUs’ mean the number of MG steps, the relative reduction of dissimilarity (£3), and
the work units, respectively. The last 3 rows are results for dropping the mean of relative residuals to

1074,

properties. As expected, we saw that it appears to be a potential smoother for our FAS-
NMG framework and leads the associated multigrid method to be h—independent convergence.
Numerical results showed that the proposed registration model is reliable to i) normalise image
intensities between images and ii) register the given images. Moreover, they also showed that

the developed multigrid method is fast and accurate in leading to visually pleasing results for

practical applications.
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&3 = 0.0410
(d) (e) (f)

€3 =0.1299

g3 = 0.1004

Figure 8.6: Numerical results with unknown registration. Shown in each row is the reference R,

template 7', and register image 1% .
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€z = 0.0401

Figure 8.7: Numerical results for the second problem shown in Figure 8.6 (d) and (e) by two regular-
isation techniques for c. Left to right: results by K(c) and R*2(¢c). Top to bottom: registered images
and composite views in the middle right regions between R and Tw=. As shown in (c¢), the intensity
variations of Ty« in the bottom right region (at the white arrow location) by K(c) is well-matched,
compared with those of (d) by R*2(c).

(a) (b)

g3 = 0.1299
(c)

Figure 8.8: Numerical results for the third problem shown in Figure 8.6 (g) and (h) by two PDE-based
registration models. Left to right: results by our model (8.24) and that of [106] (8.28). Top to bottom:
registered images and composite views between R and Ty~. The top right and bottom left regions of
Tw= in (c) by our model are well-registered with the adjacent regions of R, compared with those of (d)

by [106].



Chapter 9

Summary and Future Directions

This thesis presented the author’s PhD work on new contributions of four effective variational

models and five efficient numerical methods for solving image registration problems.

9.1 Summary

The first contribution discussed in this thesis is a novel affine image registration model. In this
work, we investigated the robustness issue of Gauss-Newton (GN) and Levenberg-Marquardt
(LM) methods in solving affine image registration problems. As a result, we saw that these
methods are sensitive to initial guesses and require methods of getting good initial guesses
to ensure their convergence. Four existing methods were reviewed and tested. However, we
found that there are always difficult cases for which these initial guesses are not sufficient.
Such cases include getting pre-registration images for deformable registration problems. Then,
we proposed the regularised affine registration (RAR) model that is less demanding than the
standard method for initial guesses. To find the optimal regularisation parameter, we applied
a coarse-to-fine approach to initialise the RAR model. Numerical results showed that the
developed multilevel algorithm is generally reliable and robust in i) solving the affine image
registration problems ii) providing a good initial guess for deformable models.

Second, we presented an efficient multigrid approach for variational image registration mod-
els based on the sum of squared differences (SSD) between images. A unified approach for
designing fixed-point (FP) type smoothers was proposed and analysed by the local Fourier
analysis (LFA) using Fischer-Modersitzki’s diffusion and curvature image registration models
[46, 47]. We found that the resulting linearised systems for both models are h-ellipticity and
suitable with the pointwise collective Gauss-Seidel (PCGS) relaxation scheme. As expected,
numerical experiments not only showed that the proposed multigrid approach is h-independent
convergence, but it is also more effective than those in a large class of existing iterative methods
developed by [46, 47, 48, 65, 89, 90, 131, 135, 145].

Third, we presented a novel discontinuity-preserving image registration model based on
the modified total variation (TV) regularisation with the so-called potential function. As a

consequence, the new model can be simply interpreted as a half way model between the diffusive
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and TV regularisations for solving both smooth and non-smooth registration problems. In
order to solve the resulting Euler-Lagrange system, several iterative methods including the so-
called stabilising fixed-point (SFP) approach were proposed and tested using both realistic and
synthetic images. As expected, we found that the SFP method can be used as a robust smoother
in our nonlinear multigrid framework. Numerical experiment showed that the associated FAS-
NMG method is much faster than standard unilevel methods like semi-implicit (SI) and additive
operator splitting (AOS) time marching approaches in convergence and delivering the same
numerical results.

Fourth, we reviewed five commonly used PDE-based models, which are effective for solving
either smooth or non-smooth registration problems. Motivated by the attractive properties
of the Fischer-Modersitzki’s curvature registration model [47], we proposed the so-called full
curvature model that appears to deliver excellent results for both registration problems. As
a result, the Euler-Lagrange system of two coupled PDEs is highly nonlinear and of fourth
order so standard unilevel iterative methods are not appropriate. To end this, we proposed
several FP type smoothers including the SFP and primal-dual fixed-point (PDFP) methods
and then used both LFA and and numerical tests to select the most effective type of smoothers
which turns out to be the PDFP type smoothers. Numerical tests not only confirmed that
the proposed curvature model is more robust in registration quality than previous work by
[47, 48, 79, 78, 73, 75, 74], but also that the proposed multigrid method is fast and accurate in
delivering visually-pleasing registration results for a wide range of applications.

Finally, we presented a new variational image registration model for monomodal images
with the presence of significant intensity variations occurred in one of the given images. The
new model aims to search simultaneously an optimal intensity and geometric transformation
modelled to be non-parametric and constrained with the curvature model used successfully in
our previous work. As a consequence, the resulting Euler-Lagrange system consisting of three
nonlinear fourth order PDEs is required to solve in an efficient way. We extended the idea
of the PDFP method for solving that system in a FAS-NMG framework. Numerical results
confirmed the robustness of our new registration model and multigrid algorithm for solving

clinical applications.

9.2 Future directions

The ideas presented in this thesis can be expended in different directions. First, the capabilities
of nonlinear multigrid methods encourage us to develop fast numerical algorithms not only for
multimodal image registration, but also three- and four-dimensional images. This is because
most existing methods in literature are not fast enough for practical use. Second, variational
models used in this thesis could be extended to include soft and/or hard constraints in order
to improve registration qualities. Finally, hybrid modelling that allows simultaneously registra-
tion and segmentation precesses is also important because it can improve registration and/or

segmentation results.
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