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Abstract

Imageregistration is one of the major areas of current research and applications in image pro-

cessing. It is the process of finding an optimal geometric transformation between corresponding

images. During the past few years, research in the field of image registration mainly falls into

two categories: the design of new models for accurately registering the given images and the

efficient solution of the resulting equations. The work presented in this thesis falls into both

categories.

Recently, variational models have been successfully proven to be very valuable tools in a large

number of image registration applications. Nonlinear systems of coupled partial differential

equations (PDEs) emerge whenonederives their formal Euler-Lagrange equations. Asis well-

known, the number of unknownsina discretisation of the nonlinear systems can be large for

high-resolution digital images. Thus, highly efficient methods become more and more important

in order to perform the registration in a reasonable amount of time. Among fast iterative

methods, multilevel techniques, e.g. nonlinear multigrid and multi-resolution methods, offer

the potential of optimal efficiency.

This thesis presents four variational image registration models andfive numerical solutions

based on multilevel strategies to improve and obtain fast registration results.

First, this thesis presents a novel affine imageregistration modelin a variational and multi-

resolution framework. Several numerical tests show that the new model and the proposed

numerical approach appearto be reliable and robust ini) solving the affine imageregistration

problemsandii) providing a goodinitial guess for deformable image registration models.

Second, this thesis presents an efficient multigrid approachfor variational image registration

models based on the sumof squared differences (SSD) between images. A unified approachfor

designing fixed-point (FP) type smoothers is proposed andanalysed by the local Fourier analysis

(LFA) using Fischer—Modersitzki’s diffusion and curvature image registration models [46, 47].

Numerical experiments not only show that the proposed multigrid approach is h-independent

convergence, but it is also more effective than those in a large class of existing iterative methods

developed by [46, 47, 48, 65, 89, 90, 131, 135, 145).

Third, this thesis presents a discontinuity-preserving image registration model based on

the modified total variation (TV) regularisation with the so-called potential function. As a

consequence, the new modelcanbe simplyinterpreted as a half way model between the diffusive

and TV regularisations for solving both smooth and non-smoothregistration problems. In

vl



order to solve the resulting Euler-Lagrange equations, several iterative methods are proposed

and tested using bothrealistic and synthetic images. Numerical experiments show that a full

approximation scheme nonlinear multigrid (FAS-NMG) method based on a new FP smoothing

scheme is much faster than standard unilevel methods like semi-implicit (SI) and additive

operator splitting (AOS) time marching approaches in convergence and delivering the same

numerical results.

Moreover, this thesis also presents a new curvature model for solving both smooth and

non-smoothregistration problems. In contrast to other commonly used variational models, a

theoretical result shows that the new curvature model no longer requires an additional affine

linear pre-registration step. Associated with the new model is the apparent difficulty in devel-

oping a fast solution as the Euler-Lagrange equations of two coupled PDEsis highly nonlinear

and of fourth order so standard unilevel methods are not appropriate. To tackle these difficul-

ties, several FP type smoothers including the so-called primal-dual fixed-point (PDFP) method

are proposed with a FAS-NMGframework and analysed by the LFA. As expected, the PDFP

type smoother appears to be a potential smoother. Numerical tests using both synthetic and

realistic images not only confirm that the proposed curvature model is more robust in reg-

istration quality for a wide range of applications than the approximate curvature models of

[47, 48, 79, 78, 73, 75, 74], but also that the FAS-NMGapproachbased on the proposed PDFP

type smootheris fast and accurate in delivering visually-pleasing registration results.

Finally, this thesis presents an improved monomodal image registration model combining a

non-parametric intensity and geometric transformation, as an alternative modelto using mutual

information for a typical case of multimodal images where the given images have the similar

features, but different intensity variations. It is modelled by modifying the sum of squared

differences and applying the new curvature model to constrain both intensity and geometric

transformations. In order to solve the resulting Euler-Lagrange equations, this work extends

the PDFP type smoother and uses as a recommended smoother for a FAS-NMG approach.

Compared with the variational model introduced by [106], numerical results show that the new

registration model and the FAS-NMGapproach based on the PDFP type smootherarereliable

to provide satisfactory registration results for practical applications.

Overall this thesis is concerned with effective variational model and efficient numerical meth-

ods for image registration.

vil



Publications and Presentations

Publications

e N. Chumchob and K. Chen, A Robust Affine Image Registration Method, International

Journal of Numerical Analysis and Modeling, 6(2): 311-334, 2009.

e N. Chumchob and K. Chen, A Robust Multigrid Approach for Variational Image Regis-

tration Models, Submitted to Journal of Computational and Applied Mathematics, 2010.

e N. Chumchob and K. Chen, A Variational Approach for Discontinuity-Preserving Image

Registration, Submitted to East-West Journal of Mathematics, 2010.

e N. Chumchob, K. Chen, and C. Brito-Loeza, A Fourth Order Variational Image Regis-

tration Model and Its Fast Multigrid Algorithm, Submitted to Multiscale Modeling and

Simulation, 2010.

e N. Chumchob and K. Chen, An Improved Monomodal Image Registration Model and Its

Fast Algorithm, In preparation.

Presentations

e N. Chumchob and K. Chen, A Variational Approach for Discontinuity-Preserving Im-

age Registration, International Conference in Mathematics and Applications, Bangkok,

Thailand, December 17th-19th, 2009.

e N. Chumchob, K. Chen, and C. Brito-Loeza, A Fourth Order Nonlinear PDE-Based

Image Registration Model and Its Fast Algorithm, SIAM Conference on Inaging Science

(1510), Chicago, Illinois (USA), April 12th-14th, 2010.

vill



List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

3.1

4.1

4.2

Two squares, LEFT: reference image, RIGHT: template image... ........... 1

Left: three bounded variation functions with the same total variation equal to one.

Right: a function with infinite total variation... 2... 2. ee es 13

Vertex-centered (left) and cell-centered (right) discretisations of a square domain. Filled

circles indicate grid points within the square domain. ..............2 004 17

Red-Black ordering of grid points: red points are shownasstarts and black are shown

asicircles; i 2 eRe bw RG EH EE EME Re me ee 26

Fine and coarse grids in the vertex-centered case (left) and the cell-centered case (right).

Coarse grid lines are full, additional fine grid lines are dashed. Circles are fine grid

points, stars are coarse grid points in the cell-centered case and points which are both

coarse and fine in the vertex centered case. 2... 1.ee 32

Left-Right: Ilustration of grids for a 4-grid MG V-cycle (uw = 1) and MG W-cycle (u = 2). 38

The schemeillustrates the typical structure of a FMG method... ........... 40

The concept of the image registration visualised as the mapping between two images

T and Ty. Aninterpolation scheme has to be employed to assign the image intensity

values in the transformed image Tu if the transformed position p(u(x)) = x + u(x)

does not lie on the integer x = (v1,2%2)' grid point... 2...0. 43

Example 4.2.1: Successful registration results of the MR images of a humanhead. The

first row shows the reference image R (a), the template image T (b). The second row

presents the registered images Fqn(a®?) (c) and Fum(a“°”) (d) obtained from using

the GN and LMmethods, respectively, . 2... 2.2...ee 59

Example 4.2.2: Unsuccessful registration results of the MR images of a humanhead.

The first row shows the reference image R (a), the template image T (b). The second

row presents the registered images Fan(a‘®®) (c) and Fium(a‘?®%)) (d) obtained from

using the GN and LM methods, respectively. 2...0. 60

ix



4.3 Example 4.3.1: Deformable registration results of the X-Ray images of a humanhand,

showing the importance of a pre-registration step. Left: (a) Reference R, (c) the

linearly registered template (initial template) using the GN method THR (a®), and

(e) the registered image F(u‘?)) by FMG-FAS with (c). Right: (b) Template T, (d)

the initial image F(u) after FMGstep,and (f) the (failed) registered image F(u\)

with (@). scam ui tm we te aw Ew Ew HS EE MHEG Eww me we

4.4 Example 4.2.2 re-solved: Correct registration results using the GN method with Meth-

ods 1 — 4 providing initial guess solutions respectively for (a), (b), (c) and (d)......

4.5 Example 4.4.1: Correct registration results of the MR images of a human head (de-

formable model of §4.3.2 with initial solutions provided by Method 4) as in row 1.

The second row displays the helpful pre-registration images obtained from (c) the GN

method Ten and (d) the LM method Tim. Thelast row (e)—(f) shows the deformable

model (via FAS) registered images starting with (c) — (d) respectively. .........,

4.6 Example 4.7.1: Correct registration results (requiring large affine parameters) of a pair

of synthetic images by our RAR model. Thefirst row shows the reference (a) R and

(b) the template T. The second and third rows show the registered images (c) — (f)

from our 4 regularisers 721 —‘R4, respectively... 2...

4.7 Example 4.7.2: Failed registration results of GN and LM with Method 4 (Algorithm

4.4.1). The first row shows the reference image: (a) R and the template image: (b) T.

The second row presents the registered images: (c) Fen (a?) and (d) Fum (a).

4.8 Example 4.7.2 re-solved: Correct registration results using our RAR method (Algorithm

4.6.4) with 4 regularisers Ri —R4, respectively shown in (a)—(d)............

4.9 Example 4.4.1 re-solved and improved: Theaffine pre-registration steps (a) — (d) using

Algorithm 4.6.4 with different regularisers Ri —R4, respectively. The last row (e) — (f)

showsthe respective registered images by FAS method with (a) — (0) as initial solutions

(using the (c) — (d) gives almost identical solutions). Clearly less FAS cycles (i.e. 2)

are needed than before (ie. 6). 2...ee

5.1 Numberof outer iterations v in (5.26) used to drop the meanofrelative residuals of

(5.24) to 10-® for different values of (a) GSiter and (b) w at a fixed value of a = 0.1

for processing the registration problem in Examples 1 as shownin Figure 5.3 (a) — (0)

on a 32 x 32 grid. The red diamond indicates the optimal choice in each plot. .... .

5.2. Smoothingfactors pj... at a fixed value of a = 0.1 after 5 outer iterations with GSiter =

5 by the proposed smoother (5.26) based on the w—PCGSapproach (5.28) with different

values of w for the registration problem in Examples 1 as shownin Figure 5.3 (a) — (b)

on a 32 x 32 grid. The red diamond indicates the optimal value ofw...........

5.3 Registration results for X-ray and MRI images using the RDR method with Algorithms

5.2.2, 5.3.3, and 5.3.5. Left column: reference R, center column: template 7’, right

column: the deformed template image T(u) obtained from Algorithm 5.3.5. ......

65

66

72

73

74

91



5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

Results from Example 1 as shownin (a) — (b) by the curvature model (5.48) using

the FAS-NMG method with the smoother (5.53). Left to right: the reference R , the

template T, and the registered image T(u) by the curvature model (5.48). ....... 101

Results from Example | as shown by Figure 5.3 (a) —(b) by the curvature model (5.48)

using the FAS-NMG method with the smoother (5.53). Left to right: the histories of

the meanofrelative residuals (MRR) with respect to the MG steps and thehistories

of the relative SSD (RSSD) with respect to the MG steps. ............040. 101

Results from Example 1 as shownby Figure 5.3 (a) — (b) by the curvature model (5.48)

using three numerical solution methods: the FAS-NMG method with the smoother

(5.53), the FP method (5.53), and the DCT-based method by [48]. Left to right: (a)

the histories of the meanof relative residuals (MRR) with respect to the iteration steps

and (b) the histories of the relative SSD (RSSD) with respect to the iteration steps. . . 102

Numerical results by Method 3 (AOS (6.16)) and Method 4 (SFP) for Example 2 (in a

32 x 32 grid as shownin Figure 6.4 (a)—(b)) with 7 = 0.05, a = 0.1, and GSiter = 5. (a)

showsthe relative errors in SSD and (b) showsthe relative residuals versus iterations.

Clearly Method 4 (SFP) performs muchbetter than Method 3 (AOS). ......... 112

Registered images for two rectangular blocks shown in (a) R and (b) T of size 32 x 32

(Example 1): results by (c) RMTY, (d) R°TY with 8 = 0.0001, (e) RV, (f) Res

with (j,) = (1,1), and (g) REM". Recall that 3 means the relative reduction of

dissimilarity defined in Algorithm 6.4.1. 2... 0.0.0... 00000202 ee 117

Deformationfields for the registration problem shownin Figure 6.2 (a)-(b) (Example 1):

results by (a) RMTY, (b) R97Y with 6 = 0.0001, (c) RY, (d) Res with (4, A) = (1, 1),

and (e)Reeee118

Registration results for X-ray and MRI images (Examples 2 (a) — (b)and 3 (d) — (e))

using the RADPIR approach with Algorithms 6.4.1, 6.5.1, and 6.5.2. Left column:

reference R, center column: template T, right column: the deformed template image

T(u) obtained from RADPIR. .2...119

Registration results for the problem of size 128 x 128 shownin Figure 6.4 (a)-(b) (Ex-

ample 2): results by (2) R°™Y with 8 = 0.001, (b) RMTY, (c) RY, (d) Rewith

(4, A) = (1,1), and (e)REM120

Deformation fields for the registration problem shownin Figure 6.4 (a)-(b) (Example 2):

results by (a) R°'Y with 8 = 0.001, (b) RMTY, (c) RM, (ad) Res with (uu, A) = (1, 1),

and (e)REM121

xl



Registered images for two rectangular blocks shownin (a) R and (b) T of size 32 x

32 (Example 1: results by (c) R*'** with (u,A) = (1,1), (d) R%*, (ec) ROTY with

B = 0.01, (f) REMY, (g) RAW(h) RNewCv with @ = 0.01. A non-smooth

deformation example to show that our registration model RN°’°Y gives the satisfactory

registration results as good as those from R7"Y, which is knownto be suitable. Here

the regularisation parameter a was well-selected for all registration models. ..... . 126

Deformation fields for the non-smooth registration problem shown in Figure 7.1 (a)-

(b) (Example 1): results by (a2) RS with (u,A) = (1,1), (b) R%*, (c) RETY with

B = 0.01, (d) REM, (e) REWV and (f) RNe*CY with @ = 0.01. The exact

deformation field is given by a shift of the upper rectangular to the right and a shift of

the lower rectangular to the left; c.f. Figure 7.1 (a)—(b).. 2... ee ee 127

Registered images for X-ray images shownin (a) R and (b) T of size 128 x 128 (Example

2): results by (c) RS with (w,A) = (1,1), (d) RY, (e) R°TY with @ = 0.01, (f)

REMewy (g) REWeury(hy RNewCv A smooth deformation example to show that our

registration model RN°’°Y gives the satisfactory registration results as good as those

REMowv and REV", which are knownto be suitable. Here the regularisationfrom

parameter @ was well-selected for all registration models. ............000% 128

Deformation fields for the smooth registration problem shown in Figure 7.3 (a)-(b)

(Example 2): results by (a) R*!** with (u,A) = (1,1), (6) RV, (c) RETY with B =

0.01, (d) REMY, (e) RAWand (f) RNever, (c) shows the piecewise constant

smoothness at the top region by ROTY.We129

Surface plots of u; for the non-smoothregistration problem shownin Figure 7.1 (a)-(b)

(Example 1): results by RX°’°Y with (a) @ = 1 and (b) 8 = 0.01. (a) and (b) show

smoothing effects on the surface of u; at two different values of 8. ........2... 130

Numerical results by Method 2 (SSITM(7.22)), Method 4 (SFP with the FP parameter

Y= N= Y2=1/VB), and Method 5 (PDFP) for Example 1 (in a 32 x 32 grid as shown

in Figure 7.1 (a) — (b)) and Example 2 (as shownin Figure 7.3 (a) — (b)). The top two

plots show the relative errors in SSD and the bottom plots show the relative residuals

versus iterations. Clearly Method 5 (PDFP) performs muchbetter than the other two

methods. . 60ee139

Comparisonof the relative residuals by Method5 using boththe original system

(7.16) and the equivalent system (7.28)... 0.0... ee 140

The second set of 2 registration problems. Left to right: reference R and template

T. Top to bottom: Example 3 (a smoothregistration problem) and Example 4 (a

non-smoothregistration problem)... 1... 00.147

xi



7.9

7.10

8.1

8.2

8.3

8.4

8.5

8.6

8.7

Registered images for Example 3—4 shownin Figure 7.8 (a) — (d). Left to right: results

by (a) REM, (6) RAW" and (c) RNe*S’, Top to bottom: results from Exam-

ple 3 (the smooth registration problem) and Example 4 (the non-smooth registration

problem). Recall that €3; means the relative reduction of the dissimilarity defined in

Algorithm 7.4.2, .0...

Recovered deformation fields for Example 3 — 4 shownin Figure 7.8 (a) — (d). Left to

right: results by (a) REMe™’, (b) RAW’ and (c) RNe*“SY. Top to bottom: results

from Example 3 (the smooth registration problem) and Example 4 (the non-smooth

registration problem). 2...0...

Numerical results by three similarity measures. Top row: a registration problem con-

sisting a pair of MR image of a humanhead shownin (a) reference R and (b) template

T. Middle row: two registered images (c) T?7SP4 by the proposed variational model

(8.7) and (d) Te? by SSD. Bottom row: two registered images (e) TMISSP+ by the

proposed variational model (8.19) for the standardisation between R and TM! and (f)

TM! by MI. Notice first that the model (8.7) accurately registers the images without

any additional pre-processing steps. Second, the model(8.19) is effective in normalizing

(post-processing) the intensity variations between the images. ............-.

Composite views between the images before and after registration for the problem

shownin Figure 8.1 (a) — (b). (a) composite view between R and T before registration;

(b) composite view between R and Tess after registration based on our variational

model (8.7). The intensity variations in (b) between the images are well-matched.

A numerical test with three regularisation techniques for c to show that our technique

K(c) is better than TV(c) and R”2(c). Top row: a registration problem consisting a

pair of twocircles with a locally linear intensity variation shownin (a) reference R and

(b) template T. Bottom row: three registered images Tux by TV(c), R“?(c), and K(c),

respectively. Here error; denotes the percentage error. .. 2... 2. ee ee ee

Surface plots of ¢ for the registration problem in Figure 8.3 (a) — (b). (a) the exact

surface of c; (b) — (d) the results by TV(c), R“?(c), and K(c), respectively. Here the

148

149

154

159

errors denotes the 2-norm of the differences between the exact and approximatesolutions. 160

Plots of the 13th row of c(v1, 2) in Figure 8.4 (a) — (d) by TV(c), R’?(c), and K(c),

respectively, 2 60.

Numerical results with unknownregistration. Shownin each row is the reference R,

template 7’, and register image Ty*. 6 6 66

Numerical results for the second problem shown in Figure 8.6 (d) and (e) by two

regularisation techniques for c. Left to right: results by K(c) and R'2(c). Top to

bottom: registered images and composite views in the middle right regions between R

and T,,-. As shownin (c), the intensity variations of Ty,- in the bottom right region

(at the white arrow location) by K(c) is well-matched, compared with those of (d) by

RC)

xii

161

. 174

. 175



8.8 Numerical results for the third problem shown in Figure 8.6 (g) and (h) by two PDE-

based registration models. Left to right: results by our model (8.24) and that of[106]

(8.28). Top to bottom: registered images and composite views between R and Tu~.

The top right and bottom left regions of T,+ in (c) by our model are well-registered

with the adjacent regions of R, compared with those of (d) by [106]. .......... 175

xiv



List of Tables

4.1

5.1

5.2

5.3

6.1

6.2

7.1

7.2

Comparison of Algorithm 4.4.1, 4.6.2, 4.6.4 using Examples 4.7.1—4.7.2 with varying N.

Registration results of Algorithms 5.2.2, 5.3.3, and 5.3.5 for Example 1 and 2 shown

in Figure 5.3 (a) — (b) and (d) — (e). Theletters ‘M’, ‘R’, ‘D’, ‘C’, and ‘IC’ mean the

numberof multigrid steps, the relative reduction of residual, the relative reduction of

dissimilarity, the total run times, and the initial run times for determining the optimal

a and initial guess uw), respectively. 2...

A comparison among different multigrid methods by [46, 65, 89, 131, 145] to solve

the diffusion model in the first 20 iterations. The letters ‘M’, ‘R’, and ‘D’ mean the

numberof iterations in dropping the meanof therelative residuals resulting form (5.1)

to 10~®, the meanof the relative residuals, and therelative reduction of dissimilarity,

respectively. Our proposed multigrid method in the last row is the fastest way... ...

Registration results of Algorithm 5.2.2 and AOS method [46] for Example 1 shown in

Figure 5.3 (a) — (b). * indicates either computation stopped after about 12 hours or

failure in dropping the relative residual to 10~® in 10000 iterations... .........

Registration results of Algorithms 6.4.1, 6.5.1, and 6.5.2 for processing Examples 2 and

3 shownrespectively in Figure 3 (a) — (b)and (d) — (e). Theletters ‘M’, ‘R’, ‘D’, ‘C’,

and ‘IC’ mean the number of multigrid steps, the relative reduction of residual, the

relative reduction of dissimilarity, the total run times (in seconds), and the initial run

times (in seconds) for determining the optimal a andinitial guess u, respectively. .

Registration results of the SITM and AOS methods, represented in (6.15) and (6.16)

for Example 2 shown in Figure 6.4 (a) — (b). * indicates either computation stopped

after about 10 hours or failure in dropping the relative residual to 10-8. . 2... 2...

Smoothing factors foc after 10 outer iterations with PCGSiter = 10 by the SFP-

and PDFP-type smoothers for the smooth and non-smoothregistration problems in

Examples 1 — 2 as shownrespectively in Figure 7.1 (a) — (b) and 7.3 (a)-(b).. 2... .

Improved smoothing factors fiioc after using w under-relaxation idea in sub-domain W

Examples l—-2. 2... caine 2 ne BRS PSR HE EME SBE EE RE

XV

75

98

99

. 121

122

143

144



7.3

7.4

7.5

8.1

Registration results of Algorithms 7.4.2 with the proposed smoothers for processing

Examples 3 — 4 shownrespectively in Figure 7.8 (a) — (d). The letters ‘M’, ‘D’, and

‘WUs’ meanthe numberof multigrid cycles, the relative reduction of dissimilarity (&3),

the work units, respectively. ‘x’ indicates failure in dropping the meanoftherelative

residual to 10~© within 20 MG-cycles. Recall that 7 is the SFP parameter... ...... 149

Results for a—dependence tests of Algorithms 7.4.2 with the PDFP II smoother for

Example 3 shown in Figure 7.8(a) — (b). The letters ‘M’ and ‘D’ mean the numberof

multigrid steps and the relative reduction of dissimilarity (€3). ............. 151

Results for —dependencetests of Algorithm 7.4.2 with Smoother 2* for Example 4

shownrespectively in Figure 7.8 (c) — (d). The letters ‘M’ and ‘D’ mean the number

of multigrid steps and the relative reduction of dissimilarity (€3)............. 151

Registration results of Algorithm 8.5.2 with the proposed solver in Algorithm 8.5.1 for

processing four sets of clinical data shownin thefirst and second columnsofFigure8.6.

The letters ‘M’, ‘D’, and ‘WUs’ mean the numberof MGsteps, the relative reduction

of dissimilarity (€3), and the work units, respectively. The last 3 rows are results for

dropping the meanofrelative residuals to 107*.. 2 2.2173

Xvi



Chapter 1

Introduction

1.1 Introduction to imageregistration

One of the major problemsin current image processing is image registration, sometimes also

called image fusion, image matching or image warping. It is the process offinding an optimal

geometric transformation between corresponding images. It can also be viewed as the process

of overlaying two or more images of the same or similar scene taken at different times, from

different perspectives, and/or by different imaging machineries. Therefore, this procedureis

required whenevera series of corresponding images needs to be comparedor integrated.

 

Figure 1.1: Two squares, LEFT: reference image, RIGHT: template image.

Moreprecisely, the image registration problem can bephrased generally in only a few words:

given a so-called reference and a so-called template image, find a suitable transformation such

that the transformed template image becomes similar to the reference. Unfortunately, the

problemis easy to state, but it is hard to solve. The mainreasonis that the imageregistration

problemis knownto be ahighlyill-posed one in the sense of Hadamardaswill be explained in

§2.4 and §3.2. A more subtle pointis illustrated in Figure 1.11, showing a white rectangle on the

black background. Forsimplicity, we only allow rigid-bodytransformations, the special type

ofaffine linear transformations consists of translation and rotation. We immediately find two

different solutions: a puretranslation and a translation followed by a rotation of 360 degrees

aroundthe center of the image. These solutions are equivalent. Without additional knowledge

it is not possible to decide which one to use. Therefore, a typical treatment has to be taken, as
 

1 Adapted from[104, p. 3]



discussed later in §3.2.

Image registration can beclassified broadly into two main physical categories: rigid and non-

rigid registration, or mathematical categories: linear and nonlinear registration, or complexity

categories: parametric and non-parametric registration. In several applications, rigid registra-

tion approaches, which involve a rigid-body transformation (with only 3 unknown parameters

for 2 dimensional problems), cannot always provide a satisfactory result, particularly in med-

ical applications (e.g. deformable or soft tissue images), while on the other hand non-rigid or

deformable registration approaches may not be quick enough for ready use (e.g. variational

registration models reviewed by [104] may include nonlinear transformations (non-parametric)

whose numberof unknownsfor a discrete image is proportional to the numberof image pixels!).

Therefore, it is still a challenge to design a robust registration model and its numerical solutions

suitable for real-life applications. For an overview on image registration approaches, we refer

to {16, 49, 68, 100, 104, 124] and references therein.

1.2. Applications of image registration

There are several applications that require a registration step ranging from art, astronomy,

astro-physics, biology, chemistry, criminology, genetic, physics, and other areas involving imag-

ing techniques. More specific applications are, for example, remote sensing (registration of

satellite images taken over a region during different seasons or years can be used to detect

environment change over time), security (comparing current images with a data base), robotic

(tracking of objects), and in particular medicine, where computational anatomy, computer-aided

diagnosis, fusion of different modalities, intervention and treatment planning, monitoring of dis-

eases, motioncorrection, radiation therapy or treatmentverification demandregistration. Since

imaging techniques, like computer tomography (CT), diffusion tensor imaging (DTI), magnetic

resonance imaging (MRI), positron emission tomography (PET), single-photo emission com-

puter tomography (SPECT)or ultrasound (US) undera fascinating or ongoing improvement in

the last decade, a tremendous increase in the utilisation of the various modalities in medicine

takes place; see also in [16, 41, 42, 49, 56, 68, 82, 100, 124, 116].

1.3 Image registration studies - Chapters of this thesis

Researchin the field of image registration mainly falls into two categories: the design of new

models for accurately registering the given images andthe efficient solution of the resulting

equations. The work presented in this thesis falls into both categories and is organized as

follows:

e Chapter 2 provides various mathematical tools which will be used throughout the rest

of the thesis. It includes:

— Useful preliminarydefinitions, theorems, and examples of normed linear spaces and

functions of bounded variation.



— Anintroductioninto calculus of variations.

— brief discussionofill-posed inverse problems and regularisation.

— A discussionof the discretisation of partial differential equations (PDEs) on regular

domains using finite difference methods.

— A review of basic iterative methods for solving linear and nonlinear systems.

— Anintroduction into multigrid methodsasiterative solvers for discreteelliptic PDEs

including algorithmsfor linear and nonlinear multigrid methods.

e Chapter 3 details a state-of-the-art registration framework. It includes:

— The general variational formulation of image registration.

— A brief review ofsimilarity measures, including the sumof squared differences (SSD)

and the mutual information (MI).

— A brief review and discussion of deformation models (regularisations) commonly

used in deformable image registration, including the elastic model [8, 15, 104], the

diffusion model [33, 46, 89, 91, 104, 131], the Fischer and Modersitzki’s cuvature

model [47, 48, 49, 89, 91, 104], the Henn and Witsch’s curvature model [79, 78, 73,

75, 74], and the total variation (TV) model [51, 53, 142).

— A discussionof general solution schemes,including the optimise-discretise and discretise-

optimise approaches.

— A brief survey of multigrid methods for deformable imageregistration.

e Chapter 4 presents a robust affine image registration (RAR) method in a variational

and multi-resolution framework. It includes:

— Details of affine imageregistration, solution methods by the Gauss-Newton (GN)

and Levenberg-Marquardt (LM) approaches, and someregistration results using the

GN and LM methods.

— Details of four initialisation techniques to improve the GN and LM methods.

— Details of the RAR methodin the variational and multi-resolution framework.

— Tests showing the robustness of the RAR method.

e Chapter 5 presents a robust multigrid approachfor variational image registration models.

It includes:

— A discussionof the nonlinearfitting term that restricts the class of numerical methods

for variational image registration models.

— Details of the diffusion model andits numerical methods, including a discretisation

anda brief review of previous works on non-multigrid and multigrid methods.



— Details of the proposed nonlinear multigrid method for the diffusion model, including

the new and robust fixed-point (FP) smoother and its smoothing analysis by the LFA

(local Fourier analysis).

— Details of the curvature model andits efficient FP method that we have been used

as a potential smoother in the nonlinear multigrid framework.

— Tests showing the effectiveness of the proposed nonlinear multigrid methods with

the new FP smoothers for the diffusion and curvature models, including several

comparisons with other numerical approaches commonly used in the literatures.

e Chapter 6 presents a discontinuity-preserving image registration model andits fast so-

lution. It include:

— A discussion of the commonly usedregularisation methods that provide either smooth

or non-smooth deformationfields.

— Details of the proposed variational model for preserving discontinuities of deforma-

tionsfields.

— Details of a finite difference discretisation and four numerical solutions of the result-

ing equations.

— Details of the proposed nonlinear multigrid method.

— Tests showing the effectiveness of the proposed model and multigrid method, includ-

ing several comparisons with other registration models and numericalsolutions.

e Chapter 7 presents a fourth-order variational image registration modelandits fast multi-

grid method. It includes:

— A discussion of the commonly used PDE-based image registration models that pro-

vide either smooth or non-smooth deformationfields.

— Details and discussions of a new PDE modelresulting from the proposed curvature

regularisation.

— A discussionof five numerical solutions of the resulting PDE system.

— Details of the proposed nonlinear multigrid method, including the LFA of the new

smoother and the nonlinear multigrid algorithm.

— Tests showing the robustness of the new PDE model and the proposed nonlinear

multigrid method.

e Chapter 8 presents an improved monomodal image registration model andits fast solu-

tion. It includes:

— A review anddiscussion of image registration models combining anintensity and

geometric transformation, as an alternative way to using mutual information for a

typical case of multimodal images having the similar features, but different intensity

variations.



— Details of the proposed variational model, including the Euler-Lagrange system and

its primal-dual formulation.

— Details of the numerical solution for the primal-dual formulation, including a poten-

tial FP method and a nonlinear multigrid algorithm.

— Tests showing the robustness of the new variational model and the proposed nonlinear

multigrid method.

e Chapter 9 summarises our work and covers possible future research directions.

All experiments presented in the thesis were run in MATLAB R2008a on a Dell Precision

T7400 with quad-core Intel Xeon processors and 4 Gigabytes of RAM.



Chapter 2

Mathematical Preliminaries

This chapter introduces various materials which will be used throughout the rest of the thesis.

Souk. Normed linear spaces

Definition 2.1.1 (Linear vector space). A linear vector space overa field F (usually of real or

complez numbers) is a set V together with two binary operations, operations that combine two

entities to yield a third, called vector addition and scalar multiplication such that, the following

conditions hold:

. Closure of vector addition: Ifu,v € V, thenu+v € V.

Commutativity of addition: Ifu,v EV, thenu+tuv=v+u.

Associativity of addition: If u,v,w EV, then (u+v)+w=ut(v+w).

Identity element of addition: There exists an element 0 € V, called the zero vector, such

thatv+0=vforallveV.

Existence of additive inverse: For eachu € V, there exists —u € V such that u+(—u) = 0.

Closure of scalar multiplication: If \€ F andu € V, then Au € V.

Associativity of scalar multiplication: Ifu Ee V and X,6 € F, then X(Ou) = (A@)u.

Scalar multiplication is distribute: Ifu,v € V and X,0 € F, then (A+ @)u = Au + Ou and

A(u+ v) = Au + Av.

Identity element of scalar multiplication: There exists an element 1 € V, called the mul-

tiplicative identity, such that lv =v for allueV.

A subset of a linear vector space V whichis also a linear vector space over the samefield

and under the same operators of addition andscalar multiplication is called a linear subspace

of V,

Example 2.1.1 Examples of linear vector spaces are



e The spaces R¢ and C? for alld EN.

e The space C*(Q,R*)of all functions on the domain Q Cc R¢ whose partial derivatives of

order up to k are continuous.

Definition 2.1.2 (Norm). A norm on a linear vector space V is a real-valued function||-||

defined on V such that

1. |lul| > 0 ifu FO.

2. ||Aul] = [Al |le|] for all scalars A and vectors u.

3. |lu + v|| < lel] + |lol] for all u,v € V.

A semi-norm is defined similarly to above except that axiom 1 is replaced by |lu|| > 0, and

therefore it is possible for a semi-normto be equal to zero for some u # 0.

Definition 2.1.3 (Normed linear space). A normed linear space is a linear vector space V

equipped with a norm||-|[.

Example 2.1.2 (p-norm). Consider x ER‘, then for any real number p > 1 the p-normof x

is defined by
n 1/p

Il, = (Sle)
where for p = 2 we recover the Euclidean norm defined by

n

IIXllpo = VK-x = Diaz.
i=1

Note that the p-norm can be extended to vectors having an infinite number of components,

yielding the l?-space defined as the set of all infinite sequences of real or complex numbers with

finite p-norm.

Example 2.1.3 (L?-norm). Consider a function f defined on a domain Q and 1 < p< ov.

Then i

Illa = ([ Footx)
defines the L?-normof f on Q. Note that this is a generalisation of the previous example since

f ts now allowed to have not only countably-infinitely many components but arbitrarily many

components. The spacial case when p = oo ts defined as

flip = sup|f(x)].

Definition 2.1.4 (Inner product). An inner product on a linear vector space V is a function

(,:)y defined on V x V which satisfies:

1. (u,v) = (v,u)y for allu,v EV



2. (Au, v)y = A{u,v)y-

3. (utv,w)y = (uw)y + (v,w)y.

4. (u,u)y > 0 when u ¥ 0.

Example 2.1.4 The classical example of an inner product is the function (-,-)za defined on
n

R? x R® by (x, Y)ga =y'X => 2iy: for all x,y ER*.
i=l

We note that any inner product on a linear vector space V induces a norm defined by

llully = (u, uy. This also means that an inner product space, a linear vector space together

with an inner product defined onit, is a special type of normed spaces.

Definition 2.1.5 (Cauchy sequence). A sequence {uz},_, in a normedlinear space is said to

be a Cauchy sequence if for all € > 0 there exists a Ky € N such that any k,l > Ko implies that

|Jux — ual] <e.

Definition 2.1.6 (Banach space). A normed linear space L is said to be complete if every

Cauchy sequence in L converges to an element in L. A complete normed linear space is called

Banach space.

Similarly, a complete inner product space is knownas Hibert space. Tworelevant examples

of Hilbert spaces are the space R? together with the Euclidean inner product and the space

L?(Q) together with the inner product defined by(f, 9)12(9) = fo F(x)g(x)dx.

Definition 2.1.7 (Linear operator). An operator A: V — W, where V and Ware vector

spaces, is linear if A(av, + bv2) = aAv; + bAve2 for all v1, v2 € V and all scalars a,b.

Example 2.1.5 A linear operator mapping R” to R™is defined by a matrix A of sizem xn,

then given x € R", y= Ax ER”.

Definition 2.1.8 (Convex set). A set S is convex if for allu,v ES

Au+(1-A)ves

for all \ € [0,1].

Definition 2.1.9 (Convex function). A function f defined on a convex set is convex if for all

uves

f(Auwt+ (1 —A)v) < Af(w) + (1 — A) F(v)

for all X € [0,1]. It is called strictly convex provided that the strict inequality holds for x # y

and \ € (0,1).

Example 2.1.6 The total variation (TV) of wu: Q Cc R? = denoted by I'V(u) and defined

as follows:

rv) = | | Vu(x)|dx
Q

is convex; see more details for the TV of u in§2.3.



2.2. Introduction into calculus of variations

In this section we address a class of minimisation problems where wesearch for an appropriate

function rather than a value of somevariable, that makes a given quantity (usually an energy or

action integral) stationary. Because a function is varied, these problemsare called variational

and solved by the so-called calculus of variations. The calculus of variations involves problems

in which the quantity to be minimised (or maximised) appears as a certain definite integral of

an unknownfunction and/or its derivatives.

Consider the general minimisation problem

min7 (w), (2.1)
U

where J :U —R be a general functional! and denotes a solution space consisting of admissible

functions minimising J (for example, u € C?(Q,R%) with u = up on OQ). We denote by V a

test space consisting of all functions which can be written as the difference between any two

admissible functions,

V={vjv=u-tandu,tey}. (2.2)

Westart first by describing a particular subset of U/.

Definition 2.2.1 (Neighbourhood). Given a solution space U, a function « EU, ande > 0,

then B-(tu) denotes the neighbourhood of % as

B.(t) ={u EU |lu— ul] < e}.

With the general functional given by (2.1), a local minimiser can be defined asfollows.

Definition 2.2.2 (Local minimiser). Given a solution space U and a functional J : U —R,

u EU is said to be a local minimiser of J if for every © > 0 there exists a d > 0 such that

J (@) < J(u) for all u € B.(@).

To define the necessary condition for a local minimiser of 7, the existence of a directional

derivative is required.

Definition 2.2.3 (Gdteaux derivative). Given a solution space U, a test space V, and a func-

tional J :U GR, J its Gateauzr-differentiable for u €U in the direction of v € V if

1. there exists a number €> 0 such that ue =u+ev EU forall |e] < € and

2. the function J(€) = J(u.) is differentiable at « = 0.

The first order Géteaux derivative (or directional derivative or first variation) of J for u in the

direction of v is defined by

dJ(utev)|  _ 4S(wt ev) ~ J(u)
de exp 679 €

dT (uv) = J'(0) =

 

1A function which depends on one or more functions rather than on discrete variable is referred to as a

functional.



Now, a stationary point can be defined as follows.

Definition 2.2.4 (Stationary point). Let a solution space U, a test space VY, and a functional

J :U—R be given. Suppose that for some t € U, J is Gateaux-differentiable for all test

function v € V. Then t is said to be a stationary point of J if 5J(u;v) =0 for allv € V.

We now give a necessary condition for a minimiser which can be formulated by linking a

stationary point to a minimiser.

Theorem 2.2.1 (Necessary condition for a local minimiser). Let a solution space U with an

admissible function u € U, a functional J :U —R, and a test space V be given. Assume that

J is Gateaux-differentiable for « and all test function v € V. Then:

If t is a local minimiser of J, then % is a stationary point of J.

Proof. The proof of this theorem can be found in [5, 36, 88]. m=

Withthis theorem wecaninvestigate the conditionfor a stationary point of some functional

J in more detail. Here we specify and consider the general functional / defined by

Iw) = f P(x, ues), Vax), (2.3)
Q

where Q C R4, d > 1, is a bounded openset and F is a functional depending on x =(21,

.., ta)', w: R7 = R, and Vu(x) = (Ou/Ox1, ..., Qu/Arq)'. Assume that J is Gateaux-

differentiable inall directions of the respective test space. Thus F is assumedto have continuous

partial derivatives with respect to its arguments.

Weintroduce the following notation before giving the conditionfor a stationary point of J.

We denote

VuF = OF/du= F, (2.4)

to be the gradient of F respect to u to distinguish the usual gradient denoted by VF = (OF/021,

..., OF/Axq)'. In similar way, the gradient of # with respect to Vuis given by

Vyuk’ = (OF/duz,,...,0F/Our,)' € Rt. (2.5)

For this moment wewill restrict the solution space U by prescribing a specific boundary condi-

tion, i.e.

U = {uEUlu=con dQ} (2.6)

and then the correspondingtest space is given by

V={veEV]v=0o0n AN}. (2.7)

However,the following result can not only be extended to the general spaces U and VY, but also

to the vectorial case where u = (ui, ua,...,ua)' : R? = R¢.

10



Lemma 2.2.1 (Stationary of J). A function u EU is a stationary point of the general func-

tional J (2.3) if

| (Vuk —V- Vault)ga dx = 0 (2.8)
Q

holds forall test function v € V.

Proof. Let « € R. Setting the Gateaux derivative of J for u in the direction of v to zero leads

 

 

 

 

 

 

to

0 = 57(usv) =+
de e=9

* [ dF'|x, u(x) + ev(x), Vu(x) + €Vu(x)] dx

— de 0 ,

-[ ar Ou+ev)

O(u+(u + ev)Oe =

OF O(tx,, + Vx,, )

+Eal + €Vz,,) de ) e=0 an

OF a OF ~
a” + PeDus,tt dx for allv € Y,

where we used in (*) an interchange of differentiation and integration followed by application

of the chain rule. By using the Gauss (divergence) theorem we get

o- | 5—vdx—[> —odx+ | (Vyul’, 2)pa vdx
Qm=1 Or m5m AQ

= | (Val — V+ Vyul, v) ga dx+ (Vyul’, 2)pa vdx (2.9)
Q aa

  

holdingfor all test functions v € V. Since every test functionfulfills v = 0 on 90, the boundary

integral vanishes and the proof is completed.

It is clear that (2.8) holds for an arbitrary test function only if V,/°— V+ Vvyvu vanishes.

This assertion is included in the well-knowntheorem; see [5, 36, 88] for example. Therefore,

u EU is a stationary point of the Gateaux-differentiable functional J (2.3)if

Vuk -V-Vyuk = 00n 2. (2.10)

By applying Theorem2.2.1 (2.10) is then a necessary condition for a (local) minimiser of (2.1).

Typically d > 1 and evi) leads to a (partial) differential equation, known as the Euler-

Lagrange equation. Together with boundaryconditions, e.g. described by U, we are faced

with a boundary value problem with the minimisation problemin (2.1) called its variational

formulation [5, 36, 88]. If the boundary conditions are imposed explicitly on a solution space

U as in Lemma 2.2.1, they are called essential condition. If, in contrast, boundary conditions

are not given explicitly in the definition of YU, we are dealing with natural conditions. These

conditions depend on the general functional J or, to be exact, on its integrand /°’. For an

illustration we recall (2.9). In its context we discussed the circumstances under which

/ (Vyul, 2)24 vdx = 0 (2.11)
an

11



holds whenusing the restricted spaces U/ and V. However, the same equality can be achieved

when using the general spaces U4 and VY,for instance with a boundary condition on a part of

the boundary only or even without any boundary condition.

In summaryeverysolution u* € U of the general minimisation problem(2.1) with a Gateaux-

differentiable functional 7 as given by (2.3) is a solution of the boundary value problem con-

sisting of the Euler-Lagrange equation

VuF-V- Vou=00n Q

subject to boundary conditions which can be either the essential type (when incorporated in

the definition of the solution space UY) or natural type

(Vyul!, 2)e2 = 0 0n AN.

Here, n=(n, ..., ng) ' denotes the outer normal unit vector of 02.

Example 2.2.1 Letd = 2, Q = [0,1])?, F= |Vul? where u = u(x). The variational formula-

tion of

min f |Vul? dx
u Jo

is equivalent to the boundary value problem given by

—Au=0 onQ

Ou
Bn = 0 on AN.

Example 2.2.2 Let d= 2, Q = [0,1]?, F =|Vu| where u = u(x). The variational formulation

of
min [ |Vul dx
JO

is equivalent to the boundary value problem given by

Vu
-V-—=0 QV Vil on

Ou
== on.an 0 on

2.3 Functions of bounded variation

Let Q be a bounded opensubset of R@ and let uw € L'(Q). Define the total variationof u as

| |Du| = sup{f uV- pdx| p= (yi, 92,---, Pa) € Cp(Q,R*)*
Q Q

and ||y;||z-~ <1 fori =1,...d}, (2.12)

d
where V-p = > Si (x), dx is the Lebesgue measure? and Cé(Q, R®) is the space of continuously

i=1

differentiable functions with compact support in (2.
 

2In Euclidean space, the standard way to assign a measure (length, area or volume) to a given subset is

through the Lebesgue measure. Hence, sets with finite Lebesgue measure and called Lebesgue measurable. In

real analysis, this measure is used to define Lebesgue integration.

12



As described in [55] for a particular andinteresting case of u € C!(Q, R®), integration by

parts gives

d Ou
uV-pdx=— >> ~—yidx (2.13)

Q 9 i=1 OF;

for every y € C4(, R2)¢ and

[iou= [ivalex. (2.14)

A function u € L1(Q) is said to have bounded variation in Q if J |Du| < co. We define

BV(Q) as the spaceofall functions in L!(Q) with boundedvariation.

Example 2.3.1 The following functions f1, f2 and f3 defined by

fl(z) = sina, (2.15)

1/4, for x € [0, 7/8)
_»_

)

1/2, for x € [r/8,7/4)f2(x) = 3/4, for x € [r/4,37/8) ’
1, for x € [387/8, 7/2]

(2.16)

f3(a) = 7 (2.17)

belong to BV(Q) with Q = [0, 7/2] and have the sametotal variation equal to one. The function

f4 defined by

_ f0, for x =0
fA(z) = { sin 1/x, for rE (0, a) with a > 0

has infinite total variation and does not belong to BV(Q) with Q = [0,a] for alla > 0.

(2.18)

 
 

 0.8 4 0.5

0.6 /|
x 0

0.4 Y

 

 fi  

          

-0.5
0.2 =i!

—f2
—13 4

0
0 0.5 1 15 0 0.5 1 15

O<x<ni2 O<x<n/2

Figure 2.1: Left: three bounded variation functions with the same total variation equal to one. Right:

a function with infinite total variation.

Weshall concludethis subsection by giving the coarea formula.
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Theorem 2.3.1 (Coarea formula). Let Q C R®% be an open set and let u € BV(Q). Let

Ly = {x €Q| u(x) < A} be the level domain. Then

[ipw= | Per(Ly,Q)dA,
Q —oco

where Per(Ly,Q) = fo |Pyz,| is the perimeter of Ly in Q and xLy is a characteristic (or

indicator) function of Ly.

Proof. The proof could be found in [55]. m

2.4 Ill-posed inverse problems andregularisation

Ill-posed inverse problems are formulated and solved on a daily basis in several areas such

as astrophysics, geophysics, and in particular image processing. A simple way to visualize an

inverse problemis to imagine that we are given a black box and wewish to find out its contents.

Weare not allowed to openit but we are allowed to carry out any experiments for output data

to find the unknown input creating this data. In inverse problems wecall the unknowninput

as the solution or model and the results of an experiment as the data. The experimentitself

is referred as the forward modelling. Usually an experiment cannot guarantee to determine a

uniquesolution, i.e. there could be more thanone solution which would produce the same data.

In order to select the most reasonable solution, we need to impose a constraint which is known

mathematically as regularisation. Regularisation produces a solution satisfying some specific

criteria using priori information and penalises unwanted solutions.

In mathematics we have a classical definition of an ill-posed problem. According to the

famous French mathematician Hadamard (1902) a problemis ill-posed if one of the following

conditions does not hold

e the solution exists

e the solution is unique

e the solution depends continuously on the data (i.e. a small change in the data does not

lead to a large change in the solution)

andis well-posed if all conditions are satisfied. However, Hadamard did not deal with any

numerical solutions of ill-posed problems as he believed that the ill-posedness arose from an

incorrect physical representation of the problem. In 1963 the Russian mathematician Andrei

N. Tikhonov introduced the foundations of the theory of ill-posed problem solutions and he

developed the concept of regularisation which was based on an approximationof anill-posed

problem by a numberof well-posed problems.

Example 2.4.1 Let be a Hilbert space, let m(t) € H be the model and let d = (dy,...,dn)' €

RY be a vector of the measured data. Suppose that the relation between m and d is given by

14



the Fredholm integral equation of the first kind as follows:

d; = | K (s;;t)m(t)dt + 6; (2.19)
D

where K(s;t) is a smooth kernel (i.e. the kernel does not posses singularities), ¢; is the mea-

surement noise assumed to be Gaussian with mean 0 and standard deviation o, and D is the

domain of integration. Our goal is to find the model m from the given noisy data. By some

quadrature rule:
M

/ K(s;;t)m(t)dt ~ SwiK(s;, ti)m(ti) Ati (2.20)
» i=1

it leads to the discrete system

d= Au+e (2.21)

where Aj; = wik(s;,ti)At; and u= m/(ti) € R™. We cansee that the matric A: RM — RN

is typically ill-conditioned since the data contain noise. Therefore a regularisation method is

needed forthe solution of the problem.

Let us try to select from all possible solutions the one which is the simplest in some sense,

for example, it has the smallest Euclidean norm:

R(u) = |jul|? =ulu. (2.22)

Thus we have the following problem: find u that minimises R(u) subject to the constraint

N N 2

D(u) = ||d — Aul? = IIe? = S02 = 0?> (=) =o?N=". (2.23)
i=1 i=1

We then can transform this problem into an optimisation problem:

min {J(u) = R(u) + a! (D(u) — 1’)} (2.24)

and use a standard optimisation method to solve this problem for some regularisation parameter

a > 0. Here the function J,,(u) is referred to as the global objective function, D is the misfit

function or fitting term, and R is known as the regulariser or the model objective function.

The parameter a determines how well the solution should fit the data. As a becomes large the

solution fits less well to the data and as a becomes very small, the solution starts to fit noise.

2.5 Discrete PDEs and notation

In several situations one has to solve a discrete version of a continuous partial differential

equation (PDE), because the equation cannot be solved analytically or because data is only

knownat a certain numberofdiscrete locations. A continuous linear boundary value problem

in d-dimensionsis denoted by

L@u(x) = f@(x) for x = (21,...,@a) €Q, (2.25)

L™u(x) = fl (x) for x = (7,...,2a) €T, (2.26)

where Q is a bounded and open domain in R? and [ = @9 is its boundary.
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Example 2.5.1 One such example would be Poisson’s equation in a two-dimensional problem

with Dirichlet boundary conditions

—Au(x) = f2(x) in Q, (2.27)

u(x) = fl (x) onl. (2.28)

Similarly a continuous nonlinear boundary value problemis defined by

N°u(x) = f&(x) for x = (21,...,2%a) EQ, (2.29)

L*u(x) = fl (x) for x = (41,..., 2a) ET. (2.30)

Example 2.5.2 An example of nonlinear boundary value problems resulting from the well-

known variational image denoising model by Rudin, Osher and Fatemi [118] is given as follows:

 

—aV: ee) u(x) = z(x) inV ( aes) (x) =(x) Q, (2.31)

ous) =0 onT, (2.32)

where a, 3 > 0. Here z(x) is the noisy image and u(x) is the true image which we wish to

recover.

There are various ways that a continuous PDE canbe discretised, for example using the

finite element method or the finite volume method. For image registration purposes, an image

domain 2 C R? is usually rectangular and the values of f are known at uniformly distributed

points in the domain. Therefore, the natural choice for discretising the domainis to use the

finite difference method.

Let us consider only two-dimensional problems because it is easy to extend to higher di-

mensions. Assuming that Q = (a,b) x (c,d) is rectangular we impose a cartesian grid (or mesh)

with grid spacing h = (b—a)/n in z-direction and k = (d—c)/miny-direction. In the so-called

vertex-centered discretisation grid points are placed at the vertices of the mesh so that there

are (n+1) x (m+1) grid points including points on the boundary withgrid point (7,7) located

at (%;,y;) = (at+ih,b+ jk) for0 <i <nand0 <j <™m. In the so-called cell-centered discreti-

sation grid points are placed at the centre of the grid cells so that there are n x mgrid points

(none lying on the boundary) andgrid point(i, j) is located at (2;,yj;) = (a+ +h, c+ 20-1k)

for 1 <i<nand1 <j < m. Theinterior of the discrete grid is denoted by 2” and the

boundary by I’ or 0Q". Figure 2.2 shows examples of vertex- andcell-centered discretisations

of a square domain.

Once the grid is in place the operators in the PDE can be approximated locally using

Taylor’s series expansion, e.g.

Ou h? Ou h? Bu h* Adu— als fe Oe, aod Ee te 2,uzthy)=uz,y) tho(ey) + yaat Fast Gaaly) (233)

and

0 h? Ou h3 Bu h* OAuOu
u(x —h,y) = u(x, y) — ho (2,9) + Tap” y) — Br gasPY + Dante) (2.34)
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Figure 2.2: Vertex-centered (left) and cell-centered (right) discretisations of a square domain. Filled

circles indicate grid points within the square domain.

where r—h < €_ < & < €4 < a+h. The operator ue at the grid point (7,7) can be approximated

in 3 ways, the first order forward and backwarddifference operators defined respectively by

OFWs — (Witty —(Wig og Sig _ Wig — Wis (2.35)
h h h h

or the second order central difference approximation

Oe(W)ig _ (Witty—(Winns (2.36)h 2h

where (u);,; = u(a;, yj) is the value of wu at the grid point(i, 7). Approximations to higher order

derivatives can be constructed in a similar way for example a second order approximation to

= at (i,7) is given by

See (2.37)

The discrete analogue of the continuous problemon the discrete domain is denoted by

Lun (x) = fr (x) for x = (,...,2a) € Qn, (2.38)

Lhun(x) = fi (x) for x = (@1,...,2a) € Tn, (2.39)

where wy, is a grid function on 2, UT), Le and Lt are operators onthe space of grid functions

and fe and FE are discrete representations of f® and f'. Usually the boundary condition can

be eliminated and (2.38) and (2.39) can be written simply as

Lhun = fh. (2.40)

Example 2.5.3 Consider Poisson’s equation on the unit square with Dirichlet boundary con-

dition

LYup, (x) = fi (x) =0 for x = (a1,...,2a) €Th.

Assume that the domain is discretised using a verter-centered grid with h = k = 1/nthen at

interior grid points not adjacent to the boundary a second order central difference approximation

is given by

(Laua)ig = A(u)ig — (Wisi— whet — (u)i gaa — (U)ij-1 = fhjap (2.41)
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At point adjacent to the right boundary, for ecample, (u)n41,; will be replaced by the boundary

value (ff )n,j, ie.

(Lawn) ze A(u)nj ~~ (W)n—1,5 anaes a (w)nj—1 _ (fn)n.j- (2.42)

Similarly considerations give Lyupn at other points adjacent to the boundary, therefore we have

Lyun = fh where up is a grid function on the interior grid points only.

Remark 2.5.1 For image registration purposes and other image processing applications, Q rep-

resents an image domain; see §3.1 for the definition of an image. There are different approaches

to the discretisation and choice of the image domain Q. Some authors, e.g. [83, 52, 53], use

a vertex rather than a cell-centered discretisation of Q. Also the choice of Q is somewhat ar-

bitrary. However, there are two common choices. The first is to take Q to be the unit square

whatever the size of the image, i.e. Q = [0,1] x [0,1] and (h,k) = (1/n,1/m). The otheris

to take Q to be such that the grid spacing in each direction is 1, e.g. if the image is of size

512 x 256 then Q = [0,512] x [0,256]. For simplicity, the unit square Q = [0,1] x [0,1] with the

grid spacing h = k = 1/n is adopted and used in all numerical sections throughout this thesis

in order to be consistent with the majority of papers that have been seen on this subject, e.g.

[47, 57, 62, 76, 83, 91]. Note that if Q is the unit square then the value of h is related to image

resolution. For example, the value of h in the 256 x 256 case will be half what it was in the

128 x 128 case and the discrete image of the 256 x 256 case will be closer to the original or

continuous image than that of the 128 x 128 case.

2.5.1 Stencil notation

Let p € Z¢ define a grid point on a d-dimensionalgrid G. In stencil notation the left hand side

of the discrete equation Lzup, = fh at p is defined by

(Litn)p = y Lip,q(Un)p+a- (2.43)
qeEZzt

The stencil entry Lp, is non-zero when Lpu;, at grid point p € G is dependant onthe value of

up at the grip point p+q, the structure of an operator L is defined as all g such that there exists

ap €G such that Lp is non-zero and is denoted by S;. The stencil for L;, at p is displayed

as an array containing all non-zero Lp, e.g. a typical stencil in 2 dimensions has the form

0 tpdare 0

Lp—1,0) Lp,(0,0) —4p,,0)
Ly,(0,-1) 0

Example 2.5.4 Returning to Example 2.5.8 we saw at grid points not adjacent the boundary

we can write
0 -1 O

1
Lyun(z,y) = h2 -1 4 -1 un(2, y) = fal, y) (2.44)

0 -l 0O

and, for example, at points adjacent to the right boundary

1 0 -1 0

Lrua(t,y) =o] —1 4 0 un(z,y) = frlzsy), (2.45)
0 -1 0

18



where up, now includes points on the right boundary.

2.5.2 Matrix notation

It may sometimes also be useful to write L,un, = fn in terms of matrix notation. This can

be done by stacking the grid function up, into a vector uz, with the so-called lericographical

ordering; up is stacked along rowsof the grid starting at the bottomleft point and ending at

the top right. The right hand side vector is stacked in a similar manner into a vector f,. The

discrete linear equation can then be written as A,up, = f,; see §2.6.6.

Example 2.5.5 In the example of Poisson’s equation considered previously we see that in a

general row l of Ap one has ay = 4/h? and ay—1 = a1141 = —1/h? with all other entries

in the row zero, with appropriate modifications for boundary points. h?Aj, is therefore the

(n — 1) x (n —1) block tri-diagonal matrix with blocks of size (n—1) x (n—1) where the off

diagonal blocks are the negative identity and the diagonal blocks are tridiagonal with 4 on the

diagonal and —1 on the off diagonals.

2.5.3. Boundary conditions

So far we have only mentioned Dirichlet boundary conditions on vertex-centered grids, we briefly

now describe howto deal with Neumann boundary conditions and cell-centered grids.

Neumann boundary conditions for vertex-centered grids

Let us assume that we have a Neumann boundary condition & (x,y) = fl (a,y) onthe right

boundary of a vertex centered grid. We assumethat the discrete equation L?un(x,y) = f(z, y)

extends to the points on the right boundary. The equationat these grid points will involve ghost

grid points outside the domain. These ghost grid points can be eliminated using the Neumann

boundary condition

U)n ja (uw n—-1j—= (fnj. (2.46)

Example 2.5.6 Jf we take the example of Poisson’s equation on the unit square then at the

right boundary, we have

 

(Litt ng _ A(w) nj _nsWns _ (U)nj—1 _ (f°) n.5 4 ofna: (2.47)

Neumann boundary conditions for cell-centered grids

In the case of a cell-centered grid we have no points on the boundary, so in general the equation

at interior points which are adjacent to the boundary will involve ghost points outside of the

domain, which need to be eliminated using the boundary condition. If we have a Neumann

boundarycondition at this right boundary, for example, we can write it as
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2.5.4 Nonlinear equations

Nonlinear PDEs are treated in much the same wayas linear equations, the various operators

in the equation are approximatedlocally on a discrete grid using the finite difference method.

The discrete nonlinear equation is denoted by

Neu(x) =fP(«) for x = (21,..., 24) € Mn, (2.49)

LYu(x) = fF (x) for x = (x1,...,2a) ETh. (2.50)

Similarly the boundary conditions are usually eliminated and then the discrete nonlinear equa-

tion can be written simply as

Np (un) = th: (2.51)

It may be possible to write the nonlinear equation in a matrix notation, e.g. Ap(u,)up, = fp.

For more onfinite difference methods for PDEs see for example [103, 128].

2.6 Basic iterative methods

This section introduces a class of iterative methods for solving a general linear system of equa-

tions

Ax =b, (2.52)

where x € R™ and A is a matrix of size N x N. These iterative methodsstart with someinitial

approximation x) and then generate a sequence {x() Ly via the relation

x(k) — TxA) 4 ©, (2.53)

The relation matrix T and the vector c come froma splitting A = M —N of the matrix A

where M is nonsingular. With this splitting the original system (2.52) can then be written as

Ax = (M-N)x=b

or

x =(M"'!N)x+M!b=Tx+c (2.54)

where T = M~!N andc = M'b.

Each application of an iterative methods which updates x-) to x(*) is known as an

iteration or a relaxation sweep.

2.6.1 Jacobi method

The Jacobi method consists of solving the ith equation of Ax = b for z; to get

N —par bs
x= )- (=) 4+—§ fori=1,...,N. (2.55)

: ay aii
gal

J#i



Thengiven x(*-)) for k > 1, x‘*) is generated by

N —a;,2"-) b,
A a9(EYa forded (2.56)

j=l Qi ai

J#t

Note that we require a;; # 0 for each i = 1, ..., N. If one or more a;; = 0 and the system

is nonsingular then a reordering can be performed so that no a;; equals 0. To write Ax = b

in the form x = Tx + c we write A as A = D—L-—U where D is a diagonal matrix whose

diagonal is the same as that of A, —L is the strictly lower triangle part of A and —U is the

strictly upper triangle part of A. Therefore, we have

Ax = (D-—L-U)x=b

or

x=D-'(L+U)x+D"'b, (2.57)

i.e. we use matrix splitting A= M—N where M=D and N=L+U. The matrix form of

the Jacobi method is then given by

x) — Tyx®-) 4 6,, (2.58)

where Ty = D-'(L+U) andcy = D“'b.

Algorithm for Jacobi method

The Jacobi algorithm for finding an approximate solution to Ax = b givenaninitial approxi-

mation x) is given below (Algorithm 2.6.1). A maximumnumberofiterations [MAX to be

performed and a tolerance € > 0 to terminate the algorithm must be specified.

Algorithm 2.6.1 (Jacobi Method)

[x] — JAC(A,b, 2, IMAX, €)
 

1. Setk=1,N= size(x), done = False

2. While done = False do steps 3-4

3. Fori=1,...,N,
. N fg. ¢(k-)

e Set av! y— » (=) + ft
j=1
j#i

4. If ||b — Ax|]. < € OR |x) —x™®-)|p <€ ORk > IMAX,
e Set done = True and x = x”)

else

eSetk=k+1

end

 

Weighted Jacobi method

In the weighted Jacobi method, given the current approximation x*~!) the new Jacobi steps

are computed using

W faye b;sf) = J(= + — fori=1,...,N (2.59)
: on ii aii

j=l

JFi
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as before, however x") is now just an intermediate value. The new approximation x(*) is given

by

xl) = (1 — w)x-) 4 wx) (2.60)

where 0 <w < 2 is a weighted factor to be chosen. Of course when w = 1 we have theoriginal

Jacobi method. In matrix form the weighted Jacobi methodis given by

x) = ((1—w)I+wTy)x*-) 4 wey (2.61)

which is equivalent to

x(F) = Tygx) + Cjy (2.62)

where T;,, = (l—w)I+wD-1(L+U) and cy,, =wM~'b.

2.6.2 Gauss-Seidel method

 

When computing al") in the Jacobi method we have already computed an”) a), wees al*)

which should be better approximations to 21, x2, ..., 2-1 than glk) of) Leng a).

Therefore the Jacobi method should be improved if we rewrite the equation for a") as

i=l N

a”) mites ca for t= Lyws5 Vs (2.63)
aii

This is known as the Gauss-Seidel method. Rewriting the above equation as

i-1 N

aya” + Sais” =— S> aga) + b;
j=l j=itl

leads to the matrix formof the Gauss-Seidel method as

(D —L)x= Ux®-) +b,

or equivalently

x) = Tosgx@—-) + Ces (2.64)

where Tgs = (D—L)~!U and ces = (D—L)~'b. Gauss-Seidel is therefore based on a matrix

splitting with M= D-—LandN=U.

Algorithm for Gauss-Seidel method

The algorithm for the Gauss-Seidel method is the same as the algorithm for the Jacobi method,

except that step 3 is replaced by (2.63).

2.6.3 SOR method

In the successive over relaxation (SOR) methodgiven oh) the intermediate values zi") are

computed using Gauss-Seidel andthese values are used to evaluate x‘*) as follows:A1.

x(®) = (1—w)x-) + ux) (2.65)
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where w > 0 is knownas the relaxation parameter. If 0 < w < 1 this iterative schemeis called

under-relaxation and is used to obtain convergence when the Gauss-Seidel does not converge.

If w > 1 it is called over-relaxation and it is used to accelerate convergence of the system which

are converge by the Gauss-Seidel method. SORis based on the matrix splitting

wA = (D—wL) — (wU + (1—w)D)

and can be defined by the recurrence

x) = Tsorx*-) + esor (2.66)

where Tsor = (D—wL)-!(wU + (1 —w)D) and csor = w(D — wL)~'b.

2.6.4. Block methods

Assume that the vector x is partitioned into several disjoint sub-vectors (not necessarily of

equal size)

x= (Ri, Kajces je)|

Then Ax = b can be written in the block formas follows:

Ai: Ai ... Ats x1 b,

Aoi Ago ... Ags X2 be
. . . . : = . : (2.67)

Asi Aso see Ass Xs b,

A x b

where the block Ag is of size N, x Ng (N, being the size of x,) and the vector b, is of size

N,. Thus, for any vector x partitioned as in (2.67),

(Ax); = SoAix;
j=l

in which (y); denotes the i-th component of the vector 7 according to the abovepartitioning.

Assuming that the diagonal blocks are nonsingular the Jacobi and Gauss-Seidel methods can

easily extended to the block level. In the block Jacobi method for i = 1, ..., s, x; is updated

as follows:

N

x{*) = A; S> _ Aix) + b; . (2.68)

g=1

i#i
Similarly in the block Gauss-Seidel method x; is updated as

i-1 s

eas(Seagal+ So — Au+b), 269)
j=l j=itl

If we define Dg, Ug and Lzfor thesplitting A = Dg — Lg — Uzasblock analogues of

D, U and L, ie.

Au

Ax
De = . ’



0 0 Aj sae Ais

Aer D O ... Ads
Ug=- . to, j Lg =- . ;

Asi Aso ... O 0

then (2.68) can be re-written as

x!) = AZ(Le +Up)x®); + A;'b, i= 1,...,8

whichleads to the block Jacobi method described by the recurrence

x) = Dp! (Lg + Up) x*-) + D5'b (2.70)

and similarly Block Gauss-Seidel by the recurrence

x) — (Dg —Lg)-!Ugx-» + (Dg —Lg)~'b. (2.71)

Note that an important difference between block relaxation schemes and point relaxation

schemes is that now A,; is a matrix instead of a scalar a;;. As a result, solving linear sys-

tem with Aj; in (2.68) and (2.69) for updating x; may be muchmore expensive because the

matrix inversion of the diagonal block A;; is required instead of the inverse of the scalar aj;;.

Obviously the larger the vectors x; are, the more expensive each step of the methodsis likely to

be, on the other hand the payoff may be faster convergence of the iterative method. Neverthe-

less, the numberofiterations required to achieve convergence often decreases rapidly because

they update the whole set of components at each time [121].

2.6.5 Convergence

The methods considered in this section all define a sequence of iterates x(k) = Tx@-D 4 Cc,

which upon convergence producea solution of the original system Ax = b. Inthe following it

is shownthat the iteration x) = Tx") +¢ convergesif and only if the spectral radius of T

is less than one. First the definition of a convergence matrix is required.

Definition 2.6.1 (Convergence Matrix) A square matrix A is said to be convergent iflim A‘ =
k— 00

0.

The following theorem, the proof of which can be found in[121], is also required.

Theorem 2.6.1 A matriz A is convergent if and only if p(A) <1, where p(A) is the spectral

radius of A.

Finally we also need the following theorem.

Theorem 2.6.2 For any initial guess solution x) € RN the sequence {xlVr defined by

x(®) = Tx) 4 for all k > 1 converges to the unique solution of x = Tx +c if and only if

p(T) <1.

Below some useful theorems on convergence are stated without proofs.
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Theorem 2.6.3 [f a matric A has positive diagonal entries and all other entries are negative

or zero then only one of the following statements holds

1. 0< p(Tes) < p(Ty) <1

2.1< p(Ts) < p(Tes)

3. p(Ty) = p(Tes) =0

4. A(T) = p(Tes) =1

where T; and Tag are the iteration matrices for Jacobi and Gauss-Seidel respectively.

This theorem implies that for such matrices if one of Jacobi or Gauss-Seidel converges then

so does the other and similarly divergence of one implies divergence of the other. If both

converge then Gauss-Seidel converges faster then Jacobi. For the next theorems we need to

define a regular splitting of A.

Definition 2.6.2 (Regular Splitting) A = M—N is a regularsplitting of A if M is nonsin-

gular and M~! and N are nonnegative.

Theorem 2.6.4 If M and are regular splitting of A and T =M™—!Nthen p(T) <1 if and

only if A is nonsingular and A~! is nonnegative.

Theorem 2.6.5 [f all the diagonal elements of A are non-zero then p(Tsor) > |w — 1| and

hence SOR converge only when0 <w <2.

Theorem 2.6.6 If A is positive definite, i.e. x'Ax > 0 for all x, and 0 < w < 2 then the

SOR method converge for any initial guess x,

Theorem 2.6.7 If A is positive definite and tri-diagonal then p(Tas) = p(T7)? and the op-

timal w for SOR is
2

14+ /1—- p(T)?
w=

for which p(Tsor) =w-1.

2.6.6 Numerical implementation

If we have a systemof equations Au = f arising fromthediscretisation of a PDE usinga finite

difference method on a rectangular domain then the matrix A is likely to be well structured and

sparse, which means storage of A will not usually be required. The updating of each entryof u

will typically involve just a few other entries. To illustrate this the numerical implementation

of Jacobi and Gauss-Seidel methodsis outlined for the case of Poisson’s equation with Dirichlet

boundary conditions on the unit square introduced in §2.6. For ease of presentation a grid

function will be used.
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Figure 2.3: Red-Black ordering of grid points: red points are shownas starts and black are shown as

circles.

Jacobi method

In the weighted Jacobi method if a grid point(i,j) is not adjacent to the boundary then(w);,;

is updated as follows:

k-1 k-1 k-1 k-
h? (fig + (wer? + (urd + (why) + (wD
 

k k-1(u)6? = (1—w)(u)iY 4.0 : (2.72)

where for example (uw)ne is the entry of the previous approximation (u”)-") corresponding

to the grid point (i+ 1,7). For points adjacent to the boundary appropriate modifications to

(2.72) should be made.

Gauss-Seidel method

Unlike in the Jacobi method the order in which entries of wu’ are updated is significant when

using the Gauss-Seidel method. Two different ordering schemes (corresponding to two different

ways of stacking u” into a vector) for Gauss-Seidel are outlined below.

Lexicographic ordering

A lexicographic ordering of the grid points involves ordering the points in increasing order from

left to right and up the rowsso that the approximationat the bottomleft point (1, 1) is updated

first followed by the approximation at the point (2,1) and so on with the approximationat the

top right point (n — 1,m — 1) updated last. A Gauss-Seidel scheme used with lexicographic

ordering is denoted GS-LEX and the entry wu” corresponding to grid point (i,j) (not adjacent

to the boundary) is updatedasfollows:

2(f)i5

+

(ue? (KHL) yy (R-L)

4

(4,) (R41)
(u)°" _ h*(f)ig + (Wigig + Wreud + (u)ejar + (wegly | ea

Note that because of the lexicographic ordering entries corresponding to points to theleft of

and below (7,7) have already been updated whereas entries corresponding to points to the right

of and above(i, 7) have not.

Red-Black ordering

Whena red-black ordering of the grid points is used the grid is coloured in a checkerboard

fashion as shownin Figure 2.3, entries of u” corresponding to the red points are updatedfirst
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followed by entries of u” corresponding to the black points. A Gauss-Seidel scheme with red-

black ordering of the grid points is denoted GS-RB. Entries of u” corresponding to red grid

points are updated by

h? (fig + (u vou + (uF) + (ue? + (wR?(u)$") _ (f) j ( Vit1,j (u); 1,j ( Jigja ( ijt (2.74)
 

and then entries corresponding to black grid points are updated by

k k k kanit) = PDs + ig + OE+Ra+
7 4 .
 (2.75)

Because a five point approximation to the PDEis being used, the updating of each entry

associated with a red point involves only entries associated to black points and vice-versa.

This means that after each sweep of GS-RB the residual r? = f? — Lu" is zero at the black

points. Wheneachred point is updated using only black points and vice-versa, GS-RB has an

advantage over GS-LEX in termsofparallel computing sinceall the entries of u” corresponding

to red points can be computed inparallel followed by all entries of wu” correspondingly to black

points. Note that because points are updatedin different orders, one step of GS-LEX will not

produce anidentical result to one step of GS-RB with the sameintimal guess.

Line relaxation

If u” is stacked into a vector u lexicographically and the vector u is divided into (n — 1)

subvectors where eachof themis of size (n—1), then the subvector u; will containall the values

of w” corresponding to row | of the grid, hence performing a block Jacobi or Gauss-Seidel

iteration on this block system is equivalent to relaxing a whole rowof the grid collectively, this

is knownas z-line relaxation. For example, the Gauss-Seidel updating of uw; is done as follows:

(uy)= Aq (hf + (wa)+ (ar41)), (2.76)

where Az is a tri-diagonal matrix with 4 on the diagonal and —1 on the off diagonals. If

u’ is stacked along columns of the grid and the resulting vector partitioned as above the

block relaxation methods relax whole columnsof the grid collectively, this is known as y-line

relaxation. A sweep of analternating line relaxation consists of an z-line relaxation sweep

followed by a y-line relaxation sweep. A line analogue of the red-black pointwise relaxation

for line Gauss-Seidel is the zebra line relaxation; here either rows or columnsof the grid are

coloured alternately white and black, then the white lines are relaxed followed by the black

lines. In most cases the approximation at a point on a white line will depend only on other

points on that line and points on the adjacent black lines. Hence a parallel implementation of

zebra line Gauss-Seidel will be possible.

2.6.7 Local nonlinear relaxation methods

If we have a discrete nonlinear PDE N”(u") = f” on a grid Q), which has intotal N grid points

then we have in general a system of nonlinear equations:

Wi(ui,uz,...,uv)=0, 1=1,2,...,N. (2.77)
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Analogous to the linear case a nonlinear Jacobi iteration involves solving the ith equation for

the zh unknown

k) (k k) (k k k
W;(uS ) uf dey ulh) a! FE) agfh uh) = 0, (2.78)

where & denotes the current approximation, & + 1 denotes the new approximation and westart

with someinitial guess u(°). Similarly a nonlinear Gauss-Seideliteration is given by

W,(ulkt) ath bee aDa), ule) Leey u) =0, i=1,2,...,N, (2.79)

where of course uj, ..., ui—1 are known before u; is updated. Both these methodswill involve

solving a nonlinear equation in one unknownto update each u;.

For finding the root a of a scalar equation W(u) = 0, the standard Newtoniterationis

defined by

ulDY) = yl) — W(ul™) /Wi(ul™) m=1,2,...,

where wu) is the initial iterate and W’(a) 4 0. Using this scheme tosolve for ufk*)) in (2.78)

and (2.79), it follows that

k+1,
yethmty) _ uletiin) _ Wi (ul + m)y

i Ay,(kFLm)y ?cus”)
where Fe

Cult) _ OW;(u! + m))

a Ou;

(k+1,0) _ (k) ; ae a an is .
and wu; = u;” is the the initial guess. Here the dependence on u,; (j # 7) has been

suppressed for notational convenience. For the case (2.79) we imply,for instance, that

Wi(ul®™) = We (ulbtDyhhFD aAeult), Lee ul),
a

Wenote that using one step of Newton’s method,it yields

(u®
ult) =) Wily) (2.80)a a TR?

C(u.”)
where

_ Wi(us”)

The resulting iteration are known as Jacobi-Newton and Gauss-Seidel-Newton. Refer to [21]

and (134, p. 151].

In the case where we have a semi-linear system of equations so that at each grid point we

C(ul*) (2.81)

have

ayuy +... + anuy + Wi (uy, u2,...,un) = 0, (2.82)

where W is a nonlinear equation, the Jacobi-Newtoniteration is performed by substituting in

ul") for j #7 and thenreplacing W;(ui*t!)) by

W,(us*) = C(uS*)) (ul) — (ul).
a 1 1 a
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u; is then updated by

ulkt) = a 1 oe [(rut Esse e a;_yu*), + agus) Se eee 2 SE ayu\))

+Wi(ul) — cutul] (2.83)

Alternatively we can simply substitute ul) into W; as follows:

lk?) — = [(auf? +...+ a;_us”, + aigiule) +eeet axu\)

+W;(ul, ul, .,uf)] (2.84)

which is knownas the Jacobi-Picard iteration. A Gauss-Seidel-Picard iteration can be defined

in a similar way.

Remark 2.6.1 As in the case of linear PDEs, we expect that a discrete nonlinear PDE at a

particular point will be defined in terms of wu at that grid point and a small numberof neigh-

bouring points.

2.7 Multigrid methods

Multigrid (MG) methods,first developed by A. Brandt in the 1970s, have been provento be fast

efficient solvers for a wide rangeof linear and nonlinear elliptic PDEs discretised on structured

and unstructured grids in several applications. The basic idea of a MG method is to smooth

high frequency componentsof the error of the solution in the Fourier modes by performing a

few steps with a so-called smoother (aniterative relaxation technique like the ones discussed in

the previous section) such that a smooth error term can be well represented and approximated

on a coarser grid. After a linear or nonlinear residual equation has been solved accurately on

the coarse grid, a coarse-grid correctionis interpolated back to the fine grid and used to correct

the fine grid approximation. Finally, the smoother is performed again in order to remove some

new high frequency components of the error introduced by the interpolation. Recursive use of

the idea leads to a MG method; see §2.7.5.

In the following sections, the basic principles including the main components of MG methods

are briefly described.

2.7.1 Basic principles of multigrid methods

The two basic principles of MG methodsare error smoothing and coarse-grid correction.

Error smoothing

Several basic relaxation techniques are slow to convergelike the ones discussed in the previous

section when they are used to solve discrete elliptic PDEs which are discretised on cartesian

grids. However they do (if applied appropriately) posses what is known as the smoothing

property. In Fourier modes, these iterative techniques eliminate rapidly the high frequency
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components of the error of the solution but may not be effective at removing the low frequency

components of the error (leading to slow convergence for being stand-alone solvers). However,

a smooth quality can be well represented and approximated on a coarser grid, which leads to

the second principle on which MG methodsare built.

Coarse-grid correction

Consider a linear system

Au =f. (2.85)

Let v be an approximation to the exact solution u. Then the error of the solution is defined

by:

e=u-v. (2.86)

Applying A to bothsides of (2.86) leads to the so-called residual or defect equation given by

Ae = A(u—v) = Au-—Av=f-Aver. (2.87)

From here we see that if the residual equation (2.87) is solved exactly, then one can obtain u

through u = v+e. However, solving the residual equation (2.87) is as expensive as solving

the original equation (2.85). To tackle this problem wefirst replace A by an appropriate and

simpler approximation A in such a way that the approximation of the error € can be cheaply

computed and used to correct v, and then repeat the process until it reaches the convergence.

To illustrate precisely the main idea of MG methods,let us now focus onthe linear system

Lyun = fn resulting from anelliptic PDE onthe fine grid Q” with grid spacing (h,k). Let

v;, be an approximation solution computed by performing a few steps with a smoother (pre-

smoothing step) on the fine-grid problem. Then, the residual equation is given by

Lnén = fn- Lnvn =Tn; (2.88)

where €;, = up — Vp is the error of the solution, which should not be computed directly on the

fine grid. Since high frequency components of the error in pre-smoothing step have already

been removed by the smoother, we can transfer the following residual equation to the coarse

grid Q” with grid spacing (H, K’) as follows

Linen =Th7 Lyen = LE rp, =TH. (2.89)

Here Ly is assumed to be an appropriate approximation of L;, on the coarse grid, which is

usually the original operator discretised on Q4, and J! and J}, are two transfer operators

capable to convert vectors between Q" and Q”. After the residual equation system (2.89) on

the coarse grid have been solved exactly with a methodof our choice, the coarse-grid correction

ey is then interpolated back to the fine grid one e, by the interpolation operator If, (i.e.

en = Ten) that can now be used for updating the approximatedsolution v;, of the original

linear system onthe fine grid by v;'*” = uv, + en (coarse-grid correction step). The last
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step for a MG methodis to perform the smoother again to remove high frequency parts of the

interpolated error (post-smoothing step).

Overall the MG procedure, which is discussed above and also known as the two-grid cor-

rection scheme, can be summarised as follows

1. Pre-smoothing step:

4 Solve approximately L,u;, = fn, by performing a few steps with a smoother to obtain

the approximation v;, on the fine grid Q"

2. Coarse-grid correction step:

# Compute the fine grid residual r, = fp, — Ljvp, and transport to the coarse grid 7

by ry =1F rp,

@ Solve accurately (or exactly) the residual equation Lyey = ry on the coarse grid

Qt

# Interpolate the error from the coarse grid to thefine grid by e, = lh,en

@ Correct the fine grid approximation by vj, = vy + en

3. Post-smoothing step:

@ Solve approximately Dpun = fp with the initial guess v_; by performing a few steps

with the smoother on the fine grid 9"

Remark 2.7.1 A similar MG procedure can be used for a nonlinear system Npun = fh by

using the nonlinearresidual equation, which is introduced later in §2.7.8.

Clearly this MG procedure will only be effective if the error e;, can be well represented and

approximated ona coarsergrid, i.e. it is smooth. The combinationof iterative methods which

are slow to converge but nevertheless smooth the error, with coarse grid correction is the main

idea behind MG methods.

The next three subsections discuss more precisely what is meant by coarsegrids, restriction

andinterpolation operators, and smoothing properties.

2.7.2 Coarsening

MG methods are based onthe use of coarse grids to accelerate iterative methods. This section

describes in more detail what is meant by a coarse grid. Here we assume that we have a

cartesian grid Q" with grid spacing (h,k) called the fine grid and construct a coarse grid 0”

with grid spacing (H, Kx).
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Figure 2.4: Fine and coarse grids in the vertex-centered case (left) and the cell-centered case (right).

Coarse grid lines are full, additional fine grid lines are dashed. Circles are fine grid points, stars are

coarse grid points in the cell-centered case and points which are both coarse and fine in the vertex

centered case.

Standard coarsening

Standard coarsening is the simplest and most frequent way to construct a coarse grid Q? by

doubling the grid spacing in all directions, i.e. (H,K) = (2h,2k). In the case of a vertex-

centered grid, if Q” has (n + 1) x (m+ 1) grid points including boundary points then Q” will

have (n/2+1) x (m/2+1) grid points including boundary points and the coarse grid points will

be a subset of the set of the fine grid points. For example the coarse grid point (1,1) located at

(a+ 2h,c+ 2k) is the same as the fine grid point (2,2). On the other hand,for a cell-centered

discretisation, if the fine grid has n x m grid points then the coarse grid has n/2 x m/2 grid

points. It is different from the vertex-centered case that the coarse grid points will not coincide

with fine grid points; see Figure 2.4 for an example of fine and coarse vertex-centered and

cell-centered grids.

Other coarsening

Other types of coarsening aside from standard coarsening can be used, for example the grid

spacing can be doubled in just one direction e.g. (H,K) = (h,2k) this is known as semi-

coarsening. Semi-coarsening is used in anisotropic problems where pointwise smoothers smooth

the error in only one direction.

2.7.3 Transfer operators

As is well known, in addition to a smoother, transfer operators are also the main MG com-

ponents, which are used to transfer grid functions betweendifferent grids. Transferring grid

functions froma fine to a coarse grid is knownasrestriction. On the other hand, transferring

grid functions froma coarseto fine grid is called interpolation or prolongation. In the following

we consider only the transfer operators for standard coarsening in the vertex- andcell-centered

cases.



Restriction for vertex-centered grids

The most obviousrestriction operator is the so-called injection, which is defined in two dimen-

sions as follows:

vy = 1oun (2.90)

where

(vH)ig = (wn)ai,2;; (2.91)

i.e. the coarse grid function vq at a grid point (i,7) takes its value directly from the corre-

spondingfine grid value. We note that the stencil notation is given by

H H
Ly = [Un 2

Analternative restriction operator is the so-called. full weighting operator, whichis defined by

vy =1ffun (2.92)

where

1
(vi). = 16 [(Yp )2i—1,25-1 + (Up )2é—1,25-41 + (Up) 2841,25-1 + (Up )ae41,2541

2 ((vn)aiag—1 + (Vn) 2i,aj41 + (Yn) 2i—1,29 + (Yn) 2i41,27) + 4(vn) 22,25] 5 (2.93)

and the stencil is defined by
H

1 1 2 1

if = Ts 24 2 ,
12 14),

i.e. the value of the coarse grid function vy at a grid point (7,7) is a nine point weighted average

of the value of the fine grid function at that point and the eight points surrounding it on the

fine grid. Another restriction operator is the so-called half-weighting operator, whichis a five

point weighted average, defined in two dimensions by

VH = IPun (2.94)

where

1
(vn)iy = 3 [(vn)ai2j—1 + (Un)2i,2541 + (Yn) 21,25 + (vn) oit1,2541 + 4(Yn) 22,25] (2.95)

and the stencil is H

1 0 1 +0

Ae = g}i 41
0104],

Interpolation for vertex-centered grids

The most commonly used interpolation operatoris the so-called bilinear interpolation, whichis

defined by

vp = Lon (2.96)
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where

(vn )2i29 = (vn)

(on)aisnay = 5 (Umea + (ees)
(on)asaisr = 5 (COmeg + (eH )ig1)

(on)aeeraisr = 7 ((on)ig + (omits + Owes+ (omeriser) (2.97)
for0 <i<n/2—1 and 0 <i < m/2-—1, which canbe represented by the stencil

h
1

1

1 N
w
&

b
w 1

2

lly

This means that for fine grid points which are also coarse grid points the value of the fine grid

function is transferred directly from the coarse grid value. For fine grid points on a horizontal

coarse grid line but not a vertical one the fine grid value is the average of the values at the 2

coarse grid points. Similarly, we canuse the analogous result for fine grid points on a vertical

coarse grid line but not a horizontal one. For fine grid points in the middle of four coarse grid

points the fine grid value is the average of the coarse grid values at the 4 points.

Restriction for cell-centered grids

For a cell-centered discretisation, each cell of the coarse grid Q” contains within it 4 fine grid

cells and each grid point of Q7 is surrounded by 4 grid points of 2". The four cell average

restriction operator evaluates the value of a coarse grid function vy at a coarse grid point by

taking the average valueof thefine grid function vp, at four fine grid points surroundingit. This

restriction operator can be defined formally by

vp = Ii un (2.98)

where

(vH)ig = ; ((un)28—1,27~-1 + (Un) 2i—1,25 + (Vn) 2:,27~-1 + (Vn) 2,25) 5 (2.99)

which canbe givenby the stencil

if2 14"

tli oa],

Interpolation for cell-centered grids

The simplest cell-centered interpolation operator simply transfers the value at a coarse grid

point directly to the four grid points contained within that coarsegrid cell, i.e.

vp, = Lon (2.100)

where

(vn )2i,27 = (Un)2i,2j-1 = (vn) 2i—1,27 = (Vn) 2i—1,27-1 = (vA )ig (2.101)
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fori =1,...,n/2 andi =1,...,m/2. Thestencil is

1 1 7"

1 1 Ly

The cell-centered bilinear interpolation operatoris defined in a similar way as discussed in the

case of the vertex-centered discretisation as follows:

vp = Lv (2.102)

where

(vn) 21,25 = = (9(vi)ij +3 ((vm)iti3 + (vm )i gti) + (ve )iti 541]

1
(Vn )ai41,23 = 16 (9(vH)i41,3 +3 ((va)ig + (em )i4ij41) + (A )ij 41]

1
(vp )2i,2541 = rT (9(vm)igti +3 (vig + (Vm)ig+1) + (vH)i41,5]

(Un )ai+1,2341 = x (9(vr ita gta +3 (vn )i4iy + (vm )ig 41) + (vA )i,5] (2.103)

fori =1,...,n/2—1 andi =1,...,m/2—1, which canbe represented by the stencil

h
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Order of interpolation and restriction

Aninterpolation operator is said to have order k + 1 if it can transfer exactly polynomials of

order k, i.e. if the exact values of a polynomial are givenat the coarse grid points, the exact

value of the polynomial can be foundatall fine grid points by interpolating with the given

operator. Theorderof a restriction operator is equal to the order of its transpose. For example

bilinear interpolation in both the vertex and cell-centered cased has order 2.

Whenconstructing MG methods the summation of the order of the restriction and in-

terpolation operators should be, as a general rule, greater than the order of the PDE being

considered.

2.7.4 Local Fourier analysis (LFA)

The mainidea of the smoothing analysis is to estimate how fast the high frequency components

of the error of the solutionin the Fourier modesare eliminated by a given smoother(aniterative

relaxation method used to smooth the error). As is well known the so-called local Fourier

analysis (LFA) is a power tool for analysing the MG methods, in particular the smoothing

effect of any smoother.

In two-dimensional cases, the LFA studies the actions of linear operators with constant

coefficients (i.e. operators L;, whose stencil entries L,., are not dependant on position p in the



grid) on the grid functions characterized by

pr(9,x) —_ ei@x/h — iA ti/h iba; /k (i — /—1) (2.104)

over aninfinite grid

OR = {x = (ai, 43) = (th, jh)|(i,9) € 27}
with grid spacing h = (h,k) = (1/n,1/m) for a vertex-centered discretisation (for a cell-centered

discretisation the grid points (x;, y;) are in different positions).

Assuming that the frequency @ = (6), 62) varies continuously in R?, it is not difficult to see

that

yn(8,x) = pr (O’,x) for x ENF (2.105)

when the differences between 0; and 6; and 62 and 64 are multiple of 27. Due to the periodic

nature of the grid functions yp (8, x), it is enough to consider yp,(@, x) for all @ € [-7,7)? =O

[134]. With respect to standard coarsening, low frequency components are yn(@,x) such that

@ = (91,92) € Oiow = [-7/2,7/2)? and high frequency components are yp(O,x) such that

@ = (61,02) € Onign = [—7, 7)?\[—7/2, 7/2). The following theorem formsa basis for most of

results in the LFA.

Theorem 2.7.1 For 6 € ©, all grid functions pr(@,x) are eigenfunctions of any discrete

linear operator Ly, with constant coefficients and the relation

Lrvn(8,x) = Ln(@)¢n(O,x) with x € NX (2.106)

holds with

En(0) = S- Lael. (2.107)
qEZ?

Proof. The proof of this theorem can be found in [134]. m

Withthe result of Theorem 2.7.1 it is straight forward to analyse the smoothing properties

of a given smootherused to solve a discrete PDE Lj,un = fn. Here we need to assume that one

step of this smoother can be written locally as

Leone+ Litn = Shy (2.108)

where age and v7” are respectively the approximationsolutions before and after applying the

smoother step and

Lr = Li, + Ly. (2.109)

Subtracting (2.108) fromthe original discrete system Lnzun = fn leads to

Ly ene” + Ly eb!4 = 0, (2.110)

which is equivalent to
Lz

enew _ TFN _ Sree. (2.111)

h
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Recall that e?!4 = vp!4 — up,and ee” = vy?” — uy, are the errors of the approximationsolutions

before and after applying the smoother step, respectively.

From(2.110) and Theorem2.7.1 we cansee thatall grid functions yp, (8, x) are eigenfunctions

of S, = —L,/L} and

Suen (8,x) = $,(8)pn(8,x) = - o (9) |.(8,x) for L* (8) #0. (2.112)
+6)
 

The local smoothing factor fio, of a given smootheris therefore defined by

Hoc = sup{|Sp(8)| | 8 € Onign}- (2.113)

For a smootherto be effective, we hope fjo¢ < 1 and practically pjo- = 0.75 for instance.

Example 2.7.1 Let us consider the GS-LEX method applied to the discrete Poisson’s equation

as represented by (2.48). We can see that

-1 00
0 O -!l

0 0 O

1
0

Lr=s -1 4 and Ly = 75

0 -1 o
o
o

Therefore the local smoothing factor for this relaxation method is given by

Loc = sup{|Sn(8)| | 8 € Onign} (2.114)

where Lt (8) = ie (4 — e101 — @~i82) L;, (8) = pz (—ei% — e2) and

5, (0) = 22) __ eltele
h Lt(8) 4 os efi a e182 .
 

It is shown in [134] that the supremumof (2.114) is attained precisely at @ = (01,02) =

(x/2,cos~'(4/5)) leading to pice = 0.5.

Remark 2.7.2 1. Although the Jacobi and GS-LEX methods including their line analogues

can be written in the form(2.108), the GS-RB method cannot. However, LFA canstill be

used to analyse GS-RB type smoothers but the analysis is more involved; see [134, 140]

for more details.

2. As noted by [134] any general discrete operator, nonlinear with nonconstant coefficients,

can be linearised locally and can be replaced locally (by freezing the coefficients) by an

operator with constant coefficients. In other word, LFA is still a very useful tool for

analysing MG methods for nonlinear problems.

2.7.5 Multigrid cycles

In §2.7.1 we explained the MGprinciples and introduced the two-grid correction scheme. Each

coarse-gird correction step requires the residual equation to be solved exactly on the coarse

grid QO”, Although Q¥ = 0?" has 4 times fewer grid points than 2” for standard coarsening,

a direct solver for the coarse-grid problemis still likely to be prohibitively expensive whenthe
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discrete system is large. We could use a uni-grid iterative relaxation method, e.g. a given

smoother. However, a better approach might be to use coarse-grid correction again, i.e. solve

the residual equation on 9?” by relaxing onits residual equation on the next coarser grid 24” (a

grid whose grid spacing is twice that of 0?”). This process can be used recursively to solve the

residual equationsuntil we reach somevery coarse grid 2?” in such a way that the corresponding

residual equation can be solved exactly using a direct method at a very low computationalcost.

If on each coarse grid ,« coarse-grid correction steps are used to approximately solve the residual

equation we have what is known as a pp—cycle MG step. A sr—cycle MG step to update the

approximation to a linear system Lju;, = fp on thefinest grid Q” is denoted by

[vn] — MGCYC(un, fa, Dry, 2, b)

where Smoother represents the results from one step of a given smoother and may be sum-

marised in Algorithm 2.7.1. For practical applications only 4. = 1 or 2 is used. These methods

are known as the MG V- and W-cycle, respectively. The diagramsof grids for a 4-grid MG V-

and W-cycle are shownin Figure 2.5.

Algorithm 2.7.1 (MG cycle)

Denote MG parametersas follows:

1 pre-smoothing steps on eachlevel

Y2 post-smoothing steps on eachlevel

fs the numberof multigrid cycles on each level (/ = 1 for V—cycling and | = 2 for W—cycling).

[un] — MGCYC(vn, fr, Ln, 1, 2; /)

vo WW
Figure 2.5: Left-Right: Illustrationof grids for a 4-grid MG V-cycle (= 1) and MG W-cycle (y = 2).
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e If Q” = coarset grid, solve Lnun = fn using a direct solver and then stop.

Else continue with following step.

e Pre-smoothing:

For k = 1 tom, [v,] — Smoother(vun, fr, Ln)

e Restriction to the coarse grid:

vn — TP up
e Set the initial solution for the coarse-grid problem:

vy —0

e Compute the newright-hand side for the coarse-grid problem:

fu — Ti (fn — Lnvn)
e Implement the ~—cycle MG step on the coarse-grid problem:

For k = 1 to p, [vg] — MGCYC(un, fu, Lu,“, V2, 1)
e Add the coarse-grid corrections:

Un — Un + Tun
e Post-smoothing:

For k = 1 to v2, [un] — Smoother(vn, fr, Ln)

 

2.7.6 Full multigrid methods

A full multigrid (FMG) method is designed to provide reliable initial solutions for iterative

solvers including MG methods. The idea is to solve first the original problem at the coarsest

grid and theninterpolate the obtained solution as the excellent initial solution to the next finer

grid problemlevel by level until it reaches the finest grid. This can be shownin Figure 2.6 for

a 4-grid problem and summarised asfollows:

Algorithm 2.7.2 (FMG method)

Denote FMGparametersas follows:

Y¥, pre-smoothing steps on each level

V2 post-smoothing steps on eachlevel

fe the numberof multigrid cycles on eachlevel (1 = 1 for V—cycling and | = 2 for W—cycling).

[vn] — FMG(vn, fh, Ln, V1, V2, f)

 

e If Q” = coarset grid, solve Lnun = fn using a direct solver and then stop.

Else continue with following step.

e Restriction to the coarse grid:

vy — IF un, fu —IE fh
e Implement the FMGstep onthe next coarser grid:

[un] — FMG (vu, fu, Lu,“, v2, )

e Interpolation to the next finer grid:

Un — Dvn

e Implement the MG p—cycle on the next finer grid :

[va] — MGCYC (wn, fn, Ln, 1, V2; L)

 

2.7.7 Computational work

To estimate a computational work of a V- (or W-) cycle MG method it is usually expressed

in terms of work units (WUs). Here we define a WU as the computational cost of performing
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fl = FMGinterpolation

   

Figure 2.6: The schemeillustrates the typical structure of a FMG method.

a smootheror relaxation step on the finest grid. In general the cost of transfer operators can

be neglected since it is no more than 20% of the cost of the entire cycle. A V-cycle for a

d-dimensional problem with vy; = v2 = 1, where 1 and 12 are the numbersof pre- and post-

smoothing steps, requires p-¢ WUspereach grid Q?¢. Thus the total costs of one V-cycle used

n coarse grids can be estimated by

2
V-cycle costs = 2 {1+ Qo gtd+ 2-7} < [round WUs.

For instance, a single V-cycle has a cost of about 3 WUsfor a 2-dimensional problem.

2.7.8 Full approximation scheme nonlinear multigrid method

Full approximation scheme nonlinear multigrid (FAS-NMG) method has becomeanefficient

approach for solving nonlinear problems. Here instead of a discrete linear PDE we have a

discrete nonlinear PDE,

Nnun = fh (2.115)

involving the nonlinear operator Np acting on up. Let vp, be the result computed by performing

a few steps with a nonlinear smoother like the ones discussed in §2.6.7 on the fine grid Qp.

Therefore the nonlinear residual equation on the fine grid QQ, is given by

Nar — Nnvn = Nn(vn + en) — Navn = fr — Nava =Thy (2.116)

where e;, = Un — vp is the error of the solution and r;, = f, — Njavp is the nonlinear residual.

In order to correct the approximated solution v_; on Q;,, one needs to compute the error ep.

However, the error cannot be computed directly on Q;,. We then need to transfer the following

nonlinear residual equation to the coarse grid Qy as follows

Nn(vn + €n) =1rn+ Navn > Nu(va + en) =ry+Nyvy (2.117)
ee~__“——_- > —e——_-__—— _-_-—"

Nnrun fh Nuvu fu

After the nonlinear residual equation (2.117) on the coarse grid have beensolved with a method

of our choice, the coarse-grid correction ey; = uy — Vy is then interpolated back to the fine grid

e;, that can now be used for updating the approximated solution v;, of the original nonlinear

system onthe fine grid v?°” = vu; + en. As discussed for the linear case in §2.7.1 the last step

40



is to perform the nonlinear smoother again to remove high frequency parts of the interpolated

error.

Obviously we can extend the 2-grid FAS-NMG method represented by the above procedure

to a MG method. We employcoarse-grid correction recursively to solve the nonlinear residual

equation until we reach to some very coarse grid. We notefirst that we may have to solve the

nonlinear residual equation using a given nonlinear smoother or another iterative method on

the coarsest grid. We also note further that we use the initial guess vy for a solution to the

nonlinear residual equation on Qy because we are working with the full approximation scheme.

This is different from the linear case where we use an initial guess 0 for the solution to the

residual equation on Qy.

Finally, a FAS-NMG method can be summarised as represented in Algorithm2.7.3. Recall

that Smoother means a nonlinear smoother(i.e. a nonlinear relaxation technique) with suitable

smoothing properties.

Algorithm 2.7.3 (FAS-NMG method)

Denote FAS-NMGparameters as follows:

¥, pre-smoothing steps on each level

v2 post-smoothing steps oneachlevel

ft the numberof multigrid cycles on eachlevel (J = 1 for V—cycling and | = 2 for W—cycling).

[vn] — FASCYCun, fr, Nas 1, ¥2; b)
 

e If 2" = coarset grid, solve N,upn = fr using a given nonlinear smoother.

or another iterative method. Else continue with following step.

e Pre-smoothing:

For k = 1 to 4, [vz] — Smoother(un, fr, Nn)

e Restriction to the coarse grid:

VH — TPon.ru = IE (fn cm Nnvn)

e Set the initial solution for the coarse-grid problem:

UH — UH

e Compute the new right-handside for the coarse-grid problem:

fu —rut+Nuvuy
e Implement the z-cycle FAS-NMGstep onthe coarse-grid problem:

For k = 1 to p, [vy] — FASCYC (vu, fu, Nu, , 2, 1)

e Add the coarse-grid corrections:

Un — Un + Ti (vn _ UH)

e Post-smoothing:

For k = 1 to v2, [un] — Smoother(un, fr, Nn)
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Chapter 3

Variational Image Registration

This chapter presents a general framework for image registration. This framework is based on

a variational formulation of the registration problem andits solution schemes to be considered

are based on the so-called optimise-discretise and discretise-optimise approaches. This general

concept will be specified for various registration techniques in the next chapters.

3.1 Images

Physically, an image is a set of measurements obtained by integration of some densityfield, e.g.

radiation, over a finite area or volume. In some applications images are vector valued, as colour

images for example. In this thesis, they are restricted to scalar or gray intensity images and

modelled as continuous mappings from an image domain Q Cc R® into V Cc Rf, where d € N

represents the spatial dimension of the images whichis usually d = 2 (images) or d = 3 (volume

data set) with smooth boundary 02. This means that an image J : Q — V associates with

each spatial position x = (x1, 22,... ,ta)) € Q its gray intensity value (x).

3.2 Variational formulation of the registration problem

A general framework of the imageregistration can be formulated as follows: Given two images

of the same object (or similar ones) which are referred to as a reference R and a template 7,

we search for a vector valued transformation y defined by

p(u)(): ROR, p(u)(x): xx +u(x)

that depends on the unknowndeformation or displacement field

u:R? > R4, u:xtreu(x) = (uy(x), u2(x),...,ua(x))

such that the transformed template

Lo y(u(x)) = 2'(x + u(x)) = Lu(x) = Lu

becomes similar to the reference #. Once the corresponding location y(u(x)) = x + u(x) is

calculated for each spatial location x € Q, an interpolation or approximationstep, e.g. d-linear
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interpolation, is required to assign the image intensity values for the transformed template T,,

at non-grid locations within image boundaries; see Figure 3.1. For locations outside the image

boundaries, the image intensities are usually set to be a constant value (typically zero [104]).

Note that the term u is used to model the transformation y because it can view as how a point

in the transformed template Ty, is moved away fromits original position. Thus the problem

of finding the transformation y and the deformation field wu that the transformed template Ty,

matches the reference R is equivalent. Here the geometric transformation y can be alternatively

defined by y(w)(x) : x H+ x — u(x); see [104].

p(u(x)) = x + u(x)
  

  

  

        

FEET] ERE
epee teraEe
eR ERE
PER] EER     

Figure 3.1: The concept of the image registration visualised as the mapping between two images T and

Ty. An interpolation scheme has to be employedto assign the image intensity values in the transformed

image Ty, if the transformed position y(u(x)) = x + u(x) does not lie on the integer x = (1,22)!

grid point.

All registration strategies require a suitable similarity functional (sometimes also called

similarity or distance measure) D which measures the disparity or similarity between the trans-

formed template T,, and the reference R over the image domain. Thus, the image registration

problem can be formulated as the minimisation problemof D in the following manner:

minD (wu) (3.1)
uu

As is known, the imageregistration problem (3.1) is a nonlinear and ill-posed one in the sense

of Hadamard becausethe direct minimisation of D will not guarantee a unique solution for u.

It becomes necessary to impose a deformation model R, which is also knownas a regularising

constraint or regulariser, on the solution wu for penalising unwanted andirregularsolutions using

priori knowledge. This approach is mathematically knownas regularisation. As a consequence,

the imageregistration problem can be posed as a minimisation problemof the joint functional:

min{ J,(u) = D(u) + aR (u)}. (3.2)
Uu

Here a > 0 is the regularisation parameter that compromises similarity and regularity, and u

is searched over a set U/ of admissible functions minimising J,. The set U is generally assumed

to be a Hilbert space H equipped withits usual scalar product

(au mye= fw (os) mo) de = f(a), (0)pe
Q
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Recall that (-,-)22 denotes the Euclidean scalar product.

In general we expect minimisers of the energy functional 7. to exist. A necessary condition

for a (local) minimiser u of J. is that the Gateaux derivative (or thefirst variation) 6.7.(u; 7)

of 7, must vanish for all variational directions 7 € H, ice.

Jo(u+ en) — Ja(n)
€

d
0Jo(usn) = 7 Jo(u + n)|eo = lim =0. (3.3)

Note that if 07a(u;n) = (VuJo,1)y, VuTa defines the gradient of the joint functional 7..

Then, the necessary condition of optimality is readily equivalent to VuJa = 0, which is known

as the Euler-Lagrange equation associated with the minimisation problem (3.2) and can be

easily computed when ./, is represented in a simple form. For registration purposes, the joint

functional 7 is generally defined by

Jo(u) = | E(x, u (x), Vu (x))dx (3.4)
Q

with a functional #’ assumed to have continuous partial derivatives with respect to each of its

arguments. One can show byextending the results from Lemma 2.2.1 to the vectorial case that

its Euler-Lagrange PDEs becomes

Vul —V-Vyul =00n 2. (3.5)

Here we denote by Vif’ = (OF/0u,,...,9F/Oua)' the gradient of # with respect to its second

argument u(x) and in a similar way the gradient of # with respect to Vu (x), ie. its third

argument, is given by

OF/Oui1 ees OF/0ui4

Vvuurl= ; € RX,

OF/0ud.1 eee OF/Oua.a

where u;,; is an abbreviation for Qu;/Ox,;. As in the scalar case represented in §2.2, the bound-

ary conditions of (3.5) are essential conditions when they are imposedexplicitly. If, in contrast,

boundary conditions are not givenexplicitly, we are dealing with natural conditions correspond-

ing to the minimisation problem(3.2):

(Vyu tl2)pa = 00n OQ, l= 1,...,d. (3.6)

Recall that n denotes the outer normal unit vector of 02.

Wecansee that for an image registration problem the task of finding a minimiser u of Ja

and the task of solving the Euler-Lagrange equationfor u is equivalent. Together with boundary

conditions, in this context (3.2) is called the variational formulation of the registration problem

(3.5). Without loss of generality we assume that the registration problemis described in the

two-dimensional case (d = 2) throughout this thesis, but it is readily extendable to the three-

dimensional case (d = 3). We also assume further that Q = [0,1]? C R? and V = [0,1] for 2D

gray intensity images.
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3.3 Similarity measures

As mentioned in the previous section, a similarity measure is related to image similarity and

used to provide a quantitative measure for the quality of the transformation. Several approaches

have been proposed. These measures are based on either the so-called feature- or intensity-

based approaches. For the first approach the calculations are based on a numberof outstanding

correspondences which are well-selected manually or automatically from the given images, such

as landmarks! or a combination of curves and surfaces. It is recommended when both images

contain enough distinctive and easily detectable features; see [104, p.31 and 44]. In contrast to

the first approach, the latter approach is more general and robust thanthe first approach. The

basic idea is to use the whole (full raw) information of the given images and can bedefined in

terms of functionals in ‘/, and K as follows:

D(u) =D (Lu, R) = | Fp (L(x + u(x)), RB (x)) dx.
Q

Due to its robustness the second approachis adopted inthis thesis.

3.3.1 Sum of squared differences (SSD)

Whenthe imageintensities of the given images are comparable(i.e., in a monomodalregistration

scenario), the proper choice of similarity measures is the so-called sum of squared differences

(SSD) [46, 47, 48, 49, 51, 53, 54, 62, 65, 59, 60, 61, 76, 72, 79, 78, 73, 75, 83, 89, 90, 94, 104,

131, 145] :

DSP (y) = sf (V(x + u(x) — R(x)? dx, (3.7)

whichis adopted mainly in this thesis, and its Gateaux derivative is given by

sySSD SsDdD*°P (us v)= (VuD 1)44 ; (3.8)

where

VuD? = (1, — RB) Vuln. (3.9)

3.3.2. Mutual information (MI)

In general, if the images are recorded with different imaging devices or modalities (ie. in a

multimodal registration scenario), the PSSP functional is not appropriate. The main reasonis

that the same structure may have totally different intensity values. In this case, the common

choice of similarity measures is the so-called mutual information (MI). For convenience, let

1, = R(x) and ig = I'(x + u(x)) be the intensity values of the reference andthe transformed

template. We suppose that 7; and ig are (continuous) random variables whose probability

density functions? are given by p”(i,;) and p2“(ig), respectively. We denote by p21(i,,i2)
 

lA landmark or maker is the location of a typically outstanding feature of an image, such as the tip of a

finger or the point of maximum curvature.
2A probability density function (abbreviated as pdf, or just density) of a continuous random variable is a

function that describes the relative likelihood for this randomvariable to occur at a given point in the observation

space.
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the joint density , which summarises the co-occurrence of events from 7, and 72 and describes

how random the joint variable (7;,72) is. The MI is defined by the Kullback-Leibler distance

between the joint distribution p#-™(i,,i2) and the product distribution p®(i,) - pl(iz) of the

randomvariables 7; and 72 as follows:

R,Ty

DM (u) = [ni ia) log (pee aii, (3.10)

which is non-negative. Note that DM! (uw) = 0 if and only if i; and ig are independent, i.e

pkT(i1,i2) = p®(i,) - pl™(iz). It follows directly that if they are independent, the random

variable 7, can tell us nothing about the randomvariable 72. Thus the MI is a measure of

similarity between the given images. This signifies that we have to maximise DM! (w) or equiv-

alently minimise D-M! (uw) = —DM' (uw). Following the approachof [37, 80, 81] one can show

that its Gateaux derivative is given by

 

5DMu: v))=(VuD~MM)a4 > (3.11)

where

Vaud= ows SFOnBip| Lid Vig ls (3.12)

with

OL™ 1 Ope™(i1,i2) 1 Opa(ia) (3.13)

Biz pa’™(it, i2) Oi pu'(ig) Ota ,

Here |Q| denotes the area of Q and w: R? > R is a smoothbidimensional density kernel used

to estimate the joint density of the images R and Jy, i.e.

PET (irsia) = roy ff Wb) ~ ty Tale) ~i (3.14)
with « denoting the convolution operator:

[p * q| (21, 22) = | pP(z1 _— 11, 22 —- i2)q(t1, ig)diydiz. (3.15)
R2

Estimating the joint density

In image registration, two approaches are popular to estimate the joint density. The first ap-

proachis based on histograms and the second is based on Parzen-windowestimators. Histogram-

based estimators are commonly usedin registration. However, it is knownto have inferior ap-

proximation properties because the histogram is generally based on rounding and thus leads to

nondifferential function whichis not suitable for optimisation purposes {105, 127]. Nevertheless,

there are some recent works developed to overcomethese difficulties; see [95] for example. This

section focuses only on the latter approach.

A basic idea of a Parzen-windowestimator is to work with a smooth kernel function which

basically spreads out sampled data. The Parzen-windowestimator has better approximation

properties and can give a smoothestimator which is much better suited for optimisation pur-

poses involving partial derivatives. Let ¢ > 0 be the width of the Parzen-window kernel. The
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Parzen-windowestimator for a probability density function p(x) given m samples X1, X2,...,

X,, is defined by

Belz) = ~SKole — Xi), (3.16)

with K being a symmetric kernel function such that f K(u)du = 1 and K,(u) = (1/o)K(u/o).

For our estimator we follow the approach of [37, 38, 71] by applying the Gaussian kernel

 K,(u) = ao exp (-22) where the optimal value of o is determined by maximising the

pseudo-likelihood? P(c) :
m

Pia) = [P(x (3.17)

Since this pseudo-likelihood has a trivial maximum at o = 0, it has been suggested to use

leave-one-out cross validation by replacing pz in (3.17) by

_ 1 <
Poi = pat,DeKole — X;) (3.18)

leading to minimise the Kullback-Leibler distance between p,(x) and p(x). For registration

purposes, the cross validation schemeis applied twice to determine o” and o7™for the reference

and the transformed template, respectively. We select ¢ = max{a”,a™} to define a 2D Parzen-

window kernel w,(i1,i2) = Ko(ii)Ko(i2) and the joint image intensity probability p?-™is

estimated by
m

PE(insta) = =)KoR(X) ~ ta)Ko(Tu Xs) ~ i) (3.19)
i=1

where X = {X,, Xo,...,Xm} denote the sample of size mselected from grid points resulting

from the discretisation of Q. We note that the marginal densities p”(i,) and pZ" (iz) are obtained

by integrating p®:™ over rows and columns,respectively,i.e.

p" (ix) = foeCinta) and pl" (iz) = [of(a ia)din (3.20)
R R

3.4 Regularisations

As is well-known,the actual choice of R can considerably affect on the deformationfield (the

solution) and the registered image. Unfortunately, choosing an appropriate R that fits all

applications is generally difficult. Thus, care has to be taken for each application area, as

image registration is inherently ill-posed as already pointed out in §3.2.

In this section the variational models with well-known R, which have been proven to be

very useful and commonly used in manyregistration applications, are briefly reviewed.
 

3Pseudo-likelihood is a measure in statistics that serves as an approximation of the distribution of a random

variable.
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3.4.1 Elastic regularisation

The elastic regularisation is the most popular choice, which is based on the linearised elastic

potential of u and given by

reemeu) = f(u/a YS (Oeyttm + Anyts)? + (/2)(V tu)? (3.21)
lm=1

where its Gateaux derivative is given by

5Re*S(u; v)=(Vuaaee (3.22)

with

VuRos = —pAu—(A+p)V- Vu

= _ ((A + 246) Oxy a4 U1 + MOxox5U1 + (A + 1) On, 29U2) (3 23)

_ ((A + [Oryx U1 + HOx2, U2 + (A + 21)Oxyx2U2) ,

subject to the boundary condition (4 (Vu + (Vu) ') + Adiag(V - tt), 2)ps = 0 on OQ. Here

je > 0 and A > 0 are the so-called Lamé constants which reflect material properties. This

variational model, of course, allows only elastic deformations, and penalises others, in particular

affine linear ones; see more details in [8, 15, 104] and references therein.

3.4.2 Diffusive regularisation

The diffusive regularisation introduced by Fischer and Modersitzki [46] is the simplest choice

of R, which is based on the L? normof Vu; and givenby,

Ree(ay =f |Vuu|? dx. (3.24)
=321

For this variational model one can show that its Gateaux derivative is given by

teeV,Bas (3.25)

with

VuRtit = Au = ( A ) (3.26)

subject to the Neumann boundary condition (Vuj,m),2 = 0 on OQ. We note that this regulari-

sation technique can be viewed asa typical case of the elastic regularisation when non-physical

parameters, 6 = 1 and A= —1, are applied. Also, it is well-knownas the classical method of

Horn and Schunck [84] for optical flow computation in order to smooth the deformationfield

U.

3.4.3 Fischer and Modersitzki’s curvature model based regularisation

For registration purposes, the curvature-type regularisation was introducedoriginally by Fischer

and Modersitzki [47, 48]. Their variational model is based on an approximation of the mean

curvature of the surface of w, given by

2
REMeury (ay) = D> [Galea)\2dx == ty A)ae (3.27)

l=1/Q2 2(=1
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where its Gateaux derivative is given by

SREMeury Cy, )=(VuRFMcurv daa » (3.28)

with
AruFMcurv _ ,a2,, __ 1Vuk = A*u= ( aus ) (3.29)

subject to the typical boundary conditions Vu; = VAu; = 0 on OQ. Due to the second-order

derivatives represented in the energy functional (3.27), this variational model leads to smoother

deformation fields than those of (3.21) and (3.24) based on the first derivatives. Moreover, it

does not require an additional affine linear pre-registration step to be successful. Here wu; is

understoodas a surface represented by (21,22, ui(%1,%2)) where initially ui(a1,72) = 2 and

then the meancurvature of the surface of u; is given by

2 2

K (u )= Vu = (thMyo,MtMteg Ye yeg tltties Mtrao (3 30)M\U1L Vo Teak (+uj, +u7.., )3/2 : :

Assuming that Vu; ~ 0 yields Ks(uy) © Ks (u,) = Au.

 

3.4.4 Henn and Witsh’s curvature model based regularisation

Henn and Witsh [73, 78] introduced a typical curvature-based regularisation. Their variational

modelis based on an approximationof the sumof the squared principal curvatures Kp, (u,) and

kp, (uz) of the surface of u; and defined by

RiWeury (44) = 5& f (Rar ((u,))? = 2KG(uz))dx

  

2i=1

= séA(Aur)? = 2(ute,2; Mage — Uy,EX (4:31)

and its Gateaux derivative is given by

CRWcur(ay; v)= Vea) , (3.32)

with
. AuHWeurv __ Qin 1Vuk =Au= ( Ae, ) (3.33)

subject to the higher-order boundary conditions B,(u;) = 0 and Bo(w) = 0 on AQ where

0 0 Oru 2 2 Oru, 0? uy
1) = -_TAU —- = 1 _ ~~ io lead ’ 3.34

By (ui) on Os 0x1 0x9 (m1 m2) + OP2r2 OP xy Megat pal

Ou

Bo(ui) = a> (3.35)

and s denotes the tangential component vertical to n. We note that the kernel of the energy

functional (3.31) consists only of the affine linear displacements, and consequently the energy

is invariant under planar rotation and translation. We also note that assuming Vu; ~ 0 leads

to

Kp, (ui) + Kp, (w) = (WP, (ur) + Kp, (wr)? — 2K, (Ui)KP, (Ur)
2

= (Rar(w))? — 2K@(w) = (V > (FRBRS))?(RS)
\/1+|V uy |? (14+ |Vui|?)?

w (Rur(w))? — 2K (w) = (Aw)? = 2(utz 2, Mlegeg ~ May ey)? (3.36)
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where Kg(u) = (U2; Urgry —ura) is the approximation of Kg(u;), the Gaussian curvature

of the surface of u).

3.4.5 Total variation regularisation

Total variation regularisation introduced by [51, 53, 115] is based onthe so-called TV semi-norm

of Vu; and given by

2 2

REY (uy) = & [ Iva)sax= ; ui,, + uf, + Bdx. (3.37)

One can show that its Gateaux derivative is given by

 

bRPY (u;v)= (VuR0), 5 (3.38)

with y
~V- (4)

BTV _ |\Vuilg
Vuk ( -V- (v8 ) (3.39)

u2lg

subject to the Neumann boundary condition (Vuj,n)22 = 0 on OQ. Here G > 0 is a small real

parameter for avoiding non-differentiable at zero; see more details in [51, 53, 115, 118].

As is known, R°*s, RARPMcurvand RAWeurv produce globally smooth deformationfields;

see [33, 46, 47, 48, 49, 79, 78, 73, 75, 74, 89, 91, 104, 131]. While they are useful for several

applications, they become poorif discontinuities or steep gradients in the deformationfields are

expected (e.g. resulting from multiple moving objects or partially occluded objects). In order

to preserve discontinuities of the deformation field, R°TY helps to preserve piecewise constant

smoothness, which is much weaker than those global smoothness of R°!**, RU, RFMeury | and

RiWeurv However, R°'Y may not be suitable for some particular imageregistration problems,

which require deformationfields having very strong smoothing properties; see [51, 53, 142]. It is

still a challenge to design a regularisation technique or deformation model R suitable for both

smooth and non-smoothregistration problems. This task will be one of our main contributions

in this thesis; see Chapter 6 — 7 later.

3.5 General solution schemes

Classified by the order of its major ingredients, there are two main types of numerical schemes

to compute a numerical solution of the minimisation problem (3.2) for a given regularisation

parameter a. Thefirst is the so-called optimise-discretise approach and the secondis the so-

called discretise-optimise approach. The main idea of the first approach is to compute the

Euler-Lagrange equations in the continuous domain as discussed in the previous sections and

then solve its discretised version on the corresponding discrete domain by a method of our

choices, e.g. a so-called parabolic andelliptic approach. On the other handthe latter approach

aims to discretise the joint functional %, and then solve the discrete minimisation problem by

standard optimisation techniques, e.g. steepest descent or Newton-type methods.
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3.5.1 The optimise-discretise approach

For the optimise-discretise approach, the main aimis to solve the Euler-Lagrange equation,

which generally turns out to be a nonlinear system of PDEs:

f(u) +aA(u) = 0 (3.40)

subject to the appropriate boundary conditions. In other words, the approachaims to satisfy

the necessary condition for a minimiser of the joint functional (3.2).

Note that on one hand thefirst term f (usually nonlinear) is related to the Gateaux deriva-

tive of the particular similarity measure D, which can be viewed as the external forces in

leading similar regions of the images into correspondences. On the other hand, the second term

A, which is the partial differential operator (linear or nonlinear) and viewed as the internal

forces (or constraints) resulting from the Gateaux derivative of R, is used to regularise the

deformation field wu and resist the external forces until the equilibrium state governed by the

Euler-Lagrange equation (3.40) is archived.

There are various numerical techniques for solving (3.40). These techniques can be broadly

divided into two main categories: the parabolic and elliptic approaches. A parabolic approach

(also knownas gradient descent or time marching approach) performs by introducing the ar-

tificial time variable t and then determining the steady state solution of the systemof time-

dependent PDEs, e.g. if f is nonlinear and A is linear, the semi-implicit scheme can be defined

by
u(t*+1)) — a(t)

€
= f(u(t™)) + aA(u(e**))) (3.41)

where k € No, u(t) = u(x;t), and 7 > 0 denotes the time length used to discretise ,u(t); see

[46, 47, 48, 78, 73, 90, 91, 104, 131]. Foranelliptic approachit performs by directly solving the

nonlinear system of PDEs with a methodof our choice, e.g. if both f and A are nonlinear, the

fixed-point (FP) iteration of (3.40) can be defined by

f (ul) + aAful(ult) = 0 (3.42)

where both f and A arelinearised at the current approximation ul”! and v € No denotes the

FP step; see (53, 54, 76, 94, 145).

3.5.2 The discretise-optimise approach

In this section, we shall briefly give the mainidea of the discretise-optimise approach based in

the Newton-type schemes. To this end, let us first consider the discrete minimisation problem

corresponding to (3.2):

min{J(u) 7 D(u) + aR (a) }. (3.43)
uu

The next step is to linearise 7. around the current approximation wu) (k € No) by the Taylor

expansion given by

= ck = 7 .) Ll. yo.
To(u™ + du) = Jo(u™) +55 (udu+ 5(du)Hz, (ul*))Seu (3.44)

rc
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and define an (outer) iteration by

wlEFT) — aylP) 4 CO) Sag), (3.45)

Here Jz (u\)), Hz (w'*)) are the Jacobian and the Hessian of Jn at ul*) and ¢) > 0 is

the line-search parameter used to guarantee the reduction of J, in each outer step k. For

Newton-type methods, the perturbation du(*) is determined by solving the normal equation

1~ Hyg5H, (ul)du =-J7 (ul*)) (3.46)

by a method of our choices (e.g. linear MG methods), considered as the inner step. Here

H;, (u*)) is an approximate Hessian; see [60, 59, 65, 72, 76, 77, 83, 89].

Practically, no matter which methodis used, both approachesare integrated with a so-called

multi-resolution technique in order to provide reliable initial guesses, avoid getting in the trap

of unwanted minimisers and save computational times [32, 86, 94, 99, 120, 130, 132].

3.6 A brief survey of existing multigrid methods

Oneof the main aimsin this thesis is to propose efficient numerical methods for solving Euler-

Lagrange equations as given by (3.40) consisting coupled and nonlinear PDEsandresulting

from the variational formulation (3.2). Among fast iterative methods, multigrid approaches

have beensuccessfully used as fast registration algorithms for high-resolution digital images by

offering the potential of optimal efficiency. They may classify into 2 categories:

1) Linear multigrid framework. Haber and Modersitzki [65] used the discretise-optimise

framework by combining an inexact Gauss-Newton (GN) method with a linear multigrid

method as a coupled outer-inner iteration methodfor solving the elastic image registration

problem. Henn[73] considered the curvature imageregistration in the optimise-discretise

framework and introduced a coupled outer-inner iteration method like (3.41) with the

inner solver provided by a linear multigrid methodfor solving the system of the fourth-

order linear PDEs. Homke [83] concentrated on the elastic image registration and used

the discretise-optimise approach based on a regularised GN method with a trust region

approach in which one normal equation corresponding to a linear subproblemis solved

iteratively with a linear multigrid method. Késtler et al. [89] introduced a combined

diffusion- and curvature-basedregulariser for optical flow and deformable image registra-

tion problemsand solved the resulting minimisation problem represented in termsof(3.2)

with the discretise-optimise framework by combining an inexact GN methodwitha linear

multigrid approach. Stiirmer et al. [131] consideredthe diffusion image registration in the

optimise-discretise framework and solved the system of nonlinear PDEs using a coupled

outer-inner iteration method like (3.41), where the inner iteration is solved by a linear

multigrid method commonlyused for heat equations.

2) Nonlinear multigrid framework. The use of the nonlinear multigrid (NMG) methods

can be foundin worksof[53, 54, 76, 145]. In particular, Frohn-Schaufet al. [53] considered
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the direct minimisation of the data term D°SP (3.7) in the Newton framework and applied

the total variation (TV) regularisation at a Newton perturbationstep; further they solved

the resulting nonlinear system by the full approximation scheme nonlinear multigrid (FAS-

NMG) method due to Brandt [11] with an augmentation method and line relaxation

smoother. Gao et al. [54] used the optimise-discretise framework to solve the diffusion

image registration problem, where the full multigrid (FMG) method with the Newton-

Gauss-Seidel smoother (ie. global linearisation by Newton’s iteration and Gauss-Seidel

(GS) iteration for the resulting linear systems [94, 134]) is used to solve the system of

nonlinear PDEs. Henn and Witsch [76] solved the elastic image registration problem in

the optimise-discretise framework using a FAS-NMG method with the Jacobi smoother

plus a line-search procedure to avoid effects on the regularisation parameter a. Finally,

Zikic et al. [145] used the optimise-discretise framework with the FMG methodto solve

the diffusion imageregistration problem, where the systemof nonlinear PDEsis solved by

a fixed-point (FP) type of smoothers within the semi-implicit time marching approach.

Wealso remark that the 2D optical flow formulation (that does not use D°S?) suitable for

registering closely related images (e.g. video sequences) can be solved by multigrid techniques;

see [19, 18].
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Chapter 4

A Robust Affine Image

Registration Method

As alreadypointed out in §1.1, rigid image registration alone cannot always provide a satisfac-

tory registration result, particularly in many medical applications (e.g. one cannot ensure the

patient sits in the identical position with respect to the equipment each time), while non-rigid

or deformable image registration may not be quick enoughfor ready use.

This chapter is mainly concerned with affine image registration because it is applicable to

a large class of deformable image registration methods by providing the good initial positions

for the image to be registered. Moreover, as is well-known, an affine method is always many

orders of magnitude faster than avariational image registration approach using non-parametric

transformations due to muchless unknowns involved; see [85, 86, 96, 104, 125, 132, 141, 143]

and the references therein.

4.1 Introduction

For affine registration the SSD functional, which is viewed as the nonlinear least-squared (NLS)

model, is usually applied when the image intensities of the given images are comparable. Al-

though there are only 6 parameters for affine transformations, iterative methods to solve the

underling nonlinear minimisation can suffer from convergence problemsif goodinitial guesses

are not possible (i.e. even after we attempt to devise goodinitial guesses). A theoretical reason

may be that imageregistration problemis ill-posedin the sense of Hadamard. Theinformation

provided by the given images and the least-squared model are not sufficient to ensure the exis-

tence, uniqueness, and stabilityof a solution [76]. This motivates us to introduce regularisation

into affine registration for constraining affine parameters, as one woulddo for otherill-posed

problems [27, 104, 112, 137]. The result is a refined affine registration model that can be solved

by converging methods for a large class of imaging problems.

The rest of the chapter is organized as follows. We introduce the affine andthe diffusion

image registration respectively in §4.2 and §4.3, and then present four methods to improve

affine registration in §4.4. A regularised affine registration (RAR) model is presented in §4.5,



followed by a regularisation parameterselection algorithm in §4.6. Some numerical experiments

on the performance of the proposed method are presented in §4.7 before conclusions in §4.8.

4.2 ‘The preliminaries, affine image registration and solu-

tion methods

Assuming that in continuous variables the given images can be represented by the continuous

mappings R,T: Qc R? — V CR. It is customary to consider 2 = [0,1]? and V = [0,1]

for gray-scale images. In practice, two discrete images of the same size n, X nz are given: the

reference R and the template 7’.

For each pixel x = (x1, 22)', denote by y = v(x) : Q = Q the unknowncoordinate trans-

formation that produces the alignment betweenthe reference R and the transformed version of

the template

B= Top=1,(x) = 1(¢(x)). (4.1)

We hopeto achieve that #’ + R or # — Rx 0. Here the transformation y has 2 components

(x) = (y1(X), ¥2(x))". (4.2)

As already mentionedin §3.2, all registration strategies require a suitable similarity measure

D in order to measure howsimilar these two images are underthe transformation y. This means

that the general registration problemaim is to minimise this measure in order to determine ¢:

Find y = (¥1, ¢2)' such that D[l,, R, y]=D[y] is minimal. (4.3)

We adopt the SSD or the least-squared function D defined by

 ities Reel = 5 f (1(G0) — Rix) )Pax =5 Its RI, = Dla (4.4)
Q

as the objective function, where||-||;,, denotes the L2.—norm.

4.2.1 Affine transformation

Affine transformation is one of the most commonly used methodsin registering two images;

see [85, 86, 96, 104, 132, 141, 143] and references therein. Although only linear, it models

a combination of effects stemming from four simple transformations: translating, rotating,

scaling and shearing. Anaffine transformation corrects some global distortions in the images

to be registered. In this section, we first introduce the model and then discuss two numerical

methodsfor solvingit.

An affine registration model assumes that the above transformation ¢ is linear i.e.

(x) = Ya(x) = | Pax () | = | me | m |+ i. = Ax +b, (4.5)
Pa, (x) a4 a5 r2

ay as a . . .
where A=|! 2! and b =| 3) are the affine transformation matrix and the translation

ag a5 a6

vector respectively, for all x € ere for optimisation purpose, the vector

T 6a = (a1, 42,03,04,45,a¢) ER
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will be usedshortly. Clearly the inverse transformis simply x = A~!(y~,—b) if A is invertible.

Note that A can be decomposedinto a product ofa rotation, a scaling, a shear in 21— (and/or

£2—) direction or a combinationof these simple transformations

 

_ ja, ag] |cos@ —sin@]] s,, 0 1 S;, ;

a= a “2 ~ ee cos 6 | | 0 Sao | 0 1 (4.6)

rotation scaling shear

where @ is the rotation angle, sz,,82) are the scaling parameters, and S,, is the shear factor

in 2;—direction. Clearly this kind of decomposition is not unique. It is clear that both a

rigid-body transformation with s;, = s;, = 1 and S,, = 0 taking the form

A= (a: “ _ ae eae |
a4 as sin@  cos@

and a similarity transformation with 0 < sz, = Sz, and S;, = 0 taking the form

a, a cos@ —sin@| sz, 0
A= = |:

aq as sin@ cos 0 Sz,

are affine in special cases. From (4.4), the problem with such a vais the affine image registration,

formulated as follows:

min [a] (4.7)
acR&

where D [a] = Diya] = 5||1'(va) — RII, = ZI (Ax + b) — RIlZ,.
Nowconsider how the registration problem (4.7) is solved by the so-called discretise-optimise

 

approachas discussed in 83.5.2. Let T and R denote the discrete images of J’ and # in terms

of ny X nz arrays of image intensities. For ease of presentation, let T and R, of dimension

N = nj,ng, be pixel-wise ordered in a lexicographical order and denoted as follows:

T= (t1.1, €a,15 «5 biggigs ey tmins) and R= (11.15 172,15 «65 Ti gign Tryna)5 (4.8)

where 1 < 74; < nm; and 1 < zg < ng. Each element in the grid vectors T and R represents a

pixel’s gray intensity between black (0) and white (1). Given an affine transformation ya =

(Ya,;Va)', the discrete form of the transformed template image F can be expressed as:

;
i (a) = (tayta2+a3, ay+a5+ae)l2a;+a2+03, 2a4+a5+a6 °°)

y', (4.9)bari: +asiot-oa, a4i4+a5i2+a69 °°") taynit+agne+as, a4ny+a5n2+a6

where #’: R° — R. Then minimisation problem (4.7) is equivalent to the following

1 1 i. — tye) RZ — 2 2. = 2 /min[al N = 5 (l(a) Bile slldfalla 5 Df (a), (4.10)

where the factor N = nyn2g = 1/(hih2) due to the discretisation procedure with h;, hg (the

spatial mesh lengths) can be ignoredhere but will be used later in §4.5, and d(a) = f(a) -Reé€

RN is the so-called residual vector. The first order condition of (4.10) is

g(a) = VaP[a] = J' (a)(F(a) — R) = J‘ d(a) = 0, (4.11)
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where g(a) € R® and the Jacobian matrix J given by

Od;
Jig=q~ forl<i<N,1<j <6. (4.12)

0a;

 

Solving (4.11) for a is a nonlinear problem andits solution requires aniterative approach.

Let a‘*) be a at the kthiteration. Here, we must find a perturbation da“first and then update

the solution vector by

al®t)) — gl’) 4 jal®), (4.13)

For a full Newton method, the perturbation da“) is determined by solving

H(a"))5a) = g(a), (4.14)

where the Hessian of D is denoted by

N

H(a) = J' (a)J(a) + S“dj(a)Vd;(a). (4.15)
i=l

As pointed by [104, p.79], this Newton method may be not suitable in registering two images

for practical applications because computing higher order derivatives is time consuming and

numerically unstable. In order to improve on the Newton method, we can take advantages of

the particular structure of H to design a Newton variant to compute dal®),

4.2.2 The Gauss-Newton (GN) method

Note that the Hessian matrix is precisely H(a) = J! (a)J(a) if d; = 0 for alli (ie. the residuals

are zero at the solution a*) or if V?d;(a) = 0 whend;is a linear function of a. This suggests

that in other cases the Hessian matrix may also be approximated by this formula [129]. The

resulting approximation leads to the Gauss-Newton (GN) method, defined by

H(a“)da= —g(al”), (4.16)

where one uses the matrix H(a‘*))= J'(a\*))J(a) to approximate H(a‘")),

The above GN method requires damping to ensure convergence, because we may not be

able to provide a goodinitial solution, close to a minimum of D. The damped GN method can

be generated by

alk+l) — alk) 4 ¢(*) §g(*) (4.17)

where the positive scalar ¢“) is the so-called line-search parameter used to ensure that a GN

step adequately reduces D and to rule out an unacceptable short step. More precisely, ¢(*) is

determined by

6) = min D(a+ cda)),
¢

Solving this line-search problemis by a backtracking algorithm which begins with ¢(*) = 1, and

then, if a‘*) + da”) is not acceptable, reduces a(*) until an acceptable a) + ¢) da") js found.

The acceptability is decided by the so-called Wolfe or Armijo-Goldstein conditions safeguarding

upper and lower bounds;see [39, 50, 87, 109].
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4.2.3. The Levenberg-Marquardt (LM) method

The GN method (4.16) assumes that H(a‘*)) is well-conditioned or at least non-singular. To

remove this assumption, an improved formulation by adding a positive multiple of the identity

matrix I, H(a‘*))= [J' (a) )J(a®) + wT], is the Levenberg-Marquardt (LM) method:

[JT (a(a) +poa= —g(al). (4.18)

(*) is adjusted to guarantee that the searchAt iteration k, the positive LM parameter pu

direction da“) in (4.18) is a descent direction!. Then we obtain a steepest descent direction for

large “*), when the current iterate is far from the solution. Onthe other hand, this descent

direction is approximately a GN searchdirection for small y“*), when the iterates get close

enough to the solution. Using a frame work of trust region strategies, the LM parameter j(*)

is determined in such a way that

[Joa3 = [IT (a®)F(a®) + eT}g(aIIB <n (4.19)

where 7‘*) > 0 is a prescribed trust region radius. A new LM step is then generated by

al*+l) = al) 4 dal"), As remarked by [41, 42, 70, 72], this numerical scheme is related to

Tikhonov regularisation (see §4.5 later) and is sometimes called the regularising Levenberg-

Marquardt method as shownin(4.43).

4.2.4 Some registration results using the GN and LM methods

In this section, some registration results using the GN method (§4.2.2) and the LM method

(§4.2.3) are presented, to illustrate the non-robustness of both GN and LM methods.

Two examples are provided with the first one to show that both methods are capable

of correctly registering 2 images and the second one to show that both methods can fail to

converge to an acceptable solution, i.e. fail to register 2 images (in particular our examples

will differ in outliers). In both examples, the images are of size 128 x 128 and for both GN

and LM,we use the terminationcriterion ||da||z < ¢ = 10~° within the maximumofiterations

IMAX= 300. Thebilinear interpolation technique was applied in all examples for computing

the transformed template image #’(a) = T,,. Here the relative residual is used as the error

(*))indicator: error = ||g(a‘"’)||2.

Example 4.2.1 (A successful case) We consider the registration problem for a pair of MR

images of a human head’, with the reference image R. and the template image T respectively

in Figure 4.1 (a) — (b). Using the initial guess a) = (1,0,0,0,1,0)' (i.e. we start with

yo(x) = x), both the GN and LM methods can successfully register this ecample as shown

respectively in Figure 4.1 (c) — (d).

Example 4.2.2 (An unsuccessful case) Here we consider another pair of MR images (sim-

ilar to Example 4.2.1), as shown in Figure 4.2 (a)—(b), where T contains tumorlike circles. As
 

1§a is a descent direction if da! g(a) < 0.

*Source: http://www.cis.rit.edu/class/schp730/lect /lect-1.htm
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(a) R

  
(error = 2.77 x 107") (error = 3.38 x 1077)

Figure 4.1: Example 4.2.1: Successful registration results of the MR images of a human head. The

first row shows the reference image R (a), the template image T (b). The second row presents the

registered images Fqn(a‘®)) (c) and Fum(a't°”) (d) obtained from using the GN and LM methods,

respectively.

in Example 4.2.1, the initial guess solution a= (1,0,0,0,1,0)' is used. It turns out that both

GN and LMmethods get stuck (at a local minimum of D) andfail to obtain correctly converged

solutions, as shownin Figure 4.2 (a)—(b). Here we are certain about reaching a local minimum

because the residual error is small, and the registrationfailure because we can observe the large

visual difference between F(a) and R (i.e. the matching error is not the smallest possible).

Based on Examples 4.2.1 and 4.2.2 and other tests, we confirm that (as is known) both

methods are not robust enoughas their convergence strongly depends oninitial guess solutions.

Various ways offinding goodinitial guess solutions will be discussed shortlyin §4.4.

4.3 Deformable imageregistration

Having discussed a parametric registration model, we nowgive a brief reviewof a non-parametric

model the variational diffusion model for deformable registration [46, 104]. We shall show

that, although the nonlinear multigrid method[11, 12, 134, 139, 140] is effective in solving the

model, an affine pre-registration step can further speed upthe solution. Henceit is of interest

to look for reliable affine methods. Wefirst review the general Tikhonovregularisation idea

(27, 104, 112, 137].



  
(error = 1.88 x 10~") (error = 2.47 x 10~*)

Figure 4.2: Example 4.2.2: Unsuccessful registration results of the MRimages of a human head. The

first row shows the reference image R (a), the template image T (b). The second row presents the

registered images Fqn(a‘®°?) (c) and Fum(a‘®®) (d) obtained from using the GN and LM methods,

respectively.

4.3.1 Variational approach

As aninverse problem, the general registration problem (4.3) denoted by minP[y]is ill-posed
yg

and can be converted to a well-posed problem by Tikhonov regularisation leading to

min{ Ja(y) = D(y) + aR(x - 9)} (4.20)
yp

wherethe positive regulariser 7maybe chosendifferently [104], and a > 0 is the regularisation

parameter, which controls the fitting of the registered image, as measured bythe first term

D(v), and the regularity of the solution, as measured by the second term R(x — y).

To have a consistent notation with the original idea for the diffusion image registration, we

define the new deformation variable u(x) = x — y (x), and then the geometric transformation

yy = p(x) depends on the deformation field u = u(x). As mentionedin [104, p.77], the problem

of finding the transformation py = y(x) = x — u(x) andthe deformation field wu = u(x) =

x — y(x) represented by (4.20) is equivalent. Then the variational problem (4.20) becomes

min{ J(u) = D(u) + aR(u)}, (4.21)

where D(u) = fo (T (x — u(x)) — R(x))? dx.

N
i
l
e
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4.3.2 Diffusion image registration

The diffusion image registration introduced by Fischer and Modersitzki [46] chose the following

diffusive regulariser
1

a
subject to Neumann boundary conditions,i.e.,

R(u) [iver + |Vus|2)dx, (4.22)

Our
“=0 for x €dQ and = 1,2. (4.23)
on

Here, n denotes the unit outer normal vector on 0Q. The Euler-Lagrange equation for the

variational problem (4.21) is the following

—aAu(x) — (7'(x — u(x)) — R(x))- Val’ (x — u(x)) =0, x EQ, (4.24)

where the Gateaux-derivatives of D and R are used and A denotes the Laplace operator with

Au (x) = (Au, (x) , Aue (x))!. Note that (4.24) denotes a system of two nonlinear PDEs.

4.3.3. Numerical treatment and results

In [46], the cell-centered finite difference scheme is recommended to discretise the parabolic

versionof (4.24) i.e.

“a = aAu(x) + (1'(x — u(x)) — R(x))- Val’ (x — u(x))

and solve the discrete system by the so-called additive operator splitting (AOS) method which

is a semi-implicit time marching method.

Here the finite difference methodis first applied with (4.24), followed by someresults from

a full approximation scheme nonlinear multigrid (with full multigrid initialisation) method,

denoted by FAS-FMG, asin [11, 12, 134, 139, 140]. The basic steps are briefly summarised as

follows: (i) Convert the original fine grid problem to a hierarchy of coarser levels with standard

coarsening. The linearised Guass-Seidel smoother consisting of outer and inner iterations is

employed for (4.24), while on the coarsest level the AOS-schemeof [46] is used. We take the

numberof pre- and post-smoothing (outer) steps to be 3, and the numberof inner iterations

to be 2. (ii) Use the standardbi-linear interpolation and restriction operators; see the coming

chapter for more details.

Example 4.3.1 We consider the deformable registration problem of the X-Ray images of a

human hand. Figures 4.3 (a) — (b) show the reference R. and template T images. Clearly one

can tell that the two images are not related by affine transforms. However we use an affine

transform to provide a good initial guess which we denote by TS, in Figure 4.3 (c), obtained

from the affine method as in §4.2.2.

Thenthe registered images F' (uw) obtained from(4.24) with the FAS-FMG method with and

without the affine pre-registration step are shown, respectively, in Figures 4.3 (e) — (f). The
 

3Source: http://www.math.mu-luebeck.de/safir/
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  (c) affineinitial: TH (a‘5%)

 

Figure 4.3: Example 4.3.1: Deformable registration results of the X-Ray images of a human hand,

showing the importanceof a pre-registration step. Left: (a) Reference R, (c) the linearly registered

template(initial template) using the GN method TH®,(a‘®®), and(e) the registered image F(u'?)) by

FMG-FASwith (c). Right: (b) Template T, (d) the initial image F(u) after FMGstep, and (f) the

(failed) registered image F(u‘®)) with (d).

latter method (without using the affine pre-registration step) is not only muchslower thanthe

formerwiththe affine step (only 2 FAS cycles), but also it failed to register properly Figures

4.3 (f). Here we remark that without the affine pre-registration step, essentially, it is the FMG

method that struggles on the coarsest grid.

Through the above example, we see that a deformable registration approach can benefit

from an affine pre-registration step whose convergenceis of course of importance.

4.4 ‘Techniques to improve affine registration methods

The convergence of both GN and LM methods dependsonsuitable initial guesses, as shownin

84.2.4. This section reviewsfirst some existing methods that can provide a betterinitial guess
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than the simple a) = (1,0,0,0,1,0)' for the GN affine model (4.16), and then shows their

numerical tests for both GN and LM methods.

4.4.1 Method 1 — Approximation based on image centers

Each of the two input images has a center location, defined by the pixel gray levels (or fea-

tures dependent). If the two centers are quite different, re-positioning the center will give

the affine registration problem a good initial guess for translation, i.e. the vector given by

a = (1,0, a), 0, 1,a®))T, where a) and a”) denote the re-positioning information.

This method can be summarised asfollows:

(i) Estimate the centers c’,c” of the two input images ‘J’, respectively:

 

 

fa [E) = pxtodee _ (OiTPsh SP OPEtd)
C3 Jaq T(x)dx ia jet bij ; 4.95

R a JgxRxdx (SA2 rit, DH 21 rid) ab)
cP =| k| ="*Pamax = a5 SLE = Ep|x].

C5 Q t=1 Qjai' ts

(ii) From the center differences, set aw’) =! =e, a = chug?

4.4.2 Method 2 — Approximation based on the rigid-body model

The next idea of providing a goodinitial guess for (4.7) is to reduce the number of parameters:

assume there exists a rigid transformation between /’ and &. Then we have a parametric model

y(x) = Ax +b with only 3 parameters (see (4.6)):

a= [a] fore 2). |. a25
a4 a5 sin@  cos@ ag

Here the above Method 1 could be usedto initialise b while setting 6) = 0. Once this model

is solved, the coefficients of a) will be updated for the affine model.

4.4.3 Method 3— Approximation based on principal axes transforma-

tion

The principal axes transformation (PAT) method was introduced to image processing by Hu

since 1962 (see {104, 125] and references therein). It is an approximate registration approach

using statistical features, the image center andan eigen decomposition of the covariance matrix,

derived from the input images. Define the 2 x 2 covariance matrix of an image / by

Cov; = E;[(x—c!)(x—c!)"], (4.27)

where c! is the image center defined by (4.25). Since matrix Cov; is real, symmetric, and

positive semi-definite, it permits an eigenvalue decomposition[104]

_ 2 _ _ {COS py —sin py » _ |OTA 0Cov; = D(p1)¥2D(—p1). rion) = [ger anes “= (7h . (4.28)

where ))(p;) denotes a rotation matrix, “7 is a scaling matrix, and o7,; and o7,2 are standard

deviations.

63



Nowfor images R, 1’, let c® and c’ be the centers from (4.25). Then the following will be

the approximate coefficients for an affine transform

A=D/(pr) UrqD(pr)', b=ch— Ack, (4.29)

Finally the coefficients from (4.29) will be used to initialise a) for the affine model.

4.4.4 Method 4 — Multi-resolution approach

Multi-resolution strategy is commonly used to providereliable initial guesses for registration

algorithms[86, 94, 99, 120, 130, 132]. The idea is to register the coarse resolution (low) images

first and then interpolate the coarse solutions level by level to the finest resolution (high). The

basic idea is essentially the same as a full multigrid method as in [11, 12, 134, 139, 140] and

done in 84.3.3.

Suppose that we operate with L levels in total (using standard coarsening [134]), with @= 1

the coarsest level and = L the finest level. Here the size of the coarsest level 1 is chosen as

32 x 32 or 64 x 64, and the bi-linear interpolation is used. Althoughthe full weighting operator

may be usedfor restriction, the usual practice is to use a Gaussian-like kernel typically consisted

of a 5 x 5 template of weights as follows. Take the reference image R = Ry; as example. Define

a coarsening operation from Ry to Ry_4, i.e. Re_1 = coarsen(Ry), by

2 2

Rei li,9)= S> S\ wlki)wlke) Re (21+ ki, 27 + ka),

where w (0) = 2/5, w(+1) = 1/4, and w(+2) = 1/4 — w(0)/2. Onlevel @ a standard NLS

method (either GN or LM) is used to compute the affine transformation up to some tolerance

(e.g. tol = 10~?), which is denoted by ag — Solver_Step(Ty, Rv, ac). Then the whole procedure

of Method 4 may be denoted by ay — multiresolution(T,,Rz,,az,,) with a recursion step

summarised below:

Algorithm 4.4.1 (Multi-resolution approach)

Implement ag — multiresolution(T:, Re,ae,@) as follows:

elff@=1

— Set ag = (1,0,0,0, 1,0)" or use Methods 1-3 to work out aninitial ap,

— ap — Solver_Step(Te, Re, ac).

— Ty, = coarsen(Ty), Re_1 = coarsen (Rp).

— ap_1 — multiresolution(Te_1, Re_1, ari, 2-1)

— ag — interpolate(ag_;) as follows:

a;, = a;,_, for 7 = 1,2,4,5 (the elements of the affine transformation matrix) and

a;, = 2a;,_, for 1 = 3,6 (the elements of the translation matrix).

— ap — Solver_Step(Te, Re, ac).
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(a) Method 1 Fen(al8?)) (b) Method 2 Fgn(al7®))

   
(error = 2.34 x 10-6) (error = 1.79 x 10~®)

(c) Method 3 Fen (al4®)) (d) Method 4 Fgn (a3?)

  
(error = 6.93 x 1077) (error = 7.01 x 1077)

Figure 4.4: Example 4.2.2 re-solved: Correct registration results using the GN method with Methods

1 — 4 providinginitial guess solutions respectively for (a), (b), (c) and (d).

4.4.5 Applications of Methods 1 —4 to GN and LM methods

To illustrate the performance of Methods 1 — 4, we give two successful examples: firstly re-solve

Example 4.2.2 and secondly consider a new Example 4.4.1.

Recall from Figure 4.2 that both GN and LM methodsfailed to converge to the desirable

solution for Example 4.2.2 with a simple initial guess. Now with Methods 1 — 4 to provide

initial guesses, both GN and LM methods work successfully — we showthe registered results

from GN in Figure 4.4 (while the LM results are virtually identical).

Example 4.4.1 Here we considerthe deformable registration problem for a pair ofMR images

of a human head, with Figure 4.5 (a)—(b) showing the reference image R and the template

image 'T in size 128 x 128.

As this is a deformable (not affine) problem, we can only use Methods 1 — 4 to provide

aninitial guess solution for the affine model, whose solution is then used for the diffusion

registration method of §4.3.3. Figure 4.5 (c) — (d) shows the results of affine GN and LM

methods with Method 4 providing the initial guess, with the GN taking only 5 iterations and

the LM taking 11 iterations onthe finest resolution. Further, using Figure 4.5 (c) — (d) as

initial guesses, the diffusion registration method of§4.3.3 with a = 0.058 gives the respectively

registered images as depicted in Figure 4.5 (e) — (f).

Of the four methods, Method 4 is believed to be the best because Methods 1 — 2 are not

as general as 3 — 4, and Method3 is unable to resolve shear components [125]. However, even
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(a) Reference R (b) Template T

 

(d) LM with Method 4

   
Figure 4.5: Example 4.4.1: Correct registration results of the MR images of a humanhead (deformable

modelof §4.3.2 with initial solutions provided by Method 4) as in row 1. The second row displays the

helpful pre-registration images obtained from (c) the GN method Ten and (d) the LM method Tym.

The last row (e) — (f) shows the deformable model (via FAS) registered images starting with (c) — (d)

respectively.

Method 4 cannot provide goodinitial guesses for some examples, as shownlater in Example

4.7.2. Althoughonecan think about designing better ways than Methods 1 —4 to provide more

reliable and robustinitial guesses for the affine model, our idea belowis to propose a modified

affine model that is less demanding than the standard model for initial guesses.

4.5 <A regularised affine registration model

Wepropose to regularise the minimising functional. Although the regularisation idea is widely

known for non-parametric transformation models (as in 84.3.1), it is not usually applied to

parametric registration problems because the numberof unknownsis relatively small compared

with those of non-parametric transformations.

66



Motivated by (4.20), we solve, instead of (4.3), the following minimisation problem:

min{Ja(Ya) = ND(¢a) + aR(x — Ya)}, (4.30)

where the regulariser R for affine imageregistration is proposed to take the form

Ra = Yl — Pa, 00s, = $e Jalan — vaIB,140,
2 2°

R(z-pa)= Ro = 22 IIzi — Yar (x)IE, = 22 Jal(%s — Pa; (x))?)dQ, (4.31)

R3 = Ry X — Yal + Ro [x — Ya],

Ra = 5 lal.

Here the regularisers R,, #2, and R3 are motivated by regularisation, differing only in norms

1
semi /2—norm, and Sobolevfor functions, which are respectively the Sobolev semi-norm H

norm H!. R, is a simple option, using the 2—normfor a. Clearly the new regularised affine

registration (RAR) model (4.30) reduces to be the classical one (4.3) when @ = 0. As already

pointed out in §4.3.1, the regularisation parameter @ balances the influence of D and R. An

efficient method to select the optimal @ will be discussed in the next section. For affine problems

where the true solutions require large translations, one may argue that suchregularisation might

restrict solutions from reaching true solutions. Fortunately our tests will show that this is not

the case.

We now express the proposed regularisers in an analytical form in the terms of the six-
+

parameter vector a = (a1, @2,43,@4,45,a¢) €R® as follows:

1Ra(a) = 5 ((1 ~m)+a+a24(1 —as)°), (4.32)

lfae a3 at ai
Raa) = 5 (+S 43+ G4 S403

1
+ 2 (aja2 + agas) + aja3z + a2a3 + agag + a5ag6

2 1 2
—3 (a1 + 45) — 5 (ae +s) —(0 +a) +3), (4.33)

1/4 4 4 4
R3(a) = 5 (Je? + -a3 +03 + ap + 345 + a2

3 3 3

1
+ 5 (aja2 + a4as5) + a,a3 + aga3 + agag + a5ag

8 1 8
= 3 (a1 + a5) — 5 (a2 + a4) — (a3 + 46) + 3 ; (4.34)

1
Ra(a) = 5 (aj + a3 +03 +.aj +43 +48). (4.35)

Further apply the GN approachto solve the discrete minimisation problem:

min { Jo.(a) = D(a) +a@NR(a) = D(a) + aR(a)}, (4.36)
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wherethe factor N = n? for a square image n xn is now needed in a multi-resolutionsetting with

a = @N, since the discrete data term D as in (4.10) does not contain step-lengths information.

The GN perturbation da) for (4.36) is then given by

Hy, (a\oa= —gz,(al) (4.37)

where

H,, (a) = J" (a)S(a) + oH(a?) (4.38)

and

gz, (a) = g(a) + aVaR[a] (4.39)

are the approximated Hessian and the gradient of J at a), and VaR[a)] and Hr(a"?)

are respectively the gradient and the Hessian of R at a). Note that for R = R, we may

approximate Hp, (a‘*)) by I becauseit helps Hz, (a\")) to be a symmetric positive definite

matrix. As before, once we have the GN update da\*), we can also apply the line-search idea:

alkt)) = alk) 4 c(h) gq),

A connection between our RAR method and the LM methodfrom §4.2.3 can be explained as

follows. Consider the regulariser 4 with a fixed a. Our RAR methoddefines the perturbation

given by

(J' (a®)J(a®) + aljia®™ = —[g(a) + ata], (4.40)

whichis a solution of the following minimisation problem:

_ 1 \\ co (k a ; snin, 5 IWP(a®)) +3 (a) dal — RI} + Slla+ da|B. (4.41)

If the second term in (4.41) is replaced by 2||da™||2, ie. we set a‘) = 0, werecover the old

LMperturbation (4.18):

[J" (a)F(a) + aljda™ = —g(a), (4.42)

whichis a solution of the minimisation problem:

gnin, 5|L(a®) jul (a) da— RII2 + Silda1B. (4.43)

Although the second term in (4.43) can be viewed as a regulariser, a Tikhonov-like term,

for the perturbation 6a, the main problem with using this latter type of regularisers is that

we cannot directly control the characteristics of the solution. In other words, this approach

does not take account into a priori information about the characteristics of solutions, which

is the main task of regularisation. In contrast, our RAR approachregularises the current step

(al*) + da) and so does control the characteristics of the solution.

4.6 <A cooling method for the RAR parameter

As will be shown in 84.7, our RAR model is more robust than the standard affine model due

to being less demanding on goodinitial guesses. However the standard model does not need a
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regularisation parameter a. Here an algorithmto select the optimal a on thefinest level L is

presented first, followed by the idea to a multi-resolution setting to minimise the extra work.

There are many ways to select a — one optionis to use the ‘cooling’ process (i.e. contin-

uation) in an adaptive manner (see Haber and Oldenberg [66], Newman and Hoversten[108],

Chenet al [29], and Leliévre and Oldenberg [92]). The basic idea is to start with a highinitial

value of a and then slowly reduce a in such a way that the solution obtained using it is an

excellent starting point for the next minimisation problem,in order to decrease Ja.

Theinitial a, is first estimated so that ay Hp(a) dominates the IT (al)I(a) compo-

nent in (4.38), where al” is the initial guess solution. At the (/+ 1)th step we set

ai41 = nar € [ao, ai], (4.44)

where 77 is a constant, usually chosen to be about 0.5, and ap is a small positive number, e.g.

5 x 10-°. Subsequently, we apply aj; and the initial guess solution obtained by the previous

iteration ane = a, with the associated inner loop to obtain the minimuma;+1 within some

tolerance. As mentionedin[66], since the functional ./,, changes at each outer loop iteration, the

demand of decreasing the value of the same functional is not reasonable we imposethe so-called

consistent condition to ensure that the solution a;,; and parameter a41 are acceptable:

JI (ar41) = D(ai41) + ay41R(ar41) <J (a) = D(aj) + ay41R(ar). (4.45)
144 O41

If this condition is not satisfied, we increase 7 (usually to 0.9) and re-start the step. Our

experience suggests that the criterion given by

lanza — alllanai. (4.46)
max{||az+1|] , |laz||}

is suitable, where 5 > 0 is small (normally set to 5 x 107+). The processof solving the problem

(4.36) for a with a given a (by the new RARsolver) will be denoted by

ap — Solver_RAR(T?, Re, ac, a,tol)

for tolerance tol and the maximum numberof iterations IMAX.

Finally, we summarise this unilevel cooling process as follows:

Algorithm 4.6.1 (Registration through cooling)

[a*,a*] — cooling(T, Ra,a)

e Set l= 1,7 =0.5, a, =a, ag = 5x10and ay = a). Set IMAX= 25 andtol = 1073.

e Outer iteration: For / = 1,2,3,...

—1. Set arz1 = naz in [ao, a7]

—2. Inner iteration: Anew — Solver_RAR(T, R,aj, a741, tol).

—3. If Tors, (Anew) < od, (a;)
A141
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—3.1. Set a4) = anew, 7 = 0.5, =1+1, and go to 4

Else

—3.2. Set 7 = 0.9, and go to 4

—4. Check for convergence using the criterion (4.46).

If not satisfied, then return to 1, else, exit to the next step to stop.

e Set a* = anew and a* = qi.

In the above algorithm, one notes that each minimisation may not to be solved exactly

within IMAX iterations. Even so, the algorithm can be expensive for large images due to

accumulated cost. Then ourfirst robust algorithm will be the following.

Algorithm 4.6.2 (The basic RAR method)

1. Input tol, given images T, R. Set a = (optional).

2. Obtain the optimal regularisation parameter a (through cooling) via Algorithm 4.6.1:

[aa] — cooling(T, R,a, a).

3. Solve the RAR problem (4.36) on the finest level:

a <— Solver_RAR(T,R,a, a, tol).

In order to save computational work, we propose to use a hierarchy of L grids (with level

L the finest and level 1 the coarsest one) as in §4.4.4. The optimal a is searched only on the

coarsest level 1, followed by the idea of §4.4.4 to provide finer level initial guesses. The whole

procedure is summarised in Algorithm 4.6.3.

Algorithm 4.6.3 (Multilevel strategy for optimal a and reliable initial solution)

[ac, ae] — RAR_multiresolution(T:, Re, ae, ae, €, tol)

elff=1

— ag = (1,0,0,0,1,0)" or use Methods 1 — 3 in 84.4 to work out aninitial ag

—ae=C [C>O0 should be large enough e.g. C = 1000]

_ lac, ay] —_— cooling(Te, Re, a, ar)

e Else

— Ty_, = coarsen(Ty), Re1 = coarsen (Re)

— [ap_1,¢-1] — RAR_multiresolution(Ty_1,Re—1,ac—1, a1, € — 1, tol)
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— ap — interpolate(ag_,) as follows:

ai, = a;,_, for 7 = 1,2,4,5 (the elements of the affine transformation matrix) and

aj, = 2a;,_, for i = 3,6 (the elements of the translation matrix).

— ay = 4ay_, [Recall that ay = an? and n; = 2n)_4]

— ag — Solver_RAR(Ty, Re, ac, ae, tol,MAX)

Algorithm 4.6.4 (The refined RAR method)

1. Input tol and set T, = T, Ry, =R onthefinest level. Set toln, MAXN.

2. Obtain the optimal regularisation parameter a (on the coarsest level 1 through cooling)

and a good initial solution (through multi-resolution) via Algorithm 4.6.3:

[aa] — RAR_multiresolution(T1, Rt, az, az, L).

3. Solve the RAR problem (4.36) on the finest level l= L using the found a:

ay — Solver_RAR(T:, Re, ac, ar, toln, MAXN).

4.7 Numerical experiments

In this section, some results to illustrate the proposed algorithms are presented. The first

example (Example 4.7.1) is used to defend the integrity of the RAR method, i.e. problems

that possess genuinely large components in a are not penalised by the proposed method (the

regularisation). The second example (Example 4.7.2) is employed to shownthat, for a nontrivial

affine problem, the standard affine model even when Method 4 (84.4.4) can fail to register

properly while the RAR models (especially Algorithm 4.6.4) can register successfully. The final

example (Example 4.7.3)aims to show that, for the deformable problem (Example 4.4.1), the

RAR method canprovide a better initial solution than Method 4 (§4.4.4) which leads to even

fewer number of FAS cycles by a deformable method (§4.3).

Example 4.7.1 We consider a pair of synthetic images as in Figure 4.6 (a) — (b) with the

images of size 512 x 512. Clearly one expects a will require large values.

Using Algorithm 4.6.4 with Ry, we find that ar,=(0.2561, 0.4800, —134.4109, —0.2399,

0.8000, 275.9836)! which is evidently not penalised by regularisation. Similar solutions are

obtained by R2,R3,R4. The successfully registered images using these 4 regularisers are re-

spectively shown in Figure 4.6 (c), (d), (e) and (f). Here ar, is the solution obtained fromthe

regulariser Ry.

Example 4.7.2 We consider anaffine registration problem for a pair of MR images of a human

head as in Figure 4.7 (a) — (b), where ny = no = 256. We compare the GN and LM methods

with Method 4 (Algorithm 4.4.1) with our RAR method (Algorithm4.6.4).
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(a) R a
o( )T

  
(c) Frar(ag) (4) Frar(aQ’)

  
”) (f) Frar(ag®))a

w(e) Frar(a

  
Figure 4.6: Example 4.7.1: Correct registration results (requiring large affine parameters) of a pair

of synthetic images by our RAR model. Thefirst row shows the reference (a) R and (b) the template

T. The second andthird rows show theregistered images (c) — (f) from our 4 regularisers Ri — Ra,

respectively.

Since max{||a* —apr,||2/||a*||2|¢ = 1, 2,3,4} = 0.0069, this means that our method converges

to the true solution. Moreover, the registered images obtained from4 different regularisers shown

in Figure 4.8 (a) —(d) are almost identical. Comparing those results obtained from the GN and

LMmethods (see Figure 4.7 (c) — (d)) and our RAR method (see Figure 4.8 (a) — (d)), one

notes that the proposed latter method is more robust than the former methods.

Example 4.7.3 Finally, we re-solue Example 4.4.1 to showthat Algorithm 4.6.4 is better than

Algorithm 4.4.1 inaffine pre-registrationfor the purpose of using a deformable model (via FAS

algorithm).

Here we show in Figure 4.9 (a) — (d) the four respective pre-registration images from our 4

regularisers, and they appear identical. Indeed, using any of themto start FAS (84.3.3) gives

the sameresult as shownin Figure 4.9 (e)—(f) using (a)—(b) respectively. Moreoverthe details
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Figure 4.7: Example 4.7.2: Failed registration results of GN and LMwith Method 4 (Algorithm4.4.1).

Thefirst row shows the reference image: (a) R and the template image: (b) T. The secondrow presents

the registered images: (c) Fan(a"!?’) and (d) Fim(a),

from Figure 4.9 (a) — (d) are visually more pleasing than Figure 4.5 (e) — (f) (especially at the

upperregion).

To showthe quantitative gain from using our Algorithm 4.6.4, we nowpresent the compa-

rable results in Table 4.1 for clarity, where ‘Out.Iters’ (same as / in step 3.1 of Algorithm4.6.1)

is the numberof the outer iterations by Algorithm 4.6.2 and ‘Avg.Iters’ means the average of

the numberof inneriterations, given by

The numberof accumulated iterations by Solver.RAR on the finest level
 Avg.lters =————_—_—__—_—— —

The numberof updates for parameter a (via steps 3.1 and 3.2 in Algorithm 4.6.1)

Clearly apart form the quality improvement over standard models (as illustrated before),

muchspeed gain can be observedin Table 4.1 with our recommended Algorithm 4.6.4.

To summarise, in these and other tests, we have compared the performance of Algorithm

4.6.2 with 4.6.4. While both give comparable results, Algorithm 4.6.4 is much cheaper due to

using a coarse level to work out for a.

4.8 Conclusions

Parametric registration via a nonlinear least-square model offers a fast registration method.

However the commonly used iterative methods such as the GN and LM methods often have

convergence difficulties, due to lack of good initial solutions, so the resulting nonlinear model

is often not robust.



 

Figure 4.8: Example 4.7.2 re-solved: Correct registration results using our RAR method(Algorithm

4.6.4) with 4 regularisers Ri — R4, respectively shownin (a) — (d).

In this chapter, we first examined the robustness issue of the GN and LM methods for

affine imageregistration problems by reviewing four existing methodsfor getting goodinitial

guesses. It turns out that there are always difficult cases for which these initial guesses are

not sufficient. Such cases includegetting pre-registration images for deformable registration

problems; we reviewedthe diffusion model and used a FAS-NMGmethodfor testing purposes.

Second, we introduced a regularised affine registration (RAR) model that is less demanding

than the standard modelfor initial guesses. To find the optimal regularisation parameterin an

efficient way, we used a coarse-to-fine approachtoinitialise the RAR model. Numerical results

showedthat the developed multilevel algorithmis generally reliable and robust in i) solving the

affine imageregistration problems ii) providing a goodinitial guess for deformable models.

Recently there was new work introduced by Haber and Modersitzki [63] attempting to

combine parametric and non-parametric models and we believe our idea of regularising the

parametric coefficients should be applicable there as well.
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Figure 4.9: Example 4.4.1 re-solved and improved: The affine pre-registration steps (a) — (d) using

Algorithm 4.6.4 with different regularisers 7; — R4, respectively. The last row (e) — (f) shows the

respective registered images by FAS method with (a) — (b) as initial solutions (using the (c) — (d) gives

almost identical solutions). Clearly less FAS cycles (i.e. 2) are needed thanbefore(i.e. 6).

 

Example Image Algorithm 4.4.1 (GN) Algorithm 4.6.2 ($1) Algorithm 4.6.4 (51)

Number| size N Iters/Ini.Cpu/Cpu Out.Iters/Avg.Iters/Cpu —_Iters/Ini.Cpu/Cpu
 

 

 

    

4.7.1 1287 8/0.1/0.4 3/9/1.7 9/0.2/0.5
2567 7/0.2/1.7 3/9/5.7 7/0.3/1.7
512? 9/0.9/9.5 3/10/30.3 10/1.1/9.3
1024? 10/3.6/44.9 3/10/125.3 10/3.6/41.2

4.7.2 1287 7/0.1/0.4 9/12/5.2 11/0.3/0.7
256? 12/0.2/3.5 9/12/51.7 11/0.3/2.6
512? 8/1.1/10.3 9/11/251.5 10/2.0/11.7
1024? 24/4.8/139.5 9/11/810.1 12/8.2/58.0
 

Table 4.1: Comparison of Algorithm4.4.1, 4.6.2, 4.6.4 using Examples 4.7.1—4.7.2 with varying NV.



Chapter 5

A Robust Multigrid Approach

for Variational Image

Registration Models

Variational registration models are non-rigid and deformable imaging techniques for accurate

registration of two images. As with other models for inverse problems using Tikhonov regu-

larisation, they must have a suitably chosenregularisation term as well as a data fitting term.

Onedistinct feature of registration models is that their fitting term is always highly nonlinear

and this nonlinearity restricts the class of numerical methods that are applicable. This chap-

ter first reviews the current state of art numerical methods for such models and observes that

the nonlinear fitting term is mostly ‘avoided’ in developing fast multigrid methods. It then

proposes a unified approach for designing fixed-point type smoothers for multigrid methods.

The diffusion registration model (second order equations) and a curvature model(fourth order

equations) are usedto illustrate our robust methodology. Analysis of the proposed smoothers

and comparisons to other methodsare given. As expected of a multigrid method, being many

orders of magnitude faster than the unilevel gradient descent approach, the proposed numerical

approachdelivers fast and accurate results for a range of synthetic andreal test images.

5.1 Introduction

Given a reference image Rk and a template image 7’, the image registration problem can be

posed as a minimisation problemof the joint energy functional given by

min{ J(u) = D8? (uw) + aR(u)}. (5.1)
uU

Here the image intensities of R and /’ are assumed to be comparable and we adopt the SSD

functional ;

DSP (4) = | (U’ (« + u(x) — R(x)? dx, (5.2)
SQ

to quantify distance or similarity of two given images R and 7’. Recall that R and 7’ are
. : . : 2 alin. ‘ +

modelled as the continuous functions mapping from an image domain Q Cc R? into V Cc Rg
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and the components u; and wuof the deformationfield u : R? — R? are the functions of the

variable x = (x1, 22)" in the image domain 2. Without loss of generality we assume that

Q = [0,1]? Cc R? and V= (0, 1] for 2D gray-scale images.

In this chapter our main concernis to address the fast andeffective solutions of the resulting

PDE systems from (5.1). We consider two regularisers: firstly the diffusion regulariser as

introduced by Fischer and Modersitzki [46]:

ditt = 2Re" (wu) = F>5 |Vui(x)|° dx (5.3)
l=1/Q

and secondly the curvature regulariser as introduced by Fischer and Modersitzki [47]:

2
Bpa) = iy | (Au))?dx

(5.4)
l=1 JQ

as respective examples of second order PDEs and fourth order PDEs; our method will also be

applicable to other models that lead to second or fourth order PDEs, e.g. the elastic model

[104], the total variation model [51, 53], the modified total variation model (see Chapter 6

later), and other curvature models [35, 79, 78, 73, 75].

Although the multigrid techniques have been successfully used for numerical solutions for

deformable image registration [53, 54, 65, 76, 73, 83, 89, 131, 145], none of the existing variants

are optimal implementations. The nonlinear fitting term is mostly avoided in these works. We

remark that other imaging models [27, 24, 31, 118] do not have such problems dueto the fitting

term; see §3.6 for a brief review of existing multigrid methods for deformable imageregistration.

The rest of the chapter is organized as follows. In §5.2, we consider ourfirst model problem

of diffusion registration, surveying and discussing its numerical treatments. A new fixed-point

smoother is proposed and analysed in 85.3, for the FAS-NMG approach for the underlying

nonlinear Euler-Lagrange systems. In §5.4,, we consider our second model problemof curvature

registration and demonstrate how to use our proposed method. Experimental results from

medical test imagesareillustrated in §5.5, in order to showthe excellent performance of the

proposed numerical scheme compared with other methods with conclusions summarised in 85.6.

5.2 The diffusion registration model and its numerical

methods

We now introduce our first model and review briefly various solution methods paying partic-

ular attention to robustness of multigrid methods. The model itself is not particularly more

important than other models from [104] but we use it to illustrate the fast solution issues of

z . : . ‘ 1_ OF 2 Uo OF
image registration. Below we use 0,,f = 5— and Oz,22!" = sy79n5-

x

  

5.2.1 The diffusion model

The minimiser u = (u,(x), w2(x)) * of the energy functional /, in (5.1), defined by (5.2) and

(5.3) satisfies the Euler-Lagrange equation [104], given by the following system of two coupled,
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nonlinear, and elliptic partial differential equations (PDEs):

fi(u)
rn

Nj (u) = —aAu, + (Lu. — R) 2,1 = 0,

fo(u)
—

No (u) = —aAu + (Lu — R)O,, Tu = 0,
—__

subject to the homogenous Neumann’s boundary conditions

Ont = Onu2 = 0 on OQ. (5.6)

Here the nonlinear functions f\(w), fo(w) are from the fitting term D°S?, which is nonlinear

(as remarked) and a key feature of registration models distinct from other imaging models [27].

Refer to [46, 47, 48, 49, 51, 53, 54, 62, 65, 59, 60, 61, 76, 72, 79, 78, 73, 75, 83, 89, 90, 94, 104,

131, 145]. In fact, the nonlinear coupling of the two PDEsis through the term ‘/'(w). Hereby,

A denotes the Laplace operator, and n = (n1,n2)' is the outward unit vector normal to the

image boundary 02. Note that the first and second terms in (5.5) are the first variations of the

regulariser term R and the data term D°S, respectively.

5.2.2 Discretisation by a finite difference method

For simplicity, let (ul); j sight (x1,,72,) denote the grid function for / = 1,2 with grid spacing

h = (hy, he) = (1/1, 1/n2). Applying finite difference schemes based onthe cell-centered grid

points to discretise (5.5), the discrete Euler-Lagrange equations at a grid point (7,7) over the

discrete domain,

Q, = {x € Ox = (x1,,22,)' = ((2i — 1) hi /2, (27 — 1) he/2)", 1<ism, 1<j <n}

(5.7)

are given by

NP (w")ig = aL(ubig + FP (ut ud)= of,
(5.8)

N3(u")ig = al(uB)ig + FE (ub, ub )ag = 98, ,
with the following notation

—L" (ul ig = 1/h7)((E), 5 (uP ag — (X),5 (ul )ij)s

(2),5 = 20+ 7), y=hi/he,

(2),5 (aig) = (uPirig + (ur )iag + Purigt1 +P(Ua

P (ut, u3),= (LR; — RR(LAs — 219)/ (2h1)),

2 (wt, ug), = (LR; — RP)ia — LR}-1)/ (2h2)),

UP; = TPG t+ (uD igs 9 + (ud)aa),

(wij = (ut igs (UD)ig)

Here i, ; — 93, = 0 onthe finest grid in multigrid setting to be used shortly. We note that the

approximationsin (5.8) need to be adjusted at the image boundary OQ» using the homogeneous
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Neumann boundaryconditions

(uP ir = (up)io, (uP)ins = (uP )i mot, (u})15 = (ub)oj, (ul)nrg = (ul )m1—1,5> (5.9)

5.2.3. Review of non-multigrid numerical solvers

The first commonly used methodis a gradient descent approach solving, instead of the nonlinear

elliptic system (5.5), the nonlinear parabolic system

{ Opuy —aAu, = —- (Lu ~ R) Ou, Lu (5.10)
Opug — aAug = — (Ly — R) Ou, Ty

where u = u(x,t) = (wi (x,¢) , ue (x,t)! will converge to the solution of (5.5) when t — oo,

with the initial solution u (x,0), typically u(x,0) = 0. The advantage is that various time-

marching schemes can be used to solve (5.10) in order to circumvent the nonlinearity on the

right-hand side. For example, the semi-implicit scheme can be proceeded asfollows (in matrix

vector form obtained from the discretised version of equation (5.10) by §5.2.2)

wf) =arPA)(ul— rf, (ul®))
ct (5.11)

ufFt)) tackyol) — 7fo(ul®), ui*))

Here, I is the identity matrix, f; (uk, uh) is the discretised version of the second termin (5.5),

T > Ois the time-step determined by a forward difference approximation of the time derivative

O,u,, and A, is the coefficient matrix from discretisation of the Laplace operator A along the

!-coordinate direction subject to Neumann boundary conditions. We note that the DCT-based

method in [104] and the FT-based methodin [91, 135] are optional to exactly solve the linear

system (5.11).

The second method, anadditive operator splitting (AOS) schemein[46, 93, 138], is faster

and moreefficient than the standard semi-implicit scheme (5.11). The basic idea is to replace

the inverse of the sum by a sumof inverses. The corresponding iterations are then defined by

. 12 _ z . 2
ult) = -—)> (I- 2aTA)) A (ul —Thi (ul, uS*)))

2(=1i (5.12)
uf) = 5s (I—2arA,)' (us"? — +fo(u, us*))

i=1

which is much cheaper than those obtained from (5.11) because the two tri-diagonal systems in

each component are solved per iteration rather than the 5-band system. We remark that the

AOSschemeis of O(N) (N = n,n2), while the DCT-based methodis of O(Nlog N).

The third method, the one-cycle multi-resolution (or a coarse-to-fine FMG technique), is

proposed by Lu etal. [94]. The idea is to solve (5.5) first with the Newton-Gauss-Seidel

relaxation method given by

(new) __ ee) — Ni(ule!?)
1 —_ ty ~ Oy Ni (ue

A

, (mew) __ (old) No(u (old) ) (5.13)
Us = Us ~~ BugNo(ulNo ( (old)
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on the coarsest (lowest) resolution, and theninterpolate the coarse solution with an appropriate

method as a goodinitial guess solution to the next finer resolution. This process is repeated

until (5.5) has been solved by (5.13) onthe finest (highest) or original resolution. Although,this

method provides well matched images in most of the cases and the basic ideais essentially the

same as a FMG methodasin [12, 67, 134, 139, 140], one should note that convergence cannot

be proved even for much simpler equations [134]. This is due to the fact that the solution on

the fine level depends strongly on the coarse one. As a consequence, errors introducing from

the interpolation procedure may propagate in such a way that they spoil the overall results

completely.

Althoughthe above three methodsare easy to implement on a unilevel and multilevel, they

are not as efficient as a multigrid method.

5.2.4 Review of multigrid solvers and previous work

Multigrid techniques are widely used as fast methods for various PDEs [12, 67, 134, 139, 140].

For deformable image registration models, we give a brief review here [53, 54, 65, 76, 73, 83,

89, 131, 145].

This sectionfirst reviews the basic FAS-NMGalgorithm before discussing previous work on

solving (5.5). As it turns out, two approaches considered are both moreefficient than a unilevel

method but none are robust solvers.

The full approximation scheme (FAS)

For a nonlinear problem, the use ofa full approximation scheme(the nonlinear multigrid method

(NMG)by Brandt {11]}) is natural. The FAS technique has beentried in various image processing

applications; see e.g. [6, 7, 13, 18, 22, 24, 31, 52, 53, 122, 123]. We now denote our system of

two nonlinear PDEs (5.5) by
NP (ul) = gh,

{xb uel = (5.14)
NVQ

separating the linear operator £” from the nonlinear operator fj’ (J = 1,2) on a generalfine

grid with step size h = (hy, h2) on Qp.

Let v? = (vt vb)" be the result computed by performing a few steps with a smoother

(pre-smoothing step) on the fine-grid problem. Then, the algebraic error e” of the solution

is given by e” = wu” — uv". The residual equation systemis given by

NP (v? +4 e") — Nh (v") = gh — Np (v") = re

‘ (5.15)
Ne (v" 4 e") —Ne (v") _ gh —-NP (v") — rh

In order to correct the approximated solution v" on the fine grid, one needs to compute the

error e”, However, the error cannot be computed directly. Since high frequency components of

the error in pre-smoothing step have already been removed by the smoother, we can transfer
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the following nonlinear systemto the coarse grid as follows

 
 

  

Nf (v" +e") =rf + Nf(v") Ni (vo! +e”) =r + NF (v")

NI (uh) at NFwt) of!
~ (5.16)

Nz (v" +e") =r} + Nz(v") Nii (vu! +e”) =r +N (v")

N3(uh) 95 Nj (ut) ol!

where H = 2his the newcell size H; x Hy with H; > h, and Hy > hg and oe # 0 onthe coarse

grid. After the nonlinear residual equation system on the coarse grid (5.16) have been solved

with a method of our choice, the coarse-grid correction e? = u” — vy” is then interpolatedp

» onback to the fine grid e” that can now be used for updating the approximated solution v

the fine erid, ie. v?., = v’ + e” (coarse-grid correction step). The last step for a FAS

multigrid is to perform the smoother again to remove high frequency parts of the interpolated

error (post-smoothing step).

In our FAS multigrid for diffusion image registration, standard coarsening is used in com-

puting the coarse-grid domain Qy, by doubling the grid size in each space direction, i.e.

h — 2h = H. For intergrid transfer operators between Q), and Q ;,, the averaging and bi-

linear interpolation techniques are used for the restriction and interpolation operators denoted

respectively by //! and i ; see more details in [12, 67, 134, 139, 140]. In order to compute the

coarse-grid sperator of Nj’ (w") consisting of two parts: £” (uP) and ff (ue, uh), a so-called

discretisation coarse grid approzimation (DCA) is performed [12, 19, 134, 140]. The idea is to

rediscretise the Euler-Lagrange directly. In the case of £” (uj! ), the corresponding coarse-grid

part £7 (uj! ) is obtained by therestriction of u/' and a simple adaptation of the grid size

to the discretised Laplacian. For f/' (w?,u%), we first use the restriction operator with both

components of the deformationfield wu”, u? and uv, and the given images, R” and 7", and then

compute the corresponding coarse-grid part f/7 (ul? uff i. To solve (5.14) numerically, our FAS

multigrid is applied recursively down to the coarsest grid consisting of a small numberof grid

points, typically 4 x 4, and may be summarisedasfollows:

Algorithm 5.2.1 (FAS Multigrid Algorithm)

Denote FAS multigrid parameters as follows:

1 pre-smoothing steps on eachlevel

V2  post-smoothing steps on eachlevel

be the numberof multigrid cycles on each level (w= 1 for V—cycling and 4= 2 for W—cycling).

(Here we present the V—cycle with p= 1.)

a regularisation parameter

WwW relaxation parameter

GSiter the maximum numberofiterations using a smoother

h h ml 1 Oe
[vr v3| «— FASCYC (ut Uh NT NE gt. gh, R", T" 1, V2, &, w, GSiter)
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e If 2), = coarset grid (|Q,| = 4 x 4), solve (5.14) using time-marching techniques such as

semi-implicit or AOS scheme (§5.2.3) and then stop. Else continue with following step.

e Pre-smoothing:

For z=1 ton, [ut v2| <— Smoother (vt, v5vk gh ; gh ; R" T",a,, GSiter)

e Restriction to the coarse grid:

of — IF ob, vl — Tub, R® — IPR", T? = IPT"
e Set the initial solution for the coarse-grid problem:

[ot v5] = [uit , v3" ]

e Compute the new right-handside for the coarse-grid problem:

afl 1h! (ot —NI (vhs) +E (oll of),
gz’ — Ty (92 - ; (vt, 02)) + Na" (vi! 03")

e Implement the FAS multigrid on the coarse-grid problem:

for z= 1 to p, (uf! vs! ] «— FASCYC (ui! , v3! M,N", of, 93’, RYT"1, 12,0, w, GSiter)

e Add the coarse-eeu)corrections:

vf Hof +f, (ui! —oy), uy ud + Tf (v5 — 0H)
e Post-smoothing:

For z = 1 to 1”, [ut v2| <— Smoother (uf, v}vh gt gf, R",T",a,w, GSiter)

 

For practical applications our FAS-NMG methodis stopped if the maximum number of V—

or W-cycles ¢, is reached (usually ¢; = 20), the meanof the relative residuals obtained from

the Euler-Lagrange equations (5.14) is smaller than a small number ¢2 > 0 (typically c¢2 = 1078

for a convergent test and only ¢2 = 10~? for a practical application), the relative reduction

of the dissimilarity is smaller than some ¢3 > 0 (we usually assign ¢3 = 0.20 meaning that

the relative reduction of the dissimilarity would decrease about 80%), or the change in two

consecutive steps of the data/fitting term D is smaller than a small number ¢4 > 0 (typically

4 = 10~°). A pseudo-code implementation of our FAS-NMG methodis then summarised in

the following algorithm:

Algorithm 5.2.2 (FAS Multigrid Method)

v" — FASMG(v",a, &)

 

e Select a, & = (€1,€2,€3,€4) and initial guess solutions v",jia1 = (ut, vf)! on the finest grid

e Set K =0, (v")* =u"iat, 2 = eo ¢-1, % =e3 4-1, and % =e441

e While (K < e, AND é2 > e2 AND €3 > €3 AND &4 = €4)

— (vl)K+t = [viv}] — FASCYC (vt, v2 MiLNG gf 93, R",T", 1, v2, 0,w, GSiter)

— & = mean{||gi' — Ni'((v")***)|I2/Ilgr WP(wVinitiat) ll2| 1 = 1,2}
— & = D"(R",T?DNR7

[Recall that me T()) ~ 42 ||R", TC |I2]
—&= |D"(R", T, yen) _ DR", Thnyx)|

-K=kK+1

e end

 

Asis well known,in additionto restriction and interpolation operators, the above Algorithm

5.2.1 requires a suitable smoother based on someiterative relaxation method whichis often the

decisive factor in determining whether or not a multigrid algorithm converges. This issue will

be discussed next after we review the linear multigrid method.
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The linear multigrid method for (5.5)

For a nonlinear problem,a linearisation approach can lead to a coupled outer-inner iteration

method with the inner solver provided by a linear multigrid method. For (5.5), the outer

iteration is introduced either in a GN step [65, 83, 89] or in terms of the semi-implicit time

marching scheme [73, 131] as follows

2

(I—arAdu?) = (uy? =rfi(ul?, us?)
3 . (5.17)2

k k k k(I ardAnus 1) = (u® — 7fo(u™, ul)

which is a system of twolinear elliptic PDEs. Finally each outer step k is solved iteratively

by a linear multigrid. In order to reduce the numberof outer steps, a scale space framework

described in [78] can be used for adapting automatically the registration parameters 7 and a.

Although, this numerical scheme is very accurate for providing visually pleasing registration

results, we found experimentally that it is quite slow in fulfilling the necessary condition for

being a minimiser of the variational problem represented by (5.1), i.e. in achieving convergence,

because the linear system has to be solved many times with changing the right-hand side of

(5.17); see Tables 5.2 — 5.3. This is a convenient way of using a multigrid method butis not as

optimal as a nonlinear multigrid method.

The nonlinear multigrid method for (5.5)

The above introduced FAS-NMGalgorithm can be readily applied to (5.5). The choice of a

suitable smootheris a key for fast convergence. Below webriefly review four types of smoothers

that have been or can be usedfor diffusion image registration:

1) The Newton-Gauss-Seidel relaxation smoother. This was used in Gao et al. [54]

for (5.5). Although, there are no numerical results for the convergence of the FMG technique

in their work, we found with several tests that this kind of smoothers provides visually pleasing

registration results within a few multigrid steps. However, it does not perform well as a good

smoother in leading to the convergence of the FAS-NMG technique. Note that this smoother

can be derived directly from (5.13).

2) The fixed-point (FP) iteration based smoothers. Thesimple linearised iterations

by the following

adult! = — (1461 — R) Ay Lye (5.18)—oAul= — (Lye) — R) Aug Lyte

as discussed in [104, p.79] have been used by researchers; we shall name this method the stan-

dard FP (SDFP) scheme. This SDFP approachencounters a singular systemfor all fixed-point

step v due to Neumann’s boundary conditions. Without any special treatment for overcoming

the singularity, we found that simple smoothers such as the Jacobi-, GS-, or successive overre-

laxation (SOR)-type methods usually fail to lead to convergence of the FAS-NMG technique;

however wediscuss ways of improving this idea below.
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3) The augmented system technique for the SDFP scheme. This was introduced

by Frohn-Schaufet al. [51, 53]. The idea is to convert the singular systemto a nonsingular one

by augmenting extra equations. However, it may not lead to satisfaction of the necessary(first

order) condition of a minimiser of the variational problem represented by (5.1). In details, this

smoother builds on the above SDFP method (5.18) with aninitial guess u!®!

{v+1] [vy] [vy] [v]—aLllu = = Uz, ,U =G(ur me fiuyuz) 71). (SDEP) (5.19)
—aL£(uy "') = go — foluy', uy’) = Gy

Recall that g; = g2 = 0 on the finest grid in multigrid setting and the symbol h and(-);; in

(5.8) are dropped for simplicity. As already mentioned above, the resulting systemis singular

and symmetric in case of Neumann’s boundary conditions approximated by (5.9). The reason

for singularity is row sumzero in boundarypoints, i.e. the constant functionslie in the kernel

of £. In this case the discrete system has a solutionif and only if the discrete compatibility

condition
nine

Ss (GM).5=0 for l= 1,2
ij=l

is satisfied [12, 51, 53, 134]. Obviously, this condition fails when the given images are substan-

tially different. Recognizing the above difficulties, Frohn-Schauf et al. [51, 53] solved a nearby

problem created by a simple modification, which guarantees that discrete solutions exist for

each fixed-point problem from replacing qu (l= 1,2) by

where I is the n; x ng—vector(1,...,1). Note that if ul’+"! solves the new discrete system

—al(ul’*") = Gy
(5.20)

—al(ul’*") = Gu ,

then ul’+!] + e also solves the same problem for any c. This means that the solution is not

unique. In order to determine the unique solution of the discrete system given by (5.20), they

put a constraint on ul’+l, This can be done by applying the zero-mean condition,

ni.n2
5 (ult; = (uf’*" 1) =q=0  forl=1,2. (5.21)
1j=1

We shall denote the above method by MSDFP-FS (a modified SDFP scheme due to Frohn-

Schaufet al.).

4) The modified standard FP scheme. Following the same idea of overcoming singu-

larities, below, we consider 2 alternative ways of modifying the SDFP method (5.18)

_. [v+1] _ fv+l) _ we] [v]

eeu t aor C tv t hy ? (MSDFP-1) (5.22)
—al(uy ) + cguy = Gy' + cquy

_o [v+1] _ aly
(ak +ey Gu (MSDFP-2) (5.23)
(-al+e)u,"' = G,
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where c; (! = 1,2) and € are positive real numbers (very small numberfor ¢). We notefirst that

the modified SDFP methodofthe first type (MSDFP-1) given by (5.22) can be viewed as a semi-

implicit time marching scheme whenc; = cz = c > is interpreted to be the time-step, as used

by Zikic et al. and Modersitzki [104, p.80]. Second, the second type (MSDFP-2) represented

by (5.23) is the simplest way to stabilise the SDFP method by adding the small number « toall

diagonal elements of £, as used by Brito-Loeza and Chen[13] in a different context. Finally, we

note that determining the optimal values for the FP parameters cj, cg (or c), and € in automatic

procedures leading to convergence of the FP method (and a multigrid technique) is not straight-

forwardfor real-world applications because tuning is neededfor different registration problems.

In other tests, we found experimentally that although the approximation solutions obtained

from the MSDFP-FSschemeare visually pleasing, they may not fulfill the necessary condition

for being a minimiser of the variational problem (5.1); see Table 5.2. The reasonis that this

numerical scheme solves a nearby problem for each fixed-point step v by changing the right

handside of (5.19) subject to the zero mean condition (5.21). These difficulties have motivated

us to develop the new smoother in the next section.

5.3. The proposed algorithm with a new and robust smoother

To first design a better smoother for (5.5), we have to re-consider the nonlinear terms in (5.19)

in a new FP scheme. Once this is done, a basic linear iterative solver such as the Jacobi,

GS or SOR method for each corresponding system may be used. Then to improve the model

robustness, we use a multi-resolution idea to choose the regularisation parameter a.

5.3.1 The new FP smoother

Our idea of a new FP schemeis different from the SDFP scheme(5.18) and its variants, by

aiming for full implicitness in both regulariser and data terms. This yields

HalaltT) 4 f(a’) alt) = (5.24)
2

—al(ul’t4) + fo(ul’t tl ult) = 92

Next, we linearise the data term filalet)

(for 1 = 1,2)

via a first-order Taylor’s expansion of form

flee let) fecalal) $y, ficul), ul oul! + 8,f(a), ul)oul,

= flu! ull) + off ouy! + off)5uy",
= fiat) ull) + olla— ul) 4 oul— all) (5.25)

where

on (ul) = On, file”), ull) = (Ou, Layer) (Ou, Te) + (Lite —_ R)(Ou,u, Lut);

and

o12(ul) = Aug fill, wh) = (uy Late)(Oug Luter) + (Luter — 2) (Quy) Liuter)-
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By (5.25), it leads to the semi-implicitly FP iteration step in terms of a 2 x 2 matrix as follows

Niujul’+4 = Gul], (REP) (5.26)

where RFPrefers to the robust FP scheme (to be tested shortly), ul’+!] = (ult ett)

N[ul"!] = —al + 04,(ul”) o12(ul'l)
o21 (ul) —al + 022(ul’l)

culty = CP tonal+ ora(ulyay! \gh + 001 (ull)ul! + 092(ul4)ul)

To solve (5.26), we adopt the block or pointwise collective Gauss-Seidel (PCGS) relaxation

method, i.e. all difference equations are updated simultaneously. A PCGSstep is then given

by
(ulettyer _ (N[wl)],1 (G[uly)er), (5.27)

where

Niu}; = (a/h7)(X)i5 + (tu(ul));.j (o12(ul)));,5
“ (g21(ul));; (a/h?)(X)ig + (F22(ul)),5 J?

(aM); +(ori (ull)):suf)ig + (o12(ul));5 (ul)3

(Glue? +a/hI(D)ig (uyys
Glu” ig =

(Gy )ig + (oar (ul).5 (uy Jig + (o2e(ell))i5 (usig
+(ae/h}) (5.5(uy

To gain moreefficiency, one may introduce a relaxation parameter w € (0,2) and iterate the

w—PCGSsteps by

(uleNYT = (Le) (UNE + oNlug)Glu(5.28)

Wenotefirst that the proposed smoother shows the interaction betweenthe actual FP iteration

(5.26) that overcomes the nonlinearity of the operator Vj at each outer step v and the w—PCGS

method (5.28) that solves the resulting linear system of equations at each corresponding inner

step k. Second, instead of solving the linear system of equations using the inner solver (5.28)

with very high precision, it can perform only a few iterations to obtain an approximation

solution at each outer step. Evidently, this procedure leads to a slight difference of convergence

in the FP scheme when the proposed smoother is used as a stand-alone solver, whereas the

computationalcosts significantly reduce; see Figure 5.1 (a). Moreover, the relaxation parameter

w also has a strong influence on the convergence speed. As the stand-alone solver of (5.14) we

usually use w > 1, typically w = 1.85, because it results in speeding up the convergence

compared with the PCGS approach (w = 1); see Figure 5.1 (b). For our multigrid algorithm,

however, we use the local Fourier analysis and several experiments to select the optimal value of

w; see §5.3.2 later. Finally we remark that other iterative techniques suchas the line relaxation

techniques or the preconditioned conjugate gradient method mayalso be used as an innersolver.

However, the w—PCGSrelaxation method appears a cheaper option for practical applications.
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Figure 5.1: Numberofouteriterations v in (5.26) used to drop the meanofrelative residuals of (5.24)

to 107° for different values of (a) GSiter and (b) w at a fixed value of a = 0.1 for processing the

registration problem in Examples 1 as shownin Figure 5.3 (a) — (b) on a 32 x 32 grid. The red diamond

indicates the optimal choice in each plot.

Implementation of our proposed smoother (5.26) based on the w—PCGS method (5.28) on

a fine grid can be summarisedasfollows:

Algorithm 5.3.1 (Our Proposed Smoother)

Denote by

a regularisation parameter

w relaxation parameter

GSiter the maximum number of w—PCGSiterations

[vt v3| <— Smoother (vt, ve gt, gt, R’,T" ,a,w, GSiter)

 

e Use input parameters to compute (¢im[v"])i,;, (G[v"])i,;, and (N[v"]i,;) 7

for l,m =1,2,1<i<mi, and 1<j < ne (Here (v");,; = ((vt)i,j, (v$)i3)")

e Perform w—PCGSsteps

— fork =1: GSiter

—fori=1:n

— for j=1:ne

— Compute (v" (ET = (of54, (Ws)G")") using (5.28)
— end

— end

— end

 

We remark that the first-order Taylor’s expansion of

T+ = Typ+y(x) = T(x ut) = Tae pull + dul”)

we T(x + ull) + 0,,T(x + ul)oul] + 0,7(x + ul)sul], (5.29)
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is used to derive the FP schemesin a different context for a different technique; see {17, 18, 43}.

Wealso wish to remark that the above quantities a), (ul), a2 (ull) maybe refined to derive a

cheaper implementation than our FP method (5.26). We note first that o2 (ul) i O12 (ull).

Second in order to have a simple and stable numerical scheme as pointed out by several works;

see e.g. [89] and [104, p. 56/79], we approximate op(u!!) by o1m(w!)) = (y, Lote) (QuLiat)

for m = 1,2 since the image difference ‘/),;.; — R becomes small for well registered images and

the second-order derivatives of Vy) (Ouu;Lywi), a problematic part of oim(ul¥l), are very

sensitive to noise and are hardto estimate robustly. Finally, we note that if discrete image

gradient O,,,7),) does not vanish at one point, the system matrix of these linearised equations

is strictly or irreducibly diagonally dominant. This guarantees the existence of a unique solution

of eachlinearised system and global convergence of the Jacobi and GSiterations [117, 121].

Belowweanalyse the smoothing property of our proposed FP smoother (5.26) based on the

w—PCGS method (5.28).

5.3.2 Local Fourier analysis (LFA)

LFA is a powerful tool to analyse the smoothing properties of iterative algorithms used in MG

methods. Although LFA wasoriginally developed for discrete linear operators with constant

coefficients on infinite grids, it can also be applied to more general nonlinear equations with

varying coefficients such as the discrete version of (5.5). To this end, first an infinite grid is

assumedto eliminate the effect of boundary conditions and secondit is also assumedthat the

discrete nonlinear operator can be linearised (by freezing coefficients) and replacedlocally by

a new operator with constant coefficients [134]. This approach has provedto be very useful in

the understanding of MG inethods whensolving nonlinear problems; see for instance [6, 7, 13,

22, 23, 65, 61, 69, 89, 126] for interesting examples and discussions.

Measureof h-ellipticity

It is well knownthat h-ellipticity is crucial for multigrid methodsto beeffective. It is often used

to decide whether or not pointwise error smoothing procedures (e.g. our proposed smoother

(5.26) based on (5.28)) can be constructed for the discrete operator under consideration. To

this end, we shall show that the linearised system N,,[w"]u’ = G),[w"] in (5.26) at some outer

step provides a sufficient amount of h-ellipticity in a similar way as shownin[65, 89, 134, 140]

for a discrete system of PDEs. Here u’ and uw” denote the exact solution and the current

approximation and N;,[w"] and Gp, [u"] the resulting discrete operators from the linearisation

at @”. For simplicity, our analysis is carried out over the infinite grid

R= {x € Ox = (x1,,22,)" = ((2i— 1) h/2, (2 — 1) h/2)", 1,7 € 27} (5.30)

where h = 1/n denotes the mesh parameter.

Let y,(8,x) = exp(iO@x/h)- I be grid functions, where T= (1,1)', @ = (,0)' €O=

(-7,n]?, x € OX, and i= V—1. It is important to remark that due to the locality nature
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of LFA, our analysis applies to each grid point separately, i.e. we consider the local discrete

system N;,(€)u" = G,(€) centered and defined only within a small neighborhood of each grid

point € = (7,7) and u"(€) = [w?(€), uk (€)]. Applying the discrete operator N;,(&) to the grid

functions y,,(8,x), ie. Nn (€)~;,(8,x) = Ni(é, 8)~p,,(@,x), yields the Fourier symbolasfollows:

~al"(8) + 011(E) 712(E)Nn(§,9) = o01(€) —aL" (8) + o22(E)
(5.31)

(see details related to Fourier symbols of systems of PDEsin [134, 140]). Here £* (6) denotes

the Fourier symbolof the discrete Laplacian operator Lh. Following [134, 140], the measure of

h-ellipticity is defined via Na(é, 9) as follows:

min{|det(Nn(€,9))| : 9€ Onign}
 En(Nn = a : 5.32

n(Na(€)) max{|det(Na(&, @))| : dc O} (6.32)

where Ohigh = O\( — 7/2, 77/a denotes the range of high frequencies and

det(N),(€,0)) = a2(L"(0))? + ac; (L"(8)) +e (5.33)

represents the determinant of Na (é ,9) where

cy = —(011(€) + G22(€)) and cg = 011 (€)o22(€) — 712(€)oai (E).

According to the well-knownresults, we obtain

—L"(0) = (2/h?) (2 — (cos; +cosO2)), min (—£"(@)) = —L"(—1/2,0) = 2/h?
8€@high

and max(—L"(6)) =—-L" (n,m) = 8/h?. Therefore,
E

, 2a + eyh? + (egh* /2a)
En(Nn(§)) —_ 32a + 4c,h2 4 (cgh4/2a) (5.34)

and
1

~ 16
bounded away from 0 for all possible choices a,h > 0 and for all possible values of 01 (&),

jim£1, (Na (8)) (5.35)

a12(€), 21(€), and o22(€) (ie. the results do not depend on the given images) over the whole

discrete domain Qp.

As a result, it can be expected that the discrete system N;,[u"]u” = G,,[u”] is appropriate

to pointwise error smoothing procedureslike our proposed smoother (5.26) combining with the

w—PCGS method (5.28).

5.3.3 Smoothing analysis for the proposed smoother

A robust and potential smoother has to take care of the high-frequency components of the error

between the exact solution and the current approximationsince the low-frequency components

becomes the high-frequency components oncoarser grids and they cannot be reduced on coarser
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grids by the coarse-gird correction procedure. A quantitative measure of the smoothing effi-

ciency for a given algorithmis the smoothing factor denoted by f4joc from a LFA and numerically

computed for test problems, which is defined as the worst asymptotic error reduction, by per-

forming one smootherstep, of all high-frequency error components [134, 140]. Below we shall

analyse the smoothing properties of the proposed smoothervia (5.26) and (5.28).

As pointed out in many cases of nonlinear operators with varying coefficients by [6, 7, 13,

22, 23, 65, 61, 69, 89, 126], the smoothing factor is x-dependent. Therefore, it is customary to

look for the maximumoverthe local smoothing factors of the frozen operator N;,(&), ie.

Hige = MAX{Hoe (5.36)

To determine juj¢ we consider again the local discrete system N;,(é)u"(€) = G),(€). By using

the splitting N;,(g) = Nie) 4N0! (€)+NU] (€), it is possible to write the local inner iterations

of (5.26) (for w = 1) as

NI*T(yah(6) + NO (€)ar.,, (6) + NI1(é)a",(6) = Gn (6) (5.37)

where @",,(€) and @.,,(€) stand for the approximations to w"(€) before and after the inner

smoothing step, respectively and

Nit//-Iey = NRO) ONTO)12
; (NANe))oa (NY!Ne))2.2

For a specification of this splitting, we use the stencil notation as follows:

a 2 0 0 a fo 0 0 a [9 -1 0
ho ho A _Llha= pl} 9 0], f= pe] 9 1 0], ety] 0 0 1),

-1 0 0 0 0 0 0 0
Lhe forl=m[+/-] _

(Ni!

1

(€))um = { 0, forl Am ’

and

(N{! (€))ism = Ripon (l,m = 1, 2);

_ | S11 $1,2 | _ M+ (h?/a)ou(€) (h?/a)or2(€)
1 62,2 (h? /a)oai(€) Y + (h?/)o22(€)

By subtracting (5.37) from Np,(€)u"(€) = Gn(€) and defining &”,,,, (€) = u"(€) — u",.,, (€) and

e”4(€) = u"(€) — u"4(€) we obtainthe local system of error equations

— 0 —/ r, —n

Nit (E)Er ew (§) + Ni (€)Erow (E) + Ni leet, (§) = 0

or

Bhew(€) = — [NOE FNL]IN,Woleha(€) = Sn(Cehna(6) (5.38)
where S,(€) is the amplification factor. The effect of S,(€) on the grid functions y, (8, x)

within Opign = O\[-7/2, n/2)? will determine the smoothing properties of the PCGS method

(5.27).

For the w—PCGS approach (5.28), the amplification factor denoted by S),(€,w) can be

defined in a similar way as (5.38) and its Fourier symbolis given by

“a

Sp (E,0,w) = [Nh (E,8) + oNZ(E,6)] UL — wR, 8) — oN,(EA) eC? (5.39)
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Here the Fourier symbols of NUt/9/16) are

an Ny {+ /0/—] ny l+/0/—]w/e.) = SEGOa EGOe emp
(Ni, (€,8))o1 (N;, (€,4))2,2

Therefore, the local smoothing factor is

Hoc = sup{|p(Sr(€,8,w))| : @€ Onign} (5.41)

where p indicates the spectral radius of S,(E, 6,w). Recall that

[4] _ —%(exp(—i6,) + exp(—i#2))) for l= m
(Ni, (€,9))im = { 0, forlém ? (5.42)

[-] _ —(exp(i#:) + exp(iA2))) for 1 =mNEOim = { G pre (5.43)
a

(n( (€,9))im = Reem (5.44)

will be used to compute (5.39).

To select the optimal value of w and test our smoother we consider one set of medical images

as shown respectively in Figure 5.3 (a) — (b) on a 32 x 32 grid. Figure 5.2 shows the smoothing

factors of the proposed smoother (5.26) based on the w—PCGS approach (5.28) at different

values of w. It indicates that the optimal value w providing py, © 0.5 is not exactly 1 but very

close to 1, typically w = 0.9725.

wu VS.
loc
 

 

   

o
t

n
N0 0.5

Figure 5.2: Smoothing factors jj, at a fixed value of a = 0.1 after 5 outer iterations with GSiter =5

by the proposed smoother (5.26) based on the w—PCGSapproach (5.28) with different values of w for

the registration problem in Examples 1 as shownin Figure 5.3 (a) — (b) on a 32 x 32 grid. The red

diamondindicates the optimal value of w.

We remark that we have to deal with a type of anisotropy in solving the linearised system

N,[a"]u" = G)[w"] (5.26). This anisotropy is not global but local, the jumping coefficients

introduced by o1,m(%”"). We have oi (u") # 0 at places that correspond to regions where the

transformed image Th, changes locally, e.g. at edges. However, from practical experience this

leads to moderate jumps in the coefficients and then the smoothing factors shown in Figure

5.2 are not rigorously justified. They can be considered as a heuristic but reliable estimate
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for actual smoothing properties since we only have moderate jumps. We conducted several

numerical experiments to back up our results from smoothing analysis in §5.5.1.

A nonlinear multigrid algorithm with automatic choice of a

Asis typical of Tikhonov regularisation, the energy functional J, in (5.1) has a regularisation

parameter a. To provide well matched images, we have to carefully select a because it is in

general unknowna priori. In order to find a suitable a automatically, we follow the ‘cooling’

(‘continuation’) process suggestedin [29, 32, 66, 65, 78, 92, 108]. The basicideais to start with

a high initial value of a and then slowly reduce a such that the obtained solution can be used

to be an excellent starting point for the next minimisation problem in order to decrease J.

Analternative approach can be the L-curve method.

Consider the discrete version of the minimisation problem (5.1) with the same notation

min{ J.(u) = D(R,T (u)) + aR (u)}. (5.45)

Here D = D°SP and R = Rf, Let a, be the initial value, whichis sufficiently large. At the

(s + 1)th step we set a+!) = nal) € [ap, a1], where 7 € (0,1) is a constant, usually chosen

to be about 0.5, and ap is a small positive number, e.g. 5 x 107°. Subsequently, we apply

a+!) and the initial guess solution obtained by the previousiteration uli) =u) with the

associated inner loop to obtain the minimum u(t!) within some tolerance. As mentioned in

[66], since the functional Z, is changing at each outer loop iteration, the demandof decreasing

the value of the same functional is not reasonable. Then, the solution u(+!) and parameter

a+!) are acceptable if they satisfy the so-called consistent condition:

Totorr (UTD) = DiuS*)) + aVR(UETY) < Tost(wl) = Dw) + aVR(u™).,

However,if this condition is not satisfied, we increase 7 (usually to 0.9) and re-start the step.

Our experience suggests that the stopping criterion given by

Jur uf,
<oé (5.46)

uls) lls}matue],   

is suitable, where 6 > 0 is small (normally set to 107%).

Finally, we summarise this process as follows:

Algorithm 5.3.2 (Multigrid Image Registration Through Cooling)

[v*,a*] — cooling (va), 2)



 

e Set s=1, v0) = 9) a) =a, yn = 0.5.

e Outer iteration: For s = 1,2,3,...

— 1. Set a&*) = noin [5 x 107°, a]

— 2. Inneriteration: Unew — FASMG (val, =)

— 3. If Fyist1) (Unew) < Tocot1) (0)
— 3.1 Set v°*) = vnew, 7 = 0.5, s= 5 +1, and go to 4

Else

— 3.2 Set 7 = 0.9, and go to 4

— 4. Check for convergence using the criterion (5.46)

If not satisfied, then returnto 1, else, exit to the next step to stop.

e Set v* = Unew and a®* =a),

 

In order to save computational work for high-resolution digital images, the low-tolerance

©io = (2,10~4,0.1, 10-4) is applied to reduce the accumulated costs in each minimisation

problem. Then our first algorithm, namely a robust diffusion image registration (RDR) ap-

proach, can be stated asfollows:

Algorithm 5.3.3 (The basic RDR method)

 

1. Input @),. Set a = 1 (optional). Set @;; = (20, 107°, 0.10, 10-8) (high-tolerance)

2. Obtain the optimal regularisation parameter a (through cooling) via Algorithm 5.3.2:

— [v, a] — cooling (v, 0, ©10) .
3. Solve the discrete minimisation problem (5.45) on the finest level using the found a:

—v<— FASMG(v,a, &ni)

 

Although the above algorithm enables us to find a good a, the cost of re-solving the same

problem repeatedly is expensive. We propose to use a hierarchy of L grids (with level L the

finest and level 1 the coarsest one) using a multi-resolution idea to gain efficiency while finding

an effective a. Firstly we shall seek the optimal a on the coarsest level 1 with the grid size of

32 x 32 only (believed to be coarse enough) and secondly we use the multilevel continuation

idea [65] to provide the initial guesses for the next finer level.

Algorithm 5.3.4 (Multilevel grid continuation for optimal aandreliable initial solution)

[lev
[vlqlteel] -— RDR_multiresolution(v 1 alter], lev, €)

 

elflev=1
_ pllerl = 9

-alel=c [C > 0 should be large enough e.g. C’ = 100]
_ [ylterl qlterl - cooling(v"@"), alter), €)

e Else
— yllert) (iyllerl, pit yllerlyT

— fyllee—U qitee-l] — RDR_multiresolution(v"©’—al’lev — 1, &)

— lel = (TayTreg")!
— aller] = galler-1) [Recall that ale’) = an?., and nier = 2n1e1—-1]

— vileol — FASMG(v"""), al" @)

e Endif

 

93



Finally the overall procedure of finding an optimal a and then starting a nonlinear multigrid

methodto solve (5.1) is summarised below as Algorithm 5.3.5:

Algorithm 5.3.5 (The refined RDR multi-resolution method)

 

1. Input @1. and @pi.
2. Obtain the optimal regularisation parameter a (through cooling) and

a good initial solution (through multi-resolution) v via Algorithm 5.3.4:

— [v© a] — RDR_multiresolution(v™, al”), L, fio)
3. Solve the minimisation problem (5.45) on the finest level lev = L using the found a

and theinitial guess solution v:

— viel — FASMG(va, @ni)

 

5.4 An application of (5.25) with the curvature model

To test the robustness of our numerical algorithmfor other registration models, in this section,

we shall examine our second test model, namely, the curvature image registration model, as

introduced by Fischer and Modersitzki [47]; see also [48, 49, 89, 91, 104].

The curvature model. Based on an approximation of the mean curvature of the surface

of u,, Fischer-Modersitzki’s curvature approach aims to find a reasonable deformation field w

that minimises the following functional [47, 48]

min{J(u) = D8 (wu) + aREM(u)},

where
1 2 2

REMwy) = Sf Rar(u))Pdx = 5 f (Aw)Pae. (5.47)
2i=1J 0 2 j= Jo

This leads to the Euler-Lagrange system of two fourth-order nonlinear PDEs:

De me
{ Pui) fas = 0 (Fischer-Modersitzki’s curvature model) (5.48)

fo(u) + aA?uy = 0

subject to the special boundary conditions Vu; = 0, VAu; = 0 on OQ, for | = 1,2. We re-

mark that the use of second-order derivatives in the energy functional (5.47) not only provides

smoother deformation fields u than those of (5.3), but also allows for an automatic rigid align-

ment. Here wu; is understoodas a surface in R® represented by (x1, 22, uj(z1,22)), where initially

u(2%1,22) = 0, with the meancurvature of the surface of uw; is given by

2 2
(+4, ig ay —2uy, Ue, “22 +(1+u7,,). _wv. Vu _ “pore :

Ku (ui) = V Jisivul ~ (uz, uz, 3”? . (5.49)

Observe that |Vui| * 0 yields «ay (ur) © Kar (ur) = Aur.

Due to the biharmonic operator which appears in (5.48) it is known that standarditerative

methods lead to poor multigrid efficiency. Therefore, it is a common way to split up the

biharmonic operator into a system of two Poisson-type equations; see {12, 67, 73, 89, 134,

139, 140]. Based onthis splitting idea, (5.48) can be converted to the following system using
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additional unknownfunctions v; = —Au, and vg = —Aug:

—Au, —-Yy= 0

—Aug — v2 = 0

fi (u) — aAv,; = 0

fo (u) — aAve = 0

(5.50)

subject to the boundary conditions transferred into Vu; = 0 and Vv, = 0 on 02 where the

data term f; (u) is given by (5.5).

To solve the above continuous system numerically, (5.50) is first discretised by the cell-

centered finite difference scheme over the discrete domain

Qn = {x € Ox = (x1,,202,)" = ((2i— 1) h/2, (2) — 1) h/2), 1< i,j <n}

consist of N = n?cells of size h x h with grid spacing h = (1/n,1/n). Let (zaij= (x1, , £2; )

denote the grid function for [= 1, ..., 4, where a = ub or uP for 1! = 1,2. Then, the discrete

system of (5.50) at a grid point (7,7) is given by

NP(zig = —L(ut)eg — Peg = (Das

No (z")ig = —L"(ud)ig — (02 )ig = (92)
(5.51)

N3(2")i5 = Fut, ub )ag — OL(OD)ag = Bis

Np (z*ig = ff} (uh, ud )i7 ~ al(vj‘ind = (gf iy

where (2")i.5 = ((21)ig, (22 )ig, (8 )ia, (2B )ig)" = (wig, (uh )ig, (Mag, (2 )ia)' and (GF )ig =
0 (l= 1,..., 4) on the finest grid in multigrid setting. Recall that the discrete versions of £” and

fP (uk, wh)i5 are given in the same wayas represented by §5.2.2 and the approximations used in

(5.51) need to be modified at grid points near the image boundary OQ, using the homogeneous

Neumann boundary conditions approximated by one-side differences for boundary derivatives:

h h I h h h h h
(4 ia = (a2, (ZF in = (ZF )in—1, (2F)13 = (2 )255 (Fn. = (2) n—-1,5+ (5.52)

A robust smoother based on the linearisation scheme (5.25). As mentioned above,

our aimis to apply ourlinearisation idea (5.25) in solving the equivalent system (5.50). This

leads to the linearised system

NOV [zyzl) — Go (24), (5.53)

where the symbols h and(-);,; in (5.51) are dropped for simplicity. Here

—L 0 -1 0

—£ 0 —lCvs [v]] —

N™ Pew l= oy(ull) oy2(ul¥l) —al 0 (5.54)

021 (ul) 022(ull) 0 —al

and

41

g2
GO [zh] = . : 5.55
e 93 — fi(ull ; ull) + ors (ullyal”! + ayy (ul¥!)usi (5.55)

[»] fy]
ga — faluVl wu)) + oni (ull)ul + o20(ul4))us
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v]As mentioned in 85.3.1, 05); = ol and ol”Y= (Oy, 1'(ul”!))(d,,, 2(ul”!)) for m = 1,2 are used

to stabilise our numerical scheme. In orderto solve (5.53), we again apply the w—PCGSas the

inner solver and its Ath step is updated by

(aber= (1 —w) 2hPN IN 4 INO[eM]g)(GSZe?! (5.56)

where

(D)ig/h? 0 -1 0
vrel[y _ 0 (2) ig [he 0 =

NEMS =| Goutal(ralal)as oul 0 O07)
(or(ull))i5 (or2(wl)),3 0 (ig /h?

2 at (1,1), (nm, 1), (n,1), and (n,n) (four corners)

(“);,; = 3 for all (1,7), (n,7), (4,1), and (i,m) where 2 < i, 7 <m-— (boundarylines) ,

4 for all (7,7) where 2 <7,7 <n 2 (interior points)

(5.58)

(gig + Bag(uyerr?

(g2)i.g + Dig (ulyNy?!

(GO[2lyRFM7I | (g5)i5 — fileub),5 + (ors (ull))i,(utNig oy fe 59)
+(o12(ull));.5 (uh)ij + (a/h?)(D)i,ul’ ‘eel

(ga)ig — fala, wh).j + (o22(ul”!));.,i(us"dig oo
+(o21(ul));j(ul),5 + (a/h?)(B);,jolt ee

and

(S)i,(2eh = (zEgt2b4g(eA+ (2poh (5.60)

With the above smoother, the curvature model canbe solved using Algorithms 5.2.2 and 5.3.5.

Similarly to §5.3.2 one can show by the LFA that(i) limBy, (Nf&Y (€)) = sag, ie. the linearised

system (5.53) is h—elliptic; and (ii) w ~ 1 (typically w = 0.9725) provides the good smoothing

properties (s,, * 0.5), where the effects of w on smoothing factors of (5.53) in processing the

registration problem shownin Figure 5.3 (a) — (b) are almost identical with Figure 5.2. We also

conducted several numerical tests to confirm that (5.53) is a robust smoother for the FAS-NMG

methodto solve the curvature model (5.48); see §5.5.2.

5.5 Numerical experiments

The main aimof this section is to show that our multigrid algorithms with the smoothers

using (5.25) are effective and robust in leading to convergent multigrid methods in the FAS-

NMG framework for both the diffusion and curvature models. In all experiments, the bilinear

interpolation was used to compute the transformed template image 7'(w).
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5.5.1 The diffusion model

We first focus on the performance of Algorithm 5.3.5 for two sets of medical data, Examples!

1 and 2 shownrespectively in Figure 5.3 (a) — (b) and (d) — (e). To this end, we consider its

convergence behavior with different resolutions, and then show comparisons with several other

methods. In all experiments for this section 1, = 5, v2 = 5, GSiter = 5, and w = 0.9725 were

used in this test.

 

(&3 = 0.0615)

Figure 5.3: Registration results for X-ray and MRI images using the RDR method with Algorithms

5.2.2, 5.3.3, and 5.3.5. Left column: reference R, center column: template T, right column: the

deformed template image T(u) obtained from Algorithm5.3.5.

h—independent convergence tests

One of the key properties of multigrid techniques is that their convergence does not depend on

the numberof grid points. Thus, in the first test we designed our experiments to investigate

this property with Algorithms 5.2.2, 5.3.3, and 5.3.5, and to back up ourtheoretical results by

LFA in 85.3.2. The number of multigrid steps (V-cycles) used to drop the meanof the relative

residual below ¢2 = 1078, the relative reduction of dissimilarity, and run times (in seconds)

are given in Table 5.1 with different sizes of grid points. The results showthat all registration

algorithms not only converge within a few multigrid steps, but they are also accurate because the

dissimilarities between the reference and registered images have been reduced more than 87%

for Example 1 and 94% for Example 2. For overall performance the experimentalresults suggest

that Algorithm5.3.5 would be preferred for practical applications because the multi-resolution

idea used in the cooling process for a has been prove to be is very useful for initialisation.
 

TSource: http://www.math.mu-luebeck.de/safir/
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Algorithm 5.2.2 Algorithm 5.3.3 Algorithm 6.3.5
M/R/D/C M/R/D/IC/C M/R/D/IC/C

Example 1 : a = 0.1000
h = 1/128 10/2.1 x 10-9/0.1082/4.3 6/1.8 x 10-9 /0.1082/7.9/10.1 7/3.4 x 10~9/0.1082/2.1/6.2
h = 1/256 11/3.6 x 10-9/0.1161/22.5 6/3.1 x 1079 /0.1161/41.2/54.2 7/5.1 x 10~9/0.1161/3.9/24.2
h = 1/512 11/2.8 x 1079/0.1221/106.4 6/2.5 x 10-9 /0.1221/180.1/231.9 6/7.5 x 10-9 /0.1221/7.3/65.1
h = 1/1024 11/8.6 x 10-9/0.1239/472.6 6/3.8 x 10-9/0.1239/798.1/1049.3 6/8.2 x 10~9/0.1239/26.1/256.4

Example 2 : a = 0.1176
h = 1/128 10/8.3 x 10-9/0.0522/4.2 5/1.5 x 10-9 /0.0522/7.2/10.2 6/4.2 x 10-9/0.0552/2.9/4.9
h = 1/256 11/5.6 x 10—9/0.0582/22.9 6/2.6 x 10-9 /0.0582/31.3/41.7 7/6.9 x 10-9 /0.0582/3.0/17.9
h = 1/512 11/7.4 x 10~9/0.0615/108.3 7/5.4 x 10~9/0.0615/185.7/234.9 7/3.3 x 10~9/0.0615/12.5/79.1
h = 1/1024 11/3.1 x 10~9/0.0633/478.1 7/6.9 x 10~9/0.0633/550.1/943.1 7/5.0 x 10~9/0.0633/26.9/321.3     
 

Table 5.1: Registration results of Algorithms 5.2.2, 5.3.3, and 5.3.5 for Example 1 and 2 shownin

Figure 5.3 (a) — (b) and (d) —(e). The letters ‘M’, ‘R’, ‘D’, ‘C’, and ‘IC’ mean the numberof multigrid

steps, the relative reductionof residual, the relative reductionof dissimilarity, the total run times, and

the initial run times for determining the optimal a and initial guess wu, respectively.

Comparison with other multigrid methods

Methods by [46, 65, 89, 131, 145] are some existing unilevel or multigrid techniques used to

solve the diffusion model.

Inthis section, we took Example 1 as shownin 5.3 (a) —(b) to illustrate a comparison among

our FAS-NMG method with Algorithm 5.2.2 and other six multigrid methods by starting with

the fixed parameters h = 1/256, a = 1/8 and wu) = 0. Here we used r = 10~? and applied the

so-called multi-resolution technique with the gradient descent methodsof [46, 131] for fairness.

The FMG or LMG methodsin[65, 89, 131] were performed using two pre-smoothing and two-

post smoothing steps with the pointwise GS smoothers until the meanof relative residuals

below a user-supplied threshold (toljqa = 10~*).

Table 5.2 summarises the results for all multigrid methods. As expected from the exper-

iments, all methods are very fast and accurate in registering the given images because the

dissimilarities between the reference and registered images have been reduced more than 80%

within the first 20 iterations. However our method is not only the fastest way in solving the

problem, but also in dropping the meanofthe relative residuals below 107°.

 

Methods M/R/D
 

20/7.1 x 1074/0.1417
20/5.9 x 1074 /0.1428
20/6.3 x 10°"/0.1344
20/2.6 x 10-°/0.1377
18/4.5 x 10-°/0.1351
18/7.6 x 10-°/0.1383
11/2.0 x 10° °/0.1329

Multi-resolution + AOS [46]
Multi-resolution + FMG-V(2,2) [131]

Multi-resolution + Gauss-Newton + LMG-V(2,2) [65, 89]

FAS-NMG-V(5,5) + MSDFP-FS smoother adapted from [51, 53] (§5.2.4)

FAS-NMG-V(5,5) + MSDFP-1 smoother adapted from [145, 104] (§5.2.4)

FAS-NMG-V(5,5) + MSDFP-2 smoother adapted from [13] (§5.2.4)

FAS-NMG-V(5,5) + RFP smoother (5.26) (§5.3.1)    
 

Table 5.2: A comparison among different multigrid methods by [46, 65, 89, 131, 145] to solve the

diffusion modelin the first 20 iterations. The letters ‘M’, ‘R’, and ‘D’ mean the numberof iterations

in dropping the meanof the relative residuals resulting form (5.1) to 10~*, the mean of the relative

residuals, and the relative reduction of dissimilarity, respectively. Our proposed multigrid method in

the last row is the fastest way.

98



Comparison with the AOS method [46]

The AOS methodis one of the most widely used gradient descent techniques for diffusion image

registration in the unilevel framework [46, 90, 131]. We also take Example 1 as shownin 5.3

(a) — (6) to illustrate a comparison with our FAS-NMG method. Table 5.3 summarises the

results for Algorithm 5.2.2 and AOS methods with different numbers of grid points. We used

Algorithm 5.2.2 with a = 1/8 for fairness (as Algorithm 5.3.5 will be even better). That is,

we started both methods with the same a and the sameinitial guess, uw) = 0. For the AOS

method, the time-step 7 is required to be sufficiently small for each size of the problem. We

used 7 = 10~? for h = 1/128 — 1/1024. As expected from the experiments, both methods are

very accurate in registering the given images because thedissimilarities between the reference

and registered images have been reduced more than 85%. However the AOSfails to drop the

relative residual to 10~° in a few time steps (even for large values of r > 107) and the run

times used by Algorithm 5.2.2 are much faster than those of the AOS technique in delivering

the samelevel of the relative dissimilarity.

 

Algorithm 5.2.2 AOS

M/R/D/C M/R/D/C
 

h=1/128 10/8.6 x 10~°/0.1248/4.2 (0.07 mins) 10000/ * /0.1248/934.1 (> 15 mins)
h= 1/256 11/2.0 x 107°/0.1329/23.1 (0.38 mins) 10000/ « /0.1329/5500.8 (> 1.5 hours)
h=1/512 11/9.4 x 10-°/0.1383/105.2 (1.75 mins) 10000/ « /0.1383/2498.3 (> 6.9 hours)
h = 1/1024 11/4.7 x 10~°/0.1404/427.6 (7.96 mins) */ * / * /* (> 12 hours)     
 

Table 5.3: Registration results of Algorithm 5.2.2 and AOS method [46] for Example 1 shownin Figure

5.3 (a) — (b). * indicates either computation stopped after about 12 hours or failure in dropping the

relative residual to 10~° in 10000 iterations.

Comparison of multigrid methods with different smoothers

Our aimin this section is to show that we have proposed a robust smoother for the FAS-NMG

technique in solving the discrete system representedin (5.14). To end this, we have conducted

several experiments of our FAS multigrid with different kinds of smoothers:

(i) the proposed smoother based on the RFP method (5.26) represented by Algorithm5.3.1

in 85.3

(ii) the GS smoother based on the SDFP methodgiven by (5.19) in §5.2.4 (the standard FP

methoddefined by [104, p. 79] with the standard linear (inner) solver)

(iii) the GS smoother based on the MSDFP-FS method given by (5.20) and (5.21) in 85.2.4

(a modified SDFP methodadapted from the numerical techniques of Frohn-Schaufet al.

(51, 53] with the standardlinear solver)

(iv) the GS smoother based on MSDFP-1 methodgiven by(5.22) in §5.2.4 (a modified SDFP

methodof the first type with the standard linear solver)
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(v) the GS smoother based on MSDFP-2 method given by (5.23) in §5.2.4 (a modified SDFP

method of the second type with the standardlinear solver)

(vi) line relaxation smoothers based on the RFP method in §5.3 (the RFP method given by

(5.26) with another kind of iterative linear solvers)

(vii) the Newton-Gauss-Seidel smoother used by Gaoet al. [54] and given explicitly by Luet

al. [94] in (5.13) (an alternative way of choice of smoothers used in solving the discrete

Euler-Lagrange equations represented by (5.14))

Omitting the computational results, we remark that these observations can be made:

a) The smootherin(ii) requires more multigrid cycles than the proposed smoother and may

not lead to the convergence of the FAS-NMGtechnique for small values ofa.

b) As expected, the results based on the smoother (iii) do not find a solution that is the

necessary condition of the original variational problem (5.1), although the underlying

MGperforms better than with other smoothers (slightly less well than with our RFP

smoother).

c) The smootherin(iv)-(v) may take many multigrid cycles, not leading to the convergence

of the FAS-NMGtechnique whenthe fixed-point parameters c,, cp (or c), and € are not

well-selected (i.e. the NMG becomessensitive to these parameters).

d) As expected, line relaxation smoothers require less multigrid cycles but more computa-

tional costs than the proposed smoother.

e) The Newton-Gauss-Seidel smoother provides well matched images within a few multigrid

steps, but it may require more multigrid cycles than the proposed smoother in leading to

the convergence of the FAS-NMGtechnique.

5.5.2 The curvature model

In this section, we aimto show that the FAS-NMG method with the smoother (5.53) based on

our linearisation idea (5.25) is effective and robust to solve the curvature model (5.48) within

the multigrid framework similar to Algorithm5.2.2.

To this end, we took only one data set of medical images, Examples 1, as shownin Figure

5.3 (a) — (b). We first investigate the convergence behaviour and the registration accuracy

of our FAS-NMG method with different sizes of image resolutions. Second we compare three

numerical solution methods for solving the curvature model (5.48). In all experiments, Q =

(0, 1]?, V = [0,1], 4 = 10, »%» = 10, PCGSiter = 10, and w = 0.9725 were used.

h—independent convergence tests

In this test, we started the registration processes with a = 10~4, wu!) = 0, and h = 1/128,...,h =

1/1024. The registered image is shown in Figure 5.4 (c). As expected from our LFA results,
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(&3 = 0.0925)

Figure 5.4: Results from Example 1 as shown in (a) — (b) by the curvature model (5.48) using the

FAS-NMG method with the smoother(5.53). Left to right: the reference R , the template T, and the

registered image T'(w) by the curvature model (5.48).
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Figure 5.5: Results from Example 1 as shown by Figure 5.3 (a) — (b) by the curvature model (5.48)

using the FAS-NMG method with the smoother (5.53). Left to right: the histories of the mean of

relative residuals (MRR) with respect to the MGsteps and thehistories of the relative SSD (RSSD)

with respect to the MG steps.

Figure 5.5 (a) — (b) shows that our FAS-NMGapproachis h—independent. It takes only a few

MGsteps (almost the same number) to drop the mean of the relative residuals below 10-8.

Moreover, as shownin Figure 5.5 (b) only one MGstep canreduce the dissimilarities between

the reference and the registered image more than 90% for the given registration problem.

Comparison with the other two methods

In this section we aim to investigate the performance of the FAS-NMG method with the

smoother(5.53) and those of other two methods: the FP method (5.53) (the smoother usedas

a stand-alone solver) and the DCT-based methodby[48]. We note that the FT-based method

by (91, 135] is faster than the DCT-based method with the ratio of 2.3 for directly solving each

linear time-dependent problemresulting from (5.48). Thus, for this class of gradient descent

101



techniques it is enough to use only the DCT-based method, whichis one of the most widely

used techniques for the curvature model.

To this end, we started all methods with h = 1/256, a = 1074 and wu) = 0. For the

DCT-based method, the time-step 7 was selected to be t = 10~? (since the fixed parameters

1/h* = N4 = 2564, V = (0, 1] and a = 10~* wereusedin thediscrete systemof(5.48), 7 = 107?

was a reasonable time step).

Compared with the results by other two methods, Figure 5.6 (b) shows that our FAS-NMG

method is very fast in reducing the dissimilarities between the reference and registered images.

Moreover, as shownin Figure 5.6 (a) it takes only a few steps to drop the mean ofthe relative

residuals (MRR) below 10-8. This is a remarkable result to conclude that its performance in

solving the curvature model (5.48) is much moreefficient than those of the other two methods.
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Figure 5.6: Results from Example 1 as shownby Figure 5.3 (a) — (b) by the curvature model (5.48)

using three numerical solution methods: the FAS-NMG method with the smoother (5.53), the FP

method (5.53), and the DCT-based method by [48]. Left to right: (a) the histories of the mean of

relative residuals (MRR) with respect to the iteration steps and (6) the histories of the relative SSD

(RSSD) with respect to the iteration steps.

Fromboth tests in §5.5.1 and §5.5.2 they confirm that the smoothers based on ourlineari-

sation idea by (5.25) are effective and robust in leading to convergent multigrid methods for

both the diffusion and curvature models.

5.6 Conclusions

In this chapter we first reviewedexisting iterative methods for the diffusion model and then

addressed the numerical problems of designing an optimal and efficient FAS-NMGtechnique.

For the commonly used SSD model, we introduced a unified approach for designing FP type

smoothers and used the LFA to analyse their smoothing properties using Fischer—Modersitzki’s

diffusion and curvature image registration models [46, 47]. In order to determine the optimal

a, we applied the coarse-to-fine idea from the previous chapter with the proposed multigrid
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approach and it appears to work well for a range of registration problems. Numerical exper-

iments not only showed that the proposed multigrid approach is h-independent convergence,

but it is also more effective than those in a large class of existing iterative methods developed

by [46, 47, 48, 65, 89, 90, 131, 135, 145}.
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Chapter 6

A Discontinuity-Preserving

Image Registration Model and

Its Fast Solution

RETV yieldIn §3.4 we remarked that the commonlyusedregularisers R°"*, Ro, RPFMowy and

wu to be either global or piecewise smoothover the image domain. In this chapter wefirst present

a variational model based on a modified TV regularisation with the so-called potential function,

which can be interpreted as a half way model betweendiffusion (smooth) and TV (non-smooth)

registration. The idea stems from image restoration, image reconstruction, and optical flow

computation, where smoothing and preserving discontinuities of solutions are both important

[4, 2, 3, 10, 20, 17, 18, 28, 40, 123]. Secondto solve the resulting Euler-Lagrange systemof two

coupled, nonlinear PDEs, we present a multilevel strategy and an adaptive parameter selection

proceduresimilar to the ones seen in Chapter 5. Numerical tests presented in this chapter using

both synthetic andrealistic images not only confirm that the proposed model is more robust

in registration quality for a wide range of applications than previous models, but also that

the proposed multilevel approachcandeliver an acceptable solution many orders of magnitude

faster than the gradient descent approach, popularly used in image processing.

6.1 Introduction

Let R and 7’ denote a reference and a template image, respectively. Here the given images & and

7’ are modelled as the continuous functions mapping from an image domain Q = (0, 1]? C R? into

V = [0,1] C Rg. Theregistration aims at finding a reasonable deformation field u = (u1, uz)"

IR? — R?, whose components uw; and u2 are functions of the variable x = (x1, x)! in the image

domain Q, such that the transformed version of the template image 7, = ‘,(x) = 7'(x+ u(x))

becomessimilar to & in a geometrical sense. As already pointed out in §3.2 the registration

problem can be posed as minimisation of the functional:

Jo(u) = D8? (R,T,) + aR(u) (6.1)
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where the image intensities of the given images # and 7’ are assumed to be comparable and

a > 0 is the regularisation parameter. Recall that

DSSP (y) = 5/ (1 (x + u(x)) — R(x))? dx, (6.2)
4 JQ

and

f (u) = (fi (u), fo (u))” = (a — B) Ou, Lu,a — BR) OuyFu)™ (6.3)

is related to the first variation of DSS”.

The rest of the chapter is organized as follows. §6.2 introduces a discontinuity-preserving

imageregistration model. §6.3 discusses the numerical solution methodsfor the resulting Euler-

Lagrange system. §6.4 presents our multilevel approach based on a FAS-NMG method. Experi-

mental results from synthetic andrealistic imagesare illustrated in §6.6, followed by conclusions

in §6.7.

6.2. A discontinuity-preserving image registration model

Motivated by several regularisation techniques that have proved to be very usefulin optical flow

computation [2, 10, 20, 17, 40], image reconstruction [28], and image restoration [4, 3, 9, 123],

one can smoothisotropically each component of uw inside homogeneous(orflat) regions corre-

sponding to weak gradients and preserveits discontinuities in inhomogeneous regions presenting

large gradients by replacing |V2| in (3.37) (where z is wu; or u2) by the so-called potential func-

tion (or Lorentzian error function used in statistics) ¢(|Vz|) satisfying some conditions to

preserve discontinuities of z. Consequently, the modified TV (MTV) model can be represented

in terms of a general ¢ (which exclude, ¢(s) = s, the choice of the TV)

RMTV (y) = & f 6(|Vul) dx (6.4)
l=1/2

Due to the sumrule, the following theorem can be used to computethefirst variation of

RMTV.

Theorem 6.2.1 Let ¢ be a given function and let

=MTV
R (uz) = | od (|Vuz|) dx.

Q

Thenthe first variation ofRY(au) is given by

wena[(V- (eevn)yma+ [,
x

(sun) max. (6.5)
|Vur| R2
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Proof.

—MTV d —MTV
dR (wi3m) = a (ur + em)

 

 

 e=0

Yo(lu,enter)? + (wis, €Mera)?])
Q m=1

Ay/[ute, + emery)? + (a1, + Mer)?

 

 

 

 

 

O(ut,,, + Mam) *

Oui,+ ENxn)” O(u,,, + Mem) dx

Pte + ena,) Oc =

2. 4(a([Vu|)ur.,,.

_flervon7Vin)oe

After applying the divergence theorem, we have

oR(usm) == [ov (2a)(|Vuil) Vur))max+ (a(Vulerm) nds,
Q |Vuil an [Vuu| ®

which concludes the proof.

Let R (u) = RMTY(u). Then by the sumrule, (3.8), and Theorem6.2.1, the Euler-Lagrange

equations of (6.1) are given by

_ (|Vuil)
fi(u)—aV - (Tent5 Vui) = 0 , (MTV). (6.6)
fo(u) —aV- (edeVue)= 0

subject to the natural boundary condition 0,u; = 0 on OQ for 1 = 1,2.

We remarkfirst that the boundary condition 0, u; = 0 on 02 is used to drop the boundary

integral in (6.5). Second, there exist many choices for the potential function ¢. In order to

define and identify the potential function ¢ [4, 2, 3, 10, 9, 20, 17, 28, 40, 123] for modifying

the TV model, below, we give some commonly used ones for (6.6) andits diffusion coefficient

D(s) = ¢' (s)/s (s =|V2|, 2 = wuor ua):

e o(s) = 58°, D(s) = == 1 < p< 2 (this ¢ is related to (3.37) when p = 1)

e (s) = log (1+ 8”) ,D(s)= we=, (Perona-Molik’s model)

© o(s)= pon, D(s) = mes (Geman-Reynolds’s model)

s) =2V1+4+s?—2, D(s) = 2 5 (Aubert’s model)
  

2 , s=0
Praha) fe 220 (Green’s model)e $(s) = 2log [cosh (s)], D(s) =
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Note that the diffusion coefficient (or the stopping function) D(s) has the following basic prop-

erties: (1) D(s)— 0 as s — o. (2) D(s)+ M (0 < M < +00) as s — 0. These meanthat

on one handit preserves discontinuities of u by reducing or stopping the diffusion (smoothing)

process in inhomogeneous regions, on the other hand it smooths wu isotropically inside homo-

geneousregions. In other words, TV-like regularisation is used in inhomogeneousregions and

diffusion- or quadratic-like regularisation is used in homogeneousregions.

In this study, we focus only on Perona-Molik’s model defined by ¢(s) = log (1 + s”) for this

kind of regularisation techniques, and then (6.6) becomes

Lnu (ui)

Ni (18) = fi (u) -0V (aa =m <6,
(6.7)

Lnx (u2)
———m

_ _ov.{—2V"__\_4 =No (u) = fo (u) -aV (Ae) g2 =0

subject to O,u; = Onu2 = 0 on OQ. Here Nj and Ly(uy) are the nonlinear partial differential

operators (for / = 1,2),n = (m1, n2)! is the outward unit vector normal to the image boundary

OQ, and g; = 0 is technical notation for numerical solutions that will be used in the coming

sections. Note that other choices of ¢ can be considered in the similar way.

Remark 6.2.1 Although the regularisation technique (6.4) is not completely new for other

image processing applications, to best of our knowledge it is new for deformable image regis-

tration based on the nonlinear fitting term D°8? (6.2). Particularly, the nonlinear data term

fi (w) = (Lu — BR) Ou, Tu in (6.7) is totally different from those of linear ones used in image re-

construction, image restoration, and optical flow models; c.f. [4, 2, 3, 10, 9, 20, 17, 28, 40, 123].

Therefore, an effective technique of (6.7) is much more challenging.

6.3. Numerical solutions of the PDE system (6.7)

The section will be started firstly by discretising the Euler-Lagrange equations (6.7), followed

by a discussion of numerical solutions for the discrete system.

6.3.1 Finite difference discretisation

Let the discrete domain

Qn, = {x € Q|x = (a1,,22,)' = ((2i- 1) hi /2, (27 — 1) ha/2)', l<ism, 1s jn

consist of n = nn cells of size hy X hg with grid spacing h = (hy, h2) = (1/m,1/n2) andlet

(u/')i,j = uf(a1,,22,) denote the grid functions for | = 1,2. Applying finite difference schemes

based on the cell-centered grid points to discretise (6.7), the discrete system at a grid point
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(7,7) is given by

NIU)ig = Aut ud )ig + OLR. (utig = Dis

No(u")ig = FE (ut uh )ig + oLRr (uh )ig = (Big

subject to the discrete Neumann boundary conditions,

(uf Jia = (up), (UPine = (UP )imo 1, (ul), = (uo, (ulna = (unis, (6.9)

with the following notation

 

 

£ (u/’) =-— Onn 267, (u')sj/ha

seg

=~

Vy TE GRPag /ha)? + (alahig /hay?
Ory 254, (ui)ig /he

r 2 + (dz, (ul)i5 /hi)? + (62 (ul);5 /h2)? )|1

= (Shag (ubig — OP)sg (ues

QT)5 = (1497) Valu? )ig] + Daluigl + PVel(upig], y= hi/he,

(Sig (uh ig = Disl(ub ig(Cul )iga.g + Puig)

+ Dul(up)ig]l(uPi-rg +.Dial(up)ig](ePeg—1))

Palla? )ig) = Viul)iagl, Pella! )ig] = VI@Dig-al,  Velu):s] = Plata]r)
Di(up'),J] = 2/ (AT + (OF(up )ig)? + (VE (ur)ia)?), Lsisgm, 1s jn,

dn, (uf); == ((uP)itag — (ui),

dry (ul),, = ((ul)iger — (ua) »

fT (wtsud), 5 = 2) — RR(Cg — 21)/hn),

fo (ut,ud), , = (UR) — RR(jar — UP)-1)/ (2ha)),
iw

Uh SUG + (ut) 3+ (u2)

(w"); j = ((uP)i3, (wg )ig)!-

),1g

Here (g/')i,; = (g4)i,; = 0 on thefinest grid in multigrid setting.

6.3.2 Method 1 — An explicit time marching (ETM) method

As mentionedin §3.5.1, a time marching schemeis one of convenient ways to solve the resulting

Euler-Lagrange equations like (6.7). The main idea is to introduce anartificial time variable ¢

and compute the steady-state solution of the system of time-dependent PDEsof the form:

{ Oyu (x, t) + Mi (u(x, £)) = g(x)
Oyu2 (x, t) + No(u(x, t)) = go(x) ”

In order to overcomethe nonlinearity of Nj, the so-called explicit scheme can be conveniently

applied, and the iteration is then given by

Oyu (X, tea.) = g(x) — M1 (w(x,te) _

{ Oyu2(X, te+1) = go(x) — No(u(x,te) k= 0,1,2,3,...
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where u(x, tp) is someinitial displacementfields, typically u(x, tp) = 0.

For the time discretisation we introduce a time-step 7 > 0, and then w is updated at the

time step & + 1 by

{ U1 (x, teg1) = w(x, te) +
u(x, th+1) = u(x, tk) oo

which we simply denote by

k+1 k
(ut) id = (Wig +7191,,; —-M(u®));3] (6.10)

i+ Z .
(uy ).g = (uy )igj + Loe, —No(u™deg]

Wenote that this time-marching schemeis easy to implement, but very slow to converge because

the length of the time-step 7 is required to be a very small numberfor stability reasons.

6.3.3 Method 2 — A semi-implicit time marching (SITM) method

In order to speed up the convergence of (6.10), we may apply the fully implicit scheme, and

then u(*+)) is updated by

1
(uris, _ (us);j T (923.4 —No(u®t)); 5] ’

iJ

(R+1)) og (R)y _ (k+1))..

(uy det a Dig + Thy MC Dia = 0,1,2,3,.. (6.11)
+

In order to cope with the nonlinearity of Mj, we maylinearise (6.11) respect to the k+ 1th time-

step using the method of ‘frozen coefficients’ as well known for variational approaches related

to the TV operator (see e.g. [6, 13, 22, 24, 31, 52, 122, 123]), and obtain the semi-implicit

scheme as given by the following system oflinear elliptic PDEs:

k+l i k k+1 k k k(9+rollal-*ned = (ues +7[91,5 — flayed] (6.12)
(ug? ig + roLhe(Cul):(ue ):g = (us? ag + T9235 — faut, us” )a3]

where

Li(ul),(ue)eg = (HM).(wl?).5 — OP),gal),5- (6.13)

Therefore, the update formula determined by a lexicographical ordering in a matrix vector form

can be written as

We= E+ rea ful-( tra hilwe) . (6.14)
uy) = (+ rok[up ))at) + rg — rfaluj, uh”))

whereI is the identity matrix.

Since Lin [ul| can be divided into two parts, (6.14) can be simplified further as

PD = Ce rachienfu)Mah trgn = rf (u, uf)
i) , (6.15)

WY =bree SRPYMal? + rae — rateuf))
m=1

where LE[ul*)] = £17" [ul“+x: lu"), and £ee (u\")] is a finite difference approximation

of the second-orderderivative of ul® ) with respect to the mth coordinate (for m = 1,2).
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6.3.4 Method 3 — An additive operator splitting (AOS) method

The AOSscheme [46, 93, 138] is more efficient than the standard semi-implicit scheme (6.15).

The basic idea is to replace the inverse of the sum by a sum of inverses. The corresponding

iterates are then defined by

2
uff) _ 1 . (I+ QraLlnem fy(8-1 ul”) +79, —rfi(ul us)

, a . (6.16)
1 inzm k)y\_— kGD <2 4 2roclinem ful) 1 (ul) + 792 — 7fala, wh))

3 Il e

which is much cheaper than those obtained from (6.15) because the two diagonal systems in

each component are solved per iteration rather than the 5-band system.

Remark 6.3.1 Although each linearelliptic PDE given by (6.12) is solved by a fast solution

method (e.g. a linear multigrid technique), the numberof time steps k in fulfilling the necessary

condition for being a minimiserof the variational problem represented by (6.1), i.e. in achieving

a kind of convergence, may not be small; see Table 6.2. The reason is that the gradient descent

technique requires to solve the linear system many times with changing the right-hand side of

(6.12). It is reasonable to develop a new and fast solution method in solving directly the Euler-

Lagrange equations (6.7), which will be explained in the Method 4 and 86.4.

6.3.5 Method 4 — A stabilised fixed-point (SFP) method

Asis well-knownfixed-point (FP) methods are more robust than those of time marching tech-

niques when appropriate FP schemes are applied, especially for problems related to the TV

operator like (6.7). Due to Neumann boundary conditions, the standard FP scheme of the

discrete system (6.8) given by

ooha= an — falcug) = Gaal (6.17)
o£[upul" = go — fo(uy!, up!) = Gofeul)

leads to the singular problem for each FP (or outer iteration step) v (v = 0,1, 2,...) and then

a special treatment is required; see $5.2 — 5.3 for the similar problem occurred in the discrete

systemresulting from the diffusion model. Here the frozen operator

CHEAP)glad= OPig (ul5 — OPia alDa

by the so-called Lagged-diffusivity method[26] or Quasi-Newton scheme [137] is used and the

symbol hand(-);,; in (6.17) are dropped for simplicity.

To stabilise the FP scheme (6.17), we again apply thelinearisation idea of the data term

given by

fleale) ~ siaal+ oft) — a) ofl’! — af
where

on (ull) = du, fill’! uf!) = (Ou)Fa0e)(Our Late) + (Laer — 8) OurLate);
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and

o12 (wll) = uy fila’), wh!) = (Au, Ly1) (Que Lute) + (Lier — R)(Ousu: Late):

This yields the linearised system

Niujul’+) = G[ul), (6.18)

where ul’+!] = (ult lett

N[(ull] = £ie [ul’l) + os (ul) o12(ul”!)

aay(ul) £88ub] + 20(ul)

 

and

Glu] = on}+ou(ull)uMt oy o(aull ul!

Go[ul)] + 021 (ull)Mt oo(uCnae

As mentioned in §5.3.1, ofl =i ol and ot) (Ou, L401) (Ou,, 101) for m= 1,2 is used in our

numerical scheme. Weshall call (6.18) the stabilised fixed-point (SFP) method.

As a commonwayto solve (6.18) for each FP or outer step v, we use the w—PCGSrelaxation

method with the relaxation parameter w € (0,2) and then its new step is given by

(alNIE(ey(ulecofealN3)1GfelR71, (6.19)

where

Niul"], ; = (34).5 + (or(ul)).5 (a12(ul"!))..5
(o21(ul4));.3 (a)ig + (22(ul)),.5

(Gy ful):5 + (rr (ull)) sg (aig + (or2(ul4))..5 (ub),
ate);4 (u[e+][e+1/2]

(G [uMy[k+1/2] _

(Gofull);5 + (ror (uly) ij (ueig + (o22(eell))ig (uh).

$o(8),5 (ulyHyer/?I
and

aly] V Vv V Val),5 (ule Hyer— PaterDlCoreta+Pa)

+ Dale)eg)YY +PDielsglueRN),

Similarly, as remarked in §5.3.1, the SFP method (6.18) shows the interaction between

the actual FP or outer iteration that overcomes the nonlinearity of the operator Nj; at each

outer step v and the w—PCGS method that solves the resulting linear system of equations at

each corresponding inner step k. Instead of solving the linearised system (6.18) with very high

precision, the w—PCGS methodorinneriteration can perform only a few iterations to obtain an

approximate solution at each outer step v. This is likely the so-called inexact lagged-diffusivity

method which have been widely used for solving other problemsin imageprocessing applications

related to the TV operator (see e.g. [6, 13, 26, 22, 24, 31, 122, 123]). This procedure leads
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to a slight difference of convergence in the FP scheme when it is used as a stand-alonesolver,

whereas the computational costs significantly reduce. Moreover, the relaxation parameter w has

a strong influence on the convergence speed. We usually use w > 1, typically w = 1.85, for both

smooth and non-smoothregistration problems becauseit results in speeding up the convergence

by manyorders of magnitude compared with the GS approach (w = 1). Wealso note that line

relaxation techniques, e.g. alternative line relaxation, are optional for the inner step. However,

they usually require more computational costs than those of the w—PCGS method.

  

(a)Example 2 - Rel. SSD by 2 methods (b)Example 2 - Rel. Res by 2 methods
Rel. SSD VS.No.Iteration } Rel. residual VS. No. Iteration

4 , "|e SFP ° " [aeSFP
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= o
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0 1 1 1 _ L 10° 1 1 L 1 1 1
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Figure 6.1: Numerical results by Method 3 (AOS (6.16)) and Method 4 (SFP) for Example 2 (in a

32 x 32 grid as shownin Figure 6.4 (a) — (b)) with 7 = 0.05, a = 0.1, and GSiter = 5. (a) shows the

relative errors in SSD and (b) showsthe relative residuals versus iterations. Clearly Method 4 (SFP)

performs much better than Method 3 (AOS).

Finally, the SFP method (6.18) on the fine grid can be summarised as follows:

Algorithm 6.3.1 (Algorithm for the SFP method)

We use these to be smoothing parameters:

a regularisation parameter

w relaxation parameter

GSiter the maximum numberof w—PCGSiterations

[wi, wz] — Smoother (wt, w3, gt, 93,R",T", a, w, GSiter)
 

e Use input parameters to compute (Gim(w"))ij;, (G(w”")i;), and (N(wma)
for l,m =1,2,1<i<mi,and1<j<no (Here (w")i,; = ((w!):,;, wh)ij)")

e Perform w—PCGSsteps

— fork = 1: GSiter

—fori=1:n

—forj=1:n2

— Compute (w”)(**Y = ((wt) KY, (wi (5? )") using (6.19)
— end

— end

— end

 



Wehaveso far presented four numerical methodsfor solving (6.7) where Method2 is enforced

by Method 3 and Method1 isless efficient. So it remains to test the overall performances of

the two methods(i.e. Method 3 and 4). We tested them only for the smooth problem Example

2 as shownrespectively in Figure 6.4 (a) — (b) for a 32 x 32 grid. The results from this test in

Figure 6.1 (a) — (b) show that the Method 4 performs much better than Method3 as expected.

We remark the results for the non-smoother problem shownin Figure 6.4 (a) — (6) are similar

to those of the smooth problem.

Although Method 4 is recommended as a unilevel method, our next task is to use Method 4

as a potential smoother in the FAS-NMGframework to speed up the solving of (6.7) with the

multilevel strategy.

6.4 A nonlinear multigrid method

Below we apply the FAS-NMG methodto solve the coupled system of nonlinear PDEs,

Nf (ul) = gf
{ N}(u") = 93

involving the nonlinear partial differential operator Aj’ (u”) (J = 1,2) givenby (6.8).

In our multigrid method, Method 4 (SFP) given by (6.18) is used as the smoother. The

averaging and bi-linear interpolation techniques are employed respectively as the restriction

and interpolation operators between Q;, and Qy, denoted by J? and J/;. The DCA approach

is performed to compute the coarse-grid operator Nj"(u") consisting of two parts: f/(u?,us)

and £2, (uf). To solve (6.8) numerically, our FAS-NMG methodis applied recursively down

to the coarsest grid consisting of a small number of grid points, typically 4 x 4, and may be

summarised as follows:

Algorithm 6.4.1 (FAS Nonlinear Multigrid Method)

We use these FAS multigrid parameters:

1, pre-smoothing steps on eachlevel

Y¥2  post-smoothing steps oneachlevel

Le the number of multigrid cycles on each level (= 1 for V—cycling and pu= 2 for W—cycling).

Here wepresent the V—cycle with p= 1.

a regularisation parameter

7) relaxation parameter

GSiter the maximum number of w—PCGS

w" — FASNMG(w",a, &)
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e Select a, & = (€1,€2,€3,€4) and initial guess solutions w?, tia, = (wt, w)" on the finest grid

e Set kK =0, (w" * = weitiats €2 = eo +1, 3 =e3 +1, and 1 =e1 +1

e While (ik <e, AND €2 > €2 AND €3 > €3 AND & > 4)

_ (w")** = fw!’ w3] — FASCYC(wi, we, MiNo gt. ge, R",T" 11,72, 0,w, GSiter)

— & = mar{||gi SNPw"YE|[2/\I9r — (aseo l=12
—@=D"(R", TT.toh) 41 )/D*(R",T")

[Recall that D" (RT) ~ 2 [RM Te|]
= & = [DR Tynes) _ Dirt. a|
-k=kK+4+1

e end

 

where

[wt, ws] — FASCYC(w}, wh NP NE, gh, gh, RYT" 1,2, a, w, GSiter)

 

e If 2, = coarset grid (|Q,| = 4 x 4), solve (6.8) using time-marching techniques
in §6.3.3 and then stop. Else continue with following step.

e Pre-smoothing:

For z= 1 tom, [wi, ws] < Smoother (wi, we, gf, gi, R",T", 0, w, GSiter)

e Restriction to the coarse grid:

w? — If wt, ws — If wh, R? = IPR", Pe eeg"
e Set the initial solution for the coarse-grid problem:

[wt wi) — [wi we]
e Compute the new right-hand side for the coarse-grid problem:

gt In (ot — Nj} (wi, w2)) + Nii (wi! , w3' )

93 TR (92 = ‘ (wi, w2)) + Ng? (wi", w5' )
e Implement the FAS satbtenid on the coarse-grid problem:

For z = 1 to p,

[wi ws] — FASCYC(wi! , wi’, NIN", gf", 93’, RY,T™ 11, v2, 0, w, GSiter)
e Add thecoarse-grid corrections:

wr — we + 0h (wi! -wi), wh — wh +0 (w33 — ws)

e Post-smoothing:

For z = 1 to v2, [wi ws] <= Smoother (wi, w, gt, 92, RYTc Ww, GSiter)

 

For practical applications Algorithm 6.4.1 is stopped whenever the maximum numberof

V— or W-cycles ¢€; is reached (usually ¢, = 20), the maximumvalueofthe relative residuals

obtained from the Euler-Lagrange equations is smaller than a small number €2 > 0 (typically

€) = 10-8 for a convergent test and only ¢2 = 10~? for a practical application), the relative

reduction of the dissimilarity is smaller than some ¢3 > 0 (we usually assign ¢3 = 0.20 meaning

that the relative reduction of the dissimilarity would decrease about 80%), or the change in two

consecutive steps of the data/fitting term D is smaller than a small number ¢4 > 0 (typically

Ee, = 10-8 ).

6.5 A robust approach for discontinuity-preserving image

registration (RADPIR)

As is well-known, we have to be carefully select a to provide well registered images because

it is in general unknowna priori. To this end, we follow the cooling process presented in §5.3
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and namethis algorithm by a robust approach for discontinuity-preserving image registration

(RADPIR), which can be summarised asfollows:

Algorithm 6.5.1 (The basic RADPIR)

 1. Input €1. = (2, 10-7, 0.2, 10~*) and @pi = (20, 1078, 0.2, 10-8). Set a = 1 (optional).
2. Obtain the optimal regularisation parameter a:

— [wa] — cooling(w, a, 10).
3. Solve the discrete minimisation problem of (6.1) on the finest level using the found a:

— w+ FASNMG(w), a, @ni)

where

[w*,a*] — cooling(w,a, =)

e Set s=1, w) = Ww, a) =a, n = 0.5.

e Outer iteration: For s = 1, 2,3,...

— 1. Set a+) = na)in [5 x 1075, a]

— 2. Inneriteration: Wnew — FASNMG(w"), at), @)

— 3. If Tost) [Wrew] < Toot[wl]

— 3.1 Set wet) = Wnew, 7 = 0.5, s=s+1, and go to 4

Else

— 3.2 Set 7 = 0.9, and go to 4

— 4. Check for convergence using the criterion (5.46)

If not satisfied, then return to 1, else, exit to the next step to stop.

e Set w* = Wnew and a* = a),

Similarly, we use a hierarchy of L grids (with level L the finest and level 1 the coarsest

one) with the multi-resolution technique in order to increase its performance and the whole

procedure is summarised below:

Algorithm 6.5.2 (The refined RADPIR multi-resolution method)

 
1. Input ©), and pi.

2. Obtain the optimal regularisation parameter a (through cooling) and

a good initial solution (through multi-resolution) w:

= [wa] — RADPIR_multiresolution(w™!, al, L, @10)
3. Solve the minimisation problem of (6.1) on the finest level lev = L using

the optimal value of a and the goodinitial solution w:

— wile) — FASNMG(w, a, &i)

where

[water] — RADPIRmultiresolution (wi, alley) lev, =)
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elflev=1
_ wlier) =0

-allel-¢ [C > 0 should be large enough e.g. C = 100]
_ [wler) qllerly — cooling(w!'?"!), allel, =)

e Else
= wiler-1 wl), rewitelyt

=- [werqtr + RADPIR_multiresolution (wit2 alte" Lev -—1, ©)
_ qwiier) _ (Tewhee"), Th wllerHyT

— aller] = gallee“1 [Recall that aller] = @n?,,, and niet = 2nNiei—1]

— wll — FASNMG(w"""), all", 2)
e Endif

 

6.6 Numerical experiments

In this section we demonstrate 3 sets of experimental results

(i) the abilities of RMTY in solving the particular registration problems as represented by

Example 1!-2? shownrespectively in Figure 6.2 (a) — (6) and Figure 6.4 (a) — (6);

(ii) the overall performance of the RADPIR approachontwosets of medical data by processing

Example 2 and 3 shownin Figure 6.4 (a) — (b) and (d) — (e);

(iii) a comparison between the RADPID approachand the semi-implicit time marching schemes

as discussed in §6.3.3 on the set of clinical images in Example 2.

In all experiments, the bi-linear interpolation technique was used to compute ‘7’(w), and

Y= 5, % = 5, w = 1.85, GSiter = 5 were employed in our FAS-NMGframework with a zero

deformation field as initialisation at the finest level.

6.6.1 Comparison R™TY with different regularisation techniques

In this experiment, our aim is to investigate capabilities of RMTY, R°TY and R* (from

§3.4), which belong to the same class of variational image registration models using 1%'-order

derivatives in solving Example 1-2. To be a fair comparison, we used the same systematic

formulation as explained in §6.3 — 6.4, in particular Algorithm6.5.2, for solving the discretised

Euler-Lagrange equations related to R??Y and RV,

As shownin Figure 6.2 (c) — (e), on one hand, RMTY and R**Y produced visually pleasing

registration results, while R47did not. The main reason is that the exact deformation field is

given by a shift of the upper rectangular to the right and a shift of the lower rectangular to the

left; c.f. Figure 6.3 (a) — (b). Therefore, the exact deformationfield is piecewise constant with

substantial discontinuities at regions close to the interface between the upper and the lower

rectangular. Consequently, 2? must fail because it tries to smooth the deformation field as

muchas possible at those regions; see over smoothing results of the field as shown in Figure 6.3
 

T Adapted from[51] and [53]
?Source: http: //www.math.mu-luebeck.de/safir/
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  (6) Te (RM™

  

€3 = 0.0007 E3 = 0.0010E3

(e) Tu eae (f) Tu [Reiss] (g) T [RFMcurv]

€3 = 0.0391 &3 = 0.0217 3 = 0.0077

Figure 6.2: Registered images for two rectangular blocks shownin (a) R and (b) Tof size 32 x 32

(Example 1): results by (c) RMTY, (d) R°TY with 6 = 0.0001, (e) R“", (f) R&"* with (4, \) = (1,1),

and (g) REM’. Recall that €3 means the relative reduction of dissimilarity defined in Algorithm

6.4.1.

c). On the other hand, as shownin Figures 6.5 (a) — (c) RMTY and R4* gave slightly betterg& 8 SAU)

registration results than those of R°TY in terms of €3 (the relative reductionof dissimilarity),

but the corresponding deformationfields shown in Figures 6.6 (b)—(c) are more reasonable than

that of R°TY depicted in Figures 6.6 (a). This is because the exact deformationfield is globally

> diff RBSTVsmooth, almost the same shapes as determined by RMTY and R*, but the results of

are almost piecewise constant in some parts of the upper regions. Both experiments confirm

that RMTYis a half way between R°TY and R**. In other words,RMTYis compatible with

RYfor registration problems requiring to preserve discontinuities and it is compatible with

Rf for those registration problems requiring to have global smoothness of the field. In case

of Res and RFMcurv we found by applying different numerical techniques given in [104] that

registrationresults are similar to those of R** as shownin Figures 6.2 (f) — (g), 6.3 (d) — (e),

6.5 (d) — (e), and 6.6 (d) — (e).
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(b) RETV
 

    
               

Deformation field U = —u

Figure 6.3: Deformation fields for the registration problem shown in Figure 6.2 (a)-(b) (Example 1):a

results by (a) RMTY, (6) R°TY with B = 0.0001, (c) R**, (d) Rs with (u, A) (1,1), and (e)
RFMcurv

6.6.2 h—independent convergent tests for Algorithms6.4.1, 6.5.1, and
6.5.2

Oneof the key properties of multigrid techniques is that their convergence does not depend on

the numberof grid points. Thus, in the second test we designed our experiments onclinical

images by processing Example 2 and 3 as shownin Figure 6.4 (a) — (b) and (d) — (e) with

Algorithms 6.4.1, 6.5.1, and 6.5.2. The number of multigrid steps (V-cycles) used to drop

the relative residual below 107°, the relative reduction of dissimilarity, and the run times

(in seconds) are given in Table 6.1 with different sizes of grid points. The results show that

all registration algorithms not only converge within a few multigrid steps as expected from a

multigrid technique, but they are also accurate because the dissimilarities between the reference

and registered images have been reduced more than 88% for Example 1 and 94% for Example

2. For overall performance the experimental results suggest that Algorithm 6.5.2 would be

preferred for practical applications because the multi-resolution idea used in cooling a has

proved to be very useful for initialisation. It results in speeding up overall run times of Algorithm

6.5.1 around 3 times.

6.6.3 Comparison Algorithm 6.4.1 with two time-marching methods

The main aim of this experiment is to show that the parabolic approachis quite slow in achieving

convergence. We took Example 2 toillustrate this point. Table 6.2 summarises the results for

the standard semi-implicit and AOS time marching schemes with different numbers of grid
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€3 = 0.0510

Figure 6.4: Registration results for X-ray and MRI images (Examples 2 (a) — (b)and 3 (d) — (e))

using the RADPIR approach with Algorithms 6.4.1, 6.5.1, and 6.5.2. Left column: reference R,

center column: template T, right column: the deformed template image T(u) obtained from RADPIR.

points. To be a fair comparison between them, we used those results determined by Algorithm

6.4.1 as shown in Table 6.1. That is, we started all methods with the same a = 0.0909 and

the sameinitial guess, w°) = 0. Here, the time-step 7 is required to be sufficiently small for

each size of the problem. We used t = 10~? for h = 1/128 — 1/1024. As expected fromthe

experiments, all methods are accurate in registering the given images because the dissimilarities

between the reference and registered images have been reduced more than 88%. However both

time-marching methods fail to drop the relative residual to 10° in a few time steps (even

large values of 7 are used) and the run times used by Algorithm6.4.1 are significantly faster in

delivering the samelevel of the relative dissimilarity.

6.7 Conclusion

In this chapter, we proposedfirst a novel discontinuity-preserving image registration model,

which can be viewed as a hybrid model between the diffusion and TV models, for solving

both smooth and non-smoothregistration problems. Second, we introduced a fully automatic,

fast, and accurate approach based on the FAS-NMGstrategy and the automatic procedure

in selecting the optimal a in order to solve the resulting Euler-Lagrange system. Numerical

tests from the previous section confirmed that the proposed model is more flexible than the
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€3 = 0.1082
(e) Tu [RFMcury) 

 

€3 = 0.0853 €3 = 0.0777

Figure 6.5: Registration results for the problemofsize 128 x 128 shownin Figure6.4 (a)-(b) (Example

2): results by (a) R°TY with 8B = 0.001, (b) RMTY, (c) RU, (d) Res with (4, A) (1,1), and(e)
RFMcurv

diffusion and TV models. Moreover, they also showed that the FAS-NMG technique based on

the proposed FP type smoother is h—independent convergence and muchfaster than those of

standard unilevel methods such as semi-implicit time marching and AOS schemesin convergence

anddelivering the same numerical results.



 

  
          

“6.2 0 0.2 0.4 0.6 0.8 1 “G2 0 0.2 0.4 0.6 0.8

(d) Relas (e) RFMcurv

  

        -6.2 0 0.20.4 0-6 0.8 1 “6.20 0.2 04 0.6 0.8 1

Deformation field w= —u

Figure 6.6: Deformation fields for the registration problem shown in Figure 6.4 (a)-(b) (Example 2):

results by (a) R°TY with 6 = 0.001, (b) RMTY, (c) RB, (ad) RS with (w,A) = (1,1), and (e)
RFMcurv

 

 

 

Algorithm 6.4.1 Algorithm 6.5.1 Algorithm 6.5.2
M/R/D/C M/R/D/IC/C M/R/D/IC/C

Example 2: a = 0.0909
h = 1/128 8/3.1 x 10~9/0.1012/26.2 4/6.6 x 10~9/0.0917/95.4/110.1 6/7.1 x 10-9 /0.0917/21.6/41.0
h = 1/256 8/1.8 x 10~9/0.1098/134.4 5/3.6 x 10-9 /0.1098/298.0/365.1 6/3.1 x 10~9/0.1098/29.4/109.5
h = 1/512 8/9.5 x 10-9 /0.1150/453.3 5/1.4 x 10-9 /0.1124/1402.1/1707.5 6/4.4 x 10—9/0.1124/57.9/396.1
h = 1/1024 8/3.6 x 10~9/0,1168/1864.4 5/2.1 x 10-9 /0.1168/5137.5/6289.7 5/6.5 x 10~9/0.1168/171.9/1332.1

Example 3 : a@=0.1111

h = 1/128 7/8.1 x 10-9 /0.0528/22.9 4/1.8 x 10-9 /0.0510/69.9/84.6 6/2.8 x 10~9/0.0510/18.5/38.0
h = 1/256 9/3.8 x 10~9 /0.0595/121.7 5/1.9 x 10~9/0.0510/312.2/386.4 7/3.1 x 10~9/0.0510/27.6/121.9
h = 1/512 10/3.8 x 10~9/0.0592/566.2 5/7.8 x 10-9 /0.0544/1274.6/1578.0 7/7.1 x 10~9/0.0544/58.9/455.6
h = 1/1024 10/5.5 x 10-9/0.0591/2447.9 6/2.9 x 10~9/0.0591/4678.5/6069.2 7/2.2 x 10~9/0.0592/189.0/1905.3    
 

Table 6.1: Registration results of Algorithms 6.4.1, 6.5.1, and 6.5.2 for processing Examples 2 and 3

shownrespectively in Figure 3 (a) — (b)and (d) — (e). The letters ‘M’, ‘R’, ‘D’, ‘C’, and ‘IC’ mean

the numberof multigrid steps, the relative reductionof residual, the relative reduction of dissimilarity,

the total run times (in seconds), and the initial run times (in seconds) for determining the optimal a

and initial guess uw"), respectively.
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SITM (6.15)
M/R/D/C

AOS (6.16)
M/R/D/C 

h = 1/128
h = 1/256
h = 1/512
h = 1/1024  

21973/ * /0.1012/5232.4 (1.45 hours)
19808/ « /0.1098/25513.9 (7.08 hours)

*/ * / * /* (> 10 hours)

*/ * / * /* (> 10 hours)  
23946/ * /0.1012/3074.1 (0.85 hours)
21197/ * /0.1098/15587.0 (4.32 hours)

*/ * / * /* (> 10 hours)

*/ * / * /* (> 10 hours)

 

Table 6.2: Registration results of the SITM and AOS methods, represented in (6.15) and (6.16) for

Example 2 shown in Figure 6.4 (a) — (b). * indicates either computation stopped after about 10 hours

or failure in dropping the relative residual to 107°.
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Chapter 7

A Fourth Order Variational

Image Registration Model and

Its Fast Multigrid Algorithm

Several PDE-based variational methods can be used for deformable imageregistration, mainly

differing in howregularisation to constrain deformation fields is imposed [104]. As mentioned

in the previous chapter, on one hand for smooth registration problems, models of elastic-,

diffusion-, and curvature-based image registration are known to generate globally smooth and

satisfactory deformationfields. On the other hand for non-smoothregistration problems, models

based on the total variation (TV) regularisation are better for preserving discontinuities of the

deformationfields.

In this chapter we propose and study a promising model that is based on a novel curvature

type regulariser and appearsto deliver excellent results for both registration problems. A related

work due to Fischer and Modersitzki [47] and then refined by Henn and Witsch [78] used an

approximation of the mean curvature and obtained improved results over previous models.

However, this chapter investigates the full curvature model and finds that the new curvature

model is more robust than approximated curvature models and leads to further improvement.

Associated with the new model is the apparentdifficulty in developing a fast solution as the

system of two coupled PDEsis highly nonlinear and of fourth order so standard application

of multigrid methods does not work. To end this, we first propose several fixed-point type

smoothers anduse both local Fourier analysis and numerical experiments to select the most

effective smoother which turns out to be a primal-dual based method. Finally we use the

recommended smoother with a FAS-NMGalgorithm for the new model. Numerical tests using

both synthetic and realistic images not only confirm that the proposed curvature model is more

robust in registration quality for a wide range of applications than previous work {104, 78], but

also that the proposed numerical algorithmis fast and accurate in delivering visually-pleasing

registration results.



7.1 Introduction

Let Rand 7’ denote a reference and a template image, respectively. Here the given images R and

7 are modelled as the continuous functions mapping from an image domain Q = [0,1]? C R?

into V = [0,1] C RJ. As already pointed out in §3.2, the registration problem can be posed as

the following minimisation problem:

min{ Jo(w) = D8? (R, Tu) + aR (u)} (7.1)

where the image intensities of the given images KR and 7’ are assumed to be comparable and

a > 0 is the regularisation parameter. Recall that

pase ae T(x u(x)) — R(x))’ dxDS? (u) = 5 f (u(x) RO%))? dx (7.2)
and

f (u) = (fi (uw), fo (w))" = (Lu — R) Au, Lu, (Lu — R) ug Tu)" (7.3)

is related to the first variation of DSS.

Below wereview the specific choice of R and the subsequent system in five commonly used

PDE models.

(1) Elastic image registration [8, 15, 104]: Choosing R in (7.1) by

2
Rema) = f ((u/4) > Onvtm + Argus)? EO/AV-w)?yee, (7a)

Q lym=1

leads to the Euler-Lagrange system of two second-order nonlinear PDEs:

fi (wu) a ((A + 21) Or, 0, U1 + HOw09 Ul + (A + H)Orye2U2) =0 <i

{ fo (u) — @((A+ B)Ory 22 tr + BO2U2 + (A+ 2p)Oro09t2) = 0, (clastic model) (7.5)

subject to (uw (Vu + (Vu)!) + Adiag(V - w), igs =0on AN.

(2) Diffusion image registration [33, 46, 89, 91, 104, 131]: Choosing R in (7.1) by

RIFCy xf |Vur|? dx, (7.6)
=52 1

leads to the Euler-Lagrange system of two second-order nonlinear PDEs:

{ : fd _ Ae _ ) (diffusion model) (7.7)

subject to (Vuj,)g2 = 0 on OQ.

(3) Fischer-Modersitzki’s curvature image registration [47, 48, 49, 89, 91, 104]: Choosing

in (7.1) by

REMewCy, = >=(Au)2 dx, (7.8)

~ 2a
leads to the Euler-Lagrange system of two fourth-order nonlinear PDEs:

Qai4 =

{ f ta) i" oe _ , (Fischer-Modersitzki’s curvature model) (7.9)

subject to the special boundary conditions Vu; = 0, VAw = 0 on OQ,for | = 1,2.
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(4) Henn-Witsch’s curvature image registration [79, 78, 73, 75, 74]. Choosing ® in (7.1) by

curv 1 7RAW (uj=5> [ian sosWize, = Urey )dx, (7.10)

leads to the Euler-Lagrange system of two modified fourth-order nonlinear PDEs:

{ fi(u) + aA?u, =0
fn) hake =0 (Henn-Witsch’s curvature model) (7.11)

subject to B;(uz) = 0 on OQ with

a a, Pu Pu PuB __ _ 2_ 2 _ 7
(wr) Faw 35 Exe m2) + (52 Feat) Meat)

and
O7uy

Balu) = See
where s denotes the unit tangential vector (orthogonal to 7).

(5) Total variation (TV) image registration [51, 53, 142]: Choosing 7 in (7.1) by

2
RET(u) = 3 | Vulgate, (7.12)

i=1 JQ

leads to the Euler-Lagrange system of two second-order nonlinear PDEs:

—aV:(“4_)=0
fi (w) i (Wale) (TV model) (7.13)

subject to (Vuj,)p2 = 0 on AQ.

As pointed out several times in the previous chapters, the first four models are quite dif-

ferent from the fifth one. Firstly, Res, RA, RFMervand REWerv produce globally smooth

deformationfields, although the latter two models are better than the former two. While they

are useful for several applications, they become poorif discontinuities or steep gradients in the

deformation fields are expected (e.g. resulting from matching several moved objects or par-

tially occluded objects). See Figures 7.1-7.2 for a particular registration problem where these

regularisation techniques yield oversmooth deformationfields.

Secondly, R°TY helps to preserve discontinuities of the deformation field in clear contrast

to the first four models; see Figures 7.3-7.4 for example, in particular the piecewise smoothness

R&TV may not be suitable for smoothshownin Figure 7.4 (c) at the top region. However,

registration problems, which are modelled better with the first four methods.

In addition to these five models, the optical flow models [2, 3, 18] are also widely used which

works the best if features have minor changes from K to 7’, e.g. in matching sequential frames

in a video.

Asis well-known,efficient solution of the coupled nonlinear PDEsresulting froma variational

registration modelis an important task. For registration purposes, various numerical techniques

based on unilevel and multilevel methods have been proposed andtested as briefly reviewed in



  

(c) Tu [Res] Raitt w [RET]

w [RFMeury] (g) TT, [RAWeury RNewC|

BGGg
Figure 7.1: Registered images for two rectangular blocks shown in (a) R and(b) T of size 32 x 32

(Example1: results by (c) R*!* with (u, A) = (1,1), (d)R", (e) RETY with 6 = 0.01, (f) REM’, (g)

RAWeury (hy) RNewSy with 6 = 0.01. A non-smooth deformation example to showthatourregistration

model RN**C” gives the satisfactory registration results as good as those from R?'Y, which is known

to be suitable. Here the regularisation parameter a was well-selected forall registration models.

83.6. However, the new fourth-order model to be proposed here cannot besolved byexisting

methods. The newalgorithmswill be presented shortly.

Therest of the chapter is organized as follows. §7.2 first presents a new PDE-based image

registration model based on a novel curvature regulariser suitable for both smooth and non-

smooth deformation problems and then discusses unilevel iterative numerical methods forit

in §7.3. §7.4 presents a fast multigrid approachafter first analysing someiterative solvers as

potential smoothers. Experimental results from real imagesillustrating the improved results

from the new model andtheefficiency from FAS-NMGare shown in 87.5 before conclusions in

87.6.
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(a) Relas (b) Raitt (c) RAETV

   

 

         

              Léa 0 0.2 0.4 0.6 0-8 1 620 oO? 04 06 0.8 1 eyo 02 0.6 0-6 0-8 1

Deformation field w= —u

Figure 7.2: Deformation fields for the non-smooth registration problem shown in Figure 7.1 (a)-(b)

(Example 1): results by (a) R°!** with (u, A) = (1,1), (6) R%*, (c) R°TY with 6 = 0.01, (d) REM’,
(e) REWemvand (f) RNevY with 8 = 0.01. The exact deformationfield is given by a shift of the

upperrectangular to the right and a shift of the lower rectangular totheleft; c.f. Figure 7.1 (a) — (0).

7.2. A new PDE-based image registration model

Motivated by the attractive properties of the Fischer—-Modersitzki’s curvature registration model

(7.8) improving on previous second order models (7.5) and (7.7), we consider an alternative

formulation that uses the full curvature information without approximations and hopeto achieve

further improvements in termsof registration quality. It turns out that a model that minimises

the curvatures along level lines is the right model to study while a model uses the (mean)

curvature

2 2

RM (uz) =). Vur _ Ot, Vitiig ay —21g, Yes Mey ay tC +tis, Moyea
JV14|V ul? ~ (+7, +uj,, )3 2

cannot achieve such an aim.

Instead of using Kas(uz), we consider the curvature of the level lines to allow displacement

discontinuities

2 2

vu, _ (Pty, Mie, 2a Mag Meyag HBTMeg Mlegeg
[Vurlg (B+uj, +47, )3/2 ’ K(w) = V-

and proposethe following regulariser

2
RNewCv (y) = S> B(K(uz))dx.

l=1/J9

Due to the sum rule, the following theorem can be used to compute the first variation of

RNewCv
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(e) Tu [ROY]

Figure 7.3: Registered images for X-ray images shownin (a) R and (b) T' of size 128 x 128 (Example 2):

results by (c) R°!** with (y, A) = (1,1), (d) R*, (ec) R°TY with B = 0.01, (f) RFM™Y, (g) RAW,
NewCv(h) RNewSv, A smooth deformation example to show that our registration model R gives the

. . . miy WWeurv .
satisfactory registration results as good as those from R*M°"'Y and REY’, which are known to be

suitable. Here the regularisation parameter a was well-selected for all registration models.

Theorem 7.2.1 Let ® be a given function andlet

azNewCv
R (uw) = [ Polu)ax.

mm: . . ~ayNewCu . .
Thenthefirst variation of R (uz) is given by

=~NewCv . 7 ; 1 isl iox'hs _ Vu V0'(«(uz))
OR (wism) = [eo (Fal? («(uz)) vasVui))mdx

en ae+ [. '(#«(uz)) Co (I-P)V nm)| ds

-f ( : — P) V(O'(x(u)).) mds, (7.14)
aa R2
 
|Vui|

where I is the identity transform and P = Vue = n @ m7 is the orthogonal projection

onto the normal direction.



   

 

   87a? 04 06 08 1

(e) RAWcurv  
   

            LETT? oe 06 08 1 eo 02 04 06 08 1 LET 002 04 06 08 1

Deformation field w= —u

Figure 7.4: Deformation fields for the smooth registration problem shown in Figure 7.3 (a)-(b) (Ex-

ample 2): results by (a) R°!** with (u,) = (1,1), (b) R&*, (c) R°TY with 6 = 0.01, (d) RPM”,(e)

REWeurv and (f) RNe*o’. (c) shows the piecewise constant smoothness at the top region by R&TY.

Proof.

NewCv d —NewCv

oR (ui;m) = a (ui + em)
 e=0

= J [Pes+oma
 e=0

 

 

           

_ | £B(s(w + em) de
Q aE e=0

~ [,orcemigavom
dx

Q e=0

= fruZeeeet]ax
d Worn

=[PanPlate 
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Figure 7.5: Surface plots of ui for the non-smooth registration problem shown in Figure 7.1 (a)-(b)

(Example 1): results by RN®’°” with (a) @ = 1 and (b) 8 = 0.01. (a) and (6) show smoothing effects

on the surface of ui at two different values of .

or

TRusm) =f &/(n(un) (v. (were ‘pet
Q |V (ur + em)| de

d 1
+ V(ur + ©) Fe

V

n

Fem)“*

_ fa Vn 2 O[(ui., + €Mer)? + (Utzg + Mea)?|”?
= felon) (v | (em Wa2 Duin, + Man) *

))*
, (wm 2 Wm Mem= fetaEB — VuYoSeem)

Vn Vu
= dx.= feelu GE — (Wms)Vn) x

 e=0

 

  

Au, + Mam)? O(ur,,, + Mam )
O(ur,,,, + €Mam) de
 

 

After applying the divergence theorem, we get

=yNewCv ! Vm Vu n)
oR sm) = ® Vu Vn, ds(usm) fi atu) (SE — (Vu vetsmemon)

' Vn
- [ (ve ((we))s Fg, ~ Vm veiBwaeIm) dx

1 1 Vu=[eu(Goa (VuSe)Vann)ds

‘(kK | ig U Vu x~ f (veep), SoWuets)Vm)a
“e(u))( 2— (1-= f sta)(a (I- P) Vin)ds

HereI is the identity transform and P = Vuiwuaz = 7% @ is the orthogonal projection onto
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the normal direction. By using the divergence theorem with the second term, we have

AyNewCv 1
OR (wis m) = ®'(K(uz)) (oe (I-P) Vm, n) . ds

0Q R

1 /+ [(V- aay E- P) VO" wlon)))))a

_ [. (a (IP) VE@'(s(u))om) nds

or

a>NewCv

BR (wim) = [ov -( !

Vu

V"(«(a))
Way9OM) — —TFaIy8

j 1
+ I. ® (K(uz)) (an (I —= P) Vin) ds

1 Ab_ [. (oa (-P)V(@ (x(u)).m) mds,

which concludes the proof. m

Let R(u) = RNewCv(u). Then by the sumrule, (3.8), and Theorem 7.2.1, the Euler-

 Vui))madx

Lagrange equations of (7.1) are given by

 

 

1 , Vu: V8'(K(ur))
+aV- Vo 11)) - ——————Vu) = 0fi(u) a (Fale («(w1)) (Veils) ut)

Vi=(ViV2)T
(new curvature-type model)

1 ; Vu2- V0'(K(u2))
+aV Vo = Vin) = 0P+ ON ag 02) ual)
 ———

V2=(Vi,V2)T

(7.15)

or in a compact notation

fo(u) +aV - V2 =0, (7.16)

subject to the natural boundary conditions (Vuj,n)g2 = 0 and (V®'(K(u)),)g2 = 0 on AQ.

{ fi(u) +aV-V,=0,

Here we remarkfirst that the boundary conditions (Vu, 2),2 = 0 and (V®'(K(w)), 2)p,2 = 0 on

OQ are used to drop the first and second boundary integrals in (7.14), respectively. Second we

remark that this work mainly considers the case of ®(s) = $s? although the general notation

allows for other choices.

The proposed regularising functional RNe’C” has the following properties: i) RNevo’(Ax +

b) = 0 for A € R®*? and b € R?, ie RNewCY has the same property as the original idea

of Fischer—Modersitzki’s curvature approach. ii) It preserves discontinuities of wu because the

Wule — 0 and ve

for non-smooth deformation problems the new PDE modelpreserves discontinuities of u by

diffusion coefficients — 0 when Vils — oo. In other words,

reducing or stopping the diffusion (smoothing) process in inhomogeneous regions presenting

large gradients. iii) RNewCv reduces to RFMe™v jn (7.8) if |Vul| ~ 0 and we take 8 = 1.

However 2 < 1 is required for non-smooth deformation problems. From now onweshall use

the notation RNewCY to mean the full curvature model (7.15) and its numerical solutionsis

discussed next.
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7.3 Numerical solution of the PDE system

While variational models have made many contributions in high-resolution image processing, a

major challenge is to implement fast and stable numerical algorithmsfor solving the associated

Euler-Lagrange systems. In this section we briefly review possible numerical methods that have

beenstudied for other models and could be consideredfor solving (7.16). To proceed, we denote

the discrete domain consisting of N = n? cells of size h x h by

Qn = {x € Ox = (21,,22;)" = ((2i— 1) h/2, (25 — 1) h/2), 1 <i, 9 <n}

throughout this section where h = 1/n denotes the grid space.

Finite difference discretisation. We shall use a cell-centered finite difference approxima-

tion for the underlying PDEs.Forsimplicity, let (u?);,; = uP(a1,, X2,) denote the grid functions

for /= 1,2. After discretising (7.16), the grid systemat (7,7) € Qn is given by

SP lubhes +aV: (Vitis =0
———

Ni (u*):,j heh). —
ie. Meigs 0, (7.17)h

Ny
j=

hy. . =

futu)ig+V-(VD)ig =0 (wi)ig = 0,
SS

Na (u")i,5

subject to the discrete boundary conditions,

(uf): 1 = (uf)i,25 (uf )in = (uPins (ul). = (uj')235 (uf! ea = (ul)nays

(7.18)

 

B'(K(up'))in = O'(w(uf))i2,  O(K(up))in = O(K(up)in—1,
O'(K(up))1g = O'(R(up) aj, OK(up) ng = O'(R(ul) n—1,35

with the following notation for the fitting terms f; from (7.3)

fo (uf ,u3),, = (Py — RR )((CLPj41 — L25-1)/ (2h),

18) = OMG + (al), 9 + Og)
(w")i5 = (Cute, (Ud )ag)-

Here we approximate the term V - (V/');,; as follows:

av; ave Viti —\YDiG VPase — Vis. Jt)= , 2 ~ 7.19
( Or, dig ( Ory dig h t h ( )

Therefore, we need to calculate V;! at the grid points (i + 1,7) and (i,7) and V/? at the grid

points (7,7 +1) and (7,7). Below welist the approximation used in our numericalrealisations



for estimating V,' at the grid point (7,7):

  
(ul Soy OF(uP)ig/h

SLE a+ OR GaPca lM? + OE (uP/hP
oa bt, (u Jing /h
 

 

MM B+ (ts (uPing [W)? + (Bid(al)/B)?
uf, = On, (ur),5 /Ps

uf, = On (ut),; /h,

Om (ul),5 = = (Cul )izig — (uti) » Oe (ul),5 = + ((CuP)igar — (uaa) ,

[Vurla = 8 + (6c(uh )an5/h)? + (8d(ub )ig /h)?,
(®'(x(w1)) Jay = [B'(w(ur)i4t5) — O'((ur)ig)]/h,

(®'(K(ur)) oo = [B'(w(w)ij+1) — O' («6 (ur)ig)]/A-

 

Discretisation for V;' at the grid point (i + 1,7) and V/? at the grid points (7,7 + 1) and(i, 7)

can be givensimilarly.

7.3.1 Method 1 — A semi-implicit time marching (SITM) method

As discussed in §3.5.1, the main idea of time marching approachesis to introduceanartificial

time variable t and compute the steady-state solution of the system of time-dependent PDEs

of the form:

{ Oyu (x; t) +N(u(x; t)) = 0
Opuy(x; t) + No(u(x;t)) = 0

where

A) = Huber Helos (oe _ Wut) VB(5(Hl)N(u(x; t)) = fi(u(x;t))+aV WinsDe® («(ui(x; €))) Wate d)/3 Vui(x; )).

In order to overcome the nonlinearity and higher-order derivatives of N), we linearise the

associated system respect to the (k + 1)th time-step using the methodof ‘frozen coefficients’

and define the iteration step as follows:

k lin k(ulF#D), — (u! ej — Ny" (ult),ia B. An (uy(ut rh = By (u);5,
1

tin k k

(uf), = (us); j _ TN, (u(R+1)); Ao(us Y(us 1), = Bo(u);5,
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or in full details

,

Vul*) . Vom(UL)(k+1) (k+1)ig UY) i5 =i Jig +UY): 5
\Vuf |3
 

Ar(ul? (alkFY), j
k

(uf ij ~ Tlf (uo); +aV- CreatasPea

Uy )ijlB

Bi(ul*));

 

(7.20)
COMTI ARG)

mary «(eeDaudi).+(ug =
|Vu5 I'3
 

Aa(us))(uf); 5

(ul),5 — Thfe(u),5 + a -(—a—k)|Vus) |
Bo(ul*));, 5

Vo" (K(uy”)) ij]
  

which is a semi-implicit time marching schemefor (7.16). Here the symbol hin the previous

section is dropped for simplicity and we denote by

i Vo! («(ul*))) —

M
u
y

WielDypreyNi"(ul*)), 5 = fi(u™), +a (——
’ [Vat|g \Vut”3

t,j°

(7.21)

the frozen operator, linearised at a grid point (7,7). We note that this frozen operator allows

us to solve (7.16) as the system of two second-order PDEs for each time step k because the

coefficients from the higher-order derivatives are frozen in the associated discrete system.

7.3.2 Method 2 — A stabilised semi-implicit time marching (SSITM)
method

Although this above idea of linearisation via semi-implicitness seems reasonable, we found

experimentally that this numerical scheme (7.20) is only stable when 7 is small and small 7

will lead to slow convergence in the overall registration process. The reason for this stability

problemis that the discrete system has a highly nonlinear coefficient Secthat can

easily change its sign for large 7 so neither positive-definiteness nor diagonal dominance can be

guaranteed for numerical schemes of the underlying system (a matrix formof (7.20))

Ai(ul”) 0 ulhth) _ ( Bi (u“?) )

0 Ao(u(*?) uth) B2(u?)
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In order to improve stability, the stabilising terms based on the so-called convezity-splitting

techniques developed in different contexts ([14, 44, 45]) may be addedas follows:

k+1) Vul®). VB! (6 (ul® k+1 k+1 k kTF(Eig = ar«(ig+ (UE )ig = TFC Jig + (wre
= T[fi(UJig + OV (SeVO(«(up))i]

k+1 Vu’). 7b!(5 (us®) k+1 k+1 k k

natFu Jig — arOcaTOY+ (UY i3 =Fe ig + (a):

— t[f2(u” Jig ta- (sanswalVO'(K (uf4]

(7.22)

where y > 0 and F(u) is some appropriate partial differential operator arising from the

minimisation of a convex functional, such asf, |Vuj|dx or fi, |Vui|?dx.

Note that + = 1 as |Vul”| 0 for smooth problems (@ = 1) and wT — 0as
|Vul ls l ul) |g

(k+1)

|Vul™ — oo for non-smooth problems (@ < 1). Therefore, F(u;fet) lig = -V- pe digg
iVup” |,

smooths wu isotropically inside homogeneousregions corresponding to weak gradients and pre-

serves discontinuities of u in inhomogeneous regions representing large gradients by reduc-

a, a ys (ay, - ap-
a —_ k 4,JJ [Vu |g209

pears to be an apropriate choice for both smooth and non-smoothregistration problems, while

ing or stopping diffusion process. As a consequence, F(u,

F(ul®*)), = —-A(u;(k+1Ne is only suitable for smoothcases.

7.3.3. Method 3 — Fixed-point (FP) methods

As is well-known [137, 27, 30], fixed-point (FP) methods are usually faster than time marching

approaches when appropriate FP schemes are applied. To try this idea, we use a similar
[v+1] ulti)

linearisation to the above (7.22) plus a linearised version of fi(u; ', U5 via a typical

Taylor’s expansion as follows

Fallal) ww fill ul) + Ou, fall, whoa”! + Ong filet’), aff oul,

== jutal+ offloull + ofloull,
= ful ull) + oll (yl+4) - ul) + ol]eth ull!) (7.23)

where

oft = Buy file), wh!) = (Ou,Lu0i)(Ouy Luter) + (Luter — B) (Our uy L012)

and

Op) = Aun flay’, uy") = (Aus Lutes )(Oun Lye) + (Lute ~ 2) @Ougu Lute):
Then a FP scheme of (7.16) can be given by (for v = 0,1, 2,3,...)

[v+1] [y] [v+1]uv) K(U Vv Vv—aV(SEguys + (otis eg + (td ea(ue ig =
(all),jul)j + (eg (ulig — filulig —oV- (SaVOis.

Vulll V8! («(u v] y v+1 v v+l1

oNeeuyig + (opi (Ue ia + (oy)stu ag =
(oleh).jul)g + (eg(alti — fol)g — 0- (SoeVO"wudDia.

(7.24)
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Note that oll (1,m = 1,2) can be refined further as mentioned in §5.3.1, i.e. ol) == ott] and

Olin = (Buy Lat) (OuLute:
Unfortunately, we found experimentally that this FP schemeis neither stable or conver-

gent. This difficulty arises from the unbalanced terms in the resulting discrete system. For

example, fixing @ = 10~? in the flat regions where a = 0 reduces the diffusion coefficient

Se ~ O(10°) compared with that of only WarWale ~ O(10?) for the TV restoration

case [118, 137].

7.3.4 Method 4 — A stabilised fixed-point (SFP) method

In order to improve the FP scheme (7.24), the convexity-splitting idea [14, 44, 45] is again

considered by adding stabilised terms as follows:

VY “gl”v] K ul’])) Vv Vv Vv Vv VvnF(ulag — a(STvalag + OH(ulDig + (Ot)ialueag =
Flute ag + (OPM alate eg + (ois (alll) ag — fale),
-aV + (4-VO"(n(ul)))i3

|\Vuy la ,

Vv ul”] Vi (kK ul) v Vv y y VvFull N).s = a(LSetle),+ (obsslalfea + (obDia(el Dia =
oF(ub!)+ (2th(urDig + (oiuaa — foul)g
—aV - (pal,VO" (nsK(uUs eg

| (7.25)

and weshall namethis resulting FP schemeas the stabilised fixed-point (SFP) method.
alt

As mentioned in Method 2, we also found that Ful’) =-V- Ce) is a suitable
i |6

choice for both smooth and non-smoothregistration problems. Therefore, our SFP method can

be explicitly expressed as follows:

 

 

NSFPyylett _ Geerpg (7.26)

where

_ SFP, [Hy [v] F [v]
NSFPyl} = a[ur ding (12 Jigi, GFPyl) = Ge

(031 Dis al" [uy Ji,j (G2);

(»] Vul" ly [] Wy fe) [v]
(Gi); =—nV- oul, + (on ag(ur ag + (ig ag te ag — Ale )e5

U; |B

—aV -(———V0'(«(ul”)));.;
|Vul"|s co

and

Di(ul¥)

v] . y [vy]
£SFP ly, (ul!4), =. (( vA + Vu; Vo (a(t, Dyvuletth, +4 (oll), (uty,1 L Hig YY J ra i l j W Jig j

|Vu; |a Vu; 3

In each SFP outeriteration v, the PCGS relaxation method is used as the inner solver in

our numerical scheme to solve approximately the associated linear system. Here the kth PCGS

136



step is given by
—1 .

(ulead _ (NSP!) (GaP?[ply (7.27)

where

NSFP yl¥},5 = a(E!),;i/++ (of)..5 lH (ot).5 be
(951 Jas a(e3")i,g/h? + (099 )i,3

g
A \[v lv](Go)!! + (Dy")i,5 (ugRI

q, \%. Sait! : :

(GSFP lyPayiett/al ( ( el + a(Xy ag (tee )

2 ig

(oPl.j = 2Dia(uleg + Du (ale,,+ Dra(ul);.3),

yl] v v Vv y y ;EP ag (ul VAT = 1h?) (Draulisdel DE5 + Dus (ul)sg Cal”AY
+(Drs(uf sg )(upNL, + Diauf))sg(uf?HY)

Du ul”Neg = Diy[ely Lj Dolull!);; = Dial)ej—1, Dis(ul”!);,5 = Di(ul”!),,5.

We remark that other iterative techniques such as the line relaxation techniques or the pre-

conditioned conjugate gradient method may also be used as an inner solver. However, the

PCGSrelaxation method appears a cheaper option. Finally, we note that the stabilising terms

—1V - on and ofl lead the system (7.26) to be strictly or irreducibly diagonally domi-

nant. This guarantees the existence of a unique solution of each linearised system and global

convergence of the Jacobi and GSiterations [117, 121].

7.3.5 Method 5 — A primal-dual fixed-point (PDFP) method

In designing alternative methods for (7.16), we note that the previous four methods tackle the

nonlinearity in some way. Below we consider anidea fromreducing the higher-order derivatives.

In fact, higher-order PDEs (in the context of mixed finite elements or in the denoising model

[25]) as well as higher order ordinary differential equations are often reduced to low orders

before numerical solution.

In order to apply this idea to (7.16), our first step is to introduce suitable intermediate

variables (which we shall call dual variables)

  vy = —®'(K(u1)) =—-V- es and vg = —®'(K(u2)) = -V-
1\a |Vu2|g?

leading to the equivalent system of four second-order nonlinear PDEs given by

Vu =

[Varia 91 9

ae_ Vu uy (—Vo1 _
fi(u)-—aV- (wins + TimsV1) = 93

Vua2-( Vow)
fo(u)—aV- wes *F eaVea) == ga

 

(7.28)

 

subject to the boundary conditions transferred into Vu; = 0 and Vu; = 0 for t = 1,2 where

g=O0 (l= 1, ..., 4). The next step is to linearise (7.28) by a FP schemeas follows:

NPDFP gle}gle] _ aaall (7.29)
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wherelinearisation for f; (ult ul’)
(uPrd ulti yt lttyt

is as in (7.23), 2/41 = (2b”41), tettet eet

’

—L, (ul) 0 1 0

NPDFP [gl+l) = 0 —Lo[uly) 8 -l
ol’ [I —aly[uy’] 0 ,
ol] ot] 0 —alo| )

GPPFP (ZI) = (G1, 90,94, ge)",
Dull

u(u; ”)
_ a

LaluNaf=V(tvet = eet= ult or of),
L

Vv vy] [v v| [vy Vulll. (volt VvGe = 93 — fi(ul”I abl) + oll 4 oulSa -(~Tae ul),

and
Vull] (-Vow

Al = au — fatal! ul!) + ofall + offal 4 av -(EEval)
Here discretisation of (7.29) is done as in §7.3. We shall call this numerical scheme by a primal-

dual fixed-point (PDFP) method because it includes the primal variables u,, wa and the dual

variables v1, v2 in a FP scheme. We remark that other choices of selecting the dual variables

for (7.16) were also tested, but did not work well. For example, introducing the new variables

=» 1 ; Vu, V'(K(u1))
V1= |VuilaVe («(u1)) [Vuil§ Vu

and
_ 1 ; Vuz- V8'(K(u2))
V2 ~ 1Vualeve (K(u2)) |Vual3 Vu2

can only reduce the resulting PDEs to order three systems. We note further that in our

numerical scheme each PDFP outer step is solved using a PCGSrelaxation method (as with

Method 4 of §7.3.4) as the inner linear solver. Here, such an inner solution step is given by

(gletila _ (NPDFP [gl],3) -1(GPDFP[ghar (7.30)

where

(ol),5 /h? 0 -1 0

NPDFP (Zt, _ a (32)pa/h? | i" —1 , (7.31)

(oy; Jig (12 dij a(d) Jig [h? si 7

(of); (oNig 0 ads Jang [PP

(nig + Eydig (ulA
(GPDEP [tet(+1/21 _

|

(gig + Bdcla | ray

(Ga)+ a(dy digo)!
Gael +a)coh

(SP),5 = 2Dis(ul).5 + Baul’).+ Dial)i3), (7.33)

138



and

=] v+l1]\[k 2 = y vy = Vv vy +

By aaAY=fh) (Dalal).ye5 + Du (ul)s-as yee yey
+(Dis(ul).s(ey + DalaligaTNEM). (7.34)

Du(ut)i5 = Dilut)i-15, Dolupig = Dilut)ig1, Dis(up)ig = Dilup)ig. (7-35)

We note that the approximations in (7.30) — (7.35) need to be adjusted at the image boundary

OQ, using the homogeneous Neumann boundary conditionsi.e.

  

    
    

       
  

 

          

hy. _ ah h _ (yh hy. _(ah h h
(ia = (ef )i2, (Pin = (Pinas (Faz = (flag, (ng = (@)n-13- (7.36)

(a)Example 1 - SSD by 3 methods (b)Example 2 - SSD by 3 methods
Rel. SSD VS.No.Iteration Rel. SSD VS.No.Iteration
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(c)Example 1 - RRes by 3 methods (d)Example 2 - RRes by 3 methods
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Figure 7.6: Numerical results by Method 2 (SSITM(7.22)), Method 4 (SFP with the FP parameter

Y = Y= Yo=1/VB), and Method 5 (PDFP) for Example 1 (in a 32 x 32 grid as shownin Figure 7.1

(a) — (b)) and Example 2 (as shownin Figure 7.3 (a) — (b)). The top two plots show the relative errors

in SSD and the bottomplots show therelative residuals versus iterations. Clearly Method 5 (PDFP)

performs muchbetter than the other two methods.

We have so far presented five numerical methods for solving (7.16) where Method 2 is en-

forced by Method 4 and Method3 isless efficient. So it remainsto test the overall performances

of the three numerical schemes (i.e. Methods 2,4,5). We tested themfor both the smooth Ex-

ample 2 and the non-smooth Example 1 as respectively shownin Figure 7.3 (a)-(b) and Figure
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(e)Example 1 - Old vs New Res by Method 5 (f) Example 2 - Old vs New Res by Method 5
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Figure 7.7: Comparison of the relative residuals by Method 5 using both the original system

(7.16) and the equivalent system(7.28).

7.1 (a)-(b). The test results shown in Figure 7.6 (a)-(d) show that the new Method 5 performs

much better than the others. In particular, as shown Figure 7.7, Method 5 indeed solves the

original system (7.16) as expected through an equivalent system.

Although the above tests show that Method 5 is recommended as a unilevel method, our

next task is to select a suitable smoother from these methods for designing a convergent MG

methodfor (7.16). To proceed, we shall use a local Fourier analysis to decide which method (4

or 5) is better suited for our purpose. As it turns out, Method 5 is indeed the better method

but, even so, modification is still needed for it to be an effective smoother.

7.4 A nonlinear multigrid method

Multigrid techniques [12, 67, 134, 139, 140] have been proved to be very useful in the context of

deformable image registration for solving large systems of linear or nonlinear equations arising

from high-resolution digital images and real-life applications as briefly reviewed in 83.6.

As is well-known, a working MG has 3 main components: (i) Smoothing via aniterative

method; (ii) Restriction froma fine grid to a coarse grid; (iii) Interpolation from a coarse grid

to a fine one. Onthe coarsest grid, an effective unilevel solver is used for accurate solution; here

we shall use Method 5. Without reducing the importance of the restriction and interpolation

operators, the efficiency of every MG method strongly relies on the efficiency of the smoother

used at each level. We shall first discuss the choice of smoothers before presenting the overall

algorithm.

7.4.1 Local Fourier analysis (LFA)

In this section we shall use the LFA is to analyse the smoothing properties of the proposed

smoothers, which are Methods 4 and 5, before considering improvements.
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Analysis of Method 4 (Smoother 1)

Here we will compute the smoothing factor of Method 4 iterations (as our Smoother 1 shortly)

applied to the linearised system N?FP(a"]u" = GSFP[a"] obtained by freezing coefficients in

(7.26) at some outer step. Here u” and @” denote the exact solution and the current approxi-

mation and N$FPf@z"} and G$FP[z"] the resulting discrete operators from the linearisation at

au”. The analysis is carried out over the infinite grid

OP = {x € Q|x = (21,,22,)' = (27-1) h/2, (27 — 1) h/2)', 1,7 € 27}. (7.37)

Let y,(0,x) = exp(i@x/h) - I be grid functions, where I = (1,1)', 8 = (0:,02)' € O =

(—7,7]?, x € OF, and i= /—1. It is important to remark that due to the locality nature of

LFA, our analysis applies to each grid point separately i.e., sz is matrix each oneofits entries

representing the smoothing factor for each grid point € = (7,7). Hence we define pujoc = fe(E)

as the local smoothing factor and fijo, as the worst possible value of fujoc over Q,. Thus for

Method4 from(7.27)

Flige, = WAX Hige

To determine pp? we considerthe local discrete system N?FP(€)u"(€) = GPFP(€) centered

and defined only within a small neighborhood of € and w(€) = [ul(€),u8(€)] . By using the

splitting N3FP(é) = NSFP(é) + NPFP-(é), it is possible to write the local inner iterations of

Method 4 as

Natt (E)aew(€) + NR(EVaora() = GaP? (6) (7.38)new

where @),(€) and @?.,,(€) stand for the approximations to u!(€) before and after the inner

smoothing step, respectively. Here

srptie) | eft(€)

—

oy2(€) srp—e, __

|

~a£t!Te) :N=

|

ey ectltley [> Ne = 0 -acille) |’

1 0 ° ;—£y"(6) = 55

|

—DaGilé)) Sul) + (H/a)oulé) 0
0 —Diu ai(§)) 0

and
,

|

® —Pis(é)) 0
—£rl(@) = | ° 0 —Di3(%i(§))

0 0 0

By subtracting (7.38) from N?FP(€)u"(¢) = GPFP(€) and defining e”4 (€) = uP (€) — u*,., (€)

and @”,,(€) = u"(€) — uw"4(€) we obtain the local systemof error equations

NAPPt (Erew (€) + Nir (€)era(€) =0 (7.39)

or

Erew(€) = Spr” (E)Evua(§) (7.40)new

where

SRFP(é) = — [NFFP*(8)]



is the amplification factor. The effect of S3¥P(€) on the grid functions y,,(@,x) within Ohign =

@\[-—7/2, 2/2)" will determine the smoothing properties of Method 4. Thus, pe (€) and

ci] (€) are defined in the Fourier modes by

Jja (mul) + (h? /a)ou(€) — Du (€) exp(—i91) — Di2(€) exp(—i92)))6)(6,8) =

and
_ 1 ; .Ly (6,8) = — (Dia (€)(exp(i01) + exp(i82)))

and the local smoothingfactoris

Hige, = Sup{|p(Sp(£,9))| : 8€ Onigh} (7.41)

where p indicates the spectral radius of

=]. _

Si? (E,0) = — [NAP*(é,0)] [NiT? (é,8)]-

Ona discrete grid of [—7/2, 7/2], we shall be able to estimate the above factor shortly.

Analysis of Method 5 (Smoother2)

Now weconsider the smoothing factor of Method 5 from (7.29). To this end NPPFP[z’jzh =

GPDFPizh) will denote the linearised system with z” and Z” the exact solution and current

approximation. Here the grid function is defined by »,,(8,x) = exp(i@x/h) -I, where I =

(1,1,1,1)'. The local inneriterations for the PDFP algorithmcan therefore be written as

 

NP(€)Zhew(E) + NAEP(Zia (6) = GRPFP (6) (7.42)

where alt]
—£y'"'(é) a -1 0

NPDFP+(¢) — 0 La" (5) a | ,OFT on onl) alt"
1(§) F9(§) 0 ~aby'*"(g)

"0 0 a °
— ph a

0 0 0 —aly'|(€)

~ 1 . 0 ’ "-'Q) =| Dowd) 2%) 0 |
0 —Di(mi(§)) 0

and
nl) 1

|

9 —Peals)) 0
Ly og) = mm

|

? 0 —Dy3(ti(€))
0 0 0

Following the similar process of subtracting (7.42) from NPPFP(é)z"(€) = GPPFP(E) one

obtains the system of local error equations N},?F?*(€)eh..,, (€) + NyPPP(jera(€) = 0 or

er (€)= SPDFP(eer4 (€) where era(€) = zh(€) _ Zea (€) and Bale) = zh(€) aw () arenew
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the error functions and SPPFP(g) = — [NPDFP+(¢)]~ [Njpr? (€)]. Hence, by considering

the grid functions y,(8,x), we can represent LV, 6) and che, 9) in the Fourier modes

by

—E1(E, 8) = 5 5x(€)— Bul) exp(-i@s) — Bra(€) exp(—i02))
and

—F'1(€, 8) = ~5 Dis(€)(exp is) + exp(i8.))).
From here, the PDFP local smoothing factor is defined by

Mice= sup{|p(Sp""” (E,))| : 8€ Onigh}- (7.43)

The effectiveness of the above 2 smoothers (i.e. Methods 4,5) is now tested by computing

their smooth rates for Examples 1 — 2. The following Table 7.1 summarises the smoothing

factors of Smoother 1 (SFP) and Smoother 2 (PDFP) for Examples 1 — 2. Clearly for the

 

Smoother Example 1 (non-smooth) Example 2 (smooth)

1 0.9410 0.6825

2 0.9412 0.5212

 

 

    
 

Table 7.1: Smoothing factors joe after 10 outer iterations with PCGSiter = 10 by the SFP- and

PDFP-type smoothers for the smooth and non-smoothregistration problems in Examples 1 — 2 as

shownrespectively in Figure 7.1 (a) — (b) and 7.3 (a)-(b).

smooth Example 2, both Smoothers 1 and 2 are effective and in particular Smoother2 is better

than Smoother 1. But for the non-smooth Example 1, they are muchless efficient. Next we

consider a method to improve the smoothers and primarily to improve Smoother 2.

7.4.2 A new smoother and its analysis (Smoother 2*)

Recall that jz is a matrix of amplification factors, whose maximum defines the smoothing factor

as in (7.41) and (7.43). It turns out that the largest entries of 4 coincide with locations where

we observe strong jumps ofthe diffusion coefficients D),(€). Therefore, our idea of modifying

the smoothers is to seek alternative ways to update the solutions wherethe diffusion coefficients

have large jumps. Denote by set W all those pixels with such large coefficients jumps. The

whole domain Q;, = WU (Qn\W) admits two different iterative solvers.

We consider an under-relaxation idea for the sub-domain W (representing the jumps of

Di(€)) by updating all these odd points by

(ghtlee =(1- w) (all) 4 w(NPPFPzl,,) “1 (GPPFP glyes1/1 (7.44)
a
 

Standard PCGSstep

where w is to be chosen next. As with the previous section, we can analyse the smoothing

factor for the w—PCGSrelaxation method in (7.44) by the LFA in the similar way to (7.30).

Here

—£+(¢@) and — £)' 1(é,6)
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are given by

e 1 ~ = ~
—£))(€,8) = 75 (Su(€) — wD(6) exp(—i01) — wDia(€) exp(—i02)) (7.45)

and
ey 1 ~ =

—fpl le, O)= 7a — w)31(€) — wDis(€)(exp (id) + exp(i82))). (7.46)

Further with the updated formulae for pel od at set W, the amplification factor p(SEDFP I)

is similarly defined using the updated formulae for SPPFP "(¢) = — [N;PFP*(¢)] “I [NPPFP-(8)].

Finally the overall smoothing factor is

Moc| = Max sup {[p(S,"" "(E,9))| : OE Onign}, sup {|p(S,"P(E, 4))) : Be ena}
ecw £e0n\W

For completeness, we also applied this idea of introducing w in W for Smoother 1 (SFP from

(7.27)) and did a similar LFA analysis. For the same test examples as with Table 7.1, we

now show the improved smoothing rates computed for the modified smoothers in Table 7.2

where we name the modified Smoother 2 (i.e. Method 5, PDFP II) as Smoother 2* and the

modified Smoother 1 (i.e. from Method 4, SFP IT) as Smoother 1*. Clearly we see that the

above under-relaxation idea does help improve Smoothers 1, 2; since more improvement can be

observed in Smoother 2* (PDFP II) over Smoother 2 (PDFP), we shall take Smoother 2* as

our recommended smoother.

 

 

 

Smoother Example 1 (non-smooth) Example 2 (smooth)

1* (w = 0.7) 0.8324 0.6711

2* (w = 0.7) 0.7613 0.5210     
 

Table 7.2: Improved smoothing factors joc after using w under-relaxation idea in sub-domain W

Examples 1 — 2.

7.4.3 Nonlinear multigrid algorithm

FAS-NMG method has becomeanefficient approach for solving nonlinear problems, in partic-

ular image processing applications. Here instead of a scalar PDE we have a coupled system of

four second-order nonlinear PDEs from(7.28):

Niu!) = of
N(u)=g", ie.

Niu") = gt

involving the nonlinear partial differential operator Ne (u") given by the left-hand side of

(7.28), where g; = 0 on thefinest grid, for t=1,...4.

In our FAS-NMGframework for solving (7.16) via (7.28). Standard coarseningis used first

in computing the coarse-grid domain Qy by doubling the grid size in each space direction,

ie. h — 2h = H. Secondfor intergrid transfer operators between Q;, and Q7,, the averaging

and bi-linear interpolation techniques are used for the restriction and interpolation operators
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denotedrespectively by J! and /},. In order to compute the coarse-grid operator of N/j'(u")

consisting of two mainparts: f/(u?,u%) and Lh (ul), the DCA methodis used.

Below, we present our recommended Smoother 2* (modified Method 5) as an algorithm

before presentation of the overall algorithmfor solving (7.16).

Algorithm 7.4.1 (Recommended Smoother 2* (PDFP II))

Denote by

a regularisation parameter

w relaxation parameter

K >0- tolerance (typically K = 10)

PCGSiter the maximum numberof PCGSiterations

[2"] <— Smoother ,gh gh gn. gt, R",T",a,w, K, PCGSiter)
 

e Use input parameters to compute (1m )i,j, (GPPF? [Z"}):.,,,
and (N*PPFP iz");3)~! for lm =1,2and1<ij<n

e Perform PCGSsteps

— fork = 1: PCGSiter

—fori=1:n

—forj=l1:n

— if D(%)ij > K » mean{Dy (%)i,;, Dia(t)i,j, Ds (%)i,j} for /= 1 or 2
— Set w= 0.7

else

— Set w = 0.0

end

— Compute(z" oe using (7.30)
s\[kt+1) _ ; =) [k] shy[k+1)

4 -(@)ip  =A-&)(2)i5 +4(2 55
— én

— end

— end

 

To solve (7.28) numerically, our FAS-NMG method with the proposed MG smoother given

by Algorithm 7.4.1 is applied recursively downto the coarsest grid consisting of a small number

of grid points, typically 8 x 8. A pseudo-code implementation of our FAS multigrid methodis

then summarised in the following algorithm:

Algorithm 7.4.2 (FAS-NMG Algorithm)

Denote FAS-NMGparameters as follows:

Y, pre-smoothing steps on eachlevel

V2 post-smoothing steps oneach level

Le the number of multigrid cycles on each level (#= 1 for V—cycling and zp = 2 for W—cycling).

[Here we present the V—cycle with p= 1]

a regularisation parameter

Ww relaxation parameter

kK >0_ tolerance

PCGSiter the maximum numberof iterations using a smoother
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Z" — FASMG(2",a, @)
 

_—> . eye . —h -_| —_ io .

e Select a, & = (€1,€2,€3,€4) and initial guess solutions 2", ,,,., = (2%, 23, 74,2)" on the finest grid

e Set K =0, [2")*% = 2tia, fo = 2 +1, %3 = e341, and & =e, +1

e While (Kk <e, AND &2 > €g AND @3 > €3 AND &4 > ai)

— [z"]**? — FASCYCaeKcVis Va, OW, PCGSiter)
— & = mean{||gi — Ni ((Z")***)|[2/llg? — Zinitiat)|l2 | l= 1,4}
— & = D*(R", TEedroea, Tec that D* (RMT?) ~ YRTHB]
i &4 = [D"(R", Tenxs) —D"(R", Theayx)|

-K=K+1

e end

 

where

[z"] — FASCYC(2", gt, 93,93, 91,R",T",11,2,0,w, K, PCGSiter)
 

e If Q, = coarset grid (|Q,| = 8 x 8), solve (7.28) using Algorithm 7.4.1

and then stop. Else continue with following step.

e Pre-smoothing:

Fork =1 tom, [z"] <— Smoother (z", gt, gf, g4,gh, R’,T",a,w, K, PCGSiter)

e Restriction to the coarse grid:

aH — [Pah2! Pah, 2h Pah, efpet, Re IPR’, 7! A IPT"
e Set the initial solution for the coarse-grid problem:

(at af 28 28] [ete 2# zi]
e Compute the new rienhand side for the onesgrid pean

gt — Ti (gt NEB") + NE (2), gal — Ti (8 — Na (2")) + Nat"),
ott — TH (gh NEEPY) + Net (Zz? Vis gf HT (gf — ri Ce ) +NPey

e Implement the FAS multigrid on the anescer problem:

For k = 1 top, [z"] «— FASCYC (z" S91Hog! gf, gf, R®,T" ,1,12,0,w, K, PCGSiter)

e Add the coarse-grid corrections:

Bom +Ih (a A), |22+Th (BY - 2)
2h — 23 + hy (zy — 2), whem + rh (zy — z4')

e Post-smoothing:

For k = 1 to 2, [z"] <— Smoother(Z", gt’, gh, 94.9%, R",T",a,w, K, PCGSiter)

 

For practical applications our FAS-NMG method is stopped if the maximum numberof

V— or W-cycles ¢; is reached (usually €; = 10), the meanofthe relative residuals obtained

from the Euler-Lagrange equations (7.28) is smaller than a small number ¢2 > 0 (typically

2 = 10-3), the relative reduction of the dissimilarity is smaller than some ¢3 > 0 (we usually

assign €3 = 0.3 meaning that the relative reduction of the dissimilarity would decrease about

70%), or the change in two consecutive steps of the data/fitting term D is smaller than a small

number €4 > 0 (typically ¢4 = 107°).

7.5 Further numerical experiments

In this section some experiments are provided to

(i) compare the modelling results of our new curvature model RNevCY with two related

approximation models RFMe'v and REWewrv,
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(ii) demonstrate the performance of our new FAS-NMGalgorithmfor RN°vCY with regard to

parameter changes.

Note that our FAS-NMGalgorithm also works for the models of RFMV and RHWewrvy,

Two typical data sets (a smooth registration problem and a non-smooth registration problem

to be denoted respectively as Example 3! and Example 4) are selected for the experiments,

as shownrespectively in Figure 7.8 (a) — (d). Improvements of RFM™Y and REWev over

non-curvature models can also be found from[47, 48, 79, 78, 73, 75, 74]. In all cases, we use the

bilinear interpolation to compute the transformed template image T,, once the displacement

field is found. Below we mainly highlight the further gains from using RNewC’,

 

Example 3

 

a:
Figure 7.8: The secondset of 2 registration problems. Left to right: reference R and template T.

Top to bottom: Example 3 (a smoothregistration problem) and Example 4 (a non-smoothregistration

 

Example 4

problem).

7.5.1 Comparison with other PDE-based image registration models

In the first experiment, our aimis to investigate capabilities of RFMo™v, RAWeurv, and RNewCv

for registration of the two test Examples 3 — 4 in resolution 512 x 512.

The registered results by the three models are shown in Figure 7.9 (a) — (f) with the

deformation results shown in Figures 7.10 (a) — (f). For the smoothregistration problem

(Example 3), one can observethatfirstly all three methods workfine in producing an acceptable

registration and secondly the registered result by the new model RNewCv is the best from both

the visual effect and the value of€3.

However, for the non-smoothregistration problem (Example 4), one can clearly see that

RFMewv and REWcvfailed to deliver a good registration (note other models from[104] cannot
 

Thttp://www.math.mu-luebeck.de/safir/
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register this hard example either), from Figure 7.9 (d) —(f) and Figure 7.10 (d) —(f), while our

new model RNe*CY evidently produced visually pleasing results. The main reasonis that the

exact deformationfield should have a non-smoothshift for the left book to the top; c.f. Figure

7.10 (f). Precisely, this field is piecewise constant and substantially discontinuous at regions

close to the interface of the books. Consequently, RFM™Y and REWev must fail because they

smooth the field at those regions; see over smoothing results of the field in Figure 7.10 (d) —(e).

RNewCv RAWeurvBoth examples confirmthat our new model is better and morerobust than

and RFMcvry [47, 48, 79, 78, 73, 75, 74] whichare in turn better thana class of otherregistration

models.

Ts, [RFMcurv] T,, [AeWenry] Tu [RNewer)

(a)é3 = 0.041 (b)Z3 = 0.043 (c)3 = 0.038(8 = 1)

  
(e)é3 = 0.22 (f)&3 = 0.07(8 = 0.005)

\ \
i Bi

Figure 7.9: Registered images for Example 3 — 4 shownin Figure 7.8 (a) — (d). Left to right: results

by (a) REM(6) RAWand (c) RN°Y’. Top to bottom: results from Example 3 (the smooth

registration problem) and Example 4 (the non-smoothregistration problem). Recall that €3 means the

relative reduction of the dissimilarity defined in Algorithm7.4.2.

    
7.5.2 Tests of our new FAS-NMGalgorithm

In the previous section we have used the LFA to inform our theoretical choice of suitable

smoothers for our new FAS-NMG Algorithm 7.4.2. Here by experiments, we hopeto first verify

the reliability of this choice and then to further test the convergenceissues of it with regard to

parameters a, 3 in the model and the mesh parameterh.

1) Comparison of smoothers and h—independent convergence tests

Weshall re-solve the same Examples 3 — 4 as above using an increasing sequenceof resolutions

(or a decreasing mesh parameter h) and showthe results in Table 7.3. Algorithm7.4.2 is run

using 3 separate smoothers (1 by Method4 - SFP, 2 by Mehtod5 - PDFP I and 2* by a modified

Method 5 - PDFP II respectively). In each case the algorithm is stopped when the mean of
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RFMcurv RNewCv

  

 

 

 

      

  

  
  

 

     
(8 = 0.005)

Deformation field @ = —u

Figure 7.10: Recovered deformation fields for Example 3 — 4 shown in Figure 7.8 (a) — (d). Left to

right: results by (a) RFMe™y, (b) REWe", and (c) RNewCv | Top to bottom: results from Example 3

(the smoothregistration problem) and Example 4 (the non-smooth registration problem).

the relative residual below 10~® with ‘M’ the recorded number multigrid cycles required. Then

to get an measure of speed without using the machine-dependent CPUs, we work out the work

units (WUs)for each case. Wealso usetherelative reductionof dissimilarity 3 to indicate the

quality of registration obtained at cycle ‘M’.

 

MG with Smoother 1 (SFP)
vy /v2/PCGSiter/M/D/WUs

MG with Smoother 2 (PDFP 1)
v1 /v2/PCGSiter/M/D/WUs

MG with Smoother 2* (PDFP II)
v1 /v2/PCGSiter/M/D/WUs
 

Example 4 a = 0.75/10000

Example 3 a = 1/10000, y = 1/VB
h = 1/128 10/10/10/18/0.0258/480 10/10/10/6/0.0264/160 10/10/10/5/0.0258/133
h = 1/256 10/10/10/ « / «/* 10/10/10/7/0.0388/187 10/10/10/6/0.0386/160
h = 1/512 10/10/10/ * / x /* 10/10/10/7/0.0379/187 10/10/10/6/0.0379/160
h = 1/1024 10/10/10/ « / * /x 10/10/10/8/0.0412/213 10/10/10/7/0.0398/187

h = 1/128 10/10/15/ = / * /* 10/10/15/11/0.0713/293 10/10/15/8/0.0698/213
h = 1/256 10/10/15/ * / */* 10/10/15/12/0.0739/320 10/10/15/9/0.0701/240
h = 1/512 10/10/15/ « / * /* 10/10/15 /12/0.0761/320 10/10/15/10/0.0712/267
h = 1/1024 10/10/15/*/ */» 10/10/15 /13/0.0793/347 10/10/15/10/0.0753/267       

Table 7.3: Registration results of Algorithms 7.4.2 with the proposed smoothers for processing Ex-

amples 3 — 4 shownrespectively in Figure 7.8 (a) — (d). Theletters ‘M’, ‘D’, and ‘WUs’ mean the

numberof multigrid cycles, the relative reduction of dissimilarity (€3), the work units, respectively. oe?

indicates failure in dropping the meanofthe relative residual to 10~° within 20 MG-cycles. Recall that

y is the SFP parameter.

Here we define a work unit used in measured computational work as the work of performing

a smootheror relaxation step on the finest grid defined as follows:

1 WU = (cost of discretisating and constructing the linearised system per grid point

+ cost of PCGS updating per grid point)N (if N is the numberofgrid points)
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For example, a work unit in performing one step of the PDFP I smoother canbe estimated by

1 WU = (150 + 123(PCGSiter))N

where each grid point in the linearised system(4 x 4) given in (7.30) is solved by the Gaussian

elimination method, which has the cost of cay’ + me = ae) additions and a + (4)? — @

multiplications. Therefore, the total costs of one V-cycle used L coarse grids can be estimated

as follows:

E
V-cycle cost = (vy + 72)(150 + 123(PCGSiter))NY“(1/4)* < (1 +12) WUs.

k=0

Here we have ignored the cost of interpolation and restriction proceduresas well as the cost of

residual correction procedure because they are relative small compared with that of smoothing

procedures. Recall that 14, v2, and PCGSiter denote respectively the number of pre- and

post-smoothing and PCGSsteps.

In the numerical results shownin Table 7.3, one cansee six quantities: the numbersof pre-

and post-smoothing and PCGSsteps 1, 2; the multigrid cycles ‘M’; the relative reduction of

dissimilarity D = €3 and WUs.

As expected from the LFA results in the last section, our numerical results confirm that

Smoothers 2, 2* (as PDFP I and II) are muchbetter than Smoother 1 (SFP) for our FAS-NMG

algorithm, because theynot only lead to the convergence within a few MGcycles as expected of

a multigrid technique, but also to the accurate results. The dissimilarities between the reference

and registered images have been reduced more than 90% for both examples.

Overall, as LFA predicts, the above experimental results suggest that Smoother 2* (PDFP

II) would be preferred for practical applications. In other tests, we note the Smoother 1 can

lead to the MG convergence for both registration problems when the numberof pre- and post

smoothing steps 4 and 12 are doubled.

2) a—dependencetests

Next we assess how our MGalgorithmis affected by varying a. To this end, the MG algorithm

based on Smoother 2* was tested on Example 3 (see and Figure 7.8 (a) — (b)) with the results

shownin Table 7.4. Here the following parameters are used: 0 = 1, 4, = 1%) = PCGSiter = 10,

and h = 1/256for all experiments and ais varied from 1/10000 to 1/10. For this example, large

a is not needed as small ones give better results. However,the selection of suitable a is a separate

but importantissue becauseit is in general unknowna priori andit significantly effects on the

qualities of registered images as well as the MG performance. In order to estimate a reasonable

a@ automatically, we may adapt our MG algorithmandfollowthe ‘cooling’ process suggested in

[33, 66, 65] which resembles the L-curve methodin other inverse problems. Nevertheless, for

the range of a tested in Table 7.4, our FAS-NMG remainsefficient.



 

 

 

 

 

a |B/M D
10-4 1 6 0.0379
10-7 1] 7 0.1528
10-2, 1 7 0.3019
10-! 1 15 0.4709       

Table 7.4: Results for a—dependencetests of Algorithms 7.4.2 with the PDFP II] smoother for Example

3 shownin Figure 7.8(a) — (b). The letters ‘M’ and ‘D’ mean the numberof multigrid steps and the

relative reduction of dissimilarity (&3).

3) G—dependencetests

Asis well known, the quantities of results and the performances of the MG techniquesin solving

the nonlinear system related to the TV regularisation technique are affected significantly by

the values of 3. As already discussed in Section 2, for registration purposes @ = 1 is suitable

for smooth registration problems because the diffusion coefficients (D1) are almost isotropic in

all regions and then it leads to the smooth deformation fields. On the other hand 8 << 1

is appropriate for non-smooth registration problems because the diffusion coefficients are zero

in regions representing large gradients of the fields and thenit allows discontinuities at those

regions. Here our aim is to see how our MG algorithm is affected by varying the valuesof 2.

To this end, the MG algorithmbased on Smoother2* was tested on the non-smooth Example

4 as from Figure 7.8 (c) — (d). Here the following parameters are taken: a = 0.75/10000,

Vy, = V2 = 10, PCGSiter = 15, and h = 1/256 for all experiments and is varied from 0.005

to 1. Table 7.5 shows that our MG algorithm converges in a few steps. Theoretically @ should

be selected to be as small as possible. However, in practice, small @ is not necessary and not

recommendable. As shownin our experiments, 2 = 10~? is enoughto solve the non-smooth

registration problem with the accurate results and with it our FAS-NMGalgorithmhasa fast

 

 

 

 

 

convergence.

a B M D
0.75 x 10-4 5x 10-8 9 0.0701

0.75x 104 /1x107] 8 0.0893

0.75x 10-4 1x10! 7 0.2324

0.75x107/1x10° 6 0.4557       
Table 7.5: Results for G—dependencetests of Algorithm 7.4.2 with Smoother 2” for Example 4 shown

respectively in Figure 7.8 (c) — (d). The letters ‘M’ and ‘D’ mean the numberof multigrid steps and

the relative reduction of dissimilarity (é3).

7.6 Conclusions

The majority of deformable registration models in the variational framework use the gradient

information (first order derivatives) in their regularisers. For problems requiring less smooth

deformation fields, such models become ineffective and the curvature like information (second
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order derivatives) used in regularisation can improve the registration results, as shownin the

recent works of [47, 48, 79, 78, 73, 75, 74] where higher-order and essentially linear PDEs are

solved.

Different from approximate curvature models of [47, 48, 79, 78, 73, 75, 74], the full cur-

vature model proposed in this chapter does not make assumptions on the deformationfields.

Consequently, our results shown in the previous section improve over previous approximate

curvature models for both smooth and non-smoothregistration problems in quality and robust-

ness of image registration. Associated with the full curvature model is the apparent difficulty

in developing a fast solution as the Euler-Lagrange equations of two coupled PDEsis highly

nonlinear and of fourth order so standard unilevel methods are not appropriate. To end this,

we proposed several iterative methods including the so-called primal-dual fixed-point (PDFP)

method. As analysed its smoother properties by the LFA, the PDFP method was recommended

to be a potential smoother in our FAS-NMGframework. Numerical experiments on synthetic

and realistic images not only confirmed that the proposed curvature model is more robust in

registration quality for a wide range of applications than the approximate curvature models of

[47, 48, 79, 78, 73, 75, 74], but also that the FAS-NMGapproach based on the proposed PDFP

type smootheris fast and accurate in delivering visually-pleasing registration results.



Chapter 8

An Improved Monomodal Image

Registration Model and Its Fast

Algorithm

In previous chapters the image intensities of two given images are assumed to be comparable

(i.e. in amonomodalregistration scenario) and the so-called sum of squared differences is known

as the proper choice to measure imagesimilarities. In this chapter we relax this assumption

and propose first a new variational model combining intensity and geometric transformations,

as an alternative to using mutual information, and thenits fast algorithm based on a multigrid

strategy. This variational model allows one to solve a typical case of multimodal imageregis-

tration where a given image has the similar features, but different intensity variations. Finally,

we demonstrate the robustness of the proposed variational model and its numerical approach

using clinical images.

8.1 Introduction

Under manyreal-world conditions, even intensity variations of two given images taken from the

same object on the same scanner within the same protocol canbe locally or globally different,

e.g. clinical magnetic resonance (MR) images affected by the signal intensity inhomogeneity

(bias field) due to imperfections in the radio frequency coils and object dependent interactions

(97, 98, 101, 110, 144]. The sumof squared differences (SSD) without any pre-processing steps

(e.g. the intensity normalisation or standardisation methods) is not suitable to measure im-

age similarities as it reduces accuracy and efficiency of an expected registration; see e.g. a

registration problem andits results shown in Figure 8.1 — 8.2. Mutual information (MI), on

the other hand, is more appropriate and invariant to overall intensity scale differences. It is

often adopted to deal with the lack of a model of intensity transformations. However, mutual

information has a number of well-known drawbacks. Firstly, mutual information is known to

be highly non-convex as well as nonlinear and has typically many local minima. Therefore

non-linearity of the registration problem is enhanced by the usage of mutual information. Sec-

ondly the computations of mutual information andits first variation require approximations
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of the joint density, which summarises the co-occurrence of events from the image intensities

obtained from the given images. Such approximations are usually expensive andsensitive to

some parameters, such as the width of the Parzen-window kernel and the set of local intensity

samples. Finally, due to the mentioned difficulties, there is not a unique or even commonim-

plementation for estimating mutual information andits first variation; see more discussions in

[37, 64, 95, 105, 107, 114, 119] andreferences therein.

 
Figure 8.1: Numerical results by three similarity measures. Top row: a registration problemconsisting

a pair of MR image of a humanheadshownin (a) reference R and (b) template T. Middle row: two

registered images (c) T22°?" by the proposed variational model(8.7) and(d) T2SP by SSD. Bottom row:

two registered images (e) TMESSP-+ by the proposed variational model (8.19) for the standardisation

between Rand TM!and (f) TM! by MI. Noticefirst that the model (8.7) accurately registers the images

without any additional pre-processing steps. Second, the model(8.19) is effective in normalizing (post-

processing) the intensity variations between the images.

Current registration modelsrelated to our work are foundin[58, 113, 106, 111, 1]. In[58] the

polynomial based intensity transformation is used in the elastic registration with an iterative

scheme that alternates between estimating the coefficients of the polynomial and searching the

non-parametric transformation minimising the energy functional using the demoms method

[133]. These coefficients have the purpose to estimate the adequate intensity changes that
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Figure 8.2: Composite views between the images before and after registration for the problem shown

in Figure 8.1 (a) — (b). (a) composite view between R and T before registration; (b) composite view

between R and T33?4

in (b) between the images are well-matched.

after registration based on our variational model (8.7). The intensity variations

match the intensity values between the images. In [113], a locally linear intensity transforma-

tion with a smoothness constraint on the contrast/brightness parameters is used to model the

elastic registration of multimodal images based on a locally affine transformation with a global

smoothness constraint in a differential multiscale framework. In [106] the non-parametric in-

tensity transformation is used in the elastic registration of monomodal images where the total

variation (TV) energy is applied to constrain the intensity transformations. In [111], the reg-

istration of multimodal images is modelled by a low-order polynomial intensity transformation

and a global affine transformation. In [1], the registration of multimodal images is modelled

using a probabilistic formulation in a multiscale framework. The mainaimis to simultaneously

determine the local parameters of the geometric transformation using the B-spline models by

[102] and thelocalcoefficients of the polynomialintensity transformationthat lead to successful

registration. These parameters and coefficients are represented as Markovrandom fields giving

the priori information about the homogeneity of the intensity and geometric changes.

In recent applications, a fast registration method becomes more and more important for

high-resolution digital images. For a nonlinear systemlike (8.24) (see §8.3 later), the use of

a nonlinear multigrid (NMG) methodis natural and has been proven to be very successful in

various image processing applications; see e.g. [6, 7, 13, 22, 33, 34, 53, 54, 61, 65, 76, 145]

for either Euler-Lagrange systems of second- or fourth-order PDEs. Previous work on NMG

techniques for deformable imageregistration using non-rigid deformations in [33, 34, 53, 54, 76,

145] considersdifferent deformation models or different multigrid components. In (33, 34], the

efficient NMG methods based on the typical fixed-point (FP) iteration method for overcoming

the singular Neumann boundaryproblemsofthe discrete systems are presentedrespectively for

the diffusion- and modified total variation-based imageregistration. In [53], a special treatment
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for the singular systems due to the Neumann boundaryconditions before and during the NMG

method for TV-based image registration is introduced in solving the minimisation problem

of the SSD functional. In [54], a full-multigrid (FMG) method based on the Newton-Gauss-

Seidel smoother and an adaptive smoothing approach for the deformation field is developed in

the context of diffusion image registration. In [76], a NMG method based onthe discretised

optimality conditions for elastic image registration is presented. In [145], a FMG method based

on the FP type of smoothers is developed for diffusion image registration subject to Dirichlet

boundary conditions. Although NMGtechniques are used for other models of non-rigid image

registration, to the best of our knowledge it has not been applied to solve the more challenging

systemof nonlinear PDEslike (8.24) for simultaneously determining the intensity and geometric

transformations.

The rest of this chapter is organized as follows. A new variational image registration model

combining the intensity and geometric transformations is proposed in §8.2 followed by its Euler-

Lagrange equations with the corresponding primal-dual formulation in §8.3. §8.4—8.5 discuss

the numerical implementation and the numerical solution for the primal-dual formulation, in

particular a proposed multilevel approach based onanefficient NMGalgorithm. The robustness

of the proposed registration model and its numerical approachis illustrated using clinical data

in §8.6. The last section is devoted for conclusions.

8.2 The proposed variational image registration model

A general framework of the registration problem of monomodal images can be re-formulated as

follows: Given a reference R and a template ‘Il’, we search simultaneously for a vector-valued

non-parametric transformation y defined by

p(u)():R°>R*%, y(u)(x): xx + u(x) (8.1)

that depends on an unknowndeformation or displacement field

u:R? > R¢, u:xreu(x) = (uy(x), u2(x),...,ua(x))'. (8.2)

and an intensity transformation f such that the transformed template

f(L op(ulx))) = f(x + ulx))) = F(Lalx))

becomes similar to the reference R in a geometric sense, i.e.

R(x) = f(Lu(x)) + n(x). (8.3)

Here 7(x) is randomanduncorrelated noise. Recall that the given images # and ‘7’ are modelled

as the continuous functions mapping from an image domain Q ¢ R¢ into V C R¢ and each

component ug of wu is the function of the spatial position x = (%1,72...,%a)' € Q. Without

loss of generality we assume that the registration problemis described in the two-dimensional

case (d = 2) throughout this chapter, but it is readily extendable to the three-dimensional case
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(d = 3). Wealso assumefurther that Q = [0,1]? Cc R? and V = [0,1] for 2D gray intensity

images.

If the intensity variations of R and 7’ are comparable, the intensity transformation f can

be represented by the identity function and we search only the deformation field u. However,

there are cases in real-life applications, as those found in MR or other medical imaging, where

inhomogeneity of image intensities and noise are present in both images or one of them, and

thus these cases require a more complex intensity function f than those of parametric intensity

transformationslike polynomial ones. To design a general-purpose registration model for these

cases, let us model f to be non-parametric and assumethat it depends independently on each

position x € 2 with the following intensity relationships

Intensity model I: f(Zu(x)) = u(x) + c(x) (additive intensity correction model) (8.4)

Intensity model II: f(/u(x)) = c(x)7u.(x) (multiplicative intensity correction model) (8.5)

where c : 2 — R is an unknownnon-parametric intensity correction. Note that the intensity

modelII in (8.5) is exactly the same as introduced by [106].

As usual for a non-parametric and non-rigid registration model, it requires first a suitable

similarity functional to measure disparities between the given images and second a regularisa-

tion technique to rule out unwanted, irregular, and/or nonuniquesolutions. Since we search

simultaneously for wu and c, the registration problem can be posed as a minimisation problem

as follows:

min{ Jo, ,02(u,c) = D(u,c) +a, R1(u) + agRo(c)} (8.6)

where a1, @2 > 0 are the regularisation parameters.

For the choice of the similarity functional D, it is enough to modify the SSD functional from

DP(u,c)=$ f (e+ w(x) —RO)? de,
Q

to the intensity models I and U in (8.4) and (8.5) as follows:

DES(uc) = sf (L(x + u(x)) +¢(x) — R(x))? dx, (8.7)
Q

DES? (u,c) = af (c(x) U(x + u(x)) — R(x))? dx. (8.8)

Weselect either D = D?SP or D = DFS? for the variational formulation (8.6).

For the choice of 7;, we adopt here the full curvature regularisation given by

 

2
Ril) = R(u) = > | E(u)dx (8.9)

l=1JQ

where ®(s) = 38° using the mean curvature

(Bi+u? Ju —2u,. u,_u +(Bi+u? Ju. _ Vv _ iz, )Mleye lng Mle Min a lag) Mlap xeeu) = Vo gti = Ctl nasateaegeMac, 9) > 0, (8:10)
in our variational framework because (i) it does not require anaffine pre-registration step and

(ii) it is more flexible for both smooth and non-smooth registration problems than common
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regularisers choices such as

2
Ryen(#/4))de (Ox;Um + Op,,u1)? +4 (A/2)(V : u)*)dx, (8.11)

Rif(4) = = | \Vu|? dx, (8.12)
a1

REMcury (ay) = ; = fiAu)?dx, (8.13)

l=1

FAWaurv (yy), = a2sy(Auz)?)? = (ui, 2, Uryen — Ul )dx, (8.14)

and
2

RON (uw) =O | [Vuala, de (8.15)

These regularisation techniques are known to be suitable for either smooth or non-smooth

registration problems. Note, in [106] only R*!** was considered.

For the choice of R2, instead of selecting the first-order variational models

o) = f Weloatx = f c2 +02, + Bodx, G2 > 0 (8.16)

and

Re)= fivertre = |(e2, + ec, dx (8.17)

as used and discussed by [106] we propose the second-order variational model based onthe

mean curvature K(c) = V- Toes as follows:
2[Vel

c= | W(K(c))dx, (8.18)
Q

where W(t) = 4¢?. The main reasons for this choice R2(c) = K(c) are as follows:

(1) K(c(x) = ayx, + apr + a3) = 0 fora = (a1, 42,03)! € R®, i.e the non-trivial kernel of

K consists only of the linear transformations, and consequently this energy is invariant

underglobally andlocally linear intensity corrections. Compared withthose of (8.16) and

(8.17) TV(c(x) = ayz, + agar + a3) = 0 or R*?(c(x) = aya + agr2 + a3) = 0 if and

only if a= 0. This means that both TV and R/? do not allow non-trivial linear intensity

corrections; see Figure 8.5.

(2) K preserves discontinuities of c because the diffusion coefficients of the Euler-Lagrange

equations resulting from a are zero in regions representing large gradient of c, i.e.

1/|Velz, > 0 and Ve. Vw'( c))/|Velg, + 0 when |Ve|4, — 00; see (8.21) and (8.24) in

§8.3 later. As a result, the corrected images by K are not blurred, different from those by

R??; see Figure 8.3.

The above theoretical remarks can be tested througha registration problem with its numerical

results shown in Figure 8.3—8.5. Clearly K(c) is more suitable; as mentioned, in a previous

workof using (8.8), Ri(w) = R°!*S(u) and R2(c) = TV(c) were used in [106].

Finally we have someadditional remarks:

158



  

error, = 100%

(d) Tue [R*?(c)]

  
error; = 1.40% error; = 5.19% error, = 0.23%

Figure 8.3: A numerical test with three regularisation techniques for c to show that our technique K(c)

is better than 7 V(c) and R2(c), Top row: a registration problem consisting a pair of two circles with

a locally linear intensity variation shownin (a) reference R and (b) template T. Bottom row: three

registered images Tux by TV(c), R”2(c), and K(c), respectively. Here error1 denotes the percentage

error.

Remark 8.2.1

(1) Ifa, =0 and ag > 0, the following minimisation problem

— b
o

min{ Jo. (u,c) = D (u,c) + a2Re(c)} (8.19)

gives only the non-parametric intensity correctionc for the normalisation or standardisa-

tion between the images, i.e. T(x) + c(x), c(x) T(x) © R(x) for fixing u = ull usually

ull = 0; see e.g. the standardisation between R and T™(u) using (8.19) in Figure 8.1

(e). That is to say, our reduced model (8.19) can be used for standardisation purpose, e.g.

for post-processing MI results.

If a, > 0 and ag = 0, the following minimisation problem

min{ Jo, (usc) = D (u,c) + a, Ri(u)} (8.20)
Uu

gives only the non-parametric deformationfield w for the registration between the given

159



(a) Exact surface of c

~0.2

-0.3:

-0.4

 

(d) K(e)

  
error, = 0.6545 errorg = 0.1158

Figure 8.4: Surface plots ofc for the registration problem in Figure 8.3 (a) —(b). (a) the exact surface

of c; (b) —(d) the results by TV(c), R“?(c), and K(c), respectively. Here the error2 denotes the 2-norm

of the differences between the exact and approximate solutions.

images, i.e. T(x+u(x))+c(x) & R(x) for fixing c(x) = 0 and c(x)T(x+u(x)) © R(x)

for fixing c(x) =1.

(3) The new variational model (8.6) can be adapted to solve problems related to optical flow

computation or stereo disparity estimation, e.g. by introducing the energy funcational R2

in the variational formulation of optical flow computation.

8.3. The Euler-Lagrange equations and its primal-dualfor-

mulation

Consider first the case D = DPSP, Ry(u) = RNewSY(u) and Ro(c) = K(c). According to the

calculus of variations, the resulting Euler-Lagrange equations of the proposed variational image
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= -0.2a
Yex

° -0.3)

-0.4

wy -©- c (exact)

> c by K(c)
~k-c by TV(c)

-06 * c byDiff(c)

“ 5 10 15 20 25 30
x,-direction

Figure 8.5: Plots of the 13th row of c(a1,a2) in Figure 8.4 (a) — (d) by TV(c), R”?(c), and K(c),

respectively.

registration model (8.6) is given by

(Tu +e ~ R)OuyTu +VY > (rage VO"(m(t1)) — waeVu) =0

fi(u,c)

(Pa + O= R)AaaTa + AV (eras,VO(mua) — EatenV4) =9 9)
f2(u,c)

Ve-Vw'(K(c(Tu +¢— R) + a2V - (Tag VW'(K(c)) — woveVO) =0

f3(u,c)

subject to the boundary conditions

(Vu, 2)p2 =0, (VO'(K(u)),)g2 = 0 for 1 = 1, 2 on OQ (8.22)

and

(Ve, N)p2 = 0, (VW'(K(c)),)g2 = 0 on 02. (8.23)

Recall that the first and second termsin (8.21) are related to thefirst variations of D and Rk;

(J = 1,2), respectively.

As mentioned in §7.3.5, the primal-dualidea is suitable for solving a system of higher-order

nonlinear PDEs like (8.21). The main idea is to reduce the order and nonlinearity of (8.21)

using the new dualvariables. Introducing additional unknownvariables (dual variables)

   vy = —0"(e(uy)) = —V- GEHL, vp = —"(n(u2)) = —V- Qt, 05 = —W'(n()) = -V-g2E,
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leads (8.21) to the equivalent system of six second-order nonlinear PDEs given by

_-V.—Ww4 _y=
V Vala, VU=91

=Vis Wat —~ v2 = go

: Win — U3 = 93

fi (use) —arV > Gyate + aggVen) = 94 (8.24)

fate) — or(E+ SEEDY) = a

subject to the boundary conditions transferred into

(Vu1,1)p2 = (Vuz,2)p2 = (Ve, N)p2 = (Vim,n) = 0 for m = 1, 2,3

where g = (91, 92, 93, 94, 95, 96)' = 0 on thefinest grid for the MGsetting in the coming section.

For the case D = DFS? only f; (u,c) (t= 1, 2, 3) in (8.21) and (8.24) need modifying and

they are substituted respectively by

fi (u,e) = c(clu — R)Ou, Tu, (8.25)

fo (u,c) = c(clu — R)Ou, Lu, (8.26)

and

fs (u,c) = (clu — BR) Lu. (8.27)

Refer to [106]. In this work D = DPS? is adopted in our numerical implementations becauseit

is new for the variational model (8.6) and leads to a simple and efficient numerical scheme.

Here wehave the following remarks:

Remark 8.3.1

(1) If D = DFP, Ri(c) = Re'8(u), and Ro(c) = TV(c), the resulting Euler-Lagrange

equations become

fi (u, c) — Oy ((A oF 21) On ya, U1 + HOng x9 U1 + (A + LH) On, 22U2) =0

0fo (u, c) — ay ((A + [)Ox, 29 U1 + HOe2 U2 + (A + 211) Or2x U2) = (8.28)

f3 (u,¢) — a2V- Wes =0

subject to the boundary conditions

(u (Vu + (Vu)') + Adiag(V -u),n),. =0 and (Ve,n)g2 =0 on AQ. (8.29)

This is the PDE-based model used in [106] for combining homogenisation and registration.

(2) If D = DPS” and R2(c) = TV(c), the last equation in (8.21) and the boundary conditions

in (8.23) are replaced respectively by

Ve
fs (uw, c) <= a2V : [Vela, =0 (8.30)



and (Vc, N)z2 =0 on OQ. The resulting primal-dual formulation is then given by

-V.—4 _y»=
Vv [Vurla, VUi=91

— v2 = 92
 -V. vu

- pee
v Ul\(—VUfi (ue) —a (renter + TTvng,Vt) = 93 (8.31)

Vv VvFalse) ex (ets: + HageVea)= a
fs (u,c) — osV Win = 95

 

(3) If D = DFS? and R2(c) = R"?(c), the last equation in (8.21) and the boundary conditions

in (8.23) become

fs (u, c) — agAc = 0 (8.32)

and (Vc,1)z2 = 0 on OQ, respectively. Similarly, the resulting primal-dual formulation

is given by replacing the last equation in (8.31) with f3 (u,c) — agAc = gs.

8.4 Finite difference discretisation

For simplicity, let (2)ig = #(21,, £2,) denote the grid functions for l= 1, ..., 6 where

z= (21, 22, 23, 24, 25, 26) | = (uy, U2, C, V1, V2, V3) * (8.33)

and let

Qn, = {x € Q|x = (x1,,22,)' = ((2i- 1) h/2, (27 —1)h/2), 1 <i,7 <n} (8.34)

be the discrete domain consisting of N = n? cells of size h x h with the grid mesh h = 1/n.

Thecell-centered finite difference approximations are used with the divergence terms V- V for

any vector V = (Vj, V2) in (8.24) at a grid point (7,7) as follows:

ov OVe)  _ Vidittg —Midig 4 Vadigtr — Va)ig (8.35)
(5,td + (5a,3 h h 

Therefore, we need to calculate V; at the grid points (i+1, 7) and (i, 7) and V2 at the grid points

(i,7 +1) and (7,7). Welist here the approximations used in our numerical implementations for

estimating V; at the grid point (7,7) as the following (discretisation for V; at the grid point

(¢+1,7) and V2 at the grid points (7,7 +1) and (7,7) can be givensimilarly):

vik

 
 
 

R(z)ig = (Vey Fig, id

(V- Wate) = “a On, (2p )ag/h

Be + (Oiig/h)? + (OE (2)ig/h?
Oo”. = (z2)i5/h
zr2
 

+ 
 

h [Bx + ( Og, a eg /h)? + (Ox (2?)ij/h)?

(1/h?)(22)(4 dig - (if ag ( #Y)ig)s

l(ah*)ig = Wag (2f ig + Da (#P)i-15 + Dalef isa,
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(oi eg Peg = enn(ons fp_,

 
 

 

Dy(zig =aeDalEig = BA.1,

Da(z)ig = DAzp)t19 = DAPign = DABPay,

DAB)=|IW(Aisla.,

[VeoP)iala. = [Be + (8(2)ia/h)? + (La (2)ig/h)?, = Br or Ba,

Cf dig = OR (eP)ia/h, (2 Jig = OF (Pia /h,
ry z2

62 (2B )ag = £((z4 itis — (2B Daa), OF (2BDeg = H(Asta — (Pag)
1; = LG + (ut),9+ («!),5s

fT (utes, oy = (if, + Cig — RE(115 - Te1j)/ (2h)),

2 (ut ,ug,¢A= (1h; tag — RR )(lej41 — 1B)-1)/ (2h),

R (ut ,u2,c"), = eae’ + Cig — Ri;).

Note that the finite difference approximations for (8.24) need to be modified at grid points near

the image boundary OQ», using the homogeneous Neumann boundary conditions approximated

by one-side differences for boundary derivatives:

(ia = (2)i2, (22 Jin = (2 )in-1s (22 )15 = (4 )oy, (22)nj = (2)n—ug- (8.36)

8.5 The numerical solution for the formulation (8.24)

To obtain a fast numerical solution of the new formulation(8.24) similar to the so-called primal-

dual fixed-point (PDFP) method as described in §7.5 would be desirable; see also [6, 7, 13, 26,

27, 122, 136, 137] on FP schemes applied to other variational models involing TV operator.

8.5.1 A potential PDFP method

We now discuss a numerical scheme PDFPto solve the discrete version of (8.24). This is done

in two steps:

I) The outer iteration step. Firstly, we introduce a new fixed-point or outer iteration to

(8.24). This can be done as follows. Our scheme is semi-implicit in both regularisation and

data terms. The semi-implicit scheme for the regularisation terms is iterated by freezing some

coefficients in the similar ways with the Lagged-diffusivity method [26] or Quasi-Newton scheme

(137, 136]. Starting with aninitial guess ull (e.g. w!°l = 0) leads to

N[z4z+ = Giz] (8.37)
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bet) ett clv+1])where the typical Taylor’s expansionfor f;(u of type

flwyuyee) we fill uy uy) + Aus flu)uyul"
+ Duy fi(ul), ull, cl)dul+ a.fi(ul[¥) ul) cll) 5el"l

= fi(ulMy I bl) + ol(yet _ ul) + out _ ult!)

+Peva — cl’) (8.38)

is used in the global linearisation scheme. Here

= Buy fill, ul ub) = (Au,Lu0i)(Ou, Tues)
+ (Lye +l — R)(Ou,u, L401), (8.39)

ate) = Aun fiscal, ub) = (uy Lut)) (Ons Ever)
te (Later a vl _ R)(Ougu, lye), (8.40)

of! == Ocfi(, Mul”, ul!) = (Ou, 2,01); (8.41)

for /= 1,2 and

of) = Oy, fa(l, ul, ult!) = 8,0 ye, (8.42)

iy = aufaloealla = OuyLyi, (8.43)

ok = Afa(, cul, ul!) = 1. (8.44)

—Ly [ul] 0 0 i 0 0
0 —L[ul?| 0 0 -1 0
0 0 —L3[cll] 0 0 —1Nizh] = ,

T=] oth ol old enesfulel] 0 0
ot! ate ote 0 —oy Lo [uf] 0
ol okt ofl 0 metic]

git— (ett) fetal etl) petpetal ebay
?

_oe+a] yetiotybyT (8.46)

Giz] = = (1,92,9394." (8.47)
ull Vv vat! = 94 — fi(ull ult, el) + Mull 4 Mull 4 MH 4 av: (evai : Y Vultl), (8.48)

uy

v) fv v Vu Vv, val) = gs — folul’l, ult, cl) + otal 4 oul 4ol + onV-oSvidMl) (8.49)

Vy v Vv v|_ [v Vy Vv v| fp Vel¥l (—Voll! vyat = oo — faut ul, oy + ablubl + ofall + ofl + aa (Semler), (8.50
and

Dm (zit! )

Lm (zleget — V-( vet) (m = 1,2,3 and l=morl=m+3). (8.51)
2m IVac la,
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II) The inner iteration step. After applying the finite difference approximations repre-

sented in §8.4 with (8.37), the PCGS relaxation method is used as the inner solver to solve

inexactly the associate linear system. Here the kth PCGSstepis given by

(eri) = (NM)(GEM), (8.52)

where the symbol of the mesh parameter h is dropped for simplicity. We note that other choices

of iterative techniques such as theline relaxation techniques or the preconditioned conjugate

gradient method are optional. However, they are computationally more expensive than the

PCGSrelaxation method.

As discussed in §7.5, the PCGSrelaxation method is not suitable to be a potential (multi-

grid) smoother for non-smoothproblems. High values of the smoothing factors appearespecially

at the jumpsof the coefficients Din (Ze)i,5 compared withtheir neighborhood points. To avoid

this situation, we introduce the so-called relaxation parameter w € (0,2), typically w = 0.7,

and iterate the w—PCGSsteps at those odd points by

(zeMy<q — wy (24O(N[2M5)(GZart?) (8.53)
—————_

original PCGS result

with the following notation

(sl), , 0 0 4 0 0

0 (x). 2 0 4 5

° ; B 0 (Sed 0 0 4

N[z! Nig~ hol! holt) roll ogSly 0 j (8.54)

RoW) peg) 2g) ; a(S), ,

Rol) pol) hol 0 0 an(2!);,

and

(ar)ig + (L/P?(ulI
(Ga)igg + 1/h2)Oe)a5 (ulyPRI

cnt rete as; (G4); + (ar /h?)\(O4 dig (ey Nig

(G5)+ (ou/nVEPaon
[vy] wal

(G0)!"} + (o2/h?)(3" ag (ogys
Finally our proposed solver can be summarisedas follows:

Algorithm 8.5.1 (Our Proposed Iterative Solver: PDFP)

Denote by

a regularisation parameter

w relaxation parameter

K > 0. tolerance (typically K = 0.5//@* where 6* = min{), G2})

PCGSiter the maximum number of PCGSiterations
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[2"] <— Solver (z",g", R",T",a, w, K, PCGSiter)

 

¢ Use input parameters to compute (Gm)i.j; (Gn[Z"])i,;,

and (N,[Z"]i,;)~+ for l,m =1,2,3 and1<i,j<n
e Perform PCGSsteps

— fork = 1: PCGSiter

—fori=1:n

—forj=l:n

— if Dn (@)ag 2K - min{Dmi(Zm)s,3, Da (Zm)i,3,Dm3a(Zm)i,3}
form = 1, 2 or 3

— Set w = 0.7

else

— Set w = 1.0

end

— Compute(z")/**4 using (8.52)

- @ef=A -w)@ytoa
— end

— end

— end

 

8.5.2 A nonlinear multigrid algorithm

Below we apply the FAS-NMG method to solve (8.24), the coupled systemof six second-order

nonlinear PDEs given by

Ni (2") = gf
N?(z") =g", ie. (8.56)

NG(2") = 98
in a similar way as presented in §7.4. In our FAS-NMG framework, the PDFP method rep-

resented in §8.5.1 is applied as the MG smoother and the standard coarsening is used for

computing the coarse-grid domain 2, by doubling the grid size in each space direction, i.e.

h— 2h =H. Forintergrid transfer operators between Q, and (Qy, the averaging and bi-linear

interpolation techniques are used for the restriction and interpolation operators denoted respec-

tively by J/ and //,. In order to compute the coarse-grid operator of NE (z") given by the

left handside of (8.24), the DCA method is employed. The pseudo-code implementation of our

FAS-NMG method can be summarised in the following algorithm:

Algorithm 8.5.2 (FAS-NMG Algorithm)

Denote FAS-NMGparameters as follows:

¥, pre-smoothing steps on eachlevel

V2 post-smoothing steps oneachlevel

Le the number of multigrid cycles on each level (“= 1 for V—cycling and p= 2 for W—cycling)

[Here we present the V—cycle with p= 1]

a regularisation parameter

w relaxation parameter

kK > 0 tolerance

PCGSiter the maximum numberofiterations using a smoother
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Z" — FASMG(2",a, @)
 

e Select a, & = (€1,€2, é3, 4) and initial guess solutions 2”, ;,;,, on the finest grid

e Set K =0, (Z"yIK) == SPsétals &2 =eo4+-1, €&3 =e3 4-1, and & =e,4+1

e While (Kk < e, AND é2 > eg AND €3 > €3 AND &4 > €4)

— (zryiK+U — PASCYC((z")*), g", R",T", 14, v2,0,w, K, PCGSiter)

— & = mean{||g? — NE (2")"**")|I2/|lo? _(Zaitias)lle | 4=1,...,6}
—é&= D"(R*, Th (ayix +1)ae, ch (a yy,

[Recall that D” (R", Th (-)) ~ S||R", TP(+) |[3]
— & =|D"(R", The)!+1) — Dd" (Rha)*))|
-k=K+4+1

e end

 

where

[z"] — FASCYC(2",g", R",T", 1, 02,0,w, K, PCGSiter)
 

e If 2, = coarset grid (|Qn| = 8 x 8), solve (8.24) using Algorithm 8.5.1

and then stop. Else continue with following step.

e Pre-smoothing:

Fork = 1 tom, [=| <— Solver(z",g", R",T",a,w, K, PCGSiter)

e Restriction to the coarse grid:

ZH — Ifzh (for T= 1, 6), R? — IF R", TY — IFT"
e Set the initial solution for the coarse-grid problem:

sH =HZa — 2
i 7

e Computethe newright-hand side for the coarse-grid problem:

gf — Til (gt — NE (Z")) +N# (z") (for T= 1, ..., 6)
e Implement the FAS-NMG method onthe coarse-grid problem:

For k = 1 to p, [z"] «— FASCYC (27.9%, R" 7", 11, V2,a,w, K, PCGSiter)

e Add the coarse-grid corrections:

Zh = gt + 0h (FF — BF), (for T= 1, ..., 6)
e Post-smoohing:

For k = 1 to 1, [z"} <= Solver(Zth gl’ R" /T",a,w, K, PCGSiter)

 

For practical applications our FAS-NMGapproachis stopped if the maximum number of

V— or W-cycles ¢; is reached (usually ¢; = 20), the meanof the relative residuals obtained

from the Euler-Lagrange equations (8.24) is smaller than a small number ¢2 > 0 (typically

€2 = 10~*), the relative reduction of the dissimilarity is smaller than some ¢3 > 0 (we usually

assign €3 = 0.10 meaning that the relative reduction of the dissimilarity would decrease about

90%), or the change in two consecutive steps of the data/fitting term D is smaller than a small

number €4 > 0 (typically 4 = 10~*).

8.5.3 Local Fourier analysis for the PDFP method

In this section we shall use the LFA is to analyse the smoothing properties of the PDFP

iterations applied to the linearised system N;,[Z"]z” = G),[Z"] obtained by freezing coefficients

in (8.37) at some outer step. Here z” and Z” denote the exact solution and the current

approximation and N[Z”] and G[zZ"] theresulting discrete operators from the linearisationat

Zz
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Let ;,(8,x) = exp(i9x/h) - I be grid functions, where I = (1,1,1,1,1,1)", @ = (0,02)" €

© = (—7, 7]?, x € NF, and i= V—1. Similarily, our LFA is performed over theinfinite grid

QR = {x € Q|x = (21,,22,)" = ((2i- 1) h/2, (27 — 1) h/2)", 1,7 EZ}. (8.57)

and applied to each grid point € = (i,7) separately. Here we denote by

HMloc = fete Hoc

the smoothing factor defined as the worst possible value of the local smoothingfactor fioe = ue(E)

over Q;, and Np ()z"(€) = Ga(€) the local discrete system centered and defined only within a

small neighborhoodof € and u"(£) = [u?(€), uk (€)].

Let us considerfirst the case of the PCGS (w = 1) approach. Thesplitting

Ni(é) = NI(€) + NPQ) 4 NEV6)

leads the local inner iterations to

Ni(ez. (€) + NO (E)z"(6) + NET (Oza (6) = Gn (6) (8.58)

where 2”), (€) and 2", (€) are the approximations to z”(€) before and after the inner smoothing
new

step, respectively. Here

0 -£5F1¢) o,
nite) = 0 0 — lig,

n (6) 0 0 o
0 0 0

0 0 0

0 0 0
0 0 0
0 0 0

= chltl(e) 0 0 ‘ (8.59)

0 —a,L(g 0

0 0 —aaly!*l(¢)

-£i"(€) 0 0
0 Le a

Ng) = 0 0 —£y (€)
" oy(E) oy2(€) 43 (8)

Fo, (E) Foo(E 93(€)

031 (€) 739(& 733 (§)

—l 0 0

0 —l 0

0 0 -1

-ali") 0 0 i oe
0 —a, LEM (e) 0
0 0 —a,lhe)
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—LitNe) 0 0

  

0 —chrle) 0
nels) = 0 0 —cillg)

n (6) 0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

-atilg 0 0 | a
0 =oLAH(@) 0

0 0 —a2ls'(6)

i 0 0 0
—On)= —Dm2(2m (€)) 0 0], (8.62)

0 —Dmi(Zm(€)) 0

{9 9 0
CHG) = Gz] 0 Xm(g) 0 |, (8.63)

0 0 0

and

1 0 —Dms(2()) 0
LINO = 5 0 0 —Dm3(Zl(€)) |, (8.64)

0 0 0

 

for m = 1,2,3. Subtracting (8.58) from N;,(£)z"(€) = Gp(E) yields the system oflocal error

equations

Ni(eer, (6) + NI (et. (6) + Neria(€) = 0

or

ehew (§) =Snr (€)ee1a (§)

where

eral) = z"(€) — Zrig(€) and @”..,(€) = z"(€) — Zrew (€)

are the error functions and

Sa(€) = -IN, (6) +N,(ONIN, (8.65)

is the amplification factor. Hence, the PDFP local smoothing factor for this case is defined by

Hoc = sup{|p(Sn (€,8))| 8€ Onign} (8.66)

where

Sn(€,0) = — IN} (6,8) + NAG.)IN, (E,8)]ANS) h ’ h ? h ?

is the Fourier symbol of S;,(€). Recall that the Fourier symbols of chile) and cht (€) denoted

by

m
—Li+H(¢, @) = 732m (€) = Dni(&) exp(—id,) _ Dm2(&) exp(—i02)) (8.67)

and

* (Dma(é)(exp(i81) + exp(482))). (8.68)fmt"(é, 8) = 35
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are used to compute (8.66).

For the case of the w—PCGSapproach, the PDFP local smoothing factor can be defined in

a similar way as (8.66),

Hoc = sup{|p(S;(E,8,~))| : @€ Onigh}, (8.69)

where the Fourier symbol of the amplification factor Sp (£,w) is given by

Sa(6,8,w) = IN,(6,8) + oN,(6,0))1G — WN,(6,0) — oN,(EO) EC". (8.70)

To select the optimal value of w, we used four registration problems shownin Figure 8.6

on a 32 x 32 grid. Our results indicated that w = 0.7 provides the good smoothing properties

(Ei, & 0.60). We also conducted several numerical tests to comfirm that (8.37) is a potential

smoother for our FAS-NMG methodto solve (8.24); see Table 8.1 in §8.6.2.

8.6 Numerical experiments and results

To validate and evaluate our variational registration model (8.6) and the performance of our

Algorithm 8.5.2, we first perform a series of tests to verify the model effectiveness. Second, we

test with respect to different resolutions. Inall registration problems, the bilinear interpolation

was used to compute the transformed template image /’(w) and we stared our MG algorithm

with 1, = v2 = PCGSiter = 10, 8; = 1, 82 = 10~?, ul= 0, and cl= 0.

8.6.1 Qualify of registration

In this test, we evaluate the robustness of the proposed registration model (8.6) for the cases

where the required geometric and intensity transformations are very complex.

Shown in Figure 8.6 are results from four clinical cases. In each case, the reference R

and the template /’ are from different view points and times. Shownacross each row are the

reference # and template /’ and the registered image+. Even in the presence of significant

intensity variations, the registered images are in good agreement with the reference and show

good qualitative registration results.

As shownin Figure 8.7 for results from the second problem in Figure 8.6 (d) and (e),

although the registered images by two regularisation techniques for c are almost identical, the

registration results in Figure 8.7 (c) and (d) confirm that K(c) is suitable for this hard problem

where very accurate results are required for clinical image analysis; see at the white arrow

locations.

Shownin Figure 8.8 are results from the third problem in Figure 8.6 (g) and (h). They

indicate that our PDE-basedregistration model (8.24) is more robust than that of the previous

work of [106] as given by (8.28). Here D = Dee (u, A, a1, a2) = (1.00, 1.00, 0.10, 0.05) and

Dirichlet boundary condition uw; = 0 (1 = 1,2) were used throughthis test.
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8.6.2 Multigrid performance

As is well-known, the main property of MG algorithms is that their convergence does not

depend on anincreasing sequenceof resolutions (or a decreasing mesh parameter h). Thus, in

the second test our experiments was designed to investigate this property.

To do this, we re-solve four registration problems of medical data as shown in thefirst and

second columns in Figure 8.6 and started the registration processes with h = 1/128, 1/256,

1/512. Here we define a work unit used in measuring computational work as the work of

performing a smoother or relaxation step on the finest grid defined as follows:

1 WU = (costof discretisating and constructing the linearised system per grid point

+ cost of PCGS updating per grid point)(if N is the numberofgrid points)

Thus a work unit in performing one step of our smoother can be estimated by

1 WU = (177 4+ 284(PCGSiter))N

where each grid point in the linearised system (6 x 6) given in (8.52) is solved by the Gaussian
3 2 3

elimination method, which have the cost of or + er _ 56) additions and ee + (6)? — ©

multiplications. Therefore, the total costs of one V-cycle used L coarse grids can be estimated

by

L 4
V-cycle cost = (v1 + v2)(177 + 284(PCGSiter))N)“(1/4)* < giv + ¥2) WUs.

k=0

Here we have ignored the cost of interpolation andrestriction procedures as well as the cost of

residual correction procedures because they are relative small compared with that of smoothing

procedures. Recall that 11, v2, and PCGSiter denote respectively the number of pre- and

post-smoothing and PCGSsteps.

The numerical results are reported in Table 8.1 where one can see three quantities: the

numbers of MG cycles ‘M’; the relative reductionof dissimilarity D = €3; the work units ‘WUs’.

As expected from a MG technique, Table 8.1 shows that our MGalgorithmis h—independent.

Moreover, it took only one or two MGsteps to solve the registration problems and reduce the

dissimilarities between the reference and registered images more than 85% for all problems.

8.7 Conclusion

This chapter introduced an improved monomodal image registration model combining a non-

parametric intensity and geometric transformation, as an alternative model to using mutual

information for a typical case of multimodal images where the given images have the similar

features, but different intensity variations. We modelled these transformations to be non-

parametric and extended thefull curvature model proposedin the previous chapter to constrain

them. In order to solve the resulting Euler-Lagrange system of higher order and nonlinear

PDEs, we applied the idea of the PDFP method and used the LFA to analyse its smoothing

172



 

Example 1

M/D/WUs

Example 2

M/D/WUs

Example 3

M/D/WUs

Example 4

M/D/WUs
 

h = 1/128
h = 1/256
h=1/512

h = 1/128
h = 1/256
h=1/512  

a, = 107*,a1 = 2a2
1/0.0322/27
1/0.0381/27
1/0.0410/27

5/0.0321/133
5/0.0381/133
5/0.0409/133  

Q, = a2 = 1074

1/0.0264/27
1/0.0301/27

1/0.0357/27

5/0.0263/133
5/0.0300/133
5/0.0356/133  

a, = 1074, a1 = 2a2

2/0.1183/53
2/0.1242/53
2/0.1299/53

6/0.1182/160
6/0.1241/160
6/0.1298/160  

ay = ag = 10-4

1/0.0914/27
1/0.0953/27

2/0.1004/53

5/0.0913/133
5/0.0952/133
6/0.1003/133

 

Table 8.1: Registration results of Algorithm 8.5.2 with the proposed solver in Algorithm 8.5.1 for

processing four sets of clinical data shown in the first and second columnsof Figure 8.6. The letters

‘M’, ‘D’, and ‘WUs’ mean the numberof MGsteps, the relative reduction of dissimilarity (€3), and

the work units, respectively. The last 3 rows are results for dropping the meanofrelative residuals to

1074.

properties. As expected, we saw that it appears to be a potential smoother for our FAS-

NMGframeworkand leadsthe associated multigrid method to be h—independent convergence.

Numerical results showed that the proposed registration modelis reliable to i) normalise image

intensities between images andii) register the given images. Moreover, they also showed that

the developed multigrid method is fast and accurate in leading to visually pleasing results for

practical applications.
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€3 = 0.0410

(d) (e) (f)

 

23 = 0.0357
(7)

  
€3 = 0.1299

   
€3 = 0.1004

Figure 8.6: Numerical results with unknownregistration. Shown in each rowis the reference R,

template T, and register image Ty».
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€3 = 0.0401  
Figure 8.7: Numerical results for the second problem shownin Figure 8.6 (d) and (e) by two regular-

isation techniques for c. Left to right: results by K(c) and R”?(c). Top to bottom: registered images

and composite views in the middle right regions between R and Ty~. As shownin (c), the intensity

variations of Ty« in the bottom right region (at the white arrow location) by K(c) is well-matched,

compared with thoseof (d) by R“?(c).

 

&3 = 0.1542
(d)  

Figure 8.8: Numerical results for the third problem shownin Figure 8.6 (g) and (h) by two PDE-based

registration models. Left to right: results by our model (8.24) andthat of [106] (8.28). Top to bottom:

registered images and composite views between R and T,~. The top right and bottomleft regions of

Tu~ in (c) by our model are well-registered with the adjacent regions of R, compared with those of (d)

by[106].



Chapter 9

Summary and Future Directions

This thesis presented the author’s PhD work on new contributions of four effective variational

models and five efficient numerical methods for solving image registration problems.

9.1 Summary

The first contribution discussed in this thesis is a novel affine imageregistration model. In this

work, we investigated the robustness issue of Gauss-Newton (GN) and Levenberg-Marquardt

(LM) methodsin solving affine image registration problems. As a result, we sawthat these

methods are sensitive to initial guesses and require methods of getting good initial guesses

to ensure their convergence. Four existing methods were reviewed and tested. However, we

found that there are always difficult cases for which these initial guesses are not sufficient.

Suchcases include getting pre-registration images for deformable registration problems. Then,

we proposed the regularised affine registration (RAR) model that is less demanding than the

standard method for initial guesses. To find the optimal regularisation parameter, we applied

a coarse-to-fine approachto initialise the RAR model. Numerical results showed that the

developed multilevel algorithmis generally reliable and robust in i) solving the affine image

registration problemsii) providing a good initial guess for deformable models.

Second, we presented anefficient multigrid approachfor variational image registration mod-

els based on the sum of squared differences (SSD) between images. A unified approach for

designing fixed-point (FP) type smoothers was proposed and analysed by the local Fourier

analysis (LFA) using Fischer—Modersitzki’s diffusion and curvature image registration models

[46, 47]. We found that the resulting linearised systems for both models are h-ellipticity and

suitable with the pointwise collective Gauss-Seidel (PCGS) relaxation scheme. As expected,

numerical experiments not only showed that the proposed multigrid approachis h-independent

convergence, but it is also more effective than thosein a large class of existing iterative methods

developed by [46, 47, 48, 65, 89, 90, 131, 135, 145).

Third, we presented a novel discontinuity-preserving image registration model based on

the modified total variation (TV) regularisation with the so-called potential function. As a

consequence, the new model can be simply interpreted as a half way model betweenthediffusive
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and TV regularisations for solving both smooth and non-smoothregistration problems. In

order to solve the resulting Euler-Lagrange system, several iterative methodsincluding the so-

called stabilising fixed-point (SFP) approach were proposed and tested using bothrealistic and

synthetic images. As expected, we found that the SFP method canbe used as a robust smoother

in our nonlinear multigrid framework. Numerical experiment showed that the associated FAS-

NMG methodis muchfaster than standard unilevel methodslike semi-implicit (SI) and additive

operator splitting (AOS) time marching approaches in convergence and delivering the same

numericalresults.

Fourth, we reviewed five commonly used PDE-based models, whichare effective for solving

either smooth or non-smoothregistration problems. Motivated by the attractive properties

of the Fischer—Modersitzki’s curvature registration model [47], we proposed the so-called full

curvature model that appears to deliver excellent results for both registration problems. As

a result, the Euler-Lagrange system of two coupled PDEsis highly nonlinear and of fourth

order so standard unilevel iterative methods are not appropriate. To end this, we proposed

several FP type smoothers including the SFP and primal-dualfixed-point (PDFP) methods

and then used both LFA and and numericaltests to select the most effective type of smoothers

which turns out to be the PDFP type smoothers. Numerical tests not only confirmed that

the proposed curvature model is more robust in registration quality than previous work by

[47, 48, 79, 78, 73, 75, 74], but also that the proposed multigrid method is fast and accurate in

delivering visually-pleasing registration results for a wide range of applications.

Finally, we presented a new variational image registration model for monomodal images

with the presence of significant intensity variations occurred in one of the given images. The

new model aims to search simultaneously an optimal intensity and geometric transformation

modelled to be non-parametric and constrained with the curvature model used successfully in

our previous work. As a consequence, the resulting Euler-Lagrange system consisting of three

nonlinear fourth order PDEs is required to solve in an efficient way. We extended the idea

of the PDFP method for solving that system in a FAS-NMG framework. Numerical results

confirmed the robustness of our new registration model and multigrid algorithm for solving

clinical applications.

9.2 Future directions

The ideas presented in this thesis can be expendedin different directions. First, the capabilities

of nonlinear multigrid methods encourage us to develop fast numerical algorithms not only for

multimodal image registration, but also three- and four-dimensional images. This is because

most existing methods in literature are not fast enough for practical use. Second, variational

models used in this thesis could be extended to include soft and/or hard constraints in order

to improve registration qualities. Finally, hybrid modelling that allows simultaneously registra-

tion and segmentation precesses is also important because it can improve registration and/or

segmentation results.
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