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Abstract:

Lung canceris the leading cause of death through malignant neoplasms for men

and womenin the United Kingdom. Respiratory motion complicates thoracic

radiotherapy during imaging and radiation delivery. Current lung-tumour

radiotherapy yields poor outcomes. These outcomes would be improvedif the

dose to the tumourcould be increased. One of the reasons whythis is currently

difficult or impossible is because large margins haveto be added to the tumour to

ensure that the tumourreceives the full dose even if it moves dueto respiration.

These large margins mean large volumesofnormallungare irradiated, which

limits the amount by which the tumourdosecan beincreased. Several motion

compensation techniques have been developed to reduce the margins. These

techniques reduce the doses to normaltissues, thereby reducing treatment toxicity

and allowing doseescalation to the tumour. One of the techniques is Gated

radiotherapy (Gating) in which the radiation beam is turned ON and OFF

depending onthepart of the breathing cycle the patient is in.

The Department of Clinical Engineering at the Royal Liverpool and Broadgreen

University Hospital has developed the Liverpool Respiratory Rate Meter. It is a

battery-powered, hand-held instrument which displays the respiratory rate of a

patient. In this project, the device has been further developed and adapted for

respiratory gating purposes. The applications of the developed system in gated

radiotherapy were studied.

The impact of audio coaching wasinvestigated by analysing the breathing samples

of 9healthy volunteers using audio coaching. It was found that audio coaching

increased the amplitude ofbreathing in most of the volunteers. Despite this, audio

coaching reducedtheirregularity in most of the subjects.

12 patient respiratory motion traces, each of them 30 secondsin length, were

collected from 5 lung cancerpatients at Clatterbridge Centre for Oncology. The

Experimental Respiratory Monitor (ERM) was compared with a commercial

system the real-time position management (RPM) system’) in termsofthe

synchronisation of the gating signal with tumour movementvisible on

fluoroscopy. For amplitude gating, baseline drift of the ERM wasa limiting factor

which madeit unsuitable for use in controlling gating, ifthe baseline ofthe tumour

motion drifts by a large amount.
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From the fluoroscopy study, it was shownthat the performance of the ERM in

amplitude gating mode was worsethan that of the commercial system because the

magnitude ofthe respiratory motionis not precisely represented by the ERM

signal. As an alternative to amplitude gating, phase gating could be usedto trigger

the gating signal. The use of the Extended Kalman Filter (EKF) and

Auto-correlation algorithm to derive a phase gating signal was investigated with

the aim of improving the gating performance of the ERM.

Dueto the systematic phase lag betweentherespiratory signals and the target

motion as well as the control delay between the acquisition and control system, a

numberofprediction algorithms (Neural Networks, Adaptive linear prediction,

Neural Fuzzy Systems and Extended KalmanFilter) have been evaluated. It has

been shownthat, Adaptive linear prediction was preferred. By applying predictive

gating to the datasets of the fluoroscopystudy, it has been shownthat the residual

motion was reduced bya certain amount in mostof the datasets in amplitude

gating.
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DFT
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Experimental respiratory Monitor

Respiration Rate Monitor

Varian Real-time Position Management

End of Inhale

End of Exhale

Discrete Fourier Transform

standard deviation

Adaptive Window Approach

Anterior-Posterior

Audio Video (usually for describing Coaching)

Root Mean Square values

Relative Root Mean Square values(related to the Root Mean

Square value of Total motion)
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nRMSE

%DC

LINAC

GTV

PTV
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Root Mean Square Errors

Normalized Root Mean Square Errors

Percentage duty cycle, eg: 10%DC. 20%DC,etc.

Linear accelerator

Gross Tumour Volume

Planning Target Volume

Clinical Target Volume

Internal Target Volume

Forall the respiratory plots presented in this document, local maxima always

represent the Endof Inhale, while local minimaalways represent the End of

Exhale.
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indicate the position of the tumour when the beam is enabled. On

the lower chart, the beam-enable segmentsare truncated together

and form the residual motion series. The colours (magenta, purple,

cyan, green and yellow) of the segmentsare used to indicate the

truncation Of differeiit SERIES...nisssisnisssanr ce simensnccanasecmvene 93

Figure 4-8: Motion of internal structures of 12 sessions. The RMS of

Diaphragm-Y Inferior-Superior, Tumour-X (LR, AP) and

Tumour-Y Inferior-Superior motions were shown.ref:805141 ....95

Figure 4-9: The location of tumourofPatient-4 wasclose to the

diaphragm.As result, the IS motion magnitude of the diaphragm

wassimilar to that of the tUMOUTD. 0.0...lee eecceessceesseeseeeeeeeeesees 96

Figure 4-10: Standard Deviation ofposition ofEnd of Inhale and Exhale

positions of the diaphragm and tumour.ref:805143 .........cee 98

Figure 4-11: This diagram showsthe mean ofthe rRMS amplitude ofthe

residual diaphragm and tumour motionacross different duty cycles

using the ERM and Varian RPM systems. The height of the bars

represents the % rRMSvalue. Bars are grouped into different duty

cycles. Thecolour of the bar representing the kind of monitoring

system andthe phaseposition of gating. The error bars show one

standard deviation. (a)Mean rRMSin the EOIposition; (b) Mean

rRMSin the EOE position. ref:805 144.0... cece ceeeeeeeseeeeeeeneees 101

Figure 4-12: The variations of EOI. The Varian signal is shown in

magenta and the gating signal by the red squares.................0+ 103

Figure 4-13: This diagram shows the RMSofthe tumour motion with

gating using the ERM and Varian RPM systemsat the EOI position
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Figure 4-14: The relationship between the systematic delays and

residual motion in 20% duty cycle on the EOEposition.
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Figure 4-15: A comparison of the monitor signal and amplitude gating

signals between the ERM andthe Varian RPM system for a 20%

duty cycle on the EOEposition. (a) shows the ERM’ssignal in

magenta andthegating signal in cyan. (b) shows the RPM’ssignal.

A delay is apparent in the ERM figure, in which the gating signalis
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shifted slightly towardsthe right hand side. ........ eeeee eeeeeeeee 105

Figure 4-16: A comparison of the monitoring and gating signals for

amplitude gating between the ERM andthe Varian RPM system.

The upperfigure shows the ERM’ssignal in magenta and the

gating signal in cyan. The lower figure shows the RPM’ssignal. A

delay can be seen in the ERM figure, in which the gating signalis

shifted slightly towards the right hand side. .......eee106

Figure 4-17: The blue bars are the mean rRMSorganresidual motions

over 12 datasets using amplitude gating without any delay

compensation, while the red bars are delay compensated. The

potential improvementassociated with prediction algorithmsis

shownbythe differences of each pair of bars. (a)Tumour EOE,

(b)Tumour ROL 760805149inscsancmnanmenmmmnanemasccreen 107

Figure 5-1: The Breathing signal and the Natural Phase. (a)The upper

chart is the respiratory signal x of a volunteer andits derivative

dx/dt. (b)The second chart is the natural phase without a zero-mean

x and proper weight between the two components x and dx/dt.

(c)The third chart is the Natural Phase signal with a zero-mean x,

but not properly weighted. (d)The fourth chart is the Natural Phase

signal with a zero-mean x, and properly weighted x and dx/dt.
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Figure 5-2: The Natural Phase. (a)The upper chart is the respiratory

signal x of a volunteer which exhibited a relatively non-smooth

breathingpattern. (b)The middle chart is the derivative dx/dt of the

breathing signal. (c)The bottom chart is the Natural Phase signal.

Thesignal was obtained by the Varian RPM system over a | minute

sampling session. Thefirst 12 secondsofthe signal are shownhere.
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Figure 5-3: Hilbert Transform hx(redtrace) ofits original signalx. (a)

sinusoidal signal (blue trace); (b)a square pulse (blue trace). The

y-axis is the amplitude and the x-axis is the time axis............... 115

Figure 5-4: Hilbert Transform: Rotating the frequency componentsto

create a sine wave out Of @ COSING..............sscsecssresseessneesesensense 116

Figure 5-5: The Hilbert transformation impulse response function in (a)

time domain and (b) frequency domain. Hilbert Transform shifts

the phase ofpositive frequencies components by -1/2 and negative
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frequencies components by +7/2........cscescceseesseeeeeeeeeseeeseeeseeess 117

Figure 5-6a: The upperchart is a sine wave with a period of 4 seconds

sampled at 25Hz sampling frequency. Four full harmonics of 400

samples were taken for the Fourier Transform. The spectrum is

shownin the bottom chart, where a sharp component of 0.25Hzis
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Figure 5-7: The upperchart is a sine wave with a period of 4 seconds

sampled at 25Hz sampling frequency. With the frequency

components corresponding to 0.25Hz removed. 360 samples were

taken for the Fourier Transform, accounting for 3.6 harmonics. The

speciruni is shown if the bottom CHAPccncscasvcosnseseserssssonwssnuerese 121

Figure 5-8: Assumption of Fourier Transformation. (a)The sinusoidal

waveis areal signal, which has infinite duration. A window is

defined for segmenting the real signal for real time processing.

(b)The inputsignal (the middle sinusoidal wave)is periodic - but

an integral numberof cycles does notfit into the total duration of

the measurement. (c)Hence, when the Fourier Transform assumes

that the signal repeats, the end of one signal segment does not

connect smoothly with the beginning of the next - the assumed

signal is similar to the actual signal, but haslittle 'glitches' at

regular intervals.........:cccceccesesseeeecessceseesseeseeseesesscssesesseesseeseeneees 122

Figure 5-9: The input signal of the DFT. The DFT assumesthe signal

repeats. The transformation windowsare cascaded (connected

together) one by one. The end of one signal segment doesnot

connect smoothly with the beginning ofthe next. Thelittle

'glitches', are connectionpositions, marked with black arrows.Ref:

S05 154 oe eecccccccsccsscsssessesseeseceecseceaecesecseeseeeesecsseeeseesseseseeeseseeeseaes 123

Figure 5-10: Stages ofproducing the breathing model(in the order from

a to d). The ERM breathing ofPatient-1 is used for demonstration.

(a) A pair of cubic splines were used to connect the EOE (blue) and

EOI(red) positions of the breathing signal (dotted blackline). The

green curveis the meanofthe red and blue curves. (b)After the

baseline drifting and amplitude variation is removed, the breathing

signal is segmented into breathing cycles. (c) The breathing cycles

were resampled, such that their lengths are equal, and represented

by phaseof—pi to pi (peak to peak). (d) The average trajectory

(black curve) and standard deviation (magentaerrorbar) ofall the
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breathing cycles. FEC S051 50 ssc.c.ccsas monmmcasme amseanecan samen cs me 130

Figure 5-11: The flow chart ofthe Adaptive Windowing Autocorrelation

Approach. The instantaneousphaseis calculated by a 3 step

processas: 1)determines the length of the transform window,then

2)multiply the window with sine and cosine function respectively

and finally 3)calculate the phase by inverse tangent function... 142

Figure 5-12: The AWA approach of phase estimation: (a)A breathing

signal of 38 seconds is shownbythe red dashed curve. The blue

curve is the segmentused for calculating the autocorrelation

function. (b)The signal in the autocorrelation window is plotted by

the blue curve. The autocorrelation functionis plotted in green. The

DFT windowis defined by the 2" peak (the magenta arrow)of the

autocorrelation function. The phaseofthe first harmonic in the

DFT windowis the estimated phase. Ref: 805155 ......eee 143

Figure 5-13: The sinusoidal waves used to simulate the breathing signal.

(a) Amplitude variations only; (b) Base-line Drift only; (c)

Frequencyvariations only; (d) Frequency and amplitude variations;

(e) Frequencyvariations and baseline drifting; (f)

Frequency-amplitude variations and baseline drifting.
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Figure 5-14: Therelative root mean square values of residual motions

averaged overthe 12 datasets are shown onthe figures. Each set of

bars represents different duty cycles. The colours of the bar

represent different phase estimation algorithms. The error bar

showsthe standard deviation. The upperfigure a) is for gating at

the EOEposition and the lower figure b) is for the EOI position.
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Figure 5-15: The rRMSoverthe 12 datasets are showninthisfigure.

Eachsetofbars represents different duty cycles. The colours of the

bar represent different phase estimation algorithms. The error bar

showsthe standard deviation. The upperfigure a) is for gating at

the EOEposition and the lowerfigure b) is for the EOI position.
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Figure 5-16: The instantaneous phaseofdataset-P 1a derived by two

phase estimation approaches: The yellow dotted curveis the phase

and the magenta dashed curveis the breathing signal of ERM.

a)EKFapproach b) AWA approach. The differences in
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characteristics of the two approaches are marked with Al, A2 and

Pl Bez cxmersmenecesecrnasrmenumneensemenenaemenaamanuniemenrumanmameemes 153

Figure 5-17: The gating pulse dataset-P 1a comparing the EKF and AWA

approaches: The yellow dotted curveis the phase; the magenta

dashed curveis the breathing signal from the ERM.The blue curve

is the motion of the diaphragm and the gate enable window is

marked with red squares. a) The EKF approach using the ERM

signal b) The AWA approach using the ERM signal. The major

differences are highlighted by green circles..........cceeeeeeeeeeee 153

Figure 5-18: The gating pulse of dataset-P4b comparing the EKF phase

gating and amplitude gating: The yellow dotted curveis the phase;

the magenta dashed curveis the breathing signal from the ERM.

The blue curveis the motion of the diaphragm and the gating

enabled windowis marked with red squares. a) The EKF approach

using ERMsignal b) amplitude gating using ERM signal. The

major differences are highlighted by greencircles...............0.. 156

Figure 5-19: The gating pulse of dataset-P5a comparing EKF phase

gating and amplitude gating: The yellow dotted curveis the phase,

the magenta dashed curveis the breathing signal from the ERM.

The blue curveis the motion of the diaphragm and the gating

enabled windowis marked with red squares. a) The EKF approach

using ERM signal b) amplitude gating using ERM signal. The

major differences are highlighted by green circles. ..............0. 157

Figure 5-20: The gating pulse ofdataset-P 1a EKF approachphase gating

using ERMsignal. The yellow dotted curve is the phase; the

magenta dashed curveis the breathing signal from the ERM. The

blue curve is the motion of the diaphragm and the gate enable

Window 1s Marked With ed SQUALES xs sccsas sscsscsawsnsnseseacersonsounsns 158

Figure 6-1: The nRMSEofdifferent prediction algorithms averaged

overall the datasets using ERM signals. The length of the error bar

indicates one standard deviation. The results are grouped by

different detection horizons.ref: 805161 0.0... eceeeeeeeeeeeeeereeee 168

Figure 6-2: Prediction ofirregular signals at 480msprediction horizon.
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Figure 6-3: The blue bars are the mean rRMS(in percentage) organ

residual motions over 12 datasets using amplitude gating without
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any delay compensation, while the red bars are delay compensated

by LMSprediction. The green bars were producedby shifting the

breathing signal to compensate for the delay. (a)Tumour EOE,

(b)Tumour EOI, (c)Diaphragm EOE and(d)diaphragm EOI.

TOF8O5S 162eececccccccesccsssceseeeeeceeeeeseceeeeeseceeeeseeaeeeeaeeeeaeeseeeees 170

Figure 6-4: Comparison of the rRMS ofNLMSprediction and no

prediction in 30% duty cycle of the tumour IS motion. The blue

bars are the mean rRMSorgan residual motions over 12 datasets

using amplitude gating without any delay compensation, while the

red bars are delay compensated by NLMSprediction. (a)EOE,

(D)EOL. ref:805163 oo. cececceceeeseeseeeeeeeneceeseeeeaeeseesaeeseeeeeeaeens 172

Figure 7-1: Schematic diagram of evaluating the variation of breathing

cycles: A breathing signal containing several breathing cyclesis

divided into segments of equal length. The length is equal to the

mean duration of the wave cycles. The standard deviation vector

8[n] of the aligned wave form is computed. The variation ofthe

wavepattern weighted at the local minimum position is defined as

the dot product of a weight vector w[n] and the standard deviation

vector 6[n]. w[n] is a vector with a square pulse distribution of

VALUES........eeccccesseeeeeeeeeesessesesssssssssssssssssssssssssceeceeseeececcessceeeeeueuaeeees 174

Figure 7-2: Result of breathing cycle segmentation of the program. The

breathing signal (red trace) is plotted above. The y-axisis the

amplitude and the x-axis is the time in unit samples. Theresult of

the segmentation is displayed as horizontal line segments. The line

segments (cyan colour) on top of the breathing signal represent the

breathing cycles segmented with reference to the minimum

positions; while the line segments (blue colour) below the

breathing signal represent the breathing cycles segmented with

reference to the mMaximUM POSITIONS. ............ceeeeeeeseeeeseeeeeeeeeeees 178

Figure 7-3: Wave segments aligned to the local minima. The screen

capture of the wave segment window showsthevariation of the

breathing cycles and provides an alternative to the numerical

presentation. The y-axis is the amplitude of the breathing signal.

The x-axis represents the time measured in unit samples.......... 178

Figure 7-4: A snapshot of the 4 column layout of the software......... 181

Figure 7-5: The signal Monitor displaying the segmentation result ..181
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Figure 7-6: A tab in the 4th column showingthe aligned breath cycles

ABOUTHSiT HARIPOSIMON: sresecnsomessceocesarean 182

Figure 7-7: User Interface of the Breathing Signal comparisontools:

Thetools allow clinicians to evaluate the regularity of the 4

different breathing signals at once. By providing the variation of

the motion and regularity measurements,it helps clinicians to find

the best set of parameters for gating. Please refer to section 7.1.5

for descriptions of the interface..........eeeeeseeseeeseeeeeeeeeseeeeees 182

Figure 7-8: Breathing signal of the volunteer of (a)Irregular and

(b)Regular breathing patterns were used as input to show the

function: Of the SOLWATE. ......-...cc-sssnnienncesdanica canner esr nmcemensans 184

Figure 7-9: Wave segments aligned to the trough of(a) an irregular

breathing signal and (b) a regular breathing signal.................... 184

Figure 7-10: Abnormaldetection in Volunteer-7. As the subjects fell

asleep, the amplitude ofbreathing was reduced. The subject waked

at 600" and 1700" samples. Hence, there was a sudden increasein

amplitude in both positions. (a) The black trace on the upper graph

is the breathing signal andthered traceis the phase signal. (b)The

rate of change of phase Q[n] is shown. The two cyan horizontal

lines are the upper and lower boundsofthe normal breathing
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Figure 7-11: Abnormal detection in Volunteer-8. (a)The black trace is

the breathingsignal andtheredtrace is the phase signal.(b)The rate

of change of phase Q[n]: The two cyan horizontal lines are the

upper and lower boundofthe normal breathing patterns. (c)the red

trace is the abnormaltrigger, where a high level (1) indicates that

breathing is normal and lowlevel indicates that abnormalactivity

has been detected. Theblacktrace is the result of the detection

which included the 4-seconds abnormal-to-normal recovery time.

The x-axis represents the time in sample units. The signal was

sampled at 25Hfrequency...........cccccsceceseseeeseeeteeeeeeteteeseeseneees 190

Figure 7-12: Abnormality detection in Volunteer-A.(a) Theblacktraceis

the breathing signal andtheredtrace is the phase signal. (b)The

rate of change of phase Q[n]is shown. The two cyan horizontal

lines are the upper and lower boundsofthe normal breathing

patterns. (c) Thered trace is the abnormal trigger, where a high
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level (1) indicates that breathing is normal and a low level indicates

that abnormalactivity has been detected. The black trace is the

result of the detection which included the 4-seconds

abnormal-to-normal recovery time. The x-axis represents the time

in sample units. The signal was sampled at 10Hz frequency.....191

Figure 7-13: User Interface of a Wizard based ERM sampling program.

Thesignal of the ERMisplotted in the top middle chart. The

natural phaseofthe signal is plotted in the top right handside chart.
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1. Introduction

1.1. Background

This project is motivated by the need to improve lung cancer radiotherapy, soit

is appropriate to begin with the challenges faced.

1.1.1. Lung cancer incidence, Lung Cancersurvivalrate

Accordingto the statistics report of Cancer Research UK,there were about 37000

new casesoflung cancer in 2003 in the UK (Lung Cancer and Smoking - UK

2007). It is the most commoncancerin the world with each year approximately 1.4

million people diagnosed with lung cancer and it accounts for 12% ofall types of

cancers.It is also the most commoncause of death from cancer, accounting for

18% ofall deaths from cancer worldwide (Parkin et al 1999).

Lung cancersfall into two main categories: around 20% are small cell lung cancers

(SCLC) and the remainderare non-small cell lung cancers (NSCLC). The main

types ofNSCLC are squamouscell carcinoma, adenocarcinomaandlargecell

carcinoma, accounting for approximately 35%, 27% and 10% ofall lung cancer

cases respectively in the UK (National Institute for Clinical Excellence 2005).

1.1.2. The treatmentof different types of lung cancer

1.1.2.1. Treatment ofNon-Small Cell Lung Cancer (NSCLC)

Surgery is the main curative treatment for NSCLCandearly assessment of the

patient to see if the tumouris operableis essential. Only 20-30% of patients may

be eligible for radical surgery (Tackling cancer in England 2004).Occasionally

radiotherapy with radical intent is used instead of surgeryto treat local disease.

The definitive treatment for local operable disease hastraditionally been surgery

whichis potentially able to eradicate the tumour completely. The reason for

treatment failure, however, is often not the local treatment but rather the spread of

the tumourto othersites. For inoperable patients radiotherapy can offer a

satisfactory alternative to surgery, but its efficacy is limited by theinability to

deliver a curative dose
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1.1.2.2. TreatmentofSmall Cell Lung cancer (SCLC)

SCLC tumoursprogress rapidly and untreated patients survive on averagefor less

than three months from the time of diagnosis. (Lung Cancer and Smoking - UK

2007)Chemotherapyis the mainstay of treatment: radical surgery is rarely an

option dueto the systemic nature of the disease. Although radiotherapy reduces

the risk of local recurrence, the patient frequently dies from metastatic disease. To

attempt to reducethe risk of metastasis, prophylactic cranial irradiation is

sometimes used for patients with advanced disease who havea high risk of brain

metastases (Slotman et al 2007) and chemotherapyis also used to reduce

metastatic spread. Wherecureis not possible radiotherapy can help to control

symptoms. The 5-year survival for patients with SCLC is about 5% (Minna &

Schiller 2008).

1.1.2.3. The use ofradiotherapy in treating lung cancer

Radiotherapyis used for patients for whom surgery is too dangerous or who have

tumour(s) in a location whichis difficult for surgeons to reach. For somestage 3

lung cancers wherethe cancerhasspreadlocally (eg: into chest wall or diaphragm)

and the tumourisstill small, the clinician might suggest the use of radiotherapy

instead of surgery. Radiotherapyis also goodaspalliative therapy for relieving

chest symptomssuchas pain and coughing and pain in bones to which the cancer

has spread. There are 3 reasons for radiotherapy rather than surgery:

1. Thepatient is unfit for surgery (poor lung functions, serious cardiovascular

disease.

2. The tumouris inaccessible.

3. The patient refuses surgery

However, recently it has been shown with Stereotactic Body Radiotherapy in

which high doses are given in few fractions, radiotherapy results are similar to

surgery (Onishiet al 2004, Nyman 2006).
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1.2. Lung anatomyandrespiratory physiology

 

—-

Expiration Inspiration

Figure 1-1A: schematic drawing ofthe mechanism ofbreathing: The above

illustration shows the movementofthe ribs, sternum and diaphragm in the

inspiration phase ofbreathing. Beginning with the end ofexhale on the

left-hand-sidefigure, the diaphragm is highlighted in red andthe rib cage is

indicated by deep blue. The horizontal axis ofthe grid indicates the initialposition

ofthe diaphragm, while the verticalaxis ofthe grid indicatestheinitialposition of

the rib cage. The red and blue arrowsin the subsequentfigures indicate the

direction ofthe movementofthe diaphragm andthe rib cage respectively. As the

breathingphase progresses towardsinspiration, the diaphragm goes down andthe
rib cage expands to increase the volume ofthe lung.

1.2.1.1. Mechanism ofbreathing:

The primary function of the lungis to deliver oxygen to the alveoli and remove

carbon dioxide. This is accomplished by the flow of gas in and outof the lungs.

The differences in pressure cause by changes in lung volume, force gas in and out

of the lungsin a respiration cycle.

During inhalation, the lungs expand. By Boyle’s Law,the pressure ofthe gasin the

lungs decreases below the atmospheric pressure and thus air flowsinto the lungs.

The diaphragm (which formsthefloor of the thoracic cavity) contracts to increase

the superior-inferior dimension ofthe thoracic cavity, whilst other respiration

muscles such asthe internal and external intercostal muscles increase the

anterior-posterior andlateral dimensions by expanding the ribcage (figure 1-1).
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Unlike inspiration, expiration is a relatively passive process and muscle

contraction does not necessary happen (Tortora 2006). Expiration is a result of the

elastic recoil of the chest wall and lung, which havea natural tendency to spring

back after they have been stretched. During expiration, both diaphragm and

intercostal muscles relax with the ribcage returning to its normal position, which

raises the intra-thoracic pressure and forces gas out of the lungs.

1.2.1.1.1. Lung volumes

Respiration can be described in terms of four different volumes (Ganong 2003):

1. Tidal Volume (TV)is the amountofgas inspired or expired in a normalbreath.

2. Inspiratory Reserve Volume(IRV) is the amountofgas that can be inhaled by

maximal effort after a normal TV.

3. Expiratory reserve volume (ERV)is the amountofair that can be exhaled by

maximal effort after a normal TV.

4. Residual volume (RV)is the amountofair remaining in the lungsafter a

maximum expiration.
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1.3. Literature review:

1.3.1. Respiratory Monitoring and compensationof respiratory motion

in radiation delivery

Respiratory motion can cause problems during image acquisition and treatment

planning as wellas in radiation delivery whentreating lung tumours.

Manystudies have been performed to study lung tumour motion. (Shen et al 2003,

Jiang et al 2003, Keall 2001, Hugo 2003, Hugo 2002, Bortfeld et al 2002,Bortfeld

et al 2004).Thesestudies report that tumour movement can vary between a few

millimetres and several centimetres. The effect ofrespiration motion on imagingis

both to generate artefacts and to makethe position of the tumour uncertain.

Standard imaging methodsdo not accurately delineate the extent of tumour

movement (Shimizu et al 2001, Vedam et a/ 2003, van Herk et a/2000, Ritchie et

al 1994, Ford et al 2003, Balter 1996, Giraud et al 2002). In treatment planning, a

margin is needed to ensure adequate coverage of the tumour(the margin of the

tumourdisplacementin addition to the clinical target volume (CTV)) for treatment

delivery. The additional margin added to the CTV formsthe Planning Target

Volume (PTV). The development of 4D-CT has madeit possible to define the

volume of tumour excursion during a respiration cycle on the CT imagesrelating

to a patient’s fixed anatomic landmarks. This volumeis consideredas the internal

target volume (ITV)as defined bythe International Commission on Radiation

Units and Measurements (ICRU)report 62 (1999). Adding standardized margins

to account for respiratory motion mayincrease the volumeofhealthy lungs

receiving high radiation dose. There is a direct correlation between the radiation

dose and the probability of achieving local control of the tumour. However, the

maximum dosethat can be delivered to the tumouris limited by the tolerance of

the normaltissues that surroundit. Therefore, limiting respiratory motion can

potentially allow the dose to the tumourto be increased without increasing damage

to normal tissues. There are several techniquesthat are being used to account for

respiration motion.



27

Table 1-1: Magnitude ofLung Tumour motion dueto respiration.
 

Tumour Motion

 

Studies Modality (mm)

Shirato et al 2000 Fluoroscopy 8.3+1.2 (peak to peak)

Ford et al 2002 Fluoroscopy & CT 13.5-19.9 (90% excursion)

Vedam et al 2003 Fluoroscopy 2.4-6.0 (SD)

Starkschall et al 2004 CT 5.1-17.6 (peak to peak)

Hoisaket al 2004 Fluoroscopy 1.1-27.6 (peak to peak)

Tsunashimaet al 2004 Biplanedigital 2.2 to 14.7 (peak to peak)

radiography

Ahn et al 2004 Fluoroscopy 9.7-18.2 (peak to peak)
 

Respiratory motion has been measured using various imaging techniques such as

ultrasound, fluoroscopy, CT and MRI(Ford et a/ 2002, Shenet al 2003, Jiang et al

2003, Keall et a/2001, Hugo et al2003, Hugo et a/2002, Bortfeld et al 2002,

Bortfeld et al2004). With these images, significant differences were noted between

quiet (shallow) breathing and deep breathing. Table 1-1 lists a number of studies

from which we mayconcludethat the range of lung tumour motion is less than

30 mm.

Marginsare added to the CTV forvariations in tissue position, size and shape as

well as inter and intra-fraction variation in patient position and beam position to

form the Planning Target Volume (Antolak et a/ 1999 Engelsmanet al

2005).Typical margins for lung treatments are of the order of 1-2 cm (Hanleyet al

1999).

Mostinstitutions do not have techniques for reducing respiratory motion,so larger

margins are used to account for the tumour motion due to respiration motion.

Larger margins accountfor the variations and uncertainties and prevent under

dosage to the tumour. However, larger marginsalso result in an increased volume

of normaltissue irradiation.

There are various approachesto deal with tumour motion, suchas, gating (to

irradiate the tumour whenitis within a pre-defined spatial location) (Kubo and

Hill 1996, Keall et al 2001), beam tracking (a robotic mechanism to adjust and

align the beam with the tumourinreal time) (Schweikard et al 2000, Neicu etal
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2003) and passively restricting the respiratory motion (Stromberg et a/ 2000,

Remouchampset al 2003, Hanley et al 1999).

1.3.2. Respiratory Gating

Respiratory gating is a methodthatis used to limit the effect of respiratory motion

during imaging and radiation delivery without interruption of the patient’s

breathing.

The gating signalis used to trigger the radiation beam. The period that the

radiation beam is enabledis called the gating window.Theposition and duration

of the gating window is determined by using external surrogates or internal

markers to monitor the target position. For external surrogates, gating can be

delivered by twodifferent techniques: amplitude gating or phase gating. In

amplitude gating, the radiation beam is enabled wheneverthe respiration signalis

within a pre-defined window ofrelative positions. For phase gating, a phase

signal is calculated by an algorithm from therespiration signal. The radiation

beam is activated when the phaseofthe respiration signal is within a pre-defined

phase window.Theratio of the duration of the gating windowto the overall

treatmenttimeis called the duty cycle. In most cases the tumouris not

completely static in the gating window and this movement when the beam is on

is referred to as "residual motion". In general, the residual motion will increase

with the duty cycle.

Gating has the advantage, compared to techniques involvingthe restriction of the

range of respiration, that lung cancer patients who have reduced lung function can

breathe freely without holding their breath.

Whena surrogate is used to monitor breathing for gating, the tumourposition is

inferred by the breathing signal of the surrogate. The correlation between the

tumourand the surrogate in a simulation session is assumed to remain the same in

future treatment sessions. Therefore, the tumour and the surrogate must be

monitored long enough to ensure they are reliably synchronized and detect

possible drifts and long-term variations. Monitoring should also be repeated

throughout the course of treatment.
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Gating modalities: devices/systems for monitoring breathing

1.3.2.1. Monitoring ofchest wall and abdominal movement:

This techniquerelies on the repeatability of the correlation between the tumour

location and the external surface, an assumption that has been investigated in

several studies (Vedam et a/2003, Hoisak et al2004, Tsunashimaet al2004, Koch

et al2004, Ahn et al2004).Vedam et al. (2003) analysed 63 breathing signals from

8 volunteers and found that external motion (abdominal wall Motion) was mostly

correlated to diaphragm motion regardless of session and coaching method.It was

foundthat the correlation coefficient between the external motion and the tumour

varies from patient to patient.

The Varian Real-time Position Management (RPM) system has been widely

discussed in publications. The system involves placing an Infrared reflective

marker on the chest wall or abdomen. The reflective markeris illuminated by

infrared emitting diodes and the resulting images are captured by a camera and

processed by a desktop computer, resulting in a breathing trace (Mageraset al

2001, Ford et al 2002). Abdomen surface displacements do not alwayscorrelate

with tumourposition. Phase shift or delay and baseline drift have been observed

(Shimizu et al 2001, Mageraset al 2001).

1.3.2.2. Spirometer:

Zhang et al 2003 presented using a Bernoulli-type Spirometer for breath

monitoring. The spirometer wasa bi-directional differential pressure sensor that

converted the flow into a pressure signal. This signal was then converted to a

voltage, digitized to a reading value, and transferred to a control computer. They

stated that a spirometercorrelated to the target position by measuring lung volume

changesand hadlesssetup variation. A nose clamp and a mouth piece were used to

ensure the accuracy ofair-flow measurement. However, studies of respiratory

physiology have shownthat the nose clamp and mouthpieceincreasethetidal

volume of breathing (Gilbert et al 1972, Askanazi 1980, and Tobin 1983a). Tidal

volumehasa direct relationship with the motion ofthe tissues of the lung.
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1.3.2.3. Temperature sensor:

Temperature sensors, usually being placed just below the nostrils, monitor the

temperature of the gas flowing in and out of the nose. The temperature signal of

the sensor corresponds to the room temperature when inhaling and the lung

temperature when exhaling. Kubo & Hill (1996) presented the technical aspects of

using two types of temperature sensor (thermocouple and thermistor) for

respiratory monitoring in gated radiotherapy. It was found that both of these

correlated well with the pneumotachograph andstrain gauge. For patient comfort,

temperature sensors are preferred over a pneumotachograph. A thermocouple has

also been used as a breathing monitor for 4D CT reconstruction (Wolthauset al

2008).

1.3.2.4. Strain Gage

A strain gauge attached to a band wrapped aroundthepatient's chest can be used

to detect the abdominal surface tension change (Okumura 1994, Minohara 2000).

Kubo& Hill(1996) analyzed various sensor systems to monitor respiratory motion

to obtain a surrogate for motion information to use as a gating signal. The strain

gauge wasdescribedasreliable and inexpensive and proved to be more

comfortable than the pneumotachograph. Special caution on the tightness of the

tension belt is needed. A tight belt would restrict the thorax movement, while a

loose belt has a tendency to move(orslip) around the thorax, resulting in

in-accurate measurement (Mazika & Swan 2007).
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1.3.2.5. Internal surrogate: Image guidancetechniqueforgating

Shimizu et al2001, Shirato et al2000 & 2003 , Seppenwoolde et al2002, Shirato et

al1999 have described the use of internal gold markers to gate the radiation beam.

The markersare tracked using an x-ray system 30 times per second. Whenthe

markers are within a predetermined location, as determined from the x-ray

imaging system, the linearacceleratoris triggered to irradiate the tumour.

Since the tumour maynotbeeasily identified and tracked under fluoroscopy,

gold seed markers are inserted into the tumour, to increase the accuracy of

tracking the tumour. For example, the Cyberknife system uses two orthogonal

x-ray images from x-ray tubes mountedin the floor of the room.In order to

identify individual fiducial markers,it is important that the markers are not

placed superimposed on each other in 45° oblique views (Kothary et al 2009).To

achieve this two skin entry sites may be needed.

Shirato et al 2000 measuredthe doserates of two diagnostic X-ray tubes at 120

kV with a pulse width of 4 ms with thermoluminescence dosimeters. The dose

rates were 10.8 mGy/minat the entrance and 0.8 mGy/minat the exit. Assuming

2-min diagnostic exposurefor a daily irradiation of 2 Gy in 40% duty cycle, the

additional X-ray dose, due to real-time tracking, ranges from 0.208 to 21.48 x

10? Gy. This amountcorresponds with 0.02—2% ofthe total prescribed dose.

The extra dose was small comparedto the dose to the PTV. However, the highest

dose occursat the skin surface, which is usually not part of the PTV.

Localization with a fiducial marker directly within lung tumoursis considered an

accurate wayofaiding in gated radiotherapy becauseit directly marks the tumour

position (Shimizu et al 2001, Shirato et al 2006). The placementoffiducials

within lung tumours can be achieved either transcutaneously (undereither

fluoroscopic or CT guidance) or transbronchially through bronchoscopy-based

approaches.

The main disadvantage of transcutaneous approachesis the risk of pneumothorax,

estimated to be in the 20-30% range, similar to the pneumothoraxrate associated

with transcutaneousneedle biopsies of lung lesions (Cox et al 1999,Fishet al

2006).Various studies have shown needle biopsy induced pneumothorax rates

between 8% and 38% (Topal and Ediz 2003, Geraghty et al 2003, Laurentet al

2000). These results make manyclinicians reluctant to perform marker

implantation in the lung. However,the risk of pneumothorax using the

transbronchial approachis negligible compared to the transcutaneous approach

(Kupelian et al 2007).Mostof the gold markers remainedin place during the
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treatment (Imura et a/ 2005). However, for certain types of tumours, it was

difficult to keep the gold markers in place throughoutthe treatment period

(Haradaet al 2002). The marker moved from the inserted position within 24

hours in four tumours; (two were central tumours and two were peripheral

tumoursin the left superior segment)and after a week in one patient with a

central tumour. Hence, implanted markers are not feasible for all patients and the

patient must be able to tolerate the implantation procedure.

Berbecoet al (2005b) have suggested using the fluoroscopic images for gating

based on motion-enhanced tumour imagesofthe lungs without implanted

markers. At the end ofinspiration,the lungfills with air. Thus, the radiological

path-length through the lung shortens(in contrast to End of expiration with long

path-length), giving brighter fluoroscopic intensities. Hence, the temporal change

in intensity represents the breathing cycle and wasused to trigger the radiation

beam whenthe target was within the desired location.
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1.3.3. Respiratory Synchronized Radiotherapy/Real-time

tumour-tracking

Theprinciple of respiratory synchronized radiotherapyis to follow the tumour

with the radiation beam (Keall et al 2001, Schweikard et a/ 2000).In tumour

motion synchronization, the position of the tumouris detected by either

visualization of the internal structure or implanted markers. In someofthe cases,

a lung tumouris possible to detect directly in fluoroscopic images acquired

simultaneously. However, most lung tumoursare noteasily visible (by clinician

or computer vision) under fluoroscopic imaging. In such cases, implanted

fiducial markers (in or near the tumour) are used to track the position of the

tumour. Dueto the high atomic numberof gold, gold fiducial markers were

utilized in the study of Murphyet a/ (2000) and Shirato et al (2000), such that

the dose to the fluoroscopy imagingfield can be reduced.

To reducethe irradiation of healthy tissue surrounding the target volume, a

miniature implantable radiofrequencycoil that can be tracked

electromagnetically in three dimensions from outside the patient has been used

(Seiler et a/. 2000, Balter et a/ 2005). The electromagnetic approach could

provide an alternative to the use of radiological imaging to track the tumour

position.

In real-time tumourtracking, the treatment beam is on throughout the respiratory

cycle and unlike gated treatments, the treatment time is not increased.

This technique may reduce NTCPbyreducing the internal margin and increase

tumourcontrol by doseescalation.

There is still a considerable amount of software and hardware investment required

for respiration-synchronized radiotherapy. The treatment planning system needs

to account for the dosimetry regarding the changing lung volume,because the

normal treatment-planning imaging study usedto calculate the dosimetryis in

onestatic configuration. The anatomy andthe air volumein the lung are

continually changing during the treatment session. Hence, the relative positions

of tumour, normaltissue, and critical structures change. These position changes

affect the attenuation of the treatment beam andaffect the dose distribution of the

whole treatment plan.
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1.3.4. Active control of respiration motion

There are two benefits of using active control techniques:

e Thetarget is immobilized so that diaphragm motion and position

variability can be reduced.

e Increasing the volumeofthe lungs(in Inspiration Breath Hold) to reduce

the fractional amount of normaltissue being irradiated (Strombergetal

2000, Remouchampset a/ 2003, Hanley et a/ 1999). This potentially

reduces normal tissue complication probability (NTCP). These techniques

may therefore help in dose-escalation radiation treatments for lung cancer

patients.

1.3.4.1. Deep Inspiration Breath Hold

Deep Inspiration Breath Hold (DIBH)is a technique trying to reproducethestate

ofmaximum inhalation (Remouchampset a/ 2003, Hanley et al 1999, Mahetal

2000). The manoeuvrebegins with thepatientin quiet tidal breathing, followed by

slow deep inspiration and slow deep expiration and then another slow deep

inspiration to maximalinspiration level and breath hold.

Several studies have been performed using DIBHto reduce the movementoflung

tumours dueto respiration. Hanley et al 1999 compared the treatment plan for

DIBHandfree breathing. The volumeoflung receiving more than 25 Gy was

reduced by 30% while respiration gating only reduced the volume by 18%

compared to no intervention. DIBH could also reduce the density of the lung by

26% on average. Hence, there could be a potential to decrease the dose of the

normaltissue of the lungs.

Target immobilization and expanded lung volume (reduced density) are the

important features of the breath hold technique. Increasing lung volumewill

reduce the fractional amountofnormaltissue being irradiated which should

reduce normal tissue complications.
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1.3.4.2. Voluntary Breath Hold (Subject Initiated Breath-Hold)

In Voluntary Breath Hold, the patient plays the role of the sensor, detector and

beam controller. The patient holds the breath at a predetermined specific position

in the breathing cycle while at the same time presses a notification button. The

therapist then activates the treatment beam. Whenthe prescribed dose has been

delivered, the treatment bream stops. The treatment beam can also be stopped by

the patientor the therapist to interrupt the treatment. The technique wasverified by

a fluoroscopy study by Kimuraet al (2004). Kimuraet al used the voluntary

breath-hold technique with a spirometer to evaluate the reproducibility of organ

position by using CT scans. The volunteer was asked to hold his breath at

end-inspiration or end-expiration, whichever felt more comfortable. The

conclusion ofthis study wasthat voluntary breath hold hasrelatively good

interfraction and intrafraction reproducibility, especially for end-expiration

subjects. Intrafraction reproducibility of tumour position in the cranio-caudal

direction was 4.0-3.5 mm at the end-inspiration phase and 2.2-2.0 mm at the

end-expiration phase.

1.3.4.3. Active Breathing Control

An ABCdevice monitors the flow of breath and uses valves to control the

inspiration and expiration independently. The clinicians can specify the flow

direction and the lung volumefor closing the valves and the duration of breath

hold. There have been several published studies on the use of this technique to

treat lung (Cheunget a/ 2003, Koshani et al 2006, Wilson et al 2003), breast

cancer(Frazier et al 2004) and Hodgkin’s disease (Stromberg et al 2000).When

training for ABC,thepatient has a visual feedback of the lung volumeandthe

level of intended breath hold (Wonget al 1999). The patient is notified when the

ABCdevice will be enabled and the valve closes. The patient must be

comfortable with holding his or her breath for the period during which the valve

is closed, as well as being able to cope with repeated breath holds.

1.3.4.4, Breathhold

Techniques such as ABC and DIBH might be demandingfor the elderly patient

population or those having reduced lung function. Moreover, patients who cannot

follow instructions are unsuitable for this technique (Rosenzweig et al 2000).
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Voluntary breath hold tries to solve this problem byletting the patient choose the

time to hold their breath. However,in the study of Barneset al (2001), 2 of the

10 subjects were observed to have continuous diaphragm motion during

voluntary breath hold, even though they believed they were holding their breath.

This mode of treatmentrelies heavily on the patient’s ability to understand and

perform a reproducible breath hold, maintain it for at least 10 s, and

simultaneously operate the hand-held switch.

1.3.4.5. Forced Abdominal Compression

Abdominal compression can be usedto limit the motion of the diaphragm. The

patientis placed in a body frame(or three sided box). The frame allowsa plate

on a threadedpillar to be screwed downso as to compress the abdomen.Patient

immobilisation is improved by the use of a compression device such as a metal

plate (Wulfet a/ 2000, Negoroet a/ 2001). The frame is comprisedofthree parts: a

bodyshell, laser markers and a small abdominal pressing plate. The body shell is

madeup ofa rigid frame and flexible part called a vacuum pillow, which when

evacuated maintained the patient’s body contour and becamerigid enough to

support the patient. A small abdominal plate was pressed on the patient’s upper

abdomento suppress large movements of the diaphragm and to reduce the

tumour’s movementduring respiration. Negoroet al. (2001) studied this technique

with 18 lung cancer patients. With free breathing, they found that ten of the

patients had motion between 8 and 20 mm, which wasreduced to 2 to 11 mm using

abdominal compression. Motion was reduced while maintaining normal

respiration. This techniquealso increased the accuracy of daily setup(with

standard deviationsof field placementerrors of 3.5 mm in longitudinal, 2.2 mm in

the anterior—posterior and 3.9 mm inthelateral directions (Wulf et a/ 2000) One

difficulty encountered while using the abdominal compression technique wasthe

inability to detect the patient’s rotation along the bodyaxis andnotall patients can

tolerate it.



37

1.3.5. Variable nature of respiration

Inter-cycle (Breath-to-breath) variations can be represented by tidal volume and

the inspiratory/expiratory durations. Sometimescorrelation is established between

tidal volumeandthe inspiratory/expiratory durations (knownas correlated

variations). (Bruce et al 1996, Bechbacheet al 1979 and Kay 1975) They can also

be affected by uncorrelated random variations (known as white noise). The

breathing pattern is also affected by periodic oscillations which aim to regulate the

oxygen supply and non-periodic fluctuations (eg: psychological and

environmental changes).These variations can bethe result of a numberoffactors:

such as central neural mechanisms, anatomic variabilities, genetic variation,

pulmonary afferent activities and/or chemoreflex mechanisms.

Shea et al 1992 demonstrated that the forebrain activity (related to sleep and

awakeness) or comfort level (related to the patients comfort) affect breathing

patterns in diseased patients. The study utilized a respiratory inductance

plethysmography (RIP) device to study breathing-pattern differences between

patients and the possible factors ofthe differences.RIP is a device used to measure

changesin chest and/or abdominal volume.’The study was performed on 50

healthy volunteers and measured by RIP twice a day on two consecutive days.It

was found that different people breathe in different ways under defined conditions

and even in the absence of behavioural or forebrain influences(i.e., during sleep),

the differences persist. The study of 9 pairs of twins showed that the twins

breathe with similar patterns. This supports the conclusionthat there is a possible

genetic influence on breathing pattern.

 

* It works byputting a loop ofwire aroundthe chest/abdomenofthe subject. A current then applied

through the loop of wire generates a magnetic field normalto the orientation of the loop. A change

in the area enclosed bythe loop creates an opposing current within the loop directly proportional to

the changein the area. (Mazeika & Swanson 2007)
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Tobin et a/. 1983a measuredthe breathing of 47 young (ageless than 50) and 18

old (age greater than 60) normal subjects utilizing respiratory inductive

plethysmography.It was observed that rhythm was moreirregular for old subjects.

A similar study by Tobin et al. 1983b compared the breathing of normal subjects,

asymptomatic smokers, asymptomatic and symptomatic asthmatic patients and

patients with chronic obstructive pulmonary disease, restrictive lung disease and

pulmonary hypertension. It was shownthat diseased subjects have larger

variations in breathing pattern components than normal subjects. Lung cancer

patients have impaired lung function(or part of their lung was removed by

surgery) andit is therefore likely that such patients have larger breathing pattern

variations.
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1.4. How the Experimental Respiratory Monitor Works

1.4.1. Introduction to the Experimental Respiratory Monitor

The Departmentof Clinical Engineering at the RLUBH has developed the

Liverpool Respiratory Rate Meter (RRM).It (Figurel-2) is a battery-powered,

hand-held instrument which displays the respiratory rate (in the unit ofbreaths per

second) of a patient sampled over the previous 30 seconds. The system producesa

signal related to the patient’s instantaneousstate of respiration from whichis

derived the respiration rate displayed on the LCD monitor. In this project, the

device was further developed and adaptedit for respiratory gating proposes. This

section described information of the original design of the RRM.It covers the

physical aspects, electronic design and software programsinvolved in obtaining

the breathing signal.

 

Figure 1-2: The Respirate, a respiration rate measuring device adopted as a

respiration gating device.

1.4.2. Electronic design of Experimental Respiratory Monitor device:

The device is composedofa transducer (Figure 1-3), Analog to Digital converters,

a Microcontroller, an LCD display and a Bluetooth port(Figurel-4). The

transducer of the RRM is a sensory device attached to the air mask to measure the

temperature of the maskcavity. It is made of a piece of Piezo-electric film and a

signal amplifier. Piezo-electric film is sensitive to both temperature change and

mechanical movement/vibration. The breath transducer is based on a rigid

piezo-ceramic film acting as a change-in-temperature detector located in the

side-wall orifice of a standard supplementary oxygen face mask. The respiratory

rate is displayed on an LCD.The Analogto Digital converter (ADC)is built into

the microcontroller for digitising the amplified piezo signal. A microcontroller
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with built-in timer is used to control the timing ofADC sampling and handle the

Bluetooth communication.

The microcontroller in the main compartment, is a Programmable Interface

Controller made by Microchip Technology,utilizes a 4MHz crystal. The system is

poweredby a 9V battery.It has a port for connecting the transducer, a speaker and

a LCDscreen to output the internal state and an on/off switch. The serial-port

version has an integrated circuit (IC) chip to handle RS232 communication, while

the Bluetooth version has a Bluetooth componentwith the IC, antenna and a reset

switch. The transducer compartment houses a Piezo sensor, a low-passfilter

circuit (for Anti-aliasing of the analogue to digital sampling) and an amplification

circuit. The LCD displays the current breathing rate and the battery state.

 

Figure 1-3: The transducerofthe RRM whichis connected to a port located on the

upperface ofthe orange box (Figure 1-2).

 

Figure 1-4: System Diagram ofElectronic Design ofRRM
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RRM operating system

program flowchart (high abstract)
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Figure 1-5: Flowchart ofthe Operation System ofthe RRM.

1.4.3. Operating systems of the Experimental Respiratory Monitor

device:

The operating system (OS) of the RRM is written in micro-C and then compiled

into binary codeofthe specific PIC. On supplying the circuit broad with

electricity, the operating system starts to run (Figure 1-05). When the system

starts, it goes into “sleep” mode. If the user presses the power button, the program

wakesup, clears theregisters, initialises the timer, and sets up the peripherals and

I/O pins. After system initialization, the OS sendsa pulseto the buzzer to indicate
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that it has been switched on andthen displaysa start-up pattern on the LCD

display. The OSthen reads the external synchronization input and then reads the

ADCfor 4 times to average the four values to eliminate noise. The data are then

transmitted through the Bluetooth port to a PC. The OSthen will go into aninfinite

loop of “reading and transmitting”until the battery runs out or the on/off switchis

pressed again.

1.4.4. The transducer

The transducer ofthe ERM is a sensory deviceattached to the air mask to measure

the temperature of the mask cavity. The temperature sensor is made of

piezo-ceramicfilm.

1.4.5. Piezoelectric ceramics

Whena piece of piezoelectric ceramics is stressed mechanically bya force,it

generates an electric charge. If the electrodes are not short-circuited, a voltage

associated with the charge appears. Mechanical compressionor tension on a poled

piezoelectric ceramic element changes the dipole moment,creating a voltage.

(figurel-6).
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Figure 1-6i,ii,iii: compressionforce(iii) and tensionforce(ii) change the thickness

ofthe piezo ceramic. Net charges areformed on the top and bottom plane.
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The ceramic element converts the mechanical energy of compression or tension

into electrical energy. Values for compressive stress and the voltage generated by

applying stress to a piezoelectric ceramic elementare linearly proportional to the

compressive stress up to a material-specific stress limit. The piezo ceramic was

also been use for the production and detection of sound in microphones and

speakers, generation of high voltagesin lighters.

The pyroelectric effect of the piezo ceramic dominates the signal response ofthe

detection. Whenhotair blows through the detector, it absorbs thermal energy,

whichraises the temperature ofthe material, thereby inducing an electrical signal.

Piezo ceramic exhibits a current response that dependson the rate of temperature

change.

1.4.5.1. Response ofthe piezo sensor to a thermalstepfunction

In breath hold radiotherapy, the patients hold their breath for a few seconds. The

radiation beam is on during the breath hold period. The volumeofair in the lung

would increaseto a level and holdrelatively steady for a few seconds and then

back to its original level. This process is a step-up and then step-down sequence.

A thermal flux passes through the piezo sensor in the form of a step function.

Initially, the elementis at a uniform temperature, the net charge between the two

piezo plates is zero. Whenit is exposed to thermalradiation in the rising edge,its

front plate expands, causing a stress induced charge. As the heat flux passes

through thesensor, the sensortendsto return to thermo equilibrium. Therefore,its

rear(second) plate would expand andthe net charge betweenthe twofilms will

decrease. If the duration of the heat flux is long enough (flux duration tends to

infinity), the net charge will not reduce to zero becausethere is a charge induced

by the leakage of thermal flux from the second film.
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ERM*

    
Figure 1-7: The above diagram illustrates the experimental setup oftesting the

responseofthe transducer by heattransfer through radiation. The heat was given

outfrom the light bulbs and their brightness was controlled by a DAC.Airflow at

room temperature was usedto cool the setup

A light-bulb phantom wasused to measurethe responseofthe piezoelectric sensor

to changes in temperature. The phantom wasa black box with a fan and 4

light-bulbs. The fan caused a constant flow of air at room temperature while the

brightness of the light bulbs was variable. The voltage ofthe light-bulbs was

controlled by a Digital to Analogue Converter. The transducer wasplaced close to

the light bulbs (~3cm).

The voltage from the transducerand the light-bulbs was measured by an Analogue

to Digital Converter (PICO ADC-11) and the voltage was plotted against time

(represented by the number of samples) as shown figure 1-8. The sampling

frequency was 50Hz.
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Voltage ofthe the transducer signal VS voitage ofthe light-blub in a step respond signal

_.. — ERM's Transducer
| —Bubb voltage _ so

1 133 265 397 529 661 793 925 1057 1189 1321 1453 1585 1717 1849 1981 2113 2245 2377
time (sample)

 

 
 

Figure 1-8: Step response ofthe piezo-electric transducer ofthe ERM.

The magenta trace is the voltage appliedto the light bulbs andthe dark blue trace
is the voltage ofthe transducer. Both signals were sampled by an Analogto Digital

Converter. The horizontal axis is the time measuredin terms ofthe number of

samples. There were 50 samples each second.

Whenthe light bulb’s voltage was subjected to a step change, the signal from the

piezo-electric sensor dropsto a certain level and then gradually rises backto its

original level (figure 1-8).

Thecurrent is discharged through a load resistor connected in parallel with the

piezo sensor.
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1.4.6. Summary of breathing signal detection by the Experimental

Respiratory Monitor device

Figure 1-9 shows how the system operates. Theair flow in the air-mask creates a

temperature change on the ceramicfilm. This leads to a net charge (and potential

difference) created in the piezo film. The potential difference signal is then

low-passfiltered to minimizethe effect of the vibration ofair flow.It is followed

by power amplification and analogueto digital conversion.

 

Airflow in the mask

 

 

Changeof Temperature

induced charges   
 

 

 

low-passfiltered to minimize the effect of the vibration

causedbyairflow
  
 

 

AD conversion

  
 

Figure 1-9: Theflowchart ofinteraction betweenthe airflow andthe electronic

devices ofERM.
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1.4.7. The controlling software of the Experimental Respiratory

Monitor system:

The ERM's control system andutilities are a set of tools, developed in Java’, which

handle the Bluetooth serial communications, flow control, absolute time

synchronization and data logging. It also displays the input signals for

visualization feedback for the operator.

The ERMsendsdata to a workstation in the format of “AAA,BB\n”, where AAA

is the reading ofthe transducer and BBis the respiration rate. The device works on

a fixed sampling rate and does not send any time signal to the workstation. The

data packets are time stamped immediately when they are received by the

workstation. The program runs on a Windows XP workstation with 1.7GHzIntel

processor. The sampling rate of about 10Hz is within the capability of the

processor, despite the multi-tasking behaviour of the operating system. An

investigation was performedto verify the transfer delay between the workstation

and the device. 5 breathing signals each lasting for 2 minutes were obtained by the

ERM.Forall the testing data samples received, the time differences between any

subsequent timestamps were within a variation of 4ms. The standard deviation of

the above time differences was 1.03 ms, which wasinsignificant when compared

to the 100ms sampling period of the device. Any data sample would berejected if

it showeda deviation larger than 100ms, whichis the value ofthe sampling period.

Hence, the connection between the ERM andthe workstation wasreliably

synchronized.

 

3Sun Microsystems,Inc. Santa Clara, California
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2. Development and Applications of the Experimental

Respiratory Monitor (ERM)

The ERM isadapted from a respiratory rate meter. The respiratory rate meter is

designed to detect the zero-crossing ofthe breathing signal. In order for the device

to be useful for gated radiotherapy,a signal that is correlated with the movementof

the moving object is required. Oneofthe aims ofthis chapter is to investigate the

characteristics of the sensor, the transducer (which forms an importantpart of the

device) and the whole monitor system.

2.1. Measurements

2.1.1. How the piezo sensor respondsto changesin temperature in the

air mask

 
Figure 2-2: The J-type thermocouple
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2.1.1.1. A bare piezo sensor

In order to measure the temperature of the piezo-electric sensor, a thermocouple

wasplaced nextto it in the mask as shownin figure 2-4.It was a J-type

thermocouple calibrated in a water bath andits potential difference was found to

havea linear relationship with absolute temperature in the range 20° C to 40° C

range (correlation coefficient R=1).

Figure 2-3 showsthe relationship betweenthe potential difference and the

temperature of the thermocouple. The piezo sensor used in this experiment wasa

bare piezo sensor whichdid not havea plastic layer protecting the piezo plate.

Voltage of the Thermocouple against the temperature
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Figure 2-3: The temperature andvoltage relation betweenthe J-type thermo

couple used in this experiment.

The thermocouple was calibrated in a temperature controlled water bath. The
measurementofthe thermocouple was amplified and sampled by an Analogueto

digital converter (ADC). The ADCreading rangedfrom 0 to 4095, representing
from OV to 2V input range. A reading of2000 on the horizontal axis represents

about IV potential difference measuredfrom the output ofthe amplification

circuit.
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The thermocouple and the piezo sensor were connected to separate operational

amplifier circuits.

6 breathing traces were collected from 2 healthy volunteers. They were asked to

breath normally for 2 minutes. The room temperature was 25° C throughoutthe

experiment.

_7 R= lem

13cm    piezo sensor

thermocouple

Figure 2-4: Position ofthe thermocouple and the piezo sensorin the air mask

 
Thermocouple

 Channel 1 Amplifier |
 

  Channel 2
   Amplifiers °-—*-*-~*    

 

   

 

Figure 2-5: System diagram ofthe thermocouple andpiezo sensor experiment. The

thermocouple andpiezo sensor were put inside the air mask. Their signals were

amplified and then sampled by an analogueto digital converter.
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The phase delay of every session was measured bythe cross-correlation function.

Then, the correlation between the thermocouple and the piezo-electric sensor

(after phase shift) were measured and are showninthe table 2-1.

Table 2-1The time delay andthe correlation between the thermocouple and the

bare piezo sensor
 

 

 

Delay of Thermocouple (s) Correlation

Volunteer-1 Session-1 0.36 0.82

Session-2 0.40 0.74

Session-3 0.52 0.81

Volunteer-2 Session-1 0.36 0.90

Session-2 0.40 0.85

Session-3 0.48 0.89

Volunteer-3 Session-1 0.27 0.87

Session-2 0.36 0.91

Session-3 0.34 0.75

Volunteer-4 Session-1 0.43 0.76

Session-2 0.46 0.83

Session-3 0.32 0.90

mean 0.39 0.84

SD 0.07 0.06
 

Thebare piezo sensor wasthen replaced by the transducer of the ERM (figure

2-1). The difference between the bare piezo sensor and the ERM transducerare:

(1) the transducer hasa protective layer of plastic to cover up the piezo plate and

(2) the amplifier circuit and the low-passfilter are integrated within the transducer

enclosure. Theresult of the time delay and the correlation between the

thermocouple and the transducer are shownin Table 2-2:



Table 2-2The time delay andthe correlation between the thermocouple and the

 

 

 

transducerofthe RRM

Delay of Thermocouple (s) Correlation

Volunteer-1 Session-1 0.40 0.81

Session-2 0.44 0.81

Session-3 0.48 0.79

Volunteer-2 Session-1 0.32 0.80

Session-2 0.20 0.81

Session-3 0.28 0.89

Volunteer-3 Session-1 0.34 0.78

Session-2 0.37 0.81

Session-3 0.47 0.86

Volunteer-4 Session-1 0.48 0.87

Session-2 0.39 0.75

Session-3 0.28 0.82

mean 0.37 0.82

SD 0.09 0.04
 

Asit wasnotethical to take x-ray images of the normal volunteers, it was not

possibleto relate the signals to internal organ motion. However, the above data

showsthat the piezo sensors (both the bare sensor and the protected sensor)
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respond faster to temperature change than the thermocouple. The average timelag

of the thermocouple was 0.39 s (bare)and 0.37 s (protected sensor). The piezo

sensors have an average of 0.84(bare) and 0.82 (protected sensor) correlation

coefficient with the thermocouple.
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Time delay between the thermocouple and the piezo sensor.

There has been an average of ~0.4s of lag in the thermocouple signal. One of the

possible reasonsfor this relates to the different way of perceiving heat. The

piezoelectric sensor measures the change of temperature (AT), while the

thermocouple measures the Temperature (T). We tried to provethis relationship by

differentiating the thermocouple signal, and find out the time lag. We found the

average time lag of the thermocouple is then -0.03 s (bare) and 0.01 s (protected

sensor). These values are zero within the experimental uncertainty.

The difference in time lag between the bare and the protected sensorare zero

within the experimental uncertainty. Hence, the protective membrane has no

significant effect on the piezo sensor.

Thesignal of the bare piezo sensoris noisy (an example is shownin figure 2-6a),

butstill maintains a reasonable representation of the breathing cycle. To show the

correlation between the two signals, the signals of the thermocouple and the piezo

sensor werefiltered by low-passfilter and shifted by a time-lag value (such that

their peaks match each other).
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The original signals of the thermocouple and piezo sensor

 

 

  
 

 

|
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(a) KEY:[-] Thermocouple [-] piezo sensor

The smoothedsignals of the thermocouple and piezo sensor

 

 

 1 i
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(b) KEY:[-] Thermocouple [-] piezo sensor

Figure 2-6: The above chart shows the breathing signal obtainedfrom the
thermocouple (red trace) andpiezo sensor (blue trace). The original signals are

show infigure a.The signals in Figure b werefiltered by a 15 step moving average
filter. Thephase shift between the signals is adjusted, such thatthe correlations

can be easily observed.
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2.1.2. The signal amplifier and noisefilter in the Experimental

Respiratory Monitor

2.1.2.1.

   

 

 
Vout (J4-1)

 
|
|

|
ov

Figure 2-7: The lowpassfilter circuit ofthe transducer. Afirst order lowpassfilter

is constructed by putting a capacitor C6 in parallel with thefeedback resistor R11.

2.1.2.2. Noise Filter and Anti-aliasing Filter

Whenair flowspast the piezo ceramic film it creates vibrations. These vibrations

are relatively high in frequency (when compared with the temperature change).

Thesignals ofboth the air-flow vibration and the temperature are picked up by the

sensor. Since only the temperature signal is of interest, a low-pass filter is used to

removethe air vibration signal. The lowpassfilter removes the high frequency

while preserving the breathing signal. Thefilter also acts as Anti-aliasing Filter to

restrict the bandwidth ofthe signal prior to sampling by the AD converter.

Thecircuit broad ofthe transducer measures 11x11mm_°only. Mostofthe space

has been occupied by the Operational Amplifier chip with Dual In-Line package.

A first order filter was used becauseofspacerestrictions in the prototype.
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Although the signal ofthe piezo-electronic sensor can be processed by the onboard

micro-controller, the amplitude of the noise signal can saturate the input of the

Analogue to Digital Converter of the device.It is therefore necessary to remove

the noise from the signal before the analogue to digital conversion. The low pass

filter circuit is located inside the transducer.It is a first order low-passfilter with

an operational amplifier and a capacitor across the feedbackresistor(figure 2-7).

This has the effect as the frequencyrises of increasing the level of feedback as the

reactive impedanceofthe capacitorfalls. The impedanceofthe feedback X; of the

circuit for a frequency/1s:

1

=O
2nfc +=

Xf (2.1)

where R// is the value of the feedback resistor and C is the capacitance ofthe

feedback capacitor.

The frequency responsefor different capacitance values is plotted in figure2-8 for

the frequency range from 0.01 Hz to 10 kHz.



Frequency responseofthe low-pass filter
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Figure 2-8: Thefrequency response ofthe Operational Amplifierfor different
values offeedback capacitor

The frequencyofthe respiration signal ranges from 0.5Hz (30 breaths per minute)

to 0.1Hz (6 breaths per minute). The system should therefore be linear within this

range. The original 0.1 F capacitor (C6) was therefore replaced with a 1p F

capacitor.
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2.1.2.3. Evaluation ofthe amplification ofthe original design

It was found that if the subject breathed deeply the output of the operational

amplifier would saturate (figure 2-9). The peaks and the troughsofthe signal

could therefore be significantly distorted.

A breath signalof the ERM of Volunteer9 of the coaching experiment
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Figure 2-9: An example ofthe saturation ofthe breath signal ofthe ERM. The

upperchartis thefull signal. The lower chart is a magnified view ofthe troughs of

the 700th to 1300th samples.

The amplification of the operational amplifier needed to be adjusted such that the

output is within the range of the supply voltage. R11 was replaced with a IMQ

variable resistor in the serial port (earlier) version ofthe ERM. The updatedcircuit

board is shownin Figure 2-10. It was found that the replacement provided

satisfactory outputin the cases of high respiration tidal volume. The Bluetooth

(newer) version of the ERM providesno accessto the circuit in the transducer

cavity; therefore, its amplifier circuit remains unchanged.
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Figure 2-10: The circuit board ofthe modified Transducer. (A)Thefeedback

Resistor R11, (B) the 1uFfeedback capacitor, (C)the connecting wire to the

microcontroller and (D) the connecting wire to the piezo sensor.

2.2. Chapter summary

The Experimental Respiratory Monitor (ERM) wasfound to have high

correlations with the temperature in the air mask. It has been foundthat the piezo

sensor of the ERM hasno difference in responses time as the thermocouple. The

Noise/Anti-aliasing Filter and the amplification circuit was modified to minimize

distortion. There was no evidence to show anyeffect of the protective membrane

of the piezo sensor.



60

3. Coached and Natural Breathing Study

3.1. Introduction:

Managingrespiratory variations for treatment planning and delivery is an

importantissue, especially in the treatment of lung cancer patients .Respiratory

motion causes someproblems during imaging (Shimizu et al 2001, Vedam et al

2003, van Herk et al 2000, Ritchie et al 1994, Ford et al 2003, Balter et al 1996)

and treatment (Keall et a/ 2004, Yu et al 1998, Bortfeld et al 2002, Chuiet al 2003,

Jiang et al 2003). During CT imageacquisition, respiratory motion may cause

artifacts and blurring. Thus,the identification and delineation of the internal

structures would be compromised. Extra margins are added to the target volumes

to ensure adequate dose to the tumour and larger margins are needed wherethe

target volume is moving. This may lead to normaltissues receiving more dose

when compared with a static internal structure.

The accuracy and application of gating techniques is dependent on the regularity

of the respiratory motion. Respiratory motion varies between cycles, sessions and

patients (see Chapter 1.2: Lung anatomy & respiratory physiology). Breathing

coachingis a solution to improve the reproducibility and regularity of patient

respiration (Kini et al 2003), which in turn will improvethe delivery ofrespiratory

motion compensation techniques and thereby reducethe size of the margins

required. The work performed in this chapter is to investigate the impact of

coaching onthe variability ofrespiratory motion. A novel method ofmeasurement

wasapplied to measure breathing pattern variations. The breathing pattern

variations of natural breathing and audio coaching (using the Varian RPM system,

Varian Inc., Palo Alto, CA) were evaluated for 9 volunteers. The usefulness of the

ERMfor breathing monitoring was also evaluated and comparedwith the Varian

RPM system.
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Audio coaching involves giving an audio instruction at regular intervals to guide

the patient (or subject) to breathe. The Varian RPM system wassetup in the

Clatterbridge Centre for Oncology. The system outputs the audio instruction to a

pair of computer speakers, with a recorded voice giving “breathe-in” and

““breathe-out” messages. The Varian RPM program displays the breathe-in and

breathe-out intervals on the screen. The repetition rate of the audio prompt was

chosen to match the subject’s natural respiration rate without coaching. Therate

would be reduced by the operatorifthe subject could not keep up with the audio

prompt.

3.2. Regularity of Coached and Naturalbreathing in Healthy

Volunteers

Healthy people’s breathing behaviour was measured using two respiration

monitoring systems following different protocols. The experiment involved 9

healthy volunteers who wererelatives of cancer patients. The average sampling

duration of the datasets was about 200 seconds. The ERMrespiratory device and

the Varian respiratory device were used to measure the breathing.

The Varian RPM system tracksthe vertical position of a pair of infrared reflective

markers on a small lightweight marker block. The markersare circular with about

5mm diameter. After setting up the patient's position for the treatment, the marker

block is placed on the patient's chest or the abdomen, depending on the magnitude

of the movement. On someofthe subjects, the motion of the marker was so small

that the Varian RPMfailed to generate an accurate voice coaching. The Varian

RPMsystem receiveslive infrared video images of the markers from a CCD

tracking camera. Thevertical motion of the markers dueto patient's breathing is

then detected and recorded every 1/25 secondbya digital image analysis and

video tracking software program running on a Windows XP workstation. We used

a pair of speakers connected to the computer's sound card. The audio prompting

coached the volunteers to breathe-in or breathe-outat periodic intervals.
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3.3. Methodology:

The Varian RPM system wasused to monitor the thorax displacement and the

ERM wasusedto monitorthe airflow at the patient’s mouth. Aninfrared reflective

marker box wasput on the thorax of the volunteer, who wasalso wearing an

oxygen mask with the ERM’s transducerattached. An imageofthe set up is shown

in figure 3-1.

 
Figure 3-1: The Infrared reflective marker box ofthe RPMsystem) was put on the

thorax ofthe volunteer who wasalso wearing an oxygen mask with the ERM’

transducerattached.
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3.3.1. Synchronization:

The ERM device and the Varian RPM system need to be synchronized in order to

compare the signals. The Varian system has no preset synchronization with other

breathing monitoring devices. There is an “Enable gating” button on the user

interface of the RPM program to trigger the gating feature of the system. Whenit

is enabled, the system triggers the gating pulse. For the interface to the CT

scannera short pulse is generated by closing a switch on a relay board connected to

the workstation. The time and duration of the pulse is logged in a specific field of

the patient data file. A simple device was created to monitor the triggering signal

from the RPM system so that when the RPM program triggered the CT scanner,

the ERM system could also detect and log the pulse. To achieve this, A PICO

ADC11* wasconnectedinto the parallel port of the ERM workstation. The output

from the relay of the Varian gating system was recorded with an ADC.At the end

of each experiment, there were twopairs of signals,ie (1) the Varian breathing

signal and its correspondinggate triggering signal, and (2) the ERM signalandits

triggering pair. The ERM’s signal was sampled at 10Hz, while the Varian RPM

was sampled at 25Hz. Hence, an up-sampling operation is needed, such that the

ERM signals can be synchronized with the Varian signals. The ERM’ssignals

were up-sampled by 2.5 times to match the frequency of the Varian RPM signal.

This was followed by a low-passfilter where a moving averagefilter with 5

samples-length was used. The two signals were then aligned by referencing to the

CTtrigger signals.

A synchronization device wasbuilt for this experiment to provide a safe way to

obtain the signal given out by the Varian gating workstation to the CT scanner. The

detailed design and operation of the synchronization of the device is presented in

the Appendix (Chapter 3.7).

In this healthy volunteers study, breathing signals were acquired from 9 volunteers

in coached and natural breathing mode. Each volunteerparticipated in up to 4

sessions. Forthe first session, the RPM reflective marker box wasplaced either on

the chest or the abdomen.Forthis session, the volunteer breathed naturally (no

 

*PICO Technology Ltd. UK ADC11.an analogto digital converter connectto the parallel port of a

computer.
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coaching applied). At the end ofthefirst session the Varian RPM system calculates

the period of the subject's respiration. For the second session, audio coaching was

applied. The period of repetition of the coaching wasset with reference to the

value obtainedin thefirst session, so that the volunteer was given the audio

coachinginstructions based on the frequencyoftheir own breathing. The coaching

frequency would be further adjusted if the volunteer wasnot able to comply with

the repetition rate of the instructions. The third and fourth sessions were a

replication of the first and second sessions, but the marker block wasput on a

different part of the chest. Among thesets of signals from the two marker

positions, the set of breathing signals with larger marker displacementin the

natural breathing modewasused for analysis. However, in someofthe sessions,

the displacement of the reflective marker was so small that, the Varian RPM

program wasnotable to detect a breathing cycle. In such circumstancesit would

notbe possible to use gating either for the initial CT scan or for treatment. While it

is probable that the tumour motion would besufficiently small that gated treatment

would not be necessary, the inability to carry out a 4D CT scan would makeit

difficult to verify the lack ofmovement. With the ERM an adequate signal was

alwaysvisible.
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3.3.2. Measurements:

The following quantities were measuredto evaluate the regularity ofthe breathing:

3.3.2.1. Variation in Breathing Patterns:

For each subject, the variations of breathing patterns in coached and natural

breathing modes were evaluated using the output of both the RPM and the ERM.

The variation of the respiration signal was measured bya novel metric defined as

the “sum of the standard deviation of the breathing patterns”. Using the Hilbert

transformation, the phaseofthe signal, x(t), was determined retrospectively.

For a normalized breathing signal x(t), the Hilbert transform is operated by

convolution of x(¢) with the Hilbert kernel $(t) followed by:

§(t) = i (3.1)
mt

TheHilbert instantaneous phase 6[t] becomes:

H(t) * x(t) (3.2)
A(t) = tan"+( ae

,where ‘*’ is the convolution operator. For more information about the Hilbert

Transform, please see Chapter 5.2.2.

Thesignal was then broken up into a number N,ofbreathing cycles. In each cycle

i, the signal x; was re-sampled at constant intervals ofphase. It was done bylinear

interpolation ofx; at every phase value 6, for /<q<20. 0, was a linear spaced vector

in the range of—z to z. 6, is given by:

21
— ‘ 3.3

64 =-m + 20 q ( )
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For each value of q the standard deviation a, of the x;(0,) in every breath cycle i

wascalculated. a, is given by:

 

 

Nt
(x;(@, — mean(x;(6, )))?

Og _ 2, ( a) Ni, ( a) (3.4)

where mean(.) is a function to calculate the mean.

The sum R,ofall the values of the standard deviation o, of the phaseslots is

definedas:

R, = Og (3.5)

Irregularities in respiratory motion patterns lead to higher standard deviation

values. Hence, R, is a reasonable estimator of the irregularity of the breathing

signal.



67

3.3.2.2. Variation in Periods

A single breath cycle is defined as the samples between two neighbouringlocal

maxima. Thebreathing period is defined as the mean of time durationsofall the

cycles in the signal. A point is considered to be a valid maximumif it has the

maximal value, and waspreceded(to the left) by a value lower by the RMSofthe

whole signal. After a valid maximum has been found, the algorithm would search

for a trough anditerates until the end ofthe signal.

3.3.2.3. Delay/Time lag between the Varian RPM andERM

The time lag between the breathing signal of the Varian RPM and the ERM was

measuredbythe position of the global maximumofthe cross correlation of the

two signals. It is a measure of the similarity of two waveformsas a function of the

time-lag applied to one of them.
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3.4. Results:

Out of the 9 volunteers, Volunteers-7 and 8 were not able to follow the

audio-coachinginstructionsandfell asleep.

3.4.1. Meanofbreathing period:

The mean value of the period as measured by Hilbert phase segmentation of the

breathing signal from the ERM andthe Varian RPMislisted in the followingtable:

Table 3-1 The mean periodofthe breathing signals in natural and coaching mode

ofbreathing.
 

Meanof Period (seconds)
 

 

 

Natural Coached

ERM(s) Varian(s) ERMs) Varian(s)

Volunteer-1 5.4 5.3 5.6 5

Volunteer-2 7.8 7.8 8.3 7.8

Volunteer-3 3.5 3.5 5.5 5.5

Volunteer-4 4.3 43 5.6 5.6

Volunteer-5 5.3 5.3 6.9 6.8

Volunteer-6 4.2 43 6.6 6.6

Volunteer-7 5.3 5.2 8.5 8.8

Volunteer-8 8.7 9.3 6.8 6.8

Volunteer-9 6.3 6.3 7.1 7.1
 

The meanofthe breathing period of the 9 volunteers, measured by the ERM,

ranged from 3.5 to 8.7 secondsin the natural breathing sessions.

In the Audio Coachedsessions, the mean ofthe breathing period, measured bythe

ERM,ranged from 5.5 to 8.5 seconds.

The mean difference between the Varian and ERM measurements in both coached

and natural breathing modeis 0.1s (with standard deviation 0.2), This difference is

very small and can be neglected.

For the sessions of Volunteers-7 and -8, the subjects had fallen asleep during the

experiment, so that the subjects did not follow the audio instructions.
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3.4.2. The RMSofthe position of the Varian RPM marker & the ERM

signal:

The section ofbreathing signal during which the subject had fallen asleep, as well

as the section during which the ERM measurementwassaturated has been

removed from the signal. The RMSofthe breathing signal of the ERM and the

Varian RPM in natural and coached breathing are listed Table 3-2. In coached

breathing mode, 8 out of 9 volunteers had larger respiratory motion measured by

the ERM,while 7 out of 9 volunteers had larger respiratory motion measured by

the Varian system. Volunteer-8 had a decreased RMSofbreathing whichis related

to the decrease in the breathing period.

Table 3-2 : The RMSofthe breathing signals in Natural and Coaching mode of

breathing. The units ofthe ERM signal are arbitrary andthe signal rangesfrom 0

to 255.
 

RMSofthe breathing signal
 

 

 

ERM (0-255) Varian (cm)

Natural Coached Natural Coached

Volunteer-1 15.0 25.3 0.30 0.36

Volunteer-2 28.5 42.2 0.31 0.36

Volunteer-3 12.9 43.5 0.20 0.28

Volunteer-4 17.2 25:2 0.20 0.24

Volunteer-5 15.9 37.8 0.41 0.39

Volunteer-6 15.9 25.4 0.18 0.23

Volunteer-7 43.9 52.3 0.12 0.18

Volunteer-8 84.1 43.4 0.98 0.80

Volunteer-9 58.3 86.9 0.47 0.75
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3.4.3. The Variations of breathing pattern

Since every volunteer had different RMS amplitude of their breathing signal, the

sum of the standard deviations of the breathing pattern (Rs) of each volunteer was

normalized by the RMS amplitude oftheir breathing signal. With the fallen-asleep

and saturated samples removed, the normalized “Rs” values of natural and

coached breathing modes measured by the two monitoring systems are shown in

    

figure 3-2.
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Figure 3-2: The comparison ofpattern variation in Coached and Natural

breathing: The normalized sum ofthe standard deviations ofthe breathing pattern

(Rs) of(a) the ERM and (b) Varian RPM.

From the breathing signal of the Varian RPM,reduction in the variation of the

breathing pattern was observed in the sessions of Volunteer-2, 3, 4, 6, 7, 8 & 9.

From the breathing signal of the ERM,reduction in the variation of the breathing

pattern was observedin the sessions of Volunteer-3, 4, 5, 6, 7, 8 & 9. Audio

coaching generally decreased the normalized Rs values with p=0.049 by ERM and

p=0.026 by the Varian RPM. An example of the improvementin the regularity of

Volunteer-6 is shown in Figure 3-3 where the amplitudeis plotted against the

phase. Figure 3-4 plots the amplitude against time. The increase in regularity when

changing from natural breathing (Figure 3-4a) to coached breathing (Figure 3-4b)

can be foundonthefigure.

The measurements from the Varian RPM and the ERM werenot consistent in

Volunteers-2 & 5. The measurements of the two devices were not significantly

differed in Volunteer-2. For volunteer-5, the baseline of the RPM signal drifted by

a small amount in coaching mode,resulting a larger value of R,. However, in

Volunteer 3,4,6,7 & 9, the benefit of audio coaching wassignificant, with 34% -

65% reduction in the normalized Rs value.
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Figure 3-3: Distribution ofbreathing signal according to the Hilbertphase. The

amplitude-phasedistributions of Volunteer-6 are shown onthe abovefour charts.

The charts on the top were collectedfrom the samples ofNatural breathing, while

the charts at the bottom are coached breathing. The blue charts on the left hand
side are the breathing signal collected by the ERM, while the red charts on the

right handside are the breathing signal collected by the Varian RPM.

(a)Natural breathing (b)Coached Breathing
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Figure 3-4: The breathing signal andits Hilbertphase of Volunteer-6 in (a)

natural breathing mode and (b)coached breathing mode. The blue trace on the top
is the phase ofthe ERM breathing signal. The blue trace in the middle is the ERM

breathing signal. The red trace in the middle is the Varian RPM breathing signal.

The red trace at the bottom is the Hilbert phase ofthe Varian RPM breathing

signal. The scale ofthe phase signals was adjusted, so that they could befitted into

the same graph. The horizontal axis is the time axis. The signals were sampled at

25Hz
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3.4.4. The time lag between the ERM andthe Varian RPM

The time lag between the ERM and the Varian RPM wascalculated by

cross-correlation for each session. The results are shownin the followingtable, in

whicha position value represents the ERM signal lagging the Varian RPMsignal:

Table 3-3: The time lag between the ERM andthe Varian RPM. A position value

represents the ERMsignal lagging the Varian RPMsignal
 

The time lag between the ERM and the Varian RPM
 

 

 

Natural(s) Coached (s)

Volunteer-1 -0.32 0.2

Volunteer-2 -0.48 -0.28

Volunteer-3 0.36 -0.52

Volunteer-4 0.08 -0.04

Volunteer-5 -0.16 -0.24

Volunteer-6 0.36 0.2

Volunteer-7 0 -0.52

Volunteer-8 0.24 0.16

Volunteer-9 0.12 -0.04

Median 0.08 -0.04
Interquartile range 0.4 0.44
 

Thetime lag of the ERM relative to the Varian RPM ranged from -0.48 to 0.36

secondsin Natural breathing mode and -0.52 to 0.20 secondsin coachedbreathing

mode. The difference in lag values owesto the breathing behaviorofindividual

patient.



3.4.5. The correlation between the breathingsignals of the ERM and

Varian RPM:

Thecorrelation between the breathing signals of the ERM and Varian RPM is

listed Table 3-4:

Table 3-4 The correlation between the breathing signals ofthe ERM and Varian

RPM
 

 

 

Thecorrelation between the breathing signals of ERM and Varian RPM:

Natural Coached

Volunteer-1 0.88 0.87

Volunteer-2 OS) 0.75

Volunteer-3 0.66 0.64

Volunteer-4 0.95 0.97

Volunteer-5 0.93 0.82

Volunteer-6 0.74 0.95

Volunteer-7 0.70 0.52

Volunteer-8 0.56 0.85

Volunteer-9 0.96 0.97
 

Thecorrelation between the breathing signals of the ERM and the Varian RPM
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ranged from 0.56 to 0.96 in Natural breathing mode and 0.52 to 0.97 in coached

breathing mode

Figure 3-5: Breathing signal andits Hilbert phase of Volunteer-3 in coached
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breathing -mode.The breathing signalsfrom the 500" to 1350" samples (20s-54s)

are shownon the chart. The blue trace on the top is the phase ofthe ERM

breathing signal. The blue trace in the middleis the ERM breathing signal. The red

trace in the middle is the Varian RPMbreathing signal. The redtrace at the bottom

is the Hilbertphase ofthe Varian RPM breathing signal. The horizontal axis is the

time axis. The signals were sampled at 25Hz, ie 1000 samples represents 40

seconds.
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High correlation was found between the ERM andthe Varian RPM breathing

signal in most of the sessions. However,in the sessions of Volunteer-3, the

correlation was 0.66 for Natural breathing (figure 3-5) and 0.64 for coached

breathing. In the case where the volunteerfell asleep, despite the disagreementin

the long exhales (which caused the low correlation), both the ERM andthe Varian

system measured the normalbreathing very well in the session of Volunteer-7

(figure 3-6).

 

 

 
1500 2000 2500 3000 3500

time (samples)

Figure 3-6: breathing signal andits Hilbert phase of Volunteer-7 in coached

breathing mode. The breathing signalsfrom the 1400" to 3600" samples (70s-144s)

are shown on the chart. The blue trace on the top is the phase ofthe ERM

breathing signal. The blue trace in the middle is the ERM breathing signal. The red

trace in the middleis the Varian RPM breathing signal. The red trace at the bottom

is the Hilbertphase ofthe Varian’s breathing signal. The horizontal axis is the time

axis. The signals were sampled at 25Hz.
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3.5. Discussion:

All those volunteers who had an increase in breathing period when coaching was

used also had anincreasein the amplitude ofbreathing. The remaining | out ofthe

9 had a reduction in breathing period and a decrease in breathing amplitude.

It may be a result of the body mechanism to maintain a constant supply of oxygen.

An audio coaching rate which is lower than the natural breathing rate would

increase the amplitude ofbreathing, because the body needs to maintain a constant

supply ofoxygen (Priban 1963). As the frequency of gas exchangesdecreases, the

amplitude of breathing must increase to maintain the same volumeof gas

exchange. Anotherpossible reason is that, when the subject deliberately breathes

in and out, the muscle contracts more rapidly (when compared to Natural

breathing), and it results in a larger breathing amplitude.

Haasbeeket al (2008) studied the 4DCTof21 patients and found that audio

coaching generally led to an increasein the average total lung volumeinthe three

end of exhale phases (with the breathing cycle divided into 10 phases). A reduction

in lung volumewasonly observedin 3 patients. The total tumour movement was

also measured in the 4DCT,in which audio-coaching led to an increase in tumour

movementin mostof the cases. The finding of Haasbeek et a/ was in agreement

with our results. By assuming that the motion of the tumour correlates with the

motion of the abdomen, the amplitude of the tumour motion followsthe increase

in the standard deviation of the breathing signal. The increase in the volumeofthe

lung increased the airflow passing over the transducer of the ERM,and the

amplitude of the ERM signal increases.

Georgeet al (2006) investigated 311 breathing signals (using the Varian RPM

system ) from 24 patients. The breathing signals were usedto evaluate the residual

motion. The conclusion wasthat audio-coaching tended to cause the amplitude to

increase as compared with the effects of Natural breathing and Audio-Visual

feedback. Audio coaching also significantly increased the residual motion in

Inhale phase gating. Our findings agree with George et al. Despite the increase in

amplitude when audio coaching is applied, our workis different in that the

regularity ofbreathing wasalso evaluated. The variations of the breathing patterns

(normalized Rs) were reduced in most of the volunteer sessions. 4D CT scans,
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which are widely applied in the planning of gated radiotherapy (Starkschall et al

2004, Shih et al 2004), can help to determine the mean tumourposition, tumour

range of motion for treatment planning and the relation of tumourtrajectory to

other organs. Since the 4D data construction requires several cycles of respiration,

regular breathing would introduceless artefacts on the 4D image (Ford et a/ 2003,

Vedam et al 2004b). Coaching can potentially help to maintain regular respiration

during the acquisition. Patients with a regular respiration pattern often exhibited a

corresponding constant phaserelationship between the surrogate and the tumour

motion (Vedam et a/ 2003). Coaching could also help to maintain relatively stable

correlation between the surrogate and the tumourso that gating can bereliably

delivered.

In our experiment, the volunteers found it to be more comfortable to have a slower

than normalrate of breathing. This may be because whenthe subjects were asked

to breathe in and out they naturally breathed more deeply. This inevitably resulted

in the amplitude increase whichis directly proportional to residual motion in gated

radiotherapy. In order to minimizethis effect, the operator should choose an audio

coaching repetition frequency whichis as close to the natural rate of breathing as

possible.

There were 2 subjects that fell asleep during the experimental sessions. This would

be unlikely to occurin real clinical practice, but a breathing monitoring

mechanism to monitor the regularity of the breathing of the subject is essential. A

breathing monitoring algorithm utilizing the ERM device has been developed in

Chapter-7.2 to address this problem.

The measurements of the ERM and the Varian RPM were mostly in agreement

with each other in terms of the mean breathing period and the RMSvalueofthe

breathing amplitude. Hence, the ERM could be used as a replacementfor the

Varian RPM for comparingthestability of breathing. The aim of coaching wasto

increase thestability ofbreathing. With the ERM device,it is possible to determine

whether coaching should be applied to a specific patient and to comparethe effect

of different coaching techniques.
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Limitations on Sample size

The original purpose of the healthy volunteer experimentwasa pilot study of the

procedures of using the ERM asa breathing monitor. The results showed that the

correlations between the ERM and the RPM waslarger than 0.5 (p<0.01) in both

coached andnatural breathing. Therefore, this supported the next phase ofstudy of

applying the device on patients (Chapter 4).

Regardless of coaching rate, the coached motions are more regular than natural

breathing (paired T-test on R,: p=0.02 by ERM and p=0.01 by Varian). However,

one of the volunteers had a reduced rate of coaching, while the remaining 8

samples had increased coachingrates. It wasstatistically significant to argue that,

with a decreased coach rate, audio coachingincreases the regularity (p=0.03 by

ERM)as well as the amplitude (p<0.01). The data was notsufficient to show a

statistically significant difference in the effect of a reduced coachrate.

The above conclusionis based on the assumption that the data are normally

distributed. Owing to the sample number,it is difficult to prove this. In such cases,

the Wilcoxon signed-rank test is used to test the statistical significance on the

differences of the medians. Theresult of the test shows that the mediansdiffer

(p=0.04 by the ERM).

However, the null hypothesis cannot be rejected for the data (R,) measured by the

Varian RPM (p=0.08). This suggests that either more data are needed or the Varian

RPMcannotdetect differences of this magnitude. Thep valueis not far away from

the critical value (0.05). Hence, a differenceis likely to be found if there were

more samples.
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3.6. Conclusions:

In this study, the breathing signals of 9 volunteers were investigated using the

ERM andthe Varian RPM system. Despite the increase in amplitude of breathing,

there was an increase in regularity (ie decrease in normalized Rs) after audio

coaching was applied. The ERM was foundto be a good tool to measure the

breathing period and breathing pattern variations. In addition,it is easy to set up

when comparedto finding the best position on the thorax to attach the reflective

marker of the Varian RPM system. The ERMsignal wasalso found to be well

correlated with the Varian RPMsignals. The breathing signal of the ERM can

represent the End of Inhale/Exhale position as well as having a smooth transition

between the two positions. Hence,it has the potential to be used as a respiratory

monitoring device for triggering the gating signal in gated radiotherapy. An

investigation of this is presented in Chapter 4.
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3.7. Appendix

3.7.1. Synchronization device:

A Synchronization device was designed and built to extract the gating signal sent

out from a logic board in the Varian RPM workstation. The Varian RPM system

generates a gating signal by the PCIlogic board to trigger the CT scanner(figure

3-7). The PCI board on the Varian workstation would close and connect pin-1 and

pin-9, which are operated by the relay on the PCI board. The synchronization

device connects the workstation and the CT scanner(figure 3-8). The potential

difference acrossthe coil ofthe relay of the synchronization device was 12V when

it was closed; and OV whenit was open.A variable potential divider was

connectedin parallel to the coil of the relay. An Analog to Digital Converter was

connectedto the variable potential divider to detect the change in potential

difference. A photo of the device is shownin figure 3-9.
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Figure 3-7: (upperfigure) Normal Connection between the CTscanner andthe

PCIlogic board on the Varian RPM workstation. Whentherelay box is notused,

the relay board directly triggers the CTscanner.(bottomfigure)
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Figure 3-8: Connection between the CTscanner and the PCI logic broad on the

Varian RPM workstation. When the relay box is used, the relay board triggers the

CTscannerwith a secondary relay.

 

Figure 3-9: A photo ofthe synchronization device whenit is opened. A:relay, B:

connector to the CTscanner, C:connector to the Varian workstation, D:power,

E:output voltage (to the ADC) adjustment, F:connector to ADC
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4. Fluoroscopy Investigations of the Experimental

Respiratory Monitor (ERM) system in Gated

Radiotherapy

The experiments in Chapter 3 showedthat the breathing signals of the ERM were

cyclic and seemingly following the breathe motion. It might therefore be used for

producing gating signals. However, without any information about internal organ

motion, the degree of synchronization between the ERM signal and the internal

motion wasstill unknown.The synchronization between the ERM andthe internal

motions wastherefore investigated using tumour and diaphragm motion, which

were determined from digitized fluoroscopic image sequences acquired during

treatment simulation.

In this chapter, the ERM wasfirst evaluated bythe correlation of the gating signal

with the movementofinternal structures, which werevisible in fluoroscopic

image sequences. Secondly, the residual motionsofthe targets in amplitude gating

were compared using different gating parameters. The aim wasto evaluate the

performanceofthe ERMasa breath monitoring device for gated radiotherapy and

to comparethe accuracy of synchronisation of the potential gating signals with

the underlying tumour and diaphragm motion.
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4.1. Methodology

Five patients with lung cancer wereincluded in this study. The subject setup was

the sameas in the healthy volunteer experiment of Chapter-3, except that Audio

coaching Visual feedback was provided to Patient-1 by displaying the patient’s

respiratory signal on a small screen mounted near the subject. For each patient,

two fluoroscopy sequences weretaken.In the first sequence, the radiation beam

waspositioned in the Anterior-Posterior direction. In the second session, the beam

waspositioned in the Left-Right direction. The coaching period parameter wasset

with reference to the value obtained from thefirst session so that the patient was

given audio coaching instructions based on their own breathing period. The

coachinginstruction period was further adjusted if the patient was notable to

comply with the repetition frequencyofthe instructions.

4.1.1. Subjects and datasets

For each patient, the internal organ movements were traced in two directions (the

plane perpendicular to the LR and the AP directions respectively). There were 5

patients in total (Table 4-2). One (Patient-1) of the patients had been classified by

the medical consultant as suitable for gating, because the range ofmovement was

large and the GTV wasclearly visible under the fluoroscopy. For this patient the

breathing patterns shown by the Varian RPMsystem in the free breathing

sessions were irregular, so both audio and visual coaching wasused to help the

patient to breathe more regularly. Thus, the movements were recorded in

free-breathing (natural) mode and audio-video coached mode,resulting 4 recorded

image sequencesfor this patient. In total there were12 sets of data from the 5

patients. 10 sets of the data sets were free breathing and 2 sets were coached

breathing(Table 4-1).The duration of each data sample ranged from 20 to 30

seconds. Oneofthe patients, Patient #3, had already completed treatment. For this

patient it was difficult to delineate the tumour becausethe treatment had

successfully reduced the visibility of the tumour. In this case the position of the

tumour was estimated based on the movementofthe blood vessels and

bronchioles near the GTV location.
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Table 4-1: Treatment Information ofsubjects. The above table show the treatment

status ofthe patient whenthey participated in the experiment, their tumour

position andtheir age
 

Subject Information:
 

 
Patient number Treatmentstatus Tumourposition Age

1 Ongoing Right-mid-Lobe 60

2 Ongoing Right-upper-Lobe 65

3 Completed Right-mid-Lobe 80

4 Ongoing Right-Lower-Lobe 86

5 Ongoing Right-Lower-Lobe 71
 

Table 4-2: Field directions ofDatasets. Patient-1 had both Natural and coached

breathing sessions. For each breathing mode, fluoroscopy images were available

from two beam directions: Anterior-Posterior (AP) and Lateral
 

Recorded Datasets (session reference number):
 

 

 

Patient number Natural breathing Coached breathing

AP Lateral AP Lateral

1 Dataset-Pla Dataset-P 1b Dataset-P1c Dataset-P1d

2 Dataset-P2a Dataset- P2b Nil Nil

3 Dataset- P3a Dataset- P3b Nil Nil

4 Dataset- P4a Dataset- P4b Nil Nil

5 Dataset- P5a Dataset- P5b Nil Nil
 

The fluoroscopy system was an amorphoussilicon flat panel treatment simulator.

Whenoperated with the Varian RPM,it records up to 30 secondsof fluoroscopy

video whichis synchronized with the Varian RPM.Thepatient setup wasidentical

to the healthy volunteers in Chapter-3.
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4.1.2. Synchronization

The ERM device and the Varian RPM system need to be synchronized in order to

compare the signals. The Varian system has no inbuilt synchronization feature to

connect with other breathing monitoring devices. However, it generates a datafile

which logged the displacement of the marker block, the phase, the enable-gating

trigger and the time. The system takes samples at 25Hz and each reading has a

time stamp. The timestampis the time counts in millisecondssince the user

enabled the marker tracking by pressing the mouse button, whichisthe trigger to

switch on the image processing process whichtracksthe position ofthe reflective

marker block on the infrared image.

A synchronization mechanism wasdesigned for this experiment. APICO ADCI1

analog to digital converter was connected to the parallel port of the ERM's

workstation. The input ofthe ADC wasconnected to the switch ofthe button ofthe

mouseto detect the state of the button-click. The signal obtained from the ADC

wastime stamped, so the ERM device can be synchronized with the Varian RPM's

markerblock.

The Varian RPM hasa frame grabberto capture the screen of the fluoroscope

monitor. A digital clock program (Figure 4-1), which refreshes every 20 ms,

showed the system clock at the corner of the screen of the fluoroscope monitor.

The clock of the fluoroscope control computer and the ERM workstation were

synchronized by Network Time Protocol*before each experiment. The time on

each frame was manually recorded and combined with the target positions.

 

> A Visual Basic program was developed for synchronization of system time between two

Windows-XP computers.
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Figure 4-1: A screen capture showingthe clock at the lower right hand corner. The

clock is used as a reference oftime stampfor the internal motion.

4.1.3. Data Processing

For each session, 3 collections of signals was obtained: the fluoroscopic image

sequence, the Varian RPM system and the ERMsignal. The goal ofprocessing the

data wasto obtain a set of synchronizedsignals (in relation to the absolute time):

e the amplitude signal of the two gating modalities,

e the phase signal of the RPM

e the motion signal of the centre of the tumour and the diaphragm.

 

Figure 4-2: Tracking points ofthe diaphragm andthe centre ofthe tumouron the

fluoroscopy image. The dotin light blue wasregistered as the centre ofthe tumour

andthe dot in red wasregistered as the position ofthe diaphragm.
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For each imagein the fluoroscopy sequence, 1) the centre of the tumour and 2)a

point, usually the highest point in the centre of the diaphragm (Figure 4-3), were

identified by a memberofourclinicalstaff. The tracking of position of the above

two features in each image sequence wasrepeated three times and then followed

by seven-step moving averagefilter.

Acuity Simulator
Bluetooth=

- gy

ERM
NY

   

   

 

infrared Camera
and emmiter

“0reflective

=A Bluetooth   

 

 

   

<— Direction of
Data Flow

USB Mouse

Figure 4-3: Schematic diagram ofthe synchronization and dataflow ofthe

different systems involved. The Varian RPMsystem includes the IR camera,
reflective marker, workstation and the USB mouse. The Acuity Fluoroscopy system

includes the X-ray unit, imaging panel andthe control workstation. The ERM
system includes a control workstation with Bluetooth connection, the ERM and a

face mask. The arrow indicatesthe direction ofinteraction (a signaltransferfrom

the end ofthe arrow to the head ofthe arrow). The numbers next to the arrows

represents the interaction sequence (the orderofinteraction) startingfrom arrow

Number | in the upper right corner.
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Three systems were running in parallel while the patient was undergoing

fluoroscopic imaging (Figure 4-4). The system clock of the Acuity Workstation

and the ERM Workstation were synchronized at the beginning of in each session.

The breathing signal wastransferred by the transducer to the ERM (Figure 4-4

Arrow #1). The data was sent to the ERM Workstation and time-stamped to the

system clock. (Figure 4-4 Arrow #2) The Varian RPM Workstation captured the

motion of the reflective markers located on the patient’s chest/abdomen.(Figure

4-4 Arrow #3a) When the Varian Workstation triggered tracking of the reflective

marker, (Figure 4-4 Arrow #3b)the sametrigger signal was also sent to the ERM’s

Workstation. (Figure 4-4 Arrow #4)Thefluoroscopy images were displayed on the

screen ofthe Acuity Workstation. (Figure 4-4 Arrow #5) A frame grabber whichis

part of the Varian RPM system captured the fluoroscopy image from the Acuity

Workstation.

 

Fluorosopy image sequence

 

ERM breathing signal F(n) + *
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Figure 4-4: Schematic drawing ofthe associations and synchronizations ofdata

seriesfrom different systems.
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Figure 4-5: Plot ofthe dataset ofPatient-2 against absolute time. (a)The upper
figure showsthe breathing signal ofERM and Varian RPM. (b) The middlefigure

showsthe original phase of Varian RPM. (c) The bottomfigure shows the Tumour

and Diaphragm motion. The Sampling Frequency(Fs) ofthe dataset was 8.3Hz.

There were 3 datasets collected in each session (Figure 4-5): the fluoroscopic

image sequence, the ERM’sdatafile and the Varian Data file. The timestamp of

ERM(Tf[n]) and Fluoroscopy (Ti{n]) were absolute time, while the Varian (Tv[n])

wasrelative time. Tv[n] is the count in milliseconds since the user pressed the

mouse button, which is recorded in mouse-click signal C[n]. There were absolute

time timestamps on every frame ofthe fluoroscopy image, so the image sequence

can be synchronized with the dataset. An exampleofthe final dataset is shown in

Figure 4-6. Only those signals which are overlapping the motion signals (bottom

chart of Figure 4-6) were used for gating simulation.

4.1.3.1. Internal motion traced by Fluoroscopy imaging

Thetracking of the position of the tumourand the diaphragm on the fluoroscopy

image was done manually. In order to decrease the error in identifying points on

the fluoroscopy frames, the tracking was repeated three times. The motionsofthe

internal structures were measured by averaging the three traces of the internal

structures.

The following signals were recorded:

1. the horizontal motion of the diaphragm,

2. the vertical motion of the diaphragm,
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3. the horizontal motion of the centre of the tumour,

4. the vertical motion of the centre of the tumour.

Excluding the horizontal motions of the diaphragm

Since the diaphragm can be seen as a coronal structure on the anterior-posterior

(AP) view and it mainly movesin the inferior-superior (IS) direction, the change in

position in the left-right (LR) and AP directions would berelatively small when

compared to the IS movement. Forthis reason only the IS motion ofthe diaphragm

was studied.

4.1.4. Problems of tumourtracking

The fluoroscopy imageis the density of the internal structure projected on the

image plane. Theprojections of every organ overlap each other.It is not always

possible to identify and outline the position of an organ in the image. Dueto the

lack of depth information in the image, we cannot guaranteethat the tracking point

is coplanar with the tumour. Thusthe tracking point maybein a different position

from the tumour.

The fluoroscopy image sequence wascoded usingthe Intel Indeo video codec,

whichis a lossy codec. The compressionsetting is built into the Varian RPM

software which cannot be modified by users. The delineation of the tumour might

be affected by the artefacts caused by the video codec.
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4.1.5. Unit of measurementof the internal motion

A computer generated grid is projected onto the fluoroscopy image with a grid size

corresponding to 1cm at 100 cm from the radiation source. The amplitude of

movement was measured as a numberofpixels in the image. To determine the

amplitude ofmovementit was necessary to calculate the numberofpixels

corresponding to 1cm at 100cm. A correction wasapplied if the tumour wasnotat

100cm from the source. The internal motions on the fluoroscopy images were

calculated by dividing the pixel count (length) by the numberofpixels

corresponding to one small unit on the cross axis gridline (Figure 4-6). The length

ofone small unit on the cross axis gridline represents 1cm. Amongall the sessions

of samples, the length of a real object of 1 cm, when projected on the captured

fluoroscopy image sequence, ranged from 15 to 18 pixel count.

 

Figure 4-6: A screen capture ofthe monitor screen ofthe Fluoroscopy workstation

showing the absolute scale ofthe movement. Each small unit ofthe ruler

represents cm at 100cmfrom the source.

The uncertainty of the motion data Si was estimated by the Root Mean Square

Error of the signal of the 3 delineations. The uncertainty of the motion of the

diaphragm in the sagittal direction was 0.10cm. The uncertainty of the motion of

the tumour was 0.21cm in the sagittal direction and 0.10cm laterally. The values

were obtained by the RMSEofthe three delineations (Chapter 4.1.3.1).
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4.1.6. Gating Simulation

Weperformeda gating simulation using the amplitude gating technique. The 12

datasets of breathing signals and internal organ motions were used. The LANIC

beam systematic latency was assumedto be zero that the computation and control

delay were not taken into account. The latency will be investigated in Chapter 6.

In 10%, 20% 30 % and 40% duty cycle, the residual motion of a point representing

the tumour was evaluated.

4.1.7. Gating windows

In amplitude gating simulation, the beam is enabled whenthe breathing trace goes

beyond threshold 7. For gating at the end of expiration (EOE)position, the beam

will be enabled whenthesignalis lower than 7. For gating at the end ofinspiration

(EOI) position, the beam will be enabled when the signal is above T. Asuitable

threshold 7 was used for each position (EOE or EOI) ofgating andfor different

duty cycles. 10%, 20%, 30% and 40% duty cycles were simulated, which were

likely to be the usual duty cycle in clinical practice. The value of the

amplitude-gating threshold 7 was adjusted suchthat the portion ofbeam on

time(measured in %) wasclosest to the chosen duty cycle. The optimum

amplitude-gating threshold 7 for breathing signal x at position @ for duty cycle

y is calculated by:

£(G,[T, x])

£(x)

where min() is a function returning the minimum valueofthe input series, f is a

—y)Tly.ox = min(

function giving the length(orthe time duration) of an input signal and Go [T, x] is

the residual motion signal when the beam is enabled around the @ position (@

can be either EOE or EOI),x is the amplitude signal of the gating modality.
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Theresidual motion Gy [T, x]® at the extreme position @ with threshold T for a

gating signal x = {x;| 1 <i < ?(x)} is calculatedby:

{x;|V x; <T} for @ = "EOE"
G[T, x] = v
ol XI {res for p = "EOI"

where “EOE”is the End of Exhale and “EOI”is the End of Inhale gating; x; is the

i” elementofthe gating signal x.

4.1.8. Evaluationsof the effect of gating

Given a motionseries Y(f) defined as the position of an object over time. The Root

Mean Square (RMS) about its mean position is given by:

   (¥[t] — Y[e])?

where Y[t] is the meanofseries Y[¢] and N is the length ofthe series Y[?].

The aim ofgating is to reduce the residual motion ofthe tumour whenthe radiation

beam is enabled. In the form of mathematics, its aim is to reduce the fluctuation of

the motion series. Residual motion is defined as the motion ofthe tumour whenthe

beam is enabled. In a conventional treatment without gating, the beam is enabled

during the whole treatment. In gated radiotherapy, the beam is enabled for a

portion ofthe time (eg: 40% of the treatment duration), and the residual motionis

limited to the motion that occurs when the beam is enabled.

 

°G[.] is the residual motion in the gating window. An example ofG is shown in the bottom chart of

figure 4-7.
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Figure 4-7: This diagramillustrates theformation ofthe residual motion

series. The blue trace ofthe upper chart showsthe sagittal position(Y-coordinate)

ofthe tumourofoneofthe sessions. The vertical axis is the position ofthe tumour

and the horizontal axis is the time in second(s). The red trace segments ofthe

upper curve indicate the position ofthe tumour when the beam is enabled. On the

lower chart, the beam-enable segments are truncated together andform the

residual motion series. The colours (magenta, purple, cyan, green andyellow) of
the segments are usedto indicate the truncation ofdifferent segments.

In Figure 4-7, the uppertraceis the sagittal position of the tumourover time. This

can becalled “the Total motion” of the tumour. The lowertrace is formed by the

position (motion) of the tumour whengating is used and the beam is enabled. This

can be called “the residual motion of gating”. The efficiency of the gating

technique can be evaluated by the RMSofresidual motion aboutits mean position

in the gating window.

When comparing the effect of different gating parameters over a group ofpatients,

the Total motion (RMSofthe tumour motion Yj; as shownin the blue curve of

Figure 4-8) was usedas a factor for normalizing the residual motionof gating.
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Whenthe relative Root mean square value (rRMS) ofmotion iszero, gating

removesall the motion of the target. Whenthe relative standard deviation of

motion is one, gating makes no difference as gating is disabled. Therelative

standard deviation of motion of gating rRMSofan internal motion y; using

gating modality x, is defined as:

_ std( Gy, %e))

——— std( yi)

wherestd() is a function returning the standard deviation ofa series, y; is the

rRMS

series of positions of the internal structure, G(y;,x,) is a series of residual

motion of gating when x, is used as the breathing signal.

For tumour motion,the relative standard deviation of motion rRMSis calculated

by:

 

ystd( G(yry,X5))? + std( G(yry, X5))?

ystd(yrx)* + std(yry)?

where std() is a function returning the standard deviation of a series, yry is the

rRMS = 
 

series of horizontal positions of the tumour, yyy is the series of vertical positions

ofthe tumour, G(ypx,x,) is the residual horizontal motion of gating when x, is

used as the breathing signal and G(ypy,x,) is the residual vertical motion of

gating when x, is used as the breathing signal.
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4.2. Results and Discussions:

4.2.1. Internal motion

Figure 4-8 shows the RMSofmotionsof internal organs inall the 12 sessions

measured by the fluoroscopy image sequences.

RMSoforgan motion
1.5 + + 1 - + 1 + t +r

HE Diaphragm-y(IS)

MBTumour-x (LR,AP)
WRTumour-y(IS)
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Figure 4-8: Motion ofinternal structures of12 sessions. The RMS ofDiaphragm-Y

Inferior-Superior, Tumour-X (LR, AP) and Tumour-Y Inferior-Superior motions

were shown.

The RMSvalueofthe motionsofthe diaphragm ranged from 0.38 to 1.42 cm

vertically. The RMSofthe horizontal tumour motion ranged from 0.03 to 0.20cm

(LR) and 0.05 to 0.13 cm(AP). The RMSofthe vertical tumour motion ranged

from 0.12 to 0.83cm.

Amongall the datasets, extreme positions andfields, the RMS ofIS motion of the

diaphragm werelarger than those of the tumour. The diaphragm’s IS motion is on

average 209% of the tumour’s IS motion averaged overall natural breathing

sessions. Patient-1 exhibited the largest amplitude internal motions. The average

RMSofIS motion ofthe tumour and diaphragm ofPatient-1 is 274% of Patient-2.
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Theresult implies that the room for reducing residual motion of the residual

motion ofthe tumourin the IS directionis large. In comparison with the magnitude

of the IS motions, the horizontal motions (AP and LR) werenotlarge. In Patient-4

(dataset-P4a and P4b on Figure 4-8), the tumour waslocated close to the

diaphragm (Figure 4-9). The RMS amplitude of tumour IS motion wasclose to

that of the diaphragm.It was therefore more likely to benefit from motion

compensation techniques, dueto the relatively large diaphragm movement.

 

Figure 4-9: The location oftumour ofPatient-4 was close to the diaphragm. As a

result, the IS motion magnitude ofthe diaphragm wassimilar to that ofthe tumour.

4.2.2. Correlation of the ERM signal with the motion ofinternal

structures

The delay and the correlation coefficient of the internal motions for the two

different breathing monitoring devices are shown in Table 4-3 and Table 4-4. The

values shownare the mean and standard deviation overall the 12 sessions of

dataset.
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Table 4-3: Delay ofinternal organ motions and different breathing monitoring

devices (ERM and Varian RPM).The values are measured in seconds and a

positive value meansthe time the device is lagging behind the internal motion.

 

Delay of internal organ motions and breathing monitoring devices
 

 

Organ(direction) ERM (mean +SD) Varian (mean +SD)

Diaphragm (IS) 0.25 £0.12 0.12 +0.14

Tumour (LR) 0.18 £0.10 0.06 +0.10

Tumour (AP) 0.32 £0.10 0.18 +0.15

Tumour(IS) 0.34 +0.11 0.20 £0.16
 

Table 4-4Correlation coefficients ofinternal organ motions anddifferent

breathing monitoring devices (ERM and Varian RPM).
 

Correlation of internal organ motions and breathing monitoring devices
 

 

Organ(direction) ERM (mean +SD) Varian (mean +SD)

Diaphragm (IS) 0.87 £0.07 0.96 +0.04

Tumour (LR) 0.69 £0.12 0.73 £0.13

Tumour(AP) 0.67 £0.18 0.67 £0.25

Tumour(IS) 0.81 £0.07 0.90 +0.09
 

Both breathing monitoring systems showeda significant time lag with respect to

the internal motion. The ERM has a meanlag as large as 0.14 seconds behind the

Varian RPM system. The tumourhas a mean time lag of+ 0.07 seconds

(depending on the direction) compared to the diaphragm.

There were2 sets of data for each patient (4 datasets for Patient-1). Comparing the

time lags within different datasets of any patient, the “breathing signal to motion

signal” time lags were within 0.12 secondin 4 outofthe five patients. That means,

the breathing monitors could maintain a stable synchronization with most of the

patients. If a prediction algorithm were used it may be possible to compensate for

the delay.
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4.2.3. Variations of End of Inhale and Endof Exhale positions

Thevariations in the extremes ofmovement were measured by the standard

deviations of the EOE and EOIpositions of the diaphragm and tumour motions.

Theresults are shown in Figure 4-10. On the average, EOI had larger variations

than EOE:0.26 versus 0.11cm on the diaphragm and 0.17 versus 0.12cm on the of

tumour(IS) motion.
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Figure 4-10: Standard Deviationofposition ofEnd ofInhale and Exhale positions

ofthe diaphragm and tumour.
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4.2.4. The impact of audio coaching visual feedback of Patient-1

Patient-1 had been audio coached with visual feedback. The study enabled us to

compare the impact of the audio-coaching visual feedback technique with natural

breathing.

Accordingto the displacements ofthe diaphragm andthe trajectory oftumour (Pla

vs Plc and P1b vs Pld in Figure 4-8), the RMSofthe total motion was reduced by

a significant amountin all directions (Table 4-5).

Table 4-5: Reduction ofInternal motions (RMS) when AVcoaching was applied in

two sessions ofdifferent imagingfields.
 

Percentage Reduction of Internal motion (RMS) by AV coaching
 

 

 

APfield Lateralfield

Organ(direction) % reduction Organ(direction) % reduction

Diaphragm (IS) 27% Diaphragm (IS) 36%

Tumour(LR) 65% Tumour (AP) 42%

Tumour(IS) 44% Tumour(IS) 20%
 

AVcoaching reducedthe variations of the EOIpositions in the IS direction ofboth

the tumour and the diaphragm. The reductions are showed in Table 4-6. However,

there was no significant reduction in the variations in End of Exhale. The

reductions of variations are shown in Table 4-7.

Table 4-6: Reduction ofEOI variations when AVcoaching was applied in two

sessions ofdifferent imagingfields.
 

Reduction of EOI variations (cm)
 

 

 

APfield Lateralfield

Organ(direction) %reduction Organ (direction) % reduction

Diaphragm (IS) 78% Diaphragm (IS) 60%

Tumour(LR) 23% Tumour (AP) 16%

Tumour(IS) 77% Tumour(IS) 31%
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Table 4-7: Reduction ofEOE variations when AVcoaching was applied in two

sessions ofdifferent imagingfields.
 

Reduction of EOE variations
 

 

 

APfield Lateralfield

Organ (direction) % reduction Organ (direction) % reduction

Diaphragm (IS) 6% Diaphragm (IS) 12%

Tumour(LR) -4% Tumour (AP) 11%

Tumour(IS) 24% Tumour(IS) 7™%
 

4.2.5. Amplitude Gating Simulation

For a 20% duty cycle, the ERM reduced the average RMS amplitude of the

diaphragm residual motion (over the 12 datasets) from 0.81cm (non-gated) to

0.33cm for EOI gating. When gating in the EOE position, the averaged RMS

amplitude of the residual motion with gating was 0.26cm. The residual motion

increased as the duty cycle increased.

The means(of 12 datasets) of the rRMS amplitude of the residual diaphragm and

tumour motion across different duty cycles are shown in Figure 4-11a (for EOE

positions) and Figure 4-11b (for EOI positions).

Both the Varian RPM and the ERM wereeffective for reducing residual motion,

while the Varian RPM had an average of 10% further reduction in the rRMS.
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Figure 4-11: This diagram shows the mean ofthe rRMS amplitude ofthe residual
diaphragm and tumour motion across different duty cycles using the ERM and
Varian RPM systems. The height ofthe bars represents the % rRMSvalue. Bars

are groupedinto different duty cycles. The colour ofthe bar representing the kind

ofmonitoring system and the phase position ofgating. The error bars show one

standard deviation. (a)Mean rRMSin the EOIposition; (b) Mean rRMSin the

EOEposition.
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Effects of Large (40%) and small (10%) duty cycle on the tumour motion in

the SI direction.

Residual motion in EOE

The average difference between a 10% and a 40% duty cycle was 17%+ 9%

(measured by both devices).

Residual motion in EOI

The average difference between a 10%-duty-cycle and a 40%-duty-cycle was

28.1%+12% (measured using the ERM system) and 26%+10% (measured using

the Varian RPM).

The differences in the rRMSfor large and small duty cycles ranged from 5% to

60% rRMS,suggesting that some patients were morelikely to benefit from low

duty cycle, while for some of them the size of the duty cycle did not have

significant impact (under the assumption that the tumour amplitudesare similar).

Table 4-8: The difference ofrRMS between EOE and EOI measured by ERM and

Varian RPM. A positive value indicate EOE has larger residual motion The value

following the + signs is the SD
 

Difference of rRMSresidual motion of Tumour IS motion between EOE and EOI
 

 

 

Duty cycle Reduction

ERM Varian

20% -4%+18% -T%HtE18%

30% -8%+19% -11%+20%

40% -14%+19% 15%+19%
 

Gating in Exhale and Inhale

For duty cycles between 10% and 30%, EOE and EOI showednosignificant

difference. For higher duty cycles (40% duty cycle), the difference between EOI

and EOEwasalsonotsignificant, with an average 15%+20% more reduction. The

different is caused bythevariation in the EOI positions. An example of EOI

variations of Dataset-P2a in 20% DCis shownin figure 4-12. In the dataset, the

EOIpositions havelarger variations when compared to the EOEpositions.
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Figure 4-12: The variations ofEOI. The Varian signal is shown in magenta and

the gating signal by the red squares.
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Figure 4-13: This diagram shows the RMSofthe tumour motion with gating using

the ERM and Varian RPM systemsat the EOIpositionfor a 20% duty cycle.
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For most of the datasets, the differences in residual motion between the Varian and

the ERM systemswerenotsignificantly different. There were some datasets which

the difference in residual motion between the Varian and the ERM wassignificant.

To avoid repetition, the discussion here is focussed on the residual motion for a

20% duty cycle (figure 4-13). On average, the Varian RPM produces lower

residual motion than the ERM (p=0.02). In particular, the difference between the

two monitoring systems waslarge in Dataset-1a 4a and 5a. On average, in those

datasets, the Varian RPM outperformed the ERM by a margin of about 0.15cm,but

for the other datasets, the two systems produced equivalent results. The effect of

the time lag between the tworespiratory monitoring systems is shownin Figure

4-15.and Figure 4-12. The monitor signal (magenta curve) is shownin figure 4-15,

the delay ofthe ERM signal (4-15a) caused the gating signal to be delayedrelative

to the motion, while the Varian RPMsignal (figure 4-15b) was aligned accurately

with the motion signal (blue curve).

The difference (ArRMS) of rRMS between the ERM and the Varian RPM versus

the phase difference (At) between the two systems is shown in Figure 4-14. For

each dataset, ArRMSis defined as the residual motion rRMSofthe ERM minus

that of the Varian RPM;while Atis defined as:

At= the systematic delay between the Varian RPM andthe tumour SI motion

- the systematic delay between the ERM andthe tumourSI motion

Thecorrelation coefficient between (ArRMS)and (At) was 0.67 (p=0.017) in the

EOEand 0.83 (p<0.01) in the EOI. The correlation between ArRMSand At are

shownin figure 4-14.
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Phasedifference and rRMSdifferences between ERM and RPM
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Figure 4-14: The relationship between the systematic delays and residual motion

in 20% duty cycle on the EOEposition.
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Figure 4-15: A comparison ofthe monitor signal and amplitude gating signals

between the ERM andthe Varian RPMsystemfor a 20% duty cycle on the EOE

position. (a) shows the ERM’; signalin magenta andthe gating signal in cyan. (b)

shows the RPM’ signal. A delay is apparentin the ERMfigure, in which the gating

signalis shifted slightly towards the right handside.
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The ERM’sbreathing signal has an average delay of about 0.22+0.11 seconds

compared to the diaphragm and 0.31+0.11 seconds compared to the tumourIS

motion. As a result, the gating window did not include positions which were most

stable during the breathing cycle. Another example of a systematic delay is shown

in Figure 4-16, where the ERM’s breathing signal (magenta in the upper chart) has

a delay in relation to the diaphragm (blue in the upper chart), so that the gating

window(cyan in the upperchart) is shifted towards the right hand side of the EOE

position.

ERM_Data7_20%:Plot of Breathing Signal Moti

 

 

 

  
 

 

breathing signal

ion and Gating Pulse

J T T T 7 T T T T| : 4 [\ /
22.5|- A ft ‘ i 4) i it -= i; t «f lA Fi me :

€& 22 ft | an a 7 IF iit I us av + 7
e i; wig & Ht t If 4 ve ov ik VE og Ye f
s2st; if Hei ir ki wm ki Rw £, PP kw & F hf 4
= | j ct yh VE it VE t: ft Ve \4 | th
@ | Ve A + a GL ¥ i Ee Hee + f
B 2r A i % f Va % ft Eh \ if “% f a

A ‘ i+ t ef He \4e + \ \

sig YE Ww WP Ye ON Ned
20-1 1 L L L |

450 500 550 600 650 700 750

Time (unit sample)

Varian RPM_Data7_20%:Plot of Breathing Signal Motion and Gating Pulse
T a T T

23- dh # =|
= tt vf é
E 4 EY A a & AY
= atin £ \ fh aa: FL okt iy ft 4
g Hig OF A * Gt | AY oie & ii eG le i ft
2 Wie gee Wa Up ae it \
3 % # i" vm iP i ff te it
a 217 i % ff \ it it f % F&F f ma

20E 1 L L L L 1 i ;
450 500 550 600 650 700 74 Diaphragm

Time (unit sample)  Gate Enable pulse  
 

Figure 4-16: A comparison ofthe monitoring and gating signalsfor amplitude

gating between the ERM andthe Varian RPMsystem. The upperfigure shows the

ERMSssignal in magenta andthe gating signal in cyan. The lowerfigure shows the

RPMs; signal. A delay can be seen in the ERMfigure, in which the gating signalis
shifted slightly towardsthe right handside.

To compensate for the systematic delay of breathing monitoring systems,

prediction algorithms can be deployed to compensate for the delay. To estimate the

effect of the systematic delay, the ERM signal wasshifted with certain delay Dj for

each dataset-i. D; was obtained from the delay between the breathing signal and

the internal motion in another dataset of the same patient. The rRMSofthe

residual motion using amplitude gating was evaluated for the shifted breathing

signal. The results are shown in Figure 4-17. On average, we foundthat the time

shifted signals could reduce the rRMSresidual amplitude by an additional 4% to

12%. It was concluded that it would be possible to reduce the residual motion
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amplitude if prediction algorithms were used to compensate for the delay. A

further investigation of prediction algorithmsis in chapter 6 ofthis thesis.
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Figure 4-17: The blue bars are the mean rRMSorgan residual motions over 12

datasets using amplitude gating without any delay compensation, while the red

bars are delay compensated. The potential improvement associated with

prediction algorithmsis shown by the differences ofeach pair ofbars. (a) Tumour

EOE, (b)Tumour EOI.
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4.3. Conclusion of the ERM in fluoroscopy study:

Theresults of gated radiotherapy simulations and the correlation between the

breathing signal and the internal motion support the argumentthat the ERM was

capable of reducing the amplitude of the motion of the target when the radiation

beam wasenabled. The degree of residual motion reduction associated with the

ERMwasthan with the Varian RPM system in amplitude gating. This was because

on the average, 1) the ERM hasrelatively lower correlation with the internal

motion with the tumourand diaphragm, 2) the systematic delay.

For mostofthe patients, the EOE position has greater reproducibility, and

therefore, gating at the EOE position yields lower residual motion.In Patient-1,

audio and visual coaching significantly reduced the variation of the EOI and EOE,

while the amplitude of total motion of the tumour was mildly reduced. Asa result,

the residual motion in amplitude gating was reduced by applying both audio and

visual coaching.
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5. Phase algorithm for ERM

5.1. Introduction

The ERMissensitive to the rate of change in temperature. Therefore, if the

respiratory frequency increases (and the amplitude of breathing remains

unchanged), the amplitude would also increase. As a result, the amplitude of the

breathing signal of the ERM maynotbe a good estimate of the tumourposition of

the internal organ. In such conditions, using phase gating may be moreefficient

than amplitude gating.

In respiratory gating, a reliable phase representation of the breathing motionis

essential for the efficiency of gating. This is because the radiation beam is

controlled by the gating signal and the gating signal relies on the phasesignal

whichis derived from the amplitude of the breathing surrogate. The algorithm

whichis used to derive the phase from the amplitudesignal ofthe surrogate affects

the amountof residual motion reduction. For an absolutely noise-free and regular

signal, the definition of phaseis straight forward; one can measurethe repetition

duration between cycles and divide the lap time into equal portions. Theportions,

representing thestate of the signal in a cycle, becomethe phase ofthe signal.

However, in medicalapplications, especially for respiratory signals, the definition

of phase is ambiguous, because the signal contains noise. Whenthe noise distorts

certain features of a signal, the phase is not easy to define. The variations of the

EOEand EOIpositionsin a breathing signal are good examplesofnoisedistortion

in a breathing signal.

In this chapter, different approaches to Phase algorithmsare investigated. An

approach using the Fourier Transform and an approach using an Extended Kalman

Filter (EKF) were investigated for deriving the gating signal for respiratory gating.

The 12 datasets of the 5 patients of Chapter-4 were used to evaluate the

performanceofthe phase algorithms.
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5.2. Different Phase algorithms:

Most of the experiments rely on the built-in phase algorithm of the respiratory

monitoring device to obtain the phase (George et al 2006, Chi et al 2006).

Seppenwooldeet al (2002)analysed the hysteresis of tumour motion in different

directions. The tumour motion was modelled by a powerof2n sinusoidal signal

cos”"(.), where is a positive integer. The algorithm starts with identifying

individual breathing cycles automatically by setting thresholds. For each

individual breathing cycle, the amplitude, the position ofthe tumourin the inhale

and exhale phases, the average tumourposition, and the length of the breathing

cycle were measured. The position s of the tumouras a function of time f can be

defined as follows:

mt
s(t) =s)—-S cos”(— — ¢)

wheresy is the position of the tumourat exhalation, S is the amplitude, and hence

so-S is the position at inhalation; t is the period of the breathing cycle in seconds,

and @ is thestarting phase. This parameterized breathing curve wasfitted (using a

least-squares method) through each average breathing cycle. However,it is

difficult to perform curvefitting in real time, because the period and the amplitude

of the current cycle is not known until the completion ofthe cycle.
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5.2.1. Natural phase

Bogoliubov & Mitropolski(1961) developed a systematic approachto relate the

amplitude and phase dynamicsto the dynamics formulated in original phase

space. The definition of an (instantaneous) phase proceeds by expressing the

position x and the velocity v in polar coordinates Ay and yn:

x(t) = Ay(t)cos(y (t)) (5.1.1)

And

x(t) = v(t) = —wAy(t)sin(Py(t)) (5.1.2)

donwher | ,, where @ is —

It should be noted that a meaningful clockwiserotation in the x-v plane

determines angles to be measured in a specific way depending on the sign of @

Thepolar coordinate representation of the system is:

v(t) (5. 1.3)
w2
 Ay(t) = [x?(t) +

ve)
by(t) = tan-(— 65) (5.1.4) 
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(a)Breathing signal x and derivative dx/dt
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Figure 5-1: The Breathing signal and the Natural Phase. (a)The upperchartis the

respiratory signal x ofa volunteer andits derivative dx/dt. (b)The second chartis

the naturalphase without a zero-mean x andproper weight between the two

components x and dx/dt. (c)The third chart is the Natural Phase signal with a

zero-mean x, but not properly weighted. (d)Thefourth chart is the Natural Phase

signal with a zero-mean x, andproperly weighted x and dx/dt.

In order for the phaseto be usable for radiotherapy, phase angles should be

distributed linearly from —z to +z for a regular breathing signal Hence, the x(t)

and v(t) components need to have zero mean and be weighted. A weight factor w

is needed to balance the range of the numerator and denominator (in equation

5.1.4), such that their ranges are identical. If they are not, there will not be proper

phase representation. An example is shown on figure 5-1. Suppose we have a

breathing signal x and its derivative v=dx/dt (figure 5-1a). If the breathing signal

does not have zero mean, the range of the phase angle would be too small and

sometimesit progresses backwards (an example is shownin figure 5-1b, where

d6/dt < 0 in the exhale phases). The physical meaning of a progresses backward

phaseis undefined.Ifthe weight does not properly balance the ratio between x
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and v, the phase progression would notbe linear (figure 5-1c). A proper phase

representation of Natural Phase is shownin figure 5-1d.

The instantaneous phase of Natural Phaseis given by:

6% (t) = arctan[ . w] (5. 1.5)

where X(t)and x(t) are the breathing signal and its derivative respectively, x

is the mean position of x(t) and w is a constant for balancing the weight of

x and x.

Breathing Signal, Derivative and Natural Phase
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Figure 5-2: The Natural Phase. (a)The upperchartis the respiratory signal x ofa
volunteer which exhibited a relatively non-smooth breathingpattern. (b) The

middle chartis the derivative dx/dt ofthe breathing signal. (c)The bottom chartis
the Natural Phase signal. The signal was obtained by the Varian RPMsystem over

a I minute sampling session. Thefirst 12 seconds ofthe signal are shownhere.
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Since w is a constant, the phaseis totally dependent onx(t)and x(t). In discrete

signals, x(t) is often calculated by x(t)-x(t-/). The phasewill totally depend on

the ratio ofx(t-1) and x(t). The Natural phase algorithm is simple to operate,

because only the current and the previous value of the breathing signal are

neededto calculate the current phase. However, such simplicity makes it more

sensitive to small and short term(high frequency) fluctuations in x(t). Ina

breathing sample (figure 5-2a) obtained from a healthy volunteer, the derivative

of the breathing signal was not smooth (Figure 5-2b). In this case, the high

frequencyfluctuations in the derivative were relatively high and the breathing

signal x(t) is far from a smooth sinusoidal signal. Asa result, the natural phase is

not a smooth andlinear progressing function (figure 5-2c).

The problem of Natural Phaseis that the instantaneous phaseis derived by the

ratio of the current value andits derivative. Hence, even if the breathing pattern is

perfectly regular, the progression (d@/dt) of the phase over time may not be

constant. This results in the phase value notreflecting the stage ofbreathing.



115

5.2.2. Hilbert Phase /Analytic signals

The Hilbert transform offers a wayto relate the signal x(7) to an instantaneous

amplitude and a phase.It has been used in chaotic systems for phase

synchronization analysis (De Shazer et al 2001, Rosenblum et al 1996, Freundet

al 2003). Analytic signals are signals without negative-frequency components.

Hilbert Transformationsare used to convert a real signal into an analytic signal. It

is a system which producesthe imaginary componentbyaphaseshift of2/2 related

to the real component. Morespecifically, if the input (figure5-3a) is a sinusoidal

signal x(4)=sin(of), the output of the Hilbert transform y would be y(t)=sin(wt +

7/2) and the analytic signal x* ofx is x“(t)= sin(wt)+jcos(at).

The phase can beextracted from the polar expression of the analytic signal x“(t)=

|A(t)| e’’, where A is the amplitudeandotis the phase. The transformation was

calculated by finding the Discrete Fourier Transform of the input sequence,

replacing the outputcoefficients that correspond to negative frequencies with

zeros, and following this by the inverse Discrete Fourier Transform.

Hilbert Transform
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Figure 5-3: Hilbert Transform hx(redtrace) ofits original signal x. (a) sinusoidal

signal (blue trace); (b)a square pulse (blue trace). The y-axis is the amplitude and

the x-axis is the time axis.



116

5.2.2.1. Hilbert Transform

Theaim is to find two orthogonal components to form a vector, which when time

progresses, the vector goes aroundthe origin. Whenthe signal reaches the

beginning of another cycle, the vector would haverotated a full circle about the

origin.

To introduce the Hilbert transform, we start with two fundamental harmonic

waves:the sine and cosine waves. The cosine spectral amplitudesare both positive

andlie in the real plane (figure 5-4). The sine wave sequencehasspectral

componentsthat lie in the Imaginary plane andare of opposite sign. If a sine wave

sequence and cosine wave sequence combine and form a vector, the vector would

go aroundthe origin as describedin the previous paragraph. Supposethe breathing

signal is a cosine wave, the aim would beto derive a sine wave sequence.

In the Hilbert Transform, the negative frequency componentofthe cosinerotates

by +n/2, while the positive frequency component rotates by -2/2. In other words,

the positive componentis multiplied by —j, while the negative componentis

multiplied byj.

Imag

.
°

+70 -} Real
Li i -

aNtan
o a ™ : \

Figure 5-4: Hilbert Transform: Rotating thefrequency componentsto create a sine

wave out ofa cosine
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Bythe Hilbert transform,all negative frequencies of a signal get a +2/2 phaseshift

and all positive frequencies get a -7/2 phase shift. For any signal x(¢) in the Time

Domain,its Hilbert Transform has the following property

-j forw>0O,
j forw <0 (5. 1.7)9(X(w)) = —j sgn(w) =

where § // is the Hilbert Transform operator, X(w) is the Fourier

transformation of x(t), @ is in unit of frequency.The frequency componentsplot

of the transform system is shown in Figure 5-5b.

  
(a) (b)

Figure 5-5: The Hilbert transformation impulse responsefunction in (a) time

domain and(b)frequency domain. Hilbert Transform shifts the phase ofpositive
frequencies components by -1/2 and negativefrequencies components by +7/2.

5.2.2.2. Hilbert Phase:

The analytic signal approach extendsthereal signal x(7) to a complex one

with the imaginarypart y(t) resulting from an appropriate transformation ofthe

real part x(t). Instead of taking y(t) = c - x(t)asfor the natural phase algorithm,

y(t) is the result of a convolution ofx(t) with the Hilbert kernel §:

1_ (5. 1.8)$() =—

The Hilbert instantaneous phase becomes
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$x) (5. 1.9)pf = tan)

where §[] is the Hilbert transform operator.

An analytic signal x“(t)can be computed by DFT. The DFTtransform X“*(w) of

x‘(t) is given by:

2X(w) forw>0,

X4(w) =< X(0)

=

forw=0, (5.1.10)

0 forw<0O

where X(q) is the DFT ofx(t).

The Hilbert transform is suitable for deriving the phase for signals which exhibit a

lot of irregularity whereit is not clear how to define the phase (Freund et a/ 2003),

andit is simple to operate from the signal processing point ofview. This is because

from Equation 5.1.0, the instantaneous phase can be calculated by computingits

Discrete Fourier Transformation, zero substitutions, followed by inverse DFT and

inverse tangent operation.



119

5.2.2.3. Edge Distortions

The transformation function of the Hilbert transform h with h(t) = I/(x t) is a

non-causalfilter (figure 5-5a). When causality is ignored and the input length of

the transformationis infinite time, the variation of the instantaneous phase of the

peaks and troughs appears small. Therefore, it has been widely used for

retrospective analysis of timeseries.

Oneofthe approachesto use Hilbert Transformation for real-time phase

estimation is to select a wave segmentfor input. This is known as the windowing

technique (or overlap technique as described in Rabiner 1975), which specifies a

windowasthe input for Fourier Transformations. The Analytic signal approach

utilizes the Discrete Fourier transformation (DFT),so it is also subject to the

limitations (and related solutions) of the DFT.
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Figure 5-6a: The upper chart is a sine wave with a period of4 seconds sampled at
25Hz samplingfrequency. Fourfull harmonics of400 samples were takenfor the

Fourier Transform. The spectrum is shownin the bottom chart, where a sharp

componentof0.25Hzisfound.
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Figure 5-6 b: The upper chartis a sine wave with a period of4 seconds sampled at
25Hz samplingfrequency. 360 samples were taken for the Fourier Transform,

accountingfor 3.6 harmonics. The spectrum is shownin the bottom chart. The
spectrum ofthe signal is spared aroundthe 0.25Hz.
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Figure 5-7: The upper chartis a sine wave with a period of4 seconds sampled at

25Hz samplingfrequency. With the frequency components corresponding to

0.25Hz removed. 360 samples were takenfor the Fourier Transform, accounting

for 3.6 harmonics. The spectrum is shownin the bottom chart.

The windowsizeis an important factor in controlling the amountofdistortion. For

every segmentof signal, the Fourier Transform worksasifthe data were periodic

for all time (Rabiner 1975).Figure 5-8 showsthe scenario measuring a signal for a

period of time incorporating a few cycles (as for the windowing technique); the

DFT worksas if the data wereperiodic for all time. In Figure 5-8a, it happensthat

the signal is periodic and regular, but an integral number of cycles doesnotfit into

the sampling window. (The sampling duration is shownin figure 5-8b). This

meansthat, when the DFT assumesthatthe signal repeats (figure 5-8c), the end of

one signal segment does not connect smoothly with the beginning ofthe next- the

assumedsignalis similarto the actualsignal, but has'glitches' at regular intervals.
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If an integral numberofcyclesfit into the total duration of the input of a Fourier

Transformation, then whenthe transform assumesthe signal repeats, the end of

one signal segment connects smoothly with the beginning of the next and the

assumed signal happensto be exactly the sameas the actual signal. An example of

this is shown in Figure 5-6a, where the windowsize is a multiple of the period of

the signal.

The real sinusoidal signal (a)

Ter * ; mt rr T 7 7 os 

 
“0 200 400 600 800 4000

Time (samples)

Segmented window /\ p

{b)

The Fourier Transform (DFT) works as if this is the input. (¢)
 

  
0 200 400 600 800 1000
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Figure 5-8: Assumption ofFourier Transformation. (a)The sinusoidal waveis a

real signal, which hasinfinite duration. A windowis definedfor segmenting the

real signalfor real time processing. (b)The input signal (the middle sinusoidal

wave) is periodic - but an integral numberofcycles does notfit into the total

duration ofthe measurement. (c)Hence, when the Fourier Transform assumes that

the signal repeats, the end ofone signal segment does not connect smoothly with

the beginning ofthe next - the assumedsignalis similar to the actual signal, but

has little 'glitches' at regular intervals.

If not quite an integral numberofcyclesfit into the total duration of the

measurement, then when the Fourier Transform assumesthe signal repeats.

However, the signal segments do not cascade smoothly. An exampleofthis is

shown in Figure 5-6b, where the windowsize is not an integer multiple of the

signal period. In this case, the windowsize is 360 samples, while the period ofthe

signal is 100 samples (0.25Hz frequency). A extended spectrum is observedin the

bottom chart of Figure 5-6b. To show the effect ofthe window size mis-match,the

frequency componentofthe 0.25Hz sinusoidal signal is removed from the

spectrum, as shownin the bottom chart of Figure 5-7. The signal is reconstructed

from its spectrum and shownin the upperchart of Figure 5-7. The reconstructed

signal is the sum ofall the harmonics excluding the 0.25Hz frequency. Due to the

relatively high power (Figure 5-8) over the twotails, it distorts the representation
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of the phaseat the twotails of the signal because the phase representations are

affected by the dynamicsofthe extended frequency components whichare far

different from the original frequency (0.25Hz)ofthe real signal.

Cascading the DFT window
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Figure 5-9: The input signal ofthe DFT. The DFTassumesthe signal repeats. The

transformation windowsare cascaded (connected together) one by one. The end of

one signal segment does not connect smoothly with the beginning ofthe next. The

little 'glitches', are connection positions, marked with black arrows.

In gated radiotherapy, the phase of the breathing signal is derived in real time (or

close to real time, but with a certain delay). The transformation window always

starts at a certain time in the past and endsat the current moment. Only the

instantaneousphaseisof interest for triggering the treatment beam. Hence, the

edge distortions described above affect the accuracy of the current phase, because

the current phaseis alwaysat the edge of the window.
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However, even ifthe windowsize perfectly matchesthe breathing period; the edge

at the beginning of the window might not match the edgeat the end (figure 5-9).

Therefore, a low passfilter is needed to smooth the edges and the approach of

using the Hilbert transform to estimate instantaneous phase(in real time) would

become complicated to implement. Despite this, the Hilbert transform remains one

of the best algorithmsfor offline (retrospective) phase estimation.

5.2.3. Multi-frequency tracker using Extended KalmanFilter

Based on the Kalmanfilter which was developed in 1960 by R.E. Kalman, the

ExtendedKalmanfilter (EKF) wasspecifically developed for non-linear systems.It

has been used in navigation (Cooper and Durrant-Whyte 1994), computer vision

(Baumgartner1994), and in the estimation and tracking of signal problems (Brown

1983) for manyyears. It has the desirable quality of maintaining the physical

meaning of the system dynamicsbyutilizing a state space representation.

In using the EKF to estimate the instantaneousphaseofthe breathing signal, we

assumethat the breathing signal is generated by a non-linear dynamic system

model without a control input. At each pointin time, the true state of the system

being monitored will be denoted by x;, where & is the time index.

Xe = f (Xx-1) + Ak-1 (5.2.1)

Heref() is a nonlinear function and is a state transition matrix which describes

howthestate onetimestep earlier is transformedintothestate at time k, and q,.; 1s

the normally distributed process noise with zero mean and covariance R.
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The measurementz; is the breathing signal and is formed through a non-linear

function of the form:

Ze = h (Xx) + Tx (5.2.2)

Here z; is a measurement, h(.) is a nonlinear function of the state x,, and r; is the

measurement noise. The measurementnoise is Gaussian with zero mean and

covariance Q.

The EKF then provides us with an estimate m, ofthe state at time k, along with an

expected errorof this estimate, expressed through a covariance P;. Given a

Gaussian estimate of the state specified by mean and covariance <m,_1,P,_;> at

time k—/, the EKF updaterule provides us with an estimate ofboth quantities at

time k.

The Jacobians off(.) and h(.) are F.(m,.,) and H,,(m;,), with elements:

 

Of (%e-1)[Fi (my-1)]7,=
J! x=m

(5.2.3)

Oh; (Xx)
[He (m4)j,j9 =—

J’ \y=m 

Here F,. and H, are Jacobian matricesoff(.) and h(.), respectively, takenatthe filter

estimate m.
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Theresulting state transition and measurementfunctions are now linearin x.

Hence, the EKF producesan exact update, by manipulating the various Gaussians

involved. The update is then usually factored into two separate steps, a prediction

step, and a measurement update step. The prediction step starts with the estimate

m,_, and its covarianceP;,_; at time A — /, and producesan estimate for time f:

My = f (Mg-1, Ux) 524)

Py = F.(mg_1, Ux)PrAl (my_1, Ux) + Qe—1

The bar in ™, and P, indicates that these estimates are pure predictions, before

taking the measurementz;, into account. This happens in the measurement update

step, in which the EKF integrates the measurementz; by first calculating the

Kalmangain:

Ky = Pyle my) Sy"k Hy (M) Sy (5.2.5)

Sk = Hy. (My)PHI(Mx) + Rx

This expression specifies the amount by which the estimate will be adjusted in

accordance with the measurementprediction error z, — h (m;,.). This leads to the

update of the mean and variance

My = My + Ky [2% — h (M)] 6.2.6)

Py = Py — KySyKi



127

The frequency tracker

Parker and Anderson (1990) used it as the framework for frequency, amplitude and

phase estimation of the first m" componentsofa noise signal.

Consideranapproximatelyperiodic,non-sinusoidalsignal,inadditivewhite Gaussian

noise. A non-sinusoidal signal may be considered to consist of an infinite number

of sinusoidal components. Three sets of parameters can characterize the signal:

the fundamental frequency, the amplitude of each harmonic component, and the

phase of each harmonic component. Thesignal is not exactly periodic since

frequencies, amplitudes and phases change slowly over time. Given a signal y(t)

with zero d.c. component, has a slowly time varying frequency w;, amplitudes r;,

and phases ¢;, a representation ofthis signal can be written as:

Cc

y(t) = >.Ge sin(kw(t)t + @x(t))) (5.2.7)

k=1

where the quantities w(t), r;(t) and 9;(t)are the instantaneous frequency,

amplitudes, and phasesofthe signal.

Weassumefor both modelsthat the signal y(t) i s corrupted by noise. The

measurementz(t) is given by:

a(t) = y(t) + r(6) 6.2.8)

where r(t) is the zero mean Gaussian noise with variance R.
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Thetransition of state x(t) to state x(t+1)is given by:

x(t +1) = f(x(t)) + q(t) (5.2.9)

where/(.) is the state transition function and q(t) is the zero mean Gaussian noise

with variance Q.

Andthe state vector x is defined as:

x(t) = [1 (t).--,tm(t), w(t), 91(t) ,--- Pm(O)]" (5.2.10)

The Jacobian of h(t) is given by:

sin(1: w(t) t+ 9,(t))
sin(2- w(t) -t + @2(t))

sin(m: w(t)- t + Pm(t))

HO) =|)Cecos(kw(e)e + oe(0)) (5.2.11)
k=1

r,(t)cos(1-w(t)-t + 9;(t))

T2(t)cos(2 w(t) -t + @2(t))   | %(t)cos(m: w(t) -t+Q,,(t)) |

Thetask is to estimate the values r/(t), ... Pm(t), w(U), 91(U),... @m(t) from the

measurements, where m denotes the numberofthe significant harmonics.

Parameters are only estimated up to the m'" harmonic. The higher harmonics are

assumedto be negligible. A total of 2m+lparameters must be estimated.
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Downsides of the EKF multi-frequency estimator

In both models there are some potential pitfalls of implementation. Thefirst of

these is that w can lock onto a fraction or multiple of the true frequency. For

simplicity, we define W to be the actual value of instantaneous frequency w;7; to

be the true value ofinstantaneous amplitude r; and 6;,(t) to be the actual value of

instantaneousphase 0;(t)(where /<k<m). For suppose w locks onto 2 w. Then, r;

is around zero; r2 tracks /;, r3isnear zero, rz tracks 7) and soon. A similar case

applies if w locks onto w/3. To solve this problem, we can checkif7, 0, and, if

so, re-initialize with w twice (or three times) its previous value. Similarly, if w

locks onto 2w then nothing tracksr), r ; tracks 7 2, nothing tracks r3, r2 tracks ¢ 4 and

soon. A remedyhas been suggested by Parker and Anderson.Sincethefirst, third

and other odd harmonicsare not being modeled, the state prediction error

“Zz, —h (m,)”, will have greater energy than would be the case ifw =w. One can

initialize a secondfilter with half the frequency estimate of the first: monitoring

the prediction error of the twofilters as well as the amplitude will tell oneto reset

the estimate w to half its previous value.

Anotherpotential difficulty is cycle slipping, that is, for the estimated value of

phase 6;(t) and the actual value of phase 6,,(t), for some k and t differing

(approximately) by a multiple of 2. In simulations of Parker and Anderson 1990,

such cycle slipping was only observed at low Signal-To-Noise levels. Parker and

Andersonsuggested that slipping a cycle is probablyoflittle consequence and

can probably be ignored. However,in the case ofradiotherapy, the phase is used to

control the LINAC.An additional mechanismis vital to ensure the estimated

phaseis as closeto the actual value as possible and reset the system if it goes

wrong. The system can beinitialized at the previous knownstate or the next

knownstate. The maximum (EOJ) and minimum (EOE)are easily detectable

landmark states. The middle position is not as easily identified as the maximum

and minimum,becausethe breathing baseline drifts. If the system were

re-initialized from the next landmark position, there will be a time slot during

whichthe system is offline and gives no response. This decreases the robustness of

the system. Onthe other hand, if the system were re-initialized from the previous

landmark states (which is the method we implemented),it requires that the states

between the landmark andcurrent position are re-estimated. To avoid interruption,

this needs to be completed within onetime step (of the order oftens to hundreds of

milliseconds). If the sampling frequencyofthe signal is high, the system requires a

considerable amount of computational powerto handle the (2m)* computation

complexity of the Kalman estimator.
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5.3. The proposed Algorithms:

5.3.1. EKF phase estimation using Average Trajectory Function

Wepropose an Average Trajectory Function as a way to reduce the computational

complexity of the Multi-frequency EKF estimator. The ideais that, instead of

using multi-frequency sinusoid model, a mono-frequency averagetrajectory

function is used. The average trajectory function maps the phase to an average

amplitude. The average amplitude is obtained from the averagetrajectory of a

training dataset of the same subject.
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Figure 5-10: Stages ofproducing the breathing model (in the orderfrom a to d).
The ERM breathing ofPatient-1 is usedfor demonstration. (a) A pair ofcubic

splines were used to connect the EOE (blue) and EOI(red) positions ofthe

breathing signal (dotted black line). The green curveis the mean ofthe red and

blue curves. (b)After the baseline drifting and amplitude variation is removed, the

breathing signal is segmentedinto breathing cycles. (c) The breathing cycles were

resampled, such that their lengths are equal, and represented by phase of—pito pi

(peak to peak). (d) The averagetrajectory (black curve) and standard deviation

(magenta error bar) ofall the breathing cycles.
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5.3.1.1. A model to accountfor the inter-cycle breathing variations

The Average Trajectory model took into consideration the trajectory of breathing

pattern from an EOIposition to the next EOIposition. Baseline drifting, amplitude

and frequency variations were also taken into account.First, the baseline drifting

and amplitude variations were modelled by cubic splines (Figure 5-10a). Second,

the baseline drifting and amplitude variations were removed from the signal

(Figure 5-10b). Third, in order to accountfor the variations in frequency, the

average breathing cycle length Lb wascalculated. Then, the breathing signal was

segmented into breathing cycles. Fourth, the mean and standard variations of the

duration of breathing cycles (wave-lengths) were calculated. Fifth, the breathing

cycles were resampled into equal length segments by Cubicspline interpolation

(Figure 5-10c). Sixth, the mean and standard deviation of every sampling point

were computed (Figure 5-10d). The number of sampling points was chosenas the

average breathing period (obtained in the third step) multiplied by the sampling

frequency. Therefore, the resolution of the phase becomes 2 pi divided by the

average cycle length and the sampling frequency. A phase (from —o to +00) can be

wrapped and then mappedto an average position by the Average Trajectory

function. Since the Average Trajectory was represented by discrete set of points,

the Average Trajectory wasinterpolated for the mapping. Linear interpolation was

used in this model becauseofthe simplicity of the algorithm. However, a Discrete

Cosine Transform canalso be used to represent the Average Trajectory function.

With a coefficient size of 20, the root mean square error (RMSE)ofthe Cosine

Transform is less than 1% of the amplitude onall the training and testing signals.
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The following parameters are included in the model:

e The Average Trajectory function

e The mean and rmsvaluesof:

o The breathing cycle frequency

o Every sampling point of the Average Trajectory.

o Baseline spline

o Amplitude variation

Reset mechanism

If the breathing pattern is too irregular and the EKFfails to track its phase, the

phase estimator wouldreset and analert is asserted if any of the following

conditions is met:

e Instantaneous amplitude less than zero

e Instantaneous angular frequency less than zero

e Thedifference between the most recent peak (or trough) and the second

most recent peak (or trough)is larger than RMSvalueofthe signal.

Following the reset, the system would bere-initialized from the previous most

recent peak (or trough) and recalculates the current state. The most recent peak (or

trough) is detected by the peak detection algorithm described in Chapter-3.
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5.3.1.2. The details ofthe modelling process:

Thefirst step is to determinethe baselinedrift and the instantaneous amplitude of a

breathing signal. Given a breathing signal x,, the maximum (EOI) and minimum

(EOE) points ofx, were located by the algorithm described in chapter 3. Three

splines were computed: m, connecting all the maxima, m, connecting all the

minima and m; whichis the mean of m, and mp. xp iS a signal with the variation of

baseline and amplitude removed. x, is given by:

_ mean(mz{k] =malk)xp[k] = malk] = m,lk] (x[k] — m,[k]) (5.3.1)

where k is the index of the vectors.

The secondstepis to divide the breathing signal x, into individual breathing

cycles. x, was then divided into segments(Figure 5-10b). Each segmentis given

by: x-/i,j], where 1<i<N; and 1<j<N;/i]. N; is the number of segments and N;/i/ is

the length of the i” segment.

Each segment wasthen resampled to length N;, where N, is the average length of

all the segments and N;=mean(N;). The collection of equal length segmentsis

represented by xg. The meantrajectory x. was calculated by

Ni
1: =—) - (5.3.2)

for 1<j<N/_. .
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The third step is to determine the average trajectory of the breathing signal. The

meantrajectory x, becomesthe parameters of the Average Trajectory function

x/(0). xy interpolates the x, vector and maps a phase @ (wrapped by +z) onto the

Average Trajectory. 0 is given by:

(5.3.3) 

The meantrajectory is then normalized to the range of +1.

The forth step is to determinate the parameters of the model. The breathing

frequencyvariation g, is measured by the standard deviation of the length of the

breathing cycles normalized by its mean.It is given by:

GL = std( ) (5.3.4) 

N,° At

where 4t is the sampling period.

The variation of the Baseline gz is measured by the RMSofthe rate of change of

m; whichis the mean of the two splines connecting the EOI and EOEpositions.It

is given by:

_ milk] — m[k — 1]
9p =1Tmsae)

for 2<k<Nni

(5.3.6)

where rms(.) is the function for calculating root mean square value and N,,; is the

length of mi.
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The variation g, of the amplitude is measured by the RMSofthe rate of change of

the peak to peak amplitude R whichis the difference between the twosplines

connecting the EOI and EOEpositions.It is given by:

R[k] — R[k — 1]

At

for 2<k < Np;

)Ja =TMS(

(5.3.7)
R =m, [k] — m) lk]

for 1<k < Np;

where rms(.) is the function for calculating root mean square value.

The parameters g;, g4 and gz were used for phase tracking using the Extended

Kalmanfilter.

Kalmanfilter estimation requires complete knowledge ofthe dynamic system. The

transition/(.), the measurement function h(.) and the noise covariance matrices Q

and R must be known.Inthis study, the breathing signal y is defined by following

the model.

A(x)=y =d+a-x-(@ )t+r (5.3.8)

whered represents the drift of the baseline, a is the amplitude, x.) is the average

trajectory function, 6 is the phase andr is the Gaussian noise with zero mean and

variance R.

Thestate vector x at time k is defined as:

Xp = [OWA] (ie)

where d;is the baselinedrift, a, is the amplitude, 6; is the phase and w,is the

angular velocity. The phase 6; is updated at each iteration. It is defined by:
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O34 = 6; + Wr" At (5.3.10)

whereAtis the time step in seconds.

In continuouscase the dynamicsofthe target’s motion can be modelledas a linear,

time-invariant system:

 

me COS 100 0
xt) 10 0 0 0 010 0 53.11
a ~l0 0 0 oM+tlo 0 1 of MO 9.)

00 00 0001

wherethe white noise process w(t) has powerspectral density Q.:

The elements ofQ, and R are the productofthe breathing model parameters(g7, 24

and gz) and weighting factors qa dp dc a Ya. They are defined as:

da 0 0 0

0. = 0 (qp* 91)? 0 0

a 0 0 (Gc'Ga)’ 0 (5.3.12)
0 0 0 (qa* 9p)?

R=%

Theestimation of the weight factors will be described in the following section:

chapter 5.3.1.3: Learning the Filter Parameters. The variables on the diagonal of

Q, describe the strengths ofrandom perturbationsofthe phase, angularvelocity,

amplitude and baseline drifts respectively.
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Thestate transition functionf(.) defines as:

f(%y-1) = FXq-1 (5.3.13)

Byreferring to equation 5.2.1 the discretized form of the dynamic equation can

written as:

1 At 0 0

1
Xe = i 0 : ; Xk-1 + Ik-1 (5.3.14)

00 0 1

Where q;.; is the discrete Gaussian white noise process:

qx-1~N(0, Q)

Following the manual of the Kalman Filter toolbox (Hartikainen and Sarkka

2008), the process noise covariance matrix Q is given by:

Q=CD"

where C and is calculated by:

(;)=exnt(f “er)403(7)
and

(5.3.14)

| Il

o
o
o
c
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o
C
o
C
O
R

o
o
c
o



138

The Jacobian ofthe state transition function F, in equation 5.2.3 was defined by:

1 At 0 O

_ 10 1 0 0 5.3.14
K-10 0 1.0 mel)

00 01

where 4is the sampling period (4t = 1/Fs=0.12s).

The measurement function h(.) and its Jacobian H, were definedas:

h(xx) = dx + Arp * Xf (Ox) (5.3.13)

Ax * X¢ (Ox) 7

(5.3.14)- 0
E(t) — Xp (O4,)

0

whered;is the baselinedrift, a; is the amplitude and 0; is the phase and x/(.) is the

averagetrajectory function.
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5.3.1.3. Learning the Filter Parameters

Wenow describe the learning techniques for obtaining the noise parameters ofthe

EKF. Thebreathing patterns and variations are different for every individual. A

training dataset is needed for every individual to determine its parameters.

The weighting factors were obtained by the “patternsearch” function of Matlab

2007b’. The “patternsearch’”function finds the minimum ofan object function

with a given starting input vector and constraints. Pattern search operates by

searchinga set of points called a pattern, which expandsor shrinks depending on

whether any point within the pattern has a lower objective function value than the

currentpoint. The search stops after a minimum pattern size is reached. By the

state transition functionf(.), the EKF is also capable of predicting the breathing

signal. The best weighting vector was evaluated by minimizing the prediction

error for 10 steps ahead. It has been assumedthat the optimum parameters were

judgedby their ability to make the EKF algorithm accurately represent the current

state. With an accurate currentstate, the future states prediction would yield less

error and vice versa. The output of the object function (ofpatternsearch) was the

RMSEofpredicting 10 steps ahead. The ranges and initial-value vectors (of

patternsearch) s° =[q2 q? q? q{ 12] were based on the manually tuned

values of the signals of 9 healthy volunteers (of Chapter-3). The search ranges

were within +3 standard deviations of the weight vectors of the volunteers. All the

elements of the weighting vectors are positive, so the range of the search space

excluded negative values. By assumingthat the elements of the weighting vectors

are Gaussian distributed, the range covers 99.7% of the possible element values.

Theinitial vector s’ wasset as theaverage weight vector ofthe volunteers. It was

calculated by:

Ny
4ony - tN iG (5.3.16)

s' VY) N, Ds (/)

wherej is the index ofthe initial vector elements,i is the index of the datasets of

the healthy volunteers, s’ is the weighting vector of the i" volunteer and Nv is the

number ofvolunteers.

 

’The MathWorks, Inc. MA 01760-2098, UNITED STATES
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In somepilot trial runs, the outcomesofthe search function (final weighting

vectors) despite being able to produce the minimum prediction error, failed to

identify all the peaks. These “peak-miss” conditions happen when a sudden

baseline drift takes place. In order to prevent peak-miss (or trough-miss) for a

valid weighting vector, the phase difference 0, between the first peak and the last

peak of the unwrapped phasesignal should be close to 2 multiplied by the

numberofwavecycles N,. The difference should be smaller than z:

6,—-2n:N, <1 (5.3.17)

If the criteria is not met, the output ofthe object function would beinfinity. Hence,

the parameteris rejected.

Let mo denotethe initial state and Py denotes its covariance. The diagonal elements

of Po wereall set to 0.01 for simplification.

0.01 0 0 (5.3.18)
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For every testing session, the EKF requires to have one breathing cycle (peak to

peak) to warm up the system. Duringthis time, the system determinatesthe initial

state mo. Hence,the first breathing cycle was not included in the evaluation. The

initial phase 6) was —z(asthe prediction starts at the peak). Theinitial angular wo

velocity was the angular velocity of the first cycle. The initial amplitude ay was

that ofthe first cycle Aj normalized by the amplitude A,, of the Average Trajectory

function. Theinitial baseline drift dy) was the baseline drift d,, (from zero) of the

mid-position between the peak and the trough in the first cycle. The initial state

vector my was defined as:

2n (5.3.19)
= Tp F,

dy = (M,, — M,,)/2

dy = (M, + M,,)/2

Wo

where Ly is the duration ofthe first breathing cycle, F's is the sampling frequency,

Am is the amplitude of the Average Trajectory function, Ao is the amplitude of the

first cycle, d,, is the baseline drift (from zero) of the first cycle, MM, is the position

of the peak ofthe first cycle and M, is the position of the trough ofthefirst cycle.
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5.3.2. Adaptive Windowing Autocorrelation Approach

 

Determine the

instantaneous breathing
cycle by autocorrelation  
 

 

 

either a)multiply the

windowbysine and cosine
functions, or b)process the

window with DFT 
 

 

  

 

calculate the phase
angle by inverse

tangent function

  

   
Figure 5-11: Theflow chart ofthe Adaptive Windowing Autocorrelation

Approach. The instantaneous phaseis calculated by a 3 step process as:

1)determines the length ofthe transform window, then 2)multiply the window with

sine and cosinefunction respectively andfinally 3)calculate the phase by inverse

tangentfunction.

The Adaptive Windowing® Autocorrelation (AWA)approach evolved from the

Hilbert transform, but the Hilbert’s complicated operationsin real time phase

estimation were simplified. Similar to the Hilbert Transform, the AWA approach

also requires determining a transformation window suchthat the window includes

one cycle ofbreathing. The autocorrelation technique is used to determinethe size

of the window.In the Hilbert approach,a low passfilter is required to smooth the

signal in the window,because, in the presence ofbaseline drift and noise, the

beginning ofthe window maynotperfectly match the end ofthe window.This will

lead to the edge distortion described in section 5.2.2.3. In the AWAapproach,the

windowedsignalis transformed by Discrete Fourier Transform (DFT). We are

only interested in the phase of the signal in which its wavelength matches the

 

’The term “window”in this section refers to the windowfor the input of Fourier Transformation.It

is a segmentofbreathing signal including one orseveralbreath cycles.It is different from the

gating window whichrepresents the time slots in which the radiation beam is enabled.
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autocorrelation window. Therefore, the instantaneous phaseis estimated by the

phaseofthe first harmonic. The DC componentand the higher harmonic

components are neglected. A flow chart of the process is shown onfigure 5-11.

(a) Breathe signal and the Autocorrelation window
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Figure 5-12: The AWA approach ofphase estimation: (a)A breathing signalof38
seconds is shownby the red dashed curve. The blue curveis the segment usedfor
calculating the autocorrelationfunction. (b)The signalin the autocorrelation

windowis plotted by the blue curve. The autocorrelationfunction is plotted in

green. The DFT windowis defined by the 2" neak (the magenta arrow) ofthe
autocorrelationfunction. Thephase ofthefirst harmonic in the DFTwindowis the

estimatedphase.
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Autocorrelation

The windowsize could be adjusted in real time according to the instantaneous

period ofthe signal. The aim of this was to adapt the window size to match the

instantaneousperiod of breathing such that the edge distortion could be reduced.

This was because the DFT assumedthe input was from a random process whereall

ofits statistical properties were time invariant. Signals whosestatistical properties

do changearereferred to as nonstationary. Using the DFT implies thatthe finite

segmentthat is analyzedis an infinitely extended periodic signal. Autocorrelation

is the cross-correlation of a signal withitself. It has been used to find repeating

patterns ineconometrics (Sentana and Wadhwani 1992) or in information

processing suchas the presenceofa periodic pattern which has been buried under

noise, or identifying the missing fundamental frequency in a signal implied byits

harmonic frequencies (Gaydecki 2004). Suppose there is a breathing signal whose

auto-correlation function (ACF)is derived from the ERM (figure 5-12a). When

the current time is t=38.5s, we wouldlike to search for a time which is about one

cycle away from now. The ACF wouldreach its local maximum, whenthe time

difference is about one cycle away from the currenttime. Since a breathing signal

lasts for tens of seconds andall we need to determineis the period of the current

cycle, it would be a waste of computation powerto calculate the ACF ofthe whole

signal. The length of the autocorrelation window was chosento be 3 times the

breathing period ofthe training dataset of the patient because there was no

improvementin performance with longer windows.A longer autocorrelation

window makesits size moreclose to the average breathing wavelength. On the

other hand, a short windowsize might fail to detect the “peak” in slow breathing.

The DFT windowsize can also be analyzed by a Coherence Function in the

frequency domain(in contrast to autocorrelation in the time domain). The

Coherence Function gives a measureofthe linear dependence betweentwosignals

as a function of frequency. The function has properties which are applicable to

breathing signals:i.e. invariance to phaseshift, change of amplitude and baseline

drifting. To estimatethe true instantaneous wavelength, the previous breath cycle

Cyo was identified (by peak detections) and compared it with the current cycle

CyYnow (whose phase wasdifferent from the previous cycle Cyo) using the

Coherence Function. The goal wasto find a windowsize for the current breath

cycle Cynpow such that the signal had maximum coherence with the previous cycle

Cyo. The windowsize mightnot be the samelength as the previous wavecycle;

thus, interpolation might be neededto resize the signal Cynow inside the window.

Two parameters were requiredto estimate the true instantaneous wavelength Atrue
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of the current breath: (1) A successfully identified breath cycle Cyo and (2) and a

range Rue for the searching space of wave length Atrue. Rtrue could be in the range

from 0.5 to 2 times the length of the previous wave cycle Cyo.

Fourier Transform

The length ofthe Fourier transform window wasdetermined by detecting the

adjacent local maximum ofthe currenttime (figure 5-12b). The signal inside the

Fourier transform window wasthen processed by DFT. The phaseofthe current

breath cycle is the phase ofthe first harmonic of the DFT. Asa result, it becomes

the final estimated phase.

In a mathematical form, the two orthogonal components of the phase were the dot

product of the Fourier transform window with a sine wave and cosine wave

(respectively). The instantaneous phase ¢,(t)estimated by the AWA approach is

given by:

— 8g (Welk) Ys[k]
#4(0) = earerate)

ws[k] = sin (=. (k — v), (5.3.20)

K] = (2 (ckWelk] = cos-( -»)

where w,/.] is the vector of the autocorrelation window,k is the index of the

vectors (1<k<N). w,/.] and y-/.] are the sine and cosine vectors and N is the length

of the vectors w, w, and We.

5.3.3. Different approachesof adaptingto irregular breathing signals

Breathing signals vary in frequency, amplitude, baseline andtrajectory pattern.

The AWAadaptsto the changeof frequency by changing the size of the DFT

window. Whenthe DFTfiltered out the frequency of the higher harmonicsignals

and the DC component,the variations in baseline andtrajectory pattern were

eliminated. In the inverse tangent transform, the amplitude variation is also

cancelled. While the AWA approach removes(filters) information from the signal,
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the EKF keepsthe information and trys to reduce the covariance among the system

parameters (of frequency, baseline, amplitude and trajectory pattern). Moreover,

the AWAestimates the phase of a complete breathing cycle. In contrast, the EKF

estimates the phase of the current timestep.
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5.4. Experimentsetup:

The subjects and datasets from Chapter4 were used for this experiment. The two

proposed approacheswereusedto estimate the phase ofthe ERM breathingsignal.

Theresidual motionsin phase gating were evaluated and compared with the

amplitude gating result as in Chapter-4. There were 12 datasets from 5 patients.

The Hartikainen and Sarkka Matlab toolbox EKF/UKF (Extended Kalmanfilter/

Unscented Kalmanfilter) version 1.2 was used for EKF implementation. We used

a dataset from the patient as training data to initialize and evaluate the filter

parameters, and then tested the filter performance against the other datasets of the

samepatient.

Gating windows(phase gating)

In phase gating simulation, the beam was enabled when the phase @ of the

breathing trace goes within the range of O-R and @+R. A suitable mid-point @ and

range R were used for each position(EOE or EOI) of gating and for each different

duty cycle. We simulated10%, 20%, 30% and 40% duty cycles, which are the

usual duty cycles used in clinical practice. By using pattern search algorithms

(“patternsearch” function of Matlab 2007b), the mid-pointofthe gating window 0

and the range ofthe gating window R were optimized suchthat the portion ofbeam

on time (measured in %) wasclosest to the intended duty cycle (either 10%, 20%,

30% or 40%). Choosing the mid-point of the gating window @ is of great

importance for phase gating. Shifting the gating window from relatively stable

phaseto a less stable phase would introduce moreresidual motion.

In this experiment, the mid-point of the gating window 9 waschosen from the

correspondingtraining dataset. In a specific duty cycle, 0 was the value which

could reduce the RMSofthe residual motion of the diaphragm in the largest

amount. The optimum value of the mid-point of the gating window @ was

evaluated within the rangeOo+ . where @,is the average phase of the extreme

points. The mid-point Opwould be close to —a radians for EOI andcloseto 0

radians for EOE.



148

5.5. Result and Discussions
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Figure 5-13: The sinusoidal waves used to simulate the breathing signal. (a)

Amplitude variations only; (b) Base-line Drift only; (c) Frequency variations only;

(d) Frequency and amplitude variations; (e) Frequency variations and baseline

drifting; (f) Frequency-amplitude variations and baseline drifting.

Reliability of synchronization with the breathing signal

To presenta first impression of the characteristics of the two phase estimators, the

phaseofcollection ofdifferent sinusoidal signals were estimated. The signals are

shown in Figure 5-13. Theset of signals are different combinations of amplitude

variations, frequency variations, and drift. A signal with amplitude variations was

usedas the training dataset for the phase estimator. The approach taken to

measuring the variation of the pattern was the same as in Chapter 3. The variation

of breathing pattern of a signal was measured by the “sum of the standard

deviation of the breathing patterns”. The bin size was 20, which is two times the

bin size of a 4D CT dataset (10 bins). The results are shownin table 5-1. For large

variations (figure 5-13d, e & f), the phase derived by the EKF approach wasless

variable than that derived by the AWAapproach (especially in the presence of

frequencyvariations).
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During the process of determining the system parameters, it has been foundthat

the parameters have to be highly customized for the volunteers where the

breathing wasirregular. Hence, the AWA approachis morestable over the EKF

approach owningto the recursive characteristics of EKF. Further investigation is

needed to determinate the impact of a optimum set of parameters which wouldfit

all different breathing conditions.

 

The sum of the standard deviation of the breathing patterns (Rs)
 

 

EKF AWA

Amplitudevariations 2.2 2.2

Baseline drifting 2.6 2.6

Frequency variations 1.9 5.4

Frequency and amplitude variations 4.7 10.2

Frequency variations and baseline drifting 7.6 10.8

Frequency-amplitudevariations and baseline 6.4 10.4

drifting

Table 5-1: The sum ofthe standard deviation ofthe breathing patterns (Rs) ofthe

two phase estimators on sinusoidal waves. (Lowervalueis better)
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Figure 5-14: The relative root mean square values ofresidual motions averaged

over the 12 datasets are shown onthefigures. Each set ofbars represents different
duty cycles. The coloursofthe bar representdifferentphase estimation algorithms.
The error bar shows the standard deviation. The upperfigure a) isfor gating at the

EOEposition andthe lowerfigure b) is for the EOIposition.
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Residual Motionsof gating simulations

The rRMSvaluesofthe residual motion of the tumour using the EXKF and AWA

approachesare plotted in figure 5-14. The upperfigure (a) is for gating at the EOE

position, while the lowerfigure (b) is for gating at the EOE position. The results

are grouped into four sets of colour bars: each set of bars represents a different

duty cycle (from 10% to 40%), while different colours represent different gating

techniques:

e ERM amplitude gating with systematic delay compensation (for

reference),

e ERMsignal derived by the AWA approach

e ERM signal derived by the EKF Average Trajectory approach

The mean rRMSvaluesofthe diaphragm in phase gating are shownin figure 5-15,

with the same format of representation as those of the tumour.



152

Mean rRMS Diaphragm: EOE

60}@ERMampSHIFTED
GERM AWA

50}MMBMERMEKFO
%
t
R
M
S

 

 

10%dc 20%dc 30%dc 40%dc

Duty cycle (a)

Mean (%) rRMS Diaphragm: EOI

0)WMMERMampSHIFTED===|

%
T
R
M
S

 

 

10%dc 20%dc 30%dc 40%dc

Duty cycle (b)

Figure 5-15: The rRMSoverthe 12 datasets are showninthisfigure. Each set of

bars represents different duty cycles. The colours ofthe bar representdifferent
phase estimation algorithms. The error bar shows the standard deviation. The

upperfigure a) isfor gating at the EOEposition andthe lowerfigureb) isfor the

EOIposition.
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(a) Phase gating: Diaphragm motion, P1a, EOI, ERM EKF, 20%DC
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(a) Phase gating: Diaphragm motion, P1a, EOI, ERM AWA, 20%DC
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Figure 5-16: The instantaneous phase ofdataset-P1a derived by two phase

estimation approaches: The yellow dotted curve is the phase and the magenta

dashed curve is the breathing signal ofERM. a)EKF approach b) AWA approach.

The differences in characteristics ofthe two approaches are marked with Al, A2

and BI B2.
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(b) Phase gating: Diaphragm motion, P1a, EOE, ERM AWA, 20%DC
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Figure 5-17: The gating pulse dataset-Pla comparing the EKF andAWA

approaches: The yellow dotted curveis the phase; the magenta dashed curveis the

breathing signalfrom the ERM. Theblue curve is the motionofthe diaphragm and

the gate enable window is marked with red squares. a) The EKF approach using

the ERMsignal b) The AWA approach using the ERM signal. The major

differences are highlighted by greencircles.
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Comparingthe two phase estimation approaches

Phase gating using the EKF approach achieved 2% to 8% (rRMS) more reduction

in residual motion than the AWA approachin different duty cycles and gating

positions. When looking into individual datasets, the differences between the two

approaches in EOEposition were small and not significant. However, one can

observethat the EKF gavea better phase representation whenthe breathing motion

wasirregular.In the simulation ofP1a ofPatient-1( arrow A1 of figure5-16), when

the signal reached the peak of the previous cycle, the EKF slowed downits phase

progression (d0/dt), but that of the AWA keptincreasing (arrow A2). One ofthe

cases for which the AWA performedless well is shownin figure 5-17. Figure

5-17a is from the EKF approach, while Figure 5-17b is from the AWAapproach.

The red squares are the gating window andthe blue curveis the motionofthe

diaphragm. The magenta curveis the breathing signal from the ERM andthe

yellow curveis the phase. The major differences are highlighted by greencircles.

Owingto the accurate phaserepresentation, the EKF approach was capable of

determining the gating window with smaller residual motion, for this particular

dataset.

Table 5-2: The difference ofthe residual motions ofEKF andAWA approaches. A

negative value means the EKFis smaller than the AWA.
 

rRMSdifference of the residual motion of EKF and AWA approaches
 

 

EOE EOI

20% DC -2% + 9% -3% + 10%

30%DC -6% + 12% -5% + 14%

40%DC -6% + 10% -7% + 5%
 

The differences between the two approaches in 20%, 30% and 40% duty cycle of

the EOI and EOEposition are shownin table 5-2. Despite the AWA is worse than

the EKF onthe average, the differences between the two approaches were not

significant.
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Phase gating and amplitude gating using the ERM

The rRMSvalues of amplitude gating (shown in Figure 5-14 and 5-15) were

evaluated based on the assumption that the breathing signal wasperfectly

predicted. Perfect prediction would be achieved byshifting the breathing signal

with an amount equal to the systematic delay foundin the training dataset. Under

such an assumption, on average, there were no obvious differences between the

EKF approach and amplitude gating, owing to the large differences among the

datasets.

Table 5-3: The difference ofthe residual motions ofAmplitude andphase gating

using AWA. A negative value means the rRMSofAmplitude gating is smaller than

that ofthe phase gating.
 

rRMSdifference of the residual motion of :

(a)amplitude gating and phase gating AWA approaches
 

 

 

EOE EOI

20% DC -2% + 7% 1% + 13%

30%DC -3% + 7% -5% + 12%

40%DC -6% + 10% -7% + 10%

(a)amplitude gating and phase gating EKF approaches

20% DC 0% + 8% 4% + 12%

30%DC 0% + 10% -1%+5%

40%DC -1% + 6% 0% + 7%
 

The differences between the two approaches in 20%, 30% and 40% duty cycle of

the EOI and EOEposition are shownin table 5-3. Hence, the differences between

the two approacheswerenotsignificant.
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(a) Phase alleoe motion, P4b, EOE, ERM EKF, 20%DC
 

   
 

 

   
 
 

=a 15 = -
= pr NS _ —— breathing signal

Z wi CJ~‘ | {Gate Enable pulse
2 a) Vane ee 10) nn Diaphragm

3 | Phase
o 16! 4 1 1 15

75 80 85 90 95 400 105

Time (seconds)

(b)a— Diaphragm motion, P4b, EOE, 20%DC
20 : : 1

Ee \ A, -— — breathing signal

< 19 f‘\Ws\ 1 | Gate Enable puise
& \ ~————- Diaphragm£ ig, VS va \i} phrag
8 i

17
75 80 85 95 105

Time——

Figure 5-18: The gating pulse ofdataset-P4b comparing the EKFphase gating

and amplitude gating: The yellow dotted curveis the phase; the magenta dashed

curve is the breathing signalfrom the ERM. The blue curve is the motion ofthe

diaphragm andthe gating enabled window is marked with red squares. a) The

EKF approach using ERMsignalb) amplitude gating using ERM signal. The

majordifferences are highlighted by greencircles.



157

 
(a) Phase gating: Diaphragm motion, P5a, EOI, ERM EKF, 20%DC
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(b) Amplitude gating: Diaphragm motion, P5a, EOI, 20%DC

19 1 +
Ee eR a — breathing signal

a fo o\ fe Ay } Gate Enable pulse
5 18) \ }£ r f \ | \ / Diaphragm
B | J ef / |

a 17 | i L 1 J

55 60 65 70 75

Time (seconds)

Figure 5-19: The gating pulse ofdataset-P5a comparing EKFphase gating and

amplitude gating: The yellow dotted curve is the phase, the magenta dashed curve

is the breathing signalfrom the ERM. The blue curve is the motion ofthe

diaphragm andthe gating enabled window is marked with red squares. a) The

EKFapproach using ERMsignal b) amplitude gating using ERM signal. The

majordifferences are highlighted by green circles.

In Patient-4 and Patient-5, phase gating achieved smaller residual motion than

amplitude gating. In the conditions ofregular target motion butirregular breathing

signal, phase gating would outperform amplitude gating. A couple of examples

from Dataset-P4b (EOE, 20%DC)and Dataset-P5a (EOE, 20%DC) were shown

on figure 5-18 and figure 5-19 respectively. In both cases of amplitude gating

(figure 5-18b and figure 5-19b), the ERM couldn’t represent the amplitude of the

target motion accurately. Hence, the gating windows missed a few cycles and

increased the residual motion for a duty cycle of 20%. Hence, the phase gating

techniqueis preferable for stable target motions. Despite the variations ofEOI and

EOEpositions,for phase gating to achieve the best performance, good temporal

synchronization betweenthe target and the motionisvital.
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Theselection of gating window in phasegating

Thetraining dataset played an importantrole in our simulations, because it helped

to define the point at which to enable the beam.In the session of EOI gating at

20%DC using the EKF approach on Patient-1 (figure 5-20), the optimum

mid-point of the gating windowin the training set was 0.852. Hence, in the

evaluation dataset, the gating windowswereshifted to the left of the peaks.

Becauseofthis, the gating windowswerenotaligned with every peak of the

breathing signal. If the gating windowshad been aligned with the peaks,the large

variation of the peaks would havesignificantly increased the residual motion.

If the systematic delay between the training dataset and treatment dataset was

largely different, the residual motion of the target would be affected by a large

amount. Therefore, in phase gating, the systematic delay between the motion

signal and the breathing signal should be accurately estimated.

(a) Phase gating: Diaphragm motion, P1a, EOI, ERM EKF, 20%DC
25 T t 1 5

— — breathing signal

| Gate Enable pulse
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Figure 5-20: The gating pulse ofdataset-Pla EKF approach phase gating using

ERMsignal. The yellow dotted curve is thephase; the magenta dashed curveis the

breathing signalfrom the ERM. The blue curveis the motion ofthe diaphragm and

the gate enable windowis marked with red squares..
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5.6. Conclusion:

Two approachesto estimating the instantaneousphaseofa breathing signal have

been assessed: The EKF approach and the AWA approach. The EKF approach

utilizes an Average Trajectory Function to model the parameters of breathing and

follows by using EKFto estimate the parameters. On the other hand, the AWA

approachutilizes autocorrelation windowing and DFT. The EKF approach was

found to be morereliable in reducing residual motion ofthe target in the phase

gating simulation of 12 datasets from 5 patients. Despite the relatively slightly

worse performance, the AWAapproachis simpler to implement.

Therelative performance of phase gating over amplitude gating was evaluated.If

the systematic system delay betweenthe breathing signal and the target motion is

perfectly compensated in amplitude gating, phase gating would contribute to a

significant performance gain in someofthe datasets. This was because the ERM

doesnot accurately indicate the amplitude ofbreathing. However, the performance

gain is highly dependent on the synchronization between the target motion and the

ERM signal. Irregular amplitude of target motion occurred together with lack of

synchronization on the samepatient. Further investigation is needed to assess

whetherthe association between the two conditions is common among a wider

group ofpatients.

In the simulation, the systematic delay (mentioned above) could affect the

performanceofphase gating by a large amount, because it determines the timing

to enable the radiation beam.Priorto starting a treatment by phase gating,it is

importantto ensurethat the delay is not significantly different from that in the

training dataset.
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6. Prediction Algorithms

6.1. Introduction

In order to reduce the residual motion of the target using gated radiotherapy,it is

necessary to enable the radiation beam at the correct time to ensure that the target

is in the radiation field. This is achieved by monitoring the patient’s breathing

pattern and relating this to the tumourposition. The existence of a time delay

between the breathing signal and the positioning of the tumourin the radiation

beam implies that some kind ofpredictive ability should be included in a gating

treatment system. The delay, if neglected, results in loss of accuracyin hitting the

target. Consequently,it results in under-dosing to someparts of the target volume

(Vedam et al 2005). Hence, the internal margin has to increase for acceptable

dose coverage. A typical human breathing cycle, being largely periodic, has

significant cycle-to-cycle fluctuations in displacement, as well as longer-term

fluctuations in both displacement and frequency. However,these fluctuations are

not purely random, suggesting there are possibilities to predict a particular

breathing cycle from the observed characteristics of previous breathing cycles. In

Chapter 4, we showedthat delay compensation could havesignificant benefit on

residual motion reduction. In this chapter, the impact of prediction algorithmsis

investigated.

Detection and imaging delay:

In the evaluation of residual motion of the patients of Chapter-4, the systematic

delay of the ERM andthe target motion can be aslarge as 0.4 seconds. There was

significant performance improvementif the breathing signal wasperfectly

compensated for the detection delay. Hoisak et al (2004)assessed the correlation

of respiratory volume and abdominal displacement with tumour motion using

X-ray fluoroscopy. A maximum phaselag of 0.35s was foundin the respiratory

volumesignal and a maximum phaselag of 0.65s was found in the abdominal

displacementsignal. Tsunashimaet al. (2004) found that although the delays

between the respiratory waveform and the 3D tumour motion were principally in

the range 0.0 to 0.3 s, there existed cases of nearly 1.0s and above.
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Sharp et al (2004) described the existence of system latency andits effect on

tumourlocation accuracy.In real-time image-guided delivery systems, consisting

of a LINAC, imaging device and information system, there is always a system

latency due to the time needed for image processing, response times of hardware,

and communication delays. This meansthat the real-time tracking or gating

directly from the location of the sampling imageis based on estimations of some

past time. Keall et al (2004) have investigated whethera position signal obtained

by an Electronic Portal Imaging Device (EPID) measurementof an internal

marker could be used to control a dynamic MLCdelivery of IMRT. The EPID

wasset to acquire an imagein 0.1 s, as opposed to the normalsetting of 1 s;

however, the interval between acquisitions wasstill 1 s. The long interval

between image acquisitions and processing prohibitedthe clinical application of

EPIDin real-time tracking. However, they considered that it would be feasible if

predictive tracking could be implemented.

Control-System Delays:

The response of a beam control system to a breathing signal cannot occur

instantaneously. Seppenwoolde etal (2002) report a delay of 90 ms between the

recognition of a fiducial marker in a fluoroscopic image andthe triggering of

irradiation in their gated beam-delivery system. Mechanical systems which need

the beam to be repositioned have longer delays. The CyberKnife” has a 200 ms

delay between acquisition of tumour coordinates and repositioningofthe linear

accelerator. Repositioning an MLCaperturewill likewise involve a time delay of

100-200 msor more (Keall et al 2006). Shirato et al (2000) reported a time delay

of 0.09 s between the time of the marker recognition andthestart of irradiation in

a gating system. Measurementresults of Jin and Yin (2005) for a similar gating

system showthatthe time lag including the response time of the LINACandthe

delivery time is 0.17+0.03s. In the robotic radiation delivery system studied by

Schweikard et al (2000), the time lag including the response time of the robot

wasofthe orderof0.3s.

 

*Accuray, Sunnyvale, CA
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6.2. Review of breathing signal prediction algorithms:

Shirato et al (2000) implemented a linear extrapolation method which wasable

to predict the tumourposition about 0.09 s in advance. With implanted golden

markers and with the assumption of constant linear marker speed, they claimed

to achieve prediction errors less than 1.5 mm. Murphyet a/ (2002) analyzed

breathing prediction using a variety of adaptive filters and found that the tumour

position can be predicted with up to 80% accuracy in the presence of a 200 ms

system delay, but accuracy degrades rapidly with longer delay intervals (1

second prediction horizon). Sharp et al (2004) investigated the performance of a

linear filter, neural networks (NN) and a Kalmanfilter, to characterize the

predictability of lung tumour motion for different imaging rates and system

latencies. The best predictor, Linearfilter, achieved and RMSerror(RMSE)less

than 2mm for prediction time 0.2 s with a 10Hz sampling rate (compared to 3mm

RMSEwhenpredictionis not used).

Vedam et al (2004b) comparedthe prediction performance of an adaptive

sinusoidalfilter and an adaptivelinear filter. In the sinusoidal filter, the current

data point was compensated bya value with reference to a sinusoidal model. In

the adaptivelinear filter, an LMS algorithm was used to update the weight vector.

The adaptivelinearfilter performed better and achieved prediction errors of 2

mm (RMSE)for prediction time of 0.6 s with a 10 Hz sampling rate. The average

root mean square of the motion extent was about 3.6mm.

Ernstet al (2008) modified the least mean squares (LMS) based adaptive linear

prediction algorithmsso as to allow for dynamic adaptation of both learning rate

and signal history length to cope with possible changes in the breathing motion

signal’s characteristics. This was donebyparallel evaluation of several LMS

predictors initialised with different values of learning rate and signal history

length.

In addition to Sharp et al (2004), Isaksson et al (2005) proposed an Adaptive

Neural Network (ANN)and showedthat its prediction performance wasbetter

than that of a linearfilter using LMSprediction in terms of the normalized

RMSE (nRMSE). Theystudied the breathing traces from three patients. In the

case of regular breathing and a 500msprediction horizon, the nRMSE ofANN

wasabout 50%.In the case of irregular breathing and the same prediction

horizon, the nRMSE ofANN was62%. In both conditions, the nRMSEofan

adaptive linear filter was 2% better than ANN.Thedifferences between the two

algorithms were small, given that the total range of motion of the patients was

notlarge. Kakaret al (2005) used an Adaptive Fuzzy Neural Inference System
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(ANFIS), which is an augmented Gaussian radial basis function NN. ANFIS

combines both the learning capabilities of a neural network and reasoning

capabilities of fuzzy logic in order to give enhancedprediction capabilities.

Previous studies have shownthat ANFISis a better predictor for a chaotic time

series as comparedto using a single technique like an artificial neural network

alone (Jang et al1995).

Putra et al (2008) proposed a multiple model approach to respiratory-induced

tumour motion prediction using the interacting multiple model (IMM)filter

algorithm and to compareits performanceto a single model Kalmanfilter. The

IMM,based ona stochastic discrete time linear system, modelled the constant

velocity (CV) and constant acceleration (CA) properties of the breathing signal.

During steady inhale and exhale phases, respiratory motion is almost at a constant

velocity. At the transition between inhale and exhale, respiratory motion is

decelerated at the end of inhale/exhale andis accelerated at the beginning of

exhale/inhale. A single CV model or single CA model maynot be adequate to

capture the dynamicsofrespiratory motion. The breathing signals of 110 traces

from 24 lung-cancer patients in George et a/2005 were used to evaluate the

prediction performance of the IMM and Kalmanfilters. The respiratory motion

traces were acquired using the RPM system of Varian Medical Systems. With

30Hz sampling frequency, the IMM, CV and CAfilter showed 19% to 49%

reduction in root mean square error (RMSE). However, the difference between

the CV model and the IMM wassmall: with a maximum of 0.04 mm RMSE

difference. We can expectthat, if the IMM algorithm were used for predicting

the ERM signal (instead of the CV only model), the performance gain would be

very small. Since the ERMsignalis a surrogate which has lowercorrelation with

the tumour (comparing with the Varian RPM usedin the study of Georgeet a/),

the extra complexity of the IMM algorithm would notbring significant benefit to

the RMSEreduction.
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6.3. Methodology

Since most of the above studies either (a) measured the prediction error in a

absolute value or (b)used abdominal motion for breathing monitoring, the effect

of them on the ERM signal is not known. Therefore, in this study, we evaluated

the performanceofa collection of prediction algorithms:

(1)Adaptivelinear prediction using Normalized Least Mean Square NLMS

for weight update and (2)Neural Network, because they were both widely

implementedin theliterature;

(3)ANFIS,becauseit is a newly proposed algorithm for respiratory signal

prediction;

(4)Extended Kalman Filter-Average Trajectory Function (EKF-ATF),

becausethe built in phase estimator proposed in Chapter-5 can be used for

prediction. Moreover, the performance of average trajectory model based

prediction of the breathing signal has not been evaluated in the literature.

Weusedthe breathing signals from the ERM from 9 free breathing datasets of

volunteers from Chapter 3. The first 40% of samples of each signal were used as

the training dataset. The maximumbreathing signal latency from the ERM was

480ms(Chapter 4) and the beam delivery latency was assumedto be about

100ms. Thefirst aim wasto find the algorithm with the smallest nRMSE for

500msto 600msprediction horizons. The second aim wasto investigate the

impact of prediction algorithmson residual motion reduction. As a follow up to

chapter-4, the amplitude gating simulation wasusedto assess the residual motion

of the target using the output of the prediction algorithms. The prediction

algorithm must compensate for the delay of the ERM signal (with respect to the

target motion) together with any control system delays.
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Adaptive linear prediction using NLMS

A linear predictor is a system which predicts the future output signal as a linear

function of a set of inputs (Sharp et al 2004). We consider linear predictors of the

form:

Ve = We Ut (6.1)

wherey,is the predicted signal at step t, w, is the corresponding weight vector

(with length M)and u,is the signal history (“tap input vector” with length M) used

in step tto computey,

In eachstep ¢, the weigh vectoris updated,

M (Ze — Ve) * Ue (6.2)
We = We-1 +

Ut * Ut

wherey is the learning rate parameter and z, is the measured signalat step ¢.

The optimum value ofy and M are determined from the training dataset. The

range ofu and M were[0.1, 2.0] and [5, 50] respectively. The initial weight

vector wy was computed from the final value of the weight vector when the

optimum values of1 and M wereappliedto the training set.

Artificial Neural Network

The Feed-forwardartificial neural network wasused for prediction.It has one-way

connections from input to output layers. They are most commonly used for

prediction, pattern recognition, and nonlinear function fitting. The future velocity

of the breathing signal waspredicted, instead of the future position. This was

because from both ourearly trial and the experimental result of Sharp et al 2004,

velocity prediction yielded more accurate prediction results. In thefirst trial

using the 9 healthy volunteer dataset, the optimum prediction accuracy was

obtained with a hidden layerof12 neuronsand “tap input vector” with length 16.

The weights of the ANN wereestimated from the training dataset. The Neural

Network training Tools of Matlab 2007b was used as the Neural Network library.
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Thetraining parametersarelisted as follow:

e Training algorithm: Levenberg Marquardt

e Data Division: Random

e Checking data: 30% (ofthe training dataset)

e Max. Epochs: 500

e Time: Inf

e goal: 0

e mem_reduc: 1

e mingrad: le’°

e mu: le

e mudec: 0.1

e muinc: 10

e mumax: 1 e'°

Adaptive Neuro Fuzzy Inference System:

The combinationofthe ability of a neural network (NN) to learn with fuzzy logic

to reason in order to form a hybridintelligent system is called ANFIS (adaptive

neuro fuzzy inference system). The goal ofANFIS is to find a model or mapping

that will correctly associate the inputs (initial values) with the target (predicted

values). The fuzzy inference system (FIS) is a knowledge representation where

each fuzzy rule describesa local behaviour of the system. An ANFIS network

structure is similar to that of a neural network. It maps inputs through input

membership functions and associated parameters, and then through output

membership functions and associated parameters to outputs. Kakar et al 2005 and

Jang et al 1995 gave detailed introductions to the ANFIS. With reference to the

input data points dimension in Kakaret al 2005, the data points in each row were

set to 1 steps apart and each epoch contained 8 data points. The FIS andtheinitial

weight of the NN wereestimated from the training dataset. ANFIS wastrained

with the help of Matlab 2007b with the following parameters.
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ANFIS Parameter Values

e MFtype: Bell function

e Number of MFs:8

e Output MF: Linear

e NumberofNodes:155

e Numberoflinear parameters:128

e Number of nonlinear parameters: 24

e Total number of parameters:200

e Numberof fuzzy rules:8

EKF-ATF

The implementation of EKF-ATFis the sameas the phase estimator in Chapter

5.3. Let us assumethaty is the predicted value, that ¢ is the current position in

time and that 0 is the prediction horizon. Furthermore, let x be the state vector.

The future state becomes:

Xt+65 = (F,)°x¢ (6.3)

where F,, is the Jacobian of the state transition function (equation 5.3.11)

Hence, from equation 5.3.8, the prediction y becomes:

(6.4)y = h(Xe+6)

where h/(.) is the measurement function.
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6.4. Results and discussion:

Normalized RMSEof Different Prediction Algorithms
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Figure 6-1: The nRMSEofdifferent prediction algorithms averagedoverall the

datasets using ERM signals. The length ofthe error bar indicates one standard

deviation. The results are grouped by different detection horizons.

The nRMSEvaluesofdifferent prediction algorithms averaged overall the

datasets were plotted on figure 6-1. The LMSalgorithm wasthe best performing

predictor for a wide range of prediction horizons (whichis consistent with the

findings of Sharp et al.2004 and Vedam et a/.2004). The nRMSofthe ANFIS

were notsignificantly different from the ANN algorithm. Hence, the extra

computational powerspent on the FIS did not show significant impact. One of the

possible reasons wasthat the datasets were notirregular enough, such that the

“adaptive” property of the ANFIS wasnot obvious. The EKF algorithm hasthe

lowest average nRMSwhentheprediction horizonis at 1.2 seconds; however, the

advantage wasnotsignificant. Except the EKF based algorithm in the 0.12s

prediction horizon, the normalized RMSEofall the algorithms were lower than

having no prediction.

As acontrol experiment, the prediction algorithmstried to predict a sinusoidal

wavewith prediction horizon ranges from 0.12s to 1.2s. Nearly all algorithms have

extremely small predictionerror.
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nRMSEofa sinusoidal signal
 

 

Prediction horizon(s) ANN ANFIS EKF LMS

0.12 0.00 0.00 0.00 0.00
0.24 0.00 0.00 0.00 0.00
0.36 0.00 0.00 0.00 0.00
0.48 0.04 0.06 0.08 0.10
0.60 0.04 0.09 0.15 0.34
1.2 0.20 0.39 0.58 0.77
 

Table 6-1: The nRMSEofa sinusoidal wave using different prediction algorithms.
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Figure 6-2: Prediction ofirregular signals at 480ms prediction horizon.
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The NLMSperformedwell in predicting irregular signals. An example is shownin

Figure 6-2. Over-shoot occurred at the first two peaks(at the 60"and 90" samples)

of the Neural Network prediction. The EKF could adapt to the gradual decrease of

instantaneous amplitude from the 60" to 120" sample. However,after the 120"

sample, the breathing amplitude increased by a large amount, the EKF could track

the change of amplitudestarting at the 140" sample.
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Duty cycle (c) Duty cycle (d)

10%de 20%dc 30%dc

Figure 6-3: The blue bars are the mean rRMS(in percentage) organ residual
motions over 12 datasets using amplitude gating without any delay compensation,
while the red bars are delay compensated by LMSprediction. The green bars were

producedby shifting the breathing signal to compensatefor the delay. (a)Tumour

EOE, (b)Tumour EOI, (c)Diaphragm EOEand (d)diaphragm EOI.
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The systematic delay between the signal of the ERM and the tumour motion

ranged from 1 to 4 time steps (0.12s-0.48s). Based on the aboveresults, the best

predictor was the NLMSbecause,on average,it produced the best result from 2 to

5 time steps. Although, the nRMSEofEKF wasthe lowestat 1.2s prediction

horizon, the different (of nRMSE) between EKFand the NLMSalgorithms was

not significant (mean difference 0.23+0.29). Hence, the NLMSwasused as

predictor for compensating the delays. The results, measured by % rRMSofthe

patients in Chapter 4, with 120ms systematic control delay, are shown on figure

6-3. When predictive gating was applied with amplitude gating, there could be a

further reduction in the residual motion of about 10% (EOE) and 5-10% (EOI). If

welookatthe error of the no prediction bars on figure 6-1, the error was

approaching unity when the prediction horizon was beyond 600ms. Under such

condition, the residual motion reduced by gating would be neutralized by the

decrease in accuracyoftarget position estimations. The comparisons of the rRMS

of the 12 datasets in 30% duty cycle are shownin figure 6-4. The difference of

rRMSbetween no-prediction and the NLMS compensation was 18%+16% in the

EOEand 12%+9%. Mostof the datasets benefit from the prediction algorithm to

compensate for the systematic delays. In Dataset Pla and P3a,the residual motion

of the tumour wasincreased by 2% and 1% in the IS direction. With prediction, 9

out of 12 datasets have more than 10% (rRMS)reduction in the EOE; while 7 out

of 12 have more than 10% (rRMS)reduction in the EOI.
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Figure 6-4: Comparison ofthe rRMS ofNLMSprediction and no prediction in

30% duty cycle ofthe tumour IS motion. The blue bars are the mean rRMSorgan
residual motions over 12 datasets using amplitude gating without any delay
compensation, while the red bars are delay compensated by NLMSprediction.

(a)EOE,(b)EOL.

6.5. Conclusion:

It is concludedthat prediction algorithmsare essential for amplitude gating. The

adaptive linear algorithm (NLMS)can effective predicts the ERM signal for a

wide range ofprediction horizons. If systematic delay is ignored in gating, the

error introduced could easily neutralize the effect of gating.



173

7. Applications Developed for the ERM

7.1. A Software tool to evaluate the regularity of breathing

7.1.1. Introduction

Whenaudio coaching techniquesare used in radiotherapy, one needs to choose the

repeat rate of the audio prompt. Normally the rate of audio promptis set to the

sameasthe natural breathing rate. From the healthy volunteer experimentof

Chapter-3, most of the volunteers felt uncomfortable with the audio promptat the

rate of natural breathing. Hence,the patient is required to perform a number of

trials with different coaching parameters. The Varian RPM system installed at the

Clatterbridge Centre for Oncology displays the amplitude ofbreathing.Ideally the

repetition rate would be chosen to minimise the amplitude ofbreathing. However,

amplitudeis not the only relevant factor in the evaluation of the breathing signal.

Oneofthe aims of coaching is to improve the regularity of the breathing. We can

reasonably expectthatif a patient is breathing rhythmically, the tumour and

external motions will be more in phase as compared to breathing irregularly. We

developed a methodologyto evaluate the regularity of the breathing signal. This

methodology was incorporated into a program whichfacilitated the comparison of

different breathing samples so that a clinical decision could be more easily made

as to which method of coaching should be used. Since the Experimental

Respiratory Monitor (ERM)is highly portable, the patient can complete the

respiration regularity test in a normal room,so that the couch would befree for

other clinical usage. An instant feedbackofthe regularity of the breathing signalis

provided whena newsetof gating parameters is applied. This software supports

displaying the parameters for maximum offoursets of breathing signals, so that

the clinician can choose the parameters (or settings) which best suit the patient.
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   4),time (n)

 

             

Step-4 
p : PatternVariation ofbreath cycles

around the minimum position

Figure 7-1: Schematic diagram ofevaluating the variation ofbreathing cycles: A
breathing signal containing several breathing cycles is divided into segments of

equallength. The length is equal to the mean duration ofthe wave cycles. The
standard deviation vector 6[n] ofthe aligned waveform is computed. The

variation ofthe wave pattern weightedat the local minimumpositionis defined as

the dot productofa weight vector w[n] and the standard deviation vector 6[n].

w/[n] is a vector with a square pulse distribution ofvalues.
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7.1.2. Methodology

7.1.2.1. The modelforfinding the pattern variation ofbreathing cycles

For measuring regularity, we produce a wave model from the breathing signal.

The breathing signal of a personis cyclic over a long period oftime. It is smooth if

the person breathesnaturally. It slightly varies up and downif the person does

nothing abnormal (coughing, talking etc). If a feature point can be found in each

cycle, we can separate the signal by the feature point. A long breathing signalis

divided into individual wave segments by dividing them at their peak, such that the

segments can be evaluated. The wave segments would then align according to

their minimum point (Figure 7-1).

The alignment begins with identifying the local maxima and minimaofa breathing

signal. A point is considered a maximum ifit has the maximal value, and was

preceded(to the left) by a value lower by 7,. The default value of 7, is the RMS

amplitude of the whole signal x;. The parameter 7, adjusts the sensitivity of the

peak detection. A high 7), value would decreasethe sensitivity of the peak

detection algorithm, makingit suitable for noisy signals. After a maximum has

been found, the algorithm would search for a trough anditerates until the end of

the signal.

Hence, the local maxima M, and minima M;, would be located from the breathing

signal x. M,[k] is a vector, with length A, containing the index ofthe local

maxima; M,[k] is a vector, with length B, containing the index ofthe local minima.

For finding the variations of breathing pattern about its minimumpositions, the

meanofthe breathing period A,is calculated by finding the mean ofthe difference

AM_|[n] of vector M,[n].
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A set of equal length vectors x;, each represent a segmentofthe k breath cycle

(Step-2 of Figure 7-1). The length ofx, is 2-round(A,/2) +1. x, is defined by:

x;,[n] = Xp Male] -5 +n], forli<n<s2g+1

(7.2)

= round ()g = round|—>

For each value of n in the set ofx;,, the standard deviation vector 5[] is computed

(Step 3 of Figure 7-1). It is defined by:

(7.3)

 

Thevariation p of the breathing pattern about its minimum positions (Step-4 of

Figure 7-1) is defined by the dot product between the standard deviation vector

5[n] and a weight vector w[n]. w[n] is a vector with unit values spaced equally

around half the wavelength (period).
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The aim of weighting is to focus on estimating the variations on the EOIor the

EOEposition. w[] is defined by:

0, fori<n<B,-1
w[n] =4 1, for B,<n<B,

0, for B,+1sn<2g+1

B, = round (3), cn)

3
B, = round (=),

where round(.) is the decimal round off function and g=round(h,/2)

Hence,the variation p is normalized by the sum of the weight vector w[n] and the

RMSofthe amplitude of the breathing signal. It is given by:

_ 6[n] -w[n]
~ (By — B, +1) + std(xp)

where xis the breathing signal and std(.) is the standard deviation function

The variation p increasesas the baseline drift increases, but p has no effect in

changing frequency.

For finding the variations of the breathing pattern about its maximum positions,

wereplace M;,[n] with M,[n] and g=round(\,/2) with g=round(),/2) in Equation

7.2; and replace A with B in Equation 7.3. The meanofthe breathing period A,is

calculated by finding the meanofthe difference AM,[n] of vector M,[n].
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Figure 7-2: Result ofbreathing cycle segmentation ofthe program. The breathing

signal(red trace) is plotted above. The y-axis is the amplitude and the x-axis is the

time in unit samples. The result ofthe segmentation is displayed as horizontalline

segments. The line segments (cyan colour) on top ofthe breathing signal represent

the breathing cycles segmented with reference to the minimum positions; while the

line segments (blue colour) below the breathing signal represent the breathing

cycles segmented with reference to the maximum positions.
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Figure 7-3: Wave segments alignedto the local minima. The screen capture ofthe

wave segment window showsthe variation ofthe breathing cycles andprovides an

alternative to the numerical presentation. The y-axis is the amplitude ofthe

breathing signal. The x-axis represents the time measuredin unit samples.
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7.1.2.2. The Variation ofextremepositions

The variations of amplitude of the maximum or minimum positionsare defined as

the standard deviation of their amplitude. The standard deviation ofmaximum

positions 6, is defined by:

5, = std(x[M_[k]]) vk

wherestd(.) is the standard deviation function, x/./ is the original breathing signal

and M,[k] is the vector ofmaximum position pointers.

The standard deviation ofmaximum positions 5, is defined by:

5p = std(x[M,[k]]) , vk

where std(.) is the standard deviation function, x[.] is the original breathing signal

and M,[k] is the vector ofminimum position pointers.

7.1.2.3. The Variations ofBreathing Period

For finding the variations of the breathing pattern about its minimum positions,

the standard deviation of the segment duration vector AM,[n] is calculated. It is

defined as the difference of the maximum position vector M,[n]; 1e:

AM,[n]=M,[n]-M,[n-/].M,[n] is a B-dimensions vector containing the index

pointing to the maximum positionsin the breathing signal x[7].

The elements of the segment duration vector AM;[n] are plotted on a chart in the

software, so that the change of breathing period over time can be visualized.
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7.1.3. Specifications:

A program written in Java was developed to evaluate the variations of the

breathing signal of the ERM based on the above methodology. The specifications

of the program are listed as follow:

e To evaluate a maximum of4 sets of breathing signals simultaneously. In

mostofthe situations, a clinician only needs to compare3 sets ofbreathing

signals; two for the best-parametersets and one for testing new

parameters. The ability to compare four signals wasto allow flexibility.

e Customizable peak detection parameter T, to account for the noise of the

breathing signal for accurate breathing cycle segmentation.

e Aligning the wave cycles with their maximumpointsat the centre; display

the aligned breath cycles in different colours.

e Aligning the wavecycles with their minimum pointsat the centre; display

the aligned breath cycles in different colours.

e Provide measurementsfor the following quantities:

o Standard deviation of the (local) maximumpositions

Standard deviation of the (local) minimum positions

Thevariations of the breathing period over time

Standard deviation of the breathing periods

The sum of weighted standard deviation of the breath cycles

aligned by the minimum pointsat the centre

o The sum of weighted standard deviation of the breath cycles

aligned by the maximumpoints at the centre

Oo
0

0
0

7.1.4. The user Interface:

Theuserinterface elements are divided into 4 columns(figure7-4). The number of

columnsis limited bythe size of the User Interface elements andthe resolution of

the display. The program wasdesigned for displaying on a 1280-x1024 screen.

Each of the columnscorrespondsto oneset of breathing signals. The fourth

columnalso contains two more elements. One of them is the signal monitor tab,

which can monitorthe result of segmentation ofthe breathing cycles (Figure 7-5).

The other elementis a plot of segmented breath cycles centred at the maximum

position (Figure 7-6).
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Figure 7-4: A snapshotofthe 4 column layout ofthe software
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Figure 7-5: The signal Monitor displaying the segmentation result
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Figure 7-6: A tab in the 4th column showing the aligned breath cycles abouttheir

maximum position.
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Figure 7-7: User Interface ofthe Breathing Signal comparison tools: The tools

allow clinicians to evaluate the regularity ofthe 4 different breathing signals at

once. By providing the variation ofthe motion and regularity measurements, it

helpsclinicianstofind the best set ofparametersfor gating. Please refer to

section 7.1.5for descriptions ofthe interface.



183

7.1.5. User-Program Interaction Procedure:

After the program started up, the user loads (#1 of Figure 7-7) the breathing signal

into one of the 4 panels.

Oncethe signal is loaded into the program, the program automatically divides the

signal into segments. Theresult of the segmentation is shownin the Signal

Monitor Tab in the fourth column (#2 of Figure 7-7).

The default value of the peak detection parameter T, is 1.0 multiplied by the RMS

ofthe breathing signal. If the user is not satisfied with the segmentationresult (eg:

the program might haveclassified a short-time fluctuation as a complete breath

cycle), the user can select different values of T, (#3 of Figure 7-7). The rangeis

from 0.1 to 2.0 times the RMSvalue ofthe breathing signal with a step size of 0.2.

The program would perform the segmentation again whenever a new peak

detection parameteris selected.

The following measurementsofthe variations are displayed (#4 of Figure 7-7):

e the standard deviation of breathing period (in the unit of seconds),

e the standard deviation of the maximum,

e the standard deviation of the minimum,

e the variations of the breathing pattern about the troughs (minimum

position) as describe in chapter 7.1.2.1, and

e the variations of the breathing pattern about the peaks (maximum

position) as described in chapter 7.1.2.1.

Thevariation of the breathing period overtimeis plotted on the chart at #5 of

Figure 7-7.

Thealigned breath cycles about their troughsare plotted in the bottom chart ofthe

column(#7 of Figure 7-7).

Thealigned breath cycles abouttheir peaks are plotted in the Peak Tabsof the 4"

column (Figure 7-4).

nd 4rd
a)The second and subsequent breathing signals can be evaluated in the 2 and

4" column (Figure 7-4).
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Figure 7-8: Breathing signal ofthe volunteer of(a)Irregular and (b)Regular

breathingpatterns were used as input to show thefunction ofthe software.
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7.1.6. Evaluation of the Software

Anirregular and a regular breathing signal of a healthy volunteer wasused as an

example to evaluate the program. Theregularsignal was obtainedafter the patient

had been coached. Theirregular signal prior to coaching is plotted in Figure 7-8a.

The regularsignalafter coachingis plotted in Figure 7-8b. The segmentsofthe

breathing cycles were aligned about their troughs andare plotted in Figure 7-9.

The list of measurements is shown in Table 7-1.
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From the data, we can determinethat the SD ofthe breathing period of the subject

was reducedin regular breathing as wellas the variations in the extremepositions.

Theclinician can then decide to use the coaching technique based on the improved

regularity. If the clinician wants to compare third set of signals in which another

technique or parameters are applied, he/she can use the third panel to evaluate the

new signal.

Table 7-1: Measurements ofthe breathing data ofthe volunteer in two breathing

modes.
 

 

Measurements Irregular Breathing Regular Breathing

SD ofPeriod / mean of period 0.48 0.26

SD oflocal maxima 20.3 4.1

SD of local minima 9.4 2.9

Sum of weighted SD of Troughs 10.1 2.5

Sum of weighted SD of Peaks 17.8 3.9
 

7.1.7. Section Summary:

The presented program is new; similar functionality is currently not available in

any other free or commercial system. It has been successfully used to evaluate the

variations of breathing signals. By means of comparing several breathing signals

at a time; the program provides quantitative indices to clinicians for decision

making. Forpotential patients who breathe irregularly, the program could be used

to practice breathing with this software with the aim of improving regularity.

Further work will be to combine the program with the ERM sampling wizard

(chapter 7.3) and include visual feedback of the respiratory phase for patient

training purposes.



186

7.2. Monitoring the Stability of Breathing: Online Detection of

abnormalbreathing behaviour

7.2.1. Introduction

The aim ofthis section is to develop and evaluate a real-time (online) abnormal

activity detection algorithm. The algorithm was designed to work with the signals

sampled from the ERM system,but it could also be adapted to other respiratory

monitoring systems with some modifications.

7.2.2. Definition of Abnormalbreathing activities

Coughing, talking, hiccups or sudden very deep breaths wereclassified as

abnormalactivities because these activities might compromise the normal

synchronization between the tumourandthe surrogate. Even if the abnormal

activities do not compromise the synchronization, irregular breathing was found

to increase the residual motion within the gating window (see chapter 4). We

define abnormalbreathing activities as a breathing pattern whichis significantly

different from the normalbreathing pattern. “Normalbreathing pattern” is defined

as the repetitive pattern which appears most in the breathing signal of the patient.

Clinicians can also define a segmentofthe breathing signal, based on experience,

as the normal pattern. In such cases, any breathing pattern thatis significantly

different from the normalpattern is classified as abnormal.

7.2.3. Model for abnormal detection

The breathing signal has a cyclic property. Its pattern repeats, but with certain

variations. The phasederived from the breathing signal indicates the state within a

breathing cycle. If the AWA approach(see chapter 5) is used to derive the phase,

the phase progresseslinearly in regular breath patterns. Our model of abnormal

breath activity detection is based on detecting abnormal changesofphase.
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The detection algorithm operates as follow:

A breathing signal x7, whichis identified as the regular signal, is required to train

the system. It aims to fine tune the detection threshold.

The average and meanofthe rate of change of phase Q is calculated from the

training signal. The rate of change of phase Q[n], in general, is defined as:

Q{n] = UGy[n]) — UGy[n — 1) (7.51)

where U(.) is a phase unwrap function, 6. ] is the Hilbert (AWA) phase. The

length of 6;[ ] 1s N;, which is the length ofthe training signal. The length of QO [n]_

is N,-1.

Therate of change of phase Q7{n] of the training signal can be derived by

substituting the phase signal 07 of the training signal into Oy.

The mean Q,andstandard deviation Sor ofthe rate of change of phase Q7[n] help

to define the upper bound and lower boundofthe rate of change of phase Q of the

test signal. A test signal is used to evaluate the performance of the abnormal

activity detection algorithm. dqr is defined as the square root of the sample

variance of Oy[7].

A test signal x[n] has a phase 6[n]. The rate of change ofphase Q[n] is computed in

real-time by Equation 7.51. Any instantt; in the breathing signal can be classified

as “regular”if and only if Q[t;] stays inside the upper and lower bound. The

threshold is defined as:

upper bound: Q7 — z: Sgr

lower bound: Q7 +z: dor
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The value ofz determinesthe sensitivity of the abnormalactivity detection. By

assuming the elements of vector Q follow the normaldistribution, we use a default

value of 2.58 throughout our experiment. The chosen z value should be ableto

include 99.9% ofthe elementsin the vector Q. The z value is a parameter to control

the sensitivity of the detection. The system returns to the normalstate after 4

seconds if no more abnormalbreathing patterns are detected.

7.2.4. Evaluations

Six breathing signals were collected from 3 healthy volunteers (Volunteer 7, 8 &

A).

Each ofthem first had 20 seconds of normal breathing signal to train the detection

system. Thetesting signal ofVolunteer A was 40 secondsofnormal breathing and

then followed by an abnormalsession. In the Abnormalsession, the volunteer was

asked to talk or cough. After 90 seconds from the start of the sampling, the

volunteer was asked to breathe normally for another 20 seconds. In addition to

volunteer-A, 2 pairs of abnormal and normalsignal breathing signals were

selected from the coaching experiments (volunteers-7 & 8).

7.2.5. Results & Analysis

Thetalking and coughingactivities were successfully detected from all the signals.

Figure 7-10 showsthe detection result of Volunteer-7. The subject wasfell asleep

during the experiment. When the subject became less awake, the amplitude ofthe

breathing decreased (the 700"-1500" samples of figure 7-10a). The algorithm

detects the change ofbreathing pattern at the 1200" sample(the red trace offigure

7-10c), where the rate of change ofthe phase (the bluetrace of figure 7-10b)

exceeded the threshold. The subject awokeat the 1750" sample and took a deep

breath. Since the deep breath wasa significant change of breathing pattern, it was

detected. For this dataset, the negative pulses in the 300to 400 sample and the

pulses at the end of the trace were also triggered by the abnormal change of

amplitude.

Theresult of Volunteer-8 is shownin the figure 7-11. The subject fell asleep

during the experiment(the 600" -800" sample on figure 7-11).
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Figure 7-10: Abnormaldetection in Volunteer-7. As the subjectsfell asleep, the

amplitude ofbreathing was reduced. The subject wakedat 600" and 1700"

samples. Hence, there was a sudden increase in amplitude in both positions. (a)

The black trace on the upper graphis the breathing signal andtheredtrace is the

phasesignal. (b)The rate ofchange ofphase Q[n] is shown. The two cyan

horizontallines are the upper and lower bounds ofthe normal breathing patterns

(c) the red trace is the abnormaltrigger, where a high level (1) indicates that

breathing is normalanda lowlevelindicates that abnormalactivity has been

detected. The black trace is the result ofthe detection which included the

4-seconds abnormal-to-normalrecovery time. The x-axis represents the time in

sample units. The signal was sampled at 25Hzfrequency.
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(a) breath signal of volunteer-8
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Figure 7-11: Abnormal detection in Volunteer-8. (a)The black trace is the

breathing signal andthe red trace is the phase signal.(b)The rate ofchange of

phase Q[n]: The two cyanhorizontallines are the upper and lower boundofthe

normalbreathing patterns. (c)the red trace is the abnormaltrigger, where a high

level (1) indicates that breathing is normaland a low level indicates that abnormal

activity has been detected. The blacktrace is the result ofthe detection which

included the 4-seconds abnormal-to-normalrecovery time. The x-axis represents

the time in sample units. The signal was sampled at 25Hzfrequency.

The detection result of Volunteer-A is shownin the following figure 7-12. The

subject was coughing between the 500" and 850"sample. The irregular patterns

(the black trace of Figure 7-12) were detected in the red trace of the bottom chart.
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(a) breath signai of volunteer-A
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Figure 7-12: Abnormality detection in Volunteer-A.(a) The blacktraceis the

breathing signal andthe redtraceis the phase signal. (b)The rate ofchange of

phase Q[n] is shown. The two cyan horizontallines are the upper and lower

boundsofthe normalbreathingpatterns. (c) The red trace is the abnormaltrigger,

where a highlevel (1) indicates that breathing is normal anda lowlevelindicates

that abnormalactivity has been detected. The black traceis the result ofthe

detection which included the 4-seconds abnormal-to-normal recovery time. The

x-axis represents the time in sample units. The signal was sampled at 10Hz

frequency.
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7.2.6. Section Summary:

Theirregular breathing detection algorithm proposed in this section was able to

detect irregular breathing as results from coughing, talking and changesin

breathing pattern. Due to the sudden changeofairflow of these abnormal

activities, the rate of change of phase d6/dt goes beyondits normal value. Since

the phase estimation algorithm is already a built-in feature ofthe gating system,it

would take very little computational powerto detect the phase derivative

abnormalities.

Further work will be to compare the proposed algorithm with detecting the

covariance matrix P in the EKF phase estimator. When using the EKF approach

(Chapter 5.2.3) to estimate the phase, there is a covariance matrix which

represents theerror in the state estimation at every time step. An abnormality

detection mechanism is needed for every gating system. When the ERM is used

routinely for clinical purposes in the future, this algorithm will be integrated into

the workstation program of the ERM.
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7.3. Wizard based breathing signal sampling program

7.3.1. Problems:

A program is needed to communicate with the ERM from the ERM workstation.

Whenthe ERMisstarted, the program would search for ports which the ERM is

connected to, as an aim to simplify the start-up process. In order for the ERM to be

able to communicate with other systems for experiment use or for controlling the

LINAC,the program should havean interface to handle the external connections

through an ADC.

The program should also provide real-time visual feedback for the operator and

allow the signal to be saved for analysis.

eMialca
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| Select output file C:Documents and Settingsiamd\My Documentsiqag

Duration: [300
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(b)  
Figure 7-13: User Interface ofa Wizard basedERMsamplingprogram. The signal

ofthe ERM is plottedin the top middle chart. The naturalphaseofthe signalis

plotted in the top right handside chart.
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7.3.2. Method and Summary

A Wizard based sampling tool has been developed to take breathing samples using

the ERM.The program addressed the functional requirements described in the

problem section. The program wasdeveloped in JAVA (Sun Microsystems,Inc) to

run on computers with VGAresolution or above. It provides visual feedback

regarding the regularity of the breathing by natural phasetrajectory (at the top

right hand-side chart in figure 7-14 b). The software can read and write signals

from/to an ADC for synchronization with other systems.
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8. Discussion, Summary and Future Work

8.1. Discussion:

The aim ofthis study wasprimarily to investigate the performance of a

piezo-electric based device (ERM)in respiratory monitoring. A number of

respiratory monitoring systems have been developed:strain gauge, spirometer,

thermocouple, abdominal surrogacy tracking, and implanted marker tracking. The

behaviour of the ERM is similar to a thermocouple system in which the

temperature of respiratory air flow is being monitored. Implanted markertarget

tracking has the problemsofpatient tolerance, extra dose to the patient and

expensive equipment. A spirometer has the problemsofportability and patient

discomfort. Abdominal tracking and the strain gauge are less complex solutions.

Compared to the ERM, abdominal tracking (using the Varian RPM system)

showed better temporal andspatial relationship with the tumour. However,it is

difficult to monitor the displacement or movement of the abdomenin the

application of stereotactic radiotherapy using abdominal compression or when the

patient has been asked to minimise their breathing. Onishi et al (2004b) have

shownthat stereotactic radiotherapy combined with respiratory gating produced

goodlocal control of small lung tumours achieving a biologically effective dose at

the isocenter of approximately 120 Gy. In orderto carry out stereotactic lung

treatments accurately it is important to have 4D-CT data, which improves the

accuracyoftarget definition for treatment planning andalso helps to assess the

target motion. However, a respiratory signal is required to enable 4D scanning.

Undersuch conditions, as long as the subject keeps breathing, the ERM canstill

detect the respiratory cycle for imaging and treatment.

A secondary aim wasto investigate the impact of gating using the ERM device

with different techniques. The subjects tend to breathe more deeply in audio

coaching, causing the respiratory motion to increase. Thus, they feel more

comfortable breathing at a slower coachingrate (in relation to their natural

breathing rate) to maintain the samerate of gas exchange. In the fluoroscopy study

of chapter 4, audio and visual coaching were applied for Patient-1, who had one of

his lungs removedby surgery and consequently had impaired lung function. The

audio-visual coaching technique reduces the RMS amplitude ofresidual-motion as

well as the EOE and EOIvariations, thereby allowing greater margin reduction

whenusing respiratory gating for radiotherapy imaging, planning andtreatment.
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The Varian RPM measurements of abdominal motion werebetter correlated with

tumour motion throughout each session as compared with the ERM breathing

signal as shown in Chapter 4. This is because abdominal motion is more directly

involved in a change in the diaphragm position than is the change of gas

temperature in the face mask (to which the transducer ofthe ERM is attached). The

average correlation between the ERM andthe tumour SI motion was 0.81 + 0.07.

Although this is lower (p=0.05 by pairedt-test) than that ofthe Varian RPM (mean

0.90 + 0.09), it is still comparable to the surrogate-tumourcorrelations in other

studies. Hoisak et al (2004) demonstrated a correlation with coefficients ranging

between 0.51 and 0.98 between abdominal motion and lung-tumour motion. Ahn

et al (2004) found an averagecorrelation of 0.77 between skin and tumour

movements with a range between 0.41 and 0.97. Mageraset al.(2001)investigated

lung-tumour motion with respiration-correlated CT and found a correlation range

of 0.73 to 0.96.Theresults of gated radiotherapy simulations and the correlation

between the breathing signal and the internal motion support the argument that the

ERMis capable of reducing the standard deviations of the motion ofthe target

whenthe radiation beam was enabled.

When comparing the Experimental Respiratory Monitor (ERM) with the

commercial device (Varian RPM), the degree ofresidual motion reduction with the

ERMwasnotas good as the commercial system in amplitude gating. The reasons

for this are (1)the systematic delay between the ERM signal and the tumour

motion, as well as (2)the lack of correlation between the amplitude of the ERM

signal and amplitude ofthe tumour motion. Prediction algorithmsand phase gating

have beeninvestigated to improve its performance.

The Varian RPM system has two gating modesbuilt into the system: Amplitude

gating and Phase gating. Phase gating employs an instantaneousphase estimator;

the beam is controlled by the phase signal produced bythe estimator. Unlike the

Varian system, the ERM needsan algorithm to estimate the instantaneousphase.

The AWAapproachand the EKF approach haveboth beeninvestigated. On

average the EKF wasslightly superior to the AWA. However, the EKF was

relatively more complicated to implement. Moreover, EKF isless stable, because

of the recursive state estimations. The results of Chapter 5 showedthat if

amplitude gating was properly compensatedin time, there is no significant

difference between phase gating and amplitude gating. However, in somecases,

the difference in the residual motion between phase and amplitude gating can be as
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large as 15% rRMS.This suggests that the use ofphase gating has to be judged on

an individualpatientbasis.

The accuracy of a numberofprediction algorithms has been evaluated in chapter

6. It has been shownthat, for prediction horizon of 0.5s, the Adaptive Linear

(NLMS)algorithm waspreferred. With an average of about 10% further reduction

in the rRMSofresidual motion,the prediction algorithm improved the accuracy of

the ERM onnearly most of the datasets (with the assumption of 120mscontrol

delay). We found that using a prediction algorithm was effective in compensating

the systematic delay of the ERM.

Regarding other respiratory monitoring systems, we expect that the sampling rate

of the systemsas well as their accuracy will improve and the responsetime of the

beam delivery system will be reducedin the future. However, the systematic delay

between the gating surrogate and the tumour, being another source of major

delays, is highly dependent on individual subjects. Moreover, from the results of

chapter 4, the effect of it on the residual motion wassignificant. Systematic phase

differences of surrogates have also been found by Cervifio et a/ (2009) and Hoisak

et al (2004). Therefore, gating system prediction algorithms with a large

prediction horizon will be still required. Hoisak et a/ (2004) studied the

reproducibility of 5 patients over multiple days. They foundthat only 1 patient

exhibited a reproducible interfractional phase relationship. The existence of an

interfractional variation in phase difference contradicts the assumptions of

constant systematic delay of the surrogate. Therefore, the systematic delay should

be validated before each session of treatment. Failure to do so mayresult in a

geographic miss of the tumourif radiotherapy is guided with surrogates.

The Clatterbridge Centre ofOncology (CCO)has been using conventional 3D-CT

scans consisting of images without time information from the moving tumour and

anatomyfor radiotherapy planning. The image-set obtained from the 3D-CT scan

is an arbitrary snapshot. The uncertainty results in an undefined displacement of

the tumour with respect to the mean tumourposition. Tumour shape deformation

in the image can occur becausethe reconstruction algorithm assumesa static

volume.

In conventional treatment, the breathing of the patient is not restricted by any

respiratory control or monitoring devices, this introduces tumourposition
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uncertainty. Four-dimensional computed tomography (4D-CT)provides a more

reliable basis than conventional 3D-CT scanning. In 4D-CT,data acquired over

several breathing cycles are sorted to produce a sequence of3D imagesets, each at

a different phase of the breathing cycle. In addition to tumour motion

measurements,the data permit calculation of the dose to moving anatomy, which

is especially important for the accurate determination of target coverage. The

images themselves exhibit fewer motion artefacts and therefore reduce the

uncertainty associated with target delineation. However, even with the precise

delivery ofradiation permitted by PTV margin reduction; there remainssignificant

uncertainty in defining the biological target to which that margin is applied. Target

definition combining CT and other imaging modalities (known as modal fusion),

such as PET and MRI,is likely to reduce this uncertainty.

At CCO, the CTV to PTV margin for non-gated 3D planning ranges from 5 to

10mm.The value dependsonthesize and the location ofthe tumour. If the tumour

is close to critical organs and wouldresult in an unacceptable doseto these, the

clinician will use a smaller margin. Therefore, to estimate a uniform setup margin

for lung patients based on our population, in this work we have been applying the

general margin recipe from van Herket al 2002.

Marginsin the conditions of online correction

Respiration motion contributes to both systematic (during imaging) and random

errors (during treatment); therefore, a reduction in the effective respiration motion

will affect both these contributors. Imaged guided online corrections, which align

the GTV to the beam before each treatment, could reduce the systematic error by a

significant amount. Despite accurate online correction strategies, residual

uncertainties will always remain in target definition, treatment delivery, and

because ofrespiratory motion, safety margins arestill required. For each patient

individually, the margin Mpvy necessaryto deliver a dose ofat least 95% ofthe

prescribed dose to the CTV (for 90% of the population) can be computed by the

following margin recipe of van Herkef al (2002):

Mpry = 2.52 + 1.64 jo? + Tn” _ 1.640, (8.1)
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where 2 and o denote the standard deviations ofthe systematic errors (localization

errors in planning imaging) and randomerrors(localization errors during

treatment), respectively. o, denotes the standard deviation ofthe dose gradient and

describes the width of the penumbra modelled by a cumulative Gaussian. In lung,

where the penumbrais broader, the width of the penumbra wasestimated at o, =

6.4mm.The various components of the systematic and random uncertainties are

summed in quadrature to generate the margin .The value of the SD of the random

error distribution o was obtained bythe squareroot of the sum of squares of SD of

the random components ofthe localization accuracy, intrafractional stability, and

respiratory motion. The value of 2 was obtained by the square root of the sum of

squares of the SD of the systematic componentoflocalization accuracy,

intrafractional stability, and delineation uncertainty.

Although delineation uncertainty is more a shape changethana translation,

Deurloo et al 2002 showedthat delineation uncertainties can be modelled by a

simple shift. Steenbakkers et al (2005) showedthat the delineation uncertainty is

generally large (up to 6 mm SD)for lung tumours. For simplicity, the systematic

error of delineation Lyj=6 (mm) is used forall the patients. The interfraction

baseline variation (day-to-day variation) and treatment setup uncertainty were

referenced from 4D respiration-correlated cone-beam CT data from the patient

group in Snokeet al 2008 and Erridge 2003.An overview ofthe error contributions

for the different approachesis given in Table 8-1, while the margins due to

respiratory motion of each individual patient are shownin Table 8-2. In Table 8-2,

the standard deviation of the randomerror of respiratory motion of non-gated and

gated radiotherapy werelisted for comparison. The technique used was exhale

gating with a 30% duty cycle using AWAphasegating (for Patient 4 and 5) and

the ERM wasusedasthe breathing monitor. Amplitude gating was used for

Patient 1, 2 and 3. Since Patient-1 exhibited smaller residual motion in the inhale

position, the residual motion of inhale was used for this patient. The tumour

motion of the IS direction was the average of the IS motion in the AP and Lateral

view.
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Table 8-1 The systematic and random uncertaintiesfor the margin calculations

with image guidedonline verification. The 0, ,0, and 6, valuesfor each patient can

befound in Table 8-2. The units ofthe above table are millimetre (mm).
 

 

 

Systematic (Z ) Random (0)

LR SI AP LR SI AP

Delineation 6.0 6.0 6.0 - - -

Baseline - - - 1.2 2.4 22

Setup 1.4 1.5 1.3 2.9 3.1 2.0

Respiratory - - - Ox Oy 6;
 

Table 8-2 The Standard deviation ofperiodic motion 6, , 6, and 0; ofthe LR, SI and

APdirections. Gating was enabledin the Exhale position (exceptfor Patient-1,

who exhibited smaller residual motion in inhale who wasgated in the inhale

position).
 

Standard deviation of Residual Motion (mm)

 

 

 

 

No-gating

Patient-1 Patient-2 Patient-3 Patient-4 Patient-5

6x 0.5 0.4 2.0 0.9 0.3

Gy 4.3 1.4 4.3 6.2 2.7

G, 0.5 0.8 1.3 1.2 0.7

30% phase gating

Ox 0.2 0.2 0.2 0.2 0.2

Gy 1.8 0.8 1.3 1.0 1.0

G, 0.2 0.1 0.3 0.2 0.7|

 

The PTV margin ranged from 17 to 21mm in non-gated radiotherapy (Table 8-3).

In the PTV margin ofgated treatment: Patient-1, Patient-3 and Patient-4 achieved

a margin reduction of 1.5mm, 1.7mm and 3.5mm in the SI direction respectively.

The margin reductionsofother directions and of other patients were below 1 mm.

Hence, the average reductions were small. The percentage reduction from

non-gated to gated treatment ranged from 1% to 17%. However, by using the

gating technique, Patient-4, being the patient having the largest tumour motion,

could still benefit from a significant reduction of PTV margin. The result supports

the argumentthat gated radiotherapy does not reduce the margin significantly in

all the patients. However,therestill exists a proportion of patients who can benefit

from the technique and it must be rememberedthat the small numberofpatients in

this sample did not show tumour movementsaslarge as someofthose reportedin

the literature
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PTV margin (mm)

No-gating Patient-1 Patient-2 Patient-3 Patient-4 Patient-5

6x 16.6 16.6 17.1 16.7 16.6

Oy 19.2 17.5 19.1 20.9 18

6, 16.5 16.5 16.6 16.6 16.5

30% phase

gating

6x 16.6 16.6 16.6 16.6 16.6

Oy 17.6 17.3 17.5 17.4 17.4

6, 16.4 16.4 16.4 16.4 16.5
 

Table 8-3 The PTVmargin ofin the LR, SI andAP directions ofthe 5 patients in

gated and non-gated radiotherapy using the ERM asthe respiratory monitor.

For both amplitude and phase gating, the rRMSresidual-motion standard

deviations were lower for exhale compared with the respective inhale values in

most of the datasets. Moreover, the EOI position variations were larger than those

of the EOE.This supports the general notion that the exhale position is more

reproducible and that the patient spends more time at exhale than at inhale. The

advantageoftreating at inhale as opposed to exhaleis that the lung volumeis

larger than at exhale and, therefore, the mass of lung receiving radiation is less at

inhale as compared with exhale. According to the study conducted for Patient-4,

the patient has the largest reduction (5.2mm)in the SI direction of tumour motion

in 30% duty cycle gated treatment at EOIposition. If the patient wastreated at the

EOIposition, the residual motion became 4.2mm. Then, the PTV margin would be

increased by 0.3mm. However, this is unlikely to have any significant impact on

dose escalation. Moreover, by using audio-visual coaching, we maybe able to

reducethe variation of EOI positions. If the Varian RPM is used for respiratory

monitoring, the margin could be reduced by 0.1mm for Patient 2 to 5, while the

margin of Patient-1 could be reduced by 0.4mm. Hence,the different between the

two monitoring devices in margin reduction is small for most ofthe patients.
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PTV margin of Gating VS non-gating

A paired t-test was used to evaluate thestatistical significance of 30% duty cycle

gating versus no-gating in the IS direction using the ERM asthe breath monitor.

Ho: Oyo Sy30

H: Oyo> Sy30

where oy0 is the PTV margin in the SI direction without gating and oy30is the

margin using gating with 30% duty cycle. The difference between the PTV

margins wassignificant (p=0.029) with B=0.78.

The relationship of Minimum differences and sample size
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Figure 8-1: Sample size in Paired T-test using a=0.05, B=0.8 using the data ofthe

PTVmargin in IS direction (o,) in Table 8-3.

Therelationship of Minimum differences and sample size was shown on Figure

8-1 (computed by the Statistic Toolbox of Matlab, Mathworks). Six samples are

neededto test for the significance of the difference of the two margins at a=0.05,

B=0.8. To detect a 1-mm differences of the means, the sample size should beat

least 10 at a=0.05, B=0.8. In this thesis, the patient sample size is 5, hence, the

minimum difference E it can test is 1.55mm.

If there were 1 more sample and gating produced a smaller margin,the result ofthe

hypothesis test could becomesignificant at a=0.05, B=0.8 with p=0.03.

Owingto the small numberofsamples, the nonparametric Friedman'stest was also

used to evaluate thestatistical significance of the PTV margin. The PTV margins

were grouped into columnsofno-gating and 30% duty cycle gating. Thetest

showed there wasa significant different between the two approaches (p=0.03).
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However, when using the Wilcoxonsignedrank test, the null hypothesis could not

be rejected (p=0.06) because the sample size was only 5. With one additional

sample which gating produced beneficial effect, the null hypothesis can be

rejected (p=0.03).
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8.2. Conclusions

The (Experimental Respiratory Monitor ERM)device has been further developed

and adapted for respiratory gating:

Theelectronic design of the ERM hasbeen verified and some changes

have been madeto improveits usability in the field of respiration

monitoring for respiratory gating.

A wizard based program has been developed to monitor the phase (Natural

phase) of the ERM in real time while the breathing of the patient is being

monitored.

A synchronization system between the ERM andother systems

(fluoroscopy, CT scanner) has been developed.

A program has been developedto analyse the regularity of four recorded

breathing signals simultaneously. By using the program,clinicians have

instant feedback onthe regularity ofrespiration to guide clinical decisions.

The software could be usedasa training aid for patients.

Analgorithm has been developed to monitor abnormal breathing by

detecting sudden phase changesin the breathing signal.

The impact of audio coaching wasinvestigated by analysing the breathing samples

of 9 healthy volunteers using audio coaching.

It was found that audio coaching increased the amplitude of breathing in

most of the subjects. As the amplitude ofbreathing increased it was found

that the variability of the amplitude also increased. Consequently audio

coaching increasedthe variability of breathing amplitude.

A program using the Hilbert transform was developed to derive the phase

signal and to measurethevariation ofthe breathing cycle. This provided a

methodology for breathing cycle analysis for gating.
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Based on the 12 datasets of fluoroscopy results from 5 lung cancerpatients,

It has been shownthat the experimental system (ERM)is able to reduce

PTV margin in gated radiotherapy.

When comparing the experimental system (ERM) with the commercial

system(Varian RPM)in termsof the synchronisation of the gating signal

with tumour movement, it was found that the raw signal from the

experimental system was less well correlated with tumour motion than that

of the commercial system. Thestability and the systematic delays of the

experimental system for amplitude gating wereless satisfactory than that

of the commercial system.

The systematic delays could be compensated by prediction algorithms and

resulted in a significant reduction in residual motion.

The use of the Extended Kalman Filter and the Autocorrelation function to

estimate the breathing phase in real time has been investigated in order to improve

the reproducibility.

The two approachesproducedsimilar results, but the EXKF approach was

slightly better than the autocorrelation approach.

Theresidual motion difference of phase and amplitude gating has to be

determined ona case bycasebasis.
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8.3. Future Work:

Theresults of the fluoroscopy study showedthat the signal from the ERM and the

tumour motion werenot well synchronized in the Exhale phasein onepatient.

Further investigation is needed to find out why and how frequently this happensin

patients.

In order to facilitate the clinical use of the ERM for gated radiotherapy, more

patients needto be recruited to confirm that the signal of the ERM is well

synchronized with the tumour motion.

The breathing regularity assessment program hasyetto be applied clinically. The

usefulness of this system as an aid to patient training should be investigated.

Furthermore, more experience with using the ERM onpatients is needed in order

to assess its usefulness in assessing patient suitability for gated treatment.

Further work needs to be done with patients with large tumour movements. The

patients included in this study did not haveparticularly large movementsand the

margin reduction recorded in Table 8-3 may havelimited clinical benefits.

However, the approach ofVan Herket a/ assumesthat the motion of the tumour

can besatisfactorily represented by a Gaussian which maynotbe thecase forall

patients, particularly with large tumour excursions. A moredetailed investigation

of the gain ofTCP for fixed NTCP/decrease in NTCPat fixed TCP with a wider

group ofpatients should be carried out.
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