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ABSTRACT

This thesis describes the development of an automatic monitoring system for indoor

environments. The aim is to develop a system that allows general movementof one or

more people to be determined using a very low resolution colour sensor. The sensor has

sufficiently low resolution that objects are not fully resolved — to protect privacy.It is

demonstrated that movement can be monitored to a high degree of accuracy using

spectral un-mixing techniques adapted from satellite remote sensing applications. These

algorithmsallow the fractional contributions from different colours within each pixel to

be estimated and this can then be usedto assist in the detection and tracking of small

objects. Using colour as a tracking/monitoring aid is not new but the current application

presents significant difficulties. The detection and monitoring algorithms have to take

into account that the colour measurements made by a vision system often depend on the

ambient illumination and in rooms with open windows and blinds for example, the

illumination conditions can change very rapidly. In order to recognise an object in

different lighting environments, the system must have the ability to discount the effects

of the illumination changes. An important task in this technique adaptation for indoor

environmentuseis to find an automated wayto fit a triangle arounda set of data points

as closely as possible for each frame in a sequence of images. Several optimisation

algorithms are evaluated to determine which one is most appropriate for this triangle

fitting task. The detection mechanism alone is not enough to be able to monitor the

subjects. Tracking algorithmsare also applied to be able to generate continuoustracks of

the people being monitored. The State-Space approach is used to model the motion of

the objects of interest with the Kalman Filter being the chosenpredictivefilter to find the

optimal state. The monitoring algorithms developed are tested in a series of real-life

challenging scenarios such as quickly changingillumination conditions and occlusion of

objects.



Motiontracking in low resolution imagery
 

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr Jason Ralph for his support, advice and

encouragement throughout the whole duration of my studies, and my secondary

supervisor Professor Joe Spencer for making this PhD reality. I would also like to

thank Dr Yannis Goulermas who was always there whenever I needed help with the

programming and implementation of the various optimisation techniques. The amount of

time spent on coding is not reflected in this thesis. My thanks also go to the other

colleagues andfriends who I met during my time at the University of Liverpool and who

have accompanied in the various diversions from work that a research student normally

takes. Special thankshere are due to Elias whose help with Matlab programming was of

utmost importance when | wasin the early days of my PhD, and Bao who has been a

lead actor in the various test video scenarios during this project. I am also grateful to Dr

Ralph and the Department of Electrical Engineering and Electronics for their financial

support.

And last but not least, I would like to thank my parents for all their support in

numerous ways over the years, which has enabled me to be where I am today, and for

which I could never thank them enough. I would like to dedicate this thesis to little Jash

whosebirth has brought a lot of happiness to our family andrelatives.

il



Motion tracking in low resolution imagery
 

1.

CONTENTS

TntrO(uctiON...........ccccsesecessescssescsesseseeseseescseceesessesenecsesecsesaecsesevasseeecaeseeassecateecaeeacaees 1-1

1.1 Significance and MotivatiOn.........cccccessesessescsecsecseeseesesesscsecsscsesscsscscesesscnseaes 1-1

1.2 Structure Of thesis... cece ceeceeseeseesesseesesseseesesecsecsesseeecsseassecatesccsesseesecseesees 1-3

Led PODUCACUOTIS sisssssissnisenntntsnsennnnen-cneenneneearnnerercenennnenronsnsstemsstververssenrenuesunmesacenyenees 1-3

Ltt: REVIGW csitiestanaicansnnmsswsnicass ia si.sisacsheacose anncsennnesnrannennnasemvnmeunesinoonesuscneeavanvod 2-5

Dock “TRODCLION wre casse sin cttrectaoiieseenmesmnansananeectsinadashcexnmanitiananenesnnrsnanenercnencmoannenanes 2-5

oe; CTSTAGS acura ensrimeacnemnennestomanncncmamenecens seanisinaen intestines tsainarsnmnrnonnn 2-6

2.2.1 Examplesof current indoor monitoring systems............:.ccccccceeeseeeees 2-7

2.3 Object detection 00... esceceesessessesessesssessesessesesesscsesescseeecacseeecsesecsesecsevscessaees 2-12

2.4 Object tracking... seseesesseesesceseeseesesecsecseseesecaesacsecseeessessecseeseeeesseseessees 2-18

2.4.1 Kernel] Tracking ..0......ccccececsccsecessesesscsecscsscessesecscsecesecuseateesecsecereese 2-19

2.4.2 POINE trACKiNY 00... ee eeeeseeseeseeeeceseeseeseeseesecseeseesscsecsecsaecseeseseseceseeeeenes 2-21

2.4.3 SLUNOMSEES TASMANS ccsusices crnsmanisenis.a anarctestvadesindnithsioennenerienmnnaneonnnnpanenemn 2-35

2.4.4 Small object tracking techniques..........:c:ccescseseeseseesessesecsecesseseeseees 2-37

2.5 Behaviour recOQmition ..........cccceseescesecsecsscssesecssesscecseeeceaccssesecsacesecseeeecease 2-39

2.6 SUMIMALY 00...cececcc esseeseeseeseeseeseeceecaecsecsecaesseeeesseeaesaeeseesesaesaeeeeeaeenseeaee 2-40

Related information on processing TECHNIQUES: aiiscsensssnscornseasosnsenavecseavanseceoanvenensers 3-42

BV Introduction oo...ceceseesceeeeseeseeeseesecsecseeaeceecaecseeeaeeeeeseeeeeeaeseaeeneeeaeenees 3-42

Did GAGS SOTSOES sca sscesicaniss sass sscnntntnsosttstiennenatannnrienndinarnememar Stensnnnacmnnnneneanenenennnea 3-43

3.2.1 Examples Gf digital UNAG6: SCNSOTS ccncevsascosaxeannnacomncemmnwnsnexccneemanss 3-46

3.3 Colour Spaces oo... eee eeceeeeeeseesessceseeeseceesseesesaecaessessecsesecsecsesecenecseesaeseeeeaees 3-48

3.3.1 The RGB colour Space ..0........ccccsccessescesseeseeeseeseceseeaeenseceneecsseesseeesaeens 3-50

332 TS TAY COMMSACS instiseinsiRN SD SR Damibenmitn nomen ansbeinnmnseen 3-51

3.333 ThE YCDCE COlOUP SPACE scseceveessresseeasrerexeesrnmrmemmenees 3-53

ill



Motion tracking in low resolution imagery
 

3.3.4 The CIE L*a*b* colour space .....ccccccccsssssssscscssesssvscscsessvsvavesvavsceeveese 3-54

3.4 Detection algorithmsusedin spectral imaging applications............0ccce- 3-59

3.5 Un-mixing processto detect objects and estimate their sizes .............cccesee 3-65

oul Finding the ‘centre of mass’ of an Object........cccccccccssscsesseseseseeeeeveeee 3-68

DO SUMATALY sesaninrsssexsnatcnns sks A sanonanenroennmarersneonenvancoxevemeunee qpeevseagwennesiepuseuenca irssas 3-73

»  DECHIE OD]OCS scansscssseccunsnses esunansinvs a sitenenenenseunanneran saaeunengysmonemrrvnyryenvenempmneanrnsxe 4-77

Be TieODOTsrcrcercexnces exereveasuaaensiswenanseess tilted Shconanneesevnannnnnnarwarmaconunsoorconys ores 4-77

4.2 Triangle Wrapping Algorithmsand detection of small objects ..............0.0.. 4-78

4.2.1 Multi-objective optimisation.........cccccsscscsecsesesessesesesssessesessescseseees 4-81

4.2.2 Optimisation algorithms... cccceccsssseseeecseeseseescsceecseeseesssssssssees 4-84

4.2.3 Triangle optimisation on static data .......ccccccccceessesesssseeeseescsesseseeee 4-90

4.2.4 Triangle optimisation and un-mixing on synthetic dynamic data..... 4-99

4.3 Sub-pixel sized object detection ...........ccccccsesescesesssecessssssssssssecssessssssssseens 4-108

4.4 Human Skin detection.........ccccssesesesssessesesesesesesessecsesesecesseseescecscsasvscaeees 4-116

4.4.1 Skin modelling and characterisation ..........c..ccccccesessesescessssesseseeeees 4-117

4.5 Choice of a colour space for the un-mixing procedure involving low resolution

TAOS scesnaists bn se sietdeomnarninanonearennmestnercernanerewernenesene nee evi aevnersmmnmnnereetaseseeuanrsees 4-123

BX SUTBE cecccs srecaxawnewasta consents 22000 ARtinnnnnnttsinnsarcanenamnennnmmmarcnnaserecuasonnnanaemeseenn 4-125

. Datacollection, experiments and TESQIES cccccresnerersunananees stmmnsanes ers sieweenbasianintonenn 5-127

S10 IMtrOduction nceeee eccecseceecneeseseeseeesecseeeesessecseseeseeseesecseeseesesassassrssacsneates 5-127

5.2 Data Collection — Experimental Plan..........cc.ccccccsceesscseeseeseeseescseeseesseeees 5-128

5.2.1 Camera Location .........ccecceseeseesseseeseeseeseeseeseesaeessessecseeseesessessseessense 5-128

Dede. Lighting CONdItIONS 00...eeeee eeseeseneeeeseeeeeeeeecsecseeseesecseeateaeaeees 5-129

3.2.3 People including clothing and MOtiON ............ceeeceeseeeeeeeeeeneeeeeeee 5-130

5.2.4 External Factors .......cccccesecsscescescesceseeseeseesecseessseseeseeeecseesseessensenaes 5-132

5.2.5 Video recording and processing.........cceceeseessessesseeseeseeseesstenseeseesees 5-133

5.3 ReSUIES oesee eeeeeeseeeeseenecseeeceeeseescsensesecseesssecsesseseessesssecseeaecstsassessteseeseeates 5-135

5.3.1 Detecting the object and estimating its position ...........ecece 5-135

iV



Motiontracking in low resolution imagery
 

5.3.2 Tracking the object using Kalmanfilters .....0.0..0.c.cccsssssssesescsseseees 5-138

Doi Evaluation of the system according to experimentalplan.............. 5-144

5.4 Developmentof Graphical User Interface (GUI) for real-time implementation
8ERERA:wnamann eeentocemooren eseEPSTE5-148

5.4.1 GUI used in real world setting ..0.....cccccccscsesescssssssscscscsssvecsveveceeans 5-150

S.5 SUMIMALY oo... eeeseeseseecsesesesestensscsesescsesesesesesssessescscavscacaeacacacacacaracaacacs 5-152

. Conclusions and further WOrk..........cccscscsssssssscscscscscesssvsssesvsvsssvacacscacacacacatacacacaes 6-154

GL SUMMALY oo.cesseeeeteeesesesesesescscscscacsescscssscscsessvsvavavavevavavevanatavavaraves 6-154

6.2 Further Work...eeesesessssssssecsescscscsescscsescscscscscsessvsvsssvsvevavavavavanacaavaces 6-156

BiDHOSTAPHYsicxswensss 54505 iitttitennnsee se. camnameneenns vs awetongesmemnanmrey 54 49 oeeeneS 159

AQPRTIIR, cress s cnnsasenvnnnn.ss 1616 oxsisitdinainne s camasomnemenonscuien s +0 vo ctmcunsuearmyyies 184555 169



Motiontracking in low resolution imagery
 

LIST OF FIGURES

Figure 2-1 : Elements of a video monitoring System .........0.cccccccccccscsssescesecsccsessceeeesesacsaeeaeeeses 2-7

Figure 2-2 : (a) MIMS Sensor, (b) Pixels within the field of view of the PORS imagerthat are

monitored by the MIMSprocessing system,indicating regions ofactivity: e.g. chairs, floor

ANC COOL. [QD]... eeececcsecesssccsssccesseceseccsseecsseccssseccsseccsscessseseaeceseceeaeecuaecetsseetesesaeeesseetscens 2-10

Figure 2-3 : Three—frame differencing method using AND operation. D(-N) contains where

object was and whereit is now, D(+N) contains where the object is now and whereit will

be, and finally after performing AND operation, the current location of the object is

ODtAINEM. oo. ccccseccceseneesceeceecseeecsecsecsecseeecsessessesssessesssseesessecsseaesecseesseasiessteesets 2-15

Figure 2-4 : Tracking categories and methods ..........c.cccccsccssccssssecscesecssesecsecscesesseesssssessseseeses 2-19

Figure 2-5 : Typical Kalmanfilter diagram ........0..cccccccssessesscsscessessesecsecssesssessssecseesessscssenees 2-27

Figure 2-6 : Complete picture of the operation of the Kalmanfilter .....0.....cccccsseceseeseeseneeee 2-30

Figure 2-7 : Performanceof the filters in (a) non-Gaussian systems (b) Linear Gaussian systems

[BS] .eeeeecceeecescccsessessesscseessecaecsecsecsessaseeessecsecaaeeaeaeeseceeeesecseceseeeesecsessecseeeserssescsecaseasens 2-33

Figure 3-1 : (a) Basic single imaging sensor arrangement (b) Layout of photo-sensitive sites as

an array (or ‘matrix’) Of SCNSOTS...........cccccccsssscceessseecesssseccesseeeecessecessaseseeesssecssseseessscesens 3-44

Figure 3-2 : Sensor respOMse CULVE.......c ce eecceeeeeeseeeseeenecsecseeseeaececeeseaeeeceeecaeeeeseseeseeeeaeeaeesees 3-45

Figure 3-3 : CCD transports the charge across the chip and readsit at cornerof the array [68]...3-

46

Figure 3-4 : CIE 1931 Chromaticity diagram. White light is located at the centre. Regions of

distinct colours are also shown. The equal-energy point is located at the centre and has

coordinates (x,y) = (1/3, 1/3) [71]. cncceeccceccccseccessssceeesssceecesseeeceesseeessseeeesseeecsseeestseeceaes 3-49

Figure 3-5 : RGB Colour space [15).........:cccccsssccssccessseessseecseeecesecseeeceseessaeessseceseeseesessseessaee 3-50

Figure 3-6 : (a) Original RGB image (b) Image shown after colour channels have been

NOLMALSE: cece: scasssxesssavvarescacases cas cones anaes csavs ctswacedebesecenneaeotsdian sds dacwssdaae dtaVEsetUScaccnsesseenenne 3-51

Figure 3-7 : HSV colour space using the hexcone Model ..........cecesceeseeseeeseeeeeeeeeeteteeeeeeneeeees 3-52

Figure 3-8 : YCbCr Colour Space [75] .......cecceescesssccessecesneceeceeeeseecseesteessescsaeeeeeeeaeeseaeeneas 3-53

vi



Motion tracking in low resolution imagery
 

Figure 3-9 : CIE L*a*b* Colour Space ..cccisisssiscssscsocsccssoossnennssssnsncscatsasenarsacensesucoessvverseretonene 3-55

Figure 3-10 : Each row showsthe information contained in the 3 dimensions for each colour

space. The information has been converted to a greyscale map forvisualisation........... 3-57

Figure 3-11 : Same image taken underbright and dark light conditions. ..........c.ccccseeeeeeeeee 3-58

Figure 3-12 : RGB pointdistribution for bright and dark image............cccccccccccsccscsesseseserseeees 3-58

Figure 3-13 : Normalised RGB point distribution for bright and dark image..........0.c.c0c0c00 3-58

Figure 3-14 : Spectral reflectance curves of different types of surface materials [78]. ............ 3-60

Figure 3-15 : Top: Linear mixing model with mixing oflight occurs at the sensor. Bottom: Non-

linear with mixing happening on the ground. [79].....cccccccccccssscssssecsscscescescsecsscsesceeess 3-61

Figure 3-16 : (a) Two endmembers(b) Three endmembes...........0.cccccecccsccescececcecseceasececeesees 3-63

Figure 3-17(a) : Endmembersare encircled. Triangular envelope wraps around the data values

and endmembers,(b) Parallel contours of equal abundance of Endmember1[75].......... 3-66

Figure 3-18 : (a) Real low resolution image. (c) Triangular envelope wraps around data values

and endmemberzonesare circled. Fig. 1(b), (d) and (e) show the portions of the images

that represent these three endMeMbETS.............cceccecscesececesseesecesccesesessecseeesseesscesssesscsese 3-66

Figure 3-19 : Estimating the ‘centre of mass’ of an object. Pixels 6, 7, 10 and 11 are used to

obtain initial centroid estimate. The remaining pixels are un-mixed to improvetheestimate.

easpsaaaareneoagensases anes ne ose ose vewaea coma aes weasesunseysEessuNe sv00G a6a Dade caets cdnneneenesnaneenaneccoenceraneatanceane 3-69

Figure 3-20 : Top row is an image sequence containing a yellow object moving from left to right

on a background with two main colours. A pixel (highlighted by a red square) is under

observation. Bottom row showsthe corresponding data point distributions and triangle

wrapped around them for the un-mixing PIOC€SS..........ececesceeseeeseeeesteeessecesseeeeseecesseeees 3-70

Figure 3-21 : (b) Blow-up of the image sequence at frame 50 and (a) the corresponding pixel

value location in the data space ProjectiONn.........ccecececceceteeseeeeeteceeeeeeseeecnseeeeeeceeeeeas 3-70

Figure 3-22 : Proportions of each endmemberin the observed pixel overtime............:c0c008 3-71

Figure 3-23 : Location of intensity data points of mixed pixels... cceceeeceeseeeeeteeeeseeseeees 3-72

Figure 3-24 : (a) Three colours cannot be unmixed becausenotriangle is formed (b) four colours

Cat: bé unmixed 10 2D SpaCOnccsncssasssnssensuscemmemncanenmemeunarencena 3-73

vil



Motion tracking in low resolution imagery
 

Figure 3-25 : Points A, B, and D representthe three true end-members for an image, however

due to a lack of any pure pixels of type D, the selected end-members are A, B, and C (a

MIXEPIXEl).occeseesetesseessesesecscsecsesecscscscsesscsssesscscesvassesarsassutacsatssausacsavacseesvass 3-74

Figure 4-1 : Behaviour of the Simplex Shrink Wrap. Image source[1], pp 505.....c.ccccsesseee 4-79

Figure 4-2 : Nonlinear simplex algorithm for p = 2, where @ is the parameter vector (adapted

FrOM [99]) oo. eecccssccesscesecesscessecssscssecsscesssssevssesseessessessssssasesssessessssssssssesseeasstatestaececesees 4-87

Figure 4-3 : Minimisation of a cost function. Successful operations of a GA with a population of

12 candidate solutions clustering around the global minimum after a numberofiterations or

generations [94], Chapter 9.0... cccseceseseseseseeseeesesssesecscsecsesscsceesscssescestacesseceusacarenaes 4-89

Figure 4-4 : Flowchart to find the starting vertices of the triangle to be used in the optimisation

PIFOCECUIE. 0.0... ec eceeeeecseeseesecsesseesesessessesessessecacsesscsecssssssucssscescvscaucnssesseassueaevacsaeeasansass 4-92

Figure 4-5 : Determining whether pointlies inside a triangle or not by using the sum ofthe

areas of the sub-triangles obtained. 0.0... ccccccccsescsscsesscsccscssssscescescsecsessceesesescaecauesenseas 4-93

Figure 4-6 : Triangle obtained (dotted-line sides) at each step of the stochastic optimisation

iteration process. Finaltriangle obtained after 20 iterations shown in thicklines. .......... 4-94

Figure 4-7 : (a) The error in the distance from the ideal vertices’ position and (b) Cost function

values as the stochastic search optimisation process CVOIVES. ........c:ccccccccessesssessescseeeeeees 4-94

Figure 4-8 : Flowchart showing how the stochastic optimiser was implemented.................... 4-96

Figure 4-9: (a) and (b) Random Search, (c) and (d) Nelder — Mead, (e) and (f) Genetic algorithm.

Evaluating different optimisation techniques .........ccccccccscsseseeseescsecsesescssessesesscescsssceseas 4-98

Figure 4-10: Highresolution artificial imagery with noise being down-sampled.................... 4-99

Figure 4-11 : Adapting the GA optimiser for dynamic programming. Population information

from a frameis fed back into optimisation step of next frame. .........ccccccceceseeseeeeees 4-101

Figure 4-12 : Behaviour of Best Score values of the GA. Between the frames denoted by the

crosses, static optimisation is taking place. Dynamic optimisation happens when the

general trend in Best Score values is a decreasing one. A sharp increase within the dotted

lines indicates a changein data points and location Of VerticeS. ........:cccccecsesseseseeeeseees 4-102

Figure 4-13 : Behaviour of the rms error of triangle vertices from ideal vertices for the three

chosen optimisation techniques as the perturbationin the data points is increased....... 4-104

vill



Motiontracking in low resolution imagery
 

Figure 4-14 : Bar chart showing the time required to reach a predefined cost function value as

perturbation is increased. 0... cceeceseecsesesseessesceccsesccsccscsssavscsecscaeseeeesasactavseeesavees 4-105

Figure 4-15 : Errorin finding the centre of object as the size of object increases... 4-106

Figure 4-16 : Error in finding the centre of an object as imagenoise increaseS...........c.cc0- 4-107

Figure 4-17: Sub-pixel displacement .....0....ccccccccccccsccscesescscesescsecsvscessseescscasaeecsesstavsesevarees 4-108

Figure 4-18: Modelfor finding speed of motion andsize of Object .....c.cccccccceseseseseseeeeeees 4-110

Figure 4-19 : Intensity change in a pixel as a square object of increasing sub-pixel sizes goes

THOUGH it. oo.eee cece cscseeeescsessesesesesesesseseseesessvscsecssuesscseseaceuseceesareeseteueasaevatsnseeees 4-11]

Figure 4-20 : Intensity change in a random row and columnofpixels..........cccccccsseceeseeeeee 4-112

Figure 4-21 : Flowchartfor filtering algorithm ........0.cccccccccccccsescescsscesseseecesceseeseescsenseseeacese 4-113

Figure 4-22 : (a) showsthe intensity values for a particular pixel of an imageas timepasses (b)

showsthe filtered values with indications when the object is entering andleaving the pixel.

Scene e ee eeneeeaeeseesseeseeeseessessesecsecsecsecseesecsecsesseeaesesesecsessesssesdseseesscesssseseacesecssssecseseseeaseeees 4-114

Figure 4-23 : (a) showstheintensity values for a particular pixel of an image as time passes (b)

showsthefiltered values with indications when the object is entering and leaving the pixel.

wissen Svs tss en ai ogy sere ge ea ease suce uses eaecteuwag gan ease cee aver estat esteareErn TRASTPAs Ui aneenrseeereneen- 4-115

Figure 4-24 : Time taken for one edge of object to cross piXel....c.c.ccccccsscescscssssesssesesescseeees 4-115

Figure 4-25 : Sample of photos containing skin of human beings from various ethnic origins and

taken under different HentMe COMCIAGNGyc ccescsumuacexxessusoncnavseexsssucsraavies deta iintsdintonannames 4-118

Figure 4-26 : Cropping imagesto obtain only skin-containing images. ........0.ccccccccceeeeseeeeee 4-118

Figure 4-27 : Collecting skin chromaticity values for each pixel present in the image sample

containing skin only for a hypothetical colour space .........c..cccecsccseesseseessesseesssssesecsesees 4-119

Figure 4-28 : Skin distributions for YCbCr(a) — (c), CIE L*a*b* (d) — (f), HSV (g) — (i), and

Normalised RGB (j) - (1). First two columnsare histogram distributions............0...00.. 4-121

Figure 4-29 : Skin filter using all the four spaces separately applied to an image................. 4-122

Figure 4-30 : Data points distribution for a low resolution image containing three main colours

shown for éach COlOUE SPACE s cstsessssasevescewvevasevsasswers 1940s a0sdid40s3i0Seesne vbenntsstcoeeneeaneeosoneoss 4-124

Figure 5-1: Central ceiling mounted camera VIEW..0....cc:ccceccesesessseteeeeseeeseseseestsecseseasessseees 5-128

1X



Motiontracking in low resolution imagery
 

Figure 5-2 : Side view of a sensor arrangement placed at a strategic place in a cornerof the

ceiling. Sensor has a wide-angle Field of View (FOV)........c.cccccccccesssssscssesesseseseueeseaces 5-129

Figure 5-3 : (a) and (b) show simple paths taken by oneperson,(c) shows zigzag path taken by

one person, and (d) showstwo persons walking in the r0OM ou... eeeeeeeecescescessesees 5-131

Figure 5-4 : Snapshotof the high resolution data acquisition video recording............:000008+ 5-134

Figure 5-5 : Low resolution equivalent of the snapshots...........ccccccccesccescesessesescesceseceececeeees 5-134

Figure 5-6 : (a) Image sequence containing a moving object (b) Detected centre of mass of object

(c) Triangle wrapping arounddata points, andselected data points in red that represent the

object’s location in the image plane..............scsccsssecsseecsssscsssssccessescesssscessscssceneeeeereees 5-135

Figure 5-7: Position estimates of the object found when imageresolution is (a) 15 x 15 (b) 20 x

20 (c) 25 x 25 (d) 30 x 30 pixels. The estimates have then been scaled up to a resolution of

100 x 100 pixels for Comparison PUIPOSES...........cccccesscsscssssscscescesscssessecsecsccaesereeseeeres 5-136

Figure 5-8 : Detected points superimposed on each other .........c.cccccccccessesescssesceesesceseseneeee 5-137

Figure 5-9 : Flowchart explaining the functioning of the Kalmanfilter with particular attention to

the initialisation Step...ee ececcecccccsssessecsscsecsseessecssessesccsscsessecssssscssccsecsstssesseaecesecascees 5-138

Figure 5-10 : Track estimation shown bythick white line after Kalmanfilter has been applied to

each image resolution of (a) 15 x 15 (b) 20 x 20 (c) 25 x 25 (d) 30 x 30 pixels. The

estimates have then been scaled up to a resolution of 100 x 100 pixels for comparison

PUTPOSES..0...cceceececeseceeteeseseeesseesseceeeeecsasecssceecaeeceseessaeesesecesseseseseteeeeeaeeeseeseeeeseseeesseeees 5-139

Figure 5-11 : Filtered tracks obtained from different resolutions superimposed on each other....5-

140

Figure 5-12 : (a) Original imageryat an instant in time - here Frame 230, (b) Position estimate of

the object at Frame 230 after un-mixing, (c) Kalmanfilter gives position error values which

generally smaller in magnitude and smoother than the ones obtained after un-mix only, (d)

Path after un-mixing only, super-imposedonreal path, (e) Path obtained after Kalmanfilter

is used, super-imposed On real path... ececeseeseeseeeeeeseeecseesceeeeecseeseeecsesaeeseessesseeees 5-141

Figure 5-13 : Kalmanfilter gives position errors which are not always less in magnitude than the

ones obtained after un-mix only, (b) Path after un-mixing only, super-imposedonreal path,

(c) Path obtained after Kalmanfilter is used with measurement made after every 5 frames,

SUPET-IMpOSEd OF Leal Pathivescdsscscevessecevesscanciewsacvnaseasusca reese veces coun caans ves West Aw EIA LE ds encore 5-142



Motion tracking in low resolution imagery
 

Figure 5-14 : Impactonthefiltered path as the process noise is increased from (a)to (d) ....5-143

Figure 5-15 : Effect of sudden changeoflight. In (a), centroid is detected in well lit room. Light

is switched off just after Frame 1. In (b), centroidis still detected after triangle adapts to

Hw Wala Point CSTDEMO,secs cssuresnsnanesancenvernenenenn ssiaees idle sadscdvincnanannonrenenenewnenne 5-145

Figure 5-16 : Triangletriestofit itself to the new data points from frame | to 24...5-145

Figure 5-17 : Moving object being un-mixed gets occluded. Centroid position cannot be obtained

at frame 140 whenthe object is hidden but once object reappears,it is detected again. 5-146

Figure 5-18 : (a) Two objects with ‘bright’ colours are detected at the same time. A path is

obtained after un-mixing a certain amountof frames (b) Triangle wrapping and double un-

MIXING At AN INStaMt IN CME...eeeeee cseeseseeeeesecseeesecsessesecscsessesscseesscesceecstteereessaes 5-147

Figure 5-19 : Graphical User Interface developed to test the various algorithms.................. 5-150

Figate 520 © GUL 10 BCHOMsass sesisssiase iscsi crnanrannandaneeennenessnenantenainunenaenepynvensguncirconnenreeenesiaes 5-151

Figure 5-21 : Kalmanfilter switched On ........cccccccccsseesseseseesceeseesesecsesecseeseesecsucsucaesausaesaners 5-151

Xl



 

 

CHAETE 1



Significance and motivation
 

1. Introduction

1.1 Significance and motivation

While many pieces of legislation aimed at protecting citizens’ privacy exist,

providing a single definition of privacy is difficult. The boundaries and content of what

can be considered private differ among cultures and individuals, but they often share

basic commonideas - one of them being the concept of being observed by a camera. The

ability to monitor the activity of people within an enclosed area without intruding on

their privacy is an important factor for many medical and security systems. The use of

high resolution imaging is not welcome all the time as people are not always

comfortable with being ‘watched’ and there are also laws that safeguard ourprivacy.

Besides the presence of an intrusive camera in places such as a hospital ward, an office

or other secure locations may influence the true behaviour of the people being

monitored. One wayto get round this is by using very low-resolution cameras which

cannot form true images of the subjects that they are filming. The condition of ‘no true

image formation’, whereby the human eye will find it extremely hard to distinguish

different objects in a scene, can be achieved when all the objects of interest are

comparable in size to the pixel/sensor elements and hence cannotbe fully resolved. By

not resolving the details of a scene in this manner, monitoring systems minimise the

intrusionfactor whilst still being able to monitor the motion of people and objects within

the field of view. Places such as offices, hospitals or nursing homesare the environments

mostlikely to benefit from these systems as they often require monitoring capability for

safety and medical reasons but with a high degree of privacy.

The emphasis ofthis thesis is to use data from a very low resolution video camerato

monitor the motion of objects in these sensitive indoor environments. The conventional

way of detecting moving objects in spatial image processing is by differencing

successive or neighbouring image frames in a sequence. This is not a viable option in

this case as insufficient detail is available and background noise will also be detected.

The low spatial resolution means that it can become very difficult to separate a very

small object from the noise. An alternative method is devised to achieve detection within

the low numberof pixels available from low-resolution cameras. Techniques borrowed
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from satellite sub-pixel detection systems — which make useof multiple light wavebands

or colours — are adapted. In satellite reconnaissance, sub-pixel target detection is very

common and many algorithms have been developed to deal with situations where each

pixel contains several distinct types of object or background, each with a different colour

signature. In this context, ‘colour’ is a general term that is related to the intensities in

different visible and/or thermal(i.e. infrared) wavebands — the number of wavebands can

be significantly larger than the usual three colours that are familiar in the visible band.

The efficacy of the algorithms depends on how mixed the pixels are and how much

colour contrast they contain. If each pixel contains too many different coloured

objects/backgroundsit can becomedifficult to discern any common colour combinations

between different pixels, andif the pixels contain colours that are too similar it becomes

difficult to identify distinct colours. The second problem arises because of the

underlying assumption that the pixels can be represented by a mixing modelthat can be

decomposedto find ‘pure’ colours. Often this is done by algorithms such as the Simplex

Shrink-Wrap algorithm [1] or the vertex componentanalysis[2].

Using colour as a tracking/monitoring aid is not new but the current application

presents significant difficulties. The detection and monitoring algorithms have to take

into accountthat the colour measurements madeby a vision system often depend on the

ambient illumination and in rooms with open windows and blinds for example, the

illumination conditions can change very rapidly. In order to recognise an object in

different lighting environments, the system must have the ability to discount the effects

of the illumination changes. An important task in this technique adaptation for indoor

environmentuseis to find an automated waytofit a triangle arounda set of data points

as closely as possible for each frame in a sequence of images. Several optimisation

algorithms are evaluated during the developmentstage of the system to determine which

one is most appropriate for this type of environment and the subjects of interest. The

detection mechanism aloneis not enoughto be able to monitor the subjects, i.e. people.

Tracking algorithms need also be applied to be able to generate continuoustracks of the

people being monitored.
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1.2 Structure of thesis

This thesis is divided into five further chapters:

Chapter 2, Literature review, describes the main components of a monitoring

system with special importance given to the object detection and tracking

part of such systems.

Chapter 3, Related information on processing techniques, showsthe various

ways of representing colour information, and detection algorithms used in

spectral imaging applications are introduced.

Chapter 4, Detecting objects, examine how the triangle wrapping algorithms

can be adapted for indoor environments to detect small objects. Another

detection technique involving the use of humanskin is also introduced.

Chapter 5, Data collection, experiments andresults, contains all the tests and

results of the algorithms when appliedto bothartificial and real imagery.

Chapter 6, Conclusions and further work, is an overall evaluation of the

work done, and ideas for further work.

1.3. Publications

Parts of this thesis have been presented at conferences and published in a journal paper.

1. V. Govinda, J. F. Ralph, J. W. Spencer, J. Y. Goulermas, Small object

monitoring for sensitive indoor compounds, Measurement (2009), doi:

10.1016/j.measurement.2009.01.005.

V. Govinda, J. F. Ralph, J. W. Spencer, J. Y. Goulermas, Pixel decompositionfor

tracking in low resolution videos, Signal and Data Processing of Small Targets

2008 Proc. of SPIE Vol. 6969.

V. Govinda, J. F. Ralph, J. W. Spencer, J. Y. Goulermas, Spectral unmixing for

tracking human motion in low resolution imagery, 2007 Journal of Physics:

Conference Series 76, paper 012031.

V. Govinda, J. F. Ralph, J. W. Spencer, J. Y. Goulermas, D. H. Smith, Tracking

subpixel targets in domestic environments, Proc SPIE 6236 Signal and Data

Processing of Small Targets 2006, 623603/1-8.
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2. Literature Review

2.1 Introduction

The main aim of this thesis is to describe the development of a monitoring system

that is able to track small objects relative to an image plane of low resolution size.

Object sizes can range from less than a pixel to a few pixels. Low resolution video

cameras and other similar non-intrusive image sensors form part of the equipmentthat

can be used to capture this information. This project’s emphasis is to use this data to

monitor the motion of objects. The next two chapters consist of the theoretical

background knowledge necessary to understand the development of a complete low

resolution image monitoring system. This chapter contains a review of the techniques

used in two important tasks of most video monitoring systems, object segmentation and

tracking. Object segmentation is the first step in the overall tracking procedure. This is

usually achieved by selecting certain features within an object that are common, for

example colour, edges and shapes. One detection approach involving colour which is

introduced in the next chapter 3 is the use of remote sensing techniques to detect very

small objects. The satellite reconnaissance community often has to deal with small

objects in images and an attempt is made in this thesis to adapt these techniques

augmented by using time-dependent colour intensity profiles of the low resolution

images to detect moving objects. Once an objectis detected, algorithmsexist to trackit.

These algorithms are assumed to be part of a filtering and data association process

involving prior information aboutthe scene or object, dealing with object dynamics, and

evaluation of different hypotheses. Tracking is an established field employed in various

sectors, and a brief survey of the techniquesthat exist is given in this chapter. While not

all the techniques mentioned here can be used when dealing with small objects in low

resolution image sequences,it is nevertheless very important to know how they work as

often techniques originally designed for a purpose can be modified to answer the

demandsof another purpose with different requirements.



Monitoring Systems
 

2.2 Monitoring Systems

A generic monitoring system can be broadly definedas consisting of several main

building blocks as shown in Figure 2-1. The environment being monitored could be a

hospital ward or another type of domiciliary care room and depending on the chosen

environment, one can then decide on a particular type of sensor or sensor network

arrangement to collect the data. The sensors in this case are low resolution imagers or

other similar non-intrusive sensors. The data collected in this way is then processed to

finally give useful information about the environment being monitored. The data

processing part of the monitoring system chain is the section where most effort was

devoted during this project and a detailed description of the various steps involved is

given in the nextsections.

Video-based monitoring systems can be seen in manyplaces, such as in car parks,

supermarkets, airports and train stations. The surveillance systems are usually used to

detect abnormal, dangeroussituations and prevent their happening as soon as possible.

Many systems require human operators monitoring the scene continuously via many

video displays to detect suspicious activities and as a result some of these systems

contain some disadvantages such as the cost of running them and the fact that human

operators are not always fully reliable. These surveillance systems are also not true

monitoring systems as they are just networks of cameras that collect images over time

but with limited capability of interpreting the collected data. The above disadvantages of

manual surveillance systems have led to much research in developing automated video-

based surveillance systems. For the purpose of this thesis, only systems with single-

image capturing devices are analysed. However the techniques developed can be

extended and adapted for multi-sensor systems.
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Figure 2-1 : Elements of a video monitoring System

2.2.1 Examples of current indoor monitoring systems

One very good example of an indoor monitoring system is called KidsRoom which

is a fully automated and interactive narrative play-space for children developed at the

MIT Media Laboratory [3]. KidsRoom uses a single camera, which is placed on the

ceiling to minimise object occlusion, to track multiple non-rigid objects in a room and

these objects often interact with others. The system does not require people in the space

to wear any special clothing or hardware, and it can accommodate up to four people

simultaneously. KidsRoom uses knowledge about objects being tracked and their current

relationships to one another, also known as contextual information, to track multiple,

complex, non-rigid objects simultaneously. KidsRoom uses a closed-world assumption

to select weights of the position, size, colour and velocity used in the object matching

algorithm. A closed-world is a region of space and time in which the specific context of
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what is in the region is assumed to be known. Thetracking algorithm uses four data

structures: (1) Each object has a data structure that stores the object’s estimated size,

colour, velocity, and current and past position. This information is used for matching

each objectin the last frame to a blob in the new frame. A blob is a group of connected

pixels based on certain conditionsof the pixels’ brightness and spatial adjacency [4]. (2)

Image blobs are computed in each frame using background differencing; each blob’s

size, colour, and position is recorded. (3) A local closed-world data structure exists for

every blob and stores objects that are assigned to the blob. (4) Finally, the system uses

knowledge about the global closed-world, which stores information about which objects

are in the entire scene [3].

Another example is the Pfinder (“Person Finder”) system [5]. It is also a single-

camera system that tracks the movement of the human body parts. Although this

system’s main aim is to recognise human gestures, it is mentioned here because the

technique used can be improvedto be able to track the movement of a whole body. The

colour space used is the YUV representation of colour. YUV is used in video

transmission where Y is the luminance channel that contains the images that would be

displayed on a black-and-white television receiver while the U and V components carry

the information about the colour of the images [6]. No information is given by the

authors on their choice to use this colour space but it is assumed that this system was

developed with a view to be compatible with legacy video systems used in video

transmission. Pfinder uses a multi-class statistical model of colour and shape to detect

parts of a person such as head, hands and feet. As the Pfinder processes scenes that

consist of relatively static situations such as an office, and a single person with moving

parts, the developers of this system used different types of characterisation model for the

scene and for the person. The scene surrounding the human is modelled as a texture

surface; each point on the texture surface is associated with a mean colour value and a

distribution about that mean. The colour distribution of each pixel is modelled with a

Gaussian described by a full covariance matrix. People are represented as blobs with

each blob having a spatial (x, y) and colour (Y, U, V) component. Thestatistics of each

blob are updated recursively to combine information contained in the most recent image

with knowledge containedin the currentclass statistics and the priors. This system also
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claims to be able to compensate for small or gradual changesin lighting by updating the

texture mapsovertime. It cannot however compensate for large or sudden changes in the

scene as they get mistaken as being part of the foreground region. Anotherlimitation is

that the domain-specific assumptions used to modelthe gestures of the human bodyto

make the task tractable can be brokenfairly easily because they represent only a limited

numberof gestures [5].

W’*is another single camera surveillance system for tracking people and detecting

humanactivities using a single camera [7]. W* employs a combination of shape analysis

and tracking to locate people and their parts (head, hands, feet, torso) and to create

models of people's appearance so that they can be tracked through interactions such as

occlusions. It can learn and model backgroundscenesstatistically to detect foreground

objects, even when the background is not completely stationary (e.g., motion of tree

branches). W* can also determine whether people are carrying objects, and can segment

objects from their silhouettes, and construct appearance models for them so they can be

identified in subsequent frames. Howeverit does contain certain limitations that will not

makeit appropriate for this project. It has been designed for outdoor purposesusing only

grey-scale video imagery captured at a high resolution of 320 x 240 pixels at a frame

rate of 25 Hz. The fact that it uses a silhouette-based method to perform foreground

detection critically affects the camera orientation. A fairly oblique view of the scene is

required because whole body silhouettes are needed, and henceits field of view is

limited. Another problem with W’ is thatit is severely affected by shadowspresent in

the scene[7].

The systems mentionedso far use fairly high resolution cameras and do not address

the need for privacy that exists in certain sensitive indoor environments such as care

homesfor the elderly or hospital wards. One example system that makes use of low

resolution sensors has been developed by the Centre for Intelligent Monitoring Systems

(CIMS)in the Department of Electrical Engineering and Electronics at the University of

Liverpool and has been demonstrated successfully in situ in a domiciliary care facility in

the London Borough of Merton [8]. This system, called the Merton Intelligent

Monitoring System (MIMS), is based around a two-dimensional optical array and

infrared detectors (see Figure 2-2(a)) which monitor the activity of occupants within a
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number of rooms within the facility [9]. The two-dimensional optical sensor array —

referred to as a Pseudo-Optical Radar System (PORS) — monitors the colour state of

selected individual pixels (or clusters of pixels) that correspond to regions of the room

where different types of activity are likely to be occurring. Examples of such regions

might be pixels correspondingto chairs, the floor area or the entrance/exit zones (Figure

2-2(b)). The colour information is collected in RGB (Red, Green, Blue) space and then

converted to the HLS (Hue, Lightness, Saturation) colour space for further processing

[10]. More information about colour spaces is given in Chapter 3. This pixel based

monitoring system is augmented by the use of three infrared detectors arranged in a

triangular formation that monitor movementfrom one region of the room to another.

  

   

; 3 x Passwe
(a) InfroRed (b)

Chromatic
Systems (PIRCSs)  

     )
Pixels of Interest
within Field of View
of PORS Unit

   Pseudo Optical Radar a
System (PORS)

Figure 2-2 : (a) MIMSSensor, (b) Pixels within the field of view of the PORS imagerthat are
monitored by the MIMSprocessing system, indicating regions ofactivity: e.g. chairs, floor and
door.[9]

This approach to monitoring indoor environments can be summarised by several

phases. Firstly, the presence of an object (e.g. a person) at a particular location is

detected by a change in the RGBcolour channel values of the selected cluster of pixels

of interest, and if the change occurs in a series of adjacent points over time, movement

of the object is assumed to occur. Secondly, a timer is used to record the duration of

movement that happen at the various locationsofinterest. It is at this stage that the RGB

information is converted to H, L and S, with the intention to make H represent the

location of the events which occur, L to represent the collective time of the perturbation

across all locations and S to represent the spread of events across the various locations.

The last phase is to use the HLS information to distinguish between movementover long
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and short distances with the intent of discriminating between different types of motion.

The system has been developed for long term use and the data can be recorded and

processed over weeks and months to allow for the detection and identification of

emergent patterns of behaviour amongst the occupants of the rooms — of particular

interest is the ability to detect and identify the emergence of anomalous behaviourthat

might indicate the development of a medical condition needing attention from a care

giver. One of the main advantages of this system is that it has derived an intuitive

description of human activity obtained from processing months of data from multiple

rooms in a methodical way. This description can be interpreted by a care giver without

specific technical training, whilst maintaining the privacy of the occupant and enhancing

their perceptions of safety and security.

In the current project, one of the aims is to use normal cheap low resolution image

sensors to capture poor quality imagery at a certain framerate (10 fps is used during the

experiments) and then track the moving objects that exist in the videosin a reliable way.

This looks morelike a traditional automated video-based monitoring system and these

systems usually consist of three main parts: (1) object segmentation and detection (2)

object tracking (3) behaviour recognition. Object segmentation aims to extract objects

from the background. This task is difficult given the existence of camera noise, object

occlusion and unstable environmental conditions. Object tracking aims to label the

objects in the scene and track their properties throughout time. The behaviour

recognition task recognises a variety of object behaviours such as a person walking,

running, falling down or standing. While the uncertainty and complexity of the

behaviours are challenging and are introduced in this thesis, the main focus will be on

the object segmentation and tracking parts of a monitoring system with particular

attention given to cases when input videos are of very low spatial resolution containing

objects of small sizes (from less than a pixel to a few pixels wide) relative to the video

frame.
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2.3 Object detection

Selecting the right features to segment an image playsa critical role in tracking. The

most desirable property of a visual feature is its uniqueness so that the objects can be

easily distinguished in the feature space. Some of the more commonvisual featuresare:

Colour: The apparentcolourof an object is influenced primarily by two physical

factors, 1) the spectral powerdistribution of the illumination source and 2) the

surface reflectance properties of the object. In digital image processing, colour is

represented in different ways called colour spaces. A colour space is a

mathematical model describing how colours can be represented as numbers. A

few common examples are RGB, HSV and CIE L*a*b*. More information about

these spaces is given in Chapter 3 as colour cues are used for the detection

processin this thesis.

Edges: Object boundaries usually generate strong changes in image intensities

and edge detection is used to identify these changes. An important property of

edges is that they are less sensitive to illumination changes compared to colour

features. Algorithmsthat track the boundary of the objects usually use edges as

the representative feature and an evaluation of these algorithms is provided by

Bowyeret al. [11]. They applied eight different techniques on a collection ofreal

images and compared the results with manually-specified ground truth. They

found that the Canny method, with the Heitger method a close second,

outperformed the others. The Canny detector uses the first derivative of a

Gaussian andit uses four filters to detect horizontal, vertical and diagonal edges

[12]. However it can be a time consuming process as it consists of complex

computations.

Optical Flow: Optical flow is a dense field of displacement vectors which

defines the translation of each pixel in a region. It is computed using the

brightness constraint, which assumes brightness constancy of corresponding

pixels in consecutive frames and any changes in intensity are solely due to

motion [13]. Optical flow is commonly used as a feature in motion-based

segmentation and tracking applications and a performance evaluation of the

various optical flow methods can be obtained from the survey by Barron[14].
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The brightness constancy assumption does howeverposecertain problemsas in

reality the brightness constantly changes in a dynamic scene and hence motion

vectors can be wrongly allocated even when no displacementhas occurred.

In general, many tracking algorithms use a combination of these features. For the

purposeofthis project, colour is used as the main detection feature, as will be explained

in later sections. The optical flow method is not suitable here because of the

continuously changinglight intensities that occur in such environments. Edge detection

methodis also not thought to be appropriate for low resolution imagery because of the

levels of noise present and also because of the fact that objects of interest can be too

small for their edges to be picked up. However, a variant of the edge detection

mechanism is implemented to detect objects that are less than a pixel in size as these

objects tended to modulate the intensity distributions of certain pixels as they move

across pixel boundaries.

Every tracking method requires an object detection mechanism either in every frame

or whenthe object first appears in the video. A common approachfor object detectionis

to use information in a single frame. However, some object detection methods make use

of the temporal information computed from a sequence of frames to reduce the number

of false detections. This temporal information is usually in the form of frame

differencing, which highlights changing regions in consecutive frames. Given the object

regions in the image,it is then the tracker’s task to perform object correspondence from

one frameto the next to generate the tracks. Anotherclosely related technique achieves

object detection by building a representation of the scene called the background model

and then finds deviations from the model for each incoming frame. Any significant

change in an image region from the background modelsignifies a moving object and the

pixels constituting the regions undergoing change are markedfor further processing.

The simplest method of temporal frame differencing compares the current image

with a static background image. If the difference between a pixel in the current image

and the corresponding pixel in the background image is greater than a threshold, the

pixel is classified as belonging to a moving object; otherwise it belongs to the

background. Noise in the difference image can be removed byusing a medianfilter and

then a pixel connectivity algorithm is used to find blobs (there may be more than one).
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The connected components are then labelled by scanningthe difference image, pixel-by-

pixel (from top to bottom and left to right) to identify connected pixel regions,i.e.

regions of adjacent pixels which share the sameset of intensity values [15]. However

since this method uses a static background image, it cannot deal with changes in

conditions of the environment such as change of lighting conditions or background

motion. This method can be improved by updating the background image regularly and

several ways exist in literature to describe this process. Haritaoglu’s W* system

maintains a pair of values (minimum and maximum) for each background pixel [7].

These values are updated over time to adapt to the changesin the scene. A pixel in the

current image is classified as a background pixel if its intensity is inside the range

(minimum value, maximum value) of the corresponding background pixel. Another

background update methodis proposedin Koller et al. [16] where the background image

is updated differently for pixels belonging to background and pixels belonging to

moving objects using weights estimated from the rate of background change. This

method can detect moving objects accurately even when they are moving slowly in the

scene.

Another approach to temporal frame information is to find the absolute difference

between the current frame and the previous frame instead of the background frame

(Frame Differencing). Frame differencing is very quick to adapt to changesin lighting or

motion and objects that stop are no longer detected. However, frame differencing tends

to only detect the leading andtrailing edge of a uniformly coloured object and as a

result, it can be very hard to detect the entire object that is moving in a scene. One way

to solve this problem is to adjust the temporal scale (frame rate) at which frame

differencing is done in a technique called ‘double-differencing’, as defined in the

equation below [17]:

D(N) =|I(t)-1(t + N) (2-1)

where J(t) is the frame at time ¢. D(+N) and D(—N) are computed after choosing a value

for N which dependsonthe size and speed of the object of interest and the frame rate of

the input video. D(+N) contains the object’s current position and its future position,

D(-N) contains the object’s current position and its past position. Next as part of a three-

frame differencing technique, the logical AND operation is taken between D(+N) and
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D(—N) and this operation results in an image with only the object in its current position

[17]. A pictorial explanation is shown in Figure 2-3.
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Figure 2-3 : Three-frame differencing method using AND operation. D(-N) contains where
object was and whereit is now, D(+N) contains where the object is now and whereit will be,
and finally after performing AND operation, the currentlocation of the object is obtained.

Another way to detect objects is by using image segmentation algorithms which

partition the image into perceptually similar regions. Every segmentation algorithm

attempts to address two problems, namely the criteria for a good partition and the

method for achievingefficient partitioning. Two commontechniquesare described next.

The mean-shift technique is an approach to find clusters in the joint colour and

spatial space, [/, u, v, x, y], where[/, u, v] represents the colour and [x, y] represents the

spatial location. Given an image, the algorithm is initialised with a large number of

hypothesised cluster centres randomly chosen from the data. Then, each cluster centreis

movedto the mean ofthe data lying inside the multidimensionalellipsoid centred on the

cluster centre. The vector defined by the old and the new cluster centres is called the

mean-shift vector. The mean-shift vector is computediteratively until the cluster centres

do not change their positions [18]. Care must also be taken to ensure that the various

parameters to obtain better segmentation, for instance selection of the colour andspatial

kernel bandwidths, are correctly set and the high computational complexity of the

algorithm is a significant barrier to its scalability to practical applications. Nevertheless,
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this technique has beenadaptedto solve other applications such as edge detection, image

regularisation, and tracking with various degrees of success[19].

Another methodis the snakes or active contour method. A snake is a mathematical

description of a contour used to delineate a boundary. Object segmentation is achieved

by evolving the closed contour to the object’s boundary such that the contour tightly

encloses the object region [20]. This method is used in many biomedical applications

where non-rigid amorphous and even non-existent edges occur [21]. Active contours can

be applied either to single images, or to image sequences. In the latter, an additional

layer of modelling is required to convey any prior knowledge about likely object

motions and deformations as will be introduced in section 2.4.3. After initialising a

contour either by a user or automatically, it is then moved until most of the contour

points align with image edge points. Evolution of the contour is governed by an energy

function described in equation 2-2. The energy function quantifies the ‘goodness’ of the

contour - how smoothit is and how welllocalised it is with respect to the image edges.

ext
E(U)= [E,,(v) + E,,.(v)ds (2-2)

0

where s is the arc-length of the contour I, Ein, characterises the curveitself e.g. degree of

bending orsize of curve, and E,,; characterises the image at the points where the snakeis

currently located e.g. measurement of edginess of the region through which the

boundary passes [21]. The movement of the active contour is then motivated by

minimising this energy. The external energy is supposed to be minimal when the snake

is at the object boundary position while the internal energy is supposed to be minimal

when the snake has a shape which is supposed to be relevant considering the shape of

the sought object. The most straightforward approach grants high energy to elongated

contours (elastic force) and to bended/high curvature contours (rigid force), considering

the shape should be as regular and smooth as possible [22]. The contour can be

initialised either by placing it outside the object region and shrinking until the object

boundary is encountered if the image gradient is used in the energy function or either

inside or outside the object so that the contour can either expand or shrink, respectively,

to fit the object boundary if a region based method is used in the energy function.

Besides the selection of the energy functional and the initialisation, another important
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issue is selecting the right contour representation but this level of detail is a subject of

research in itself and hence outside the scope of this current thesis. As properties, the

snake method can be described as being able to detect non-rigid objects even in

situations when the video images are not captured from completely static cameras.

Another object detection method that is introduced next is the ‘Point Detectors’

method. Point detectors are used to find interest points associated with desirable

properties in images. A desirable quality of an interest point can be its invariance to

changes in illumination and camera viewpoint for example. There are several point

detectors that exist such as the Moravec’s interest operator, the Harris interest point

detector and the SIFT detector, and each detector has its own way of qualifying a point

of interest [23]. As an example, Moravec’s operator computesthe variation of the image

intensities in a 4 x 4 patch in the horizontal, vertical, and diagonal directions andselects

the minimum ofthe four variations as representative values for the window. A pointis

declaredinterestingif the intensity variation is a local maximum in a 12 x 12 patch [24].

An evaluation of the point detectors is given by Schmid et al. [25]. Based on their

evaluation criteria of repeatability (comparing interest points on images taken under

varying viewing conditions) and information content, they found that the Harris detector

outperformsthe others.

The final detection method to be discussed is one used in hyper-spectral imagery

obtained from satellite remote sensing. In satellite imagery, a pixel can often represent

more than one object becausethe spatial resolution of the camera on boardthesatellite is

not strong enough. Spatial resolution refers to the size of the smallest object that can be

resolved on the ground. Asa result, a pixel can represent an area containing more than

one object. To deal with these cases, the remote sensing community has developed

techniquesthat allow very small objects downto sub-pixel sizes to be detected and since

in this project sub-pixel objects are also involved, these detection algorithms are

explained in the next chapter 3 with a view to adapting them for indoor environments.
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2.4 Object tracking

After motion detection, monitoring systems generally track moving objects from

one frame to another in an image sequence. Trackingis the problem of following image

elements moving across a video sequence automatically and it can be defined as the task

of estimating the trajectory of an object in the image plane as it moves around scene.

Tracking is an essential building block for vision systems in robotics, biomedical

applications, military guidance applications and surveying. The tracking algorithms

usually have considerable intersection with motion detection during processing and

tracking over time typically involves matching objects in consecutive frames using

features such as points, lines or blobs. A tracker tries to assign consistent labels to the

tracked objects in different frames of a video. Additionally, depending on the tracking

domain,a tracker can also provide information aboutthe object such as orientation,area,

or shape of an object. Tracking objects can be complex dueto loss of information caused

by projection of the 3D world on a 2D image, noise in images, complex object motion,

non-rigid or articulated nature of objects, partial and full object occlusions, scene

illumination changes, and real-time processing requirements [27]. Tracking algorithms

in general consist of two main parts: correlation (matching problem) and target's

trajectory estimation (motion problem) [26]. The matching problem requires a similarity

metric to compare candidate pairs of image elements in the previous and current frame.

Trajectory estimation is necessary for pursuing an object and to allow a system to move

in advance andanticipate an object’s movement.

There are three main categories of tracking algorithms [27]. These are the kernel

tracking, point tracking and silhouette tracking methods, and each method can be further

sub-divided depending on the approaches that are employed to achieve a particular

method as shownin Figure 2-4. Howeverit should be pointed outthatthis classification

is not absolute in the sense that algorithms from different categories can be integrated

together to obtain better tracking results in certain problem situations.
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Figure 2-4 : Tracking categories and methods

2.4.1 Kernel Tracking

In kernel tracking, the word kernel refers to the object shape and appearance. For

example, the kernel can be a rectangular template or an elliptical shape with an

associated histogram. Objects are tracked by computing the motion of the kernel in

successive frames. This motion is usually in the form of a parametric transformation

such as translation, rotation, and affine or a dense flow field. The algorithms used in

kernel tracking differ in terms of parameters such as the appearance representation used

which can be either view based or template based models [27].

The view based approach involves constructing a small set of orthogonal basis

images from a large set of training images that characterise the majority of the variation

in the training set and can be used to approximate any of the training images [28]. For

each nXm image in a training set of p images, a 1-D column vector is constructed by

scanning the image from top to bottom andthenleft to right. Each of these 1-D vectors

becomes a column in a nmx pmatrix which is then decomposed using Principal

Component Analysis (PCA) [29] to build a subspace ofthe training set called the eigen-

space. A linear combination of these eigen-space representations can be used to
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reconstruct any of the training images approximately and tracking is then achieved by

the parameterised matching between the eigen-space and the image. Hence,the objectis

not tracked by image motion but by differences in the eigen-space [28]. This approach

enables tracking of an object to be maintained even if the latter’s appearance model

changes dramatically during the tracking process because different views of an object

can be learned beforethe start (offline) of the tracking process but used during tracking.

The disadvantage of this technique is that it is not very robust to noise, background

clutter and situations involving occlusion.

Analternative algorithm in kernel tracking is the template based approach and more

precisely the template matching approach. Template matching involves finding in the

current imagea region similar to the object template (usually in the shape ofa square but

there can be other shapes also) defined in the previous image of an image sequence by

using a cross correlation similarity measure in a brute force search manner,i.e. shifting

the target pattern over every location in an image [6]. The templates can be formed by

using features such as image intensities, image gradients and colour histograms. One

example is finding the mean colour of the pixels covered by the template as it moves

around the image. The similarity between the object model, M, and the hypothesised

position, H, is computed by evaluating the ratio between the colour means computed

from M and H.The position which provides the highest ratio is selected as the current

object location [30]. Another example is the combined use of a weighted histogram

computed from a circular region and a mean-shift tracker to represent the object [18]. An

advantage of the mean shift tracker over the standard template matching is the removal

of brute force search together with its high computational demandsbutat the sametime,

this tracker requires that a portion of the object being trackedis inside the circular region

upon initialisation [27]. The matching method, as defined so far, is not appropriate for

the tracking of multiple objects. For this type of tracking, the whole image is modelled

instead of just the object because modelling objects individually does not take into

account the interaction among multiple objects and between objects and background

during the course of tracking. An example interaction between objects can be one object

partially or completely occluding the other. An object tracking method based on

modelling the whole image as a set of layers is proposed by Taoet al. [31]. This
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representation consists of a single backgroundlayer and one layer for each object. Each

layer consists of shape priors, motion models such astranslation and rotation, and layer

appearance. Layering is performed by first compensating the background motion

modelled by projective motion such that the object’s motion can be estimated from the

compensated image using 2-D parametric motion. Then, each pixel’s probability of

belonging to a layer (object) is computed based on the object’s previous motion and

shape characteristics. The unknownsfor each object are iteratively estimated until the

layer ownership probabilities are maximised [27]. However the simultaneous estimation

of the characteristics of each layer is very difficult and the authors instead estimate one

set at a time whilefixingtherest.

To summarise kernel tracking, an evaluation ofthis type of trackers can be obtained

based on tracking single or multiple objects, ability to handle occlusion, requirement of

training, type of motion model, and requirementof a manualinitialisation. Motion of the

object can be estimated by maximising the object appearance similarity between the

previous and current frame and this estimation process can be in the form of a brute

force search. To reduce the computational cost of this type of search, one can limit the

object searchto the vicinity of its previous position. With the object detected in this way,

a possible next step is to use Kalmanfiltering or particle filtering (discussed in next

section) to predict the location of the object in the next frame. It must be pointed outthat

the tracking described so far is essentially following a point in an image sequence and

the benefit of using the Kalmanfilter is to smooth the object trajectory. The filter has

very little effect on improving the object detection part which is crucial for achieving

robustnessof the tracker.

2.4.2 Point tracking

The second main tracking technique category is point tracking. In this technique,

objects detected in consecutive frames are represented by points, and the association of

the points is based on the previous object state which can include object position and

motion. This approach requires an external mechanism to detect the objects in every

frame. Point correspondence methods can be divided into two broad categories, namely,

deterministic and statistical methods.

2-21



Point tracking
 

Deterministic methods involve the minimisation of a cost function formulated as a

combinatorial optimisation problem which associates each object in frame t — | to a

single object in frame ¢ using a set of motion constraints [27]. These constraints which

are usually described as being part of a correspondence problem are : ‘proximity’ which

assumesthe location of the object would not change notably from one frameto other,

‘maximum velocity’ which defines an upper bound onthe object velocity and limits the

possible correspondences to the circular neighbourhood around the object, ‘path

coherence’ (smooth motion) which assumes the direction and speed of the object does

not change drastically, ‘common motion’ which constrains the velocity of objects in a

small neighbourhood to be similar and ‘rigidity’ which assumes that objects in the 3-D

world are rigid, therefore, the distance between any two points on the actual object will

remain unchanged [27]. One approach to solve the correspondence problem in a

deterministic way is proposed by Sethi and Jain who used the path coherence constraint

[32]. This algorithm considers two consecutive frames, and is initialised by the nearest

neighbourcriterion. It hypothesises the correspondences between the measurements and

then repeatedly exchanges correspondences between trajectories that better match the

optimisation criterion so as to minimise the cost. A modified version of the same

algorithm, which computes the correspondencesin the backward direction (from thelast

frame to the first frame) in addition to the forward direction, also exists. The

disadvantages of this algorithm are that it assumes that there are no missing

measurements by occlusion or otherwise, and second it does not allow for spurious

measurementsor false alarms. Another approach to solving the correspondence problem

is one that makes use of the common motion constraint together with path coherence as

proposed by Veenmanetal. [33]. This approach can handle occlusion and misdetection

errors, however, it is assumed that the number of objects is the same throughout the

sequence,i.e., no object enters orexits.

The other approach to solve correspondence is by using statistical methods.

Statistical correspondence methods use the state-space approach to model the object’s

properties such as position, velocity and acceleration. These methodstreat the tracking

problem as inferring the object’s state by taking the measurement and the model

uncertainties into account. Measurements usually consist of the object position in the
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image, which is obtained by a detection mechanism. In general, object motions undergo

random perturbations and measurements obtained from sensors invariably contain noise.

Statistical methods can be considered to be more appropriate to deal with these cases as

they take the measurement and the model uncertainties into account during object state

estimation [27]. The use of predictive filters, e.g. Kalmanfilter and particle filter, is the

answer to deal with these cases.

2.4.2.1 State-space models and estimation

State-space models are a notational convenience for estimation and control

problems [34]. The state of a dynamic system contains those variables that provide a

representation of the internal condition or status of the system at a given instant of time

[35]. A state-space model usually consists of two sets of equations, the system equations

and the observation equations. The system (dynamic) equations model the dynamics of

state variables based on external influences, such as input and noise, and the observation

equations describe how measurementofstate variables is done typically in the presence

of noise [34]. The problem ofstate estimation concernsthe task of estimating thestate of

a process while only having access to noisy and/or inaccurate measurements from that

process. It is a very commonproblem setting, encountered in many disciplines within

science and engineering. Predictive filters can be used to estimate the optimalstate of a

system [36]. In general, they use the mathematical model of the system dynamics to

propagate the state's values and uncertainties, and they then combine this preliminary

estimate with measurements made from observations. There are several predictive

filters, each appropriate for a different type of uncertainty representation and dynamic

modelling. To understand how predictive filters work, it is useful to understand some

basicstatistical concepts and then see how theyare applied to deal with state estimation.

One way to describe a random variable is by making use ofstatistical indicators

such as the mean and variance. The mean or expected value E(X) of a random variable is

given by y Px, for a discrete random variable’s case where n possible outcomes and
i=l

corresponding probabilities exist. This expected value is also known as thefirst

statistical moment of the variable. The second moment, called variance, is a statistical
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indicator of great use given by El(x -E(x))"|. Variance is a measure of dispersion about

the mean and it is a very useful statistical property for random signals because

knowledge of the magnitude of the varianceof a signal that was otherwise supposed to

be ‘constant’ around somevalue (the mean) enables us to get a sense of how much jitter

or ‘noise’ is in the signal. ‘Mean’ and ‘variance’ measuresare used to represent random

variables in a parametric way. If the data are of multivariate nature (i.e. consisting of

multiple random variables), a covariance matrix can be obtained. This covariance matrix

is of great importance in state-space modelling. Thelist of probabilities associated with

each possible value of a discrete random variableis called its probability distribution. A

special representation of a probability distribution known as the Normal or Gaussian

distribution hashistorically been popular in modelling random systems for a variety of

reasons. Asit turns out, many random processes occurring in nature actually appear to

be Normally distributed, or very close to a Normal distribution. In fact, under some

moderate conditions, it can be proved that a sum of random variables with nearly any

distribution tends towards a Normal distribution. The theorem that formally states this

property is called the central limit theorem [37]. The standard normal distribution is the

normal distribution with a mean of zero and a variance of one, and it is represented

graphically by a familiar ‘bell-shaped’ curve. In the multivariate case, a Gaussian

random variable is described by a mean vector and a covariance matrix. Moreoverif a

linear transformation is applied to the mean vector and covariance matrix, the resulting

random variable will still be a Gaussian. This ease to just use matrix multiplications to

propagate covariance and mean across linear transformations combined with the

computationally efficient representation of random variables with just a vector and a

matrix are used extensively and with great success in Kalman filters [35]. The

characteristics of the Kalmanfilter will be explained in sub-section 2.4.2.2 but nexthere,

the state-space modelis described.

To understand this concept of state-space, consider a moving object in a scene. The

information representing the object, e.g., location and speed, is defined by a sequence of

states represented as state vectors X,:tf=1,2,... The change in state over time is

governed by the dynamic equation,
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X,=F-X,,+W, (2-3)

where W, is a white noise process at t=1,2,...etc. A discrete-time white noise is a

signal that does not have any correlation with itself except at present time,i.e. if W, is a

white noise process, then the random variable W,, is always uncorrelated with W, unless

m =n. Another definition of white noise is that its power is equal at all frequencies [35].

Therelationship between the measurementandthestate is specified by the measurement

equation,

Z,=H-X,+N, (2-4)

where WN,is another white noise process independent of W ,. F is a state transition matrix

that relates X, to its previous value X,, and H provides the linear connection between

the unobserved state vector X, and the measured vector Z,. These two equations are

often referred to respectively as the process model and the measurement model, and they

serve as the basis for virtually all linear estimation methods. The goalis to estimate the

state X, based on the knowledge of the system dynamics andthe availability of noisy

measurements. The amount of information that is available to perform the estimationis

problem dependent. If all the measurements up to and including time ¢ are available to

use in estimating X,, then this is called an a posteriori estimate denoted by X; [35]. If all

the measurements before (but not including) time t are available for estimation, then the

estimate obtained is called an a priori estimate denoted by x_ - These two types of

estimation are often referred to as prediction and correction respectively, and x; is

expected to be a better estimate than X, because more information is used during the

estimation process. If N measurements after time ¢ are available to use in estimating X,,

then a smoothed estimate is obtained denoted by Xhe Lol

To bring the state-space model into context with the tracking review being done

here, if there is only one object in the scene, the state can be simply estimated by the two

equations 2-3 and 2-4. If there are multiple objects in the scene then measurements need

to be associated with the corresponding object states. For the single object case, if F and
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H are linear functions and the initial state X , and noise have a Gaussian distribution, then

the optimalstate estimate is given by the simple Kalman Filter. In other cases when the

process modelis not linear and the errors are not assumed to be Gaussian, there exist

other filters such as the Extended Kalman Filter, Unscented Kalman Filter and the

particle filter that are more appropriate for these cases [35].

2.4.2.2 Kalmanfilters

The Kalmanfilter is named after Rudolf Kalman whofirst introducedthe algorithm

in 1960 [38]. It has been employed in various applications including process control

systems, vehicle tracking, marine navigation, geology, demographic estimation and

stock price prediction. It estimates the instantaneous state of a linear dynamical system

perturbed by Gaussian white noise by using measurements thatare linearly related to the

system state but are corrupted by Gaussian white noise [39]. The filter minimises

recursively the mean square estimation error without directly observing the system state

or knowing the nature of the modelled system. One of the major characteristics behind

the success of the Kalman filter is that it processes all available measurements,

regardless of their precision, to estimate the current value of the variables of interest. It

doesit by using (1) the knowledge of the system and measurement device dynamics, (2)

the statistical description of the system noise, measurementerrors and uncertainty in the

dynamical model, and (3) any available information about initial conditions of the

variables of interest [40]. Figure 2-5 shows a schematic summary of a Kalmanfilter. A

system is driven by some known controls and measuring devices provide the values of

certain quantities. Knowledge of these system valuesis all that is explicitly available

from the physical system for estimation purposes. The Kalman filter estimates the

system state variables based on a signal and noise as input. The system state itself

evolves with time under the effect of random perturbations or control inputs. The

Kalman filter then provides an optimal estimate of the unobserved system states and

their uncertainties based on noisy measurements of the process. The Kalman filter

operates online so that the best estimate of the system state and its uncertainty can be

computed by updating the previous estimates with new measurements.
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To come back to what is contained in the algorithm itself and how the latter

executes itself, the Kalman filter estimates a process by using a form of feedback

control: the filter estimates the process state at some time and then obtains feedback in

the form of (noisy) measurements. As such, the equations for the Kalmanfilter fall into

two groups: time update equations and measurement update equations. The time update

equations are responsible for projecting forward (in time) the current state and error

covariance estimates to obtain the a priori estimates for the next time step. The

measurement update equations are responsible for the feedback, i.e. for incorporating a

new measurementinto the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the

measurement update equations can be thought of as corrector equations [34]. To

understand how the Kalmanfilter, a real case scenario is considered next. For example,

consider the case of a ball moving on a field with some sort of sensor mechanism that

can detect the location of the ball at certain points in time. The state vector X, that best

describes this motion is one that contains the position and the speed of the object being

tracked in two-dimensional Cartesian coordinates at discrete time ¢. It can be definedas:

x =[z, y, VX, vy, ]7 (2-5)

Assuming a constant velocity and white noise acceleration modelis used,thefilter

can beinitialised by using the two-point differencing method [41]. This method involves
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using two consecutive position measurements wherethe latest one is taken as the initial

position estimate and differencing them givesthe initial velocity estimate. At any instant

in time, the new position (x,, y,) is the old position plus the velocity (vx,,vy,). This can

be represented by equation 2-6 with A equal to the time interval between samples, and

vx = dx/dA and vy = dy/dA.

Xx, 1 0A 0 Kas

0 1 0A
yy = Vit (2-6)

Vx, 00 1 0 VX,_1

vy, 00 0 1 VY,

Once the filter is running, an estimate for the next measurement can be obtained by

using information from previous data. The measurementprocessis represented bya state

measurement matrix H andits estimate m, is given by:

100 0
H= (2-7)

0 10 0

m, =H-X, (2-8)

Whenan actual measurement is made, another vector m, is obtained and the difference

(m,—m,) gives a new value called innovation. This new knowledge is assigned a

weighting called the Kalman gain K; using equation 2-9 where N, represents the

measurement noise and E,is the covariance error matrix. The main role of the matrix K;

is to decide how muchofthe innovation should be usedin later stages, i.e. a newstate is

estimated using the Kalman gain matrix and the innovation. In an extreme case when E,

is zero, the prediction is perfect and hence K; is equal to zero too. The value of K;is

temporary and is only used in the next stage, i.e. it is not carried over for the next

iterations of the filter, to perform optimal estimation as it tries to minimise the

covariances. The error matrix E, is also updated at this stage using the information from

all previous measurements.

K, =E,-H"-(H-E,-H" +N)" (2-9)

Xx, = X>+K,-(m,-m;) (2-10)
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E, =(1-K,-H)-E> (2-11)

The tracking (or prediction) part of thefilter is then performed whenstate X,,, and

new error matrix E,,, are predicted by calculating equations 2-12 and 2-13.

X4, =F-X, (2-12)

E,,, =F-E,-F’ +N, (2-13)

1 0A 0

010A
F= (2-14)

00 1 0

000 1

where F is the state dynamical matrix. NV, is called the process noise andit is represented

by a covariance matrix with a small constant noise intensity parameter g. This

parameteris related to the velocity fluctuations which have to be small compared to the

actual nearly constant velocity of the object being tracked [41]:

1 0 -~A 0
3

0 -A oO =A

x 1 q (2-15)

-N’ 0 A 0
2

0 —-A 0 A

After equation 2-13, the filter returns to equation 2-9 for the next time interval and

the whole filter equations are calculated again. When no measurement is made, only

equations 2-12 and 2-13 are calculated as part of a prediction only stage. This

description of the simple Kalman filtering process is summarised pictorially in Figure

2-6 andit is the basis of why Kalmanfilters are so useful in many tracking applications.
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2.4.2.3 Otherpredictivefilters

Manyprocessesinreal life are unfortunately notlinear. One wayto get roundthis is

by making use of the Extended Kalman Filter (EKF). The EKF uses an initial

linearisation stage in something akin to a Taylorseries to linearise the estimation around

the current estimate using the partial derivatives of the process and measurement

functions to compute estimates even in the face of non-linear relationships [34]. It is

important to note that a fundamental flaw of the EKF is that the distributions (or

densities in the continuous case) of the various random variables are no longer normal

after undergoing their respective nonlinear transformations. Another way to deal with

non-linear systems is by using the Unscented Kalman Filter (UKF) technique. Instead of

linearising the functions,this is a transform thatusesa set of points, and propagates them

through the actual nonlinear function, eliminating linearisation altogether [42]. The

points are chosen such that their mean, covariance, and possibly also higher order

moments, match the Gaussian random variable. Mean and covariance can be
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recalculated from the propagated points, yielding more accurate results compared to

ordinary function linearisation.

If the noise processes are non-Gaussian or if the degree of non-linearity is

significant, then anothertypeoffilter, called the particle filter, can be used. Sometimes a

Gaussian random variable is not able to describe, not even in an approximate way, the

state of a system. For example, a Gaussian random variable is not able to represent

simultaneously two strong groupsofpossibilities or a time series signal with both abrupt

and gradual changes. One possible approach to deal with this limitation is to use a

particle-based, or sample-based, representation of the probability density function [43].

A particle-based representation of a distribution is not described by a few parameters;

instead it is described by a large number of samples of the state space. In Kalmanfilter

approach, time and effort are focused on how different state coordinates or multiple

models can be used to limit the approximations. In contrast to this, the particle filter

approximates the optimal solution numerically based on a physical model, rather than

applying an optimalfilter to an approximate model [44].

The particle filter, also known as the Monte Carlo filter or sequential importance

sampling filter, is a probability-based estimator of that is very effective for non-linear

systems [35]. To understand how it works, consider equations 2-3 and 2-4 used before to

describe the state-space model. The difference this time is that F and H are non-linear

function mappings describing the evolution of the state transitions and relationship

between the unobserved state and the measurement. The goal of the filter is to

approximate the conditional probability density function (pdf) of X,based on the

measurements Z,,Z,,...,Z,, ic. a pdf p(X,1Z,). Assuming that the pdf of the initial

state P(X,) is known, a set of N samples knownas particles are generated. These

particles are denoted by X,, (i =1,...,N) where the parameter N is chosen bythe user as

a trade-off between computational effort and estimation accuracy [35]. Then at each

time instant k, the following algorithm is performed:

e The a priori particles X,, are obtained by using process equation 2-3 for each

value of i as part of the time propagationstep.
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e The relative likelihood g,of each particle is calculated conditioned on the

measurement Z,. This is done by evaluating the pdf pz, IX,) on the basis of

the non-linear measurement equation 2-4 and the pdf of the measurementnoise.

e A set of a posteriori particles X,,are generated on the basis of the relative

likelihoods q, is a step called the resamplingstep.

e Given the fact the a posteriori particles are now distributed according to the pdf

p(Xk \Z,), the desired statistical measures of this pdf such as the mean and

covariance can then becalculated.

The resampling step is one very importantpart of this algorithm and several waysto

perform this step exist. An additional resampling is sometimes employed to eliminate

samples with very low weights. The efficiency and accuracyofthe particle filter depend

mainly on two key factors: the number of particles used and the resampling function

used to re-allocate these particles at each iteration.

As a summary of these predictive filters, one can say that for a linear system with

Gaussian noise, the Kalmanfilter is optimal. In a non-linear system, the particle filter

maygive better results than the Kalman filter with additional computational effort. The

Kalman filter performs poorly in systems with non-Gaussian noise and a particle filter

will normally give better results in these situations. For these systems, the UKF provides

a balance between the low computational effort of the Kalman filter and the high

performanceof the particle filter, as shown in Figure 2-7 [35]. When deciding which

filter to choose for a particular application, one should alwaysfirst try to model a system

as a linear Gaussian system, and use the Kalmanfilter. If the results are not satisfactory,

and the problem is thought to lie in either the linear dynamics or the Gaussian

description of the random variables, then one can proceed to use more complex

distribution representation and predictive techniques. The correct characterisation of the

distribution of the observation's noise is essential for the quality and correctness of the

final state estimation.
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2.4.2.4 Multiple object tracking

The filters described in the previous sub-section assume a single measurementat

each time instant, that is, the state of a single object is estimated. Howeverthere are

cases when more than one object needs to be tracked. When tracking multiple objects

with Kalmanorparticle filters, the most likely measurementfor a particular object must

be associated deterministically to that object’s state, that is, the correspondence problem

needs to be solved before these filters can be applied [27]. The simplest method to

perform correspondence is to use the nearest neighbour approach. However, if the

objects are close to each other, then there is always a chance that the correspondenceis

incorrect. The Joint Probability Data Association Filtering (JPDAF) is a popular

approach to tracking multiple moving objects [45, 46]. It involves the calculation of a

Bayesian estimate of the correspondence between features detected in successive frames

of the sensor data and the different objects to be tracked. Kalmanfilters are then used to

estimate the states of the individual objects. A major limitation of the JPDAF algorithm

is its inability to handle new objects entering the field of view (FOV)oralready tracked

objects leaving the FOV [27]. The Multiple Hypothesis Tracking (MHT) algorithm,

originally developed by Reid [47], does not have this shortcoming. Instead of trying to

establish a motion correspondence using only two frames, the correspondence decision

is deferred until several frames have been examined. The MHT algorithm maintains

several correspondence hypotheses for each object at each time frame. Thefinal track of
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the object is the most likely set of correspondences over the time period ofits

observation. The algorithm has the ability to create new tracks for objects entering the

FOVandterminate tracks for objects exiting the FOV.It can also handle occlusions, that

is, continuation of a track even if some of the measurements from an object are missing.

MHTis an iterative algorithm whereby each iteration begins with a set of track

hypotheses. Each hypothesis is a collection of disjoint tracks. For each hypothesis,

prediction of each object’s position is made for the next frame, and thenthe predictions

are compared with actual measurements by evaluating a distance measure. A set of

correspondences(associations) are established for each hypothesis based on the distance

measure, which introduces new hypotheses for the next iteration. Each new hypothesis

represents a new set of tracks based on the current measurements. Note that each

measurementcan belong to a new object entering the field of view, a previously tracked

object, or a spurious measurement. Moreover, a measurement maynot be assigned to an

object because the object may have exited the field of view, or a measurement

corresponding to an object may notbe obtained [47]. The latter happens whenthe object

is occluded or it is not detected due to noise. The MHTalgorithm is computationally

exponential both in memory and time and algorithms have been developed by Cox and

Hingorani to reduce this computationalcost [48].

To summarise point tracking technique, point trackers are suitable for tracking small

objects which can be represented bya single point (single point representation). Multiple

points are needed to track larger objects. Points are detected in consecutive frames and

they are madeto correspondto each other by two main categories, namely, deterministic

and statistical methods. The deterministic method involves the minimising a cost

function formulated as a combinatorial optimisation problem which associates each

object in frame ¢ — | to a single object in frame ft using a set of motion constraints.

Statistical methods use the state space approach to model the object properties such as

position, velocity and acceleration and they also take uncertainties into account. The

Kalmanfilter is the most common algorithm used in approaching the state-space model

solution but for certain situations, other predictive filters such as the EKF, UKF and the

particle filter are more suitable.
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2.4.3 Silhouette tracking

The final tracking category to be described in this literature review is silhouette

tracking. This method has been developed to deal with objects that may have complex

shapes, for example, hands, head, and shoulders that cannot be well described by simple

geometric shapes. Tracking is performed by estimating the object region in each frame

and the information encodedinside the object region is used. This information can bein

the form of appearance density and shape models whichare usually in the form of edge

maps. Given the object models, silhouettes are tracked by a method called contour

evolution which can be considered as object segmentation applied in the temporal

domain using the object models generated from the previous frames. The goal of a

contour based object tracker is to find the boundary between the object and the

background in each frame, such that the object region is tightly enclosed within the

contour. There are two main waysof achievingthis; first is by using state space models

to evolve the contour and the second is by performing direct minimisation of a contour

energy function.

In the probabilistic state space approach, the object’s state can be defined in terms

of the shape and the motion parameters of the contour. Thestate is updated at each time

instant such that the contour’s a posteriori probability is maximised. This probability

dependson the prior state and the currentlikelihood, which is usually defined in terms of

the distance of the contour from observed edges. An example is the one developed by M.

Isard whereby they define the object state in terms of spline shape parameters and affine

motion parameters [49]. The measurements consist of image edges computed in the

normal direction to the contourandthestate is updated using a particlefilter. In order to

obtain initial samples for the filter, the state variables are computed from the contours

extracted in consecutive frames during a training phase. During the testing phase, the

current state variables are estimated through particle filtering based on the edge

observations along normal lines at the control points on the contour. Another example is

proposed by Chenetal. [50]. In this implementation, the contour is parameterised as an

ellipse and each contour node has an associated Hidden Markov Model (HMM). An

HMMis a doubly stochastic process with an underlying stochastic process that is not

observable (it is hidden), but can only be observed through another set of stochastic
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processes that produce the sequence of observed symbols [51]. The state of each HMM

is defined by the points lying on the lines normal to the contour control point, with the

hidden states of the HMM being the true contour points of each normal line. The

observation likelihood of the contour depends on the background and the foreground

partitions defined by the edge along the normalline on contourcontrol points. The state

transition probabilities of the HMMare estimated using the Joint Probability Data

Association Filtering [50].

These two examples represent the contours using explicit representation, e.g. a

spline, but explicit representations do not allow topology changes such as region split or

merge. A contourtracking method based on direct minimisation of the energy functional

can, for its part, use the implicit representations and allow topology changes. In this

method, algorithms evolve the contour onto the object region by minimising the energy

functional and the contour energy is computed using temporal informationin the form of

the temporal gradient which is obtained by calculating the optical flow. There are some

similarities with the active contour technique described previously in section 2.3 and

more information aboutthe technicalities of the current algorithmsis given by Mansouri

et al. [52] and Bertalmioetal. [53].

To summarise the silhouette tracking category, one can say that the most important

advantage of a contour tracker is that it can model a large variety of object shapes.

Contours are represented by explicit (control points and splines) or implicit (level sets)

representations with the use of these representations depends on the context of the

application. Contour trackers are employed when tracking the complete region of an

object is required. Qualitatively, the contour based methods can be compared on the

basis of requirementof training and occlusion handling. Moreover somealgorithms only

use information on the contour boundary for evolution while others use the complete

region. Occlusion handling is another important aspect of silhouette tracking methods.

Usually methods do not address the occlusion problem explicitly. A common approach

is to assume constant motion or constant acceleration where, during occlusion, the object

silhouette from the previous frameis translated to its hypothetical new position. Another

important issue related to silhouette trackers is their capability for dealing with object

split and merge. For instance, while tracking a silhouette of a person carrying an object,
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whenthe person leaves an object, a part of the person’s contour will be placed ontheleft

object (region split). These topology changes of region split or merge can be handled

well by implicit contour representations [27].

2.4.4 Small object tracking techniques

In addition to these three categories of tracking techniques, another ‘category’ is

introduced next which deals with the detection of very small objects, i.e. objects

occupying less than a pixel to a few pixels on an image plane.It is not included as a

proper tracking category in this literature review in the same breath as the three

described so far because several techniques are used with the aim to satisfy the single

objective of detecting a small object or target. This type of detection has certain specific

challenges suchas the difficulty to identify objects by their shape andspatial detail, and

the increased impact of noise. The detection of small objects is important in some

applications, e.g. biomedical experiments, vehicle tracking for transportation systems or

target tracking for military purposes. As an example, one of the most difficult goals of

Automatic Target Recognition (ATR)is to spot incoming targets at long range where the

motion is small and signal to noise is poor, and to be able to track such targets long

enoughto identify whether the target is approaching in a dangerous mannerornot[54].

One approach is to exploit the useful properties of wavelet filters to provide

detection of the motion of these small, low-contrast objects [54]. Wavelet filters have

been shownto be superior than Fourier methods for detecting localised high frequency

behaviour in an otherwise predominantly low frequency signal [55]. A wavelet

transform is a mathematical function used to divide a given function, e.g. an image, into

different frequency components called wavelets which are of limited duration [15]. The

approach that is adopted in this ATR system performs a temporalfiltering of the image

sequence using a wavelet filter rather than a spatial filtering across the image. By

combining evidence over several frames coherent motion stands out above the noise,

providing a muchhigher signal to noise ratio. For each filtered image, the absolute

values of the wavelet coefficients are used to estimate potential positions of objects. This

is then thresholded and passed through a morphological opening process (erosion

followed by dilation) which removesisolated noise regions [15], leaving just the targets
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and noise regions. Depending on the pixel connectivity criterion used [15], a set of

connected regions can be obtained and is then passed to a Kalmanfilter for tracking

[54]. One main drawbackof this method is that the targets can become smeared over a

larger region of the imagesif the waveletfilters used are not chosen correctly.

In the biomedical field, single particle tracking is the use of computer analysis of

video images to follow the sub-micron motion of micro-organisms under microscopic

observation [56]. Several techniques have been developed to track these very small

elements which very often have dimensionsless than the resolution of the microscope.

One such techniqueis the direct fitting of Gaussian curvesto intensity profiles [57]. As

the fluorescent images of these particles are diffraction-limited spots with a Gaussian

intensity distribution, fluorescent spots in each image can be located by an image

analysis routine which identifies peaks having approximately the diffraction limited

width. One disadvantage of this technique is that it performs poorly whenthespotsto be

detected are closely spaced [57]. Another technique is one based on correlation [58].

This method compares an image/ to a kernel K which contains the object being tracked.

K is shifted relative to J in one-pixel increments. For each increment, a correlation: value

is calculated that describes how well the values in K match those of the underlying

image, J. Atthe relative shift where K and J are most similar, one finds a maximum in

the correlation matrix. However, correlation tends to match the brightest regions of two

images rather than the best topographical fit, resulting in errors in somecases, andit is

also more computationally intensive than the Gaussian fitting technique [56]. Another

example based on correlation is the Sum-Absolute Difference (SAD) technique [59].

SAD determines the translation of J relative to K that minimises the sum of absolute

differences between the overlapping pixels. It has been used in tracking of speckles and

it is also simple to implementin digital hardware as it requires only a single difference

operation [60]. Other techniques that deal with low resolution imagery can also be

adapted to deal with tracking of small objects. One very good example is the super-

resolution technique which uses manylowresolution frames in an image sequence to

increase the general quality of the images and hence make object detection easier[61].
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2.5 Behaviour recognition

Monitoring systems usually come with some kind of human behaviour recognition

facility. Most of these systems work on human motion recognition in the context of

walking recognition or simple activity detection in limited known spaces. There are two

main approaches that are commonly used for this purpose. These are the template

matching andthe state-space techniquesrespectively [62].

In template matching, human behaviours are characterised by patterns in the first

place. Then, the features of a person are extracted from image sequences and matched

with the pre-defined patterns to recognise the person's behaviour. For example, Bobick

& Davis [63] generate motion-energy images (MEI) and motion-history images (MHI)

from an image sequenceto interpret motion. The MEIrepresents the changed pixels in

the image sequence. The motion images in a sequence are calculated by differencing

successive frames and then thresholding into binary values. These motion images are

accumulated in time to form the MEI, which are binary images containing motion blobs.

The MHIis computed from the MEI where moving pixels have higher intensities. The

template of each behaviour consists of MEI and MHIderived from training examples of

the behaviour viewed from different angles. The behaviour of a person is detected by

matching the MEI and MHIofthe image sequence to the behaviour templates. Although

template matching techniques are computationally inexpensive, they are sensitive to the

variance in the movement duration and in the various patterns of the sameactivity that

exist [62].

The state-space approach on the other hand defines each static posture as a state and

motion sequence as a composition of these states [62]. The states together with the

transitions between the states form part of a deterministic model called a Finite State

Machine [64]. Under such a scenario, duration of motion is no longer an issue because

each state can visit itself repeatedly. This approach defines a set of states for a single

person or multiple people. Each behaviour is represented by a model, which consists of

some states and the probabilities of transitioning from one state to another. From the

video sequence, a sequence of states is extracted. Then, this sequence is matched with

the predefined behaviour models to detect the corresponding behaviour of single or

multiple people. In the system developed by Ayerset al. [64], an accurate description of
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the layoutof the scene is needed. It uses prior knowledge about the layout of the room

such as entrance and exit points, about the location of objects of interest such as

telephones and beds, and about how certain objects are used and what sorts of actions

human beings can do. This knowledge allows the system to use context to help make

decisions about which actions are occurring in a room and hence reduce unnecessary

computation. For more complex behaviours, the current deterministic model has its

limitations as it cannot account for uncertainties. To deal with these, probabilistic

models in human behaviour recognition can be used [62].

2.6 Summary

This chapter is an attempt to provide a survey on the various tracking techniques

that exist and examples of where they are being applied are also given. However one has

to appreciate that this is not an exhaustive list and various other combinations of object

detection and tracking exist. Thefirst stage of a monitoring or surveillance system is to

detect the object/s by using various segmentation techniques. Several detection

techniques have been discussed with each one used because the requirements are

different. One detection technique that is not introduced in this chapter but whichis of

great importance to this thesis is one used in hyper-spectral imagery obtained from

satellite remote sensing images to detect small objects. This technique is given more

attention in the next chapter 3 with a view to adapting it for detection in indoor

environments. Another stage of a monitoring system that is of upmost importanceto this

project is the actual tracking of an object of interest. Several techniques were described

here with special attention given to the State-Space model and Kalmanfilters. A state-

space model usually consists of two sets of equations, the system equations and the

observation equations, and predictive filters such as the Kalmanfilter are very powerful

tools in solving these equations. This is implemented and demonstratedin later chapters.

The final section in this chapter talked briefly about the contribution of human behaviour

recognition in the development of a visual monitoring system. The next chapter gives

more information about the other parts of the monitoring system such as the image

sensors to be used, the colour spaces to be chosen and the detection mechanismsto be

implemented.
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3. Related information on processing techniques

3.1 Introduction

The previous chapter gave a description of various object detection and tracking

techniques that are currently used in monitoring systems. In this chapter, information

more relevant to this thesis is given starting from how an image sequence is captured

from a low resolution colour sensor, followed by an examination of the theory behind

colour spaces and ending with the use of pixel un-mixing techniques on low resolution

images to detect the presence of objects. The main types of sensors that need to be

investigated to fit in the generic monitoring system diagram (Fig 2-1) are digital image

sensors, and particularly those that allow colour to be sensed. Several low resolution

sensor technologies exist and each one has its own advantages and disadvantages

depending on the manufacturing process and the intended use. The ability to sense

colour is usually incorporated by selecting three specific light wavebands from the

visible electromagnetic spectrum and mixing them together. The selection can be done

by usingfilters. After a colour image is recorded, there are several ways to represent that

colour. These representations, known as colour spaces, have been developed over the

years to address specific requirements.In this thesis, one of the requirementsisto try to

achieve colour constancy, which is the ability of a vision system to diminish or in the

ideal case remove, the effect of a changing illumination. The colour distribution of an

object in a scene differs under different lighting conditions and even under the same

lighting conditions, background colours and shadows may influence colour values that

are recorded. Furthermore, if an object is moving, the apparent colour values change as

the object’s position relative to the cameraor light changes. Another requirement before

selecting the colour space is to make sure it is compatible with the un-mixing technique

to detect small objects as described in sections 3.4 and 3.5.
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3.2 Imagesensors

Sensors differ by their modes of operation, operating frequencies, nature of output

signals, and resolutions. There are two basic modesof operation: (1) Active sensors,e.g.

microwaveradars, provide their own sourceoftarget illumination, and they are equipped

with both a transmitting and a receiving system. (2) Passive sensors do notprovide target

illumination and depend on the surrounding environment for detection. Passive sensors,

e.g. photographic cameras that use reflected light energy as their source of ‘target’

illumination, consist of only a receiver system. Optical and infrared sensors can also be

used to produce multi-spectral images using various light wavelengths (or frequencies)

to produce these images.

An image sensing device can be defined as being one that converts an optical image

to an electric signal when incidentlight hits it. Figure 3-1(a) shows the components of a

single sensorwith a light sensitive material called a photodiode or photosite. Thefilter is

used to select and allow certain wavebands of light only to reach the photodiode. The

latter records the intensity or brightness of the light that falls on it by accumulating a

charge; the more light, the higher the charge and hence the output voltage waveform

obtained is generally proportionalto the amount light entering the diode [15]. In orderto

capture a 2-D image,eachofthese individual sensors can be arrangedin the form of a 2-

D array (or rows and columnsif the matrix notation is used) as shown in Figure 3-1(b).

The brightness recorded by each photosite is then stored as a set of numbers that can

then be used to set the brightness of dots on a screen or density of ink on a printed page

to reconstruct the image. Each photosite can represent one pixel in the captured image,

and the higher the resolution, as specified by the number of pixels, the sharper the

images will be. An image sensor is typically a charge-coupled device (CCD) or a

complementary metal—oxide-semiconductor (CMOS)active-pixel sensor. Before going

on to describe the functioning and benefits of these two types of image sensors,it is

good to know what characteristics make a sensor good. Some of the most important

characteristics of a sensor are its linearity, sensitivity, signal-to-noise level, wavelength

response, chargetransfer efficiency and size [66].
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Figure 3-1 : (a) Basic single imaging sensor arrangement (b) Layoutof photo-sensitive sites as
an array (or ‘matrix’) of sensors.

Linearity or linear response refers to the sensor’s reaction to varying levels of

radiation intensity. This response is usually called gamma to describe the slope of a

response curve whenthe sensorresponseis plotted against the radiation intensity [66]. A

gammaof 1 correspondsto a sensor with a linear responseto radiation. A gammaofless

than 1 correspondsto a sensor that compresses the dark end of the range, while a gamma

greater than 1 correspondsto a sensor that compressesthe bright end.

Another characteristic of a sensor that needs to be taken into consideration isits

sensitivity. A sensor requires a discrete amount of time in which to accumulate enough

photons to generate a strong signal. Sensitivity is the measure of a sensor’s dynamic

response to scene brightness [66], and the response curvefor a light sensitive sensor can

be divided into three parts: the dark area, the linear area and the saturation area. The dark

area of the response curve is concerned with the sensor's response to very low light. The

output of the sensor in the dark area is very low, is noisy and is unpredictable. As the

light falling on a sensor is increased gradually, the sensor’s response becomes almost

linear whereby the output of the sensor begins to increase predictably as the amount of

light increases. The area of linearity is also called the dynamic range of a sensor [66],

which is a measure of the maximum and minimumintensities that can be simultaneously

detected in the same field of view. The output remains linear until a stage called the

saturation point. An increase the light intensity beyond this point results in a non-linear

increase in the output of the sensor, as shown in Figure 3-2. If some pixels of an image
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sensor are in the saturated zone, the charge caused by anyadditional photons(light) will

overflow and have no effect on the pixel values, resulting in clipped or overexposed

pixels. Blooming occurs whenthis charge flows overto surroundingpixels, brightening

or Overexposing them in the process[66].
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Figure 3-2 : Sensor response curve

The signal-to-noise ratio (commonly abbreviated S/N or SNR)ofa sensoris also an

important feature. Several factors contribute to sensor noise: the non-linear

characteristics of the analogue-to-digital converter, electronic noise from other

components and high-frequency clocks, degradation of the amplifier circuitry [66]. SNR

is the comparison measurementof the incominglight signal versus the various inherent

or generated noise levels and is a measure of the variation of a signal that indicates the

confidence with which the magnitude of the signal can be estimated. In general, the

larger the SNR, the better a sensor is. Sometimes in images with high background

signals, the contrast signal to noise ratio (CSNR), which measures the ratio of the

contrast information level of distorted signal to the contrast level of the error signal, is a

more relevant measure [67]. Two other characteristics that apply to image sensors are

spatial resolution and framerate. Intuitively, spatial resolution can be considered to be a

measure of the smallest discernible detail in an image [15]. Digital image sensors have

finite minimum regions of detection (known aspixels) that set a limit on their spatial

resolution. Spatial resolution is also affected by other factors such as the quality of the
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lens or imaging system. Contrast is an important factor in resolution as high contrast

objects (e.g. black and white lines) are more readily discerned than low contrast objects

(e.g. adjacent grey lines). On the other hand,the framerate of a digital image sensoris

the fastest rate at which subsequent images can be recorded and saved. This is usually

measured in frames per second (fps) and it can have a range of values depending on the

intended use, for example an image sensor system monitoring the growth of a plant

needs far less frames per second than one used in the guidance of an autonomous

vehicle. There is often a trade-off between the rate of measurement of an image sensor

and its spatial precision if the amount of processing poweravailable is limited.

3.2.1 Examplesof digital image sensors
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Figure 3-3 : CCD transports the charge across the chip andreadsit at cornerof the array [68].

The charge coupled device (CCD) and the complementary metal oxide

semiconductor (CMOS)active pixel sensor are two very common technologies used in

image sensors. Both image sensors convert light into electrical charges in almost the

same way. The main differences occur in the manipulation of the charges. Upon

receiving a timing signal, each sensitive element in the CCD transfers its contents to the

adjacent element in the same row andthe chargeis then read at one cornerof the array

as shown in Figure 3-3. An analogue-to-digital converter (ADC)then turnseach pixel's

value into a digital value by measuring the amount of charge at each photosite and
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converting that measurementto binary form. The more advanced functions, such as the

clock drivers, timing logic, and signal processing are normally put on separate chips

which mean CCDsensors contain severalchips.

A CMOSsensor,on the other hand, includes transistors at each photosite, and every

pixel can be read individually, much like a computer’s random access memory (RAM)

chip. It is not necessary to sweepall the pixels to one location, and, unlike CCD sensors,

with which all their information is processed externally to the sensor, each CMOSpixel

can be processed individually and immediately. That allows the sensor to respond to

specific lighting conditions faster [69]. In other words, some image processing can be

done within the CMOSsensoritself, something that is impossible with CCD devices.

The circuitry found in a CMOSsensoris similar to that in standard chips such as RAM

and hence CMOSsensors can be produced using the same equipment and production

lines, in contrast to CCD chips which require special fabrication methods. As a result

CMOSsensors can be relatively inexpensive compared to CCD on a pixel-by-pixel

basis. CMOSimagesensors can incorporate other circuits on the same chip, eliminating

the many separate chips required for a CCD. However CMOSsensors perform badly in

low light conditions [69]. Their sensitivity to low light is decreased becausepart of each

photosite is covered with the circuitry responsible for the basic image processing

mentioned before. The percentage of a pixel devoted to collecting light is called the

pixel’s fill factor. CCDs have a 100% fill factor but CMOS have muchless. The lower

the fill factor, the less sensitive the sensor is and the longer exposure times must be.

CMOSis the technology of choice for high-volume, space-constrained applications

where high image quality requirements are not necessary, e.g. security cameras and bar-

code scanners. CCD offers superior image quality and flexibility at the expense of

system size, and it is the most suitable technology for high-end imaging applications,

such as digital photography, broadcast television, and most scientific and medical

applications. However several manufacturers are working on improving CMOSsensors

and the gap in image quality between CMOSand CCDis expected to decrease [69].

The basic arrangementof photosites as shownin Figure 3-1 (b) cannot capture colour

information asit is. It only keeps track of the total intensity of the light that strikes its

surface. In order to get a full colour image, most sensors use filtering to record light in
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its three primary colours,i.e. red, green and blue. This collection of intensity values can

be modelled as layers that when combined will contain the necessary information to

producea colour image. Colour theory is explained in the next section.

3.3 Colour spaces

One important step in the development of this monitoring system is to choose the

right colour space. Although colour images are acquired by combining signals coming

from wavelengths of light representing roughly red, green, and blue, there are many

ways in which this colour information can be used. For human beings, colour is a

subjective perceptual experience of light in the visible region of the electromagnetic

spectrum. Colourcan also be used to define the characteristic of a visible radiant energy

itself as defined by Wyszecki and Stiles [70]: “Colour is that characteristic of visible

radiant energy by which an observer may distinguish differences between two structure-

free fields of view of the same size and shape, such as may be caused by differences in

the spectral composition of the radiant energy concernedin the observation”. The eye

contains sensors called cone cells that are responsible for colour vision. Experimental

evidence hasestablished that the 6 to 7 million cones in the human eye can be divided

into three principal sensing categories corresponding roughly to red, green and blue,

which are usually referred to as the primary colours [15]. Colour perception is a

phenomenonthatis not only dependent on the eye but also higher-level processes in the

humanbrain. The International Commission on Illumination, mostly referred to as CIE

for its French translation ‘Commission Internationale de |'Eclairage’, set up a

specification, called the CIE XYZ space,as an attempt to parameterise this very complex

nature of colour in 1931. Conceptually, the CIE experiments involved getting a certain

numberof people to match spectral colours (monochromatic light) using a colour made

by adding varying proportions of red, green and blue ‘primaries’, or the tristimulus

values X, Y, and Z as they are more formally described by CIE. A particular colour is

then specified by its trichromatic coefficients x, y, and z which are the normalised

tristimulus values, i.e.

xX Y
x=, y= ————_.,, and z= ———_

X+Y+Z X+Y+Z X+Y+Z
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As such x + y + z= 1 and hence only two values are needed to specify a particular

colour. This gave rise to the CIE chromaticity diagram shown in Figure 3-4. The

positions of the various spectrum pure colours — from violet at 380 nm to red at 780 nm

— are indicated around the boundary of the tongue-shaped diagram. Any point within the

boundary represents a colour that consists of a mixture of pure spectrum colours. The

point of equal energy, E, corresponds to equal fractions of the three primary colours and

represent the CIE standard for white light. A point located on the boundary is fully

saturated and as a point leaves the boundary to move towards E, more white light is

added to the colour. It becomesless and less saturated until it reaches zero saturation at

point E [15].
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Figure 3-4 : CIE 1931 Chromaticity diagram. The equal-energy point E is located at the centre
and has coordinates (x,y) = (1/3, 1/3) [71].

Based on the CIE standard chromaticity diagram, several colour spaces have been

developedto facilitate the specification of colours in a generally accepted wayfor digital

images. As humans, we may define a colour by its attributes of brightness, hue and

saturation but a computerscreen will produce a colour picture in terms of the excitations

of red, green and blue phosphors on a CRT faceplate or LEDs in newerdisplays. A

colour space is an abstract mathematical model describing the way colours can be
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represented as a sequence of numbers, typically as three or four values of colour compo-

nents. The colour models are oriented towards hardware (such as monitors) or towards

applications where colour manipulation is a goal (such as animation graphics). There

exist several colour spaces and the most commononesare discussed next.

3.3.1 The RGBcolour space

One of the most common colour spaces is the Red-Green-Blue (RGB) colour

space. RGB is a linear colour space that formally uses single wavelength primaries,

645.16 nm for Red, 526.32 nm for Green and 444.44 nm for Blue [72]. This model is

based on a Cartesian coordinate system which is best shown as a cube with the primary

colours at three corners, three secondary colours cyan, magenta and yellow at three other

corners, black at the origin and white at the corner furthest from the origin. It is an

additive colour model in which red, green, and blue light are added together in various

ways to reproduce a broad array of colours. For 8-bit images, each pixel can be

represented as having three values of the three primary colours in the range between 0

and 255. The brightness value J at each pixel can also be defined by / = R+ G+ B,

where the range of each component’s value is [0... 255]. A colour image created and

stored in this way is said to have a depth of 24 bits because three imageplanesofeight

bits each are required. The total number of colours that can be represented is hence

(2°)°= 16,777,216 [15].

Magenta White

‘ 0,0,255

     

    
Blue

Black 0,255,0

Green

Figure 3-5 : RGB Colourspace [15].
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This model should be familiar to most people who have used cameras and computer

monitors as it is used in many electronic systems involving sensing and displaying of

colour in general. It is a hardware-oriented model which meansthat the resultant colour

depends on the equipmentandtheset-up used to produce it. Each monitor, for example,

will display a colour in a slightly different way depending on its age, calibration and

materials used. Another drawbackofthis colour space is that it is not robust to changes

in lighting. As the lighting changes, so does the corresponding location of a point in the

colour space. RGB cannotdescribe colour in a constant way whenillumination changes.

One way to improve the RGB representation is to normalise each colour component

value with the brightness value J to give us the Normalised RGB (NRGB) space as

follows [73]:

r=R/I, g=G/I, b=B/I (3-2)

where r + g + b= 1.This transformation reducesthe sensitivity of the colour information

to the brightness value of a pixel and hence provides a way to achieve colour constancy.

Only two of these three normalised variables are neededto specify any colour within the

range allowed by the primaries since r + g + b = 1. (b = 1 is given bythe absenceof r

and g).

 

(b)

 

Figure 3-6 : (a) Original RGB image (b) Image shown after colour channels have been

normalised.

3.3.2. The HSV colour space

The Hue-Saturation-Value (HSV) colour space, which is also device dependent,is a

model closer to the way humanstend to perceive colour than RGB. For example, when
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asked the colour of a random car onthestreets, one does not answerby giving percent-

ages of each of the primary colours that composethe final colour because humansdo not

think of colour images as being composed of single images that combine together to

form a final colour image. When people view a coloured object, they tend to describedit

as pale, deep, or light red for example. In a similar fashion, HSV tries to model colour

the same way that humansinterpret it. In this representation, Hue is a colour attribute

that describes a pure colour (e.g. pure red, pure yellow or pure orange) and is repre-

sented as an angle which varies from 0 to 360. Saturation defines the relative purity or

the amount of white light mixed with a hue and is measured from 0 to 1. Value refers to

the brightness of the image, which is a subjective descriptor. Value is that quality that

distinguishes a light colour from a dark one. The HSV model decouples the intensity

componentfrom the colour-carrying information (hue and saturation) in a colour image.

Green Vv

Co)
  

Red

Bl

Figure 3-7 : HSV colour space using the hexcone model

It is often represented by the hexcone model proposed by A. R. Smith [74] which

has the shape of a hexagonal cone. Converting from RGB to HSVis simply a matter of

developing the equations to map RGB Cartesian coordinate values to the cone coordi-

nates of the HSV model whichare readily available from numeroustextbooks such as

the one by Gonzalez and Woods[15].

(3-3)
_ [0 if B<G

~ 1360-6 if B>G
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 with 6 = cos” 0.5((R-G)+(R-B)]

l(R-G) +(r-B\G—a))

S=1 [min(R,G, B)] (3-4)
 R+G4B

The HSV model is based on polar coordinates rather than Cartesian with the hue of the

primary colours separated by 120°. Decreasing S corresponds to increasing whiteness,

and decreasing V correspondsto increasing blackness.

3.3.3 The YCbCrcolour space

This is another hardware-oriented model used very frequently in video systems, and

unlike the RGB space the luminance is separated from the chrominance data.

Chrominance is the property that the average person thinks of as the ‘colour’ oflight or

an object, andit is the colour portion of a videosignal that is closely related to hue and

saturation, requiring luminance to make it visible [4]. The Y value represents the

luminance (or brightness) component, while the Cb and Cr values (where Cb = Blue

minus ‘black and white’, and Cr = Red minus ‘black and white'.) represent the

chrominance componentofthe image.

 

Figure 3-8 : YCbCr Colour Space [75]
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This colour model was invented for colour television systems and it had to be

compatible with black-and-white (B&W) TV systems. The luminance component

already existed as the B&W signal and the colour channels (Cb and Cr) were added on

top of the luminance channelto give the YCbCr space. YCbCris used in commondigital

video compression algorithms such as MPEG-2 as it allows image compression

techniques to take advantage ofthe fact that the eye is more discriminating of brightness

levels than colour [76]. YCbCr is not an absolute colour space in the sense thatit is

derived from RGBspace.It is rather a way of encoding RGB information, and theactual

colour displayed depends on the RGB colorants used to display the signal. There are

several ways to convert from RGB to YCbCr color space with the most common being

the CCIR (International Radio Consultative Committee) Recommendation 601-1, as

shownin next equation [77].

Y 16 65.738 129.057 25.064 R

Cb =| 128 toe — 37.945 —74.494 112.439]G| (3-5)

Cr 128 112.439 —94.154 —-18.285] B

3.3.4 The CIE L*a*b* colour space

CIE L*a*b* is a device independent model developed by the Commission Interna-

tionale d'Eclairage (CIE) and is derived from the CIE XYZ colour space (Figure 3-4).

The three parameters in the model representthe lightness of the colour (L*, L* = 0 yields

black and L* = 100 indicates white), its position between red and green (a*, negative

values indicate green while positive values indicate red) and its position between yellow

and blue (b*, negative values indicate blue and positive values indicate yellow). Image

data can be imagined as being plotted in 3 dimensions along 3 independent(orthogonal)

axes, one for brightness and two for colour. The colour axes are based on the fact that a

colour cannot be both red and green, or both blue and yellow.
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Figure 3-9 : CIE L*a*b* Colour Space

Although not always very intuitive to use, L*a*b* is designed to approximate hu-

man vision with its L component closely matching humanperception of lightness. The

a* and b* components contain the required ‘colour’ information. L*a*b* is also defined

as being a perceptually uniform colour space. A uniform colour space is one in which

the distance in coordinate space is a good guide to the significance of the difference

between twocolours — in such a space,if the distance in coordinate space were below a

threshold, a human observer would not be able to tell the colours apart [72]. More

information on this colour space and its properties are available in standard reference

textbooks such as Wyszecki and Stiles [70]. The quantities L*, a*, and b* are obtained

from thetristimulus values accordingto the following transformations:

Y 1/3

[*=1dz —16
Y,
n

x 1/3 y 1/3

oasal(2 -(F| | (3-6)

X,, Y

1/3 1/3

besa {2) |
Y, Z,,

where X,, Y,, and Z,, are the X, Y, and Z values of a reference white patch [72].

Figure 3-10 showsthe information contained in each dimensionof these four colour

spaces. Although each dimension (or channel) has values which are of differentscales, it
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is possible to compare andcontrast the layers when they are all mapped to a pseudo-

colour for visualisation purposes, e.g. greyscale mapping. The colour spaces mentioned

so far are usedin various applications based on the requirements. In this thesis, a robust

way of modelling true colourin the presence oflighting variations is required. One way

to achievethis is to use a colour spacethatsatisfies this condition. By robusthere,it is

meantthat certain features of an image are maintained even when the light changes. An

example of a not very robust colour space is shown in Figure 3-12 where the same image

taken under different lighting conditions gave different point distributions in the RGB

colour space. Other colour spaces such as the HSV tend to preserve the value of

coloured elements in its Hue channel if the lighting conditions are not dropped

dramatically to near darkness. However given the circular representation of data, this

colour space maynotbesuitable for the triangle wrapping and un-mixing processesthat

are introduced in the next section 3.4. The Normalised RGB (NRGB)colour space

although not fully immune to changing lighting conditions tends to preserve the most

important information as shown in Figure 3-13. NRGB is used as the main colour space

for mostof the tests in this thesis. This is because of the main detection technique used

involves the need to wrap a triangle around a set of points and it was found that the

distribution of points of the NRGB colour space when faced with varying levels of

lighting conditions change in such a waythatthe triangle wrapping process adapts itself

well to maintain a closely wrapped triangle. This whole conceptabouttriangle wrapping

to detect objects is explained in sections 3.4 and 3.5 while the perceived advantageof the

NRGBcolour space over the other colour spaces in dealing with triangle wrapping for a

changing point distribution is shownin the next chapter4.
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Figure 3-10 : Each row showsthe information contained in the 3 dimensions for each colour
space. The information has been converted to a greyscale map for visualisation.
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Figure 3-11 : Same image taken underbright and dark light conditions.
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Figure 3-12 : RGB pointdistribution for bright and dark image.
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Figure 3-13 : Normalised RGB pointdistribution for bright and dark image
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3.4 Detection algorithms used in spectral imaging applications

In satellite reconnaissance, sub-pixel target detection is very common and many

algorithms have been developedto deal with situations where each pixel containsseveral

distinct types of object or background, each with a different colouror spectral signature.

In this context, ‘colour’ is a general term that is related to the intensities in different

visible and/or thermal (i.e. infrared) wavebands — the number of wavebands can be

significantly larger than the usual three colours that are familiar in the visible band

simple sensors. A multi-spectral image consists of a few colour layers with each layer

representing an image acquiredat a particular wavelength band whereasa hyper-spectral

image (HSI) is acquired from many (100 or even more) contiguous and very narrow

(about 0.010 ym wide) spectral bands that typically span the visible, near-infrared, and

short wave infrared portions of the spectrum (0.4 um - 2.5 pm) [78]. Spectral imaging

techniques exploit the fact that all materials reflect, absorb, and emit electromagnetic

energy, at specific wavelengths, in distinctive patterns related to their molecular

composition. This enables the construction of an almost continuous radiance spectrum

for every pixel in the scene. Thereis a restriction in the band wavelengthsthat are used

due to the fact that the reflected radiance is attenuated after passing through the

atmosphere andthis attenuation is wavelength dependent.

The reflectance spectrum of a material is a plot of the fraction of radiation reflected

as a function of the incident wavelength and serves as a unique signature, called the

spectral signature, for the material [78]. Figure 3-14 shows the spectral signature of

different types of surface materials. HSI data exploitation makes possible the remote

identification of ground materials-of-interest based on their spectral signatures. If one

wants to identify a componentofa particular pixel, one can just analyse how the spectral

reflectance behaves for each wavelength and then matchit to a library of wavelengths. A

form of matchedfiltering can also be performed. In signal processing, matchedfiltering

is used to maximise a signal relative to noise and clutter, and this same concept is used

when detecting objects of interest based on their spectral signatures. The response of the

desired and known componentis maximised andthe response of the composite unknown

background is suppressed, thus ‘matching’ the known signature. As the number of
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componentsto be identified is limited (e.g. vegetation, soil, water, road etc), the libraries

for these elements have already beenset up and this provides a rapid meansofdetecting

these specific materials.
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Figure 3-14 : Spectral reflectance curvesof different types of surface materials [78].

The main problem that arises when the spatial resolution is not high enoughis that

natural surfaces are rarely composed of a single uniform material and hence, many

different classes of material may be present in each pixel. This problem is often

described as the mixed-pixel classification and manyresearchers have investigated this

field called spectral mixing in general [79]. There are two main approachesto classify

mixing within pixels: Linear and non-linear approaches. Several researchers have

investigated mixing scales and linearity. Singer and McCord [80] foundthatif the scale

of the mixing is large (macroscopic), mixing occurs in a linear fashion while for

microscopic or intimate mixtures, the mixing is generally nonlinear. In the linear model,

the mixing of the light happens in the sensor, as the rays from the different patches on

the ground are reflected in the field of view of the sensor element. In the intimate

mixture model, the incident light suffers many multiple reflections from the different

componentsbefore it ends up in the sensor element as shown in Figure 3-15. Thespatial

scale of the mixing and the physical distribution of the materials govern the degree of

non-linearity.
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Figure 3-15 : Top: Linear mixing model with mixing of light occurs at the sensor. Bottom:
Non-linear with mixing happening on the ground.[79]

The linear approach to mixed pixel classification is best described by the Linear

Mixing Model (LMM)[81]. LMM assumesthat the spectrum of a mixed pixelis a linear

combination of the spectra of the constituent pure classes and that the spectral

proportions of the pure classes reflect the area covered by the proportions on the ground.

In other words, each pixel in a given image contains a proportion of one or moredefinite

colours (or spectra) and that each mixed pixel may be decomposed into a linear

combination of the individual colours or pure classes, also known as endmembers [78,

81]. LMM is described mathematically as a linear vector-matrix equation,

P,=Ea,+€ (3-7)

where @,,, is the Lx1 vector of L endmemberfractions for the pixel xy, and E is the KxL

endmembersignature matrix, with each column containing one of the spectral vectors.

P,, is the K-dimensional spectral vector at pixel xy and ¢ represents noise. The a’s
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represent the amountof each constituent in a given pixel, and are often referred to as the

abundance coefficients with the following ‘additivity’ and positivity constraints applied

to them.

L

Ya, =1 and a, 20 (3-8)
[=]

Solving the LMM equationis called un-mixing. If the spectra of the pure classes are

known,the apparentfractional abundance of each endmembermaterial in each pixel can

be easily deduced. These known endmembers can be drawn from the data (averages of

regions picked using previous knowledge), drawn from library of pure materials by

interactively browsing through the imaging spectrometer data to determine what pure

materials exist in the image, or determined using expert systems to identify materials.

The mixing endmember matrix is made up of spectra from the image or a reference

library. The problem can be thought of in terms of an over-determined linear least

squares problem [78]. The mixing matrix is inverted and multiplied by the observed

spectra to get least-squares estimates of the unknown endmember abundancefractions.

Constraints can be placed onthe solutions to give positive fractions that sum to unity.

Shade and shadoware includedeither implicitly (fractions sum to 1 orless) or explicitly

as an endmember(fractions sum to 1) [79].

The un-mixing method described so far assumes that the spectral libraries are

available. Howeverit can happen that they are not available. There is another technique

called the ‘full un-mixing’ that uses the imaging spectrometer data themselves to

‘derive’ the mixing endmembers [82]. This technique can be summarisedasfollows:

e A linear “sub-space’ that spansthe entire signal in the data is derived.

e The data are projected onto this subspace. This lowers the dimensionality of the

un-mixing.

e The data are ‘shrink-wrapped’ by a simplex of n-dimensions. Examples of

simplexes in different dimensionsare a line, a triangle and a tetrahedron for n= 1,

n= 2, and n = respectively.

e The simplex is used to derive abundance estimates of the pure endmembers. The

estimates that are obtained are positive fractions that sum to unity.
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Mixed pixels are visualised as points in n-dimensional scatter-plot space (spectral

space), where n is the number of bands. In two-dimensional feature space, if only two

endmembers mix, then the mixed pixels will fall in a line and the pure endmemberswill

fall at the two ends of the mixingline. If three endmembers mix, then the mixed pixels

will fall inside a triangle. If these endmembersare ‘pure’ and if they are an exhaustive

basis for all spectral vectors in the image, the spectral vector for any pixel mustlie

within the convex hull defined by the envelope around the endmembers.In other words,

mixtures of endmembers‘fill in’ between the endmembers.
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Figure 3-16 : (a) Two endmembers (b) Three endmembers

In Figure 3-16 (b), the corners of the triangle represented by a, b and c could represent

soil, rocks and vegetation for example. Un-mixing can then be applied to estimate the

proportion of each class memberfor each pixel vector. Assumingthat there is no noiseat

first, each element of equation 3-6 can be written out as follows:

Doit
ee_fe Esse EEscsstation’ a (3-9)

rocks
P,Band2 Esoil2 Erocks2 vegetation 2

avegetation

Equation 3-8 is underdetermined since there are three unknowns, i.e. the fraction

components, but only two equations for the bands 1 and 2 respectively. However the

requirementthatall linear combinationsof the three fraction components add up to unity
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can be combined with equation 3-9 to form an augmented mixing equation such that the

latter can be solved for the fractions as shownin the next equation 3-10 [78].

a E 7soil soill Eacks! DP ccenieel P Banal

= 3-10
a ~ Esoit? Evocks2 E sectation 2 P Band2 ( )

1

rocks

Xlyegetation 1 1 1

Thetask of identifying the endmembersin a sceneis a difficult task and two main

approachesexist to deal with it, namely interactive and automated endmemberextraction

techniques. The pixel purity index (PPI) method [83] is the most representative

interactive approach. Its operationfirst involves randomly generatinglines in the chosen

n-dimensional space. All of the data points in the space are then projected ontothe lines

after a maximum noise fraction (MNF) transform has been applied to them to reduce

their dimensionality [83]. Those pixel values that fall at the extremes of the lines are

counted. After many repeated projections to different lines, those pixels with a count

above a certain threshold are declared ‘pure’ or an endmember. Howeverthis method

usually gives many redundant spectra in the pure pixel list and the actual endmember

spectra can only be selected after a combination of intelligent review of the spectra

themselves and through n-dimensional visualisation. An alternative is the N-FINDR

method [84] which is an automated approachthat finds the set of pixels that define the

simplex with the maximum volume,potentially inscribed within the dataset. Randomly

selected pixels qualify as endmembers, and trial volume is calculated. In order to

improvethe initial volume estimate,a trial volume is calculated for every pixel in each

endmemberposition by replacing that endmemberand recalculating the volume. If the

replacement results in a volume increase, the pixel replaces the endmember. This

procedure, which does not require any input parameters, is repeated until there are no

replacements of endmembers left. Once the endmembers are found, their spectra can be

used to un-mix the original image using equation 3-10. This produces a set of images,

each of which showsthe fractional abundance of an endmember in each pixel. Other

automatic endmemberextraction techniques are introduced in section 3.5. It should be

noted that both PPI and N-FINDR rely on spectral properties of the data alone,

neglecting the informationrelated to the spatial arrangementof pixels in the scene.
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The other approach to model mixing within pixels is the non-linear one. Nonlinear

mixed pixel analysis involves a detailed knowledge of multiple scattering effects that

mayarise dueto the intimate association of components residing inside each pixel andit

is described extensively by Hapke [85]. Howeverit has been observed that linear un-

mixing techniques, while at best an approximation, appear to work well in many

circumstances involving non-linear mixtures with the effects of multiple scattering in the

majority of applications assumed to be negligible if a linear model is used [86].

Moreoverindoor environments haverelatively few light sources and they contain few

shiny surfaces. These objects do not scatter and reflect light in a way serious enough

way to model mixing in the non-linear manner. The un-mixing of the LMM is the

processthat is adapted to detect objects in low resolution videosfor this project and this

adaptation is expoundedbothin the next section and in chapter4.

3.5 Un-mixing process to detect objects and estimate their sizes

In low resolution images, each pixel can often represent more than just one colour

value. The combination of finite pixel sizes and small numberof pixels available results

in mixing within individual pixels and the LMM (together with its un-mixing) is an

approachthat can be used to separate the colours present in a pixel. In a two-dimensional

feature space (for example Normalised Red v/s Normalised Green), a distribution similar

to Figure 3-17(a) might be expected for an image with three main colours. If the end-

members are ‘pure’, one can expectthe spectral vector for any pixel in the imageto lie

within the triangular envelope around the endmembers. Pixels containing only one

endmemberwill be found near the vertices of the simplex, those with two endmembers

will be located near the facet of the simplex opposite the vertex associated with the

missing endmember as shownin Figure 3-17(b), and the pixels with all three endmem-

bers will tend to be found nearthe centre of the triangle. The position of a point within

the triangle gives information about the proportion of an endmember contained in that

pixel. An exampleof a real low resolution image is shown in Figure 3-18. It can be seen

how the data points representing each colour are based around three corners and then

other pointsfill in the rest of the space in between the corners.
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Figure 3-18 : (a) Real low resolution image. (c) Triangular envelope wraps around data values

and endmemberzonesare circled. Fig. 1(b), (d) and (e) show the portions of the images that

represent these three endmembers.
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Knowing the point distribution on its own is not however very useful. To be able to

perform the un-mixing process, a triangle wrapped aroundthe data points as closely as

possible is required and this process of obtaining the triangle automatically is explained

in the next chapter 4.2. When a triangle is available around the data points, the un-

mixing process can be performed and this is done to estimate fractions of each

endmember component from a given pixel as explained in equation 3-10. The 2-D

explanation example shown in Figure 3-17 above is chosen here because it is easy to

visualise. However it must be noted that this approach scales up to higher dimensions.

For example, if a fourth endmemberis addedto thefirst three, three dimensions will

then be required and the mixing triangle will becomea tetrahedron to determine if a

pointis outside or inside the mixing space. This means that for unambiguous colour un-

mixing, the dimensionality of the mixed data must usually be one less than the number

of independent endmembers. In domestic environments with simple image sensors, k

usually represents two bands e.g. normalised red and green intensity values from RGB

data capturing andit can be assumedthatthere are three main colours in such rooms,e.g.

background wall-paint, a main furniture and a moving person with clothing containing

one major colour that stands out. The E values of equation 3-10 are assigned the

coordinate values of the triangle’s vertices while P is assigned the normalised intensity

values of the pixel being un-mixed. This process is also sometimes called pixel

decomposition. One might argue the point here that this un-mixing procedure is very

inefficient if it has to be calculated for each pixel present in an image frame. This is

somewhat true but at the same time one hasto be awarethat notall pixels need to be un-

mixed as not all pixels are mixed,i.e. not all pixels in a low resolution image represent

more than oneor part of one object at a time. Mixed pixels tend to be found at object

boundaries where they representareas that partially belong to one object andpartially to

another one or a background. The reverse process of matching the data points near a

particular corner to a pixel location in the image can be doneto estimate the position of

the ‘centre of mass’ or centroid of an object, as will be explained in the next section

3.5.1. This method is more appropriate when there are three or four main colours in an

image sequence and the object to be tracked occupies a significant numberofpixels (at

least 3 pixels in a 20x 20 image).
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3.5.1 Finding the ‘centre of mass’ of an object

The centroid of a 2-D object is a unique point that balancesit on a pinpointif it were

cut out of a rigid, uniform sheet of cardboard. There exist many formulasto find the

centroids of regular shapes such as squares, rectangles, etc. In computer images, objects

are represented bypixels andare often of irregular shapes. It is hence difficult to apply

standard equations from geometry to find the centre of mass of these objects. For

irregularly shaped objects, the actual feature shape and location ofall the pixels present

can be taken into account to enable the centroid to be obtained. One quick way to

achieve this is by finding the largest and smallest coordinates in the horizontal and

vertical directions first. These limiting coordinates then define a bounding box around

the object in the spatial domain and the midpointof this box can be taken asthe centre of

mass [68]. This method is not always ideal becauseit is too easily biased by just a few

pixels, e.g. a whisker sticking out of an object will pull the centroid in the direction of

the whisker [68]. Howeverthe objects of interest in this thesis are expectedto be‘solid’

ones, e.g. piece of clothing, and therefore this technique is acceptable. A way to derive

the centre of mass of an object using bounded-box method augmented with pixel un-

mixing is devised. As shown before in Figure 3-17(b), the location of a pointrelative to

a vertex within the un-mixing triangle determines the proportion of that endmemberin

the pixel being analysed. These proportions can be added to the main central bounded-

box (or blob) to give a better estimate of the object’s shape and area, and henceits

centroid. To understand this concept, consider Figure 3-19. An intial centroid estimate

can be obtained in a direct and simple wayfor the full pixels numbered 6, 7, 10, and 11.

The intensity values of these pixels are normally found very close to the triangle vertex

representing the object’s colour in the data space projection. These points are usually

found at a distance of less than one quarter of the length of each of the twosides joining

at this vertex along each side. Whenthese intensity value points are projected back to the

spatial domain, a bounding box is obtained and its midpoint is the initial centroid

estimate. This estimate can then be improved by using pixel decomposition. Pixel

decomposition or un-mixing allows us to know the amountof the desired object present

in the pixels found at or near the boundaries of the object, and by adding these

proportionstothe initial centroid estimate, the latter’s accuracy can be improved.
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Figure 3-19 : Estimating the ‘centre of mass’ of an object. Pixels 6, 7, 10 and 11 are used to
obtain initial centroid estimate. The remaining pixels are un-mixed to improvethe estimate.

Before explaining how this improvementto the centroid’s estimate is achieved,it is

good to see how the proportion of an object in a particular pixel can be calculated in a

real world example. The top row of Figure 3-20 is an example of an image sequence

containing a yellow object moving from right to left on a background with two main

colours. A pixel (highlighted by a red square) is under observation because it contains

different colour proportions over time as the object goes through it. The bottom row of

Figure 3-20 showsthe intensity values point distribution of each frame when these

values are projected into the Normalised RGB colour space. A triangle is wrapped

around each data set and the location of the chosen pixel’s value is shown with a red

cross. As the object movesinto the pixel and covers it for a few frames, the cross moves

towards the vertex of the triangle representing that object’s colour. This meansthat the

proportion of yellow in the pixel is increasing while the contribution of the other

endmember colour decreases. Figure 3-21 shows a magnified version of the image

sequence at frame 50 and the corresponding pixel value location in the data space

projection. It can be seen from Figure 3-21 (b) that the pixel under observation is neither
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pure yellow nor pure green but a mixture of both. This information is reflected in the

data space projection where the crosslies in between the vertices representing these two

endmembers. The location of this cross is used to estimate the proportion of a particular

endmemberin that pixel by using equation 3-10.
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Figure 3-20 : Top row is an image sequence containing a yellow object moving from left to
right on a background with two main colours. A pixel (highlighted by a red square) is under
observation. Bottom row shows the corresponding data point distributions and a triangle
wrapped around them for the un-mixing process.
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Figure 3-21 : (a) Thelocation of a pixel value in the data space projection, (b) Blow-up of the
pixel in the image sequenceat frame 50
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Figure 3-22 showsthe calculated proportions of each endmemberin the observed pixel

as the object moves through it. The zones betweenthe vertical dotted lines represent the

period when mixing within the pixel is occurring. It has to be noted that the proportions

add up to unity at any instant in time. However the proportions obtained for each

endmemberare not always accurate becausethe triangle used for the un-mixing process

is not tightly around the data points. This is addressed in the next chapter where an

automatic triangle wrapping algorithm is developed to work on a sequence of data
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Figure 3-22 : Proportions of each endmemberin the observed pixel over time

Being able to calculate the proportion of an endmemberin a pixelis just part of the

quest to improve the centroid location. The idea is to decompose all the other mixed

pixels in Figure 3-19 and then add up their respective proportions of the desired

endmember. To achieve this, the mixed-pixels around the central blob that contain more

than 50% of the desired endmember are un-mixed. The intensity values of these pixels

are found in a band within the un-mixing triangle as shown in Figure 3-23. Those pixels

with more than 75% of endmemberpresent are not decomposed becausethey are already

taken into account in the derivation of the initial bounding box or blob and those with

less than 50% are simply ignored. Any pixel within this desired band is given the weight

equivalent to a pixel containing half the intensity value of the desired endmember. Using
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this information, an improved estimate of the centroid of the object is obtained by using

a weighted centre of mass approach basedontheintensities of the pixels as explained in

equation 3-11 below. Given each pixel(i,j) with intensity level J; in the m x n window

shownin Figure 3-19, the coordinates (X, Y) of the centroid relative to the local axes of

the windoware [87]:

» »js ) dil,

i and Y=-——
eS Sma U _i j=l i

The coordinates of the centroid in the image co-ordinate system are (x + X, y+ Y)

where both x, and y, have a value of 1 in digital image processing applications. While

this is still not a fully precise location of the centroid, one has to be aware that the

requirements are not as strict as microscopic tracking in biomedical applications for

example and a small error is allowed here. Moreover because of the nature ofdigital

image representation in computers, rounding occurs which result in near impossibility to

obtain locations of sub-pixel precision. Yet, this method of detecting an object and

estimating its location does give goodresults as will be shownin the next chapters.
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Figure 3-23 : Location of intensity data points of mixed pixels
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3.6 Summary

This chapter has given further information about the various parts of this project.

The tracking of small objects is an established field and is very useful in certain sectors

such as biomedical and military tracking. A different technique, based on satellite

reconnaissance applications, to the ones currently used in these fields is proposed to be

used in this experimental project. This technique involves using the un-mixing processto

estimate the location and the size of an object. However before reachingthat stage, the

appropriate colour space has to be chosen. A colour space is a model for representing

colour in digital images in terms of intensity values. It defines a one-, two-, three-, or

four-dimensional space whose dimensions, or components, contain information about

the colours. The colour space to be chosen has to be able to minimise the effect of

changing ambientlighting on an image by keeping some information about the colours

constant whatever the light conditions are. Another requirementfor the colour space is

that it must be compatible with the un-mixing process that is proposed to be used as a

detection mechanism of small objects. The un-mixing process as used in satellite

imagery applications involves a step wherebya triangle has to be wrapped around many

data points as closely as possible. Algorithmsthat are able to automatically generate this

triangle are explained and developed in the next chapter.
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Figure 3-24 : (a) Three colours cannot be unmixed because notriangle is formed (b) four
colours can be unmixedin 2-D space.
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As mentioned in section 3.2, if three endmembers mix in two-dimensional feature

space, then the mixed pixels will fall inside a triangle and the spectral vector for any

pixel must lie within the convex hull defined by the envelope around the endmembers.

Given only the spectral distribution, pixel un-mixing can then be practised onit to infer

the constituency of each pixel depending on the location ofits spectral vector within the

triangle. There are however some special situations where three colours cannot be

separated using this technique, and some where four colours can be separated in 2-D as

shownin Figure 3-24. The presence of three main colours with the distribution of the

data points enabling a triangle to be formed also does not always mean that the un-

mixing process will work well. For example, when the object being investigated is very

small, e.g. 1 or 2 pixels, it can happenthat the triangle wraps itself around the wrong

points. To understandthis, consider the un-mixing triangle shown in Figure 3-25.

 

@O d

  
 

Figure 3-25 : Points a, c, and d represent the three true end-membersfor an image, however due

to a lack of any pure pixels of type d, the selected end-membersarea, c, and b (a mixedpixel).

Points a, c, and d represent the three true end-members for an image, however due

to a lack of many pure pixels of type d, the selected end-membersare a, c, and b (a

mixed pixel). This means that the estimates of the proportions of d in a particular pixel

will not be exact if d is the object that contains the colour that one is interested in. One

way to tackle very small objects (1 pixel or less than a pixel in size) is by making use of
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the intensity profiles at pixel boundaries when these objects go through the pixels. By

using the time derivatives of the intensity at each pixel, and the spatial derivatives of

intensity obtained by comparing the intensity of neighbouring pixels, the displacement

and even velocity can be estimated. Because of the very nature of these objects that are

small, the intensity modulation that they bring about in a pixel is very small andis often

heavily affected by noise in an image. A method tofilter these values has to be usedfirst

to recover the information that is needed to be able to estimate the location of these

objects, and this technique for detection sub-pixel sized objects is introduced in the next

chapter.
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4. Detecting objects

4.1 Introduction

One of the main parts of this thesis is the developmentof a suite of algorithms to

detect small objects with sizes ranging from less than a pixel (sub-pixel) to a few pixels

wide. This chapter is mainly concerned with how the un-mixing process is adapted to

detect small objects in image sequences of indoor environments. An automatedtriangle

wrapping mechanism is developed and implemented aspart of this preliminary and very

important step of un-mixing. The search for the optimum triangle can be done by an

exhaustive search over an allowable range of parameters. However, the computational

cost increases with both the dimension of the parameter space and the dimension of the

dataset, and thus an alternative search method using an optimisation technique has to be

found. Several optimisation techniques are tested and a complete description of the

results obtained in the test experiments is given together with the choice of the optimiser

to be used. For very small objects, i.e. those less than a pixel in size, another technique

to these objects using intensities at boundaries of adjacent pixels as the objects move

through the pixels is described in section 4.3. A third technique involving the detection

of human skin in image sequencesis also introduced in section 4.4.
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4.2 Triangle Wrapping Algorithmsanddetection of small objects

A very important task in the detection process of small objects as described in

section 3.5 is to find an automated wayto perform the triangular wrappings. There exist

many ways to obtain a triangle wrapped closely around a set of data points. Three

commonly used algorithms are: the Simplex Shrink-Wrap [1], the Minimum Volume

Transform [88] and the N-FINDR algorithm [89]. The Simplex Shrink-Wrap is a

gradient-descent algorithm on an objective function defined on the vertices of the

triangle [1]. The objective function is the sum of two terms:first term is the volume of

the simplex to be minimised and second term is a penalty term which hasthe effect of

‘pushing’ the faces of the simplex away from the data points. The gradient of each of

these terms is determined analytically, and used in the gradient descent algorithm. The

penalty term includes a multiplicative constant which approaches zero as the gradient

descent algorithm progresses, causing the iterates to converge to the vertices of a

simplex whichfits tightly aroundthe given data points. This process begins with a large

initial simplex and shrinks it down around the data cloud. Intuitively, one can imagine

the process as the multidimensional analogy of a wrappinga sheetof plastic around a

convex set containing the data; hence the term ‘Shrink-Wrap’. The problem addressed

here is that of finding the simplex whichgives the best fit to a given set of data points,

where best fit simplex implies to be one with minimum area, subject to the constraint

that all the data vectors lie in the interior [1]. While the first term in the objective

function is there to be minimised, the second term is slightly different. It is a penalty

function chosen to enforce the constraint that all the data lie in the interior of the

simplex. Qualitatively, it means that this penalty function should be small when the

simplex is large andits faces are far from the data points, and conversely it should be

large, as any simplex face gets near the data points. The behaviour of the Simplex

Shrink-Wrap algorithm is illustrated in Figure 4-1. The first panel shows the data cloud

and the true endmembers projected into the plane; the second panel showstheinitial

simplex; the third panel shows the sequence ofiterates (sampled every 10 iterations to

improveclarity) and the final panel showsthe estimated simplexat the last iteration. The

mannerin which the shrinking simplex rotates andalignsitself with the shape of the data
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cloud is of particular interest. Howeverthe problem addressed in the paper is somewhat

idealised and one can imaginethe effect that outliers will have on this triangle wrapping

algorithm because ofits constraintthat all the data points to lie within thetriangle.
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Figure 4-1 : Behaviour of the Simplex Shrink Wrap. (a) Available data points (b) Initial triangle
(c) Progress of the wrapping algorithm, triangles superimposed on each other (d) Finaltriangle
Image source [1], pp 505

Another triangle wrapping algorithm popular in the remote sensing community is

the Minimum Volume Transform (MVT). The MVT method starts with a large initial

triangle and reduces it downto shrink it round the data. It does so by repeatedly varying

the orientation of one facet at a time while all the data points are embraced by the

simplexall the time until the minimum-area simplex is obtained [88]. The MVT needsat

least one vertex, called the “dark point’, to be known beforehand. To achieve this, it

applies a linear transformation to move the data points in such a way that they become

confined to the corner of two lines joining each other. A third line is then added to

complete a triangle with a view to obtain one with a minimum area. This technique

might have reasonably been termed a minimum-area transform but the term ‘minimum-

volume’ (MVT) is used because that paper was based on a three-dimensional case. For
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consistencyacrossall dimensions, one might also think that the term ‘minimum-content’

would be moreaccurate.

A third algorithm that often comesin thesatellite reconnaissanceliterature is the N-

FINDRalgorithm [89]. The N-FINDRalgorithm worksfrom the ‘inside-out’, i.e., it takes

a set of points in the data set and then 'pushes'the triangle until a maximum areatriangle

is found. During the optimisation process, the N-FINDR finds those vertices by

randomly selecting a set of P pixels from the scene as initial endmembers, and

calculating the volume of the simplex formed bytheseinitial endmembers. This process

is iterated through the following stepsto test every pixel in the image as an endmember.

First, each of the initial endmembersis replaced one at a time with the pixel beingtested.

Second, the volumes(or areas for 2-D) of the simplexes formed by each replacement are

calculated. Finally, the algorithm evaluates if replacing any of the initial endmembers

with the pixel being tested results in a larger simplex volume.If this is the case, the pixel

being tested replaces the initial endmemberand the process is repeated again until each

pixel is evaluated as a potential endmember. This procedureis repeated until there are no

more replacements of endmembers that can result in an increase in area. The pixels

which remain as endmembers at the end of the process are considered to be the final

endmembers. This algorithm’s efficiency is dependent on the number of points

contained in the data cloud andif there are too many points, it can take a long time to

give the maximum area. Implementing N-FINDRcan require very high and expensive

computational complexity because of the exhaustive search for optimal P endmembers

simultaneously among all possible P-endmember combinations in the data. When the

data sample vectors are huge, the computational cost can be unmanageable and it may

take quite long time to converge to a desired set of endmembers. To try to decreasethis

cost, modifications to the search process can be brought to the N-FINDR algorithm that

do not generally conduct a fully exhaustive search, but rather focus on endmembers

selected from somefeasible regions for iterations. However, in order for such modified

algorithmsto be also effective, initial endmembers must be representative and cannot be

arbitrary. Therefore, a judicious selection of initial endmembersis necessary.

These techniques mentioned so far are designed forstatic satellite imagery andits

accompanying characteristics. In this thesis, another triangle wrapping technique is
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developed that answers the requirements of noisy and quickly changing data points

brought about by changes in room lighting or poor image sensors. Moreover the un-

mixing is done without prior knowledge of any endmemberlocation. The optimisation

procedure has to be time dependent and deal with highly dynamic situations. The

method usedhere is closest to that of the Simplex Shrink-Wrap because a minimum area

triangle is sought and the objective function in the optimisation process is based on the

vertices. A multi-objective function based on the area of the triangle and the numberof

points outside the triangle is defined to be minimised. However, unlike the Simplex

Shrink-Wrap, there is no constraint to put all the points inside the triangle. The data

points used here are assumed to come from the Normalised Red and Green channels of

an image using the Normalised RGBcolour space.

The objectives for the triangle wrapping are twofold;to fit a triangle around as

manydata points as possible ignoring noisy outliers, while at the same time keeping the

triangle to small finite proportions. This is a multi-objective optimisation, which can be

implemented through a weighted-sum approach. The overall minimising cost function is

definedas:

f (%) = Area(t)+ w-[H- W-Points(z)] (4-1)

where X=(x,,%5,X¢,Y4,Yg.Jc) iS a vector composed of the triangle’s vertices

coordinates. Area(-) is a function calculating the overall area of the defined triangle,

while Points(-) returns the numberof points within the triangle. H and W are the width

and height of the image plane. The non-negative term [H . W-Points(x)] helps in

minimising the number of points outside the triangle. w>0O is a user-defined weight

balancing the two objectives which are of different scales and units. In this way, when

F(-) is minimised, the smallest triangle that optimally contains most of the data pointsis

found while the effect of outliers is mitigated.

4.2.1 Multi-objective optimisation

Multi-objective optimisation, also known as multi-criteria, is the process of

simultaneously optimising two or more conflicting objectives subject to certain

constraints [90]. This approach can be found in various fields wherever optimal
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decisions need to be taken in the presence of trade-offs between two conflicting

objectives, e.g. maximising profit and minimising the cost of a product, and minimising

weight while maximising the strength of a particular component. The term ‘optimise’

means finding such a solution which will give the values ofall the objective functions

acceptable to the decision maker. These objective functions may also be commensurable

(measured in the same units) or non-commensurable (measured in different units) [90].

Withoutloss of generality, all objectives are of the minimisation type - a minimisation

type objective can be converted to a maximisation type by multiplying by negative one.

A minimisation multi-objective decision problem with M objectives is defined as

follows:

Minimise f,(x), m=1,2,...,M;

: (L) (U) ‘ a2)subject to x)" Sx, <x;-’, i=1,2,...,n.i i

where x is a vector of n decision variables, x =[x,,x,,...,x, |’, each subject to take a

value within lower bound x(t) and upper bound x0), The ideais to find a vector x* that

minimises a given set of M objective functions f(x) = f(x). f, (x),...5 Fay (x)} within a

solution space called objective space X. The predominant solution concept in defining

solutions for multi-objective optimisation problems is that of Pareto optimality [90]. A

solution in the feasible solution space is called Pareto optimalif there is no other feasible

solution in the solution space that reduces atleast one objective function without increas-

ing another one [90]. A Pareto optimal solution cannot be improved with respect to any

objective without worsening at least one other objective. Theset of all feasible solutions

in X is referred to as the Pareto optimal set, and for a given Pareto optimalset, the

corresponding objective function values in the objective space are called the Pareto

front. One goal in multi-objective optimisation is to find a set of solutions as close as

possible to the Pareto-optimal front.

For many problems, the number of Pareto optimal solutions is enormous (perhaps

infinite). To solve a particular multi-objective problem, one approach is to construct a

single aggregate objective function (AOF) from the multiple objectives that exist. The

basic idea is to combine all of the objective functions into a single functional form,

called the AOF [91]. A well-known combination is the weighted linear sum of the
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objectives. One specifies scalar weights for each objective to be optimised, and then

combines them into a single function that can be solved by any single-objective opti-

miser (examples of such optimisers are given in next sub-section). Clearly, the solution

obtained will depend on the values (moreprecisely, the relative values) of the weights

specified. The solutions obtained using the weighted sumsare always Pareto optimal,

but coming up with meaningful combinations of weights can be challenging.In practice,

it can be very difficult to precisely and accurately select these weights, even for someone

familiar with the problem domain. Compounding this drawback is that scaling amongst

objectives is needed and small perturbations in the weights can sometimeslead to quite

different solutions. In equation 4-1, the AOF Area(x)+w- [H . W-Points(x)| with a

weightw is obtained from the two functions Area(x) and [H- W-Points(x)] respectively.

The first function calculates the area of a triangle and this value can be between 0 and

0.5 square units in magnitude if a Normalised RGB colour space is used. The second

function calculates the numberofpoints that are outside the triangle and its value can be

any value from zero to the numberof pixels in the image (e.g. maximum of 900 values

in a 30x30 image). Although the value of 900 is very unlikely as this would mean that

the triangle is not enclosing any point, a value of anything less than 20 is very likely

whenthere are noisy outliers in the data. Henceto be able to balance the two functions, a

‘small’ value of less than one is needed andthis value can only be obtained bytrial and

error unfortunately.

Another approach to solve the multi-objective function is the Multi-Objective

Evolutionary Algorithm (MOEA)approach. One example of an evolutionary algorithm

is the Genetic Algorithm (GA) that was developed by Holland et al. in the 1960s and

1970s [94]. GAsare inspired by the evolution theory explaining the origin of species and

are described in deep details later in sub-section 4.2.2.3. Being a population-based

approach, GAsare well suited to solve multi-objective optimisation problems [90]. The

ability of GAs to simultaneously search different regions of a solution space makesit

possible to find a diverse set of solutions for difficult problems with non-convex and/or

discontinuous solution spaces. In addition, if enough information is available, multi-

objective GAs do not require the userto prioritise, scale, or weigh objectives. However

they are more complex and time-consumingto set up than the weighted sum approach.
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4.2.2 Optimisation algorithms

With the multi-objective function finalised, an optimisation search technique is

required to minimise it. The choice depends on the type of problem under consideration

and optimisation algorithmscan be divided into two broad categories [93]:

© Gradient-based algorithms, such as the Robbins-Monro stochastic

approximation algorithm can be considered to be a generalisation of the

deterministic steepest descent. It requires that direct measurements of the

gradient are available, but these measurements are generally a gradient

estimate because the underlying data is usually noisy [93].

© Gradient-free algorithms such as the simple random search, the Nelder-

Mead method, the Simulated Annealing or the genetic algorithm method.

These methods can be useful for a broad search over the domain of the

parameters being optimised, and can provide initialisation for a more

powerful local search algorithm.

Approaches based on the use of gradient estimations tend to be fast, but are

sensitive to the presence of local optima. Additional discussion of these methods with

their relative advantages and disadvantages can be found in [94]. In order to minimise

Equation 4-1 for the purpose of this thesis, three gradient-free optimisation techniques

are tested and - where possible - the following constraints are enforced, namely that the

values of the vertices are always within 0 and 1 (as these were the normalised colour-

space image boundaries) and secondlythatthe area ofthe triangle can not be higher than

0.5 square units (as the maximum area ofa triangle within a unit square is 0.5). The

three optimisation methodstestedare:

(1) stochastic search method

(2) deterministic method

(3) genetic algorithm method.

4.2.2.1 Stochastic search method

The stochastic methodusedis a directed random search algorithm. Stochastic search

methods for optimisation are based on exploring the domain © in a random mannerto
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find a point that minimises f = f(x), wheref is the cost function. The advantages of this

method include relative ease of coding in software, the need to only obtain F

measurements (versus gradients or other ancillary information), reasonable

computational efficiency (especially for those direct search algorithms that make use of

somelocal information in their search), broad applicability to non-trivial loss functions

and/or to x that may be continuous, discrete, or some hybrid form, and a strong

theoretical foundation [95]. The simplest random search methodis the ‘blind random

search’andit can be describedas in the following algorithm:

Step0 (initialisation) Choose an initial value of x = Xo inside of @. Set k = 0.

Step 1 (candidate value) Generate a new independent valuex... (k+l)e 0,
new

according to the chosen probability distribution. If F(x_..(k+1)) <
new

F(X, ), set X,,, =X,,,(k +1). Else take X,,, = X,

Step 2 (return or stop) Stop if maximum number of F evaluations has been

reached or user is otherwise satisfied with the current estimate for x;

else, return to step 1 with the new k set to the former k + 1.

This algorithm is unique amongall general stochastic optimisation algorithms in

that it is the only one without any adjustable algorithm coefficients that need to be

"tuned" to the problem at hand. It also converges almost surely (a.s.) to the optimum x

under very general conditions [94]. While blind random searchis a reasonable algorithm

when x is low dimensional, it can be shown that the method is generally a very slow

algorithm for even moderately dimensionedx. This is a direct consequence of the

exponential increase in the size of the search space as the problem dimension p increases

[94]. It also does not adapt the current sampling strategy to information that has been

garneredin the search process.

An improvementon this methodis called the ‘Enhanced Localised Random Search’

method whereby the search is more localised in the neighbourhood of an estimate,

allowing for a better exploitation of information that has previously been obtained about
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the shape of the objective function. The following is a simplified version of the full

version of the algorithm as described by Solis and Wets [96]:

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

(initialization) Choosean initial value of ¥ = Xo inside of ©. Set k=0

(candidate value) Generate a random d; and a bias term L,. Check if

X, the +d € O. If not, generate new d; or move X, + by + dy to nearest

valid point. Let x,,,.(k +1) be X, +d, 4b; or the modified point.

(check for improvement) If F(x,,,,(k +1) < F(%,), set %,,, =
new

Xnew(K +1) and byi7 = 0.2b, + 0.4d, and go to Step 5. Otherwise, go to
new

Step 3.

(candidate value) Use the random d; and a bias term b; of Step 1. Let

X new(k +1) = X, +b, —d,, or its nearest valid point within ©.If

F(Xnew (k +1)) < F(%,), Set X,,; =X new(k +1) and b,,, =b, —0.4d, and

go to step 5. Otherwise, go to Step 4.

(update bias) Set x,,, =x, and bys; = 0.5b, Goto Step5.

(return or stop) Stop if maximum number of F evaluations has been

reached orif user satisfied with current estimate; else, return to step 1

with new k set to former k + 1.

This algorithm allows one to focus the search moretightly as evidence is accrued on

the location of the solution. It also exploits the knowledge on ‘good’ or ‘bad’ directions.

For example, if a move in one direction produces a decrease in loss, bias is added to the

nextiteration to allow the algorithm to continue moving in ‘good’ direction or similarly

if a movein one direction producesan increase in loss, bias is added to the nextiteration

to movethe algorithm in the opposite way. This algorithm is chosen to be the stochastic

search method implementedin this thesis.

4.2.2.2. Deterministic method

The deterministic method usedis the gradient free Nelder-Mead nonlinear algorithm

[97]. It is based on the concept of a simplex, a geometric object (convex hull) of p + 1
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vertices enclosing all the p + 1 points in p dimensions, e.g. a line segment on line, a

triangle on a plane,a tetrahedron in three-dimensional space andso forth. This algorithm

is the baseline gradient-free multivariate optimisation technique in MATLAB(function

fminsearch [98]) and is one of the most popular optimisation techniques when

comparison of objective function values only is concerned. Thebasic idea in this method

is that at each iteration a new pointis generated in or near the current simplex. The new

pointthen replaces oneof the current simplex vertices, yielding a new simplex. This new

point is generated by certain transformations such as reflection, expansion and

contraction as detailed in the algorithm description in Figure 4-2.

6Binax Omin max Onin

cent Bcent

@ Bret
Bemax Bret! Bomax

Bexp

Reflection Expansion when

L(rer1) < L(8min)

Omax Onin Omax Bmin Bmax Onin

cent Ocent Bcent

6
on 9 Bcont Q

B2max refl O2max a Bomax alu

Contraction when Contraction when Shrink afterfailed

L(6efi) < L(8max) L(O,ef1) 2 L(Omax) contraction when

(“outside”) (“inside”) L (Ores) < L(®max)

Figure 4-2 : Nonlinear simplex algorithm for p = 2, where 0 is the parameter vector (adapted

from [99])

The algorithm steps shown here are identical to those in MATLAB fminsearch

function. These steps differ slightly from the original Nelder-Mead algorithm but they

have become widely accepted because performance has been improved. A full
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description of the algorithm is available in Spall’s book [94, p. 57]. To putit simply, the

algorithm searches for x* by moving the convex hull within ©. If the algorithm works

properly, the convex hull shrinks or collapses onto x *. One hasto also note that there is

no randomnessinjected in this technique. This method is very often effective in both

noise free and noisy function measurements,butthere is no general convergence theory

and there are many numerical counter-examples where it is shown that it does not

converge.

4.2.2.3 Genetic algorithm method

The third method to be evaluated is a standard genetic algorithm (GA) whichis a

good method for solving both constrained and unconstrained optimisation problems.

GAsare the most popular evolutionary computation (EC) algorithms and are based on

principles of natural selection andsurvivalof the fittest whereby at each step individuals

are selected probabilistically from the current population to be parents and then are used

to produce the new solutions (offspring) for the next generation [100]. In GA

terminology, a cost function such as, F(z), is often referred to as the fitness function to

emphasise the evolutionary conceptof thefittest of a species having a greaterlikelihood

of surviving and passing onits genetic material [94].

A fundamental difference between GAsand the previous two methodsis that GAs

work on a population of encoded solutions. A GA can simultaneously consider multiple

candidate solutions to a minimisation of F and iterate by moving this population of

candidate solutions towards a global optimum as shownin Figure 4-3. This is motivated

by a hope, that the new population will be better than the old one. Solutions which are

selected to form new solutions (offsprings) are selected according to their fitness - the

more suitable they are the more chances they have to reproduce. This is repeated until

some condition (for example number of populations or improvement of the best

solution) is satisfied.
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Figure 4-3 : Minimisation of a cost function. Successful operations of a GA with a population
of 12 candidate solutions clustering around the global minimum after a numberofiterations or
generations[94]

The basic outline of this algorithm can be described as below [99]:

Step 0 [Start] Generate random population of n chromosomes(suitable

solutions for the problem)

Step | [Fitness] Evaluate the fitness F(x) of each chromosome x in the

population

Step 2 [New population] Create a new population by repeating following steps

until the new population is complete

A. [Selection] Select two parent chromosomes from a population according

to their fitness (the better fitness, the bigger chanceto be selected)

B. [Crossover] With a crossover probability cross over the parents to form a

new offspring (children). If no crossover was performed, offspring is an

exact copy of parents.

C. [Mutation] With a mutation probability mutate new offspring at each

locus(position in chromosome).

D. [Accepting] Place new offspring in a new population

Step 3 [Replace] Use new generated population for a further run of algorithm

Step 4 [Test] If the end condition is satisfied, stop, and return the best solution

in current population

Step 5 [Loop] Goto step |
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GAsare relatively new optimisation techniques and so far they have been shownto

be particularly useful in solving timetabling and scheduling problems [101], engineering

problems and global optimisation problems. They are also used in the fields of computer

science andartificial intelligence where their ability to solve complicated optimisation

problems together with the mystique surrounding them have contributed to make them

very popular. However one must be careful not to make exaggerated claims concerning

GAs as there appears to be no formal evidence of consistently superior performance

relative to other stochastic algorithms. As disadvantage, the use of a population versus a

single solution affects the range of practical problems that can be considered. For

example, a GA is not generally suited to working with real-time physical experiments.

GAsusually require more function evaluations than the other two techniquesto reach the

samecost function values, i.e. convergence may be slow. In some cases, GAs may have

a tendency to converge towards local optima or even arbitrary points rather than the

global optimum of the problem. Thelikelihood of this occurring depends on the shape of

the fitness landscape and this problem maybe alleviated by using a different fitness

function, increasing the rate of mutation, or by using selection techniques that maintain a

diverse population of solutions.

4.2.3 Triangle optimisation on static data

The next step is to test the optimisation algorithms onstatic artificial data that

resemble a triangular distribution using the multi-objective cost function shown in

equation 4-1. All three techniques obtain their starting triangle vertex values by

identifying the centre coordinates of three regions of high point density after using a k-

meansclustering algorithm [102]. Howeverit can happen that three distinct regions of

high point density are not available due to high levels of noise or the fact that the object

of interest has not yet entered the field of view of a camera monitoring a room with two

main background colours. To get round this, permutations of the maximum and

minimum valuesofthe data plots are used to obtain candidatestarting triangles, and then

a choice is made depending on whichtriangle is enclosing the highest numberof points

as shown in flowchart in Figure 4-4. Although all the optimisation techniques should in

theory be able to find a triangle to wrap closely around the data points given enough
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function evaluations, this informedinitialisation help a lot in accelerating the search.

After the starting points are obtained, the triangle optimisation procedure can then be

started. Howeverbefore going on to discuss the results of the optimisation techniques,it

is worth noting that the cost function itself, i.e. f(%)= Area(%)+w-[H-W - Points(x)],

hasto tested first to see if it is a well defined function for this problem situation.

f(%) contains two main calculations that have to be implemented. These are

Area(x) and Points(x) respectively, i.e. how to find area of a triangle and howto find

the numberofpoints that are enclosed by triangle. The area of a triangle with vertices

A, B and C can be obtained using vector products given by:

Area = >[AB x AC (4-3)

To find the numberof points that are enclosed inside a triangle, two main methods

are possible. The first one makes use of the inherent property that a point inside a

triangle will divide the triangle into three smaller triangles and that the sum of the areas

of these three triangles will be equalto the area of the main triangle as shown in Figure

4-5. The second method involves using the delaunay and tsearch functions available in

MATLAB.Given set of data points, the Delaunay triangulation is a set of lines or

edges connecting each point to its natural neighbours satisfying an ‘empty circle’

property, i.e. for each edge a circle containing the edge's endpoints can be found butnot

containing any other points [103]. The MATLAB implementation of Delaunay is based

on the QuickHull(qhull) technique of doing shapes with convex shapes [104]. The

QuickHull algorithm computes the convex hull of a set of points in two or more

dimensions, where a convex hull of a set of points is the smallest convex set that

includes the points. Both techniques are implemented in MATLABandit is found that

the second one involving the use of the delaunay function (i.e. qhull method) performs a

lot better in terms of time spent in calculating the numberofpoints inside a triangle. This

methodis hence chosenasthe preferred technique.
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Figure 4-4 : Flowchart to find the starting vertices ofthe triangle to be used in the optimisation
procedure.
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Figure 4-5 : Determining whethera pointlies inside a triangle or not by using the sum ofthe
areas of the sub-triangles obtained.

The process of evaluating if the objective function is properly defined can then

carried out. This is done by applying the stochastic search optimisation technique on the

objective function with synthetic data generated for this purpose. The synthetic data

consisted of a certain number of points with 2-D coordinate values ranging between 0

and 1 andthe points were distributed around three imaginary cornersofan idealtriangle.

The results are shown in Figure 4-6 and Figure 4-7. One can see how the optimiseris

tryingto fit a triangle around as manydatapoints as possible after each iteration process

while at the same time decreasing the error in the distance from the ideal vertices that

will enclose all the data points with a minimum area. The objective function value also

follows a decreasing trend and henceits validity is confirmed.

With the objective function’s validity established, the three optimisation techniques

mentioned in the previous section are then evaluated. A small experiment is devised in

which each techniqueis given a set of data points that roughly formsa triangular shape

when plotted on 2-D space and then each technique’s performance is evaluated after

running the experiment 100 times. A weight w of small magnitude 0.001 and a

maximum numberofiterations (generations for the GA) of 20 are used forall the three

techniques used to minimise the cost functionf(x).
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Figure 4-6 : Triangle obtained (dotted-line sides) at each step of the stochastic optimisation
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Figure 4-7 : (a) The error in the distance from the ideal vertices’ position and (b) Cost function
values as the stochastic search optimisation process evolves.
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The stochastic optimiser is implemented using the algorithm described in section

4.2.2.1 with an explanatory flowchart shown in Figure 4-8 while the deterministic and

GA optimisers are available directly from the MATLAB Optimisation Toolbox as

Jminsearch and ga functions respectively. Thefminsearch function can be usedas in the

following syntax: [vertices, fval] = fminsearch(@CostFunction, vertices,

options) ; This particular commandstarts at the point vertices and attemptsto find a

local minimum of the function described in costFunction. It minimises the cost

function with the optimisation options such as the termination tolerances on the function

value and the numberofiterations allowed specified. The final output consists of the

optimised value of the vertices and the cost function. Repeating the Nelder-Mead

optimisation procedure on the same data points would result in the samefinal triangle

because of its deterministic nature and so to test for the stability of this particular

method, a random numberis addedto the starting vertices for each run. Concerning the

genetic algorithm implementation, the ga function can be executed from the MATLAB

command line as with the following syntax: [vertices fval] = ga(@fitnessfun,

nvars, options); Where nvars is the numberof independentvariables for the fitness

function (here 6 values for the x and y coordinate values of each vertex) and options

contains certain settings such as population size, crossover fraction, migration direction

and tolerance values. An initial population of 30 vector values close to the starting

vertices is used as initial candidate solutions for the GA implementation. The

implementation for these three methodsis available in appendix A1.

The results for both a random run and the average of multiple runs are shown in

Figure 4-9. It can be observed that all the techniques on average decrease the value of

the objective function in a smooth way as the numberofiterations increase. The random

optimiser converge less quickly than the other two, while between the random optimiser

and the deterministic method, the latter is found to give smaller objective function

values. On the other hand, the Genetic Algorithm gives the best fitness function values

and mostpoints inside triangle. It has to be pointed out that each algorithm performs a

different number of function evaluations for each iteration and hence the amount of

computation involvedat each iteration cannot be directly compared.
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Figure 4-8 : Flowchart showing howthe stochastic optimiser was implemented.
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These tests also demonstrate the usefulness of the user-defined weight w balancing

the two objectives which are of different scales and units. In Figure 4-9 (c) and (e), it can

be seen how a smallertriangle (e) can contain morepoints than in one with a larger area

shownin (c). In this way, one can suggest that the idea of finding the smallest triangle

that optimally contained most of the data points by wrapping around them has been

achieved.

While these methods worked fine on this static test data, one has to take into

consideration that the application this optimisation is targeted at is one with a dynamic

environment where the colour balance is constantly changing. This is a time-varying

problem and hence a dynamic programming approach to optimisation can be more

suitable to satisfy these conditions. Dynamic programming is an algorithmic technique

that computes solutions by solving simpler overlapping sub-problems and it is was

developed by the mathematician Richard Bellman who described the way of solving

problems wherebest decisions have to be found one after another [105]. In the forty-odd

years since this development, the number of uses and applications of dynamic

programminghas increased enormously.For this current case, since the optimisation has

to be done on each frame with the latter changing ten times every second (10 fps), the

optimised vertices of one frame can also be used as a priori information for the next

frame to be optimised. Section 4.2.4 gives more information aboutthe choiceofthe ideal

optimiser to deal with the dynamic situation. As a word of caution to avoid any

confusion, the word ‘programming’ in ‘dynamic programming’ has no particular

connection to computer programming at all, and instead comes from the term

‘mathematical programming’, a synonym of optimisation.
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Figure 4-9: (a) and (b) Random Search, (c) and (d) Nelder — Mead, (e) and (f) Genetic
algorithm. Evaluating different optimisation techniques
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4.2.4 Triangle optimisation and un-mixing on synthetic dynamic data

This section begins with the explanation of how the optimisation process is further

modified to adapt to the quickly changing colour balances that occur in dynamic

environments. It then describes and discusses the results of the various experiments that

are performed. A model of an image sequence that contains a moving object similar to

whatwill be obtained from of a low resolution camera is implemented. A high resolution

image matrix is first created and the high resolution image sequence is then down

sampledsothat the size of the object ranges from a few pixels to less than a pixelin size

in the down-sampled low resolution synthetic image (Figure 4-10). Typical values for

the example of the model used are 500x500 pixel size high resolution image

background andan objectof circular or square shape of size of around 20x20 pixels in

the beginning. These values are chosen assuming that the field of view of the sensor

camera is 5mx5m, and that a human head with diameter of 20 cm being tracked. The

down-sampling factor is initially of order 25 whichresults in a series of low resolution

frame images of size 20x20, and the moving object being less than 1 pixel ofsize. A

constant random image noise overall the pixels, typical of electronic noise, is also added

to make the simulated imagery as close as possible to reality. The background images

are also changed during the experiment to evaluate how background colours affect the

detection of the small target. The object size and the down-sampling factor are varied,

and different object speeds are also tried to see how the detection and tracking process

respondat different rates of displacement.

  

    
  

 

Figure 4-10: Highresolution artificial imagery with noise being down-sampled.
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To be able to use the un-mixing technique, the triangle optimisation procedure

describedin the previous section has to be evaluated on a sequence of framesrather than

single images. To carry out this evaluation, a moving coloured object on a background

with two major coloursis first generated together with some image noise for total of

250 framesat a rate of 10 frames per second. The changing data point distribution thus

obtained is then subject to the three optimisation techniques on each frame. It is found

that the Nelder-Mead (NM)approachfails when the starting points are not close to being

ideal values, i.e. starting coordinates not lying near the extremities of the point

distribution. In a sequence of frames where the data point distribution is constantly

changing resulting in the starting points being rarely ideal, this method cannot perform

well as a result. To be able to use the Nelder-Mead method in a dynamic environment,

the starting vertices will have to be calculated for each frame and the optimiser working

on each frame separately. This approach will however defeat the purpose of dynamic

programming. The random search optimiser provides a way of obtaining a triangle

wrapped around changing data points with a low computational complexity butthis

methodoften fails when the data changes very rapidly and henceresult in the vertices of

the triangle being far from the actual ‘corners’ of the data points. The GA is more robust

and its robustness is further improved when a few modifications are made to the

optimiser to better deal with the changes that occur between frames. As with thestatic

GAoptimisation, an initial population of candidate solutions is fed to the optimiser at the

first frame but the difference this time being that the best scores obtained at each GA

optimisation step are fed back into the optimiser for the next frame to achieve a better

frame to frame propagation as part of the modifications as depicted in flowchart of

Figure 4-11. The population size of 20 chosen here is completely a random choice and

one can increase or decrease that size at the expense or gain in timing efficiency. A

reasonable amount wasfoundto be any value between 20 and 40. Too small a value will

not allow the frame to frame propagation processto actually make its presence felt while

too large a value will cause the optimisation to last longer than the time taken for a frame

to change and hence of no use when it comesto using the population values of a current

frame for the next frame.
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Figure 4-11 : Adapting the GA optimiser for dynamic programming. Population information
from a frameis fed back into optimisation step of next frame.

The effects of the population feedback to the following frame can be better

appreciated in Figure 4-12 where the scores of the GA can be seen decreasing in almost a

saw-tooth way in between the frames while at the same time the values of the objective

function follow a decreasing trend. Both the dynamic andstatic optimisation occurring
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in this process can be clearly observed in this way. Sometimesa sharp increase in the

objective function’s value (e.g. between the vertical dotted lines in Figure 4-12) can be

observed and this sudden increase usually means that there has been a change in the

actualdistribution of the data points such as whenthere is a new object enteringthefield

of view or whenthere is a changein thelighting. This figure also shows how the GAis

trying to bring downthe cost function value whenevera new frameoccurs.
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Figure 4-12 : Behaviour of Best Score values of the GA. Between the frames denoted by the
crosses, static optimisation is taking place. Dynamic optimisation happens when the general
trend in Best Score values is a decreasing one. A sharp increase within the dotted lines indicates
a changein data points and location ofvertices.

While the observations on the behaviour of the optimisers are based on visual

checks, two similar and related experiments are designed to evaluate quantitatively the

optimisers on dynamic data. The first one involves finding the number of objective

function evaluations needed to achieve a desired level of accuracy. Data points are

generated in such a way to simulate the dynamic nature of data points that occur in a real

image sequence. In a real image sequence, the data points obtained from successive

framesare notstatic even if there are no big changes inlighting or there is no new object

entering and leaving the scene. This is due mainly to noise present in the sensor. To
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simulate this behaviour, data points that lie in a general triangular shape are first

generated. These points are created byfilling an ideal triangle with 500 points. This ideal

triangle is represented by the vector ¥ which contains the vertices. A random

perturbation of magnitude ¢ is then addedto the starting vertices to give a new set of

vertices x,,,, and a new data pointdistribution p. € is a uniformly distributed random

number between —o and +o, with o =0.1 initially. Different small random values

are then addedto each data point of p and this addition is repeated on ten copiesofp to

give p,, where j=1,2,...,10. Each data point distribution in p; 1s then ‘displayed’

successively during one second. This has the effect of simulating a data point

distribution coming from an image sequence with a frame rate of 10 fps. At the end of

this process, the value of o is increased to 0.2 and the whole process repeated again for

o =0.1,0.2,0.3,0.4. This can be summarised by the equations 4-4 and 4-5,

Xney =HX+E (4-4)

P; =p+é, for j=1,2,...,10. (4-5)

where € is a uniformly distributed random number between —o and +o for

o =0.1,0.2,0.3,0.4 and &, is a uniformly distributed random number between —0.1

and +0.1.

For each set of vertices x,,, the three optimisers (GA, Random and Nelder-Mead)new ?

are used to obtain the best possible fit triangle with all of them using the same number

(50) of cost function evaluations. The optimisers are only given starting vertices at the

beginning of the simulation. The experiment is repeated 25 times and the average rms

errors of the triangles' vertices from the knownideal vertices are calculated. The results

are shownin Figure 4-13. All three optimisers give almost the same error values at low

perturbation values with all the error values increasing in different proportions as the

perturbation is increased. However the rate of increase for the GA is smaller than the

other two. The difference in average error of the GA from the other two is also more

considerable when the perturbation factor is at its highest value. Hence, given the same

number of maximum allowed function evaluations, it is experimentally shown that the

GAachieves muchbetter error rates with increasing noise level.
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Figure 4-13 : Behaviour of the rmserror oftriangle vertices from ideal vertices for the three

chosen optimisation techniquesas the perturbation in the data pointsis increased.

The second experimentthat is carried out has as intention to evaluate how fast an

optimiser can react to a change in data point distribution before it reaches a certain

predefined accuracy. This experimentis similar to the previous one apart from the fact

that each optimiser is allowed any number of function evaluations until it reaches a

certain low value of the cost function (0.5) and the time needed to reach that value is

recorded. The experiment is run on an Intel Core2 Duo 2.13 GHz processor andit is

repeated 25 times. The results obtained are shownin Figure 4-14. It can be seen that the

random optimiser takes the longest time in almost all cases while the Nelder-Mead (NM)

approach performsbest at low values of o but its ability to react to changes decreases

whenthe starting points are not close to being ideal. It is also observed that at higher

perturbation values, both the Random and the NM optimisers take more than 0.1 sec to

achieve the set accuracy value, i.e. more than the amount of time that the frame is

available in a 10 fps image sequence. This second experiment showshow the GAis able

to obtain lowercost function values faster than the others especially when the data points

change quickly. Although NM achievessimilar or even better results than the GA at low

perturbation, it is expected that the higher perturbation factors (noise levels) are closer to

real-world imagery and hencethis technique is dropped as a possible optimiser choice.
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Figure 4-14 : Bar chart showing the time required to reach a predefined cost function value as

perturbation is increased.

One could argue that the random optimiser is similar to NM for high perturbation

values but it is not discarded yet as it is a method that is easily implemented and can

offer a quick and computationally cheap alternative to the optimisers when data points

are not too noisy. With the Nelder-Mead optimiser out of the running, the other two

methodsare then subjected to other tests in dynamic scenes to see how they performed.

These tests all involve finding the ‘centre of mass’ of an object, obtained from

weightings determined from spectral un-mixing as explained in section 3.5 (see Figure

3-19), and changing other parameters such as object size and image noise for eachtest.

Figure 4-15 shows the average error when using the GA and Random optimisers in the

un-mixing process as the diameter of object is increased for several paths. It can be

observed that the position error generally decreases with the increasing size of the

object. This is what one would expect as the number of data-points representing the

object in the un-mixing triangle increases with increasing object size. The high position

error value when the object is just one pixel wide showsthat one data-pointis not always

enough to obtain a proper simplex for the un-mixing process. As the objects get bigger,

the position errors tend to settle to a value of slightly less than a pixel, which is an

accurate position estimate.
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Figure 4-15 : Error in finding the centre of object as the size of object increases.

Another experiment is to find how the optimisers would react when subjected to

noisy images. Images obtained from low resolution sensors usually contain electronic

noise and a random image noise is a good way to model this type of noise. A slight

improvementthat can be brought to the modelin the future is to add noise that increases

with the signal level, resulting in the bright areas being noisier than the dark ones. This

type of noise is common in CCD cameras whereby noise is a Poisson process and

increases as VN , N being the number of detected photoelectrons on the CCD. For the

purpose of this experiment, the variance of the random noise is increased to see how the

optimisers deal with the constantly changing data distribution with increased number of

outliers present. The results on several paths taken by an object moving in noisy

environment are shown in Figure 4-16. The GA optimiser’s error increases with

increasing noisebutit still managed to keep theposition error to less than one pixel. The

random optimiser on the other hand follows a quite unusual trend with a sharp increase

in error at first followed by a decrease and then eventually increasing again. It was

difficult to understand the reason behind this but after careful analysis it was deduced

that the initial high peak (at noise variance = 1) is perfectly correct. The random
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optimiser finds it difficult to adapt to the noisy data around the three main regions of

high data point concentrations. Howeverasthe noiseincreases, the data distribution tend

to fill the gaps between the three regionsof high concentrations andthe optimiser is able

to use these points to maintain a steady triangular wrap around the distribution. As the

noise increases to higher variances, the position errors start to increase for both

optimisers, which is a perfectly understandable situation, and one can predict even

highererrorsif the noise is increased further.
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Figure 4-16 : Error in finding the centre of an object as image noise increases

Although both the Random and the GA optimisers are performing well, the random

optimiser has the disadvantage of not being able to adapt well to quickly changing point

distributions or rapid changes in pixel intensity. The values of the weighting w and the

bias term b, (see Figure 4-8) are also seen to play a bigger role in the random optimiser

than the GA when faced with highly noisy data containing many outliers. Having to

adapt and fine tune the random optimiser for each type of noisy video input meansthatit

cannot perform in a generic way on any data and henceits use is compromised. The GA

method is more stable to increasingly noisy images and is thus chosen to be the

optimiser in the un-mixing process for real videos in dynamic environments. With the

position of the centre of object estimated in this way, a Kalmanfilter can then be used to

generate a continuous track for the object as will be shown in Chapter 5.
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4.3 Sub-pixel sized object detection

The un-mixing method used to detect small objects of a few pixels wide cannot

be applied to objects that are smaller than a pixel. This is shown in Figure 4-15 where

the position error is high for one-pixel sized objects. As one ofthe aimsofthis projectis

to develop a suite of detection methods to measure small objects whose sizes range from

a few pixels wide down to minuscule objects that are even less than a pixel, another

method had to be devised to cover detection of the sub-pixel sized objects. There are

several ways to track sub-pixel sized objects. In biomedical microscopy, it is very

common to track the motion of very small particles using algorithms such as cross-

correlation, centroid, and direct Gaussian fit [56]. In correlation-based processing of

velocimetry data, the Gaussian character of the spots gives rise to a Gaussian correlation

profile that is used to determine sub-pixel displacement [107]. In this project, the

modulation of intensity at pixel boundaries is used as a way to detect and measure

motion for sub-pixel sized objects. An object of size smaller than a pixel modulates the

intensity profile of a pixel in a certain way whenit passes throughtheparticular pixel.

These changes in intensity can be a valuable source of information to enable the

detection of sub-pixel displacement, and hence motion. As shown in Figure 4-17, even

when the square translates less than a pixel, its motion modulates pixel intensities.
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Figure 4-17: Sub-pixel displacement. Even when square object translates by less than a full

pixel, there is a changein intensity level ofthe pixels it is entering and leaving
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By using the time derivatives of the intensity at each pixel, and the spatial

derivatives of intensity obtained by comparing theintensity of neighbouring pixels, the

displacement and evenvelocity can be estimated as is explained next. Figure 4-18 shows

an example of what one would expectto see in the intensity distribution of a pixel if a

square object of less than one pixel in size passes through it. Assuming the object is

movingat constant velocity and the size one pixel represents in real world is known, the

speed of the object and even its size can be estimated. Time ft; is the time taken for the

leading edge of an object to cover a distance X,ix equal to the size of the pixel and tf, is

the transit time across the boundaryofa pixel. The speed V,»; of the object is obtained by

dividing the distance X, by t; while the transit time ft, information is used in

determining the object size X,,; as explained in equations 4-6 and 4-7 below [9].

X ix

V4, =—— (4-6)obj t

3

t
Xoj =2XX pix (4-7)

t,

It has to be noted that the graph in Figure 4-18 shows the absolute value of the

change in intensity values and not how the values of intensity themselves change,i.e.

even if a red moving object is less intense than a predominantly red background, the

change will always be a positive change of the similar shape as below. The only

assumption that is madeis that the object is not starting from a background of exactly

equal colour values.
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Figure 4-18: Modelfor finding speed of motion andsize of object [9]

With this model in mind an experimentis devised to see howthe intensity at a pixel

behavesas objects of different sub-pixel sizes passes through it. A simulation of a square

object moving horizontally on a black backgroundis created and the intensity change at

one particular pixel is analysed as the object goes through it. The size of the square is

changedat each run andit ranges from 0.2 pixel to 1 pixel in length. The pixelintensity

change is shownin Figure 4-19. The implementation codeis available in Appendix A2.
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Figure 4-19: Intensity changein a pixel as a square objectof increasing sub-pixel sizes goes
through it.

The behaviour of the pixel intensity as a sub-pixel sized object goes throughit is

found to be similar to the model explained in Figure 4-18 and it can hence be deduced

that it is also be possible to estimate the speed andsize of the object using equations 4-6

and 4-7 respectively. The next stage of the experiment is to devise a way of detecting

automatically when the edge of an object enters and leaves a pixel for all the pixels

present in a particular image frameto be able to determine the object’s position. While

Figure 4-18 and Figure 4-19 show ideal models of intensity change ata pixel, in reallife

the intensity profile is more likely to be corrupted with sensor noise and other

imperfections such as changein lighting. In the noisyartificial imagery that is generated

according to the method described in section 4.2.4 containing a moving sub-pixel sized

object, a random row and column ofpixels give profiles in the Normalised Red channel

like those in Figure 4-20. One ofthe tasks hereis to filter the intensity values to obtain

the ‘zero-crossings’ as these points give information about when the leading edge and

trailing edge of an object enters and leavesa pixelrespectively.
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Figure 4-20 : Intensity change in a random row and column ofpixels.

Filtering can be achieved by:

1) Finding the average and varianceofthe first five values.

2) Subtracting the average from the next values to removethe constant offset.

3) Using the varianceto set a threshold value to detect the zero-crossings.

In somecases such as in Figure 4-20(b) where the object of interest starts its motion

at the pixel being investigated, the average and standard deviation obtained forthe initial

five frames are not useful in removing the constant offset. To get round this problem,

one can use the fact that the variance or standard deviation is very large whenever the

intensity values are showing characteristics that they are peaking or have just had their

peak value. If the standard deviation is too high, the average and standard deviation of

the next five frames is then calculated and so forth until the standard deviation get to a

small value. The filtering algorithm is explained in the flowchart Figure 4-21 and

implementation code with offline processing of a dataset can be found in the appended

CD.
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Figure 4-21 : Flowchart forfiltering algorithm

An example result is shown in

Figure 4-22 and Figure 4-23. Figure 4-23 is an example of when the average and

standard deviation obtained for the initial five frames are not useful in removing the

constant offset in the intensity distribution.
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Figure 4-22 : (a) showsthe intensity values for a particular pixel of an image as timepasses(b)
showsthefiltered values with indications when the object is entering and leavingthe pixel.

Anotherrelated use ofthese intensity profiles is shown in Figure 4-24.In this figure,

an object is moving vertically down on an image plane. The objectis entering pixel 4 at

frame n+1 and entering pixel 5 at frame n+7. The highlighted frames show the time

taken ¢, for the leading edge of the object to travel across a pixel, and hence the speed of

the object can also be estimated from this technique if the distance that this pixel

represents in the real world is known. With the location of the sub-pixel sized objects

obtained in this way, the nextstep is then to use predictivefilters to track the leading and

trailing edges of the object and hence generate a continuoustrack for the object.
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Figure 4-24 : Time taken for one edgeof object to cross pixel
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4.4 Human skin detection

As the objects to be monitored are likely to be human beings, a componentthat is

present in every human beingis tested to become an invariant in the detection process.

This component is the human skin,particularly its chromatic properties. It is claimed

that under certain light conditions and depending on the colour spaces used, skin

chrominancevarieslittle between different skin types [111]. This invariance of the skin

chrominance can beideal to assist in the detection of people. In particular, faces and

handstend to remain uncovered in mostsituations and are therefore good candidates for

monitoring human activity. Skin detection already plays an important role in a wide

range of image processing applications ranging from face detection, face tracking,

gesture analysis, and content-based image retrieval systems. Skin detection

methodologies based on the chromaticity information of the skin as a cue is gaining even

more attention as it provides computationally effective yet, robust information against

rotations, scaling and partial occlusions [108]. Skin detection using colour information

can however be a challenging task as the skin appearance in images is affected by

various factors suchas:

° Illumination: A change in the light source distribution and in the illumination

level (indoor, outdoor, highlights, shadows, non-white lights) produces a change in

the colour of the skin in the image (colour constancy problem). The illumination

variation is the most important problem amongcurrent skin detection systems that

seriously degrades the performance.

* Camera characteristics: Even under the same illumination, the skin-colour

distribution for the same person differs from one camera to another depending on

the camera sensor characteristics. The colour reproduced by a CCD camera is

dependent on the spectral reflectance, the prevailing illumination conditions and

the camerasensorsensitivities.

¢ Ethnicity: Skin colour also varies from person to person belonging to different

ethnic groups.

* Other factors: Different factors such as subject appearances (makeup, hairstyle

and glasses), background, shadowsand motion also influence skin appearance.
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Manyof the problems encountered in the visible spectrum can be overcome by

using non-visual spectrum such as infrared (IR) and spectral imaging as skin colour

properties tend to be more robust in these domains [109]. However, it is an expensive

process and its use is limited to specific application areas such as biomedical

applications. Numerous techniques are available in literature for skin detection using

colourin the visible spectrum.In this section of the thesis, a brief review of the various

skin modelling and classification strategies based on colour information in the visual

spectrum is presented. The review is divided into two main categories. Firstly, the

various colour spaces used for skin modelling and detection are evaluated together with

an explanation of the different skin modelling and classification approaches. The

primary steps for skin detection are (1) to represent the image pixels in a suitable colour

space, (2) to model the skin and non-skin pixels using a suitable distribution and (3) to

classify the modelled distributions. Secondly, a few approaches that use skin-colour

constancy and dynamicadaptation techniques to improvethe skin detection performance

in dynamically changing illumination and environmental conditions are introduced. The

section is concluded by evaluating imagesof low resolution containing skin samples and

testing the suitability of the colour spaces for the un-mixing procedure.

4.4.1 Skin modelling and characterisation

The main problem in using skin tones in image processing is in separating (or

segmenting) the skin regions from the other background regions automatically and

reliably. Human observers havelittle difficulty in segmenting an image into regions

defined by colour. Automatic segmentation proves to be somewhat more difficult. The

perception of colour by humansis a psychological experience as muchasit is a physical

phenomenon and hence makes the segmentation of a video image into skin-coloured

regions and background more complex than straightforward matching of wavelengths.

While the skin colour of a single subject may appear to an observer as being very

consistent across an image, there is likely to be wide variation in the wavelengths

representing the colour. To deal with this variation, a human skin colour model has to be

derived to decide whethera pixel contains skin or not based on a decision rule.
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From classification point of view, this process can be viewed as a two-class

problem: skin-pixel vs. non-skin pixel classification [108]. Several techniques on skin-

colour model classification, ranging from simple look-up table approaches to complex

pattern recognition approacheshave been published [110].

In this thesis, a pixel-based skin detection method,i.e. one that classifies each pixel

as skin or non-skin individually independently from its neighbours as opposedto region-

based methods,is used to achieve this skin modelling task. The procedure executed is as

follows. Firstly, a large database of photos containing human beings from a wide

spectrum of ethnic origins is collected. Care is taken to collect photos which are taken

under different lighting conditions and which contain various parts of the human body

skin, such as face and arms as shownin Figure 4-25.

 

Figure 4-25 : Sample of photos containing skin of human beings from variousethnic origins
and taken underdifferent lighting conditions.

Secondly, a tedious process of cropping and selecting only the sections of the

images containing humanskinis initiated. All the skin colour samples are then stored in

database Skin_only for further processing.

 

Figure 4-26 : Cropping images to obtain only skin-containing images.
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Thirdly, for each image J contained in the database Skin_only, every pixel’s p;

chrominance value is plotted on a 2-D graph with axes dependent on the colour spaces

being used as shown in Figure 4-27. This technique is similar to the histogram based

approach used bySorianoet al. in their attempt to find a skin locus to characterise skin

appearance [111]. The colour space (usually, the chrominance plane only) is first

quantised into a number of bins, each corresponding to a particular range of colour

componentvalue pairs (in 2D case) or triads (in 3D case). These bins, forming a 2D or

3D histogram,are referred to as the ‘lookup table’ (LUT). Each bin stores the numberof

timesthis particular colour occursin the training skin images. Thefinal step that remains

is to convolve the distribution with a Gaussian to obtain a cloud of points for the skin

chrominance model.
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Figure 4-27 : Collecting skin chromaticity values for each pixel present in the image sample
containing skin only for a hypothetical colour space

The colour spaces that are used in the experiment to test for consistency in skin

colour chrominance are (i) Normalised RGB (NRGB), (ii) HSV, (iii) L*a*b* and (iv)

YCbCr. For the NRGB colour space, only two of the three normalised variables are

needed to specify any colour within the range allowed by the primaries as previously

explained in section 3.3.1. Only normalised red and normalised green channels are used

in this experiment and the results obtained has values that tended to agree with Wang

and Yuan [112]. Given an imageofsize x by y, the following colour ranges can be used

to represent skin chromaticity:

ey © 0.35, 0.47] and NGreen;,,,. € (0.28, 0.40]
(4-8)

1 if NRed

&” "|Q otherwise
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As for the Hue-Saturation-Value (HSV) colour space, the representation that most

closely resembles the way humanbeings perceive colours, Sobottka and Pitas derived

hue and saturation ranges of 0° to 50° and 0.23 to 0.68 respectively to characterise skin

colour [113]. These values are found to agree with the values obtained in the current

experiment. However one more condition is added. This new condition is that pixels

with Value < 0.1 are discarded because underthis threshold the information contained in

the Hueis not stable [114]. Given an image of size x by y, the following equation can

then be used to filter out the skin:

(4-9)(x,y)

“ , if Hy,,) €[0°,50°]and S;,,) € [0.23, 0.68] and Vi,,) > 0.1
0 otherwise

For the CIE L*a*b* space, the ab chrominance values are used to construct the

model. The luminance component L* of the colour representation cannot be a reliable

measure for detecting facial regions as the reflected light intensity tends to vary

considerably across a human face. The skin samples were found to lie within the ranges

of —5 to 35 for a* and —7 to 40 for b*. These values are not exactly similar (-10 to 40

for a* and —10 to 60 for b*) to those published in literature by Cai and Goshaby [115].

Howeverone has to be aware that the technique employed by Cai is different from the

one presented here. Rather than just classifying pixels to skin and non-skin regions, Cai

assigns a weight to each pixel, showing the likelihood of the pixel belonging to the skin.

The weights are obtained from a chroma chart that is prepared through a training

process. For the sake of continuity with the other colour spaces, it is decided to use the

results obtained in this project’s experimentin the skin filter equation below where O is

the output image:

(4-10)
L if a%;,,)€[-5, 35] and b*,,, € [-7, 40]

©) "10 otherwise

The final colour space to be tested is the YCbCr. This colour space, like the

previous two, allowsfor an effective use of the chrominance information (Cb and Cr) for

modelling humanskin.It is also very convenientin the sensethat this formatis typically
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used in video coding, and therefore the use of the same, instead of another, format for

segmentation can avoid extra computation required in conversion as proposed by Chai

and Ngan [116]. The following ranges are found to be the most appropriate to represent

skin colours:

Ou.) ~
QO otherwise

{ if Chy,,) € (77, 127] and Cr,,,) € [133, 173]
(4-11)

The distributions obtained from Figure 4-26’s cropped image of a hand is shown

belowforall the evaluated colour spaces.
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The ranges of values obtained for the various colour spaces are then tested on random

high resolution images containing human skin. An example is shownin Figure 4-29.
 

 

(a) - nRGB (b) - HSV

(c) - Original Image

   (d) - L*a*b* (e) - ¥CbCr
 

Figure 4-29 : Skin filter using all the four spaces separately applied to an image.

It can be seen that each colour space has its share of false positives and negatives

depending on the image being used. Thefiltering process also does not perform well

when the input images have ‘bright spots’ on the subject’s face due to reflection of

intense lighting or dark shadowson the face as a result of the use of strong directional

lighting that has partially blackened the facial region. Even under the same lighting

conditions, background colours and shadowscanalso influence skin-colour appearance.
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Furthermore, if a person moves, the apparent skin colours change as the person’s

position relative to the camera or light change. The human visual system can

dynamically adaptto the varying lighting conditions and can approximately preserve the

actual colour of the object. However, image capturing devices with limited signal

processingare not capable of adapting to the rapidly varying illuminations across scenes.

Andfinally, it is observed that very dark andlight skins are not detected properly.

4.5 Choice of a colour space for the un-mixing procedure involving
low resolution images

While all these techniques mentioned can help in further enhancing the skin

detection process, one has to realise that their main targets are human faces in high

resolution images. In this thesis, the images involved are of low spatial resolution with

only parts of the human skin visible depending on the camera orientation and the

clothing worn by the people being monitored. A second very important requirementto

keep in mindis that the colour space to be chosen has to be compatible with the un-

mixing procedure described in section 3.5. Figure 4-30 showsthe distributions that are

obtained for each colour space when a low resolution image containing three main

colours was analysed. NRGB, CIE L*a*b* and YCbCrrepresented colour values in a

Euclidean way and hence very appropriate for spectral un-mixing. The HSV colour

space hasa circular representation of colour and henceit is not suitable for the simplex

wrapping process and the accompanying linear mixing model (LMM). Thepolarplot of

Hue v/s Saturation in Figure 4-30(b) will make it very difficult to apply the linear un-

mixing modeldirectly to the data andas a result it is decided to discard this colour space

from further use. However, one must be aware of the powerful characteristics of the

HSV space such as its invariability to changing light conditions and hence a single

channel, e.g. Hue only, could be usedin a detection process involving colour cuesonly.

Asfor the three colour spaces which display un-mixing friendly properties, none of them

is an untouchable candidate. It is decided to use the Normalised RGBin this thesis

during the experiments on thereal videos (shown in Chapter 5) becausethis colour space

is almost readily available from the recording camera. Howeverthe other two colour

spaces can also be used.
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Figure 4-30 : Data points distribution for a low resolution image containing three main
colours shown for each colour space
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4.6 Summary

This chapter consists of a systematic consideration of the techniques to detect very

small objects that are used in this thesis. When objects are a few pixels wide, they can be

detected by using the Linear Mixing Model and the accompanying un-mixingprocess.

This model, which assumesthat eachpixel in a given image contains a proportion of one

or more definite colours (or spectra), can be used to decompose each mixed pixel into a

linear combination of the individual colours. Once a pixel is decomposed, depending on

its location in the un-mixing triangle of an image data values, it can be assigned to a

particular object’s colour by using a weighting function to connect the pixels that contain

proportions of that object. The un-mixing triangle is obtained by using an optimisation

function based on the vertices to enclose the data points as tightly as possible. A multi-

objective function is derived to achieve this. This multi-objective function uses a

weighted sum approachto balance the two objectives present. The values for the weight

used during thetests are in the magnitude region of 0.001 to 0.01 but this range cannot

be pre-determined unfortunately. It depends on the noise present in the data as outliers

need to be taken into consideration. Although this is a disadvantage and other more

complicated techniques exist to solve with multi-objective functions in a more generic

way, it is not considered to be a major setback as it is found that the weighting value

used do not have to be changed so frequently. The weighting value needsto be specified

at the beginning of a video sequence depending on the quality of the image available but

then it can beleft to stay constantas the triangle optimisation process occurs and hence

no extra computation is required. The genetic algorithm (GA) optimisation techniqueis

chosen as the optimiser to be used for real video sequences because of its robustness to

quickly changing and/or noisy data points. Two other detection techniques are also

described. The first one is used to detect objects that are less than a pixelin size andit

uses information about pixel intensity profiles to achieve this. The second oneis a

human skin detector that uses the common characteristics that exist in the skins of

people of different ethnic origins to achieve detection. While these two techniques are

not the main approachesto detection usedin this thesis, they are still considered as they

could enhance the main detection technique which is the un-mixing technique. More

experimental results are given in Chapter5.
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5. Data collection, experiments andresults

5.1 Introduction

This chapter contains all the experiments on real videos that are undertakento test

the various algorithms and ideas proposed in the previous chapters. As mentioned

before, this project is mostlikely to be deployed within a domiciliary care environment.

With this in mind, an experimental scenario is devised to collect information aboutthis

particular type of environment and how human beings behave in them. Privacy is very

important in these types of environments and the uneasiness felt by people being

watched may be reduced by ensuring that the image quality is very poor and by not

allowing the image data to leave the homeatall. For the videotesting part, while figures

are given with detailed captions,it is often difficult to view the results on paper. Video

clips of all the experiments have been stored on the CD available in the appendix for an

easier understanding and evaluation of the results. It has to be noted that the frame rate

in all the low resolution test videosis at a constant value of 10 fps.
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5.2 Data Collection —- Experimental Plan

During the data gathering exercise, a high resolution camera is used to record the

various videos. The video camera recorder used is a Sony Digital Handycam® Model

No. DCR-PC9E and the videos are recorded on high resolution Digital Video (DV)

tapes. Each component of the experimental scenario lasts five minutes. Images taken

from such type of cameras can vary greatly depending on thesettings of the camera such

as exposure, brightness, contrast, auto-zoom etc. All the internal camera image

processing features that exist in the camera are turned off because in practice, none of

these features are available when low resolution sensors are used.

5.2.1 Camera Location

The domestic environment where this project is most likely to be relevant in is

homesfor elderly people. The rooms in these homesare often cluttered with furniture

such as wardrobes, tables and sofas and hencethe position and orientation of the camera

have to be chosen so that there is minimum occlusion of the person(s) being monitored.

Wall-mounted cameras do not satisfy these requirements and a better alternative is to

have a wide-angle, central ceiling mounted camera to track one or more persons in a

certain area (model in Figure 5-1). This ensures that the maximumarea is covered bythe

field of view of the cameraandit also decreases the cameraintrusiveness factorsince the

camera can be hidden behinda glass case or maskedto look like a light source.

 

Figure 5-1: Central ceiling mounted camera view.

One drawback of a centrally mounted ceiling camera is that, apart from the head,

some very important information such as the colour of the clothing worn and some

articulated body movements will not be always visible. Therefore a more appropriate

location is in a corner of the ceiling or just above strategic entry/exit places such as

doorways as shownin Figure 5-2. These places are described as entry zones and are
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regions of high activity [117]. Inactivity zones such as sofas and chairs are called so

because they involve little motion of the person. Typical use of a room involves

entering through entry zones followed by visits to one or more inactivity zones and

finally exiting the room. Using a sensor with a wide field of view enables the whole

floor surface to be within the line of sight of the camera.

 

Wide-angle FOV Sensor

  
Wall

Wall

 

 

 
 Floor

Figure 5-2 : Side view of a sensor arrangementplacedata strategic place in a corner of the
ceiling. Sensor has a wide-angle Field of View (FOV).

5.2.2 Lighting conditions

As explained in former chapters, colour cues in general are to be used to obtain

robust detection and tracking of people. The image sequences recorded within an indoor

environment changes quickly due to both continuous and sudden changes in lighting

conditions, e.g. the diurnal variation of daylight and the switching oflights on andoff. In

order to achieve a certain degree of robustness in the detection process, the intended

chromatic processing experimentation has to be as immuneto light changes aspossible.

This is a general problem in colour vision, called colour constancy. The colour

appearance dependsonthe brightness and the colour temperatureofthe light source. The

dependency on the brightness can be resolved by transforming into different chromatic

colour spaces such as the Hue-Saturation-Intensity (HSV) or Normalised RGB colour
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spaces. The information obtained from the usual three visible band colours (Red, Green

and Blue) generated by a conventional visible band camera can be transformed to these

more stable colour spaces. This transformation allows the detection process to be

adaptive to different lighting conditions, where the RGB colours are likely to change

more that the hue and saturation components of the HSV values for example. However

in this thesis, Normlised RGB colour space only is used in the experimental test cases

for the reasons given in section 4.5.

Different sets of room lighting conditions such as bright daylight, directional

sunlight, cloudy day, electric bulbs lights and tubes emitting white light are recorded.

Colour appearance is often unstable due to changes in both background and foreground

lighting and the effect of sudden lighting condition changes such as flicking on/off the

room lights is also recorded. For example, one test scenario involvesstarting with the

blinds closed and then opening the blinds really fast. This floods the camera with new

light coming from outside. The secondtest is then to quickly drop the blindsso that the

scene grows dark really fast. All the test videos investigating the effect of lighting

conditions are recorded and stored according to Table 5-1 below. These videos

(available on CD in the Appendix) are the high-resolution ones obtained from the

 

 

 

 

 

   

camera.

Lighting Condition Filename

Bright daylight bright.wmv

Cloudy day cloudy.wmv

Directionallight directional.wmv

Electric bulbs bulbs.wmv

Sudden changeoflight sudden_change.wmv

 

Table 5-1 : Changing lighting conditions

5.2.3 People including clothing and motion

An important factor to be considered when dealing with image monitoring systems

depends on whatis being monitored inthe first place, e.g. cars, luggage, people etc. In

this thesis, people are being monitored and hence the different variables that people can

exhibit have to be investigated. The first variable to be investigated is the different paths
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that can be taken by a person within a room. Someofthe tracks that are undertaken are

shownin Figure 5-3 . Most of the collected data consisted of only one person moving

around in the room in different directions and manners. However, a second person is

also added to see how the trackers would react when there are multiple targets. The test

videos are recorded and saved according to Table 5-2.

  

  

   
Figure 5-3 : (a) and (b) show simple paths taken by oneperson,(c) shows zigzag path taken by
one person, and (d) shows twopersons walking in the room

 

 

 

 

 

  

Track Taken Filename

Single person, Straight line oneperson_straightline.wmv

Single person, Going incircle oneperson_circle.wmv

Single person, occlusion oneperson_occlusion.wmv

Multiple persons, separate paths twopersons_separate.wmv

Multiple persons, crossing paths twopersons_cross.wmv  
 

Table 5-2 : Paths taken by one or morepersons.

Another variable investigated is the speed of motion. The detection process of the

monitoring system has to be able to cope with different speeds of motion. An average
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walking speedinside an office environmentis usually within the range 0.5 — 1 metre per

second (m/s), although this depends heavily on factors such as height, weight, and age.

Forthis data gathering exercise, speeds of motionare classified as slow, normal and fast,

where normalis the general walking speedofa fit person in an enclosed space or room.

Files are saved according to Table 5-3.

 

 

 

  

Speed Filename

Slow slow.wmv

Normal normal.wmv

Fast fast.wmv 
 

 

Table 5-3 — Speed of motion

The clothing of people is also another important variable that needs to be

considered. By clothing, it is meant the colour of the clothes used (intensity of colour,

number of colours on a person, dark, bright etc) and the amount of the body skin it

covers. It is expected that the detection system based on the un-mixing procedure will

workbest if the person is wearing clothing with a saturated colour that stands out from

the background. Howevertests have to be madeto ascertain howless colourful clothing

would fare in this context. Files are saved according to Table 5-4.

 

 

 

 

 

 

 

Clothing Filename

Highly saturated pure colour (Red) red_shirt.wmv

Highly saturated pure colour (Green) green_shirt.wmv

Pale colour, different background colour pale_shirt_diff_background.wmv

Pale colour, similar background colour pale_shirt_similar_shirt.wmv

Multi-coloured clothing multi_coloured_shirt.wmv  
 

Table 5-4 - Clothing

5.2.4 External Factors

The last variable to be given attention is what can beclassified as ‘external factors’.

This section is concerned with other moving objects that can interfere and influence the
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detection and tracking system. Examplesare curtains orroller blinds being moved by

wind, house plants being swayed by wind or an electric table fan rotating while in

operation. The motion of background objects is important, e.g. a curtain being blown by

the wind could move forward and across pixel boundaries and depending on the method

of motion detection being used this can generate a large numberoffalse alarms. These

background movements are not expected to impact considerably on the detection

algorithms that are developed buttheir effects have to be considered nevertheless. Table

5-5 below showsthe different videos that are recorded.

 

 

 

  

External Factor Filename

Curtains moving in background curtains.wmv

Rotating fan causinglight to vary fan.wmv

Plant moved by wind plant.wmv 
 

Table 5-5 : External Factors

5.2.5 Video recording and processing

A snapshot of the high resolution videos taken during the experimental scenario

described above is shown in Figure 5-4. The captured videos are then reduced to the

required sizes by using the bi-cubic interpolation technique [118]. In this technique, each

output pixel value is a weighted average of pixels in the nearest 4-by-4 (or higher)

neighbourhood. The analysis of these low resolution image sequences,i.e. the detection

and tracking processes, is then done on an Intel Core® 2 Duo processor computer

running Matlab 2008 with image resolutions ranging from 15x15 pixels to

35x35 pixels at a low frame rate of 10 fps more appropriate of a low quality sensor. A

snapshotof the recording sequencein low resolution is shown in Figure 5-5. Please note

that the images in the figure have been enlarged to enable them to bevisible for printing.

Each ‘pixel’ in these low resolution images printed hereis in fact a collection of pixels

representing the same sample point.
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Figure 5-5 : Lowresolution equivalentof the snapshots.
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5.3 Results

5.3.1 Detecting the object and estimating its position

The first step in the testing and evaluation part of the experimentis to see if the

methodsof finding the centre of mass of an object using the un-mixing process together

with bounding box approachto locate a central blob (see 3.5) can be used effectively on

basic real imagery.. The first video to be tested is a 25x25 pixel image sequence with

an object (a single person) of a few pixels in size moving in an approximate circular path

(see Figure 5-6(a)). The lighting in this first test video is also kept constant.

25 25  
Frame Number = 225
 

    
     
 

0.6 T T T T

O.5+ |

O.4F 4

O.3-F |

* Data Paints

O2F mmTriangle Wrapping

+ Full pixels of detected object

ait — — ~ Boundaryfor pull pixel
. 1 1 r t

0.2 0.3 0.4 0.5

(c)

Figure 5-6 : (a) Image sequence containing a moving object (b) Detected centre of mass of object

(c) Triangle wrapping around data points, and selected data points in red that represent the

object’s location in the image plane.
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The vertex containing the object (or colour) of interest is chosen by the userbyfirst

going through each vertex and seeing whatportion of the imageit represents(e.g. object,

background |, background 2 etc). This selection by trial and error can be improved in the

future by using all the three vertices to un-mix pixels during theinitial frames and then

checking which one of the three centroid locations obtained is changing. A changing

centre of mass position means a moving object while a fixed one means a background. A

threshold boundary of 0.25 on each side of the un-mixing triangle is used to allocate

certain data points as being full pixels of the detected object, i.e. any points that lie

within the fraction 0.25 of the length of each of the two sides meeting at the vertex

representing the object (or colour) of interest are considered to be full pixels of that

particular colour of interest (See page 3-71 of section 3.5.1 and also Figure 3-23 for

detailed explanation). A snapshotof the detection process with the middle-vertex chosen

as the un-mixing vertex is shown in Figure 5-6.

  
1 100 1 100

  
1 @ 100 1 @) 100

Figure 5-7: Position estimates of the object found when imageresolution is (a) 15 x 15 (b) 20 x

20 (c) 25 x 25 (d) 30 x 30 pixels. The estimates have then beenscaled upto a resolution of 100 x

100 pixels for comparison purposes.
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With the centre of mass detection mechanism seen to be working, the experimentis

then repeated for image resolutions ranging from 15x15 pixels to 30x30 pixels. The

locations of these centroids for each resolution for the duration of the whole image

sequence are shownin Figure 5-7. The values for these locations have been scaled up to

an image resolution of 100x100 pixels to allow easier comparison of the results. The

path obtained by joining each centroid’s position estimate at a resolution of 15x15

consisted mostly of jagged lines but it still gave the impression of a circular trajectory

when lookingat the overall picture. This is a very good estimate for such a poor quality

of image. One can see howthe paths drawn by joining each centroid’s position estimate

get smootheras the resolution increases. These paths are super-imposed on each other in

Figure 5-8 to appreciate even further the accuracy of the detected centroids as the image

resolution changes. One way to smoothen the paths for the very low resolution image

sequences is to use a Kalmanfilter. Not only can the Kalman filter smoothen the paths

but it can also insert a certain dose of prediction at each point detection which is very

useful in the overall tracking process. This is explained in the next subsection.

1

mote— 15x15

--©- 20x 20

—G— 25 x 25

—#— 30 x 30

100 
Figure 5-8 : Detected points superimposed on each other
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5.3.2 Tracking the object using Kalmanfilters

With the position of the centre of object estimated in this way,a filter such as the

Kalman filter can then be used to initiate a tracking process and improve the object

position estimates. A constant velocity model with a state vector containing x and y

coordinates whenever a measurement is made and velocity obtained from a change in

position as a function of time is implemented using the equations 2-8 to 2-13. Two

variables, the measurement noise N,and the covariance error matrix, that are

mentioned in Chapter2, are given initial values as shownin equation 5-1. This particular

value of £, showsthat an error of 2 pixels is assumed for both position and velocity

estimates at the beginning.
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Figure 5-9 : Flowchart explaining the functioning of the Kalmanfilter with particular attention
to the initialisation step.
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The filter is initialised by using the two-point differencing method whereby the

velocity is first estimated only after two position measurements are made. Oncethefilter

is running, an estimate for the next measurementcan be obtained by using information

from previous data as shownin the flowchart in Figure 5-9. The results for the different

image resolutions are shown nextin Figure 5-10 with the thick white lines representing

the paths obtained after running the Kalmanfilter (The estimates have then been scaled

up to a resolution of 100 x 100 pixels for comparison purposes). This process is done

online, i.e. in real time every time a centroid position update is available. It can be seen

how the Kalman filtered paths are smoother the paths obtained after the un-mixing

process only. There is less jaggedness even for the very low quality image sequences.

The tracks are super-imposed on each other in Figure 5-11 for easier comparison. The

implementation code of the Kalmanfilter is available in Appendix A3.

1

  100
100 1 100

 

| 100
1 (c) 100 1 (d) 100

 

Figure 5-10 : Track estimation shownby thick white line after Kalman filter has been applied to
each imageresolution of (a) 15 x 15 (b) 20 x 20 (c) 25 x 25 (d) 30 x 30 pixels. The estimates

have then been scaled upto a resolution of 100 x 100 pixels for comparison purposes.
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Figure 5-11 : Filtered tracks obtained from different resolutions superimposed on each other

It has been shown howthe paths are made smoother butit is difficult to evaluate

how efficient the Kalman filter is because of lack of ground truth. Normally this data

will be in terms of a certain number of reference points on the floor which the object

(here a person) has to cover. Then any deviation from these reference points can be

considered as errors in track estimates. However, because of the nature of the un-mixing

which singles out and track the person’s coloured shirt rather the whole personitself, it

is difficult to relate this data to the reference points. These results cannot be tested with

other monitoring systems also because nonethat uses the same technique of tracking the

colour onlyis available. To evaluate the effect of the Kalmanfilter, it is better to apply it

to an artificially generated image sequence which contains three main colours with one

of them moving around within the image boundaries. An example of un-mixing and data

filtering at an instant in time on a 25 x 25 pixel resolution image sequence is shownin

Figure 5-12. In general, it is found that the Kalmantrackerfilters the data well as the

position errors are smaller in magnitude and smoother than after the un-mixing alone as

shown in Figure 5-12 (c). The degree of smoothness is shown in (d) and (e) where the

paths obtained after un-mixing only and Kalmanfiltering respectively are super-imposed

on the real path. However every time the object changes direction, higher error values
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are obtained andthis could be partly explained by the fact that a constant velocity model

was used. A future improvement is to use a more complex Kalman tracker to better

predict the position coordinates of the object when the latter changes velocity and

direction. This constant changing of directions is not expected to happen very often

within indoor environments with elderly people and one can assumethat the constant

velocity model is appropriate enough for now.
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(d) Path obtained after unmix only (e) Path after kalmanfiltering

Figure 5-12 : (a) Original imagery at an instant in time - here Frame 230, (b) Position estimate
of the object at Frame 230 after un-mixing, (c) Kalmanfilter gives position error values which
generally smaller in magnitude and smoother than the ones obtained after un-mix only, (d) Path
after un-mixing only, super-imposed on real path, (e) Path obtained after Kalmanfilter is used,
super-imposed onreal path.
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One has to be aware that the Kalmanfilter applied in this manner is not being used

to predict paths ahead in time but just for the smoothing of the detected noisy position

measurements of the moving object. However sometimes it can happen that a position

update is not available, e.g. temporary occlusion of object or failure of wrapping triangle

to fit tightly around a quickly changing data points. To show how the Kalmanfilter can

be used to estimate the position without a measurement, another test is done where the

filter is only fed position measurements after every other five frames. The result is

shown in Figure 5-13. It can be seen that even without any measurement made, the

Kalmanfilter can give an estimate of the path reliably with position error values of less

than 2 pixels. However these values tend to go very high when the object changes

direction drastically.
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Figure 5-13 : Kalman filter gives position errors which are not always less in magnitude than
the ones obtained after un-mix only, (b) Path after un-mixing only, super-imposed on real path,

(c) Path obtained after Kalmanfilter is used with measurement made after every 5 frames, super-
imposedofreal path
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Figure 5-14 : Impact on the filtered path as the process noise is increased from (a) to (d)

In the actual implementation of the filter, the measurement noise covariance is

usually measured prior to operation of the filter. Knowing the measurement error

covariance is generally possible by taking someoff-line sample measurements in order

to determine the approximate variance of the measurementnoise. The determination of

the process noise covariance is on the other hand more difficult to determine as itis

typically not possible to directly observe the process that is being estimated. Sometimes

a relatively simple (poor) process model can produce acceptable results if one ‘injects’

enough uncertainty into the process via the selection of the process noise but there is no

way to determine this value automatically apart from tuning the parameters and

evaluating the effects of doing this action. An example of the impact of the process noise

is shown in Figure 5-14. The value of process noise, more specifically the parameter

qof equation 2-15, is increased from 0.01 to 10 by using a multiplication factor after

each test. One can see how the tracks are smoother for smaller values of process noise
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but this also meansthat these tracks obtained can be further from the actual path taken

by the object, for example in Figure 5-14 (a), the filtered path on the right part of the

diagram is more than two pixels from the detected points. There is a compromise that

has to be made in choosing the right value for process noise depending on what the

requirements of accuracyare.

5.3.3 Evaluation of the system according to experimental plan

Among the tests to be performed in the experimental plan, those involving the

lighting conditions are perhaps the most importantas this is a variable that is bound to

change at some point when monitoring a person in a room for a long time. In the videos

involving bright daylight, cloudy day and electric bulb as sources of light, they all

allowed the successful detection of the person walking. These results are available in the

appended CD. The main test is the one involving sudden change of light. Figure 5-15

shows two frames, the Ist and 25" with their respective data point distributions, of an

image sequence in which the light is switched off suddenly after frame 1. In (a), the

centroid of the object is detected without any problem whenthe room is welllit at Frame

No. 1. The room lighting is switched off just after Frame 1. In Figure 5-15(b), the

centroid is still detected at Frame No. 25 after the un-mixingtriangle has adapted to the

new data point distribution. During the period between frame | and 25, thetriangle tries

to fit itself around the changing data points and the evolution of the vertices is shown in

Figure 5-16. Thus one can see how the triangle wrapping algorithm developed is

effective in adapting to sudden changesin light conditions after a couple of frames when

the optimiser ‘realises’ that the data point distribution has changed drastically. However,

the un-mixing procedure is found to fail when the light levels are decreased even further

than the light level in Frame 25 because the data points moved towardsthe origin of the

axes representing the NRGB colour space and cluster themselves there. Monitoring is not

expected to be performed in this type of low level lighting thoughin reallife. Although

the data points in the NRGB colour space change when lighting conditions are modified

(i.e. not satisfying fully the colour constancy requirements), the change occurs in a such

a way that the general shape of the data point distribution is conserved and hence

allowing pixel decomposition and centroid position to be estimated.
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Figure 5-15 : Effect of sudden change oflight. In (a), centroid is detected in well lit room.
Light is switched off just after Frame 1. In (b), centroid is still detected after triangle adapts to
new data point distribution.
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The other variable to be investigated is people. A person wearing a colourful shirt is

made to walk in different paths and at different speeds according to the experimental

scenario. It is found that the centre of mass of the shirt is detected in all situations (see

appendix CD). Thus one can say that both style and pace of walking do not affect the

detection process. Onepart of the experimental scenario that needsa little more attention

is when the moving object of interest gets occluded as shown in Figure 5-17. In this

figure, a person wearing a green shirt is moving from rightto left of the camera’s field of

view. As the object moves, it encounters another object in its path and by going behind

that object, it gets hidden temporarily (between frame 130 and 150 approximately) from

the camera viewer. The object then re-emerges from the obstructed view asit carries on

its path to the left of the image. When the un-mixing procedure is carried out, the

centroid can be obtained quite easily in the beginning. As the object of interest starts to

get occluded, the position estimate becomes very erratic and sometimes even non-

existent (at frame 140). However, once the object reappears, the triangle adapts to the

new data points and the object is detectable again. The bottom row of Figure 5-17 shows

how the triangle wrapping process is very quick at detecting changes in the data point

distributions, One way to deal with temporary occlusion is to use Kalmanfilters to

‘predict’ the path of the object a few frames ahead butits efficiency will depend on how

many framesat a time that the object gets occluded.
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Figure 5-17 : Moving object being un-mixed gets occluded. Centroid position cannot be
obtained at frame 140 whenthe object is hidden but once object reappears, it is detected again.
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The last test to be mentioned in the ‘people’ variable section is the one involving the

detection of more than one object of interest at a time. Two persons (objects) with bright

coloured shirts, green and yellow, are made to walk in such a waythat they are both in

the camera’s field of view and they are also allowed to interact with each other to

confirm the capability of the system to handle occlusions effectively once more. Forthis

experiment, it is necessary to know which vertex represents the colour or object of

interest. This can only be donebytrial and error unfortunately. Once this is known, the

un-mixing process can be done on each of the two vertices and a snapshotof the results

is shown in Figure 5-18(a) where two objects with ‘bright’ colours are detected at the

same time and their respective paths are also shown. Figure 5-18(b) shows how the data

points near two vertices are being un-mixed simultaneously to give the location of the

centroids for object 1 and object 2 respectively. However it must be noted that for the

un-mixing to be successful at all times in detecting two objects simultaneously, the

objects’ colours must be different from each other and also from the background colour.

Otherwise the triangle is not properly formed and can result in many false positives.

Hence for this system to work in real life, the people being monitored need to wear

special clothing based on some colour code when there is more than one person

involved. This is not expected to be a problem as the subjects being monitored in

hospital wards or prison spaces can be made to wear special clothing to enable the

monitoring process to happen without the need to impinge ontheirprivacy.
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Figure 5-18 : (a) Two objects with ‘bright’ colours are detected at the same time. A path is
obtained after un-mixing a certain amount of frames (b) Triangle wrapping and double un-
mixing at an instant in time.
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5.4 Development of Graphical User Interface (GUDfor real-time
implementation

All the tests done so far have been done on computer programs executed from the

keyboard or commandline. While this approach is good enough during the development

stages, it is less appealing when the system is to be deployed in the real world as an

application for less technically minded people to use. One wayto reduce this unease is

by creating a Graphical User Interface (GUI) together with appropriate instructions that

can do whateverfunction the original program can do but in a more userfriendly way. A

GUIis a type of interface which allows people to interact with electronic devices by

using graphical icons and other visual indicators to represent the information and actions

available to a user. The actions are usually performed through direct manipulation of the

graphical elements.

There are main phases to observe in the development of GUIs [119]. Theseare: (1)

Analysis (2) Design (3) Prototyping. Thefirst phase involves answering questions such

as, who will be using the interface and how will it be used? For example, GUIs

developed for scientific experiment monitoring applications will have different target

audiences and layouts from an interface designed for language learning software

applications. The analysis phase can become very involved and complicated depending

on the goals and can require developing user case scenarios, identifying the expertise of

the user, computer system limitations, and plans for future upgrades based on user

feedback [119]. In the design phase, the general layout of the GUIcan bestarted based

on certain considerations such as cognitive and physical considerations. Cognition refers

to people’s ability to think and learn. Organising functions and controls into groupings

or not requiring the user to remember manythings at once are examples of how using a

GUI can be madeinto a pleasant experience. As for the physical considerations, these

refer to the ways of interacting with the GUI such as keyboard, mouse, monitor and

other input-output devices. The last phase (prototyping) can then be done. Prototyping

usually involves doing a mock-up drawing on paper of the desired GUI with buttons,

text entries and plots and arranging them so that everything blends well in the layout.

Finally, the actual construction of the GUI can then be started using software such as

Matlab’s Graphical User Interface Development Environment (GUIDE)[98, 119].
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Aninfluential requirementin the successful developmentof the GUIisthat it has to

work in real-time on a normal computeror laptop. While all the coding and testing so far

are shown to work on offline data, time and processing requirements have not been

given much importance. There are many steps one should go through to take an

image/video processing algorithm that is developed in a research environment to an

actual working product. A common misunderstanding regarding the concept ofreal-time

is that since hardware is getting faster and more powerful each year, real-time

constraints can be met simply by using the latest, fastest, most powerful hardware, thus

rending real-time a non-issue [120]. The problem with this argumentis that it is often the

case that such a solution is not viable, especially for consumer electronics embedded

systems that have constraints on their total system cost, size, power consumption and

user-accepted response time. One needs to address many challenging issues when

developing a real-time image or video processing system. The solution often ends up as

some combination of hardware and software approaches. From the hardware point of

view, the challenges are to determine what kind of hardware platform and architecture

are best suited for a given image/video processing task among the available hardware

choices. In this thesis, a standard personal computer with Intel Core Duo® processor and

2 GB of memory together with a webcam are used as the host hardware. From the

algorithmic and/or software point of view, the challenges involve being able to guarantee

that real-time deadlines are met, which for example could mean making choices between

different algorithms based on computational complexity or using a real-time operating

system to manage various timing demands [120]. The parameters that can be changed to

satisfy the demandsare the numberoffunction evaluations and population sizes used in

the triangle wrapping optimisation process, the frame rate at which the video is acquired

and the numberof pixels in the input video (size of video). However, there is often a

trade-off between algorithmic complexity and performanceofthe system.
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5.4.1 GUI used in real world setting

The GUI is created based on the requirements discussed previously. The initial

parameters that can be modified by the user are: Video resolution, number of generations

and size of population for the GA optimiser, weight factor used in multi-objective cost

function, unmix threshold on the triangle and the choice of the vertex that represents the

colour or endmember ofinterest. The GUI also has the option to turn on and off the

KalmanFilter, and the measurementand process noises can be modified before thefilter

is switched on. This is made possible by using a ‘Toggle’ button, as shownin red in

Figure 5-19. The ‘Load Video’ is used to load recorded movie clips into the system.

There is also the possibility to feed the images of a webcam directly into this software.

Once the movie is loaded, the detection process can be started by pressing the ‘Unmix

and Detect’ button. A snapshot of the GUIin action is shown in Figure 5-20 and Figure

5-21. The process can be interrupted at any instant in time by pressing the ‘STOP’

button. This button is also useful if one wants to load a new video without closing the

whole GUI.
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5.5 Summary

Forall the tests on real imagery mentioned in this chapter,it is difficult to quantify

the detection errors due to the lack of ground-truth data but the detection process is

considered to be reliable based on the synthetic imagery results and by visually

inspecting and comparingthe position of the detected object with the real image.It is not

always easy to visualise the results of the detection process on all the videos of the

experimental scenario on paper, and hence a CD containing results in video formatis

attached at the end.It has to be noted that the intensity contribution method, described in

section 4.3, to find sub-pixel objects in real imagery is not shown inthis chapter. This is

because the results are not as good as expected. While this method work well during the

tests on artificial experimental data [9], it is very difficult to repeat the same thing on

real videos because of the increased impact of noise. This method needs further

investigation before being deployed in a domiciliary care environment. Of high

importanceis the filtering threshold factor that needs to be obtained automatically as it

currently has to be adjusted every time a new video is used. Howeverthe system as such

can perform in biomedical applications such as microscope tracking where the videos

are not as dynamic as those describing a room environment. The object detection method

based on humanskin is also not shownin this chapter because again the results that are

obtained are not very reliable, especially when the image resolution is very low and the

amount of skin detected by the sensor is of a few pixels only. This method can haveits

use in other object detection applications where such lowlevels of imageresolutions are

not required.
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6. Conclusions and further work

6.1 Summary

This thesis has examined the problem of tracking people within indoor

environments with minimum privacy intrusion. In particular, the following questions

have been answered:

e How can camerasfilm somethingbut at the same timepreserve the privacy

of the subjects being monitored?

e What algorithms are useful in achieving detection of small objects in low

resolution image sequencesof poor quality?

e Can techniques developed for satellite reconnaissance techniques be

successfully modified and adapted to indoor environments?

Thefirst question was investigated in Chapter 3. It was shown howthe use of low

resolution camerascould be an answerto the preservation of privacy. By using this type

of cameras that cannot form true images of the subjects being filmed, monitoring

systems minimise the intrusion factor whilst still being able to monitor the motion of

people and objects within the field of view. This is made possible if all the objects of

interest are comparablein size to the sensor elements and hence cannotbe fully resolved.

It was also shown howtheinformation contained in a colour image could be put to good

use whenusing this type of images. Several representations of colour were analysed and

the Normalised RGB representation was chosen as the main colour space during the

implementation stage of thethesis.

The second and third questions were answered in chapters 3 and 4. Traditional

detection techniques such as image differencing or optical flow methods were not used

because ofthe high level of noise that exist in these images and also given their highly

dynamic nature. A new technique, based onsatellite reconnaissance applications, to the

ones currently used in current monitoring systems was proposed to be used. In this

technique, each pixel is assumed to be a linear combination of different classes of

objects. In other words, each pixel in a given image contains a proportion of one or more

definite colours. Each mixed pixel is then decomposed into a combination of the
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individual colours by using the un-mixing processto estimate the location and thesize of

a particular colour (or object) of interest. This pixel decomposition process requires that

a triangle is wrappedtightly around certain data points. While several algorithmsexist to

achieve this wrapping, one hasto be aware that they are designed for single instances of

satellite images and hence cannotbeusedin the case of a dynamic image sequence with

changing number of target objects and lighting conditions for example. Therefore a

novel wrapping algorithm for these environments had to be developed to answer these

needs. Several optimisation algorithms were tested and one based on a genetic algorithm

was chosen and implemented to achieve this. The combined use of the new wrapping

algorithm and the un-mixing process enabled the centres of objects of interest to be

detected in colour image sequences of low pixel resolution. A related requirement that

was also investigated was to know howlow the imageresolution could go andstill give

viable tracks. This detection technique also has the advantage of not requiring static

camera asis the case for frame-differencing methods.

In addition to answering these three questions, tracking, which is another important

aspect of monitoring systems, was also investigated. Detecting an object on its own is

not that useful and a way to generate continuoustracks or even predicting the object’s

track as it moves aroundin a scene hadto be found. The state-space model wasused to

modelthe state of this dynamic system.It consisted of two sets of equations, the system

equations and the observation equations. The Kalmanfilter was chosen to estimate the

state of the system while only having access to noisy and/or inaccurate measurements.It

was found that this filter performed well when the system was modelled as a linear

Gaussian system and hence there was no need to look at other predictive filters. The

algorithms that were developed were then tested on real imagery. As these algorithms

were aimed mainly to be used in homes for the elderly, an experimental scenario

containing data for all the various possibilities that could happen in these environments

was designed. The robustness of the monitoring algorithms was also shownto bereliable

when used in a series of real-life challenging scenarios such as quickly changing

illumination conditions and occlusion of objects. The triangle wrapping process reacted

well to such changes and conclusive path estimation results of walking people were

obtained.
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6.2 Further work

In the immediate future, the camera usedto record the scenarios should be changed

to the real low resolution image sensorthatis intended to be used. Although care was

taken while recording the various experimental videos to make them be as close as

possible to reality by turning off all special signal processing features that exist in the

camcorder, one can never be sure what the sensor response would be. Some specific

characteristics such as dynamic response, gammarating, and sensitivity as introduced in

chapter 3 can only be obtained while using the sensor itself. Together with a change in

the sensing equipment, the tests should be carried out over longer time periods. The

system has been tested on short video clips of a few minutes so far but this needs to be

extended to longer hours to better reflect the requirements of the system. Moreover by

doing this, patterns of behaviour may emerge and the system could be further optimised

to deal with this new knowledge.

Whilst the algorithms mentioned are sufficiently accurate for the current

environment, for other applications where better spatial tracking accuracy is required,

the following speculative modifications could be considered to improve the system. The

detection process could be improvedasthe currentoneis limited to dealing with scenes

containing three or four main colours only. If the method depending solely on pixel

decomposition is to be preserved to detect more objects and hence colours, it has to be

upgraded to be able to create simplexes in higher dimensions, e.g. a tetrahedron.

Howeverit must benoted that for the un-mixing to be successful atall times in detecting

many objects simultaneously, the objects’ colours must be different from each other and

also from the background colour. Otherwise the simplex would not be properly formed.

The fact that the people being monitored have to wear clothes based on a special colour

code also limit the system’s capabilities in environments where people wear uniforms or

plain shirts, e.g. in an office. The detection process itself could also be modified to

become a combination of pixel decomposition and some other technique. For example, a

combination of linear un-mixing and knowledge of hue values of objects of interest

would help avoid this initial trial and error step that exists while choosing which vertex

represents which object. Successful matching of hue values with the appropriate vertex
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would also mean that the system would be ableto lock the objectof interest at all times

even when new objects enter the scene which result in the change in location of the

vertices of the wrappingtriangle.

Another improvement that could be brought concerns the optimisation algorithm

used in the triangle wrapping process. An adaptive form of the genetic algorithm

optimiser and stochastic optimiser could be implemented to increase the computational

workload involved currently. Generally, it is not always required to run the

computationally hungry GA optimiser on every frame because it was found that the data

points to be wrapped did not change by much when there were no major environment

change such as sudden flicking off/on of light and new object entering or leaving the

field of view. The points were notstatic but contained some noise due to the poor

resolution on the images being captured. For this type of distribution, the simple

stochastic optimiser is expected to achieve good results and if a method is found to

switch between GAandstochastic optimisation during the running of the system, more

memory and CPU resources could be released for other purposes while there are no

challenging changesin the environment. Other purposes could be to increase the number

of sensors used to improve the detection process by reducing occlusion and giving better

track estimates for example.

The current system could also be taken to anotherlevel of sophistication by adding

‘intelligence’ to it. The addition of a multiple hypothesis tracker (MHT) to deal with

ambiguous measurements and the motion of more than one person at a time would be

one of the waysto achieve that. As mentioned in Chapter 2, the MHTalgorithm searches

for motion correspondences by examining several frames of data. It also hasthe ability

to create new tracks for objects entering the field of view (FOV)and terminate tracks for

objects exiting the FOV. It can also handle occlusions, that is, continuation of a track

even if some of the measurements from an object are missing. Another way to achieve

intelligence in the system is to design a framework to model the behaviour of people

based on prior knowledge of these sensitive environments. This framework could then

be used to better predict tracks taken by people by eliminating certain paths. There are

several examples of known human behaviour:
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¢ People are not expected to jump from oneposition to another position far

from theoriginal position all of a sudden.

e The speeds of motion of humanbeingsare usually within a defined rangein

indoor environments.

e People have a tendency not to walk near walls and try to avoid colliding

against large scale static obstacles such astables or chairs objects.

e There are certain places such as bedsor sofas where people are expected to

be in horizontal position and not moving lot.

¢ People on their own will walk faster than people in groups. The behaviour of

human beings among other human beings is more difficult to model.

Dependingon the social context, a human being mighttry to avoid getting in

the way of another person walking towards him or herif they do not know

each other or they might stop and talk to each other.

By making use of ideas from psychology research, an automated simulation of

human behaviour could be achieved with a view to incorporating it in the monitoring

system.
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Appendix

All code provided here have been tested on MATLAB® R2008a.

e Al OptimiseVerticesThreeMethods.m

 

ito optimiser  
function [vertices, num_points_in, area_triangle, history] =

OptmimieVerticesThreeMethods(n_red, n_green, vertices, gamma, mode,

max_iterations)

 

num_points_in 2 @ 2

area_triangle = NaN;

history = [];

switch lower (mode)

 

for index = 1 : max_iterations

% Evaluate Cost Function

[cost] = CostFunction(vertices);

new_vertices = vertices + delta * randn( size(vertices) );

{new_cost] = CostFunction(new_vertices);
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% For plottingoY 'O

history (index) = cost;

if new_cost < cost %"<" for minimisation

vertices = new_vertices;

delta 0.95 * delta; % allow step size to decrease

Q. oO fo c
t
@ ll 1.05 * delta;

end

oe ot
?

 

case 'nongradient'

options = optimset( 'TolFun', 16-5» « « «

"MaxiIter', max_iterations,...

'FunValCheck', ‘'off',...

'Display', "OEE", ws «

‘OutputFen', @myobjplot...

i

history = [];

[vertices, fval, exitflag, output] = fminsearch(@CostFunction,

vertices, options);

 

a
e

a
?

case '‘ga'

population_size = 30;

alpha = 0.0001;

init_pop = alpha * randn(population_size,numel (vertices) );

Ql = repmat (vertices', [population_size,1]);

Ql Ql + init_pop;Ul

options = gaoptimset( 'Generations', 20,...

"Display', TORE pews
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‘OutputFecns', @mygaplot,...

'TolFun', le-9,...

"PopulationSize', population_size,...

'InitialPopulation', Q1,...

"CrossoverFen', @crossoverintermediate,...

'MutationFcn', {@mutationgaussian, 0.1}...

an

 

history = [];

(vertices, fval] =

ga(@CostFunction,nvars,[],[],[],(],(],(],[],options) ;

 

%-- Nested subfunctions

function [cost_function_value] = CostFunction (vertices)

 

area_triangle = TriangleArea (vertices); %

% Find no. of points inside original triangle

num_points_in = PointsIn(n_red,n_green, vertices);

rinaL madahr ow NT et geet gentle orTrerea + weight x (No. of points OUTS2 DE triangle)ys 52ol
?

o
e CostFunc = f

u\

cost_function_value= area_triangle + gamma * ( size(n_red,1) -

num_points_in );

function stop = myobjplot (x, optimValues, state)

if ~strcemp(state, ‘iter') stop = false; return; end

if isfield(optimValues, 'fval')

if isscalar (optimValues.fval)

history = [history; optimValues.fval];
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else

plotvector (optimValues.iteration, optimValues.fval);

end

else

plotvector (optimValues.iteration, optimValues.residual);

end

stop=false;

al
e

ena end of function myobjplot

function [state, options,optchanged] =

mygaplot (options, state, flag, interval)

  

u B
H

~
einterval

end

if interval <= 0

interval = 1;

end

if (rem(state.Generation,interval) ~=0)

return;

end

best = min(state.Score);

history = [history;best];

reeMethods
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ae
ol
e

a pixel,

of a particular pixel

o
e

 

ate

clear, close all

number_of_frames = 75;

03
) fe N o
O

 

o
e

wh
t

f
e

Q Hyhigh_res = 100;

0for object_size = 2:2:1

image_plane = zeros (high_res, high_res) ;

Oo AMEfad
}pixel moved by object per fr

oF pixels being investigateda

 

centre_row = high_res/2;

xmin centre_row - object_size/2 ;

xmax = xmin + object_size;

20;ymin = ymax - object_size;ymax

Create matrix for a square object

image_plane (uint8 (xmin) :uint8 (xmax) ,uint8 (ymin) :uint8 (ymax) )=

 

ymin + dy;Ke 3 B
-
3 I

ymax = ymax + dy;

ct O Ee © x be ,

small_image(i,j) = mean2(image_plane(10*(i-1)+ 1:10*i,

10* (j-1)+1:10*j));

end

end
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inal image

image_plane = zeros (high_res,high_res) ;

ues or graph plottingf
H

Hytore the intensity va

value_intensity(k) = small_image(5,5,1);

hold on

plot (value_intensity)

hold off

 

[state_vector, error_matrix] = KalmanTrack (state_vector,

error_matrix, position_vector, mea_noise, pr_noise)

s

 

2 E936S o
P

 

,iman variables

 

% Define size of the measurement noise (Ny)

meas_noise = [ mea_noise*2 0;

0 mea_noise*2];

% Define process noise (Nx )

process_noise = [ (dtx%*3)/3 0 (dtx*2)/2 0 ;

0 (dtx*3) /3 0 (dtx*2)/2;

(dtx%*2)/2 0 dtx 0 ;
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0 (dtx*2) /2 0 dtx ]

-*pr_noise ;

&     
av
e astep 4 =

 

state_vector=state_vector+K* (real_measurement—

est_measurement);

6 o
O a g

& voGee

 

'G ain to generate new state error ma-

  
trix

= (eye(size(error_matrix) )-K*B) *error_matrix;

lynamical matrix to predict forward to next

time

 

state_vector = A*state_vector;

error_matrix = A*error_matrix*A'+process_noise;

oh
?

iy $
Q. Kaim  br

y 41tiC a
Cs
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