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Abstract:

Lung cancer is the leading cause of death through malignant neoplasms for men
and women in the United Kingdom. Respiratory motion complicates thoracic
radiotherapy during imaging and radiation delivery. Current lung-tumour
radiotherapy yields poor outcomes. These outcomes would be improved if the
dose to the tumour could be increased. One of the reasons why this is currently
difficult or impossible is because large margins have to be added to the tumour to
ensure that the tumour receives the full dose even if it moves due to respiration.
These large margins mean large volumes of normal lung are irradiated, which
limits the amount by which the tumour dose can be increased. Several motion
compensation techniques have been developed to reduce the margins. These
techniques reduce the doses to normal tissues, thereby reducing treatment toxicity
and allowing dose escalation to the tumour. One of the techniques is Gated
radiotherapy (Gating) in which the radiation beam is turned ON and OFF
depending on the part of the breathing cycle the patient is in.

The Department of Clinical Engineering at the Royal Liverpool and Broadgreen
University Hospital has developed the Liverpool Respiratory Rate Meter. It is a
battery-powered, hand-held instrument which displays the respiratory rate of a
patient. In this project, the device has been further developed and adapted for
respiratory gating purposes. The applications of the developed system in gated
radiotherapy were studied.

The impact of audio coaching was investigated by analysing the breathing samples
of 9healthy volunteers using audio coaching. It was found that audio coaching
increased the amplitude of breathing in most of the volunteers. Despite this, audio
coaching reduced the irregularity in most of the subjects.

12 patient respiratory motion traces, each of them 30 seconds in length, were
collected from 5 lung cancer patients at Clatterbridge Centre for Oncology. The
Experimental Respiratory Monitor (ERM) was compared with a commercial
system the real-time position management (RPM) system') in terms of the
synchronisation of the gating signal with tumour movement visible on
fluoroscopy. For amplitude gating, baseline drift of the ERM was a limiting factor
which made it unsuitable for use in controlling gating, if the baseline of the tumour

motion drifts by a large amount.
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From the fluoroscopy study, it was shown that the performance of the ERM in
amplitude gating mode was worse than that of the commercial system because the
magnitude of the respiratory motion is not precisely represented by the ERM
signal. As an alternative to amplitude gating, phase gating could be used to trigger
the gating signal. The use of the Extended Kalman Filter (EKF) and
Auto-correlation algorithm to derive a phase gating signal was investigated with

the aim of improving the gating performance of the ERM.

Due to the systematic phase lag between the respiratory signals and the target
motion as well as the control delay between the acquisition and control system, a
number of prediction algorithms (Neural Networks, Adaptive linear prediction,
Neural Fuzzy Systems and Extended Kalman Filter) have been evaluated. It has
been shown that, Adaptive linear prediction was preferred. By applying predictive
gating to the datasets of the fluoroscopy study, it has been shown that the residual
motion was reduced by a certain amount in most of the datasets in amplitude

gating.
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For all the respiratory plots presented in this document, local maxima always
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signal with a zero-mean x, and properly weighted x and dx/dt.
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Figure 5-2: The Natural Phase. (a)The upper chart is the respiratory
signal x of a volunteer which exhibited a relatively non-smooth
breathing pattern. (b)The middle chart is the derivative dx/dt of the
breathing signal. (c)The bottom chart is the Natural Phase signal.
The signal was obtained by the Varian RPM system over a 1 minute
sampling session. The first 12 seconds of the signal are shown here.

Figure 5-3: Hilbert Transform hx(red trace) of its original signal x. (a)
sinusoidal signal (blue trace); (b)a square pulse (blue trace). The
y-axis is the amplitude and the x-axis is the time axis............... 115

Figure 5-4: Hilbert Transform: Rotating the frequency components to
create a sine wave out 0f @ COSINE .........cceovverrressssesranesssesssseasans 116

Figure 5-5: The Hilbert transformation impulse response function in (a)
time domain and (b) frequency domain. Hilbert Transform shifts

the phase of positive frequencies components by -n/2 and negative
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frequencies components by +70/2........ccceevuerviiriieniiiniieneieeene 117

Figure 5-6a: The upper chart is a sine wave with a period of 4 seconds
sampled at 25Hz sampling frequency. Four full harmonics of 400
samples were taken for the Fourier Transform. The spectrum is
shown in the bottom chart, where a sharp component of 0.25Hz is
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Figure 5-7: The upper chart is a sine wave with a period of 4 seconds
sampled at 25Hz sampling frequency. With the frequency
components corresponding to 0.25Hz removed. 360 samples were
taken for the Fourier Transform, accounting for 3.6 harmonics. The
spectrum is shown in the bottom chart............cccoceviiiiiininnn, 121

Figure 5-8: Assumption of Fourier Transformation. (a)The sinusoidal
wave is a real signal, which has infinite duration. A window is
defined for segmenting the real signal for real time processing.
(b)The input signal (the middle sinusoidal wave) is periodic - but
an integral number of cycles does not fit into the total duration of
the measurement. (¢)Hence, when the Fourier Transform assumes
that the signal repeats, the end of one signal segment does not
connect smoothly with the beginning of the next - the assumed
signal is similar to the actual signal, but has little 'glitches' at
regular INETVALS. .....co.vevueriiiericceiecrecccc e 122

Figure 5-9: The input signal of the DFT. The DFT assumes the signal
repeats. The transformation windows are cascaded (connected
together) one by one. The end of one signal segment does not
connect smoothly with the beginning of the next. The little
'glitches', are connection positions, marked with black arrows. Ref:
BO5T54 ..ttt 123

Figure 5-10: Stages of producing the breathing model (in the order from
a to d). The ERM breathing of Patient-1 is used for demonstration.
(a) A pair of cubic splines were used to connect the EOE (blue) and
EOI (red) positions of the breathing signal (dotted black line). The
green curve is the mean of the red and blue curves. (b)After the
baseline drifting and amplitude variation is removed, the breathing
signal is segmented into breathing cycles. (c) The breathing cycles
were resampled, such that their lengths are equal, and represented
by phase of —pi to pi (peak to peak). (d) The average trajectory
(black curve) and standard deviation (magenta error bar) of all the
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breathing cyeles. refi 805151 suvssnsnmmsaminmsmnin s 130

Figure 5-11: The flow chart of the Adaptive Windowing Autocorrelation
Approach. The instantaneous phase is calculated by a 3 step
process as: 1)determines the length of the transform window, then
2)multiply the window with sine and cosine function respectively
and finally 3)calculate the phase by inverse tangent function. .. 142

Figure 5-12: The AWA approach of phase estimation: (a)A breathing
signal of 38 seconds is shown by the red dashed curve. The blue
curve is the segment used for calculating the autocorrelation
function. (b)The signal in the autocorrelation window is plotted by
the blue curve. The autocorrelation function is plotted in green. The
DFT window is defined by the 2" peak (the magenta arrow) of the
autocorrelation function. The phase of the first harmonic in the
DFT window is the estimated phase. Ref: 805155 .................... 143

Figure 5-13: The sinusoidal waves used to simulate the breathing signal.
(a) Amplitude variations only; (b) Base-line Drift only; (c)
Frequency variations only; (d) Frequency and amplitude variations;
(e) Frequency variations and baseline drifting; (f)
Frequency-amplitude variations and baseline drifting.
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Figure 5-14: The relative root mean square values of residual motions
averaged over the 12 datasets are shown on the figures. Each set of
bars represents different duty cycles. The colours of the bar
represent different phase estimation algorithms. The error bar
shows the standard deviation. The upper figure a) is for gating at
the EOE position and the lower figure b) is for the EOI position.

Figure 5-15: The rRMS over the 12 datasets are shown in this figure.
Each set of bars represents different duty cycles. The colours of the
bar represent different phase estimation algorithms. The error bar
shows the standard deviation. The upper figure a) is for gating at
the EOE position and the lower figure b) is for the EOI position.

Figure 5-16: The instantaneous phase of dataset-Pla derived by two
phase estimation approaches: The yellow dotted curve is the phase
and the magenta dashed curve is the breathing signal of ERM.
a)EKF approach b) AWA approach. The differences in
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characteristics of the two approaches are marked with A1, A2 and
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Figure 5-17: The gating pulse dataset-P1a comparing the EKF and AWA
approaches: The yellow dotted curve is the phase; the magenta
dashed curve is the breathing signal from the ERM. The blue curve
is the motion of the diaphragm and the gate enable window is
marked with red squares. a) The EKF approach using the ERM
signal b) The AWA approach using the ERM signal. The major
differences are highlighted by green circles..........cccccueeeenennene. 153

Figure 5-18: The gating pulse of dataset-P4b comparing the EKF phase
gating and amplitude gating: The yellow dotted curve is the phase;
the magenta dashed curve is the breathing signal from the ERM.
The blue curve is the motion of the diaphragm and the gating
enabled window is marked with red squares. a) The EKF approach
using ERM signal b) amplitude gating using ERM signal. The
major differences are highlighted by green circles. ................... 156

Figure 5-19: The gating pulse of dataset-P5a comparing EKF phase
gating and amplitude gating: The yellow dotted curve is the phase,
the magenta dashed curve is the breathing signal from the ERM.
The blue curve is the motion of the diaphragm and the gating
enabled window is marked with red squares. a) The EKF approach
using ERM signal b) amplitude gating using ERM signal. The
major differences are highlighted by green circles. ................... 157

Figure 5-20: The gating pulse of dataset-P1a EKF approach phase gating
using ERM signal. The yellow dotted curve is the phase; the
magenta dashed curve is the breathing signal from the ERM. The
blue curve is the motion of the diaphragm and the gate enable
window is marked with red squares.. ..........cceceerveiiiiiiiiiinnennns 158

Figure 6-1: The nRMSE of different prediction algorithms averaged
over all the datasets using ERM signals. The length of the error bar
indicates one standard deviation. The results are grouped by
different detection horizons.ref: 805161 ......c.cccovvviviiiiiiiiiiinns 168

Figure 6-2: Prediction of irregular signals at 480ms prediction horizon.
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Figure 6-3: The blue bars are the mean rRMS (in percentage) organ
residual motions over 12 datasets using amplitude gating without



17

any delay compensation, while the red bars are delay compensated
by LMS prediction. The green bars were produced by shifting the
breathing signal to compensate for the delay. (a)Tumour EOE,
(b)Tumour EOI, (c)Diaphragm EOE and (d)diaphragm EOI.
TEEIB0S5TO02 . 170

Figure 6-4: Comparison of the rRMS of NLMS prediction and no
prediction in 30% duty cycle of the tumour IS motion. The blue
bars are the mean rRMS organ residual motions over 12 datasets
using amplitude gating without any delay compensation, while the
red bars are delay compensated by NLMS prediction. (a)EOE,
(D)EOL 1ef:805163 ...t 172

Figure 7-1: Schematic diagram of evaluating the variation of breathing
cycles: A breathing signal containing several breathing cycles is
divided into segments of equal length. The length is equal to the
mean duration of the wave cycles. The standard deviation vector
d[n] of the aligned wave form is computed. The variation of the
wave pattern weighted at the local minimum position is defined as
the dot product of a weight vector w[n] and the standard deviation
vector 6[n]. w[n] is a vector with a square pulse distribution of

Figure 7-2: Result of breathing cycle segmentation of the program. The
breathing signal (red trace) is plotted above. The y-axis is the
amplitude and the x-axis is the time in unit samples. The result of
the segmentation is displayed as horizontal line segments. The line
segments (cyan colour) on top of the breathing signal represent the
breathing cycles segmented with reference to the minimum
positions; while the line segments (blue colour) below the
breathing signal represent the breathing cycles segmented with
reference to the maximum pPOSIHIONS. .......eevveerieirieerciieenieeiieans 178

Figure 7-3: Wave segments aligned to the local minima. The screen
capture of the wave segment window shows the variation of the
breathing cycles and provides an alternative to the numerical
presentation. The y-axis is the amplitude of the breathing signal.
The x-axis represents the time measured in unit samples. ......... 178

Figure 7-4: A snapshot of the 4 column layout of the software ......... 181

Figure 7-5: The signal Monitor displaying the segmentation result .. 181
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Figure 7-6: A tab in the 4th column showing the aligned breath cycles

abont fhelr maxirm PoSItion. ..csssmmamssmmmansasssemss 182

Figure 7-7: User Interface of the Breathing Signal comparison tools:
The tools allow clinicians to evaluate the regularity of the 4
different breathing signals at once. By providing the variation of
the motion and regularity measurements, it helps clinicians to find
the best set of parameters for gating. Please refer to section 7.1.5

for descriptions of the interface............cccoeeviiiniininiicinienn. 182

Figure 7-8: Breathing signal of the volunteer of (a)lrregular and
(b)Regular breathing patterns were used as input to show the
function of the SORMWALE. .......ceoremmmemmmancessssisisssnsinssissis sevssasasss 184

Figure 7-9: Wave segments aligned to the trough of (a) an irregular
breathing signal and (b) a regular breathing signal.................... 184

Figure 7-10: Abnormal detection in Volunteer-7. As the subjects fell
asleep, the amplitude of breathing was reduced. The subject waked
at 600" and 1700™ samples. Hence, there was a sudden increase in
amplitude in both positions. (a) The black trace on the upper graph
is the breathing signal and the red trace is the phase signal. (b)The
rate of change of phase Q[n] is shown. The two cyan horizontal
lines are the upper and lower bounds of the normal breathing
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Figure 7-11: Abnormal detection in Volunteer-8. (a)The black trace is
the breathing signal and the red trace is the phase signal.(b)The rate
of change of phase Q[n]: The two cyan horizontal lines are the
upper and lower bound of the normal breathing patterns. (c)the red
trace is the abnormal trigger, where a high level (1) indicates that
breathing is normal and a low level indicates that abnormal activity
has been detected. The black trace is the result of the detection
which included the 4-seconds abnormal-to-normal recovery time.
The x-axis represents the time in sample units. The signal was
sampled at 25HZ frequency. ........cocovveveiiemninennece 190

Figure 7-12: Abnormality detection in Volunteer-A.(a) The black trace is
the breathing signal and the red trace is the phase signal. (b)The
rate of change of phase Q[n] is shown. The two cyan horizontal
lines are the upper and lower bounds of the normal breathing
patterns. (c) The red trace is the abnormal trigger, where a high
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level (1) indicates that breathing is normal and a low level indicates
that abnormal activity has been detected. The black trace is the
result of the detection which included the 4-seconds
abnormal-to-normal recovery time. The x-axis represents the time
in sample units. The signal was sampled at 10Hz frequency.....191

Figure 7-13: User Interface of a Wizard based ERM sampling program.
The signal of the ERM is plotted in the top middle chart. The
natural phase of the signal is plotted in the top right hand side chart.

Figure 8-1: Sample size in Paired T-test using a=0.05, $=0.8 using the
data of the PTV margin in IS direction (oy) in Table 8-3........... 202
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1. Introduction

1.1. Background

This project is motivated by the need to improve lung cancer radiotherapy, so it
is appropriate to begin with the challenges faced.

1.1.1. Lung cancer incidence, Lung Cancer survival rate

According to the statistics report of Cancer Research UK, there were about 37000
new cases of lung cancer in 2003 in the UK (Lung Cancer and Smoking - UK
2007). It is the most common cancer in the world with each year approximately 1.4
million people diagnosed with lung cancer and it accounts for 12% of all types of
cancers. It is also the most common cause of death from cancer, accounting for
18% of all deaths from cancer worldwide (Parkin ez a/ 1999).

Lung cancers fall into two main categories: around 20% are small cell lung cancers
(SCLC) and the remainder are non-small cell lung cancers (NSCLC). The main
types of NSCLC are squamous cell carcinoma, adenocarcinoma and large cell
carcinoma, accounting for approximately 35%, 27% and 10% of all lung cancer
cases respectively in the UK (National Institute for Clinical Excellence 2005).

1.1.2. The treatment of different types of lung cancer

1.1.2.1. Treatment of Non-Small Cell Lung Cancer (NSCLC)

Surgery is the main curative treatment for NSCLC and early assessment of the
patient to see if the tumour is operable is essential. Only 20-30% of patients may
be eligible for radical surgery (Tackling cancer in England 2004).Occasionally
radiotherapy with radical intent is used instead of surgery to treat local disease.
The definitive treatment for local operable disease has traditionally been surgery
which is potentially able to eradicate the tumour completely. The reason for
treatment failure, however, is often not the local treatment but rather the spread of
the tumour to other sites. For inoperable patients radiotherapy can offer a
satisfactory alternative to surgery, but its efficacy is limited by the inability to

deliver a curative dose
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1.1.2.2. Treatment of Small Cell Lung cancer (SCLC)

SCLC tumours progress rapidly and untreated patients survive on average for less
than three months from the time of diagnosis. (Lung Cancer and Smoking - UK
2007)Chemotherapy is the mainstay of treatment: radical surgery is rarely an
option due to the systemic nature of the disease. Although radiotherapy reduces
the risk of local recurrence, the patient frequently dies from metastatic disease. To
attempt to reduce the risk of metastasis, prophylactic cranial irradiation is
sometimes used for patients with advanced disease who have a high risk of brain
metastases (Slotman et al 2007) and chemotherapy is also used to reduce
metastatic spread. Where cure is not possible radiotherapy can help to control
symptoms. The 5-year survival for patients with SCLC is about 5% (Minna &
Schiller 2008).

1.1.2.3. The use of radiotherapy in treating lung cancer

Radiotherapy is used for patients for whom surgery is too dangerous or who have
tumour(s) in a location which is difficult for surgeons to reach. For some stage 3
lung cancers where the cancer has spread locally (eg: into chest wall or diaphragm)
and the tumour is still small, the clinician might suggest the use of radiotherapy
instead of surgery. Radiotherapy is also good as palliative therapy for relieving
chest symptoms such as pain and coughing and pain in bones to which the cancer
has spread. There are 3 reasons for radiotherapy rather than surgery:

1. The patient is unfit for surgery (poor lung functions, serious cardiovascular

disease.
2. The tumour is inaccessible.
3. The patient refuses surgery

However, recently it has been shown with Stereotactic Body Radiotherapy in
which high doses are given in few fractions, radiotherapy results are similar to
surgery (Onishi ef a/ 2004, Nyman 2006).
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1.2. Lung anatomy and respiratory physiology

Expiration Inspiration

Figure 1-1A: schematic drawing of the mechanism of breathing: The above
illustration shows the movement of the ribs, sternum and diaphragm in the
inspiration phase of breathing. Beginning with the end of exhale on the
left-hand-side figure, the diaphragm is highlighted in red and the rib cage is
indicated by deep blue. The horizontal axis of the grid indicates the initial position
of the diaphragm, while the vertical axis of the grid indicates the initial position of
the rib cage. The red and blue arrows in the subsequent figures indicate the
direction of the movement of the diaphragm and the rib cage respectively. As the
breathing phase progresses towards inspiration, the diaphragm goes down and the
rib cage expands to increase the volume of the lung.

1.2.1.1. Mechanism of breathing:

The primary function of the lung is to deliver oxygen to the alveoli and remove
carbon dioxide. This is accomplished by the flow of gas in and out of the lungs.
The differences in pressure cause by changes in lung volume, force gas in and out
of the lungs in a respiration cycle.

During inhalation, the lungs expand. By Boyle’s Law, the pressure of the gas in the
lungs decreases below the atmospheric pressure and thus air flows into the lungs.
The diaphragm (which forms the floor of the thoracic cavity) contracts to increase
the superior-inferior dimension of the thoracic cavity, whilst other respiration
muscles such as the internal and external intercostal muscles increase the
anterior-posterior and lateral dimensions by expanding the ribcage (figure 1-1).
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Unlike inspiration, expiration is a relatively passive process and muscle
contraction does not necessary happen (Tortora 2006). Expiration is a result of the
elastic recoil of the chest wall and lung, which have a natural tendency to spring
back after they have been stretched. During expiration, both diaphragm and
intercostal muscles relax with the ribcage returning to its normal position, which
raises the intra-thoracic pressure and forces gas out of the lungs.

1.2.1.1.1. Lung volumes
Respiration can be described in terms of four different volumes (Ganong 2003):

1. Tidal Volume (TV) is the amount of gas inspired or expired in a normal breath.

2. Inspiratory Reserve Volume (IRV) is the amount of gas that can be inhaled by

maximal effort after a normal TV.

3. Expiratory reserve volume (ERV) is the amount of air that can be exhaled by

maximal effort after a normal TV.

4. Residual volume (RV) is the amount of air remaining in the lungs after a

maximum expiration.
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1.3. Literature review:

1.3.1. Respiratory Monitoring and compensation of respiratory motion
in radiation delivery

Respiratory motion can cause problems during image acquisition and treatment
planning as well as in radiation delivery when treating lung tumours.

Many studies have been performed to study lung tumour motion. (Shen et a/ 2003,
Jiang et al 2003, Keall 2001, Hugo 2003, Hugo 2002, Bortfeld et a/ 2002,Bortfeld
et al 2004).These studies report that tumour movement can vary between a few
millimetres and several centimetres. The effect of respiration motion on imaging is
both to generate artefacts and to make the position of the tumour uncertain.
Standard imaging methods do not accurately delineate the extent of tumour
movement (Shimizu ef al 2001, Vedam et al 2003, van Herk ef al2000, Ritchie et
al 1994, Ford et al 2003, Balter 1996, Giraud et al 2002). In treatment planning, a
margin is needed to ensure adequate coverage of the tumour(the margin of the
tumour displacement in addition to the clinical target volume (CTV)) for treatment
delivery. The additional margin added to the CTV forms the Planning Target
Volume (PTV). The development of 4D-CT has made it possible to define the
volume of tumour excursion during a respiration cycle on the CT images relating
to a patient’s fixed anatomic landmarks. This volume is considered as the internal
target volume (ITV) as defined by the International Commission on Radiation
Units and Measurements (ICRU) report 62 (1999). Adding standardized margins
to account for respiratory motion may increase the volume of healthy lungs
receiving high radiation dose. There is a direct correlation between the radiation
dose and the probability of achieving local control of the tumour. However, the
maximum dose that can be delivered to the tumour is limited by the tolerance of
the normal tissues that surround it. Therefore, limiting respiratory motion can
potentially allow the dose to the tumour to be increased without increasing damage
to normal tissues. There are several techniques that are being used to account for

respiration motion.
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Table 1-1: Magnitude of Lung Tumour motion due to respiration.

Tumour Motion

Studies Modality (mm)
Shirato et al 2000 Fluoroscopy 8.3+1.2 (peak to peak)
Ford et al 2002 Fluoroscopy & CT 13.5-19.9 (90% excursion )
Vedam et al 2003 Fluoroscopy 2.4-6.0 (SD)
Starkschall et al 2004 CT 5.1-17.6 (peak to peak)
Hoisak et al 2004 Fluoroscopy 1.1-27.6 (peak to peak)
Tsunashima et al 2004 Biplane digital 2.2t0 14.7 (peak to peak)
radiography
Ahn et al 2004 Fluoroscopy 9.7-18.2 (peak to peak)

Respiratory motion has been measured using various imaging techniques such as
ultrasound, fluoroscopy, CT and MRI (Ford ez al 2002, Shen et al 2003, Jiang et a/
2003, Keall et al2001, Hugo et al2003, Hugo et al2002, Bortfeld et al 2002,
Bortfeld ez al2004). With these images, significant differences were noted between
quiet (shallow) breathing and deep breathing. Table 1-1 lists a number of studies
from which we may conclude that the range of lung tumour motion is less than

30 mm.

Margins are added to the CTV for variations in tissue position, size and shape as
well as inter and intra-fraction variation in patient position and beam position to
form the Planning Target Volume (Antolak et al 1999 Engelsman et al
2005).Typical margins for lung treatments are of the order of 1-2 cm (Hanley et al
1999).

Most institutions do not have techniques for reducing respiratory motion, so larger
margins are used to account for the tumour motion due to respiration motion.
Larger margins account for the variations and uncertainties and prevent under
dosage to the tumour. However, larger margins also result in an increased volume

of normal tissue irradiation.

There are various approaches to deal with tumour motion, such as, gating (to
irradiate the tumour when it is within a pre-defined spatial location) (Kubo and
Hill 1996, Keall ef a/ 2001), beam tracking (a robotic mechanism to adjust and
align the beam with the tumour in real time) (Schweikard e al/ 2000, Neicu et al
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2003) and passively restriéting the respiratory motion (Stromberg et a/ 2000,
Remouchamps et a/ 2003, Hanley et al 1999).

1.3.2. Respiratory Gating

Respiratory gating is a method that is used to limit the effect of respiratory motion
during imaging and radiation delivery without interruption of the patient’s
breathing.

The gating signal is used to trigger the radiation beam. The period that the
radiation beam is enabled is called the gating window. The position and duration
of the gating window is determined by using external surrogates or internal
markers to monitor the target position. For external surrogates, gating can be
delivered by two different techniques: amplitude gating or phase gating. In
amplitude gating, the radiation beam is enabled whenever the respiration signal is
within a pre-defined window of relative positions. For phase gating, a phase
signal is calculated by an algorithm from the respiration signal. The radiation
beam is activated when the phase of the respiration signal is within a pre-defined
phase window. The ratio of the duration of the gating window to the overall
treatment time is called the duty cycle. In most cases the tumour is not
completely static in the gating window and this movement when the beam is on
is referred to as "residual motion". In general, the residual motion will increase

with the duty cycle.

Gating has the advantage, compared to techniques involving the restriction of the
range of respiration, that lung cancer patients who have reduced lung function can
breathe freely without holding their breath.

When a surrogate is used to monitor breathing for gating, the tumour position is
inferred by the breathing signal of the surrogate. The correlation between the
tumour and the surrogate in a simulation session is assumed to remain the same in
future treatment sessions. Therefore, the tumour and the surrogate must be
monitored long enough to ensure they are reliably synchronized and detect
possible drifts and long-term variations. Monitoring should also be repeated

throughout the course of treatment.
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Gating modalities: devices/systems for monitoring breathing

1.3.2.1. Monitoring of chest wall and abdominal movement:

This technique relies on the repeatability of the correlation between the tumour
location and the external surface, an assumption that has been investigated in
several studies (Vedam ef a/2003, Hoisak et al2004, Tsunashima et a/2004, Koch
et al2004, Ahn et al2004).Vedam et al. (2003) analysed 63 breathing signals from
8 volunteers and found that external motion (abdominal wall Motion) was mostly
correlated to diaphragm motion regardless of session and coaching method. It was
found that the correlation coefficient between the external motion and the tumour

varies from patient to patient.

The Varian Real-time Position Management (RPM) system has been widely
discussed in publications. The system involves placing an Infrared reflective
marker on the chest wall or abdomen. The reflective marker is illuminated by
infrared emitting diodes and the resulting images are captured by a camera and
processed by a desktop computer, resulting in a breathing trace (Mageras et al
2001, Ford et al 2002). Abdomen surface displacements do not always correlate
with tumour position. Phase shift or delay and baseline drift have been observed
(Shimizu et al 2001, Mageras et al 2001).

1.3.2.2. Spirometer:

Zhang et al 2003 presented using a Bernoulli-type Spirometer for breath
monitoring. The spirometer was a bi-directional differential pressure sensor that
converted the flow into a pressure signal. This signal was then converted to a
voltage, digitized to a reading value, and transferred to a control computer. They
stated that a spirometer correlated to the target position by measuring lung volume
changes and had less setup variation. A nose clamp and a mouth piece were used to
ensure the accuracy of air-flow measurement. However, studies of respiratory
physiology have shown that the nose clamp and mouth piece increase the tidal
volume of breathing (Gilbert et al 1972, Askanazi 1980, and Tobin 1983a). Tidal
volume has a direct relationship with the motion of the tissues of the lung.
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1.3.2.3. Temperature sensor:

Temperature sensors, usually being placed just below the nostrils, monitor the
temperature of the gas flowing in and out of the nose. The temperature signal of
the sensor corresponds to the room temperature when inhaling and the lung
temperature when exhaling. Kubo & Hill (1996) presented the technical aspects of
using two types of temperature sensor (thermocouple and thermistor) for
respiratory monitoring in gated radiotherapy. It was found that both of these
correlated well with the pneumotachograph and strain gauge. For patient comfort,
temperature sensors are preferred over a pneumotachograph. A thermocouple has
also been used as a breathing monitor for 4D CT reconstruction (Wolthaus et a/
2008).

1.3.2.4. Strain Gage

A strain gauge attached to a band wrapped around the patient's chest can be used
to detect the abdominal surface tension change (Okumura 1994, Minohara 2000).
Kubo& Hill(1996) analyzed various sensor systems to monitor respiratory motion
to obtain a surrogate for motion information to use as a gating signal. The strain
gauge was described as reliable and inexpensive and proved to be more
comfortable than the pneumotachograph. Special caution on the tightness of the
tension belt is needed. A tight belt would restrict the thorax movement, while a
loose belt has a tendency to move (or slip) around the thorax, resulting in
in-accurate measurement (Mazika & Swan 2007).
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1.3.2.5. Internal surrogate: Image guidance technique for gating

Shimizu et a/2001, Shirato et al2000 & 2003 , Seppenwoolde et a/2002, Shirato et
al1999 have described the use of internal gold markers to gate the radiation beam.
The markers are tracked using an x-ray system 30 times per second. When the
markers are within a predetermined location, as determined from the x-ray
imaging system, the linear accelerator is triggered to irradiate the tumour.

Since the tumour may not be easily identified and tracked under fluoroscopy,
gold seed markers are inserted into the tumour, to increase the accuracy of
tracking the tumour. For example, the Cyberknife system uses two orthogonal
x-ray images from x-ray tubes mounted in the floor of the room. In order to
identify individual fiducial markers, it is important that the markers are not
placed superimposed on each other in 45° oblique views (Kothary et al 2009).To
achieve this two skin entry sites may be needed.

Shirato et al 2000 measured the dose rates of two diagnostic X-ray tubes at 120
kV with a pulse width of 4 ms with thermoluminescence dosimeters. The dose
rates were 10.8 mGy/min at the entrance and 0.8 mGy/min at the exit. Assuming
2-min diagnostic exposure for a daily irradiation of 2 Gy in 40% duty cycle, the
additional X-ray dose, due to real-time tracking, ranges from 0.208 to 21.48 X
107 Gy. This amount corresponds with 0.02-2% of the total prescribed dose.
The extra dose was small compared to the dose to the PTV. However, the highest

dose occurs at the skin surface, which is usually not part of the PTV.

Localization with a fiducial marker directly within lung tumours is considered an
accurate way of aiding in gated radiotherapy because it directly marks the tumour
position (Shimizu et al 2001, Shirato et al 2006). The placement of fiducials
within lung tumours can be achieved either transcutaneously (under either
fluoroscopic or CT guidance) or transbronchially through bronchoscopy-based
approaches.

The main disadvantage of transcutaneous approaches is the risk of pneumothorax,
estimated to be in the 20-30% range, similar to the pneumothorax rate associated
with transcutaneous needle biopsies of lung lesions (Cox et al 1999, Fish et al
2006).Various studies have shown needle biopsy induced pneumothorax rates
between 8% and 38% (Topal and Ediz 2003, Geraghty et al 2003, Laurent et al
2000). These results make many clinicians reluctant to perform marker
implantation in the lung. However, the risk of pneumothorax using the
transbronchial approach is negligible compared to the transcutaneous approach
(Kupelian et al 2007).Most of the gold markers remained in place during the
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treatment (Imura et al 2005). However, for certain types of tumours, it was
difficult to keep the gold markers in place throughout the treatment period
(Harada et al 2002). The marker moved from the inserted position within 24
hours in four tumours; (two were central tumours and two were peripheral
tumours in the left superior segment)and after a week in one patient with a
central tumour. Hence, implanted markers are not feasible for all patients and the

patient must be able to tolerate the implantation procedure.

Berbeco et al (2005b) have suggested using the fluoroscopic images for gating
based on motion-enhanced tumour images of the lungs without implanted
markers. At the end of inspiration, the lung fills with air. Thus, the radiological
path-length through the lung shortens (in contrast to End of expiration with long
path-length), giving brighter fluoroscopic intensities. Hence, the temporal change
in intensity represents the breathing cycle and was used to trigger the radiation
beam when the target was within the desired location.
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1.3.3. Respiratory Synchronized Radiotherapy/Real-time
tumour-tracking

The principle of respiratory synchronized radiotherapy is to follow the tumour
with the radiation beam (Keall ez a/ 2001, Schweikard et a/ 2000).In tumour
motion synchronization, the position of the tumour is detected by either
visualization of the internal structure or implanted markers. In some of the cases,
a lung tumour is possible to detect directly in fluoroscopic images acquired
simultaneously. However, most lung tumours are not easily visible (by clinician
or computer vision) under fluoroscopic imaging. In such cases, implanted
fiducial markers (in or near the tumour) are used to track the position of the
tumour. Due to the high atomic number of gold, gold fiducial markers were
utilized in the study of Murphy et al/ (2000) and Shirato et a/ (2000), such that
the dose to the fluoroscopy imaging field can be reduced.

To reduce the irradiation of healthy tissue surrounding the target volume, a
miniature implantable radiofrequency coil that can be tracked
electromagnetically in three dimensions from outside the patient has been used
(Seiler et al. 2000, Balter et al 2005). The electromagnetic approach could
provide an alternative to the use of radiological imaging to track the tumour

position.

In real-time tumour tracking, the treatment beam is on throughout the respiratory
cycle and unlike gated treatments, the treatment time is not increased.

This technique may reduce NTCP by reducing the internal margin and increase

tumour control by dose escalation.

There is still a considerable amount of software and hardware investment required
for respiration-synchronized radiotherapy. The treatment planning system needs
to account for the dosimetry regarding the changing lung volume, because the
normal treatment-planning imaging study used to calculate the dosimetry is in
one static configuration. The anatomy and the air volume in the lung are
continually changing during the treatment session. Hence, the relative positions
of tumour, normal tissue, and critical structures change. These position changes
affect the attenuation of the treatment beam and affect the dose distribution of the

whole treatment plan.
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1.3.4. Active control of respiration motion
There are two benefits of using active control techniques:

e The target is immobilized so that diaphragm motion and position
variability can be reduced.

e Increasing the volume of the lungs (in Inspiration Breath Hold) to reduce
the fractional amount of normal tissue being irradiated (Stromberg et a/
2000, Remouchamps et al 2003, Hanley et al 1999). This potentially
reduces normal tissue complication probability (NTCP). These techniques
may therefore help in dose-escalation radiation treatments for lung cancer

patients.

1.3.4.1. Deep Inspiration Breath Hold

Deep Inspiration Breath Hold (DIBH) is a technique trying to reproduce the state
of maximum inhalation (Remouchamps et a/ 2003, Hanley et al 1999, Mah et al
2000). The manoeuvre begins with the patient in quiet tidal breathing, followed by
slow deep inspiration and slow deep expiration and then another slow deep

inspiration to maximal inspiration level and breath hold.

Several studies have been performed using DIBH to reduce the movement of lung
tumours due to respiration. Hanley et a/ 1999 compared the treatment plan for
DIBH and free breathing. The volume of lung receiving more than 25 Gy was
reduced by 30% while respiration gating only reduced the volume by 18%
compared to no intervention. DIBH could also reduce the density of the lung by
26% on average. Hence, there could be a potential to decrease the dose of the

normal tissue of the lungs.

Target immobilization and expanded lung volume (reduced density) are the
important features of the breath hold technique. Increasing lung volume will
reduce the fractional amount of normal tissue being irradiated which should

reduce normal tissue complications.
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1.3.4.2. Voluntary Breath Hold (Subject Initiated Breath-Hold)

In Voluntary Breath Hold, the patient plays the role of the sensor, detector and
beam controller. The patient holds the breath at a predetermined specific position
in the breathing cycle while at the same time presses a notification button. The
therapist then activates the treatment beam. When the prescribed dose has been
delivered, the treatment bream stops. The treatment beam can also be stopped by
the patient or the therapist to interrupt the treatment. The technique was verified by
a fluoroscopy study by Kimura et al (2004). Kimura et a/ used the voluntary
breath-hold technique with a spirometer to evaluate the reproducibility of organ
position by using CT scans. The volunteer was asked to hold his breath at
end-inspiration or end-expiration, whichever felt more comfortable. The
conclusion of this study was that voluntary breath hold has relatively good
interfraction and intrafraction reproducibility, especially for end-expiration
subjects. Intrafraction reproducibility of tumour position in the cranio-caudal
direction was 4.0-3.5 mm at the end-inspiration phase and 2.2-2.0 mm at the

end-expiration phase.

1.3.4.3. Active Breathing Control

An ABC device monitors the flow of breath and uses valves to control the
inspiration and expiration independently. The clinicians can specify the flow
direction and the lung volume for closing the valves and the duration of breath
hold. There have been several published studies on the use of this technique to
treat lung (Cheung et al 2003, Koshani et al 2006, Wilson et al 2003), breast
cancer (Frazier et al 2004) and Hodgkin’s disease (Stromberg et a/ 2000). When
training for ABC, the patient has a visual feedback of the lung volume and the
level of intended breath hold (Wong et al 1999). The patient is notified when the
ABC device will be enabled and the valve closes. The patient must be
comfortable with holding his or her breath for the period during which the valve
is closed, as well as being able to cope with repeated breath holds.

1.3.4.4. Breathhold

Techniques such as ABC and DIBH might be demanding for the elderly patient
population or those having reduced lung function. Moreover, patients who cannot
follow instructions are unsuitable for this technique (Rosenzweig et al 2000).
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Voluntary breath hold tries to solve this problem by letting the patient choose the
time to hold their breath. However, in the study of Barnes et al (2001), 2 of the
10 subjects were observed to have continuous diaphragm motion during
voluntary breath hold, even though they believed they were holding their breath.
This mode of treatment relies heavily on the patient’s ability to understand and
perform a reproducible breath hold, maintain it for at least 10 s, and
simultaneously operate the hand-held switch.

1.3.4.5. Forced Abdominal Compression

Abdominal compression can be used to limit the motion of the diaphragm. The
patient is placed in a body frame (or three sided box). The frame allows a plate
on a threaded pillar to be screwed down so as to compress the abdomen. Patient
immobilisation is improved by the use of a compression device such as a metal
plate (Wulf et al 2000, Negoro et al 2001). The frame is comprised of three parts: a
body shell, laser markers and a small abdominal pressing plate. The body shell is
made up of a rigid frame and a flexible part called a vacuum pillow, which when
evacuated maintained the patient’s body contour and became rigid enough to
support the patient. A small abdominal plate was pressed on the patient’s upper
abdomen to suppress large movements of the diaphragm and to reduce the
tumour’s movement during respiration. Negoro ef al. (2001) studied this technique
with 18 lung cancer patients. With free breathing, they found that ten of the
patients had motion between 8 and 20 mm, which was reduced to 2 to 11 mm using
abdominal compression. Motion was reduced while maintaining normal
respiration. This technique also increased the accuracy of daily setup(with
standard deviations of field placement errors of 3.5 mm in longitudinal, 2.2 mm in
the anterior—posterior and 3.9 mm in the lateral directions (Wulf e a/ 2000) One
difficulty encountered while using the abdominal compression technique was the
inability to detect the patient’s rotation along the body axis and not all patients can

tolerate it.
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1.3.5. Variable nature of respiration

Inter-cycle (Breath-to-breath) variations can be represented by tidal volume and
the inspiratory/expiratory durations. Sometimes correlation is established between
tidal volume and the inspiratory/expiratory durations (known as correlated
variations). (Bruce et al 1996, Bechbache er al 1979 and Kay 1975) They can also
be affected by uncorrelated random variations (known as white noise). The
breathing pattern is also affected by periodic oscillations which aim to regulate the
oxygen supply and non-periodic fluctuations (eg: psychological and
environmental changes).These variations can be the result of a number of factors:
such as central neural mechanisms, anatomic variabilities, genetic variation,
pulmonary afferent activities and/or chemoreflex mechanisms.

Shea et al 1992 demonstrated that the forebrain activity (related to sleep and
awakeness) or comfort level (related to the patients comfort) affect breathing
patterns in diseased patients. The study utilized a respiratory inductance
plethysmography (RIP) device to study breathing-pattern differences between
patients and the possible factors of the differences.RIP is a device used to measure
changes in chest and/or abdominal volume.’The study was performed on 50
healthy volunteers and measured by RIP twice a day on two consecutive days. It
was found that different people breathe in different ways under defined conditions
and even in the absence of behavioural or forebrain influences (i.e., during sleep),
the differences persist. The study of 9 pairs of twins showed that the twins
breathe with similar patterns. This supports the conclusion that there is a possible
genetic influence on breathing pattern.

? It works by putting a loop of wire around the chest/abdomen of the subject. A current then applied
through the loop of wire generates a magnetic field normal to the orientation of the loop. A change
in the area enclosed by the loop creates an opposing current within the loop directly proportional to
the change in the area. (Mazeika & Swanson 2007)
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Tobin ef al. 1983a measured the breathing of 47 young (ageless than 50) and 18
old (age greater than 60) normal subjects utilizing respiratory inductive
plethysmography. It was observed that rhythm was more irregular for old subjects.

A similar study by Tobin et al. 1983b compared the breathing of normal subjects,
asymptomatic smokers, asymptomatic and symptomatic asthmatic patients and
patients with chronic obstructive pulmonary disease, restrictive lung disease and
pulmonary hypertension. It was shown that diseased subjects have larger
variations in breathing pattern components than normal subjects. Lung cancer
patients have impaired lung function (or part of their lung was removed by
surgery) and it is therefore likely that such patients have larger breathing pattern

variations.
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1.4. How the Experimental Respiratory Monitor Works

1.4.1. Introduction to the Experimental Respiratory Monitor

The Department of Clinical Engineering at the RLUBH has developed the
Liverpool Respiratory Rate Meter (RRM). It (Figurel-2) is a battery-powered,
hand-held instrument which displays the respiratory rate (in the unit of breaths per
second) of a patient sampled over the previous 30 seconds. The system produces a
signal related to the patient’s instantaneous state of respiration from which is
derived the respiration rate displayed on the LCD monitor. In this project, the
device was further developed and adapted it for respiratory gating proposes. This
section described information of the original design of the RRM. It covers the
physical aspects, electronic design and software programs involved in obtaining

the breathing signal.

Figure 1-2: The Respirate, a respiration rate measuring device adopted as a
respiration gating device.

1.4.2. Electronic design of Experimental Respiratory Monitor device:

The device is composed of a transducer (Figure 1-3), Analog to Digital converters,
a Microcontroller, an LCD display and a Bluetooth port(Figurel-4). The
transducer of the RRM is a sensory device attached to the air mask to measure the
temperature of the mask cavity. It is made of a piece of Piezo-electric film and a
signal amplifier. Piezo-electric film is sensitive to both temperature change and
mechanical movement/vibration. The breath transducer is based on a rigid
piezo-ceramic film acting as a change-in-temperature detector located in the
side-wall orifice of a standard supplementary oxygen face mask. The respiratory
rate is displayed on an LCD. The Analog to Digital converter (ADC) is built into
the microcontroller for digitising the amplified piezo signal. A microcontroller
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with built-in timer is used to control the timing of ADC sampling and handle the
Bluetooth communication.

The microcontroller in the main compartment, is a Programmable Interface
Controller made by Microchip Technology, utilizes a 4MHz crystal. The system is
powered by a 9V battery. It has a port for connecting the transducer, a speaker and
a LCD screen to output the internal state and an on/off switch. The serial-port
version has an integrated circuit (IC) chip to handle RS232 communication, while
the Bluetooth version has a Bluetooth component with the IC, antenna and a reset
switch. The transducer compartment houses a Piezo sensor, a low-pass filter
circuit (for Anti-aliasing of the analogue to digital sampling) and an amplification
circuit. The LCD displays the current breathing rate and the battery state.

Figure 1-3: The transducer of the RRM which is connected to a port located on the
upper face of the orange box (Figure 1-2).

Figure 1-4: System Diagram of Electronic Design of RRM
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Figure 1-5: Flowchart of the Operation System of the RRM.

1.4.3. Operating systems of the Experimental Respiratory Monitor
device:

The operating system (OS) of the RRM is written in micro-C and then compiled
into binary code of the specific PIC. On supplying the circuit broad with
electricity, the operating system starts to run (Figure 1-05). When the system
starts, it goes into “sleep” mode. If the user presses the power button, the program
wakes up, clears the registers, initialises the timer, and sets up the peripherals and
I/O pins. After system initialization, the OS sends a pulse to the buzzer to indicate
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that it has been switched on and then displays a start-up pattern on the LCD
display. The OS then reads the external synchronization input and then reads the
ADC for 4 times to average the four values to eliminate noise. The data are then
transmitted through the Bluetooth port to a PC. The OS then will go into an infinite
loop of “reading and transmitting” until the battery runs out or the on/off switch is

pressed again.

1.4.4. The transducer

The transducer of the ERM is a sensory device attached to the air mask to measure
the temperature of the mask cavity. The temperature sensor is made of

piezo-ceramic film.
1.4.5. Piezoelectric ceramics

When a piece of piezoelectric ceramics is stressed mechanically by a force, it
generates an electric charge. If the electrodes are not short-circuited, a voltage
associated with the charge appears. Mechanical compression or tension on a poled
piezoelectric ceramic element changes the dipole moment, creating a voltage.
(figurel-6).
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Figure 1-6i,ii,iii: compression force(iii) and tension force(ii) change the thickness
of the piezo ceramic. Net charges are formed on the top and bottom plane.
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The ceramic element converts the mechanical energy of compression or tension
into electrical energy. Values for compressive stress and the voltage generated by
applying stress to a piezoelectric ceramic element are linearly proportional to the
compressive stress up to a material-specific stress limit. The piezo ceramic was
also been use for the production and detection of sound in microphones and
speakers, generation of high voltages in lighters.

The pyroelectric effect of the piezo ceramic dominates the signal response of the
detection. When hot air blows through the detector, it absorbs thermal energy,
which raises the temperature of the material, thereby inducing an electrical signal.
Piezo ceramic exhibits a current response that depends on the rate of temperature

change.

1.4.5.1. Response of the piezo sensor to a thermal step function

In breath hold radiotherapy, the patients hold their breath for a few seconds. The
radiation beam is on during the breath hold period. The volume of air in the lung
would increase to a level and hold relatively steady for a few seconds and then

back to its original level. This process is a step-up and then step-down sequence.

A thermal flux passes through the piezo sensor in the form of a step function.
Initially, the element is at a uniform temperature, the net charge between the two
piezo plates is zero. When it is exposed to thermal radiation in the rising edge, its
front plate expands, causing a stress induced charge. As the heat flux passes
through the sensor, the sensor tends to return to thermo equilibrium. Therefore, its
rear(second) plate would expand and the net charge between the two films will
decrease. If the duration of the heat flux is long enough (flux duration tends to
infinity), the net charge will not reduce to zero because there is a charge induced
by the leakage of thermal flux from the second film.
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Figure 1-7: The above diagram illustrates the experimental setup of testing the
response of the transducer by heat transfer through radiation. The heat was given
out from the light bulbs and their brightness was controlled by a DAC. Airflow at

room temperature was used to cool the setup

A light-bulb phantom was used to measure the response of the piezo electric sensor
to changes in temperature. The phantom was a black box with a fan and 4
light-bulbs. The fan caused a constant flow of air at room temperature while the
brightness of the light bulbs was variable. The voltage of the light-bulbs was
controlled by a Digital to Analogue Converter. The transducer was placed close to
the light bulbs (~3cm).

The voltage from the transducer and the light-bulbs was measured by an Analogue
to Digital Converter (PICO ADC-11) and the voltage was plotted against time
(represented by the number of samples) as shown figure 1-8. The sampling
frequency was 50Hz.
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Figure 1-8: Step response of the piezo-electric transducer of the ERM.

The magenta trace is the voltage applied to the light bulbs and the dark blue trace
is the voltage of the transducer. Both signals were sampled by an Analog to Digital
Converter. The horizontal axis is the time measured in terms of the number of
samples. There were 50 samples each second.

When the light bulb’s voltage was subjected to a step change, the signal from the
piezo-electric sensor drops to a certain level and then gradually rises back to its

original level (figure 1-8).

The current is discharged through a load resistor connected in parallel with the

piezo sensor.
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1.4.6. Summary of breathing signal detection by the Experimental
Respiratory Monitor device

Figure 1-9 shows how the system operates. The air flow in the air-mask creates a
temperature change on the ceramic film. This leads to a net charge (and potential
difference) created in the piezo film. The potential difference signal is then
low-pass filtered to minimize the effect of the vibration of air flow. It is followed
by power amplification and analogue to digital conversion.

Airflow in the mask

Change of Temperature
induced charges

T

low-pass filtered to minimize the effect of the vibration
caused by airflow

AD conversion

Figure 1-9: The flowchart of interaction between the airflow and the electronic
devices of ERM.
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1.4.7. The controlling software of the Experimental Respiratory
Monitor system:

The ERM's control system and utilities are a set of tools, developed in Java®, which
handle the Bluetooth serial communications, flow control, absolute time
synchronization and data logging. It also displays the input signals for
visualization feedback for the operator.

The ERM sends data to a workstation in the format of “AAA,BB\n”, where AAA
is the reading of the transducer and BB is the respiration rate. The device works on
a fixed sampling rate and does not send any time signal to the workstation. The
data packets are time stamped immediately when they are received by the
workstation. The program runs on a Windows XP workstation with 1.7GHz Intel
processor. The sampling rate of about 10Hz is within the capability of the
processor, despite the multi-tasking behaviour of the operating system. An
investigation was performed to verify the transfer delay between the workstation
and the device. 5 breathing signals each lasting for 2 minutes were obtained by the
ERM. For all the testing data samples received, the time differences between any
subsequent timestamps were within a variation of 4ms. The standard deviation of
the above time differences was 1.03 ms, which was insignificant when compared
to the 100ms sampling period of the device. Any data sample would be rejected if
it showed a deviation larger than 100ms, which is the value of the sampling period.
Hence, the connection between the ERM and the workstation was reliably

synchronized.

3Sun Microsystems, Inc. Santa Clara, California
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2. Development and Applications of the Experimental
Respiratory Monitor (ERM)

The ERM is adapted from a respiratory rate meter. The respiratory rate meter is
designed to detect the zero-crossing of the breathing signal. In order for the device
to be useful for gated radiotherapy, a signal that is correlated with the movement of
the moving object is required. One of the aims of this chapter is to investigate the
characteristics of the sensor, the transducer (which forms an important part of the
device) and the whole monitor system.

2.1. Measurements

2.1.1. How the piezo sensor responds to changes in temperature in the
air mask

Figure 2-1: The bare piezo sensor

Figure 2-2: The J-type thermocouple



49

2.1.1.1. A bare piezo sensor

In order to measure the temperature of the piezo-electric sensor, a thermocouple
was placed next to it in the mask as shown in figure 2-4.1t was a J-type
thermocouple calibrated in a water bath and its potential difference was found to
have a linear relationship with absolute temperature in the range 20° C to 40° C
range (correlation coefficient R=1).

Figure 2-3 shows the relationship between the potential difference and the
temperature of the thermocouple. The piezo sensor used in this experiment was a
bare piezo sensor which did not have a plastic layer protecting the piezo plate.

Voltage of the Thermocouple against the temperature
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Figure 2-3: The temperature and voltage relation between the J-type thermo
couple used in this experiment.

The thermocouple was calibrated in a temperature controlled water bath. The
measurement of the thermocouple was amplified and sampled by an Analogue to
digital converter (ADC). The ADC reading ranged from 0 to 4095, representing
from OV to 2V input range. A reading of 2000 on the horizontal axis represents
about 1V potential difference measured from the output of the amplification
circuit.
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The thermocouple and the piezo sensor were connected to separate operational
amplifier circuits.

6 breathing traces were collected from 2 healthy volunteers. They were asked to
breath normally for 2 minutes. The room temperature was 25° C throughout the
experiment.
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Figure 2-4: Position of the thermocouple and the piezo sensor in the air mask
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Figure 2-5: System diagram of the thermocouple and piezo sensor experiment.The
thermocouple and piezo sensor were put inside the air mask. Their signals were
amplified and then sampled by an analogue to digital converter.
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The phase delay of every session was measured by the cross-correlation function.
Then, the correlation between the thermocouple and the piezo-electric sensor
(after phase shift) were measured and are shown in the table 2-1.

Table 2-1The time delay and the correlation between the thermocouple and the
bare piezo sensor

Delay of Thermocouple (s) Correlation
Volunteer-1 Session-1 0.36 0.82
Session-2 0.40 0.74
Session-3 0.52 0.81
Volunteer-2 Session-1 0.36 0.90
Session-2 0.40 0.85
Session-3 0.48 0.89
Volunteer-3 Session-1 0.27 0.87
Session-2 0.36 0.91
Session-3 0.34 0.75
Volunteer-4 Session-1 0.43 0.76
Session-2 0.46 0.83
Session-3 0.32 0.90
mean 0.39 0.84
SD 0.07 0.06

The bare piezo sensor was then replaced by the transducer of the ERM (figure
2-1). The difference between the bare piezo sensor and the ERM transducer are:
(1) the transducer has a protective layer of plastic to cover up the piezo plate and
(2) the amplifier circuit and the low-pass filter are integrated within the transducer
enclosure. The result of the time delay and the correlation between the
thermocouple and the transducer are shown in Table 2-2:



Table 2-2The time delay and the correlation between the thermocouple and the

transducer of the RRM

Delay of Thermocouple (s) Correlation

Volunteer-1 Session-1 0.40 0.81

Session-2 0.44 0.81

Session-3 0.48 0.79

Volunteer-2 Session-1 0.32 0.80

Session-2 0.20 0.81

Session-3 0.28 0.89

Volunteer-3 Session-1 0.34 0.78

Session-2 0.37 0.81

Session-3 0.47 0.86

Volunteer-4 Session-1 0.48 0.87

Session-2 0.39 0.75

Session-3 0.28 0.82

mean 0.37 0.82

SD 0.09 0.04

As it was not ethical to take x-ray images of the normal volunteers, it was not
possible to relate the signals to internal organ motion. However, the above data
shows that the piezo sensors (both the bare sensor and the protected sensor)
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respond faster to temperature change than the thermocouple. The average time lag

of the thermocouple was 0.39 s (bare)and 0.37 s (protected sensor). The piezo
sensors have an average of 0.84(bare) and 0.82 (protected sensor) correlation

coefficient with the thermocouple.
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Time delay between the thermocouple and the piezo sensor.

There has been an average of ~0.4s of lag in the thermocouple signal. One of the
possible reasons for this relates to the different way of perceiving heat. The
piezoelectric sensor measures the change of temperature (AT), while the
thermocouple measures the Temperature (T). We tried to prove this relationship by
differentiating the thermocouple signal, and find out the time lag. We found the
average time lag of the thermocouple is then -0.03 s (bare) and 0.01 s (protected
sensor). These values are zero within the experimental uncertainty.

The difference in time lag between the bare and the protected sensorare zero
within the experimental uncertainty. Hence, the protective membrane has no
significant effect on the piezo sensor.

The signal of the bare piezo sensor is noisy (an example is shown in figure 2-6a),
but still maintains a reasonable representation of the breathing cycle. To show the
correlation between the two signals, the signals of the thermocouple and the piezo
sensor were filtered by low-pass filter and shifted by a time-lag value (such that

their peaks match each other).
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The original signals of the thermocouple and piezo sensor
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Figure 2-6: The above chart shows the breathing signal obtained from the
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2.1.2. The signal amplifier and noise filter in the Experimental

Respiratory Monitor
2.1.2.1.
C6
n—
e P
Vin Rap |
R Vout (J4-1)
|
E
)Y

Figure 2-7: The lowpass filter circuit of the transducer. A first order lowpass filter
is constructed by putting a capacitor C6 in parallel with the feedback resistor R11.

2.1.2.2. Noise Filter and Anti-aliasing Filter

When air flows past the piezo ceramic film it creates vibrations. These vibrations
are relatively high in frequency (when compared with the temperature change).
The signals of both the air-flow vibration and the temperature are picked up by the
sensor. Since only the temperature signal is of interest, a low-pass filter is used to
remove the air vibration signal. The lowpass filter removes the high frequency
while preserving the breathing signal. The filter also acts as Anti-aliasing Filter to
restrict the bandwidth of the signal prior to sampling by the AD converter.

The circuit broad of the transducer measures 11x11mm? only. Most of the space
has been occupied by the Operational Amplifier chip with Dual In-Line package.
A first order filter was used because of space restrictions in the prototype.
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Although the signal of the piezo-electronic sensor can be processed by the onboard
micro-controller, the amplitude of the noise signal can saturate the input of the
Analogue to Digital Converter of the device. It is therefore necessary to remove
the noise from the signal before the analogue to digital conversion. The low pass
filter circuit is located inside the transducer. It is a first order low-pass filter with
an operational amplifier and a capacitor across the feedback resistor (figure 2-7).
This has the effect as the frequency rises of increasing the level of feedback as the
reactive impedance of the capacitor falls. The impedance of the feedback Xy of the

circuit for a frequency fis:

1

= 1
2TL'fC+E

Xy (2.1)

where R11 is the value of the feedback resistor and C is the capacitance of the
feedback capacitor.

The frequency response for different capacitance values is plotted in figure2-8 for
the frequency range from 0.01 Hz to 10 kHz.
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Frequency response of the low-pass filter
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Figure 2-8: The frequency response of the Operational Amplifier for different
values of feedback capacitor

The frequency of the respiration signal ranges from 0.5Hz (30 breaths per minute)
to 0.1Hz (6 breaths per minute). The system should therefore be linear within this
range. The original 0.1 F capacitor (C6) was therefore replaced with a 1 F
capacitor.
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2.1.2.3. Evaluation of the amplification of the original design

It was found that if the subject breathed deeply the output of the operational
amplifier would saturate (figure 2-9). The peaks and the troughs of the signal
could therefore be significantly distorted.

A breath signal of the ERM of Volunteer9 of the coaching experiment

ERM signal

L L L L L L 1
200 400 600 800 1000 1200 1400 1600
time (samples)

A breath signal of the ERM of Volunteer9 of the coaching experiment

150+

ERM signal

50+ /

| L L
700 800 900 1000 1100 1200
time (samples)

Figure 2-9: An example of the saturation of the breath signal of the ERM. The
upper chart is the full signal. The lower chart is a magnified view of the troughs of
the 700th to 1300th samples.

The amplification of the operational amplifier needed to be adjusted such that the
output is within the range of the supply voltage. R11 was replaced with a 1MQ
variable resistor in the serial port (earlier) version of the ERM. The updated circuit
board is shown in Figure 2-10. It was found that the replacement provided
satisfactory output in the cases of high respiration tidal volume. The Bluetooth
(newer) version of the ERM provides no access to the circuit in the transducer

cavity; therefore, its amplifier circuit remains unchanged.
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Figure 2-10: The circuit board of the modified Transducer. (4)The feedback
Resistor R11, (B) the 1uF feedback capacitor, (C)the connecting wire to the
microcontroller and (D) the connecting wire to the piezo sensor.

2.2. Chapter summary

The Experimental Respiratory Monitor (ERM) was found to have high
correlations with the temperature in the air mask. It has been found that the piezo
sensor of the ERM has no difference in responses time as the thermocouple. The
Noise/Anti-aliasing Filter and the amplification circuit was modified to minimize
distortion. There was no evidence to show any effect of the protective membrane
of the piezo sensor.
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3. Coached and Natural Breathing Study

3.1. Introduction:

Managing respiratory variations for treatment planning and delivery is an
important issue, especially in the treatment of lung cancer patients .Respiratory
motion causes some problems during imaging (Shimizu et al 2001, Vedam et al
2003, van Herk et al 2000, Ritchie et al 1994, Ford et al 2003, Balter et al 1996)
and treatment (Keall et al 2004, Yu et al 1998, Bortfeld et al 2002, Chui et al 2003,
Jiang et al 2003). During CT image acquisition, respiratory motion may cause
artifacts and blurring. Thus, the identification and delineation of the internal
structures would be compromised. Extra margins are added to the target volumes
to ensure adequate dose to the tumour and larger margins are needed where the
target volume is moving. This may lead to normal tissues receiving more dose

when compared with a static internal structure.

The accuracy and application of gating techniques is dependent on the regularity
of the respiratory motion. Respiratory motion varies between cycles, sessions and
patients (see Chapter 1.2: Lung anatomy & respiratory physiology). Breathing
coaching is a solution to improve the reproducibility and regularity of patient
respiration (Kini ef a/ 2003), which in turn will improve the delivery of respiratory
motion compensation techniques and thereby reduce the size of the margins
required. The work performed in this chapter is to investigate the impact of
coaching on the variability of respiratory motion. A novel method of measurement
was applied to measure breathing pattern variations. The breathing pattern
variations of natural breathing and audio coaching (using the Varian RPM system,
Varian Inc., Palo Alto, CA) were evaluated for 9 volunteers. The usefulness of the
ERM for breathing monitoring was also evaluated and compared with the Varian
RPM system.
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Audio coaching involves giving an audio instruction at regular intervals to guide
the patient (or subject) to breathe. The Varian RPM system was setup in the
Clatterbridge Centre for Oncology. The system outputs the audio instruction to a
pair of computer speakers, with a recorded voice giving “breathe-in” and
“breathe-out” messages. The Varian RPM program displays the breathe-in and
breathe-out intervals on the screen. The repetition rate of the audio prompt was
chosen to match the subject’s natural respiration rate without coaching. The rate
would be reduced by the operator if the subject could not keep up with the audio
prompt.

3.2. Regularity of Coached and Natural breathing in Healthy

Volunteers

Healthy people’s breathing behaviour was measured using two respiration
monitoring systems following different protocols. The experiment involved 9
healthy volunteers who were relatives of cancer patients. The average sampling
duration of the datasets was about 200 seconds. The ERM respiratory device and
the Varian respiratory device were used to measure the breathing.

The Varian RPM system tracks the vertical position of a pair of infrared reflective
markers on a small lightweight marker block. The markers are circular with about
Smm diameter. After setting up the patient's position for the treatment, the marker
block is placed on the patient's chest or the abdomen, depending on the magnitude
of the movement. On some of the subjects, the motion of the marker was so small
that the Varian RPM failed to generate an accurate voice coaching. The Varian
RPM system receives live infrared video images of the markers from a CCD
tracking camera. The vertical motion of the markers due to patient's breathing is
then detected and recorded every 1/25 second by a digital image analysis and
video tracking software program running on a Windows XP workstation. We used
a pair of speakers connected to the computer's sound card. The audio prompting
coached the volunteers to breathe-in or breathe-out at periodic intervals.
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3.3. Methodology:

The Varian RPM system was used to monitor the thorax displacement and the
ERM was used to monitor the airflow at the patient’s mouth. An infrared reflective
marker box was put on the thorax of the volunteer, who was also wearing an
oxygen mask with the ERM’s transducer attached. An image of the set up is shown
in figure 3-1.

Figure 3-1: The Infrared reflective marker box of the RPM system) was put on the
thorax of the volunteer who was also wearing an oxygen mask with the ERM s
transducer attached.
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3.3.1. Synchronization:

The ERM device and the Varian RPM system need to be synchronized in order to
compare the signals. The Varian system has no preset synchronization with other
breathing monitoring devices. There is an “Enable gating” button on the user
interface of the RPM program to trigger the gating feature of the system. When it
is enabled, the system triggers the gating pulse. For the interface to the CT
scanner a short pulse is generated by closing a switch on a relay board connected to
the workstation. The time and duration of the pulse is logged in a specific field of
the patient data file. A simple device was created to monitor the triggering signal
from the RPM system so that when the RPM program triggered the CT scanner,
the ERM system could also detect and log the pulse. To achieve this, A PICO
ADCI11* was connected into the parallel port of the ERM workstation. The output
from the relay of the Varian gating system was recorded with an ADC. At the end
of each experiment, there were two pairs of signals, ie (1) the Varian breathing
signal and its corresponding gate triggering signal, and (2) the ERM signal and its
triggering pair. The ERM’s signal was sampled at 10Hz, while the Varian RPM
was sampled at 25Hz. Hence, an up-sampling operation is needed, such that the
ERM signals can be synchronized with the Varian signals. The ERM’s signals
were up-sampled by 2.5 times to match the frequency of the Varian RPM signal.
This was followed by a low-pass filter where a moving average filter with 5
samples-length was used. The two signals were then aligned by referencing to the

CT trigger signals.

A synchronization device was built for this experiment to provide a safe way to
obtain the signal given out by the Varian gating workstation to the CT scanner. The
detailed design and operation of the synchronization of the device is presented in
the Appendix (Chapter 3.7).

In this healthy volunteers study, breathing signals were acquired from 9 volunteers
in coached and natural breathing mode. Each volunteer participated in up to 4
sessions. For the first session, the RPM reflective marker box was placed either on
the chest or the abdomen. For this session, the volunteer breathed naturally (no

*PICO Technology Ltd. UK ADC11.an analog to digital converter connect to the parallel port of a

computer.
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coaching applied). At the end of the first session the Varian RPM system calculates
the period of the subject's respiration. For the second session, audio coaching was
applied. The period of repetition of the coaching was set with reference to the
value obtained in the first session, so that the volunteer was given the audio
coaching instructions based on the frequency of their own breathing. The coaching
frequency would be further adjusted if the volunteer was not able to comply with
the repetition rate of the instructions. The third and fourth sessions were a
replication of the first and second sessions, but the marker block was put on a
different part of the chest. Among the sets of signals from the two marker
positions, the set of breathing signals with larger marker displacement in the
natural breathing mode was used for analysis. However, in some of the sessions,
the displacement of the reflective marker was so small that, the Varian RPM
program was not able to detect a breathing cycle. In such circumstances it would
not be possible to use gating either for the initial CT scan or for treatment. While it
is probable that the tumour motion would be sufficiently small that gated treatment
would not be necessary, the inability to carry out a 4D CT scan would make it
difficult to verify the lack of movement. With the ERM an adequate signal was
always visible.
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3.3.2. Measurements:

The following quantities were measured to evaluate the regularity of the breathing:

3.3.2.1. Variation in Breathing Patterns:

For each subject, the variations of breathing patterns in coached and natural
breathing modes were evaluated using the output of both the RPM and the ERM.
The variation of the respiration signal was measured by a novel metric defined as
the “sum of the standard deviation of the breathing patterns”. Using the Hilbert
transformation, the phase of the signal, x(z), was determined retrospectively.

For a normalized breathing signal x(z), the Hilbert transform is operated by
convolution of x(¢) with the Hilbert kernel $(t) followed by :

S0 =— sl

1
it

The Hilbert instantaneous phase 6[¢] becomes:

H(t) * x(t) (3.2)

o(t) = tan™'( =

,where ‘*’ is the convolution operator. For more information about the Hilbert

Transform, please see Chapter 5.2.2.

The signal was then broken up into a number N, of breathing cycles. In each cycle
i, the signal x; was re-sampled at constant intervals of phase. It was done by linear
interpolation of x; at every phase value 6, for /<g<20. 8, was a linear spaced vector

in the range of — to 7. 6, is given by:

2T
=, o, (3.3)
T+ 20 q

D
-a
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For each value of g the standard deviation g, of the x;(8,) in every breath cycle i
was calculated. g, is given by:

Nt
(x;(8,) — mean(x;(6,)))?
Uq — Zl ( Q) Nt ( Q) (3'4)

where mean(.) is a function to calculate the mean.

The sum R; of all the values of the standard deviation ¢, of the phase slots is
defined as:

R = o (3.5)

Irregularities in respiratory motion patterns lead to higher standard deviation
values. Hence, Ry is a reasonable estimator of the irregularity of the breathing

signal.
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3.3.2.2. Variation in Periods

A single breath cycle is defined as the samples between two neighbouring local
maxima. The breathing period is defined as the mean of time durations of all the
cycles in the signal. A point is considered to be a valid maximum if it has the
maximal value, and was preceded (to the left) by a value lower by the RMS of the
whole signal. After a valid maximum has been found, the algorithm would search

for a trough and iterates until the end of the signal.

3.3.2.3. Delay/Time lag between the Varian RPM and ERM

The time lag between the breathing signal of the Varian RPM and the ERM was
measured by the position of the global maximum of the cross correlation of the
two signals. It is a measure of the similarity of two waveforms as a function of the

time-lag applied to one of them.
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3.4. Results:

Out of the 9 volunteers, Volunteers-7 and 8 were not able to follow the
audio-coaching instructions and fell asleep.

3.4.1. Mean of breathing period:

The mean value of the period as measured by Hilbert phase segmentation of the
breathing signal from the ERM and the Varian RPM is listed in the following table:

Table 3-1The mean period of the breathing signals in natural and coaching mode
of breathing.

Mean of Period (seconds)

Natural Coached
ERM(s) Varian(s) ERMs) Varian(s)
Volunteer-1 5.4 5.3 5.6 5.5
Volunteer-2 7.8 7.8 8.3 7.8
Volunteer-3 3.5 35 5.5 5.5
Volunteer-4 43 43 5.6 5.6
Volunteer-5 5.3 5.3 6.9 6.8
Volunteer-6 4.2 4.3 6.6 6.6
Volunteer-7 5.3 5.2 8.5 8.8
Volunteer-8 8.7 9.3 6.8 6.8
Volunteer-9 6.3 6.3 7.1 7.1

The mean of the breathing period of the 9 volunteers, measured by the ERM,
ranged from 3.5 to 8.7 seconds in the natural breathing sessions.

In the Audio Coached sessions, the mean of the breathing period, measured by the
ERM, ranged from 5.5 to 8.5 seconds.

The mean difference between the Varian and ERM measurements in both coached
and natural breathing mode is 0.1s (with standard deviation 0.2), This difference is

very small and can be neglected.

For the sessions of Volunteers-7 and -8, the subjects had fallen asleep during the
experiment, so that the subjects did not follow the audio instructions.



69

3.4.2. The RMS of the position of the Varian RPM marker & the ERM
signal:

The section of breathing signal during which the subject had fallen asleep, as well
as the section during which the ERM measurement was saturated has been
removed from the signal. The RMS of the breathing signal of the ERM and the
Varian RPM in natural and coached breathing are listed Table 3-2. In coached
breathing mode, 8 out of 9 volunteers had larger respiratory motion measured by
the ERM, while 7 out of 9 volunteers had larger respiratory motion measured by
the Varian system. Volunteer-8 had a decreased RMS of breathing which is related
to the decrease in the breathing period.

Table 3-2 : The RMS of the breathing signals in Natural and Coaching mode of
breathing. The units of the ERM signal are arbitrary and the signal ranges from 0
to 255.

RMS of the breathing signal

ERM (0-255) Varian (cm)
Natural Coached Natural Coached
Volunteer-1 15.0 25.3 0.30 0.36
Volunteer-2 28.5 42.2 0.31 0.36
Volunteer-3 12.9 43.5 0.20 0.28
Volunteer-4 17.2 25.2 0.20 0.24
Volunteer-5 15.9 37.8 0.41 0.39
Volunteer-6 159 25.4 0.18 0.23
Volunteer-7 43.9 523 0.12 0.18
Volunteer-8 84.1 434 0.98 0.80

Volunteer-9 58.3 86.9 0.47 0.75
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3.4.3. The Variations of breathing pattern

Since every volunteer had different RMS amplitude of their breathing signal, the
sum of the standard deviations of the breathing pattern (Rs) of each volunteer was
normalized by the RMS amplitude of their breathing signal. With the fallen-asleep
and saturated samples removed, the normalized “Rs” values of natural and
coached breathing modes measured by the two monitoring systems are shown in

figure 3-2.
(a) The normailized sum of standard deviations of ' (b) The normailized sum of standard deviations of
breathing pattern (Rs) | breathing pattern (Rs)
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Figure 3-2: The comparison of pattern variation in Coached and Natural
breathing: The normalized sum of the standard deviations of the breathing pattern
(Rs) of (a) the ERM and (b)Varian RPM.

From the breathing signal of the Varian RPM, reduction in the variation of the
breathing pattern was observed in the sessions of Volunteer-2, 3, 4, 6, 7, 8 & 9.
From the breathing signal of the ERM, reduction in the variation of the breathing
pattern was observed in the sessions of Volunteer-3, 4, 5, 6, 7, 8 & 9. Audio
coaching generally decreased the normalized Rs values with p=0.049 by ERM and
p=0.026 by the Varian RPM. An example of the improvement in the regularity of
Volunteer-6 is shown in Figure 3-3 where the amplitude is plotted against the
phase. Figure 3-4 plots the amplitude against time. The increase in regularity when
changing from natural breathing (Figure 3-4a) to coached breathing (Figure 3-4b)
can be found on the figure.

The measurements from the Varian RPM and the ERM were not consistent in
Volunteers-2 & 5. The measurements of the two devices were not significantly
differed in Volunteer-2. For volunteer-5, the baseline of the RPM signal drifted by
a small amount in coaching mode, resulting a larger value of R;. However, in
Volunteer 3,4,6,7 & 9, the benefit of audio coaching was significant, with 34% -
65% reduction in the normalized Rs value.
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Figure 3-3: Distribution of breathing signal according to the Hilbert phase.The
amplitude-phase distributions of Volunteer-6 are shown on the above four charts.
The charts on the top were collected from the samples of Natural breathing, while
the charts at the bottom are coached breathing. The blue charts on the left hand
side are the breathing signal collected by the ERM, while the red charts on the
right hand side are the breathing signal collected by the Varian RPM.

(a)Natural breathing (b)Coached Breathing
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Figure 3-4: The breathing signal and its Hilbert phase of Volunteer-6 in (a)
natural breathing mode and (b)coached breathing mode. The blue trace on the top
is the phase of the ERM breathing signal. The blue trace in the middle is the ERM
breathing signal. The red trace in the middle is the Varian RPM breathing signal.
The red trace at the bottom is the Hilbert phase of the Varian RPM breathing
signal. The scale of the phase signals was adjusted, so that they could be fitted into
the same graph. The horizontal axis is the time axis. The signals were sampled at
25Hz
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3.4.4. The time lag between the ERM and the Varian RPM

The time lag between the ERM and the Varian RPM was calculated by
cross-correlation for each session. The results are shown in the following table, in
which a position value represents the ERM signal lagging the Varian RPM signal:

Table 3-3: The time lag between the ERM and the Varian RPM. A position value
represents the ERM signal lagging the Varian RPM signal

The time lag between the ERM and the Varian RPM

Natural (s) Coached (s)

Volunteer-1 -0.32 0.2
Volunteer-2 -0.48 -0.28
Volunteer-3 0.36 -0.52
Volunteer-4 0.08 -0.04
Volunteer-5 -0.16 -0.24

Volunteer-6 0.36 0.2
Volunteer-7 0 -0.52
Volunteer-8 0.24 0.16
Volunteer-9 0.12 -0.04
Median 0.08 -0.04
Interquartile range 0.4 0.44

The time lag of the ERM relative to the Varian RPM ranged from -0.48 to 0.36
seconds in Natural breathing mode and -0.52 to 0.20 seconds in coached breathing
mode. The difference in lag values owes to the breathing behavior of individual

patient.



3.4.5. The correlation between the breathing signals of the ERM and

Varian RPM:

The correlation between the breathing signals of the ERM and Varian RPM is

listed Table 3-4:

Table 3-4 The correlation between the breathing signals of the ERM and Varian

RPM

The correlation between the breathing signals of ERM and Varian RPM:
Natural Coached
Volunteer-1 0.88 0.87
Volunteer-2 0.85 0.75
Volunteer-3 0.66 0.64
Volunteer-4 0.95 0.97
Volunteer-5 0.93 0.82
Volunteer-6 0.74 0.95
Volunteer-7 0.70 0.52
Volunteer-8 0.56 0.85
Volunteer-9 0.96 0.97

The correlation between the breathing signals of the ERM and the Varian RPM
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ranged from 0.56 to 0.96 in Natural breathing mode and 0.52 to 0.97 in coached

breathing mode

Figure 3-5: Breathing signal and its Hilbert phase of Volunteer-3 in coached
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breathing -mode.The breathing signals from the 500™ to 1350™ samples (20s-54s)

are shown on the chart. The blue trace on the top is the phase of the ERM

breathing signal. The blue trace in the middle is the ERM breathing signal. The red
trace in the middle is the Varian RPM breathing signal. The red trace at the bottom
is the Hilbert phase of the Varian RPM breathing signal. The horizontal axis is the

time axis. The signals were sampled at 25Hz, ie 1000 samples represents 40

seconds.
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High correlation was found between the ERM and the Varian RPM breathing
signal in most of the sessions. However, in the sessions of Volunteer-3, the
correlation was 0.66 for Natural breathing (figure 3-5) and 0.64 for coached
breathing. In the case where the volunteer fell asleep, despite the disagreement in
the long exhales (which caused the low correlation), both the ERM and the Varian
system measured the normal breathing very well in the session of Volunteer-7
(figure 3-6).

wo mw  w w0

time (samples)
Figure 3-6: breathing signal and its Hilbert phase of Volunteer-7 in coached
breathing mode. The breathing signals from the 1 400™ 10 3600" samples (70s-144s)
are shown on the chart. The blue trace on the top is the phase of the ERM
breathing signal. The blue trace in the middle is the ERM breathing signal. The red
trace in the middle is the Varian RPM breathing signal. The red trace at the bottom
is the Hilbert phase of the Varian's breathing signal. The horizontal axis is the time
axis. The signals were sampled at 25Hz.
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3.5. Discussion:

All those volunteers who had an increase in breathing period when coaching was
used also had an increase in the amplitude of breathing. The remaining 1 out of the
9 had a reduction in breathing period and a decrease in breathing amplitude.

It may be a result of the body mechanism to maintain a constant supply of oxygen.
An audio coaching rate which is lower than the natural breathing rate would
increase the amplitude of breathing, because the body needs to maintain a constant
supply of oxygen (Priban 1963). As the frequency of gas exchanges decreases, the
amplitude of breathing must increase to maintain the same volume of gas
exchange. Another possible reason is that, when the subject deliberately breathes
in and out, the muscle contracts more rapidly (when compared to Natural
breathing), and it results in a larger breathing amplitude.

Haasbeek et al (2008) studied the 4DCT of 21 patients and found that audio
coaching generally led to an increase in the average total lung volume in the three
end of exhale phases (with the breathing cycle divided into 10 phases). A reduction
in lung volume was only observed in 3 patients. The total tumour movement was
also measured in the 4DCT, in which audio-coaching led to an increase in tumour
movement in most of the cases. The finding of Haasbeek et a/ was in agreement
with our results. By assuming that the motion of the tumour correlates with the
motion of the abdomen, the amplitude of the tumour motion follows the increase
in the standard deviation of the breathing signal. The increase in the volume of the
lung increased the airflow passing over the transducer of the ERM, and the
amplitude of the ERM signal increases.

George et al (2006) investigated 311 breathing signals (using the Varian RPM
system ) from 24 patients. The breathing signals were used to evaluate the residual
motion. The conclusion was that audio-coaching tended to cause the amplitude to
increase as compared with the effects of Natural breathing and Audio-Visual
feedback. Audio coaching also significantly increased the residual motion in
Inhale phase gating. Our findings agree with George et al. Despite the increase in
amplitude when audio coaching is applied, our work is different in that the
regularity of breathing was also evaluated. The variations of the breathing patterns
(normalized Rs) were reduced in most of the volunteer sessions. 4D CT scans,
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which are widely applied in the planning of gated radiotherapy (Starkschall ef al
2004, Shih et al 2004), can help to determine the mean tumour position, tumour
range of motion for treatment planning and the relation of tumour trajectory to
other organs. Since the 4D data construction requires several cycles of respiration,
regular breathing would introduce less artefacts on the 4D image (Ford ez a/ 2003,
Vedam et al 2004b). Coaching can potentially help to maintain regular respiration
during the acquisition. Patients with a regular respiration pattern often exhibited a
corresponding constant phase relationship between the surrogate and the tumour
motion (Vedam et al 2003). Coaching could also help to maintain relatively stable
correlation between the surrogate and the tumour so that gating can be reliably

delivered.

In our experiment, the volunteers found it to be more comfortable to have a slower
than normal rate of breathing. This may be because when the subjects were asked
to breathe in and out they naturally breathed more deeply. This inevitably resulted
in the amplitude increase which is directly proportional to residual motion in gated
radiotherapy. In order to minimize this effect, the operator should choose an audio
coaching repetition frequency which is as close to the natural rate of breathing as

possible.

There were 2 subjects that fell asleep during the experimental sessions. This would
be unlikely to occur in real clinical practice, but a breathing monitoring
mechanism to monitor the regularity of the breathing of the subject is essential. A
breathing monitoring algorithm utilizing the ERM device has been developed in
Chapter-7.2 to address this problem.

The measurements of the ERM and the Varian RPM were mostly in agreement
with each other in terms of the mean breathing period and the RMS value of the
breathing amplitude. Hence, the ERM could be used as a replacement for the
Varian RPM for comparing the stability of breathing. The aim of coaching was to
increase the stability of breathing. With the ERM device, it is possible to determine
whether coaching should be applied to a specific patient and to compare the effect

of different coaching techniques.
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Limitations on Sample size

The original purpose of the healthy volunteer experiment was a pilot study of the
procedures of using the ERM as a breathing monitor. The results showed that the
correlations between the ERM and the RPM was larger than 0.5 (p<0.01) in both
coached and natural breathing. Therefore, this supported the next phase of study of
applying the device on patients (Chapter 4).

Regardless of coaching rate, the coached motions are more regular than natural
breathing (paired T-test on Rg: p=0.02 by ERM and p=0.01 by Varian). However,
one of the volunteers had a reduced rate of coaching, while the remaining 8
samples had increased coaching rates. It was statistically significant to argue that,
with a decreased coach rate, audio coaching increases the regularity (p=0.03 by
ERM) as well as the amplitude (p<0.01). The data was not sufficient to show a
statistically significant difference in the effect of a reduced coach rate.

The above conclusion is based on the assumption that the data are normally
distributed. Owing to the sample number, it is difficult to prove this. In such cases,
the Wilcoxon signed-rank test is used to test the statistical significance on the
differences of the medians. The result of the test shows that the medians differ
(p=0.04 by the ERM).

However, the null hypothesis cannot be rejected for the data (Rs) measured by the
Varian RPM (p=0.08). This suggests that either more data are needed or the Varian
RPM cannot detect differences of this magnitude. The p value is not far away from
the critical value (0.05). Hence, a difference is likely to be found if there were

more samples.
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3.6. Conclusions:

In this study, the breathing signals of 9 volunteers were investigated using the
ERM and the Varian RPM system. Despite the increase in amplitude of breathing,
there was an increase in regularity (ie decrease in normalized Rs) after audio
coaching was applied. The ERM was found to be a good tool to measure the
breathing period and breathing pattern variations. In addition, it is easy to set up
when compared to finding the best position on the thorax to attach the reflective
marker of the Varian RPM system. The ERM signal was also found to be well
correlated with the Varian RPM signals. The breathing signal of the ERM can
represent the End of Inhale/Exhale position as well as having a smooth transition
between the two positions. Hence, it has the potential to be used as a respiratory
monitoring device for triggering the gating signal in gated radiotherapy. An
investigation of this is presented in Chapter 4.
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3.7. Appendix

3.7.1. Synchronization device:

A Synchronization device was designed and built to extract the gating signal sent
out from a logic board in the Varian RPM workstation. The Varian RPM system
generates a gating signal by the PCI logic board to trigger the CT scanner (figure
3-7). The PCI board on the Varian workstation would close and connect pin-1 and
pin-9, which are operated by the relay on the PCI board. The synchronization
device connects the workstation and the CT scanner (figure 3-8). The potential
difference across the coil of the relay of the synchronization device was 12V when
it was closed; and OV when it was open. A variable potential divider was
connected in parallel to the coil of the relay. An Analog to Digital Converter was
connected to the variable potential divider to detect the change in potential
difference. A photo of the device is shown in figure 3-9.

— @
ADDI-DATAAPCI-8 N

| E— cT

Figure 3-7: (upper figure) Normal Connection between the CT scanner and the
PCI logic board on the Varian RPM workstation. When the relay box is not used,
the relay board directly triggers the CT scanner.(bottom figure)
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Figure 3-8: Connection between the CT scanner and the PCI logic broad on the
Varian RPM workstation. When the relay box is used, the relay board triggers the
CT scanner with a secondary relay.

Figure 3-9: A photo of the synchronization device when it is opened. A:relay, B:
connector to the CT scanner, C:connector to the Varian workstation, D:power,
E:output voltage (to the ADC) adjustment, F:connector to ADC



81

4. Fluoroscopy Investigations of the Experimental
Respiratory Monitor (ERM) system in Gated
Radiotherapy

The experiments in Chapter 3 showed that the breathing signals of the ERM were
cyclic and seemingly following the breathe motion. It might therefore be used for
producing gating signals. However, without any information about internal organ
motion, the degree of synchronization between the ERM signal and the internal
motion was still unknown. The synchronization between the ERM and the internal
motions was therefore investigated using tumour and diaphragm motion, which
were determined from digitized fluoroscopic image sequences acquired during

treatment simulation.

In this chapter, the ERM was first evaluated by the correlation of the gating signal
with the movement of internal structures, which were visible in fluoroscopic
image sequences. Secondly, the residual motions of the targets in amplitude gating
were compared using different gating parameters. The aim was to evaluate the
performance of the ERM as a breath monitoring device for gated radiotherapy and
to compare the accuracy of synchronisation of the potential gating signals with

the underlying tumour and diaphragm motion.
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4.1. Methodology

Five patients with lung cancer were included in this study. The subject setup was
the same as in the healthy volunteer experiment of Chapter-3, except that Audio
coaching Visual feedback was provided to Patient-1 by displaying the patient’s
respiratory signal on a small screen mounted near the subject. For each patient,
two fluoroscopy sequences were taken. In the first sequence, the radiation beam
was positioned in the Anterior-Posterior direction. In the second session, the beam
was positioned in the Left-Right direction. The coaching period parameter was set
with reference to the value obtained from the first session so that the patient was
given audio coaching instructions based on their own breathing period. The
coaching instruction period was further adjusted if the patient was not able to
comply with the repetition frequency of the instructions.

4.1.1. Subjects and datasets

For each patient, the internal organ movements were traced in two directions (the
plane perpendicular to the LR and the AP directions respectively). There were 5
patients in total (Table 4-2). One (Patient-1) of the patients had been classified by
the medical consultant as suitable for gating, because the range of movement was
large and the GTV was clearly visible under the fluoroscopy. For this patient the
breathing patterns shown by the Varian RPM system in the free breathing
sessions were irregular, so both audio and visual coaching was used to help the
patient to breathe more regularly. Thus, the movements were recorded in
free-breathing (natural) mode and audio-video coached mode, resulting 4 recorded
image sequences for this patient. In total there werel2 sets of data from the 5
patients. 10 sets of the data sets were free breathing and 2 sets were coached
breathing(Table 4-1).The duration of each data sample ranged from 20 to 30
seconds. One of the patients, Patient #3, had already completed treatment. For this
patient it was difficult to delineate the tumour because the treatment had
successfully reduced the visibility of the tumour. In this case the position of the
tumour was estimated based on the movement of the blood vessels and

bronchioles near the GTV location.
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Table 4-1: Treatment Information of subjects. The above table show the treatment

status of the patient when they participated in the experiment, their tumour

position and their age

Subject Information:

Patient number

Treatment status

Tumour position

Age

1

W A W N

Ongoing
Ongoing
Completed
Ongoing
Ongoing

Right-mid-Lobe
Right-upper-Lobe
Right-mid-Lobe
Right-Lower-Lobe
Right-Lower-Lobe

60
65
80
86
71

Table 4-2: Field directions of Datasets. Patient-1 had both Natural and coached
breathing sessions. For each breathing mode, fluoroscopy images were available
from two beam directions: Anterior-Posterior (AP) and Lateral

Recorded Datasets (session reference number):

Patient number Natural breathing Coached breathing
AP Lateral AP Lateral
1 Dataset-Pla Dataset-P1b Dataset-Plc Dataset-P1d
2 Dataset-P2a Dataset- P2b Nil Nil
3 Dataset- P3a Dataset- P3b Nil Nil
4 Dataset- P4a Dataset- P4b Nil Nil
5 Dataset- P5a Dataset- P5b Nil Nil

The fluoroscopy system was an amorphous silicon flat panel treatment simulator.
When operated with the Varian RPM, it records up to 30 seconds of fluoroscopy
video which is synchronized with the Varian RPM. The patient setup was identical

to the healthy volunteers in Chapter-3.
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4.1.2. Synchronization

The ERM device and the Varian RPM system need to be synchronized in order to
compare the signals. The Varian system has no inbuilt synchronization feature to
connect with other breathing monitoring devices. However, it generates a data file
which logged the displacement of the marker block, the phase, the enable-gating
trigger and the time. The system takes samples at 25Hz and each reading has a
time stamp. The timestamp is the time counts in milliseconds since the user
enabled the marker tracking by pressing the mouse button, which is the trigger to
switch on the image processing process which tracks the position of the reflective

marker block on the infrared image.

A synchronization mechanism was designed for this experiment. APICO ADC11
analog to digital converter was connected to the parallel port of the ERM's
workstation. The input of the ADC was connected to the switch of the button of the
mouse to detect the state of the button-click. The signal obtained from the ADC
was time stamped, so the ERM device can be synchronized with the Varian RPM's

marker block.

The Varian RPM has a frame grabber to capture the screen of the fluoroscope
monitor. A digital clock program (Figure 4-1), which refreshes every 20 ms,
showed the system clock at the corner of the screen of the fluoroscope monitor.
The clock of the fluoroscope control computer and the ERM workstation were
synchronized by Network Time Protocol’before each experiment. The time on
each frame was manually recorded and combined with the target positions.

5 A Visual Basic program was developed for synchronization of system time between two
Windows-XP computers.
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Figure 4-1: A screen capture showing the clock at the lower right hand corner. The
clock is used as a reference of time stamp for the internal motion.

4.1.3. Data Processing

For each session, 3 collections of signals was obtained: the fluoroscopic image
sequence, the Varian RPM system and the ERM signal. The goal of processing the
data was to obtain a set of synchronized signals (in relation to the absolute time):

e the amplitude signal of the two gating modalities,
e the phase signal of the RPM

e the motion signal of the centre of the tumour and the diaphragm.

Figure 4-2: Tracking points of the diaphragm and the centre of the tumour on the
fluoroscopy image. The dot in light blue was registered as the centre of the tumour
and the dot in red was registered as the position of the diaphragm.
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For each image in the fluoroscopy sequence, 1) the centre of the tumour and 2)a
point, usually the highest point in the centre of the diaphragm (Figure 4-3), were
identified by a member of our clinical staff. The tracking of position of the above
two features in each image sequence was repeated three times and then followed

by seven-step moving average filter.

Acuity Simulator
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Figure 4-3: Schematic diagram of the synchronization and data flow of the
different systems involved. The Varian RPM system includes the IR camera,
reflective marker, workstation and the USB mouse. The Acuity Fluoroscopy system
includes the X-ray unit, imaging panel and the control workstation. The ERM
system includes a control workstation with Bluetooth connection, the ERM and a
face mask. The arrow indicates the direction of interaction (a signal transfer from
the end of the arrow to the head of the arrow). The numbers next to the arrows
represents the interaction sequence (the order of interaction) starting from arrow
Number 1 in the upper right corner.
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Three systems were running in parallel while the patient was undergoing
fluoroscopic imaging (Figure 4-4). The system clock of the Acuity Workstation
and the ERM Workstation were synchronized at the beginning of in each session.
The breathing signal was transferred by the transducer to the ERM (Figure 4-4
Arrow #1). The data was sent to the ERM Workstation and time-stamped to the
system clock. (Figure 4-4 Arrow #2) The Varian RPM Workstation captured the
motion of the reflective markers located on the patient’s chest/abdomen. (Figure
4-4 Arrow #3a) When the Varian Workstation triggered tracking of the reflective
marker, (Figure 4-4 Arrow #3b)the same trigger signal was also sent to the ERM’s
Workstation. (Figure 4-4 Arrow #4)The fluoroscopy images were displayed on the
screen of the Acuity Workstation. (Figure 4-4 Arrow #5) A frame grabber which is
part of the Varian RPM system captured the fluoroscopy image from the Acuity
Workstation.

Fluorosopy image sequence
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Figure 4-4: Schematic drawing of the associations and synchronizations of data
series from different systems.
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Figure 4-5: Plot of the dataset of Patient-2 against absolute time. (a)The upper
figure shows the breathing signal of ERM and Varian RPM. (b) The middle figure
shows the original phase of Varian RPM. (c) The bottom figure shows the Tumour
and Diaphragm motion. The Sampling Frequency(Fs) of the dataset was 8.3Hz.

There were 3 datasets collected in each session (Figure 4-5): the fluoroscopic
image sequence, the ERM’s data file and the Varian Data file. The timestamp of
ERM (Tf[n]) and Fluoroscopy (Ti[n]) were absolute time, while the Varian (Tv[n])
was relative time. Tv[n] is the count in milliseconds since the user pressed the
mouse button, which is recorded in mouse-click signal C[n]. There were absolute
time timestamps on every frame of the fluoroscopy image, so the image sequence
can be synchronized with the dataset. An example of the final dataset is shown in
Figure 4-6. Only those signals which are overlapping the motion signals (bottom
chart of Figure 4-6) were used for gating simulation.

4.1.3.1. Internal motion traced by Fluoroscopy imaging

The tracking of the position of the tumour and the diaphragm on the fluoroscopy
image was done manually. In order to decrease the error in identifying points on
the fluoroscopy frames, the tracking was repeated three times. The motions of the
internal structures were measured by averaging the three traces of the internal

structures.
The following signals were recorded:
1. the horizontal motion of the diaphragm,

2. the vertical motion of the diaphragm,
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3. the horizontal motion of the centre of the tumour,

4. the vertical motion of the centre of the tumour.

Excluding the horizontal motions of the diaphragm

Since the diaphragm can be seen as a coronal structure on the anterior-posterior
(AP) view and it mainly moves in the inferior-superior (IS) direction, the change in
position in the left-right (LR) and AP directions would be relatively small when
compared to the IS movement. For this reason only the IS motion of the diaphragm

was studied.

4.1.4. Problems of tumour tracking

The fluoroscopy image is the density of the internal structure projected on the
image plane. The projections of every organ overlap each other. It is not always
possible to identify and outline the position of an organ in the image. Due to the
lack of depth information in the image, we cannot guarantee that the tracking point
is coplanar with the tumour. Thus the tracking point may be in a different position

from the tumour.

The fluoroscopy image sequence was coded using the Intel Indeo video codec,
which is a lossy codec. The compression setting is built into the Varian RPM
software which cannot be modified by users. The delineation of the tumour might
be affected by the artefacts caused by the video codec.
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4.1.5. Unit of measurement of the internal motion

A computer generated grid is projected onto the fluoroscopy image with a grid size
corresponding to 1cm at 100 cm from the radiation source. The amplitude of
movement was measured as a number of pixels in the image. To determine the
amplitude of movement it was necessary to calculate the number of pixels
corresponding to 1cm at 100cm. A correction was applied if the tumour was not at
100cm from the source. The internal motions on the fluoroscopy images were
calculated by dividing the pixel count (length) by the number of pixels
corresponding to one small unit on the cross axis gridline (Figure 4-6). The length
of one small unit on the cross axis gridline represents 1cm. Among all the sessions
of samples, the length of a real object of 1 cm, when projected on the captured
fluoroscopy image sequence, ranged from 15 to 18 pixel count.

Figure 4-6. A screen capture of the monitor screen of the Fluoroscopy workstation
showing the absolute scale of the movement. Each small unit of the ruler
represents Icm at 100cm from the source.

The uncertainty of the motion data Si was estimated by the Root Mean Square
Error of the signal of the 3 delineations. The uncertainty of the motion of the
diaphragm in the sagittal direction was 0.10cm. The uncertainty of the motion of
the tumour was 0.21cm in the sagittal direction and 0.10cm laterally. The values
were obtained by the RMSE of the three delineations (Chapter 4.1.3.1).
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4.1.6. Gating Simulation

We performed a gating simulation using the amplitude gating technique. The 12
datasets of breathing signals and internal organ motions were used. The LANIC
beam systematic latency was assumed to be zero that the computation and control
delay were not taken into account. The latency will be investigated in Chapter 6.
In 10%, 20% 30 % and 40% duty cycle, the residual motion of a point representing

the tumour was evaluated.

4.1.7. Gating windows

In amplitude gating simulation, the beam is enabled when the breathing trace goes
beyond a threshold 7' For gating at the end of expiration (EOE) position, the beam
will be enabled when the signal is lower than 7. For gating at the end of inspiration
(EOI) position, the beam will be enabled when the signal is above T. A suitable
threshold 7 was used for each position (EOE or EOI) of gating and for different
duty cycles. 10%, 20%, 30% and 40% duty cycles were simulated, which were
likely to be the usual duty cycle in clinical practice. The value of the
amplitude-gating threshold 7 was adjusted such that the portion of beam on
time(measured in %) was closest to the chosen duty cycle. The optimum
amplitude-gating threshold 7" for breathing signal x at position ¢ for duty cycle
y is calculated by:

2(G[T,x1)
£(x)

where min() is a function returning the minimum value of the input series, ¢ is a

=)

T|y,q,,X = min(

function giving the length(or the time duration) of an input signal and G, [T,x] is
the residual motion signal when the beam is enabled around the ¢ position (¢
can be either EOE or EOI), x is the amplitude signal of the gating modality.
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The residual motion G, [T,x]é at the extreme position ¢ with threshold T for a

gating signal x = {x;| 1 < i < #(x)} is calculated by:

{x;IVx; <T} for e ="EOE"

Go[T. x] = y
olT.x] {{inin>T} for @ ="EOI"

where “EOE” is the End of Exhale and “EOI” is the End of Inhale gating; x; is the
i™ element of the gating signal x.

4.1.8. Evaluations of the effect of gating

Given a motion series Y(¢) defined as the position of an object over time. The Root

Mean Square (RMS) about its mean position is given by:

N

rms(Y[e]) = Z Siuletics

t=0

where Y[t] is the mean of series Y[¢] and N is the length of the series Y[¢].

The aim of gating is to reduce the residual motion of the tumour when the radiation
beam is enabled. In the form of mathematics, its aim is to reduce the fluctuation of
the motion series. Residual motion is defined as the motion of the tumour when the
beam is enabled. In a conventional treatment without gating, the beam is enabled
during the whole treatment. In gated radiotherapy, the beam is enabled for a
portion of the time (eg: 40% of the treatment duration), and the residual motion is
limited to the motion that occurs when the beam is enabled.

%G[.] is the residual motion in the gating window. An example of G is shown in the bottom chart of

figure 4-7.
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Figure 4-7: This diagram illustrates the formation of the residual motion
series. The blue trace of the upper chart shows the sagittal position(Y-coordinate)
of the tumour of one of the sessions. The vertical axis is the position of the tumour

and the horizontal axis is the time in second(s). The red trace segments of the
upper curve indicate the position of the tumour when the beam is enabled. On the
lower chart, the beam-enable segments are truncated together and form the
residual motion series. The colours (magenta, purple, cyan, green and yellow) of
the segments are used to indicate the truncation of different segments.

In Figure 4-7, the upper trace is the sagittal position of the tumour over time. This
can be called “the Total motion™ of the tumour. The lower trace is formed by the
position (motion) of the tumour when gating is used and the beam is enabled. This
can be called “the residual motion of gating”. The efficiency of the gating
technique can be evaluated by the RMS of residual motion about its mean position

in the gating window.

When comparing the effect of different gating parameters over a group of patients,
the Total motion (RMS of the tumour motion Y; as shown in the blue curve of
Figure 4-8) was used as a factor for normalizing the residual motion of gating.
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When the relative Root mean square value (rRMS) of motion is zero, gating
removes all the motion of the target. When the relative standard deviation of
motion is one, gating makes no difference as gating is disabled. The relative
standard deviation of motion of gating rRMS of an internal motion y; using

gating modality x; is defined as:

_ Std( G(yit xs))
— std(yy)

where std() is a function returning the standard deviation of a series, y; is the

rTRMS

series of positions of the internal structure, G (y;, x5) is a series of residual

motion of gating when X, is used as the breathing signal.

For tumour motion, the relative standard deviation of motion rRMS is calculated

by:

Vstd( G(yrx, x5))? + std( G(Vry, Xs))?
Vstd(yrx)? + std(yry)?

where std() is a function returning the standard deviation of a series, yry is the

TRMS =

series of horizontal positions of the tumour, y;y is the series of vertical positions
of the tumour, G(ypy, X;) is the residual horizontal motion of gating when x; is
used as the breathing signal and G (ypy, ;) is the residual vertical motion of

gating when x; is used as the breathing signal.
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4.2. Results and Discussions:

4.2.1. Internal motion

Figure 4-8 shows the RMS of motions of internal organs in all the 12 sessions

measured by the fluoroscopy image sequences.

RMS of organ motion
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Figure 4-8: Motion of internal structures of 12 sessions. The RMS of Diaphragm-Y
Inferior-Superior, Tumour-X (LR, AP) and Tumour-Y Inferior-Superior motions
were shown.

The RMS value of the motions of the diaphragm ranged from 0.38 to 1.42 cm
vertically. The RMS of the horizontal tumour motion ranged from 0.03 to 0.20cm
(LR) and 0.05 to 0.13 cm(AP). The RMS of the vertical tumour motion ranged
from 0.12 to 0.83cm.

Among all the datasets, extreme positions and fields, the RMS of IS motion of the
diaphragm were larger than those of the tumour. The diaphragm’s IS motion is on
average 209% of the tumour’s IS motion averaged over all natural breathing
sessions. Patient-1 exhibited the largest amplitude internal motions. The average
RMS of IS motion of the tumour and diaphragm of Patient-1 is 274% of Patient-2.
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The result implies that the room for reducing residual motion of the residual
motion of the tumour in the IS direction is large. In comparison with the magnitude
of the IS motions, the horizontal motions (AP and LR) were not large. In Patient-4
(dataset-P4a and P4b on Figure 4-8), the tumour was located close to the
diaphragm (Figure 4-9). The RMS amplitude of tumour IS motion was close to
that of the diaphragm. It was therefore more likely to benefit from motion
compensation techniques, due to the relatively large diaphragm movement.

Figure 4-9: The location of tumour of Patient-4 was close to the diaphragm. As a
result, the IS motion magnitude of the diaphragm was similar to that of the tumour.

4.2.2. Correlation of the ERM signal with the motion of internal
structures

The delay and the correlation coefficient of the internal motions for the two
different breathing monitoring devices are shown in Table 4-3 and Table 4-4. The
values shown are the mean and standard deviation over all the 12 sessions of

dataset.
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Table 4-3: Delay of internal organ motions and different breathing monitoring
devices (ERM and Varian RPM).The values are measured in seconds and a
positive value means the time the device is lagging behind the internal motion.

Delay of internal organ motions and breathing monitoring devices

Organ (direction) ERM (mean £SD) Varian (mean +SD)
Diaphragm (IS) 0.25+0.12 0.12+0.14
Tumour (LR) 0.18 £0.10 0.06 £0.10
Tumour (AP) 0.32+0.10 0.18 £0.15
Tumour (IS) 0.34 +£0.11 0.20 +0.16

Table 4-4Correlation coefficients of internal organ motions and different
breathing monitoring devices (ERM and Varian RPM).

Correlation of internal organ motions and breathing monitoring devices

Organ (direction) ERM (mean £SD) Varian (mean £SD)
Diaphragm (IS) 0.87 +0.07 0.96 +0.04
Tumour (LR) 0.69 +0.12 0.73 +0.13
Tumour (AP) 0.67 +0.18 0.67 +0.25
Tumour (IS) 0.81+0.07 0.90 +0.09

Both breathing monitoring systems showed a significant time lag with respect to
the internal motion. The ERM has a mean lag as large as 0.14 seconds behind the
Varian RPM system. The tumour has a mean time lag of = 0.07 seconds
(depending on the direction) compared to the diaphragm.

There were 2 sets of data for each patient (4 datasets for Patient-1). Comparing the
time lags within different datasets of any patient, the “breathing signal to motion
signal” time lags were within 0.12 second in 4 out of the five patients. That means,
the breathing monitors could maintain a stable synchronization with most of the
patients. If a prediction algorithm were used it may be possible to compensate for
the delay.
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4.2.3. Variations of End of Inhale and End of Exhale positions

The variations in the extremes of movement were measured by the standard
deviations of the EOE and EOI positions of the diaphragm and tumour motions.
The results are shown in Figure 4-10. On the average, EOI had larger variations
than EOE: 0.26 versus 0.11c¢m on the diaphragm and 0.17 versus 0.12cm on the of
tumour (IS) motion.

Variation of EOE and EOI positions (standard deviation cm)
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Figure 4-10: Standard Deviation of position of End of Inhale and Exhale positions
of the diaphragm and tumour.
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4.2.4. The impact of audio coaching visual feedback of Patient-1

Patient-1 had been audio coached with visual feedback. The study enabled us to
compare the impact of the audio-coaching visual feedback technique with natural

breathing.

According to the displacements of the diaphragm and the trajectory of tumour (P1a
vs P1cand P1b vs P1d in Figure 4-8), the RMS of the total motion was reduced by
a significant amount in all directions (Table 4-5).

Table 4-5: Reduction of Internal motions (RMS) when AV coaching was applied in
two sessions of different imaging fields.

Percentage Reduction of Internal motion (RMS) by AV coaching

AP field Lateral field
Organ (direction) % reduction Organ (direction) % reduction
Diaphragm (IS) 27% Diaphragm (IS) 36%
Tumour (LR) 65% Tumour (AP) 42%
Tumour (IS) 44% Tumour (IS) 20%

AV coaching reduced the variations of the EOI positions in the IS direction of both
the tumour and the diaphragm. The reductions are showed in Table 4-6. However,
there was no significant reduction in the variations in End of Exhale. The

reductions of variations are shown in Table 4-7.

Table 4-6: Reduction of EOI variations when AV coaching was applied in two
sessions of different imaging fields.

Reduction of EOI variations (cm)

AP field Lateral field
Organ (direction) % reduction Organ (direction) % reduction
Diaphragm (IS) 78% Diaphragm (IS) 60%
Tumour (LR) 23% Tumour (AP) 16%

Tumour (IS) 77% Tumour (IS) 31%
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Table 4-7: Reduction of EOE variations when AV coaching was applied in two
sessions of different imaging fields.

Reduction of EOE variations

AP field Lateral field
Organ (direction) % reduction Organ (direction) % reduction
Diaphragm (IS) 6% Diaphragm (IS) 12%
Tumour (LR) -4% Tumour (AP) 71%
Tumour (IS) 24% Tumour (IS) 7%

4.2.5. Amplitude Gating Simulation

For a 20% duty cycle, the ERM reduced the average RMS amplitude of the
diaphragm residual motion (over the 12 datasets) from 0.81cm (non-gated) to
0.33cm for EOI gating. When gating in the EOE position, the averaged RMS
amplitude of the residual motion with gating was 0.26cm. The residual motion

increased as the duty cycle increased.

The means (of 12 datasets) of the rRMS amplitude of the residual diaphragm and
tumour motion across different duty cycles are shown in Figure 4-11a (for EOE
positions) and Figure 4-11b (for EOI positions).

Both the Varian RPM and the ERM were effective for reducing residual motion,
while the Varian RPM had an average of 10% further reduction in the rRMS.
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Mean rRMS of target motion using ERM and RPM systems: EOE
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Figure 4-11: This diagram shows the mean of the rRMS amplitude of the residual
diaphragm and tumour motion across different duty cycles using the ERM and
Varian RPM systems. The height of the bars represents the % rRMS value. Bars
are grouped into different duty cycles. The colour of the bar representing the kind
of monitoring system and the phase position of gating. The error bars show one
standard deviation. (a)Mean rRMS in the EOI position, (b) Mean rRMS in the

EOE position.
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Effects of Large (40%) and small (10%) duty cycle on the tumour motion in
the SI direction.

Residual motion in EOE

The average difference between a 10% and a 40% duty cycle was 17%+ 9%
(measured by both devices).

Residual motion in EOI

The average difference between a 10%-duty-cycle and a 40%-duty-cycle was
28.1%+12% (measured using the ERM system) and 26%+10% (measured using
the Varian RPM).

The differences in the rRMS for large and small duty cycles ranged from 5% to
60% rRMS, suggesting that some patients were more likely to benefit from low
duty cycle, while for some of them the size of the duty cycle did not have
significant impact (under the assumption that the tumour amplitudes are similar).

Table 4-8: The difference of rRMS between EOE and EOI measured by ERM and
Varian RPM. A positive value indicate EOE has larger residual motion The value
following the + signs is the SD

Difference of rRMS residual motion of Tumour IS motion between EOE and EOI

Duty cycle Reduction
ERM Varian
20% -4%+18% -7%+18%
30% -8%+19% -11%+20%
40% -14%+19% 15%+19%

Gating in Exhale and Inhale

For duty cycles between 10% and 30%, EOE and EOI showed no significant
difference. For higher duty cycles (40% duty cycle), the difference between EOI
and EOE was also not significant, with an average 15%+20% more reduction. The
different is caused by the variation in the EOI positions. An example of EOI
variations of Dataset-P2a in 20% DC is shown in figure 4-12. In the dataset, the
EOI positions have larger variations when compared to the EOE positions.
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Varian RPM_Data-P2a_20%:Plot of Breathing Signal Motion and Gating Pulse
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Figure 4-12: The variations of EOL The Varian signal is shown in magenta and
the gating signal by the red squares.
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Figure 4-13: This diagram shows the RMS of the tumour motion with gating using
the ERM and Varian RPM systems at the EOI position for a 20% duty cycle.
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For most of the datasets, the differences in residual motion between the Varian and
the ERM systems were not significantly different. There were some datasets which
the difference in residual motion between the Varian and the ERM was significant.

To avoid repetition, the discussion here is focussed on the residual motion for a
20% duty cycle (figure 4-13). On average, the Varian RPM produces lower
residual motion than the ERM (p=0.02). In particular, the difference between the
two monitoring systems was large in Dataset-1a 4a and 5a. On average, in those
datasets, the Varian RPM outperformed the ERM by a margin of about 0.15cm, but
for the other datasets, the two systems produced equivalent results. The effect of
the time lag between the two respiratory monitoring systems is shown in Figure
4-15.and Figure 4-12. The monitor signal (magenta curve) is shown in figure 4-15,
the delay of the ERM signal (4-15a) caused the gating signal to be delayed relative
to the motion, while the Varian RPM signal (figure 4-15b) was aligned accurately
with the motion signal (blue curve).

The difference (ArRMS) of rRMS between the ERM and the Varian RPM versus
the phase difference (At) between the two systems is shown in Figure 4-14. For
each dataset, ArRMS is defined as the residual motion rRMS of the ERM minus
that of the Varian RPM; while At is defined as:

At= the systematic delay between the Varian RPM and the tumour SI motion
- the systematic delay between the ERM and the tumour SI motion

The correlation coefficient between (ArRMS) and (At) was 0.67 (p=0.017) in the
EOE and 0.83 (p<0.01) in the EOI. The correlation between ArRMS and At are
shown in figure 4-14.
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Figure 4-14: The relationship between the systematic delays and residual motion

in 20% duty cycle on the EOE position.
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Figure 4-15: A comparison of the monitor signal and amplitude gating signals
between the ERM and the Varian RPM system for a 20% duty cycle on the EOE
position. (a) shows the ERM s signal in magenta and the gating signal in cyan. (b)
shows the RPM s signal. A delay is apparent in the ERM figure, in which the gating
signal is shifted slightly towards the right hand side.
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The ERM’s breathing signal has an average delay of about 0.22+0.11 seconds
compared to the diaphragm and 0.31+0.11 seconds compared to the tumour IS
motion. As a result, the gating window did not include positions which were most
stable during the breathing cycle. Another example of a systematic delay is shown
in Figure 4-16, where the ERM’s breathing signal (magenta in the upper chart) has
a delay in relation to the diaphragm (blue in the upper chart), so that the gating
window (cyan in the upper chart) is shifted towards the right hand side of the EOE
position.

ERM_Data7_20%:Plot of Breathing Signal Motion and Gating Pulse
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Figure 4-16: A comparison of the monitoring and gating signals for amplitude
gating between the ERM and the Varian RPM system. The upper figure shows the
ERM s signal in magenta and the gating signal in cyan. The lower figure shows the
RPMs signal. A delay can be seen in the ERM figure, in which the gating signal is
shifted slightly towards the right hand side.

To compensate for the systematic delay of breathing monitoring systems,
prediction algorithms can be deployed to compensate for the delay. To estimate the
effect of the systematic delay, the ERM signal was shifted with certain delay D; for
each dataset-i. D; was obtained from the delay between the breathing signal and
the internal motion in another dataset of the same patient. The rRMS of the
residual motion using amplitude gating was evaluated for the shifted breathing
signal. The results are shown in Figure 4-17. On average, we found that the time
shifted signals could reduce the rRMS residual amplitude by an additional 4% to
12%. It was concluded that it would be possible to reduce the residual motion



amplitude if prediction algorithms were used to compensate for the delay. A
further investigation of prediction algorithms is in chapter 6 of this thesis.
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Figure 4-17: The blue bars are the mean rRMS organ residual motions over 12
datasets using amplitude gating without any delay compensation, while the red

bars are delay compensated. The potential improvement associated with

prediction algorithms is shown by the differences of each pair of bars. (a) Tumour

EOE, (b) Tumour EOIL
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4.3. Conclusion of the ERM in fluoroscopy study:

The results of gated radiotherapy simulations and the correlation between the
breathing signal and the internal motion support the argument that the ERM was
capable of reducing the amplitude of the motion of the target when the radiation
beam was enabled. The degree of residual motion reduction associated with the
ERM was than with the Varian RPM system in amplitude gating. This was because
on the average, 1) the ERM has relatively lower correlation with the internal

motion with the tumour and diaphragm, 2) the systematic delay.

For most of the patients, the EOE position has greater reproducibility, and
therefore, gating at the EOE position yields lower residual motion. In Patient-1,
audio and visual coaching significantly reduced the variation of the EOI and EOE,
while the amplitude of total motion of the tumour was mildly reduced. As a result,
the residual motion in amplitude gating was reduced by applying both audio and
visual coaching.
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5. Phase algorithm for ERM

5.1. Introduction

The ERM is sensitive to the rate of change in temperature. Therefore, if the
respiratory frequency increases (and the amplitude of breathing remains
unchanged), the amplitude would also increase. As a result, the amplitude of the
breathing signal of the ERM may not be a good estimate of the tumour position of
the internal organ. In such conditions, using phase gating may be more efficient

than amplitude gating.

In respiratory gating, a reliable phase representation of the breathing motion is
essential for the efficiency of gating. This is because the radiation beam is
controlled by the gating signal and the gating signal relies on the phase signal
which is derived from the amplitude of the breathing surrogate. The algorithm
which is used to derive the phase from the amplitude signal of the surrogate affects
the amount of residual motion reduction. For an absolutely noise-free and regular
signal, the definition of phase is straight forward; one can measure the repetition
duration between cycles and divide the lap time into equal portions. The portions,
representing the state of the signal in a cycle, become the phase of the signal.
However, in medical applications, especially for respiratory signals, the definition
of phase is ambiguous, because the signal contains noise. When the noise distorts
certain features of a signal, the phase is not easy to define. The variations of the
EOE and EOI positions in a breathing signal are good examples of noise distortion

in a breathing signal.

In this chapter, different approaches to Phase algorithms are investigated. An
approach using the Fourier Transform and an approach using an Extended Kalman
Filter (EKF) were investigated for deriving the gating signal for respiratory gating.
The 12 datasets of the 5 patients of Chapter-4 were used to evaluate the

performance of the phase algorithms.
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5.2. Different Phase algorithms:

Most of the experiments rely on the built-in phase algorithm of the respiratory
monitoring device to obtain the phase (George et al 2006, Chi et al 2006).
Seppenwoolde et al (2002)analysed the hysteresis of tumour motion in different
directions. The tumour motion was modelled by a power of 2n sinusoidal signal
cos™(.), where n is a positive integer. The algorithm starts with identifying
individual breathing cycles automatically by setting thresholds. For each
individual breathing cycle, the amplitude, the position ofthe tumour in the inhale
and exhale phases, the average tumour position, and the length of the breathing
cycle were measured. The position s of the tumour as a function of time ¢ can be

defined as follows :
t
s(t)=so—S 6052"(7 - ¢)

where s is the position of the tumour at exhalation, S is the amplitude, and hence
s¢-S is the position at inhalation; 7 is the period of the breathing cycle in seconds,
and ¢ is thestarting phase. This parameterized breathing curve was fitted (using a
least-squares method) through each average breathing cycle. However, it is
difficult to perform curve fitting in real time, because the period and the amplitude
of the current cycle is not known until the completion of the cycle.
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5.2.1. Natural phase

Bogoliubov & Mitropolski(1961) developed a systematic approach to relate the
amplitude and phase dynamics to the dynamics formulated in original phase
space. The definition of an (instantaneous) phase proceeds by expressing the

position x and the velocity v in polar coordinates Ay and ¢ n:

x(t) = Ay(t)cos(¢y (1)) (5.1.1)
And
x(t) = v(t) = —wAy(t)sin(¢y(t)) (5.1.2)

aon

where 1 ]
, where @ 15 —-

It should be noted that a meaningful clockwise rotation in the x-v plane
determines angles to be measured in a specific way depending on the sign of @

The polar coordinate representation of the system is:

ve(t) (5.1.3)

w?

An(®) = [x2(t) +

20

Du(D) = tan” (= 2

(5.1.4)
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(a)Breathing signal x and derivative dx/dt
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Figure 5-1: The Breathing signal and the Natural Phase. (a)The upper chart is the
respiratory signal x of a volunteer and its derivative dx/dt. (b)The second chart is
the natural phase without a zero-mean x and proper weight between the two
components x and dx/dt. (c)The third chart is the Natural Phase signal with a
zero-mean x, but not properly weighted. (d)The fourth chart is the Natural Phase
signal with a zero-mean x, and properly weighted x and dx/dt.

In order for the phase to be usable for radiotherapy, phase angles should be
distributed linearly from — 7 to + 7 for a regular breathing signal Hence, the x(z)
and v(z) components need to have zero mean and be weighted. A weight factor w
is needed to balance the range of the numerator and denominator (in equation
5.1.4), such that their ranges are identical. If they are not, there will not be proper
phase representation. An example is shown on figure 5-1. Suppose we have a
breathing signal x and its derivative v=dx/dt (figure 5-1a). If the breathing signal
does not have zero mean, the range of the phase angle would be too small and
sometimes it progresses backwards (an example is shown in figure 5-1b, where
d6/dt < 0 in the exhale phases). The physical meaning of a progresses backward
phase is undefined. If the weight does not properly balance the ratio between x
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and v, the phase progression would not be linear (figure 5-1c¢). A proper phase
representation of Natural Phase is shown in figure 5-1d.

The instantaneous phase of Natural Phase is given by:

&) = arctan[-x(—);(tz—f -w] (5.1.5)

where x(t)and x(t) are the breathing signal and its derivative respectively, X
is the mean position of x(z) and w is a constant for balancing the weight of

x and x.

Breathing Signal, Derivative and Natural Phase
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A
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Figure 5-2: The Natural Phase. (a)The upper chart is the respiratory signal x of a
volunteer which exhibited a relatively non-smooth breathing pattern. (b)The
middle chart is the derivative dx/dt of the breathing signal. (c)The bottom chart is
the Natural Phase signal. The signal was obtained by the Varian RPM system over
a 1 minute sampling session. The first 12 seconds of the signal are shown here.
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Since w is a constant, the phase is totally dependent onx(t)and x(t). In discrete
signals, X(t) is often calculated by x(?)-x(z-1). The phase will totally depend on
the ratio of x(z-1) and x(t). The Natural phase algorithm is simple to operate,
because only the current and the previous value of the breathing signal are
needed to calculate the current phase. However, such simplicity makes it more
sensitive to small and short term(high frequency) fluctuations in x(t). In a
breathing sample (figure 5-2a) obtained from a healthy volunteer, the derivative
of the breathing signal was not smooth (Figure 5-2b). In this case, the high
frequency fluctuations in the derivative were relatively high and the breathing
signal x(t) is far from a smooth sinusoidal signal. As a result, the natural phase is

not a smooth and linear progressing function (figure 5-2c¢).

The problem of Natural Phase is that the instantaneous phase is derived by the
ratio of the current value and its derivative. Hence, even if the breathing pattern is
perfectly regular, the progression (d6/dt) of the phase over time may not be
constant. This results in the phase value not reflecting the stage of breathing.
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5.2.2. Hilbert Phase /Analytic signals

The Hilbert transform offers a way to relate the signal x(¢) to an instantaneous
amplitude and a phase. It has been used in chaotic systems for phase
synchronization analysis (De Shazer et a/ 2001, Rosenblum et a/ 1996, Freund et
al 2003). Analytic signals are signals without negative-frequency components.
Hilbert Transformations are used to convert a real signal into an analytic signal. It
is a system which produces the imaginary component bya phase shift of n/2 related
to the real component. More specifically, if the input (figure5-3a) is a sinusoidal
signal x(f)=sin(wt), the output of the Hilbert transform y would be y(¢)=sin(wt +
7/2) and the analytic signal x* of x is x“(¢t)= sin(wf)+ jcos(wt).

The phase can be extracted from the polar expression of the analytic signal x“(¢)=
|A(7)| €, where A is the amplitude and wf is the phase. The transformation was
calculated by finding the Discrete Fourier Transform of the input sequence,
replacing the output coefficients that correspond to negative frequencies with
zeros, and following this by the inverse Discrete Fourier Transform.

Hilbert Transform
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Figure 5-3: Hilbert Transform hx(red trace) of its original signal x. (a) sinusoidal
signal (blue trace); (b)a square pulse (blue trace). The y-axis is the amplitude and
the x-axis is the time axis.
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5.2.2.1. Hilbert Transform

The aim is to find two orthogonal components to form a vector, which when time
progresses, the vector goes around the origin. When the signal reaches the
beginning of another cycle, the vector would have rotated a full circle about the
origin.

To introduce the Hilbert transform, we start with two fundamental harmonic
waves: the sine and cosine waves. The cosine spectral amplitudes are both positive
and lie in the real plane (figure 5-4). The sine wave sequence has spectral
components that lie in the Imaginary plane and are of opposite sign. If a sine wave
sequence and cosine wave sequence combine and form a vector, the vector would
go around the origin as described in the previous paragraph. Suppose the breathing
signal is a cosine wave, the aim would be to derive a sine wave sequence.

In the Hilbert Transform, the negative frequency component of the cosine rotates
by +n/2, while the positive frequency component rotates by -n/2. In other words,
the positive component is multiplied by —j, while the negative component is

multiplied by j.
Imag
4
! H
+7 | , Real
>
/—*/" -~ - .\‘ w

Figure 5-4: Hilbert Transform: Rotating the frequency components to create a sine
wave out of a cosine



117

By the Hilbert transform, all negative frequencies of a signal get a +n/2 phase shift
and all positive frequencies get a -n/2 phase shift. For any signal x(¢) in the Time
Domain, its Hilbert Transform has the following property

| forw >0,

Ji forw <0 (5.1.7)

H(X(w)) = —j sgn(w) =

where § /] is the Hilbert Transform operator, X (w) is the Fourier
transformation of x(¢), w is in unit of frequency.The frequency components plot
of the transform system is shown in Figure 5-5b.

Real Imag

, Imag

Wy > i T,
*time - I N

(a) (b)

Figure 5-5: The Hilbert transformation impulse response function in (a) time
domain and (b) frequency domain. Hilbert Transform shifis the phase of positive
frequencies components by -m/2 and negative frequencies components by +m/2.

5.2.2.2. Hilbert Phase:
The analytic signal approach extends the real signal x(¢) to a complex one

with the imaginary part y(¢) resulting from an appropriate transformation of the
real part x(¢). Instead of taking y(t) = c - x(t)as for the natural phase algorithm,
¥(2) is the result of a convolution of x(¢) with the Hilbert kernel $:
1
A = e (5.1.8)
51 ==

The Hilbert instantaneous phase becomes
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55["(0]) (5.1.9)
x(t)

84 = tam~1(

where $[] is the Hilbert transform operator.

An analytic signal x*(z)can be computed by DFT. The DFT transform X" (w) of
x*(t) is given by:

2X(w)  forw >0,
X4(w)=1{ X(0) forw=0, (5.1.10)
0 forw <0

where X(w) is the DFT of x(t).

The Hilbert transform is suitable for deriving the phase for signals which exhibit a
lot of irregularity where it is not clear how to define the phase (Freund et a/ 2003),
and it is simple to operate from the signal processing point of view. This is because
from Equation 5.1.0, the instantaneous phase can be calculated by computing its

Discrete Fourier Transformation, zero substitutions, followed by inverse DFT and

inverse tangent operation.
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5.2.2.3. Edge Distortions

The transformation function of the Hilbert transform 4 with A(t) = 1/(mt) is a
non-causal filter (figure 5-5a). When causality is ignored and the input length of
the transformation is infinite time, the variation of the instantaneous phase of the
peaks and troughs appears small. Therefore, it has been widely used for
retrospective analysis of time series.

One of the approaches to use Hilbert Transformation for real-time phase
estimation is to select a wave segment for input. This is known as the windowing
technique (or overlap technique as described in Rabiner 1975), which specifies a
window as the input for Fourier Transformations. The Analytic signal approach
utilizes the Discrete Fourier transformation (DFT), so it is also subject to the
limitations (and related solutions) of the DFT.
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Figure 5-6a: The upper chart is a sine wave with a period of 4 seconds sampled at
25Hz sampling frequency. Four full harmonics of 400 samples were taken for the
Fourier Transform. The spectrum is shown in the bottom chart, where a sharp
component of 0.25Hz is found.
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Figure 5-6 b: The upper chart is a sine wave with a period of 4 seconds sampled at
25Hz sampling frequency. 360 samples were taken for the Fourier Transform,
accounting for 3.6 harmonics. The spectrum is shown in the bottom chart. The
spectrum of the signal is spared around the 0.25Hz.
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Figure 5-7: The upper chart is a sine wave with a period of 4 seconds sampled at
25Hz sampling frequency. With the frequency components corresponding to
0.25Hz removed. 360 samples were taken for the Fourier Transform, accounting
for 3.6 harmonics. The spectrum is shown in the bottom chart.

The window size is an important factor in controlling the amount of distortion. For
every segment of signal, the Fourier Transform works as if the data were periodic
for all time (Rabiner 1975).Figure 5-8 shows the scenario measuring a signal for a
period of time incorporating a few cycles (as for the windowing technique); the
DFT works as if the data were periodic for all time. In Figure 5-8a, it happens that
the signal is periodic and regular, but an integral number of cycles does not fit into
the sampling window. (The sampling duration is shown in figure 5-8b). This
means that, when the DFT assumes that the signal repeats (figure 5-8c), the end of
one signal segment does not connect smoothly with the beginning of the next - the
assumed signal is similar to the actual signal, but has 'glitches' at regular intervals.
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If an integral number of cycles fit into the total duration of the input of a Fourier
Transformation, then when the transform assumes the signal repeats, the end of
one signal segment connects smoothly with the beginning of the next and the
assumed signal happens to be exactly the same as the actual signal. An example of
this is shown in Figure 5-6a, where the window size is a multiple of the period of

the signal.

The real siusoidal signal  (8)

0 200 400 600 800 1000
Time (samples )

Segmented window |

The Fourier Transform {DFT) works as if this is the input. ()

0 200 400 600 800 1000
Time {(samples)

Figure 5-8: Assumption of Fourier Transformation. (a)The sinusoidal wave is a
real signal, which has infinite duration. A window is defined for segmenting the
real signal for real time processing. (b)The input signal (the middle sinusoidal
wave) is periodic - but an integral number of cycles does not fit into the total
duration of the measurement. (c)Hence, when the Fourier Transform assumes that
the signal repeats, the end of one signal segment does not connect smoothly with
the beginning of the next - the assumed signal is similar to the actual signal, but
has little 'glitches’ at regular intervals.

If not quite an integral number of cycles fit into the total duration of the
measurement, then when the Fourier Transform assumes the signal repeats.
However, the signal segments do not cascade smoothly. An example of this is
shown in Figure 5-6b, where the window size is not an integer multiple of the
signal period. In this case, the window size is 360 samples, while the period of the
signal is 100 samples (0.25Hz frequency). A extended spectrum is observed in the
bottom chart of Figure 5-6b. To show the effect of the window size mis-match, the
frequency component of the 0.25Hz sinusoidal signal is removed from the
spectrum, as shown in the bottom chart of Figure 5-7. The signal is reconstructed
from its spectrum and shown in the upper chart of Figure 5-7. The reconstructed
signal is the sum of all the harmonics excluding the 0.25Hz frequency. Due to the
relatively high power (Figure 5-8) over the two tails, it distorts the representation
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of the phase at the two tails of the signal because the phase representations are
affected by the dynamics of the extended frequency components which are far
different from the original frequency (0.25Hz) of the real signal.

Cascading the DFT window
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Figure 5-9: The input signal of the DFT. The DFT assumes the signal repeats. The
transformation windows are cascaded (connected together) one by one. The end of
one signal segment does not connect smoothly with the beginning of the next. The
little 'glitches’, are connection positions, marked with black arrows.

In gated radiotherapy, the phase of the breathing signal is derived in real time (or
close to real time, but with a certain delay). The transformation window always
starts at a certain time in the past and ends at the current moment. Only the
instantaneous phase is of interest for triggering the treatment beam. Hence, the
edge distortions described above affect the accuracy of the current phase, because
the current phase is always at the edge of the window.
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However, even if the window size perfectly matches the breathing period; the edge
at the beginning of the window might not match the edge at the end (figure 5-9).
Therefore, a low pass filter is needed to smooth the edges and the approach of
using the Hilbert transform to estimate instantaneous phase (in real time) would
become complicated to implement. Despite this, the Hilbert transform remains one
of the best algorithms for offline (retrospective) phase estimation.

5.2.3. Multi-frequency tracker using Extended Kalman Filter

Based on the Kalman filter which was developed in 1960 by R.E. Kalman, the
ExtendedKalmanfilter (EKF) was specifically developed for non-linear systems. It
has been used in navigation (Cooper and Durrant-Whyte 1994), computer vision
(Baumgartner1994), and in the estimation and tracking of signal problems (Brown
1983) for many years. It has the desirable quality of maintaining the physical
meaning of the system dynamics by utilizing a state space representation.

In using the EKF to estimate the instantaneous phase of the breathing signal, we
assume that the breathing signal is generated by a non-linear dynamic system
model without a control input. At each point in time, the true state of the system
being monitored will be denoted by x;, where £ is the time index.

X = f (xk=1) + qr-1 (5.2.1)

Here f{.) is a nonlinear function and is a state transition matrix which describes
how the state one time step earlier is transformed into the state at time &, and gy.; is
the normally distributed process noise with zero mean and covariance R.
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The measurement z; is the breathing signal and is formed through a non-linear
function of the form:

Zy = h (xk) + 1% (52.2)

Here z; is a measurement, A(.) is a nonlinear function of the state x, and ry is the
measurement noise. The measurement noise is Gaussian with zero mean and

covariance Q.

The EKF then provides us with an estimate m; of the state at time k, along with an
expected error of this estimate, expressed through a covariance P;. Given a
Gaussian estimate of the state specified by mean and covariance <my.;, P> at
time k— 1, the EKF update rule provides us with an estimate of both quantities at

time k.

The Jacobians of f(.) and &(.) are F\(my. ;) and H(my), with elements:

0f; (Xi-1)
[F (i), o = —5——=
7! x=m
(5.2.3)
doh;(xy)
[He(mio)l = —5—
7 x=m

Here F, and H, are Jacobian matrices of f{.) and A(.), respectively, taken at the filter

estimate m.
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The resulting state transition and measurement functions are now linear in x.
Hence, the EKF produces an exact update, by manipulating the various Gaussians
involved. The update is then usually factored into two separate steps, a prediction
step, and a measurement update step. The prediction step starts with the estimate
my—; and its covariancePy—; at time £ — /, and produces an estimate for time :

my = f (My_q,ux) (5.2.4)

ﬁk = Fx(mk_l, uk)PkFxT(mk—liuk) + Qk—l

The bar in M, and P, indicates that these estimates are pure predictions, before
taking the measurement z; into account. This happens in the measurement update
step, in which the EKF integrates the measurement z; by first calculating the
Kalman gain:

Ky = PeHy (my)S;
k ,Hx (M) S, (5.2.5)

Sk = Hy(My )P HE (M) + Ry

This expression specifies the amount by which the estimate will be adjusted in
accordance with the measurement prediction error z; — h (my,). This leads to the
update of the mean and variance

my = my + Ky [z — h ()] (5.2.6)

Pk - ﬁk = KkSkKIZ
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The frequency tracker

Parker and Anderson (1990) used it as the framework for frequency, amplitude and
phase estimation of the first m” components of a noise signal.

Consideranapproximatelyperiodic,non-sinusoidalsignal,inadditivewhite Gaussian
noise. A non-sinusoidal signal may be considered to consist of an infinite number
of sinusoidal components. Three sets of parameters can characterize the signal:
the fundamental frequency, the amplitude of each harmonic component, and the
phase of each harmonic component. The signal is not exactly periodic since
frequencies, amplitudes and phases change slowly over time. Given a signal y(?)
with zero d.c. component, has a slowly time varying frequency wy, amplitudes 7y,

and phases ¢y, a representation of this signal can be written as:

o0}

y(t) = Z(rk(t) sin(kw(t)t + @ (t))) (6:2.7)

k=1

where the quantities w(z), ri(?) and @k(t)are the instantaneous frequency,

amplitudes, and phases of the signal.

We assume for both models that the signal y(?) i s corrupted by noise. The

measurement z(z) is given by:

z(t) = y(t) + r(t) (5.2.8)

where r(?) is the zero mean Gaussian noise with variance R.
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The transition of state x(?) to state x(t+1)is given by:

x(t+1) = f(x(t)) +q(t) (5.2.9)

where /() is the state transition function and g(?) is the zero mean Gaussian noise

with variance Q.

And the state vector x is defined as:

x(t) = [r(t) oo, (@), W (£),01() .. @ (D]” (5.2.10)

The Jacobian of A() is given by:

sin(1-w(t) -t + ¢4(t))
sin(2-w(t) -t + @,(t))

sin(m - w(tj“- t+ @n(t))
H(®) =| ) () cos(kw(©) + @i (6))) (5:211)
k=1

ry(t)cos(1-w(t) - t + @,(t))
ry(t)cos(2 -w(t) - t + @,(t))

| 75,,(t)cos(m - u;(.t) t+ @n(t)) ]

The task is to estimate the values 7;(2), ... Fu(t),W(t), 91(1),... 9m(t) from the
measurements, where m denotes the number of the significant harmonics.
Parameters are only estimated up to the m™ harmonic. The higher harmonics are
assumed to be negligible. A total of 2m-+Iparameters must be estimated.
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Downsides of the EKF multi-frequency estimator

In both models there are some potential pitfalls of implementation. The first of
these is that w can lock onto a fraction or multiple of the true frequency. For
simplicity, we define w to be the actual value of instantaneous frequency w; 7 to
be the true value of instantaneous amplitude 74 and 8, (%) to be the actual value of
instantaneous phase 6;(?)(where 1<k<m). For suppose w locks onto %2 w. Then, r;
is around zero; r; tracks #;, rsisnear zero, r4 tracks 7, and soon. A similar case
applies if w locks onto w/3. To solve this problem, we can check if 7= 0, and, if
so, re-initialize with W twice (or three times) its previous value. Similarly, if w
locks onto 2w then nothing tracks r,, r ; tracks 7 ,, nothing tracks r;, r, tracks 7 , and
soon. A remedy has been suggested by Parker and Anderson. Since the first, third
and other odd harmonics are not being modeled, the state prediction error

“z; — h (my)”, will have greater energy than would be the case if w =. One can
initialize a second filter with half the frequency estimate of the first: monitoring
the prediction error of the two filters as well as the amplitude will tell one to reset

the estimate W to half its previous value.

Another potential difficulty is cycle slipping, that is, for the estimated value of
phase 6;(2) and the actual value of phase 0, (1), for some k and t differing
(approximately) by a multiple of 2x. In simulations of Parker and Anderson 1990,
such cycle slipping was only observed at low Signal-To-Noise levels. Parker and
Anderson suggested that slipping a cycle is probably of little consequence and
can probably be ignored. However, in the case of radiotherapy, the phase is used to
control the LINAC. An additional mechanism is vital to ensure the estimated
phase is as close to the actual value as possible and reset the system if it goes
wrong. The system can be initialized at the previous known state or the next
known state. The maximum (EOI) and minimum (EOE) are easily detectable
landmark states. The middle position is not as easily identified as the maximum
and minimum, because the breathing baseline drifts. If the system were
re-initialized from the next landmark position, there will be a time slot during
which the system is offline and gives no response. This decreases the robustness of
the system. On the other hand, if the system were re-initialized from the previous
landmark states (which is the method we implemented), it requires that the states
between the landmark and current position are re-estimated. To avoid interruption,
this needs to be completed within one time step (of the order of tens to hundreds of
milliseconds). If the sampling frequency of the signal is high, the system requires a
considerable amount of computational power to handle the (2m)* computation

complexity of the Kalman estimator.
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5.3. The proposed Algorithms:

5.3.1. EKF phase estimation using Average Trajectory Function

We propose an Average Trajectory Function as a way to reduce the computational
complexity of the Multi-frequency EKF estimator. The idea is that, instead of
using multi-frequency sinusoid model, a mono-frequency average trajectory
function is used. The average trajectory function maps the phase to an average
amplitude. The average amplitude is obtained from the average trajectory of a
training dataset of the same subject.
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Figure 5-10: Stages of producing the breathing model (in the order from a to d).
The ERM breathing of Patient-1 is used for demonstration. (a) A pair of cubic
splines were used to connect the EOE (blue) and EOI (red) positions of the
breathing signal (dotted black line). The green curve is the mean of the red and
blue curves. (b)After the baseline drifting and amplitude variation is removed, the
breathing signal is segmented into breathing cycles. (c) The breathing cycles were
resampled, such that their lengths are equal, and represented by phase of —pi to pi
(peak to peak). (d) The average trajectory (black curve) and standard deviation
(magenta error bar) of all the breathing cycles.
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5.3.1.1. A model to account for the inter-cycle breathing variations

The Average Trajectory model took into consideration the trajectory of breathing
pattern from an EOI position to the next EOI position. Baseline drifting, amplitude
and frequency variations were also taken into account. First, the baseline drifting
and amplitude variations were modelled by cubic splines (Figure 5-10a). Second,
the baseline drifting and amplitude variations were removed from the signal
(Figure 5-10b). Third, in order to account for the variations in frequency, the
average breathing cycle length Lb was calculated. Then, the breathing signal was
segmented into breathing cycles. Fourth, the mean and standard variations of the
duration of breathing cycles (wave-lengths) were calculated. Fifth, the breathing
cycles were resampled into equal length segments by Cubic spline interpolation
(Figure 5-10c). Sixth, the mean and standard deviation of every sampling point
were computed (Figure 5-10d). The number of sampling points was chosen as the
average breathing period (obtained in the third step) multiplied by the sampling
frequency. Therefore, the resolution of the phase becomes 2 pi divided by the
average cycle length and the sampling frequency. A phase (from —o to +o0) can be
wrapped and then mapped to an average position by the Average Trajectory
function. Since the Average Trajectory was represented by a discrete set of points,
the Average Trajectory was interpolated for the mapping. Linear interpolation was
used in this model because of the simplicity of the algorithm. However, a Discrete
Cosine Transform can also be used to represent the Average Trajectory function.
With a coefficient size of 20, the root mean square error (RMSE) of the Cosine
Transform is less than 1% of the amplitude on all the training and testing signals.
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The following parameters are included in the model:

e The Average Trajectory function
e The mean and rms values of:
o The breathing cycle frequency
o Every sampling point of the Average Trajectory.
o Baseline spline
o Amplitude variation

Reset mechanism

If the breathing pattern is too irregular and the EKF fails to track its phase, the
phase estimator would reset and an alert is asserted if any of the following

conditions is met:

e Instantaneous amplitude less than zero
e Instantaneous angular frequency less than zero

e The difference between the most recent peak (or trough) and the second
most recent peak (or trough) is larger than RMS value of the signal.

Following the reset, the system would be re-initialized from the previous most
recent peak (or trough) and recalculates the current state. The most recent peak (or
trough) is detected by the peak detection algorithm described in Chapter-3.
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5.3.1.2. The details of the modelling process:

The first step is to determine the baseline drift and the instantaneous amplitude of a
breathing signal. Given a breathing signal x,, the maximum (EOI) and minimum
(EOE) points of x, were located by the algorithm described in chapter 3. Three
splines were computed: m, connecting all the maxima, m, connecting all the
minima and m; which is the mean of m, and m,,. x, is a signal with the variation of
baseline and amplitude removed. x;, is given by:

= mean(m,[k] — m,[k]) _
xb[ ] - mx[k] _ mn[k]

(x[k] = my[k]) (5:3.1)

where k is the index of the vectors.

The second step is to divide the breathing signal x;, into individual breathing
cycles. x; was then divided into segments(Figure 5-10b). Each segment is given
by: x.[i,j], where 1<i<N; and I<j<N,[i]. N; is the number of segments and N;/i] is
the length of the i segment.

Each segment was then resampled to length N;, where N, is the average length of
all the segments and N;=mean(N;). The collection of equal length segments is
represented by x,. The mean trajectory x, was calculated by

N;
1
xolj] = ﬁz xali,J] (63.2)

for IS<N| .
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The third step is to determine the average trajectory of the breathing signal. The
mean trajectory x, becomes the parameters of the Average Trajectory function
x/(8). xrinterpolates the x, vector and maps a phase ¢ (wrapped by +7) onto the
Average Trajectory. 6 is given by:

(5.3.3)

The mean trajectory is then normalized to the range of 1.

The forth step is to determinate the parameters of the model. The breathing
frequency variation g; is measured by the standard deviation of the length of the
breathing cycles normalized by its mean. It is given by:

g = std( ) (5.3.4)

N; - At

where At is the sampling period.

The variation of the Baseline gp is measured by the RMS of the rate of change of
m; which is the mean of the two splines connecting the EOI and EOE positions. It

is given by:

m;[k] —m;[k — 1]
gp = rms( yr )

for 2 <k <Ny

(5.3.6)

where rms(.) is the function for calculating root mean square value and N,; is the
length of mi.
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The variation g4 of the amplitude is measured by the RMS of the rate of change of
the peak to peak amplitude R which is the difference between the two splines
connecting the EOI and EOE positions. It is given by:

R[k] — R[k — 1]
At

for 2 <k < Npg;

ga =1ms(

)

(5.3.7)
R = mx[k] - mn[k]

for 1<k < Ng;

where rms(.) is the function for calculating root mean square value.

The parameters g;, g4 and g were used for phase tracking using the Extended
Kalman filter.

Kalman filter estimation requires complete knowledge of the dynamic system. The
transition f{.), the measurement function 4(.) and the noise covariance matrices
and R must be known. In this study, the breathing signal y is defined by following
the model.

h(x)=y =d+a -x0 )+r (5.3.8)

where d represents the drift of the baseline, a is the amplitude, x4) is the average
trajectory function, @ is the phase and r is the Gaussian noise with zero mean and
variance R.

The state vector x at time k& is defined as:

Xk = [kakakdk]T (539)

where d; is the baseline drift, a; is the amplitude, 6y is the phase and wy is the
angular velocity. The phase 6y is updated at each iteration. It is defined by:
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Ors1 = O + wy - At (5.3.10)

where At is the time step in seconds.

In continuous case the dynamics of the target’s motion can be modelled as a linear,
time-invariant system:

d()OAtOO 100 0

x) _fo 0o 0 0 0100 5311

% 1o o o of*®F|o o 1 o|¥® =atl
00 0 0 00 0 1

where the white noise process w(z) has power spectral density Q.

The elements of Q. and R are the product of the breathing model parameters (g, g4
and g3) and weighting factors q, g» g qa ro- They are defined as:

da 0 0 0
0, = 0 (qb'gL)z 0 0
g 0 0 (qc-9a)* 0 (5.3.12)
0 0 0 (94 - 9B)*
R=r,

The estimation of the weight factors will be described in the following section:
chapter 5.3.1.3: Learning the Filter Parameters. The variables on the diagonal of
Q. describe the strengths of random perturbations of the phase, angular velocity,
amplitude and baseline drifts respectively.
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The state transition function f{.) defines as:

f(xXg-1) = FXp—q (5.3.13)

By referring to equation 5.2.1 the discretized form of the dynamic equation can
written as:

1 At 0 O
1
Xp = (g . 8 8 X1 + Qo1 (5.3.14)
0 0 01

Where g,_; is the discrete Gaussian white noise process:

qk—1~N(01 Q)

Following the manual of the Kalman Filter toolbox (Hartikainen and Sarkka
2008), the process noise covariance matrix Q is given by:

Q=CD!

where C and D is calculated by:

) =exnt(f 12 a(9)

and
(5.3.14)

=
I
= ===
ococoo

O OO =
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The Jacobian of the state transition function F; in equation 5.2.3 was defined by:

1 At 0 O
_10 1 0 O 5.3.14
BE=10 0 1 0 s
0 0 0 1
where At is the sampling period (4t = 1/Fs=0.12s).
The measurement function A(.) and its Jacobian H, were defined as:
h(xk) = dk +a - xf(Bk) (5.3.13)
ak'le’(ek) )
(5.3.14)

= 0
Fx(xk) . xf(ek)
0

where d; is the baseline drift, a; is the amplitude and 6y is the phase and x4() is the
average trajectory function.
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5.3.1.3. Learning the Filter Parameters

We now describe the learning techniques for obtaining the noise parameters of the
EKF. The breathing patterns and variations are different for every individual. A

training dataset is needed for every individual to determine its parameters.

The weighting factors were obtained by the “patternsearch” function of Matlab
2007b’. The “patternsearch” function finds the minimum of an object function
with a given starting input vector and constraints. Pattern search operates by
searching a set of points called a pattern, which expands or shrinks depending on
whether any point within the pattern has a lower objective function value than the
current point. The search stops after a minimum pattern size is reached. By the
state transition function f{.), the EKF is also capable of predicting the breathing
signal. The best weighting vector was evaluated by minimizing the prediction
error for 10 steps ahead. It has been assumed that the optimum parameters were
judged by their ability to make the EKF algorithm accurately represent the current
state. With an accurate current state, the future states prediction would yield less
error and vice versa. The output of the object function (of patternsearch) was the
RMSE of predicting 10 steps ahead. The ranges and initial-value vectors (of
patternsearch) s° =[q0 q) q0 q3 7] were based on the manually tuned
values of the signals of 9 healthy volunteers (of Chapter-3). The search ranges
were within £3 standard deviations of the weight vectors of the volunteers. All the
elements of the weighting vectors are positive, so the range of the search space
excluded negative values. By assuming that the elements of the weighting vectors
are Gaussian distributed, the range covers 99.7% of the possible element values.

The initial vector s” was set as the average weight vector of the volunteers. It was

calculated by:

Ny
I (5.3.16)
s (’)—N,,;S 0)

where J is the index of the initial vector elements, i is the index of the datasets of
the healthy volunteers, s’ is the weighting vector of the i™ volunteer and Nv is the

number of volunteers.

"The MathWorks, Inc. MA 01760-2098, UNITED STATES
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In some pilot trial runs, the outcomes of the search function (final weighting
vectors) despite being able to produce the minimum prediction error, failed to
identify all the peaks. These “peak-miss” conditions happen when a sudden
baseline drift takes place. In order to prevent peak-miss (or trough-miss) for a
valid weighting vector, the phase difference 6, between the first peak and the last
peak of the unwrapped phase signal should be close to 2 multiplied by the
number of wave cycles .. The difference should be smaller than n:

6,—2m-N,<m (5.3.17)

If the criteria is not met, the output of the object function would be infinity. Hence,

the parameter is rejected.

Let m, denote the initial state and P, denotes its covariance. The diagonal elements

of P, were all set to 0.01 for simplification.

001 0 0 (5.3.18)
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For every testing session, the EKF requires to have one breathing cycle (peak to
peak) to warm up the system. During this time, the system determinates the initial
state my. Hence, the first breathing cycle was not included in the evaluation. The
initial phase 6, was —r (as the prediction starts at the peak). The initial angular wy
velocity was the angular velocity of the first cycle. The initial amplitude a) was
that of the first cycle 4y normalized by the amplitude 4,, of the Average Trajectory
function. The initial baseline drift d) was the baseline drift d,, (from zero) of the
mid-position between the peak and the trough in the first cycle. The initial state

vector my was defined as:

_2m (5.3.19)

ap = (M, — M,)/2
do = (M, + M,)/2

where L is the duration of the first breathing cycle, Fs is the sampling frequency,
A, is the amplitude of the Average Trajectory function, 4, is the amplitude of the
first cycle, d,, is the baseline drift (from zero) of the first cycle, M, is the position
of the peak of the first cycle and M, is the position of the trough of the first cycle.
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5.3.2. Adaptive Windowing Autocorrelation Approach

Determine the
instantaneous breathing
cycle by autocorrelation

either a)multiply the
window by sine and cosine
functions, or b)process the
window with DFT

calculate the phase
angle by inverse
tangent function

Figure 5-11: The flow chart of the Adaptive Windowing Autocorrelation
Approach. The instantaneous phase is calculated by a 3 step process as:
1)determines the length of the transform window, then 2)multiply the window with
sine and cosine function respectively and finally 3)calculate the phase by inverse
tangent function.

The Adaptive Windowing® Autocorrelation (AWA) approach evolved from the
Hilbert transform, but the Hilbert’s complicated operations in real time phase
estimation were simplified. Similar to the Hilbert Transform, the AWA approach
also requires determining a transformation window such that the window includes
one cycle of breathing. The autocorrelation technique is used to determine the size
of the window. In the Hilbert approach, a low pass filter is required to smooth the
signal in the window, because, in the presence of baseline drift and noise, the
beginning of the window may not perfectly match the end of the window. This will
lead to the edge distortion described in section 5.2.2.3. In the AWA approach, the
windowed signal is transformed by Discrete Fourier Transform (DFT). We are
only interested in the phase of the signal in which its wavelength matches the

$The term “window” in this section refers to the window for the input of Fourier Transformation. It
is a segment of breathing signal including one or several breath cycles. It is different from the
gating window which represents the time slots in which the radiation beam is enabled.
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autocorrelation window. Therefore, the instantaneous phase is estimated by the
phase of the first harmonic. The DC component and the higher harmonic
components are neglected. A flow chart of the process is shown on figure 5-11.

(a) Breathe signal and the Autocorrelation window
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Figure 5-12: The AWA approach of phase estimation: (a)A breathing signal of 38
seconds is shown by the red dashed curve. The blue curve is the segment used for
calculating the autocorrelation function. (b)The signal in the autocorrelation
window is plotted by the blue curve. The autocorrelation function is plotted in
green. The DFT window is defined by the 2™ peak (the magenta arrow) of the
autocorrelation function. The phase of the first harmonic in the DF'T window is the
estimated phase.
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Autocorrelation

The window size could be adjusted in real time according to the instantaneous
period of the signal. The aim of this was to adapt the window size to match the
instantaneous period of breathing such that the edge distortion could be reduced.
This was because the DFT assumed the input was from a random process where all
of its statistical properties were time invariant. Signals whose statistical properties
do change are referred to as nonstationary. Using the DFT implies that the finite
segment that is analyzed is an infinitely extended periodic signal. Autocorrelation
is the cross-correlation of a signal with itself. It has been used to find repeating
patterns ineconometrics (Sentana and Wadhwani 1992) or in information
processing such as the presence of a periodic pattern which has been buried under
noise, or identifying the missing fundamental frequency in a signal implied by its
harmonic frequencies (Gaydecki 2004). Suppose there is a breathing signal whose
auto-correlation function (ACF) is derived from the ERM (figure 5-12a). When
the current time is t=38.5s, we would like to search for a time which is about one
cycle away from now. The ACF would reach its local maximum, when the time
difference is about one cycle away from the current time. Since a breathing signal
lasts for tens of seconds and all we need to determine is the period of the current
cycle, it would be a waste of computation power to calculate the ACF of the whole
signal. The length of the autocorrelation window was chosen to be 3 times the
breathing period of the training dataset of the patient because there was no
improvement in performance with longer windows. A longer autocorrelation
window makes its size more close to the average breathing wavelength. On the
other hand, a short window size might fail to detect the “peak” in slow breathing.

The DFT window size can also be analyzed by a Coherence Function in the
frequency domain (in contrast to autocorrelation in the time domain). The
Coherence Function gives a measure of the linear dependence between two signals
as a function of frequency. The function has properties which are applicable to
breathing signals: i.e. invariance to phase shift, change of amplitude and baseline
drifting. To estimate the true instantaneous wave length, the previous breath cycle
Cyy, was identified (by peak detections) and compared it with the current cycle
Cynow (Whose phase was different from the previous cycle Cyo) using the
Coherence Function. The goal was to find a window size for the current breath
cycle Cynow such that the signal had maximum coherence with the previous cycle
Cyo. The window size might not be the same length as the previous wave cycle;
thus, interpolation might be needed to resize the signal Cyyow inside the window.
Two parameters were required to estimate the true instantaneous wave length e
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of the current breath: (1) A successfully identified breath cycle Cy, and (2) and a
range Ry for the searching space of wave length Ae. Riue could be in the range
from 0.5 to 2 times the length of the previous wave cycle Cyy.

Fourier Transform

The length of the Fourier transform window was determined by detecting the
adjacent local maximum of the current time (figure 5-12b). The signal inside the
Fourier transform window was then processed by DFT. The phase of the current
breath cycle is the phase of the first harmonic of the DFT. As a result, it becomes
the final estimated phase.

In a mathematical form, the two orthogonal components of the phase were the dot
product of the Fourier transform window with a sine wave and cosine wave
(respectively). The instantaneous phase ¢,(t)estimated by the AWA approach is
given by:

we[k] - 'abs[k])'

a0 = tan (i

Ys[k] = sin (%" (k - 1)>, (5.3.20)

K = cos (2% - (k
IPC[]—COS<W'( _1)>

where w,/.] is the vector of the autocorrelation window, & is the index of the
vectors (1<k<N). w,/.] and y./.] are the sine and cosine vectors and N is the length

of the vectors w, y; and y..

5.3.3. Different approaches of adapting to irregular breathing signals

Breathing signals vary in frequency, amplitude, baseline and trajectory pattern.
The AWA adapts to the change of frequency by changing the size of the DFT
window. When the DFT filtered out the frequency of the higher harmonic signals
and the DC component, the variations in baseline and trajectory pattern were
eliminated. In the inverse tangent transform, the amplitude variation is also
cancelled. While the AWA approach removes (filters) information from the signal,
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the EKF keeps the information and trys to reduce the covariance among the system
parameters (of frequency, baseline, amplitude and trajectory pattern). Moreover,
the AWA estimates the phase of a complete breathing cycle. In contrast, the EKF
estimates the phase of the current time step.
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5.4. Experiment setup:

The subjects and datasets from Chapter4 were used for this experiment. The two
proposed approaches were used to estimate the phase of the ERM breathing signal.
The residual motions in phase gating were evaluated and compared with the
amplitude gating result as in Chapter-4. There were 12 datasets from 5 patients.

The Hartikainen and Sarkka Matlab toolbox EKF/UKF (Extended Kalman filter/
Unscented Kalman filter) version 1.2 was used for EKF implementation. We used
a dataset from the patient as training data to initialize and evaluate the filter
parameters, and then tested the filter performance against the other datasets of the

same patient.

Gating windows (phase gating)

In phase gating simulation, the beam was enabled when the phase 6 of the
breathing trace goes within the range of @-R and @+R. A suitable mid-point @ and
range R were used for each position(EOE or EOI) of gating and for each different
duty cycle. We simulated10%, 20%, 30% and 40% duty cycles, which are the
usual duty cycles used in clinical practice. By using pattern search algorithms
(“patternsearch” function of Matlab 2007b), the mid-point of the gating window &
and the range of the gating window R were optimized such that the portion of beam
on time (measured in %) was closest to the intended duty cycle (either 10%, 20%,
30% or 40%). Choosing the mid-point of the gating window @ is of great
importance for phase gating. Shifting the gating window from a relatively stable
phase to a less stable phase would introduce more residual motion.

In this experiment, the mid-point of the gating window ®@ was chosen from the
corresponding training dataset. In a specific duty cycle, ® was the value which
could reduce the RMS of the residual motion of the diaphragm in the largest
amount. The optimum value of the mid-point of the gating window ©@ was

evaluated within the range®,+ g, where O is the average phase of the extreme

points. The mid-point @;would be close to —r radians for EOI and close to 0
radians for EOE.
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5.5. Result and Discussions
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Figure 5-13: The sinusoidal waves used to simulate the breathing signal. (a)
Amplitude variations only; (b) Base-line Drift only; (c) Frequency variations only;
(d) Frequency and amplitude variations; (e) Frequency variations and baseline
drifting; (f) Frequency-amplitude variations and baseline drifting.

Reliability of synchronization with the breathing signal

To present a first impression of the characteristics of the two phase estimators, the
phase of a collection of different sinusoidal signals were estimated. The signals are
shown in Figure 5-13. The set of signals are different combinations of amplitude
variations, frequency variations, and drift. A signal with amplitude variations was
used as the training dataset for the phase estimator. The approach taken to
measuring the variation of the pattern was the same as in Chapter 3. The variation
of breathing pattern of a signal was measured by the “sum of the standard
deviation of the breathing patterns”. The bin size was 20, which is two times the
bin size of a 4D CT dataset (10 bins). The results are shown in table 5-1. For large
variations (figure 5-13d, e & f), the phase derived by the EKF approach was less
variable than that derived by the AWA approach (especially in the presence of

frequency variations).
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During the process of determining the system parameters, it has been found that
the parameters have to be highly customized for the volunteers where the
breathing was irregular. Hence, the AWA approach is more stable over the EKF
approach owning to the recursive characteristics of EKF. Further investigation is
needed to determinate the impact of a optimum set of parameters which would fit
all different breathing conditions.

The sum of the standard deviation of the breathing patterns (Rs)

EKF AWA
Amplitude variations 22 2.2
Baseline drifting 2.6 2.6
Frequency variations 1.9 5.4
Frequency and amplitude variations 4.7 10.2
Frequency variations and baseline drifting 7.6 10.8
Frequency-amplitude variations and baseline 6.4 10.4

drifting

Table 5-1: The sum of the standard deviation of the breathing patterns (Rs) of the
two phase estimators on sinusoidal waves. (Lower value is better)




150

Mean rRMS Tumour: EOE

B =RV amp SHIFTED
70 |- S ERM AWA -~~~ -
B =RV EKF

()] R B Rt et S B

50 R T [ B S e . L T e SESSSSESERSE & o BRI

40}---|- a1 -

% rRMS

o - B . ==

PNl | BN B | B

10 N 444 EEEE 0 =m0 e

10%dc 20%dc 30%dc 40%dc
Duty cycle (a)

Mean (%) rRMS Tumour: EOI
90 |- BB ERM amp SHIFTED -
80 |- R = ror 1 1= e
70f------eeoeeo-- T

60} T e, s = ool
50 I T SRS SEE S S T ‘ .

% rRMS

400 e H 1 |
e B .
20| - - B ==

o S EE B B O

10%dc 20%dc 30%dc 40%dc
Duty cycle (b)

Figure 5-14: The relative root mean square values of residual motions averaged
over the 12 datasets are shown on the figures. Each set of bars represents different
duty cycles. The colours of the bar represent different phase estimation algorithms.
The error bar shows the standard deviation. The upper figure a) is for gating at the
EOE position and the lower figure b) is for the EOI position.
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Residual Motions of gating simulations

The rRMS values of the residual motion of the tumour using the EKF and AWA
approaches are plotted in figure 5-14. The upper figure (a) is for gating at the EOE
position, while the lower figure (b) is for gating at the EOE position. The results
are grouped into four sets of colour bars: each set of bars represents a different
duty cycle (from 10% to 40%), while different colours represent different gating
techniques:

e ERM amplitude gating with systematic delay compensation (for

reference),
e ERM signal derived by the AWA approach

e ERM signal derived by the EKF Average Trajectory approach

The mean rRMS values of the diaphragm in phase gating are shown in figure 5-15,
with the same format of representation as those of the tumour.
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Figure 5-15: The rRMS over the 12 datasets are shown in this figure. Each set of
bars represents different duty cycles. The colours of the bar represent different
phase estimation algorithms. The error bar shows the standard deviation. The
upper figure a) is for gating at the EOE position and the lower figure b) is for the
EOI position.
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(a) Phase gating: Diaphragm motion, P1a, EOIl, ERM EKF, 20%DC
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Figure 5-16: The instantaneous phase of dataset-Pla derived by two phase
estimation approaches: The yellow dotted curve is the phase and the magenta
dashed curve is the breathing signal of ERM. a)EKF approach b) AWA approach.
The differences in characteristics of the two approaches are marked with A1, A2
and Bl B2.
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Figure 5-17: The gating pulse dataset-Pla comparing the EKF and AWA
approaches: The yellow dotted curve is the phase; the magenta dashed curve is the
breathing signal from the ERM. The blue curve is the motion of the diaphragm and
the gate enable window is marked with red squares. a) The EKF approach using
the ERM signal b) The AWA approach using the ERM signal. The major
differences are highlighted by green circles.
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Comparing the two phase estimation approaches

Phase gating using the EKF approach achieved 2% to 8% (rRMS) more reduction
in residual motion than the AWA approach in different duty cycles and gating
positions. When looking into individual datasets, the differences between the two
approaches in EOE position were small and not significant. However, one can
observe that the EKF gave a better phase representation when the breathing motion
was irregular. In the simulation of P1a of Patient-1( arrow A1 of figure5-16), when
the signal reached the peak of the previous cycle, the EKF slowed down its phase
progression (d8/dt), but that of the AWA kept increasing (arrow A2). One of the
cases for which the AWA performed less well is shown in figure 5-17. Figure
5-17a is from the EKF approach, while Figure 5-17b is from the AWA approach.
The red squares are the gating window and the blue curve is the motion of the
diaphragm. The magenta curve is the breathing signal from the ERM and the
yellow curve is the phase. The major differences are highlighted by green circles.
Owing to the accurate phase representation, the EKF approach was capable of
determining the gating window with smaller residual motion, for this particular

dataset.

Table 5-2: The difference of the residual motions of EKF and AWA approaches. A
negative value means the EKF is smaller than the AWA.

rRMS difference of the residual motion of EKF and AWA approaches

EOE EOI
20% DC 2%+ 9% 3%+ 10%
30%DC -6% £ 12% -5% + 14%
40%DC -6% =+ 10% -7% + 5%

The differences between the two approaches in 20%, 30% and 40% duty cycle of
the EOI and EOE position are shown in table 5-2. Despite the AWA is worse than
the EKF on the average, the differences between the two approaches were not

significant.
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Phase gating and amplitude gating using the ERM

The rRMS values of amplitude gating (shown in Figure 5-14 and 5-15) were
evaluated based on the assumption that the breathing signal was perfectly
predicted. Perfect prediction would be achieved by shifting the breathing signal
with an amount equal to the systematic delay found in the training dataset. Under
such an assumption, on average, there were no obvious differences between the
EKF approach and amplitude gating, owing to the large differences among the

datasets.

Table 5-3: The difference of the residual motions of Amplitude and phase gating
using AWA. A negative value means the rRMS of Amplitude gating is smaller than

that of the phase gating.

rRMS difference of the residual motion of :

(a)amplitude gating and phase gating AWA approaches

EOE EOI
20% DC 2%+ 7% 1% + 13%
30%DC -3% + 7% -5% + 12%
40%DC -6% + 10% 7% + 10%
(a)amplitude gating and phase gating EKF approaches
20% DC 0% + 8% 4% + 12%
30%DC 0% + 10% -1% + 5%
40%DC -1% + 6% 0% = 7%

The differences between the two approaches in 20%, 30% and 40% duty cycle of
the EOI and EOE position are shown in table 5-3. Hence, the differences between

the two approaches were not significant.
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Figure 5-18: The gating pulse of dataset-P4b comparing the EKF phase gating
and amplitude gating: The yellow dotted curve is the phase; the magenta dashed

curve is the breathing signal from the ERM. The blue curve is the motion of the
diaphragm and the gating enabled window is marked with red squares. a) The
EKF approach using ERM signal b) amplitude gating using ERM signal. The

major differences are highlighted by green circles.
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Figure 5-19: The gating pulse of dataset-P5a comparing EKF phase gating and
amplitude gating: The yellow dotted curve is the phase, the magenta dashed curve
is the breathing signal from the ERM. The blue curve is the motion of the
diaphragm and the gating enabled window is marked with red squares. a) The
EKF approach using ERM signal b) amplitude gating using ERM signal. The
major differences are highlighted by green circles.

In Patient-4 and Patient-5, phase gating achieved smaller residual motion than
amplitude gating. In the conditions of regular target motion but irregular breathing
signal, phase gating would outperform amplitude gating. A couple of examples
from Dataset-P4b (EOE, 20%DC) and Dataset-P5a (EOE, 20%DC) were shown
on figure 5-18 and figure 5-19 respectively. In both cases of amplitude gating
(figure 5-18b and figure 5-19b), the ERM couldn’t represent the amplitude of the
target motion accurately. Hence, the gating windows missed a few cycles and
increased the residual motion for a duty cycle of 20%. Hence, the phase gating
technique is preferable for stable target motions. Despite the variations of EOI and
EOE positions, for phase gating to achieve the best performance, good temporal

synchronization between the target and the motion is vital.
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The selection of gating window in phase gating

The training dataset played an important role in our simulations, because it helped
to define the point at which to enable the beam. In the session of EOI gating at
20%DC using the EKF approach on Patient-1 (figure 5-20), the optimum
mid-point of the gating window in the training set was 0.85m. Hence, in the
evaluation dataset, the gating windows were shifted to the left of the peaks.
Because of this, the gating windows were not aligned with every peak of the
breathing signal. If the gating windows had been aligned with the peaks, the large
variation of the peaks would have significantly increased the residual motion.

If the systematic delay between the training dataset and treatment dataset was
largely different, the residual motion of the target would be affected by a large
amount. Therefore, in phase gating, the systematic delay between the motion
signal and the breathing signal should be accurately estimated.

(a) Phase gating: Diaphragm motion, P1a, EOI, ERM EKF, 20%DC
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Figure 5-20: The gating pulse of dataset-Pla EKF approach phase gating using
ERM signal. The yellow dotted curve is the phase; the magenta dashed curve is the
breathing signal from the ERM. The blue curve is the motion of the diaphragm and
the gate enable window is marked with red squares..
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5.6. Conclusion:

Two approaches to estimating the instantaneous phase of a breathing signal have
been assessed: The EKF approach and the AWA approach. The EKF approach
utilizes an Average Trajectory Function to model the parameters of breathing and
follows by using EKF to estimate the parameters. On the other hand, the AWA
approach utilizes autocorrelation windowing and DFT. The EKF approach was
found to be more reliable in reducing residual motion of the target in the phase
gating simulation of 12 datasets from 5 patients. Despite the relatively slightly
worse performance, the AWA approach is simpler to implement.

The relative performance of phase gating over amplitude gating was evaluated. If
the systematic system delay between the breathing signal and the target motion is
perfectly compensated in amplitude gating, phase gating would contribute to a
significant performance gain in some of the datasets. This was because the ERM
does not accurately indicate the amplitude of breathing. However, the performance
gain is highly dependent on the synchronization between the target motion and the
ERM signal. Irregular amplitude of target motion occurred together with lack of
synchronization on the same patient. Further investigation is needed to assess
whether the association between the two conditions is common among a wider

group of patients.

In the simulation, the systematic delay (mentioned above) could affect the
performance of phase gating by a large amount, because it determines the timing
to enable the radiation beam. Prior to starting a treatment by phase gating, it is
important to ensure that the delay is not significantly different from that in the

training dataset.
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6. Prediction Algorithms

6.1. Introduction

In order to reduce the residual motion of the target using gated radiotherapy, it is
necessary to enable the radiation beam at the correct time to ensure that the target
is in the radiation field. This is achieved by monitoring the patient’s breathing
pattern and relating this to the tumour position. The existence of a time delay
between the breathing signal and the positioning of the tumour in the radiation
beam implies that some kind of predictive ability should be included in a gating
treatment system. The delay, if neglected, results in loss of accuracy in hitting the
target. Consequently, it results in under-dosing to some parts of the target volume
(Vedam et al 2005). Hence, the internal margin has to increase for acceptable
dose coverage. A typical human breathing cycle, being largely periodic, has
significant cycle-to-cycle fluctuations in displacement, as well as longer-term
fluctuations in both displacement and frequency. However, these fluctuations are
not purely random, suggesting there are possibilities to predict a particular
breathing cycle from the observed characteristics of previous breathing cycles. In
Chapter 4, we showed that delay compensation could have significant benefit on
residual motion reduction. In this chapter, the impact of prediction algorithms is

investigated.

Detection and imaging delay:

In the evaluation of residual motion of the patients of Chapter-4, the systematic
delay of the ERM and the target motion can be as large as 0.4 seconds. There was
significant performance improvement if the breathing signal was perfectly
compensated for the detection delay. Hoisak et al (2004) assessed the correlation
of respiratory volume and abdominal displacement with tumour motion using
X-ray fluoroscopy. A maximum phase lag of 0.35s was found in the respiratory
volume signal and a maximum phase lag of 0.65s was found in the abdominal
displacement signal. Tsunashima ez al. (2004) found that although the delays
between the respiratory waveform and the 3D tumour motion were principally in
the range 0.0 to 0.3 s, there existed cases of nearly 1.0s and above.
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Sharp et al (2004) described the existence of system latency and its effect on
tumour location accuracy. In real-time image-guided delivery systems, consisting
of a LINAC, imaging device and information system, there is always a system
latency due to the time needed for image processing, response times of hardware,
and communication delays. This means that the real-time tracking or gating
directly from the location of the sampling image is based on estimations of some
past time. Keall et a/ (2004) have investigated whether a position signal obtained
by an Electronic Portal Imaging Device (EPID) measurement of an internal
marker could be used to control a dynamic MLC delivery of IMRT. The EPID
was set to acquire an image in 0.1 s, as opposed to the normal setting of 1 s;
however, the interval between acquisitions was still 1 s. The long interval
between image acquisitions and processing prohibited the clinical application of
EPID in real-time tracking. However, they considered that it would be feasible if
predictive tracking could be implemented.

Control-System Delays:

The response of a beam control system to a breathing signal cannot occur
instantaneously. Seppenwoolde et al (2002) report a delay of 90 ms between the
recognition of a fiducial marker in a fluoroscopic image and the triggering of
irradiation in their gated beam-delivery system. Mechanical systems which need
the beam to be repositioned have longer delays. The CyberKnife’ has a 200 ms
delay between acquisition of tumour coordinates and repositioning of the linear
accelerator. Repositioning an MLC aperture will likewise involve a time delay of
100—200 ms or more (Keall et al 2006). Shirato et al (2000) reported a time delay
of 0.09 s between the time of the marker recognition and the start of irradiation in
a gating system. Measurement results of Jin and Yin (2005) for a similar gating
system show that the time lag including the response time of the LINAC and the
delivery time is 0.17+0.03 s. In the robotic radiation delivery system studied by
Schweikard et a/ (2000), the time lag including the response time of the robot

was of the order 0f 0.3 s.

gAccuray, Sunnyvale, CA
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6.2. Review of breathing signal prediction algorithms:

Shirato et al (2000) implemented a linear extrapolation method which was able
to predict the tumour position about 0.09 s in advance. With implanted golden
markers and with the assumption of constant linear marker speed, they claimed
to achieve prediction errors less than 1.5 mm. Murphy et a/ (2002) analyzed
breathing prediction using a variety of adaptive filters and found that the tumour
position can be predicted with up to 80% accuracy in the presence of a 200 ms
system delay, but accuracy degrades rapidly with longer delay intervals (1
second prediction horizon). Sharp et a/ (2004) investigated the performance of a
linear filter, neural networks (NN) and a Kalman filter, to characterize the
predictability of lung tumour motion for different imaging rates and system
latencies. The best predictor, Linear filter, achieved and RMS error(RMSE) less
than 2mm for prediction time 0.2 s with a 10Hz sampling rate (compared to 3mm
RMSE when prediction is not used).

Vedam et al (2004b) compared the prediction performance of an adaptive
sinusoidal filter and an adaptive linear filter. In the sinusoidal filter, the current
data point was compensated by a value with reference to a sinusoidal model. In
the adaptive linear filter, an LMS algorithm was used to update the weight vector.
The adaptive linear filter performed better and achieved prediction errors of 2
mm (RMSE) for prediction time of 0.6 s with a 10 Hz sampling rate. The average
root mean square of the motion extent was about 3.6mm.

Ernst et al (2008) modified the least mean squares (LMS) based adaptive linear
prediction algorithms so as to allow for dynamic adaptation of both learning rate
and signal history length to cope with possible changes in the breathing motion
signal’s characteristics. This was done by parallel evaluation of several LMS
predictors initialised with different values of learning rate and signal history
length.

In addition to Sharp et al (2004), Isaksson et al (2005) proposed an Adaptive
Neural Network (ANN) and showed that its prediction performance was better
than that of a linear filter using LMS prediction in terms of the normalized
RMSE (nRMSE). They studied the breathing traces from three patients. In the
case of regular breathing and a 500ms prediction horizon, the nRMSE of ANN
was about 50%. In the case of irregular breathing and the same prediction
horizon, the nRMSE of ANN was 62%. In both conditions, the nRMSE of an
adaptive linear filter was 2% better than ANN. The differences between the two
algorithms were small, given that the total range of motion of the patients was
not large. Kakar et al (2005) used an Adaptive Fuzzy Neural Inference System
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(ANFIS), which is an augmented Gaussian radial basis function NN. ANFIS
combines both the learning capabilities of a neural network and reasoning
capabilities of fuzzy logic in order to give enhanced prediction capabilities.
Previous studies have shown that ANFIS is a better predictor for a chaotic time
series as compared to using a single technique like an artificial neural network
alone (Jang et a/1995).

Putra et al (2008) proposed a multiple model approach to respiratory-induced
tumour motion prediction using the interacting multiple model (IMM) filter
algorithm and to compare its performance to a single model Kalman filter. The
IMM, based on a stochastic discrete time linear system, modelled the constant
velocity (CV) and constant acceleration (CA) properties of the breathing signal.
During steady inhale and exhale phases, respiratory motion is almost at a constant
velocity. At the transition between inhale and exhale, respiratory motion is
decelerated at the end of inhale/exhale and is accelerated at the beginning of
exhale/inhale. A single CV model or single CA model may not be adequate to
capture the dynamics of respiratory motion. The breathing signals of 110 traces
from 24 lung-cancer patients in George et a/2005 were used to evaluate the
prediction performance of the IMM and Kalman filters. The respiratory motion
traces were acquired using the RPM system of Varian Medical Systems. With
30Hz sampling frequency, the IMM, CV and CA filter showed 19% to 49%
reduction in root mean square error (RMSE). However, the difference between
the CV model and the IMM was small: with a maximum of 0.04 mm RMSE
difference. We can expect that, if the IMM algorithm were used for predicting
the ERM signal (instead of the CV only model), the performance gain would be
very small. Since the ERM signal is a surrogate which has lower correlation with
the tumour (comparing with the Varian RPM used in the study of George et al),
the extra complexity of the IMM algorithm would not bring significant benefit to
the RMSE reduction.
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6.3. Methodology

Since most of the above studies either (a) measured the prediction error in a
absolute value or (b)used abdominal motion for breathing monitoring, the effect
of them on the ERM signal is not known. Therefore, in this study, we evaluated

the performance of a collection of prediction algorithms:

(1)Adaptive linear prediction using Normalized Least Mean Square NLMS
for weight update and (2)Neural Network, because they were both widely

implemented in the literature;

(3)ANFIS, because it is a newly proposed algorithm for respiratory signal

prediction;

(4)Extended Kalman Filter-Average Trajectory Function (EKF-ATF),
because the built in phase estimator proposed in Chapter-5 can be used for
prediction. Moreover, the performance of average trajectory model based
prediction of the breathing signal has not been evaluated in the literature.

We used the breathing signals from the ERM from 9 free breathing datasets of
volunteers from Chapter 3. The first 40% of samples of each signal were used as
the training dataset. The maximum breathing signal latency from the ERM was
480ms (Chapter 4) and the beam delivery latency was assumed to be about
100ms. The first aim was to find the algorithm with the smallest nRMSE for
500ms to 600ms prediction horizons. The second aim was to investigate the
impact of prediction algorithms on residual motion reduction. As a follow up to
chapter-4, the amplitude gating simulation was used to assess the residual motion
of the target using the output of the prediction algorithms. The prediction
algorithm must compensate for the delay of the ERM signal (with respect to the
target motion) together with any control system delays.
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Adaptive linear prediction using NLMS

A linear predictor is a system which predicts the future output signal as a linear
function of a set of inputs (Sharp et al 2004). We consider linear predictors of the

form:

Ve = Wy - Ug (6.1)

where y,is the predicted signal at step ¢, w, is the corresponding weight vector
(with length M)and u, is the signal history (“tap input vector” with length M) used
in step tto compute y;

In each step ¢, the weigh vector is updated,

U (Zt - yt) “Up (6.2)
ut - ut

W = W1 +

where u is the learning rate parameter and z, is the measured signal at step .

The optimum value of x and M are determined from the training dataset. The
range of 4 and M were [0.1, 2.0] and [5, 50] respectively. The initial weight
vector wy was computed from the final value of the weight vector when the

optimum values of # and M were applied to the training set.

Artificial Neural Network

The Feed-forward artificial neural network was used for prediction. It has one-way
connections from input to output layers. They are most commonly used for
prediction, pattern recognition, and nonlinear function fitting. The future velocity
of the breathing signal was predicted, instead of the future position. This was
because from both our early trial and the experimental result of Sharp et al 2004,
velocity prediction yielded more accurate prediction results. In the first trial
using the 9 healthy volunteer dataset, the optimum prediction accuracy was
obtained with a hidden layerofl12 neurons and “tap input vector” with length 16.
The weights of the ANN were estimated from the training dataset. The Neural
Network training Tools of Matlab 2007b was used as the Neural Network library.
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The training parameters are listed as follow:

e Training algorithm: Levenberg Marquardt
e Data Division: Random

e Checking data: 30% (of the training dataset)
e Max. Epochs: 500

e Time: Inf

e goal:0

e mem_reduc: 1

e min grad: 1e"’

e mu: le’

e mu dec: 0.1

e mu inc: 10

e mu max: | e'’

Adaptive Neuro Fuzzy Inference System:

The combination of the ability of a neural network (NN) to learn with fuzzy logic
to reason in order to form a hybrid intelligent system is called ANFIS (adaptive
neuro fuzzy inference system). The goal of ANFIS is to find a model or mapping
that will correctly associate the inputs (initial values) with the target (predicted
values). The fuzzy inference system (FIS) is a knowledge representation where
each fuzzy rule describes a local behaviour of the system. An ANFIS network
structure is similar to that of a neural network. It maps inputs through input
membership functions and associated parameters, and then through output
membership functions and associated parameters to outputs. Kakar et a/ 2005 and
Jang et al 1995 gave detailed introductions to the ANFIS. With reference to the
input data points dimension in Kakar ez a/ 2005, the data points in each row were
set to 1 steps apart and each epoch contained 8 data points. The FIS and the initial
weight of the NN were estimated from the training dataset. ANFIS was trained
with the help of Matlab 2007b with the following parameters.



167

ANFIS Parameter Values

e MF type: Bell function

e Number of MFs:8

e Output MF: Linear

e Number of Nodes:155

e Number of linear parameters:128

e Number of nonlinear parameters: 24
e Total number of parameters:200

e Number of fuzzy rules:8

EKF-ATF

The implementation of EKF-ATF is the same as the phase estimator in Chapter
5.3. Let us assume that y is the predicted value, that ¢ is the current position in
time and that o is the prediction horizon. Furthermore, let x be the state vector.

The future state becomes:

Xevs = (F)°x; 8.3)
where F, is the Jacobian of the state transition function (equation 5.3.11)
Hence, from equation 5.3.8, the prediction y becomes:
(6.4)

Y = h(x¢+s)

where A(.) is the measurement function.
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6.4. Results and discussion:

Normalized RMSE of Different Prediction Algorithms

1.6

1.4

1.2

0.8

0.6

normalized RMSE

0.4

0.2

012 024 036 048 06 12
Detection Horizon (seconds)

[Legend: ANN ANFIS EKF NLMS No Prediction]

Figure 6-1: The nRMSE of different prediction algorithms averaged over all the
datasets using ERM signals. The length of the error bar indicates one standard
deviation. The results are grouped by different detection horizons.

The nRMSE values of different prediction algorithms averaged over all the
datasets were plotted on figure 6-1. The LMS algorithm was the best performing
predictor for a wide range of prediction horizons (which is consistent with the
findings of Sharp et al.2004 and Vedam et al.2004). The nRMS of the ANFIS
were not significantly different from the ANN algorithm. Hence, the extra
computational power spent on the FIS did not show significant impact. One of the
possible reasons was that the datasets were not irregular enough, such that the
“adaptive” property of the ANFIS was not obvious. The EKF algorithm has the
lowest average nRMS when the prediction horizon is at 1.2 seconds; however, the
advantage was not significant. Except the EKF based algorithm in the 0.12s
prediction horizon, the normalized RMSE of all the algorithms were lower than

having no prediction.

As a control experiment, the prediction algorithms tried to predict a sinusoidal
wave with prediction horizon ranges from 0.12s to 1.2s. Nearly all algorithms have

extremely small prediction error.
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nRMSE of a sinusoidal signal

Prediction horizon (s) ANN ANFIS EKF LMS
0.12 0.00 0.00 0.00 0.00

0.24 0.00 0.00 0.00 0.00

0.36 0.00 0.00 0.00 0.00

0.48 0.04 0.06 0.08 0.10

0.60 0.04 0.09 0.15 0.34

1.2 0.20 0.39 0.58 0.77

Table 6-1: The nRMSE of a sinusoidal wave using different prediction algorithms.

Predicting iregular breathing signal

ERM

80

----------- - NLMS

EKF

70 Original signal 7
T

st | L
60 80 100 120 140 160 180
time (samples)

Figure 6-2: Prediction of irregular signals at 480ms prediction horizon.
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The NLMS performed well in predicting irregular signals. An example is shown in

Figure 6-2. Over-shoot occurred at the first two peaks (at the 60™ and 90™ samples)

of the Neural Network prediction. The EKF could adapt to the gradual decrease of

instantaneous amplitude from the 60™ to 120" sample. However, after the 120"

sample, the breathing amplitude increased by a large amount, the EKF could track

the change of amplitude starting at the 140™ sample.

Mean (%) rRMS Tumour: EOE

sof MEERMamp -
[ ERM amp SHIFTED
- ERM amp compensated- -

70,

% rRMS

10%dc 20%dc 40%dc

30%dc
Duty cycle

Mean (%) rRMS Diaphragm: EOE

Bl ERM amp
[ ERM amp SHFTED

10%dc 30%dc

20%dc
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| I ERM amp-SHIFTED - - - - - -~ - - ==~ -~
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Figure 6-3: The blue bars are the mean rRMS (in percentage) organ residual

motions over 12 datasets using amplitude gating without any delay compensation,
while the red bars are delay compensated by LMS prediction. The green bars were
produced by shifting the breathing signal to compensate for the delay. (a) Tumour
EOE, (b)Tumour EOI, (c)Diaphragm EOE and (d)diaphragm EOL
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The systematic delay between the signal of the ERM and the tumour motion
ranged from 1 to 4 time steps (0.12s-0.48s). Based on the above results, the best
predictor was the NLMS because, on average, it produced the best result from 2 to
5 time steps. Although, the nRMSE of EKF was the lowest at 1.2s prediction
horizon, the different (of nRMSE) between EKF and the NLMS algorithms was
not significant (mean difference 0.23+0.29). Hence, the NLMS was used as
predictor for compensating the delays. The results, measured by % rRMS of the
patients in Chapter 4, with 120ms systematic control delay, are shown on figure
6-3. When predictive gating was applied with amplitude gating, there could be a
further reduction in the residual motion of about 10% (EOE) and 5-10% (EOI). If
we look at the error of the no prediction bars on figure 6-1, the error was
approaching unity when the prediction horizon was beyond 600ms. Under such
condition, the residual motion reduced by gating would be neutralized by the
decrease in accuracy of target position estimations. The comparisons of the rRMS
of the 12 datasets in 30% duty cycle are shown in figure 6-4. The difference of
rRMS between no-prediction and the NLMS compensation was 18%+16% in the
EOE and 12%+9%. Most of the datasets benefit from the prediction algorithm to
compensate for the systematic delays. In Dataset P1a and P3a, the residual motion
of the tumour was increased by 2% and 1% in the IS direction. With prediction, 9
out of 12 datasets have more than 10% (rRMS) reduction in the EOE; while 7 out
of 12 have more than 10% (rRMS) reduction in the EOL.
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Normalized RMS of tumour in 30% duty cycle, EOE
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Figure 6-4: Comparison of the rRMS of NLMS prediction and no prediction in
30% duty cycle of the tumour IS motion. The blue bars are the mean rRMS organ
residual motions over 12 datasets using amplitude gating without any delay
compensation, while the red bars are delay compensated by NLMS prediction.
(a)EOE, (b)EOL

6.5. Conclusion:

It is concluded that prediction algorithms are essential for amplitude gating. The
adaptive linear algorithm (NLMS) can effective predicts the ERM signal for a
wide range of prediction horizons. If systematic delay is ignored in gating, the
error introduced could easily neutralize the effect of gating.
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7. Applications Developed for the ERM

7.1. A Software tool to evaluate the regularity of breathing

7.1.1. Introduction

When audio coaching techniques are used in radiotherapy, one needs to choose the
repeat rate of the audio prompt. Normally the rate of audio prompt is set to the
same as the natural breathing rate. From the healthy volunteer experiment of
Chapter-3, most of the volunteers felt uncomfortable with the audio prompt at the
rate of natural breathing. Hence, the patient is required to perform a number of
trials with different coaching parameters. The Varian RPM system installed at the
Clatterbridge Centre for Oncology displays the amplitude of breathing. Ideally the
repetition rate would be chosen to minimise the amplitude of breathing. However,
amplitude is not the only relevant factor in the evaluation of the breathing signal.
One of the aims of coaching is to improve the regularity of the breathing. We can
reasonably expect that if a patient is breathing rhythmically, the tumour and
external motions will be more in phase as compared to breathing irregularly. We
developed a methodology to evaluate the regularity of the breathing signal. This
methodology was incorporated into a program which facilitated the comparison of
different breathing samples so that a clinical decision could be more easily made
as to which method of coaching should be used. Since the Experimental
Respiratory Monitor (ERM) is highly portable, the patient can complete the
respiration regularity test in a normal room, so that the couch would be free for
other clinical usage. An instant feedback of the regularity of the breathing signal is
provided when a new set of gating parameters is applied. This software supports
displaying the parameters for maximum of four sets of breathing signals, so that
the clinician can choose the parameters (or settings) which best suit the patient.
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Figure 7-1: Schematic diagram of evaluating the variation of breathing cycles: A
breathing signal containing several breathing cycles is divided into segments of
equal length. The length is equal to the mean duration of the wave cycles. The
standard deviation vector o[n] of the aligned wave form is computed. The
variation of the wave pattern weighted at the local minimum position is defined as
the dot product of a weight vector w[n] and the standard deviation vector o[n].
w/[n] is a vector with a square pulse distribution of values.
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7.1.2. Methodology

7.1.2.1. The model for finding the pattern variation of breathing cycles
For measuring regularity, we produce a wave model from the breathing signal.

The breathing signal of a person is cyclic over a long period of time. It is smooth if
the person breathes naturally. It slightly varies up and down if the person does
nothing abnormal (coughing, talking etc). If a feature point can be found in each
cycle, we can separate the signal by the feature point. A long breathing signal is
divided into individual wave segments by dividing them at their peak, such that the
segments can be evaluated. The wave segments would then align according to

their minimum point (Figure 7-1).

The alignment begins with identifying the local maxima and minima of a breathing
signal. A point is considered a maximum if it has the maximal value, and was
preceded (to the left) by a value lower by 7,. The default value of 7} is the RMS
amplitude of the whole signal xz. The parameter 7, adjusts the sensitivity of the
peak detection. A high T, value would decrease the sensitivity of the peak
detection algorithm, making it suitable for noisy signals. After a maximum has
been found, the algorithm would search for a trough and iterates until the end of

the signal.

Hence, the local maxima M, and minima M, would be located from the breathing
signal xz. M,[k] is a vector, with length A, containing the index of the local
maxima; M,[k] is a vector, with length B, containing the index of the local minima.

For finding the variations of breathing pattern about its minimum positions, the
mean of the breathing period Ay is calculated by finding the mean of the difference
AM,[n] of vector M,[n].
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A set of equal length vectors x;, each represent a segment of the K™ breath cycle
(Step-2 of Figure 7-1). The length of x; is 2-round(Ay/2) +1. xi is defined by:

X [n) = x¢ Ma[k]—§+n], fori<n<2g+1

(7.2)

= round ()
g = round | -

For each value of n in the set of x;, the standard deviation vector d[»] is computed
(Step 3 of Figure 7-1). It is defined by:

s = |3 = 50D

(7.3)

eln) = 2
k=1

The variation p of the breathing pattern about its minimum positions (Step-4 of
Figure 7-1) is defined by the dot product between the standard deviation vector
8[n] and a weight vector w[n]. w[n] is a vector with unit values spaced equally
around half the wavelength (period).
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The aim of weighting is to focus on estimating the variations on the EOI or the
EOE position. w[x] is defined by:

0, for1<n<B; -1
wn] =< 1, forB; <n<B,
0, for B,+1<n<2g+1

B, = round (g) AFd)

3
B, = round (7g)‘

where round(.) is the decimal round off function and g=round(hy/2)

Hence, the variation p is normalized by the sum of the weight vector w[n] and the
RMS of the amplitude of the breathing signal. It is given by:

_ §[n] -win]

"~ (B, — By +1) - std(xp)

where xris the breathing signal and szd(.) is the standard deviation function

The variation p increases as the baseline drift increases, but p has no effect in

changing frequency.

For finding the variations of the breathing pattern about its maximum positions,
we replace M,[n] with M,[n] and g=round(\/2) with g=round(r./2) in Equation
7.2; and replace A with B in Equation 7.3. The mean of the breathing period A, is
calculated by finding the mean of the difference AM,[n] of vector M,[n].
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Figure 7-2: Result of breathing cycle segmentation of the program. The breathing
signal (red trace) is plotted above. The y-axis is the amplitude and the x-axis is the
time in unit samples. The result of the segmentation is displayed as horizontal line
segments. The line segments (cyan colour) on top of the breathing signal represent
the breathing cycles segmented with reference to the minimum positions; while the
line segments (blue colour) below the breathing signal represent the breathing
cycles segmented with reference to the maximum positions.
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Figure 7-3: Wave segments aligned to the local minima. The screen capture of the
wave segment window shows the variation of the breathing cycles and provides an
alternative to the numerical presentation. The y-axis is the amplitude of the
breathing signal. The x-axis represents the time measured in unit samples.
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7.1.2.2. The Variation of extreme positions

The variations of amplitude of the maximum or minimum positions are defined as
the standard deviation of their amplitude. The standard deviation of maximum

positions 0,4 is defined by:

8p = std(x[M_[K]]) vk

where std(.) is the standard deviation function, x/./ is the original breathing signal
and M,[k] is the vector of maximum position pointers.

The standard deviation of maximum positions &z is defined by:

8g = std(x[M,[k]]) vk

where std(.) is the standard deviation function, x[.] is the original breathing signal
and M,[k] is the vector of minimum position pointers.

7.1.2.3. The Variations of Breathing Period

For finding the variations of the breathing pattern about its minimum positions,
the standard deviation of the segment duration vector AM,[n] is calculated. It is
defined as the difference of the maximum position vector M,[n]; ie:
AM,[n]=M,[n]-M,[n-1].M,[n] is a B-dimensions vector containing the index

pointing to the maximum positions in the breathing signal x[#].

The elements of the segment duration vector AM[n] are plotted on a chart in the
software, so that the change of breathing period over time can be visualized.
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7.1.3. Specifications:

A program written in Java was developed to evaluate the variations of the
breathing signal of the ERM based on the above methodology. The specifications

of the program are listed as follow:

e To evaluate a maximum of 4 sets of breathing signals simultaneously. In
most of the situations, a clinician only needs to compare 3 sets of breathing
signals; two for the best-parameter sets and one for testing new
parameters. The ability to compare four signals was to allow flexibility.

e Customizable peak detection parameter T, to account for the noise of the
breathing signal for accurate breathing cycle segmentation.

e Aligning the wave cycles with their maximum points at the centre; display
the aligned breath cycles in different colours.

e Aligning the wave cycles with their minimum points at the centre; display
the aligned breath cycles in different colours.

e Provide measurements for the following quantities:

o Standard deviation of the (local) maximum positions

o Standard deviation of the (local) minimum positions

o The variations of the breathing period over time

o Standard deviation of the breathing periods

o The sum of weighted standard deviation of the breath cycles
aligned by the minimum points at the centre

o The sum of weighted standard deviation of the breath cycles
aligned by the maximum points at the centre

7.1.4. The user Interface:

The user interface elements are divided into 4 columns (figure7-4). The number of
columns is limited by the size of the User Interface elements and the resolution of
the display. The program was designed for displaying on a 1280-x1024 screen.
Each of the columns corresponds to one set of breathing signals. The fourth
column also contains two more elements. One of them is the signal monitor tab,
which can monitor the result of segmentation of the breathing cycles (Figure 7-5).
The other element is a plot of segmented breath cycles centred at the maximum

position (Figure 7-6).
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Figure 7-4: A snapshot of the 4 column layout of the sofiware

Figure 7-5: The signal Monitor displaying the segmentation result

of !

i

uu[
- e
e

T

et
apet
osat
ooy
peef

b
ant

1
+

Sy
Ak Bk 88 e
i

-ww% ooy

b
e

Column-4

e

181



182

Column-4

20 e tp o W op o4 i3 o4s g
honie i ae

Figure 7-6: A tab in the 4th column showing the aligned breath cycles about their

maximum position.

: Wl
wig' vere Segments & anane 14 § ' l
4 ;,2 § -:::::’ l
- #6 Loy Cf l
= ’ K“" 5% i; S:D li
108 % :::) ]
g o4 g ;:z. |
85 8 § !
o q—b
e L
45 g0 05 12 18 W SR T
15 e

Figure 7-7: User Interface of the Breathing Signal comparison tools: The tools
allow clinicians to evaluate the regularity of the 4 different breathing signals at
once. By providing the variation of the motion and regularity measurements, it
helps clinicians to find the best set of parameters for gating. Please refer to
section 7.1.5 for descriptions of the interface.
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7.1.5. User-Program Interaction Procedure:

After the program started up, the user loads (#1of Figure 7-7) the breathing signal

into one of the 4 panels.

Once the signal is loaded into the program, the program automatically divides the
signal into segments. The result of the segmentation is shown in the Signal
Monitor Tab in the fourth column (#2 of Figure 7-7).

The default value of the peak detection parameter T, is 1.0 multiplied by the RMS
of the breathing signal. If the user is not satisfied with the segmentation result (eg:
the program might have classified a short-time fluctuation as a complete breath
cycle), the user can select different values of T, (#3 of Figure 7-7). The range is
from 0.1 to 2.0 times the RMS value of the breathing signal with a step size of 0.2.
The program would perform the segmentation again whenever a new peak

detection parameter is selected.
The following measurements of the variations are displayed (#4 of Figure 7-7):

e the standard deviation of breathing period (in the unit of seconds),

e the standard deviation of the maximum,

e the standard deviation of the minimum,

e the variations of the breathing pattern about the troughs (minimum
position) as describe in chapter 7.1.2.1, and

e the variations of the breathing pattern about the peaks (maximum

position) as described in chapter 7.1.2.1.

The variation of the breathing period over time is plotted on the chart at #5 of
Figure 7-7.

The aligned breath cycles about their troughs are plotted in the bottom chart of the
column (#7 of Figure 7-7).

The aligned breath cycles about their peaks are plotted in the Peak Tabs of the 4
column (Figure 7-4).

The second and subsequent breathing signals can be evaluated in the 2" 3" and

4™ column (Figure 7-4).
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Figure 7-8: Breathing signal of the volunteer of (a)lrregular and (b)Regular
breathing patterns were used as input to show the function of the software.
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Figure 7-9: Wave segments aligned to the trough of (a) an irregular breathing
signal and (b) a regular breathing signal

7.1.6. Evaluation of the Software

An irregular and a regular breathing signal of a healthy volunteer was used as an
example to evaluate the program. The regular signal was obtained after the patient
had been coached. The irregular signal prior to coaching is plotted in Figure 7-8a.
The regular signal after coaching is plotted in Figure 7-8b. The segments of the
breathing cycles were aligned about their troughs and are plotted in Figure 7-9.
The list of measurements is shown in Table 7-1.
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From the data, we can determine that the SD of the breathing period of the subject
was reduced in regular breathing as well as the variations in the extreme positions.
The clinician can then decide to use the coaching technique based on the improved
regularity. If the clinician wants to compare a third set of signals in which another
technique or parameters are applied, he/she can use the third panel to evaluate the

new signal.

Table 7-1: Measurements of the breathing data of the volunteer in two breathing
modes.

Measurements Irregular Breathing Regular Breathing
SD of Period / mean of period 0.48 0.26
SD of local maxima 20.3 4.1
SD of local minima 9.4 2.9
Sum of weighted SD of Troughs 10.1 2.5
Sum of weighted SD of Peaks 17.8 3.9

7.1.7. Section Summary:

The presented program is new; similar functionality is currently not available in
any other free or commercial system. It has been successfully used to evaluate the
variations of breathing signals. By means of comparing several breathing signals
at a time; the program provides quantitative indices to clinicians for decision
making. For potential patients who breathe irregularly, the program could be used
to practice breathing with this software with the aim of improving regularity.

Further work will be to combine the program with the ERM sampling wizard
(chapter 7.3) and include visual feedback of the respiratory phase for patient

training purposes.
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7.2. Monitoring the Stability of Breathing: Online Detection of
abnormal breathing behaviour

7.2.1. Introduction

The aim of this section is to develop and evaluate a real-time (online) abnormal
activity detection algorithm. The algorithm was designed to work with the signals
sampled from the ERM system, but it could also be adapted to other respiratory
monitoring systems with some modifications.

7.2.2. Definition of Abnormal breathing activities

Coughing, talking, hiccups or sudden very deep breaths were classified as
abnormal activities because these activities might compromise the normal
synchronization between the tumour and the surrogate. Even if the abnormal
activities do not compromise the synchronization, irregular breathing was found
to increase the residual motion within the gating window (see chapter 4). We
define abnormal breathing activities as a breathing pattern which is significantly
different from the normal breathing pattern. “Normal breathing pattern” is defined
as the repetitive pattern which appears most in the breathing signal of the patient.
Clinicians can also define a segment of the breathing signal, based on experience,
as the normal pattern. In such cases, any breathing pattern that is significantly

different from the normal pattern is classified as abnormal.

7.2.3. Model for abnormal detection

The breathing signal has a cyclic property. Its pattern repeats, but with certain
variations. The phase derived from the breathing signal indicates the state within a
breathing cycle. If the AWA approach (see chapter 5) is used to derive the phase,
the phase progresses linearly in regular breath patterns. Our model of abnormal
breath activity detection is based on detecting abnormal changes of phase.
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The detection algorithm operates as follow:

A breathing signal x7, which is identified as the regular signal, is required to train
the system. It aims to fine tune the detection threshold.

The average and mean of the rate of change of phase Q is calculated from the
training signal. The rate of change of phase Q[#], in general, is defined as:

QIn] = U(6x[n]) — UOx[n - 1]) (7.51)

where U(.) is a phase unwrap function, 6. ] is the Hilbert (AWA) phase. The
length of 0y ] is N,, which is the length of the training signal. The length of O [n]
1s N, -1.

The rate of change of phase Qr{#] of the training signal can be derived by
substituting the phase signal 67 of the training signal into 6.

The mean Qrand standard deviation gt of the rate of change of phase Qr[n] help
to define the upper bound and lower bound of the rate of change of phase Q of the
test signal. A test signal is used to evaluate the performance of the abnormal
activity detection algorithm. dqr is defined as the square root of the sample

variance of O1[n].

A test signal x[n] has a phase #[#]. The rate of change of phase Q[#n] is computed in
real-time by Equation 7.51. Any instant t; in the breathing signal can be classified
as “regular” if and only if Q[#] stays inside the upper and lower bound. The
threshold is defined as:

upper bound: Qr — z - 8qr

lower bound: Qr + z - Sqr
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The value of z determines the sensitivity of the abnormal activity detection. By
assuming the elements of vector Q follow the normal distribution, we use a default
value of 2.58 throughout our experiment. The chosen z value should be able to
include 99.9% of the elements in the vector Q. The z value is a parameter to control
the sensitivity of the detection. The system returns to the normal state after 4
seconds if no more abnormal breathing patterns are detected.

7.2.4. Evaluations

Six breathing signals were collected from 3 healthy volunteers (Volunteer 7, 8 &
A).

Each of them first had 20 seconds of normal breathing signal to train the detection
system. The testing signal of Volunteer A was 40 seconds of normal breathing and
then followed by an abnormal session. In the Abnormal session, the volunteer was
asked to talk or cough. After 90 seconds from the start of the sampling, the
volunteer was asked to breathe normally for another 20 seconds. In addition to
volunteer-A, 2 pairs of abnormal and normal signal breathing signals were
selected from the coaching experiments (volunteers-7 & 8).

7.2.5. Results & Analysis
The talking and coughing activities were successfully detected from all the signals.

Figure 7-10 shows the detection result of Volunteer-7. The subject was fell asleep
during the experiment. When the subject became less awake, the amplitude of the
breathing decreased (the 700™-1500" samples of figure 7-10a). The algorithm
detects the change of breathing pattern at the 1200™ sample (the red trace of figure
7-10c), where the rate of change of the phase (the blue trace of figure 7-10b)
exceeded the threshold. The subject awoke at the 1750"™ sample and took a deep
breath. Since the deep breath was a significant change of breathing pattern, it was
detected. For this dataset, the negative pulses in the 300" to 400" sample and the
pulses at the end of the trace were also triggered by the abnormal change of

amplitude.

The result of Volunteer-8 is shown in the figure 7-11. The subject fell asleep
during the experiment (the 600" -800™ sample on figure 7-11).
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(a) breath signal of volunteer-7

(b) Vector Q and upper/lower bounds

e} |
0 o = SR S — S— 1
2 ‘ ‘ . . . |
0 500 1000 1500 2000 2500 3000
(c) Detection resuilt
1 T —
l !I [ 11
" 1] ]
1 T 4
I I
i I
)l ] : s .
500 1000 1500 2000 2500 3000

Figure 7-10: Abnormal detection in Volunteer-7. As the subjects fell asleep, the
amplitude of breathing was reduced. The subject waked at 600" and 1700™
samples. Hence, there was a sudden increase in amplitude in both positions. (a)
The black trace on the upper graph is the breathing signal and the red trace is the
phase signal. (b)The rate of change of phase Q[n] is shown. The two cyan
horizontal lines are the upper and lower bounds of the normal breathing patterns

(c) the red trace is the abnormal trigger, where a high level (1) indicates that
breathing is normal and a low level indicates that abnormal activity has been
detected. The black trace is the result of the detection which included the
4-seconds abnormal-to-normal recovery time. The x-axis represents the time in
sample units. The signal was sampled at 25Hz frequency.
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(a) breath signal of wlunteer-8
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Figure 7-11: Abnormal detection in Volunteer-8. (a)The black trace is the
breathing signal and the red trace is the phase signal.(b)The rate of change of
phase Q[n]: The two cyan horizontal lines are the upper and lower bound of the
normal breathing patterns. (c)the red trace is the abnormal trigger, where a high
level (1) indicates that breathing is normal and a low level indicates that abnormal
activity has been detected. The black trace is the result of the detection which
included the 4-seconds abnormal-to-normal recovery time. The x-axis represents
the time in sample units. The signal was sampled at 25Hz frequency.

The detection result of Volunteer-A is shown in the following figure 7-12. The
subject was coughing between the 500™ and 850"sample. The irregular patterns
(the black trace of Figure 7-12) were detected in the red trace of the bottom chart.
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(a) breath signai of wolunteer-A
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Figure 7-12: Abnormality detection in Volunteer-A.(a) The black trace is the
breathing signal and the red trace is the phase signal. (b)The rate of change of
phase Q[n] is shown. The two cyan horizontal lines are the upper and lower
bounds of the normal breathing patterns. (c) The red trace is the abnormal trigger,
where a high level (1) indicates that breathing is normal and a low level indicates
that abnormal activity has been detected. The black trace is the result of the
detection which included the 4-seconds abnormal-to-normal recovery time. The
x-axis represents the time in sample units. The signal was sampled at 10Hz
frequency.
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7.2.6. Section Summary:

The irregular breathing detection algorithm proposed in this section was able to
detect irregular breathing as results from coughing, talking and changes in
breathing pattern. Due to the sudden change of airflow of these abnormal
activities, the rate of change of phase df/dt goes beyond its normal value. Since
the phase estimation algorithm is already a built-in feature of the gating system, it
would take very little computational power to detect the phase derivative

abnormalities.

Further work will be to compare the proposed algorithm with detecting the
covariance matrix P in the EKF phase estimator. When using the EKF approach
(Chapter 5.2.3) to estimate the phase, there is a covariance matrix which
represents the error in the state estimation at every time step. An abnormality
detection mechanism is needed for every gating system. When the ERM is used
routinely for clinical purposes in the future, this algorithm will be integrated into
the workstation program of the ERM.
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7.3. Wizard based breathing signal sampling program

7.3.1. Problems:

A program is needed to communicate with the ERM from the ERM workstation.

When the ERM is started, the program would search for ports which the ERM 1is
connected to, as an aim to simplify the start-up process. In order for the ERM to be

able to communicate with other systems for experiment use or for controlling the

LINAC, the program should have an interface to handle the external connections

through an ADC.

The program should also provide real-time visual feedback for the operator and

allow the signal to be saved for analysis.

=113

Sampling setting
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| Close | Next
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Duration: ;ﬁjv
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(a)

(b)

Figure 7-13: User Interface of a Wizard based ERM sampling program. The signal
of the ERM is plotted in the top middle chart. The natural phase of the signal is
plotted in the top right hand side chart.
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7.3.2. Method and Summary

A Wizard based sampling tool has been developed to take breathing samples using
the ERM. The program addressed the functional requirements described in the
problem section. The program was developed in JAVA (Sun Microsystems, Inc) to
run on computers with VGA resolution or above. It provides visual feedback
regarding the regularity of the breathing by natural phase trajectory (at the top
right hand-side chart in figure 7-14 b). The software can read and write signals
from/to an ADC for synchronization with other systems.
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8. Discussion, Summary and Future Work

8.1. Discussion:

The aim of this study was primarily to investigate the performance of a
piezo-electric based device (ERM) in respiratory monitoring. A number of
respiratory monitoring systems have been developed: strain gauge, spirometer,
thermocouple, abdominal surrogacy tracking, and implanted marker tracking. The
behaviour of the ERM is similar to a thermocouple system in which the
temperature of respiratory air flow is being monitored. Implanted marker target
tracking has the problems of patient tolerance, extra dose to the patient and
expensive equipment. A spirometer has the problems of portability and patient
discomfort. Abdominal tracking and the strain gauge are less complex solutions.

Compared to the ERM, abdominal tracking (using the Varian RPM system)
showed better temporal and spatial relationship with the tumour. However, it is
difficult to monitor the displacement or movement of the abdomen in the
application of stereotactic radiotherapy using abdominal compression or when the
patient has been asked to minimise their breathing. Onishi et a/ (2004b) have
shown that stereotactic radiotherapy combined with respiratory gating produced
good local control of small lung tumours achieving a biologically effective dose at
the isocenter of approximately 120 Gy. In order to carry out stereotactic lung
treatments accurately it is important to have 4D-CT data, which improves the
accuracy of target definition for treatment planning and also helps to assess the
target motion. However, a respiratory signal is required to enable 4D scanning.
Under such conditions, as long as the subject keeps breathing, the ERM can still
detect the respiratory cycle for imaging and treatment.

A secondary aim was to investigate the impact of gating using the ERM device
with different techniques. The subjects tend to breathe more deeply in audio
coaching, causing the respiratory motion to increase. Thus, they feel more
comfortable breathing at a slower coaching rate (in relation to their natural
breathing rate) to maintain the same rate of gas exchange. In the fluoroscopy study
of chapter 4, audio and visual coaching were applied for Patient-1, who had one of
his lungs removed by surgery and consequently had impaired lung function. The
audio-visual coaching technique reduces the RMS amplitude of residual-motion as
well as the EOE and EOI variations, thereby allowing greater margin reduction

when using respiratory gating for radiotherapy imaging, planning and treatment.
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The Varian RPM measurements of abdominal motion were better correlated with
tumour motion throughout each session as compared with the ERM breathing
signal as shown in Chapter 4. This is because abdominal motion is more directly
involved in a change in the diaphragm position than is the change of gas
temperature in the face mask (to which the transducer of the ERM is attached). The
average correlation between the ERM and the tumour SI motion was 0.81 + 0.07.
Although this is lower (p=0.05 by paired t-test) than that of the Varian RPM (mean
0.90 + 0.09), it is still comparable to the surrogate-tumour correlations in other
studies. Hoisak ef al (2004) demonstrated a correlation with coefficients ranging
between 0.51 and 0.98 between abdominal motion and lung-tumour motion. Ahn
et al (2004) found an average correlation of 0.77 between skin and tumour
movements with a range between 0.41 and 0.97. Mageras et al.(2001)investigated
lung-tumour motion with respiration-correlated CT and found a correlation range
of 0.73 to 0.96.The results of gated radiotherapy simulations and the correlation
between the breathing signal and the internal motion support the argument that the
ERM is capable of reducing the standard deviations of the motion of the target
when the radiation beam was enabled.

When comparing the Experimental Respiratory Monitor (ERM) with the
commercial device (Varian RPM), the degree of residual motion reduction with the
ERM was not as good as the commercial system in amplitude gating. The reasons
for this are (1)the systematic delay between the ERM signal and the tumour
motion, as well as (2)the lack of correlation between the amplitude of the ERM
signal and amplitude of the tumour motion. Prediction algorithms and phase gating
have been investigated to improve its performance.

The Varian RPM system has two gating modes built into the system: Amplitude
gating and Phase gating. Phase gating employs an instantaneous phase estimator;
the beam is controlled by the phase signal produced by the estimator. Unlike the
Varian system, the ERM needs an algorithm to estimate the instantaneous phase.
The AWA approach and the EKF approach have both been investigated. On
average the EKF was slightly superior to the AWA. However, the EKF was
relatively more complicated to implement. Moreover, EKF is less stable, because
of the recursive state estimations. The results of Chapter 5 showed that if
amplitude gating was properly compensated in time, there is no significant
difference between phase gating and amplitude gating. However, in some cases,
the difference in the residual motion between phase and amplitude gating can be as
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large as 15% rRMS. This suggests that the use of phase gating has to be judged on
an individual patient basis.

The accuracy of a number of prediction algorithms has been evaluated in chapter
6. It has been shown that, for prediction horizon of 0.5s, the Adaptive Linear
(NLMS) algorithm was preferred. With an average of about 10% further reduction
in the rRMS of residual motion, the prediction algorithm improved the accuracy of
the ERM on nearly most of the datasets (with the assumption of 120ms control
delay). We found that using a prediction algorithm was effective in compensating
the systematic delay of the ERM.

Regarding other respiratory monitoring systems, we expect that the sampling rate
of the systems as well as their accuracy will improve and the response time of the
beam delivery system will be reduced in the future. However, the systematic delay
between the gating surrogate and the tumour, being another source of major
delays, is highly dependent on individual subjects. Moreover, from the results of
chapter 4, the effect of it on the residual motion was significant. Systematic phase
differences of surrogates have also been found by Cervifio et al (2009) and Hoisak
et al (2004). Therefore, gating system prediction algorithms with a large
prediction horizon will be still required. Hoisak et al (2004) studied the
reproducibility of 5 patients over multiple days. They found that only 1 patient
exhibited a reproducible interfractional phase relationship. The existence of an
interfractional variation in phase difference contradicts the assumptions of
constant systematic delay of the surrogate. Therefore, the systematic delay should
be validated before each session of treatment. Failure to do so may result in a

geographic miss of the tumour if radiotherapy is guided with surrogates.

The Clatterbridge Centre of Oncology (CCO) has been using conventional 3D-CT
scans consisting of images without time information from the moving tumour and
anatomy for radiotherapy planning. The image-set obtained from the 3D-CT scan
is an arbitrary snapshot. The uncertainty results in an undefined displacement of
the tumour with respect to the mean tumour position. Tumour shape deformation
in the image can occur because the reconstruction algorithm assumes a static

volume.

In conventional treatment, the breathing of the patient is not restricted by any
respiratory control or monitoring devices, this introduces tumour position
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uncertainty. Four-dimensional computed tomography (4D-CT) provides a more
reliable basis than conventional 3D-CT scanning. In 4D-CT, data acquired over
several breathing cycles are sorted to produce a sequence of 3D image sets, each at
a different phase of the breathing cycle. In addition to tumour motion
measurements, the data permit calculation of the dose to moving anatomy, which
is especially important for the accurate determination of target coverage. The
images themselves exhibit fewer motion artefacts and therefore reduce the
uncertainty associated with target delineation. However, even with the precise
delivery of radiation permitted by PTV margin reduction; there remains significant
uncertainty in defining the biological target to which that margin is applied. Target
definition combining CT and other imaging modalities (known as modal fusion),
such as PET and MR, is likely to reduce this uncertainty.

At CCO, the CTV to PTV margin for non-gated 3D planning ranges from 5 to
10mm. The value depends on the size and the location of the tumour. If the tumour
is close to critical organs and would result in an unacceptable dose to these, the
clinician will use a smaller margin. Therefore, to estimate a uniform setup margin
for lung patients based on our population, in this work we have been applying the

general margin recipe from van Herk et a/ 2002.

Margins in the conditions of online correction

Respiration motion contributes to both systematic (during imaging) and random
errors (during treatment); therefore, a reduction in the effective respiration motion
will affect both these contributors. Imaged guided online corrections, which align
the GTV to the beam before each treatment, could reduce the systematic error by a
significant amount. Despite accurate online correction strategies, residual
uncertainties will always remain in target definition, treatment delivery, and
because of respiratory motion, safety margins are still required. For each patient
individually, the margin Mp7y necessary to deliver a dose of at least 95% of the
prescribed dose to the CTV (for 90% of the population) can be computed by the
following margin recipe of van Herk et al (2002):

MPTV = 252 + 164 ’0-2 + O'pz - 164Gp (81)
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where 2 and o denote the standard deviations of the systematic errors (localization
errors in planning imaging) and random errors (localization errors during
treatment), respectively. g, denotes the standard deviation of the dose gradient and
describes the width of the penumbra modelled by a cumulative Gaussian. In lung,
where the penumbra is broader, the width of the penumbra was estimated at o, =
6.4mm. The various components of the systematic and random uncertainties are
summed in quadrature to generate the margin .The value of the SD of the random
error distribution ¢ was obtained by the square root of the sum of squares of SD of
the random components of the localization accuracy, intrafractional stability, and
respiratory motion. The value of £ was obtained by the square root of the sum of
squares of the SD of the systematic component of localization accuracy,

intrafractional stability, and delineation uncertainty.

Although delineation uncertainty is more a shape change than a translation,
Deurloo et al 2002 showed that delineation uncertainties can be modelled by a
simple shift. Steenbakkers et a/ (2005) showed that the delineation uncertainty is
generally large (up to 6 mm SD) for lung tumours. For simplicity, the systematic
error of delineation X4=6 (mm) is used for all the patients. The interfraction
baseline variation (day-to-day variation) and treatment setup uncertainty were
referenced from 4D respiration-correlated cone-beam CT data from the patient
group in Snoke et a/ 2008 and Erridge 2003.An overview of the error contributions
for the different approaches is given in Table 8-1, while the margins due to
respiratory motion of each individual patient are shown in Table 8-2. In Table 8-2,
the standard deviation of the random error of respiratory motion of non-gated and
gated radiotherapy were listed for comparison. The technique used was exhale
gating with a 30% duty cycle using AWA phase gating (for Patient 4 and 5) and
the ERM was used as the breathing monitor. Amplitude gating was used for
Patient 1, 2 and 3. Since Patient-1 exhibited smaller residual motion in the inhale
position, the residual motion of inhale was used for this patient. The tumour
motion of the IS direction was the average of the IS motion in the AP and Lateral

view.
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Table 8-1The systematic and random uncertainties for the margin calculations
with image guided online verification. The oy ,0, and o, values for each patient can
be found in Table 8-2. The units of the above table are millimetre (mm).

Systematic (X)) Random (o)
LR SI AP LR SI AP
Delineation 6.0 6.0 6.0 - - -
Baseline - - - 1.2 2.4 2.2
Setup 1.4 1.5 1.3 2.9 3.1 2.0
Respiratory - - - Ox Gy G:

Table 8-2 The Standard deviation of periodic motion oy, o, and o of the LR, SI and
AP directions. Gating was enabled in the Exhale position (except for Patient-1,
who exhibited smaller residual motion in inhale who was gated in the inhale
position).

Standard deviation of Residual Motion (mm)

No-gating
Patient-1 Patient-2 Patient-3 Patient-4 Patient-5
Oy 0.5 0.4 2.0 0.9 0.3
Oy 43 1.4 43 6.2 2.7
o, 0.5 0.8 1.3 1.2 0.7
30% phase gating
Oy 0.2 0.2 0.2 0.2 0.2
Oy 1.8 0.8 1.3 1.0 1.0
o, 0.2 0.1 0.3 0.2 0.7

The PTV margin ranged from 17 to 21mm in non-gated radiotherapy (Table 8-3).
In the PTV margin of gated treatment: Patient-1, Patient-3 and Patient-4 achieved
a margin reduction of 1.5mm, 1.7mm and 3.5mm in the SI direction respectively.
The margin reductions of other directions and of other patients were below 1 mm.
Hence, the average reductions were small. The percentage reduction from
non-gated to gated treatment ranged from 1% to 17%. However, by using the
gating technique, Patient-4, being the patient having the largest tumour motion,
could still benefit from a significant reduction of PTV margin. The result supports
the argument that gated radiotherapy does not reduce the margin significantly in
all the patients. However, there still exists a proportion of patients who can benefit
from the technique and it must be remembered that the small number of patients in
this sample did not show tumour movements as large as some of those reported in

the literature
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PTV margin (mm)
No-gating Patient-1 Patient-2 Patient-3 Patient-4 Patient-5
Oy 16.6 16.6 17.1 16.7 16.6
Oy 19.2 17.5 19.1 20.9 18
o, 16.5 16.5 16.6 16.6 16.5
30% phase
gating
Oy 16.6 16.6 16.6 16.6 16.6
Oy 17.6 17.3 17.5 17.4 17.4
o, 16.4 16.4 16.4 16.4 16.5

Table 8-3 The PTV margin of in the LR, SI and AP directions of the 5 patients in
gated and non-gated radiotherapy using the ERM as the respiratory monitor.

For both amplitude and phase gating, the rRMS residual-motion standard
deviations were lower for exhale compared with the respective inhale values in
most of the datasets. Moreover, the EOI position variations were larger than those
of the EOE. This supports the general notion that the exhale position is more
reproducible and that the patient spends more time at exhale than at inhale. The
advantage of treating at inhale as opposed to exhale is that the lung volume is
larger than at exhale and, therefore, the mass of lung receiving radiation is less at
inhale as compared with exhale. According to the study conducted for Patient-4,
the patient has the largest reduction (5.2mm) in the SI direction of tumour motion
in 30% duty cycle gated treatment at EOI position. If the patient was treated at the
EOI position, the residual motion became 4.2mm. Then, the PTV margin would be
increased by 0.3mm. However, this is unlikely to have any significant impact on
dose escalation. Moreover, by using audio-visual coaching, we may be able to
reduce the variation of EOI positions. If the Varian RPM is used for respiratory
monitoring, the margin could be reduced by 0.1mm for Patient 2 to 5, while the
margin of Patient-1 could be reduced by 0.4mm. Hence, the different between the
two monitoring devices in margin reduction is small for most of the patients.
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PTV margin of Gating VS non-gating

A paired t-test was used to evaluate the statistical significance of 30% duty cycle
gating versus no-gating in the IS direction using the ERM as the breath monitor.

H()I Gy0~ Oy30
H;: Gy~ Oy30

where oy0 is the PTV margin in the SI direction without gating and cy30 is the
margin using gating with 30% duty cycle. The difference between the PTV
margins was significant (p=0.029) with =0.78.

The relationship of Minimum differences and sample size

Difference (mm)

Sample size

Figure 8-1: Sample size in Paired T-test using a=0.05, f=0.8 using the data of the
PTV margin in IS direction (o) in Table 8-3.

The relationship of Minimum differences and sample size was shown on Figure
8-1 (computed by the Statistic Toolbox of Matlab, Mathworks). Six samples are
needed to test for the significance of the difference of the two margins at a=0.05,
B=0.8. To detect a 1-mm differences of the means, the sample size should be at
least 10 at «=0.05, f=0.8. In this thesis, the patient sample size is 5, hence, the
minimum difference E it can test is 1.55mm.

If there were 1 more sample and gating produced a smaller margin, the result of the
hypothesis test could become significant at a=0.05, f=0.8 with p=0.03.

Owing to the small number of samples, the nonparametric Friedman's test was also
used to evaluate the statistical significance of the PTV margin. The PTV margins
were grouped into columns of no-gating and 30% duty cycle gating. The test
showed there was a significant different between the two approaches (p=0.03).
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However, when using the Wilcoxon signed rank test, the null hypothesis could not
be rejected (p=0.06) because the sample size was only 5. With one additional
sample which gating produced beneficial effect, the null hypothesis can be
rejected (p=0.03).
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8.2. Conclusions

The (Experimental Respiratory Monitor ERM) device has been further developed

and adapted for respiratory gating:

The electronic design of the ERM has been verified and some changes
have been made to improve its usability in the field of respiration
monitoring for respiratory gating.

A wizard based program has been developed to monitor the phase (Natural
phase) of the ERM in real time while the breathing of the patient is being
monitored.

A synchronization system between the ERM and other systems
(fluoroscopy, CT scanner) has been developed.

A program has been developed to analyse the regularity of four recorded
breathing signals simultaneously. By using the program, clinicians have
instant feedback on the regularity of respiration to guide clinical decisions.
The software could be used as a training aid for patients.

An algorithm has been developed to monitor abnormal breathing by
detecting sudden phase changes in the breathing signal.

The impact of audio coaching was investigated by analysing the breathing samples

of 9 healthy volunteers using audio coaching.

It was found that audio coaching increased the amplitude of breathing in
most of the subjects. As the amplitude of breathing increased it was found
that the variability of the amplitude also increased. Consequently audio
coaching increased the variability of breathing amplitude.

A program using the Hilbert transform was developed to derive the phase
signal and to measure the variation of the breathing cycle. This provided a
methodology for breathing cycle analysis for gating.
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Based on the 12 datasets of fluoroscopy results from 5 lung cancer patients,

It has been shown that the experimental system (ERM) is able to reduce
PTV margin in gated radiotherapy.

When comparing the experimental system (ERM) with the commercial
system(Varian RPM) in terms of the synchronisation of the gating signal
with tumour movement, it was found that the raw signal from the
experimental system was less well correlated with tumour motion than that
of the commercial system. The stability and the systematic delays of the
experimental system for amplitude gating were less satisfactory than that
of the commercial system.

The systematic delays could be compensated by prediction algorithms and

resulted in a significant reduction in residual motion.

The use of the Extended Kalman Filter and the Autocorrelation function to
estimate the breathing phase in real time has been investigated in order to improve

the reproducibility.

The two approaches produced similar results, but the EKF approach was
slightly better than the autocorrelation approach.
The residual motion difference of phase and amplitude gating has to be

determined on a case by case basis.
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8.3. Future Work:

The results of the fluoroscopy study showed that the signal from the ERM and the
tumour motion were not well synchronized in the Exhale phase in one patient.
Further investigation is needed to find out why and how frequently this happens in

patients.

In order to facilitate the clinical use of the ERM for gated radiotherapy, more
patients need to be recruited to confirm that the signal of the ERM is well

synchronized with the tumour motion.

The breathing regularity assessment program has yet to be applied clinically. The
usefulness of this system as an aid to patient training should be investigated.
Furthermore, more experience with using the ERM on patients is needed in order
to assess its usefulness in assessing patient suitability for gated treatment.

Further work needs to be done with patients with large tumour movements. The
patients included in this study did not have particularly large movements and the
margin reduction recorded in Table 8-3 may have limited clinical benefits.
However, the approach of Van Herk et a/ assumes that the motion of the tumour
can be satisfactorily represented by a Gaussian which may not be the case for all
patients, particularly with large tumour excursions. A more detailed investigation
of the gain of TCP for fixed NTCP/decrease in NTCP at fixed TCP with a wider

group of patients should be carried out.
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