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ABSTRACT

This thesis describes the development of an automatic monitoring system for indoor
environments. The aim is to develop a system that allows general movement of one or
more people to be determined using a very low resolution colour sensor. The sensor has
sufficiently low resolution that objects are not fully resolved — to protect privacy. It is
demonstrated that movement can be monitored to a high degree of accuracy using
spectral un-mixing techniques adapted from satellite remote sensing applications. These
algorithms allow the fractional contributions from different colours within each pixel to
be estimated and this can then be used to assist in the detection and tracking of small
objects. Using colour as a tracking/monitoring aid is not new but the current application
presents significant difficulties. The detection and monitoring algorithms have to take
into account that the colour measurements made by a vision system often depend on the
ambient illumination and in rooms with open windows and blinds for example, the
illumination conditions can change very rapidly. In order to recognise an object in
different lighting environments, the system must have the ability to discount the effects
of the illumination changes. An important task in this technique adaptation for indoor
environment use is to find an automated way to fit a triangle around a set of data points
as closely as possible for each frame in a sequence of images. Several optimisation
algorithms are evaluated to determine which one is most appropriate for this triangle
fitting task. The detection mechanism alone is not enough to be able to monitor the
subjects. Tracking algorithms are also applied to be able to generate continuous tracks of
the people being monitored. The State-Space approach is used to model the motion of
the objects of interest with the Kalman Filter being the chosen predictive filter to find the
optimal state. The monitoring algorithms developed are tested in a series of real-life
challenging scenarios such as quickly changing illumination conditions and occlusion of

objects.
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Significance and motivation

1. Introduction

1.1 Significance and motivation

While many pieces of legislation aimed at protecting citizens' privacy exist,
providing a single definition of privacy is difficult. The boundaries and content of what
can be considered private differ among cultures and individuals, but they often share
basic common ideas - one of them being the concept of being observed by a camera. The
ability to monitor the activity of people within an enclosed area without intruding on
their privacy is an important factor for many medical and security systems. The use of
high resolution imaging is not welcome all the time as people are not always
comfortable with being ‘watched’ and there are also laws that safeguard our privacy.
Besides the presence of an intrusive camera in places such as a hospital ward, an office
or other secure locations may influence the true behaviour of the people being
monitored. One way to get round this is by using very low-resolution cameras which
cannot form true images of the subjects that they are filming. The condition of ‘no true
image formation’, whereby the human eye will find it extremely hard to distinguish
different objects in a scene, can be achieved when all the objects of interest are
comparable in size to the pixel/sensor elements and hence cannot be fully resolved. By
not resolving the details of a scene in this manner, monitoring systems minimise the
intrusion factor whilst still being able to monitor the motion of people and objects within
the field of view. Places such as offices, hospitals or nursing homes are the environments
most likely to benefit from these systems as they often require monitoring capability for
safety and medical reasons but with a high degree of privacy.

The emphasis of this thesis is to use data from a very low resolution video camera to
monitor the motion of objects in these sensitive indoor environments. The conventional
way of detecting moving objects in spatial image processing is by differencing
successive or neighbouring image frames in a sequence. This is not a viable option in
this case as insufficient detail is available and background noise will also be detected.
The low spatial resolution means that it can become very difficult to separate a very
small object from the noise. An alternative method is devised to achieve detection within

the low number of pixels available from low-resolution cameras. Techniques borrowed
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from satellite sub-pixel detection systems — which make use of multiple light wavebands
or colours — are adapted. In satellite reconnaissance, sub-pixel target detection is very
common and many algorithms have been developed to deal with situations where each
pixel contains several distinct types of object or background, each with a different colour
signature. In this context, ‘colour’ is a general term that is related to the intensities in
different visible and/or thermal (i.e. infrared) wavebands — the number of wavebands can
be significantly larger than the usual three colours that are familiar in the visible band.
The efficacy of the algorithms depends on how mixed the pixels are and how much
colour contrast they contain. If each pixel contains too many different coloured
objects/backgrounds it can become difficult to discern any common colour combinations
between different pixels, and if the pixels contain colours that are too similar it becomes
difficult to identify distinct colours. The second problem arises because of the
underlying assumption that the pixels can be represented by a mixing model that can be
decomposed to find ‘pure’ colours. Often this is done by algorithms such as the Simplex
Shrink-Wrap algorithm [1] or the vertex component analysis [2].

Using colour as a tracking/monitoring aid is not new but the current application
presents significant difficulties. The detection and monitoring algorithms have to take
into account that the colour measurements made by a vision system often depend on the
ambient illumination and in rooms with open windows and blinds for example, the
illumination conditions can change very rapidly. In order to recognise an object in
different lighting environments, the system must have the ability to discount the effects
of the illumination changes. An important task in this technique adaptation for indoor
environment use is to find an automated way to fit a triangle around a set of data points
as closely as possible for each frame in a sequence of images. Several optimisation
algorithms are evaluated during the development stage of the system to determine which
one is most appropriate for this type of environment and the subjects of interest. The
detection mechanism alone is not enough to be able to monitor the subjects, i.e. people.
Tracking algorithms need also be applied to be able to generate continuous tracks of the

people being monitored.
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1.2 Structure of thesis

This thesis is divided into five further chapters:

Chapter 2, Literature review, describes the main components of a monitoring
system with special importance given to the object detection and tracking
part of such systems.

Chapter 3, Related information on processing techniques, shows the various
ways of representing colour information, and detection algorithms used in
spectral imaging applications are introduced.

Chapter 4, Detecting objects, examine how the triangle wrapping algorithms
can be adapted for indoor environments to detect small objects. Another
detection technique involving the use of human skin is also introduced.
Chapter 5, Data collection, experiments and results, contains all the tests and
results of the algorithms when applied to both artificial and real imagery.
Chapter 6, Conclusions and further work, is an overall evaluation of the

work done, and ideas for further work.

1.3 Publications

Parts of this thesis have been presented at conferences and published in a journal paper.
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Introduction

2. Literature Review

2.1 Introduction

The main aim of this thesis is to describe the development of a monitoring system
that is able to track small objects relative to an image plane of low resolution size.
Object sizes can range from less than a pixel to a few pixels. Low resolution video
cameras and other similar non-intrusive image sensors form part of the equipment that
can be used to capture this information. This project’s emphasis is to use this data to
monitor the motion of objects. The next two chapters consist of the theoretical
background knowledge necessary to understand the development of a complete low
resolution image monitoring system. This chapter contains a review of the techniques
used in two important tasks of most video monitoring systems, object segmentation and
tracking. Object segmentation is the first step in the overall tracking procedure. This is
usually achieved by selecting certain features within an object that are common, for
example colour, edges and shapes. One detection approach involving colour which is
introduced in the next chapter 3 is the use of remote sensing techniques to detect very
small objects. The satellite reconnaissance community often has to deal with small
objects in images and an attempt is made in this thesis to adapt these techniques
augmented by using time-dependent colour intensity profiles of the low resolution
images to detect moving objects. Once an object is detected, algorithms exist to track it.
These algorithms are assumed to be part of a filtering and data association process
involving prior information about the scene or object, dealing with object dynamics, and
evaluation of different hypotheses. Tracking is an established field employed in various
sectors, and a brief survey of the techniques that exist is given in this chapter. While not
all the techniques mentioned here can be used when dealing with small objects in low
resolution image sequences, it is nevertheless very important to know how they work as
often techniques originally designed for a purpose can be modified to answer the

demands of another purpose with different requirements.
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2.2 Monitoring Systems

A generic monitoring system can be broadly defined as consisting of several main
building blocks as shown in Figure 2-1. The environment being monitored could be a
hospital ward or another type of domiciliary care room and depending on the chosen
environment, one can then decide on a particular type of sensor or sensor network
arrangement to collect the data. The sensors in this case are low resolution imagers or
other similar non-intrusive sensors. The data collected in this way is then processed to
finally give useful information about the environment being monitored. The data
processing part of the monitoring system chain is the section where most effort was
devoted during this project and a detailed description of the various steps involved is
given in the next sections.

Video-based monitoring systems can be seen in many places, such as in car parks,
supermarkets, airports and train stations. The surveillance systems are usually used to
detect abnormal, dangerous situations and prevent their happening as soon as possible.
Many systems require human operators monitoring the scene continuously via many
video displays to detect suspicious activities and as a result some of these systems
contain some disadvantages such as the cost of running them and the fact that human
operators are not always fully reliable. These surveillance systems are also not true
monitoring systems as they are just networks of cameras that collect images over time
but with limited capability of interpreting the collected data. The above disadvantages of
manual surveillance systems have led to much research in developing automated video-
based surveillance systems. For the purpose of this thesis, only systems with single-
image capturing devices are analysed. However the techniques developed can be

extended and adapted for multi-sensor systems.
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Figure 2-1 : Elements of a video monitoring System

2.2.1 Examples of current indoor monitoring systems

One very good example of an indoor monitoring system is called KidsRoom which
is a fully automated and interactive narrative play-space for children developed at the
MIT Media Laboratory [3]. KidsRoom uses a single camera, which is placed on the
ceiling to minimise object occlusion, to track multiple non-rigid objects in a room and
these objects often interact with others. The system does not require people in the space
to wear any special clothing or hardware, and it can accommodate up to four people
simultaneously. KidsRoom uses knowledge about objects being tracked and their current
relationships to one another, also known as contextual information, to track multiple,
complex, non-rigid objects simultaneously. KidsRoom uses a closed-world assumption
to select weights of the position, size, colour and velocity used in the object matching

algorithm. A closed-world is a region of space and time in which the specific context of
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what is in the region is assumed to be known. The tracking algorithm uses four data
structures: (1) Each object has a data structure that stores the object’s estimated size,
colour, velocity, and current and past position. This information is used for matching
each object in the last frame to a blob in the new frame. A blob is a group of connected
pixels based on certain conditions of the pixels’ brightness and spatial adjacency [4]. (2)
Image blobs are computed in each frame using background differencing; each blob’s
size, colour, and position is recorded. (3) A local closed-world data structure exists for
every blob and stores objects that are assigned to the blob. (4) Finally, the system uses
knowledge about the global closed-world, which stores information about which objects
are in the entire scene [3].

Another example is the Pfinder (“Person Finder”) system [5]. It is also a single-
camera system that tracks the movement of the human body parts. Although this
system’s main aim is to recognise human gestures, it is mentioned here because the
technique used can be improved to be able to track the movement of a whole body. The
colour space used is the YUV representation of colour. YUV is used in video
transmission where Y is the luminance channel that contains the images that would be
displayed on a black-and-white television receiver while the U and V components carry
the information about the colour of the images [6]. No information is given by the
authors on their choice to use this colour space but it is assumed that this system was
developed with a view to be compatible with legacy video systems used in video
transmission. Pfinder uses a multi-class statistical model of colour and shape to detect
parts of a person such as head, hands and feet. As the Pfinder processes scenes that
consist of relatively static situations such as an office, and a single person with moving
parts, the developers of this system used different types of characterisation model for the
scene and for the person. The scene surrounding the human is modelled as a texture
surface; each point on the texture surface is associated with a mean colour value and a
distribution about that mean. The colour distribution of each pixel is modelled with a
Gaussian described by a full covariance matrix. People are represented as blobs with
each blob having a spatial (x, y) and colour (¥, U, V) component. The statistics of each
blob are updated recursively to combine information contained in the most recent image

with knowledge contained in the current class statistics and the priors. This system also
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claims to be able to compensate for small or gradual changes in lighting by updating the
texture maps over time. It cannot however compensate for large or sudden changes in the
scene as they get mistaken as being part of the foreground region. Another limitation is
that the domain-specific assumptions used to model the gestures of the human body to
make the task tractable can be broken fairly easily because they represent only a limited
number of gestures [5].

W* is another single camera surveillance system for tracking people and detecting
human activities using a single camera [7]. W* employs a combination of shape analysis
and tracking to locate people and their parts (head, hands, feet, torso) and to create
models of people's appearance so that they can be tracked through interactions such as
occlusions. It can learn and model background scenes statistically to detect foreground
objects, even when the background is not completely stationary (e.g., motion of tree
branches). W* can also determine whether people are carrying objects, and can segment
objects from their silhouettes, and construct appearance models for them so they can be
identified in subsequent frames. However it does contain certain limitations that will not
make it appropriate for this project. It has been designed for outdoor purposes using only
grey-scale video imagery captured at a high resolution of 320 x 240 pixels at a frame
rate of 25 Hz. The fact that it uses a silhouette-based method to perform foreground
detection critically affects the camera orientation. A fairly oblique view of the scene is
required because whole body silhouettes are needed, and hence its field of view is
limited. Another problem with W* is that it is severely affected by shadows present in
the scene [7].

The systems mentioned so far use fairly high resolution cameras and do not address
the need for privacy that exists in certain sensitive indoor environments such as care
homes for the elderly or hospital wards. One example system that makes use of low
resolution sensors has been developed by the Centre for Intelligent Monitoring Systems
(CIMS) in the Department of Electrical Engineering and Electronics at the University of
Liverpool and has been demonstrated successfully in situ in a domiciliary care facility in
the London Borough of Merton [8]. This system, called the Merton Intelligent
Monitoring System (MIMS), is based around a two-dimensional optical array and

infrared detectors (see Figure 2-2(a)) which monitor the activity of occupants within a
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number of rooms within the facility [9]. The two-dimensional optical sensor array —
referred to as a Pseudo-Optical Radar System (PORS) — monitors the colour state of
selected individual pixels (or clusters of pixels) that correspond to regions of the room
where different types of activity are likely to be occurring. Examples of such regions
might be pixels corresponding to chairs, the floor area or the entrance/exit zones (Figure
2-2(b)). The colour information is collected in RGB (Red, Green, Blue) space and then
converted to the HLS (Hue, Lightness, Saturation) colour space for further processing
[10]. More information about colour spaces is given in Chapter 3. This pixel based
monitoring system is augmented by the use of three infrared detectors arranged in a

triangular formation that monitor movement from one region of the room to another.

A 3 x Passwe
(ﬂ) InfroRed (b)
Chromatic
Systems (PIRCSs)

Pseudo Optical Radar
System (PORS)

Pixcls of Interest
within Field of View
of PORS Unit

Figure 2-2 : (a) MIMS Sensor, (b) Pixels within the field of view of the PORS imager that are
monitored by the MIMS processing system, indicating regions of activity: e.g. chairs, floor and
door.[9]

This approach to monitoring indoor environments can be summarised by several
phases. Firstly, the presence of an object (e.g. a person) at a particular location is
detected by a change in the RGB colour channel values of the selected cluster of pixels
of interest, and if the change occurs in a series of adjacent points over time, movement
of the object is assumed to occur. Secondly, a timer is used to record the duration of
movement that happen at the various locations of interest. It is at this stage that the RGB
information is converted to H, L and S, with the intention to make H represent the
location of the events which occur, L to represent the collective time of the perturbation
across all locations and S to represent the spread of events across the various locations.

The last phase is to use the HLS information to distinguish between movement over long
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and short distances with the intent of discriminating between different types of motion.
The system has been developed for long term use and the data can be recorded and
processed over weeks and months to allow for the detection and identification of
emergent patterns of behaviour amongst the occupants of the rooms — of particular
interest is the ability to detect and identify the emergence of anomalous behaviour that
might indicate the development of a medical condition needing attention from a care
giver. One of the main advantages of this system is that it has derived an intuitive
description of human activity obtained from processing months of data from multiple
rooms in a methodical way. This description can be interpreted by a care giver without
specific technical training, whilst maintaining the privacy of the occupant and enhancing
their perceptions of safety and security.

In the current project, one of the aims is to use normal cheap low resolution image
sensors to capture poor quality imagery at a certain frame rate (10 fps is used during the
experiments) and then track the moving objects that exist in the videos in a reliable way.
This looks more like a traditional automated video-based monitoring system and these
systems usually consist of three main parts: (1) object segmentation and detection (2)
object tracking (3) behaviour recognition. Object segmentation aims to extract objects
from the background. This task is difficult given the existence of camera noise, object
occlusion and unstable environmental conditions. Object tracking aims to label the
objects in the scene and track their properties throughout time. The behaviour
recognition task recognises a variety of object behaviours such as a person walking,
running, falling down or standing. While the uncertainty and complexity of the
behaviours are challenging and are introduced in this thesis, the main focus will be on
the object segmentation and tracking parts of a monitoring system with particular
attention given to cases when input videos are of very low spatial resolution containing
objects of small sizes (from less than a pixel to a few pixels wide) relative to the video

frame.
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2.3 Object detection

Selecting the right features to segment an image plays a critical role in tracking. The

most desirable property of a visual feature is its uniqueness so that the objects can be

easily distinguished in the feature space. Some of the more common visual features are:

Colour: The apparent colour of an object is influenced primarily by two physical
factors, 1) the spectral power distribution of the illumination source and 2) the
surface reflectance properties of the object. In digital image processing, colour is
represented in different ways called colour spaces. A colour space is a
mathematical model describing how colours can be represented as numbers. A
few common examples are RGB, HSV and CIE L*a*b*. More information about
these spaces is given in Chapter 3 as colour cues are used for the detection
process in this thesis.

Edges: Object boundaries usually generate strong changes in image intensities
and edge detection is used to identify these changes. An important property of
edges is that they are less sensitive to illumination changes compared to colour
features. Algorithms that track the boundary of the objects usually use edges as
the representative feature and an evaluation of these algorithms is provided by
Bowyer et al. [11]. They applied eight different techniques on a collection of real
images and compared the results with manually-specified ground truth. They
found that the Canny method, with the Heitger method a close second,
outperformed the others. The Canny detector uses the first derivative of a
Gaussian and it uses four filters to detect horizontal, vertical and diagonal edges
[12]. However it can be a time consuming process as it consists of complex
computations.

Optical Flow: Optical flow is a dense field of displacement vectors which
defines the translation of each pixel in a region. It is computed using the
brightness constraint, which assumes brightness constancy of corresponding
pixels in consecutive frames and any changes in intensity are solely due to
motion [13]. Optical flow is commonly used as a feature in motion-based
segmentation and tracking applications and a performance evaluation of the

various optical flow methods can be obtained from the survey by Barron[14].

2-12



Object detection

The brightness constancy assumption does however pose certain problems as in
reality the brightness constantly changes in a dynamic scene and hence motion
vectors can be wrongly allocated even when no displacement has occurred.

In general, many tracking algorithms use a combination of these features. For the
purpose of this project, colour is used as the main detection feature, as will be explained
in later sections. The optical flow method is not suitable here because of the
continuously changing light intensities that occur in such environments. Edge detection
method is also not thought to be appropriate for low resolution imagery because of the
levels of noise present and also because of the fact that objects of interest can be too
small for their edges to be picked up. However, a variant of the edge detection
mechanism is implemented to detect objects that are less than a pixel in size as these
objects tended to modulate the intensity distributions of certain pixels as they move
across pixel boundaries.

Every tracking method requires an object detection mechanism either in every frame
or when the object first appears in the video. A common approach for object detection is
to use information in a single frame. However, some object detection methods make use
of the temporal information computed from a sequence of frames to reduce the number
of false detections. This temporal information is usually in the form of frame
differencing, which highlights changing regions in consecutive frames. Given the object
regions in the image, it is then the tracker’s task to perform object correspondence from
one frame to the next to generate the tracks. Another closely related technique achieves
object detection by building a representation of the scene called the background model
and then finds deviations from the model for each incoming frame. Any significant
change in an image region from the background model signifies a moving object and the
pixels constituting the regions undergoing change are marked for further processing.

The simplest method of temporal frame differencing compares the current image
with a static background image. If the difference between a pixel in the current image
and the corresponding pixel in the background image is greater than a threshold, the
pixel is classified as belonging to a moving object; otherwise it belongs to the
background. Noise in the difference image can be removed by using a median filter and

then a pixel connectivity algorithm is used to find blobs (there may be more than one).
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The connected components are then labelled by scanning the difference image, pixel-by-
pixel (from top to bottom and left to right) to identify connected pixel regions, i.e.
regions of adjacent pixels which share the same set of intensity values [15]. However
since this method uses a static background image, it cannot deal with changes in
conditions of the environment such as change of lighting conditions or background
motion. This method can be improved by updating the background image regularly and
several ways exist in literature to describe this process. Haritaoglu’s W* system
maintains a pair of values (minimum and maximum) for each background pixel [7].
These values are updated over time to adapt to the changes in the scene. A pixel in the
current image is classified as a background pixel if its intensity is inside the range
(minimum value, maximum value) of the corresponding background pixel. Another
background update method is proposed in Koller et al. [16] where the background image
is updated differently for pixels belonging to background and pixels belonging to
moving objects using weights estimated from the rate of background change. This
method can detect moving objects accurately even when they are moving slowly in the
scene.

Another approach to temporal frame information is to find the absolute difference
between the current frame and the previous frame instead of the background frame
(Frame Differencing). Frame differencing is very quick to adapt to changes in lighting or
motion and objects that stop are no longer detected. However, frame differencing tends
to only detect the leading and trailing edge of a uniformly coloured object and as a
result, it can be very hard to detect the entire object that is moving in a scene. One way
to solve this problem is to adjust the temporal scale (frame rate) at which frame
differencing is done in a technique called ‘double-differencing’, as defined in the

equation below [17]:

D(N)=|I(t)=1(+N)| 2-1)
where /(1) is the frame at time . D(+N) and D(—N) are computed after choosing a value
for N which depends on the size and speed of the object of interest and the frame rate of
the input video. D(+N) contains the object’s current position and its future position,
D(—N) contains the object’s current position and its past position. Next as part of a three-

frame differencing technique, the logical AND operation is taken between D(+N) and

2-14



Object detection

D(=N) and this operation results in an image with only the object in its current position

[17]. A pictorial explanation is shown in Figure 2-3.

[0 | | AND

where the

object is now

D (+N)

Figure 2-3 : Three—frame differencing method using AND operation. D(-N) contains where
object was and where it is now, D(+N) contains where the object is now and where it will be,
and finally after performing AND operation, the current location of the object is obtained.

Another way to detect objects is by using image segmentation algorithms which
partition the image into perceptually similar regions. Every segmentation algorithm
attempts to address two problems, namely the criteria for a good partition and the
method for achieving efficient partitioning. Two common techniques are described next.

The mean-shift technique is an approach to find clusters in the joint colour and
spatial space, [/, u, v, x, y], where [, u, v] represents the colour and [x, y] represents the
spatial location. Given an image, the algorithm is initialised with a large number of
hypothesised cluster centres randomly chosen from the data. Then, each cluster centre is
moved to the mean of the data lying inside the multidimensional ellipsoid centred on the
cluster centre. The vector defined by the old and the new cluster centres is called the
mean-shift vector. The mean-shift vector is computed iteratively until the cluster centres
do not change their positions [18]. Care must also be taken to ensure that the various
parameters to obtain better segmentation, for instance selection of the colour and spatial
kernel bandwidths, are correctly set and the high computational complexity of the

algorithm is a significant barrier to its scalability to practical applications. Nevertheless,
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this technique has been adapted to solve other applications such as edge detection, image
regularisation, and tracking with various degrees of success [19].

Another method is the snakes or active contour method. A snake is a mathematical
description of a contour used to delineate a boundary. Object segmentation is achieved
by evolving the closed contour to the object’s boundary such that the contour tightly
encloses the object region [20]. This method is used in many biomedical applications
where non-rigid amorphous and even non-existent edges occur [21]. Active contours can
be applied either to single images, or to image sequences. In the latter, an additional
layer of modelling is required to convey any prior knowledge about likely object
motions and deformations as will be introduced in section 2.4.3. After initialising a
contour either by a user or automatically, it is then moved until most of the contour
points align with image edge points. Evolution of the contour is governed by an energy
function described in equation 2-2. The energy function quantifies the ‘goodness’ of the
contour - how smooth it is and how well localised it is with respect to the image edges.

(v)ds (2-2)

ext

E(T)= [E, () +E
0

where s is the arc-length of the contour I', Ej,, characterises the curve itself e.g. degree of
bending or size of curve, and E,,, characterises the image at the points where the snake is
currently located e.g. measurement of edginess of the region through which the
boundary passes [21]. The movement of the active contour is then motivated by
minimising this energy. The external energy is supposed to be minimal when the snake
is at the object boundary position while the internal energy is supposed to be minimal
when the snake has a shape which is supposed to be relevant considering the shape of
the sought object. The most straightforward approach grants high energy to elongated
contours (elastic force) and to bended/high curvature contours (rigid force), considering
the shape should be as regular and smooth as possible [22]. The contour can be
initialised either by placing it outside the object region and shrinking until the object
boundary is encountered if the image gradient is used in the energy function or either
inside or outside the object so that the contour can either expand or shrink, respectively,
to fit the object boundary if a region based method is used in the energy function.

Besides the selection of the energy functional and the initialisation, another important
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issue is selecting the right contour representation but this level of detail is a subject of
research in itself and hence outside the scope of this current thesis. As properties, the
snake method can be described as being able to detect non-rigid objects even in
situations when the video images are not captured from completely static cameras.

Another object detection method that is introduced next is the ‘Point Detectors’
method. Point detectors are used to find interest points associated with desirable
properties in images. A desirable quality of an interest point can be its invariance to
changes in illumination and camera viewpoint for example. There are several point
detectors that exist such as the Moravec’s interest operator, the Harris interest point
detector and the SIFT detector, and each detector has its own way of qualifying a point
of interest [23]. As an example, Moravec’s operator computes the variation of the image
intensities in a 4 x 4 patch in the horizontal, vertical, and diagonal directions and selects
the minimum of the four variations as representative values for the window. A point is
declared interesting if the intensity variation is a local maximum in a 12 x 12 patch [24].
An evaluation of the point detectors is given by Schmid et al. [25]. Based on their
evaluation criteria of repeatability (comparing interest points on images taken under
varying viewing conditions) and information content, they found that the Harris detector
outperforms the others.

The final detection method to be discussed is one used in hyper-spectral imagery
obtained from satellite remote sensing. In satellite imagery, a pixel can often represent
more than one object because the spatial resolution of the camera on board the satellite is
not strong enough. Spatial resolution refers to the size of the smallest object that can be
resolved on the ground. As a result, a pixel can represent an area containing more than
one object. To deal with these cases, the remote sensing community has developed
techniques that allow very small objects down to sub-pixel sizes to be detected and since
in this project sub-pixel objects are also involved, these detection algorithms are

explained in the next chapter 3 with a view to adapting them for indoor environments.
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2.4 Object tracking

After motion detection, monitoring systems generally track moving objects from
one frame to another in an image sequence. Tracking is the problem of following image
elements moving across a video sequence automatically and it can be defined as the task
of estimating the trajectory of an object in the image plane as it moves around a scene.
Tracking is an essential building block for vision systems in robotics, biomedical
applications, military guidance applications and surveying. The tracking algorithms
usually have considerable intersection with motion detection during processing and
tracking over time typically involves matching objects in consecutive frames using
features such as points, lines or blobs. A tracker tries to assign consistent labels to the
tracked objects in different frames of a video. Additionally, depending on the tracking
domain, a tracker can also provide information about the object such as orientation, area,
or shape of an object. Tracking objects can be complex due to loss of information caused
by projection of the 3D world on a 2D image, noise in images, complex object motion,
non-rigid or articulated nature of objects, partial and full object occlusions, scene
illumination changes, and real-time processing requirements [27]. Tracking algorithms
in general consist of two main parts: correlation (matching problem) and target's
trajectory estimation (motion problem) [26]. The matching problem requires a similarity
metric to compare candidate pairs of image elements in the previous and current frame.
Trajectory estimation is necessary for pursuing an object and to allow a system to move
in advance and anticipate an object’s movement.

There are three main categories of tracking algorithms [27]. These are the kernel
tracking, point tracking and silhouette tracking methods, and each method can be further
sub-divided depending on the approaches that are employed to achieve a particular
method as shown in Figure 2-4. However it should be pointed out that this classification
is not absolute in the sense that algorithms from different categories can be integrated

together to obtain better tracking results in certain problem situations.
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Figure 2-4 : Tracking categories and methods

24.1 Kernel Tracking

In kernel tracking, the word kernel refers to the object shape and appearance. For
example, the kernel can be a rectangular template or an elliptical shape with an
associated histogram. Objects are tracked by computing the motion of the kernel in
successive frames. This motion is usually in the form of a parametric transformation
such as translation, rotation, and affine or a dense flow field. The algorithms used in
kernel tracking differ in terms of parameters such as the appearance representation used
which can be either view based or template based models [27].

The view based approach involves constructing a small set of orthogonal basis
images from a large set of training images that characterise the majority of the variation
in the training set and can be used to approximate any of the training images [28]. For
each nxXm image in a training set of p images, a 1-D column vector is constructed by
scanning the image from top to bottom and then left to right. Each of these 1-D vectors

becomes a column in a nmX p matrix which is then decomposed using Principal

Component Analysis (PCA) [29] to build a subspace of the training set called the eigen-

space. A linear combination of these eigen-space representations can be used to
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reconstruct any of the training images approximately and tracking is then achieved by
the parameterised matching between the eigen-space and the image. Hence, the object is
not tracked by image motion but by differences in the eigen-space [28]. This approach
enables tracking of an object to be maintained even if the latter’s appearance model
changes dramatically during the tracking process because different views of an object
can be learned before the start (offline) of the tracking process but used during tracking.
The disadvantage of this technique is that it is not very robust to noise, background
clutter and situations involving occlusion.

An alternative algorithm in kernel tracking is the template based approach and more
precisely the template matching approach. Template matching involves finding in the
current image a region similar to the object template (usually in the shape of a square but
there can be other shapes also) defined in the previous image of an image sequence by
using a cross correlation similarity measure in a brute force search manner, i.e. shifting
the target pattern over every location in an image [6]. The templates can be formed by
using features such as image intensities, image gradients and colour histograms. One
example is finding the mean colour of the pixels covered by the template as it moves
around the image. The similarity between the object model, M, and the hypothesised
position, H, is computed by evaluating the ratio between the colour means computed
from M and H. The position which provides the highest ratio is selected as the current
object location [30]. Another example is the combined use of a weighted histogram
computed from a circular region and a mean-shift tracker to represent the object [18]. An
advantage of the mean shift tracker over the standard template matching is the removal
of brute force search together with its high computational demands but at the same time,
this tracker requires that a portion of the object being tracked is inside the circular region
upon initialisation [27]. The matching method, as defined so far, is not appropriate for
the tracking of multiple objects. For this type of tracking, the whole image is modelled
instead of just the object because modelling objects individually does not take into
account the interaction among multiple objects and between objects and background
during the course of tracking. An example interaction between objects can be one object
partially or completely occluding the other. An object tracking method based on

modelling the whole image as a set of layers is proposed by Tao et al. [31]. This
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representation consists of a single background layer and one layer for each object. Each
layer consists of shape priors, motion models such as translation and rotation, and layer
appearance. Layering is performed by first compensating the background motion
modelled by projective motion such that the object’s motion can be estimated from the
compensated image using 2-D parametric motion. Then, each pixel’s probability of
belonging to a layer (object) is computed based on the object’s previous motion and
shape characteristics. The unknowns for each object are iteratively estimated until the
layer ownership probabilities are maximised [27]. However the simultaneous estimation
of the characteristics of each layer is very difficult and the authors instead estimate one
set at a time while fixing the rest.

To summarise kernel tracking, an evaluation of this type of trackers can be obtained
based on tracking single or multiple objects, ability to handle occlusion, requirement of
training, type of motion model, and requirement of a manual initialisation. Motion of the
object can be estimated by maximising the object appearance similarity between the
previous and current frame and this estimation process can be in the form of a brute
force search. To reduce the computational cost of this type of search, one can limit the
object search to the vicinity of its previous position. With the object detected in this way,
a possible next step is to use Kalman filtering or particle filtering (discussed in next
section) to predict the location of the object in the next frame. It must be pointed out that
the tracking described so far is essentially following a point in an image sequence and
the benefit of using the Kalman filter is to smooth the object trajectory. The filter has
very little effect on improving the object detection part which is crucial for achieving

robustness of the tracker.

2.4.2 Point tracking

The second main tracking technique category is point tracking. In this technique,
objects detected in consecutive frames are represented by points, and the association of
the points is based on the previous object state which can include object position and
motion. This approach requires an external mechanism to detect the objects in every
frame. Point correspondence methods can be divided into two broad categories, namely,

deterministic and statistical methods.
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Deterministic methods involve the minimisation of a cost function formulated as a
combinatorial optimisation problem which associates each object in frame ¢ — 1 to a
single object in frame ¢ using a set of motion constraints [27]. These constraints which
are usually described as being part of a correspondence problem are : ‘proximity’ which
assumes the location of the object would not change notably from one frame to other,
‘maximum velocity” which defines an upper bound on the object velocity and limits the
possible correspondences to the circular neighbourhood around the object, ‘path
coherence’ (smooth motion) which assumes the direction and speed of the object does
not change drastically, ‘common motion’ which constrains the velocity of objects in a
small neighbourhood to be similar and ‘rigidity’ which assumes that objects in the 3-D
world are rigid, therefore, the distance between any two points on the actual object will
remain unchanged [27]. One approach to solve the correspondence problem in a
deterministic way is proposed by Sethi and Jain who used the path coherence constraint
[32]. This algorithm considers two consecutive frames, and is initialised by the nearest
neighbour criterion. It hypothesises the correspondences between the measurements and
then repeatedly exchanges correspondences between trajectories that better match the
optimisation criterion so as to minimise the cost. A modified version of the same
algorithm, which computes the correspondences in the backward direction (from the last
frame to the first frame) in addition to the forward direction, also exists. The
disadvantages of this algorithm are that it assumes that there are no missing
measurements by occlusion or otherwise, and second it does not allow for spurious
measurements or false alarms. Another approach to solving the correspondence problem
is one that makes use of the common motion constraint together with path coherence as
proposed by Veenman et al. [33]. This approach can handle occlusion and misdetection
errors, however, it is assumed that the number of objects is the same throughout the
sequence, 1.e., no object enters or exits.

The other approach to solve correspondence is by using statistical methods.
Statistical correspondence methods use the state-space approach to model the object’s
properties such as position, velocity and acceleration. These methods treat the tracking
problem as inferring the object’s state by taking the measurement and the model

uncertainties into account. Measurements usually consist of the object position in the
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image, which is obtained by a detection mechanism. In general, object motions undergo
random perturbations and measurements obtained from sensors invariably contain noise.
Statistical methods can be considered to be more appropriate to deal with these cases as
they take the measurement and the model uncertainties into account during object state
estimation [27]. The use of predictive filters, e.g. Kalman filter and particle filter, is the

answer to deal with these cases.

2.4.2.1 State-space models and estimation

State-space models are a notational convenience for estimation and control
problems [34]. The state of a dynamic system contains those variables that provide a
representation of the internal condition or status of the system at a given instant of time
[35]. A state-space model usually consists of two sets of equations, the system equations
and the observation equations. The system (dynamic) equations model the dynamics of
state variables based on external influences, such as input and noise, and the observation
equations describe how measurement of state variables is done typically in the presence
of noise [34]. The problem of state estimation concerns the task of estimating the state of
a process while only having access to noisy and/or inaccurate measurements from that
process. It is a very common problem setting, encountered in many disciplines within
science and engineering. Predictive filters can be used to estimate the optimal state of a
system [36]. In general, they use the mathematical model of the system dynamics to
propagate the state's values and uncertainties, and they then combine this preliminary
estimate with measurements made from observations. There are several predictive
filters, each appropriate for a different type of uncertainty representation and dynamic
modelling. To understand how predictive filters work, it is useful to understand some
basic statistical concepts and then see how they are applied to deal with state estimation.

One way to describe a random variable is by making use of statistical indicators
such as the mean and variance. The mean or expected value E(X) of a random variable is
given by iP,.xi for a discrete random variable’s case where n possible outcomes and

i=1
corresponding probabilities exist. This expected value is also known as the first

statistical moment of the variable. The second moment, called variance, is a statistical
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indicator of great use given by E‘(x —E (x))z‘ Variance is a measure of dispersion about

the mean and it is a very useful statistical property for random signals because
knowledge of the magnitude of the variance of a signal that was otherwise supposed to
be ‘constant’ around some value (the mean) enables us to get a sense of how much jitter
or ‘noise’ is in the signal. ‘Mean’ and ‘variance’ measures are used to represent random
variables in a parametric way. If the data are of multivariate nature (i.e. consisting of
multiple random variables), a covariance matrix can be obtained. This covariance matrix
is of great importance in state-space modelling. The list of probabilities associated with
each possible value of a discrete random variable is called its probability distribution. A
special representation of a probability distribution known as the Normal or Gaussian
distribution has historically been popular in modelling random systems for a variety of
reasons. As it turns out, many random processes occurring in nature actually appear to
be Normally distributed, or very close to a Normal distribution. In fact, under some
moderate conditions, it can be proved that a sum of random variables with nearly any
distribution tends towards a Normal distribution. The theorem that formally states this
property is called the central limit theorem [37]. The standard normal distribution is the
normal distribution with a mean of zero and a variance of one, and it is represented
graphically by a familiar ‘bell-shaped’ curve. In the multivariate case, a Gaussian
random variable is described by a mean vector and a covariance matrix. Moreover if a
linear transformation is applied to the mean vector and covariance matrix, the resulting
random variable will still be a Gaussian. This ease to just use matrix multiplications to
propagate covariance and mean across linear transformations combined with the
computationally efficient representation of random variables with just a vector and a
matrix are used extensively and with great success in Kalman filters [35]. The
characteristics of the Kalman filter will be explained in sub-section 2.4.2.2 but next here,
the state-space model is described.

To understand this concept of state-space, consider a moving object in a scene. The
information representing the object, e.g., location and speed, is defined by a sequence of

states represented as state vectors X, :t=1,2,... The change in state over time is

governed by the dynamic equation,
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X, =F-X,_ +W, (2-3)
where W, is a white noise process at r=1,2,...etc. A discrete-time white noise is a
signal that does not have any correlation with itself except at present time, i.e. if W, isa
white noise process, then the random variable W, is always uncorrelated with W, unless
m = n. Another definition of white noise is that its power is equal at all frequencies [35].
The relationship between the measurement and the state is specified by the measurement
equation,

Z,=H-X,+N, 2-4)
where N, is another white noise process independent of W , . F is a state transition matrix
that relates X, to its previous value X,  and H provides the linear connection between
the unobserved state vector X, and the measured vector Z, . These two equations are

often referred to respectively as the process model and the measurement model, and they
serve as the basis for virtually all linear estimation methods. The goal is to estimate the

state X, based on the knowledge of the system dynamics and the availability of noisy

measurements. The amount of information that is available to perform the estimation is

problem dependent. If all the measurements up to and including time ¢ are available to
use in estimating X, , then this is called an a posteriori estimate denoted by X S [35]. If all
the measurements before (but not including) time 7 are available for estimation, then the
estimate obtained is called an a priori estimate denoted by X .. These two types of

estimation are often referred to as prediction and correction respectively, and X 'is

expected to be a better estimate than X, because more information is used during the

estimation process. If N measurements after time  are available to use in estimating X ,,

then a smoothed estimate is obtained denoted by X s 10 )

To bring the state-space model into context with the tracking review being done
here, if there is only one object in the scene, the state can be simply estimated by the two
equations 2-3 and 2-4. If there are multiple objects in the scene then measurements need

to be associated with the corresponding object states. For the single object case, if F and
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H are linear functions and the initial state X ,and noise have a Gaussian distribution, then

the optimal state estimate is given by the simple Kalman Filter. In other cases when the
process model is not linear and the errors are not assumed to be Gaussian, there exist
other filters such as the Extended Kalman Filter, Unscented Kalman Filter and the

particle filter that are more appropriate for these cases [35].

2.4.2.2 Kalman filters

The Kalman filter is named after Rudolf Kalman who first introduced the algorithm
in 1960 [38]. It has been employed in various applications including process control
systems, vehicle tracking, marine navigation, geology, demographic estimation and
stock price prediction. It estimates the instantaneous state of a linear dynamical system
perturbed by Gaussian white noise by using measurements that are linearly related to the
system state but are corrupted by Gaussian white noise [39]. The filter minimises
recursively the mean square estimation error without directly observing the system state
or knowing the nature of the modelled system. One of the major characteristics behind
the success of the Kalman filter is that it processes all available measurements,
regardless of their precision, to estimate the current value of the variables of interest. It
does it by using (1) the knowledge of the system and measurement device dynamics, (2)
the statistical description of the system noise, measurement errors and uncertainty in the
dynamical model, and (3) any available information about initial conditions of the
variables of interest [40]. Figure 2-5 shows a schematic summary of a Kalman filter. A
system is driven by some known controls and measuring devices provide the values of
certain quantities. Knowledge of these system values is all that is explicitly available
from the physical system for estimation purposes. The Kalman filter estimates the
system state variables based on a signal and noise as input. The system state itself
evolves with time under the effect of random perturbations or control inputs. The
Kalman filter then provides an optimal estimate of the unobserved system states and
their uncertainties based on noisy measurements of the process. The Kalman filter
operates online so that the best estimate of the system state and its uncertainty can be

computed by updating the previous estimates with new measurements.
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Figure 2-5 : Typical Kalman filter diagram

To come back to what is contained in the algorithm itself and how the latter
executes itself, the Kalman filter estimates a process by using a form of feedback
control: the filter estimates the process state at some time and then obtains feedback in
the form of (noisy) measurements. As such, the equations for the Kalman filter fall into
two groups: time update equations and measurement update equations. The time update
equations are responsible for projecting forward (in time) the current state and error
covariance estimates to obtain the a priori estimates for the next time step. The
measurement update equations are responsible for the feedback, i.e. for incorporating a
new measurement into the a priori estimate to obtain an improved a posteriori estimate.
The time update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations [34]. To
understand how the Kalman filter, a real case scenario is considered next. For example,
consider the case of a ball moving on a field with some sort of sensor mechanism that

can detect the location of the ball at certain points in time. The state vector X, that best

describes this motion is one that contains the position and the speed of the object being

tracked in two-dimensional Cartesian coordinates at discrete time z. It can be defined as:

Xt = [xt Y. v, Vyr]T (2-5)

Assuming a constant velocity and white noise acceleration model is used, the filter

can be initialised by using the two-point differencing method [41]. This method involves
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using two consecutive position measurements where the latest one is taken as the initial

position estimate and differencing them gives the initial velocity estimate. At any instant
in time, the new position (xt, y,) is the old position plus the velocity (vx,,vy,). This can
be represented by equation 2-6 with A equal to the time interval between samples, and

vx =dx/dAandvy = dy/dA.

X, 1 0 A O Xy
01 0 A
Y s yt—l (2-6)
VX, 00 1 0 VX,
vy, 0 0 0 1 VY,

Once the filter is running, an estimate for the next measurement can be obtained by

using information from previous data. The measurement process is represented by a state

measurement matrix H and its estimate m, is given by:

1 00 O

H= 2-7)
01 00

m  =H X, (2-8)

When an actual measurement is made, another vector m, is obtained and the difference

(m,—m;) gives a new value called innovation. This new knowledge is assigned a

weighting called the Kalman gain K, using equation 2-9 where N, represents the
measurement noise and E; is the covariance error matrix. The main role of the matrix K,
is to decide how much of the innovation should be used in later stages, i.e. a new state is
estimated using the Kalman gain matrix and the innovation. In an extreme case when E,
is zero, the prediction is perfect and hence K, is equal to zero too. The value of X, is
temporary and is only used in the next stage, i.e. it is not carried over for the next
iterations of the filter, to perform optimal estimation as it tries to minimise the
covariances. The error matrix E, is also updated at this stage using the information from

all previous measurements.

K,=E, -H -(H-E,-H +N,)" (2.9)

X, =X +K,(m —m") (2-10)
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E =(1-K,-H)-E (2-11)
The tracking (or prediction) part of the filter is then performed when state X,,, and

new error matrix E, are predicted by calculating equations 2-12 and 2-13.

X, =F-X, (2-12)
E.,=FE F +N, (2-13)
1 0 A O
01 0 A
F= (2-14)
001 0
0 0 0 1

where F is the state dynamical matrix. Ny is called the process noise and it is represented

by a covariance matrix with a small constant noise intensity parameter g. This

parameter is related to the velocity fluctuations which have to be small compared to the

actual nearly constant velocity of the object being tracked [41]:

v 0 1a o
3 2
0 1& 0 lAz )
N.=|, 3 2 g (2-15)
—A 0 A 0
2
0 lA2 0 A
L g J

After equation 2-13, the filter returns to equation 2-9 for the next time interval and

the whole filter equations are calculated again. When no measurement is made, only
equations 2-12 and 2-13 are calculated as part of a prediction only stage. This
description of the simple Kalman filtering process is summarised pictorially in Figure

2-6 and it is the basis of why Kalman filters are so useful in many tracking applications.
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Figure 2-6 : Complete picture of the operation of the Kalman filter

2.4.2.3 Other predictive filters

Many processes in real life are unfortunately not linear. One way to get round this is
by making use of the Extended Kalman Filter (EKF). The EKF uses an initial
linearisation stage in something akin to a Taylor series to linearise the estimation around
the current estimate using the partial derivatives of the process and measurement
functions to compute estimates even in the face of non-linear relationships [34]. It is
important to note that a fundamental flaw of the EKF is that the distributions (or
densities in the continuous case) of the various random variables are no longer normal
after undergoing their respective nonlinear transformations. Another way to deal with
non-linear systems is by using the Unscented Kalman Filter (UKF) technique. Instead of
linearising the functions, this is a transform that uses a set of points, and propagates them
through the actual nonlinear function, eliminating linearisation altogether [42]. The
points are chosen such that their mean, covariance, and possibly also higher order

moments, match the Gaussian random variable. Mean and covariance can be
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recalculated from the propagated points, yielding more accurate results compared to
ordinary function linearisation.

If the noise processes are non-Gaussian or if the degree of non-linearity is
significant, then another type of filter, called the particle filter, can be used. Sometimes a
Gaussian random variable is not able to describe, not even in an approximate way, the
state of a system. For example, a Gaussian random variable is not able to represent
simultaneously two strong groups of possibilities or a time series signal with both abrupt
and gradual changes. One possible approach to deal with this limitation is to use a
particle-based, or sample-based, representation of the probability density function [43].
A particle-based representation of a distribution is not described by a few parameters;
instead it is described by a large number of samples of the state space. In Kalman filter
approach, time and effort are focused on how different state coordinates or multiple
models can be used to limit the approximations. In contrast to this, the particle filter
approximates the optimal solution numerically based on a physical model, rather than
applying an optimal filter to an approximate model [44].

The particle filter, also known as the Monte Carlo filter or sequential importance
sampling filter, is a probability-based estimator of that is very effective for non-linear
systems [35]. To understand how it works, consider equations 2-3 and 2-4 used before to
describe the state-space model. The difference this time is that F and H are non-linear
function mappings describing the evolution of the state transitions and relationship
between the unobserved state and the measurement. The goal of the filter is to

approximate the conditional probability density function (pdf) of X, based on the
measurements Z,, Z, ..., Z,, i.. a pdf p(X,1Z,). Assuming that the pdf of the initial
state p(XO) is known, a set of N samples known as particles are generated. These
particles are denoted by X, ,.(i =1,...,N)where the parameter N is chosen by the user as

a trade-off between computational effort and estimation accuracy [35]. Then at each
time instant &, the following algorithm is performed:

® The a priori particles X, are obtained by using process equation 2-3 for each

value of i as part of the time propagation step.
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® The relative likelihood g,of each particle is calculated conditioned on the

measurement Z, . This is done by evaluating the pdf p(Zk | X, ,.) on the basis of

the non-linear measurement equation 2-4 and the pdf of the measurement noise.

® A set of a posteriori particles X,  are generated on the basis of the relative

likelihoods g, is a step called the resampling step.

* Given the fact the a posteriori particles are now distributed according to the pdf

p(Xx L IZk), the desired statistical measures of this pdf such as the mean and

covariance can then be calculated.

The resampling step is one very important part of this algorithm and several ways to
perform this step exist. An additional resampling is sometimes employed to eliminate
samples with very low weights. The efficiency and accuracy of the particle filter depend
mainly on two key factors: the number of particles used and the resampling function
used to re-allocate these particles at each iteration.

As a summary of these predictive filters, one can say that for a linear system with
Gaussian noise, the Kalman filter is optimal. In a non-linear system, the particle filter
may give better results than the Kalman filter with additional computational effort. The
Kalman filter performs poorly in systems with non-Gaussian noise and a particle filter
will normally give better results in these situations. For these systems, the UKF provides
a balance between the low computational effort of the Kalman filter and the high
performance of the particle filter, as shown in Figure 2-7 [35]. When deciding which
filter to choose for a particular application, one should always first try to model a system
as a linear Gaussian system, and use the Kalman filter. If the results are not satisfactory,
and the problem is thought to lie in either the linear dynamics or the Gaussian
description of the random variables, then one can proceed to use more complex
distribution representation and predictive techniques. The correct characterisation of the
distribution of the observation's noise is essential for the quality and correctness of the

final state estimation.
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Figure 2-7 : Performance of the filters in (a) non-Gaussian systems (b) Linear Gaussian
systems [35]

2.4.2.4 Multiple object tracking

The filters described in the previous sub-section assume a single measurement at
each time instant, that is, the state of a single object is estimated. However there are
cases when more than one object needs to be tracked. When tracking multiple objects
with Kalman or particle filters, the most likely measurement for a particular object must
be associated deterministically to that object’s state, that is, the correspondence problem
needs to be solved before these filters can be applied [27]. The simplest method to
perform correspondence is to use the nearest neighbour approach. However, if the
objects are close to each other, then there is always a chance that the correspondence is
incorrect. The Joint Probability Data Association Filtering (JPDAF) is a popular
approach to tracking multiple moving objects [45, 46]. It involves the calculation of a
Bayesian estimate of the correspondence between features detected in successive frames
of the sensor data and the different objects to be tracked. Kalman filters are then used to
estimate the states of the individual objects. A major limitation of the JPDAF algorithm
18 its inability to handle new objects entering the field of view (FOV) or already tracked
objects leaving the FOV [27]. The Multiple Hypothesis Tracking (MHT) algorithm,
originally developed by Reid [47], does not have this shortcoming. Instead of trying to
establish a motion correspondence using only two frames, the correspondence decision
is deferred until several frames have been examined. The MHT algorithm maintains

several correspondence hypotheses for each object at each time frame. The final track of
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the object is the most likely set of correspondences over the time period of its
observation. The algorithm has the ability to create new tracks for objects entering the
FOV and terminate tracks for objects exiting the FOV. It can also handle occlusions, that
s, continuation of a track even if some of the measurements from an object are missing.
MHT is an iterative algorithm whereby each iteration begins with a set of track
hypotheses. Each hypothesis is a collection of disjoint tracks. For each hypothesis,
prediction of each object’s position is made for the next frame, and then the predictions
are compared with actual measurements by evaluating a distance measure. A set of
correspondences (associations) are established for each hypothesis based on the distance
measure, which introduces new hypotheses for the next iteration. Each new hypothesis
represents a new set of tracks based on the current measurements. Note that each
measurement can belong to a new object entering the field of view, a previously tracked
object, or a spurious measurement. Moreover, a measurement may not be assigned to an
object because the object may have exited the field of view, or a measurement
corresponding to an object may not be obtained [47]. The latter happens when the object
is occluded or it is not detected due to noise. The MHT algorithm is computationally
exponential both in memory and time and algorithms have been developed by Cox and
Hingorani to reduce this computational cost [48].

To summarise point tracking technique, point trackers are suitable for tracking small
objects which can be represented by a single point (single point representation). Multiple
points are needed to track larger objects. Points are detected in consecutive frames and
they are made to correspond to each other by two main categories, namely, deterministic
and statistical methods. The deterministic method involves the minimising a cost
function formulated as a combinatorial optimisation problem which associates each
object in frame ¢ — 1 to a single object in frame ¢ using a set of motion constraints.
Statistical methods use the state space approach to model the object properties such as
position, velocity and acceleration and they also take uncertainties into account. The
Kalman filter is the most common algorithm used in approaching the state-space model
solution but for certain situations, other predictive filters such as the EKF, UKF and the

particle filter are more suitable.
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2.4.3 Silhouette tracking

The final tracking category to be described in this literature review is silhouette
tracking. This method has been developed to deal with objects that may have complex
shapes, for example, hands, head, and shoulders that cannot be well described by simple
geometric shapes. Tracking is performed by estimating the object region in each frame
and the information encoded inside the object region is used. This information can be in
the form of appearance density and shape models which are usually in the form of edge
maps. Given the object models, silhouettes are tracked by a method called contour
evolution which can be considered as object segmentation applied in the temporal
domain using the object models generated from the previous frames. The goal of a
contour based object tracker is to find the boundary between the object and the
background in each frame, such that the object region is tightly enclosed within the
contour. There are two main ways of achieving this; first is by using state space models
to evolve the contour and the second is by performing direct minimisation of a contour
energy function.

In the probabilistic state space approach, the object’s state can be defined in terms
of the shape and the motion parameters of the contour. The state is updated at each time
instant such that the contour’s a posteriori probability is maximised. This probability
depends on the prior state and the current likelihood, which is usually defined in terms of
the distance of the contour from observed edges. An example is the one developed by M.
Isard whereby they define the object state in terms of spline shape parameters and affine
motion parameters [49]. The measurements consist of image edges computed in the
normal direction to the contour and the state is updated using a particle filter. In order to
obtain initial samples for the filter, the state variables are computed from the contours
extracted in consecutive frames during a training phase. During the testing phase, the
current state variables are estimated through particle filtering based on the edge
observations along normal lines at the control points on the contour. Another example is
proposed by Chen et al. [50]. In this implementation, the contour is parameterised as an
ellipse and each contour node has an associated Hidden Markov Model (HMM). An
HMM is a doubly stochastic process with an underlying stochastic process that is not

observable (it is hidden), but can only be observed through another set of stochastic
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processes that produce the sequence of observed symbols [51]. The state of each HMM
is defined by the points lying on the lines normal to the contour control point, with the
hidden states of the HMM being the true contour points of each normal line. The
observation likelihood of the contour depends on the background and the foreground
partitions defined by the edge along the normal line on contour control points. The state
transition probabilities of the HMM are estimated using the Joint Probability Data
Association Filtering [50].

These two examples represent the contours using explicit representation, e.g. a
spline, but explicit representations do not allow topology changes such as region split or
merge. A contour tracking method based on direct minimisation of the energy functional
can, for its part, use the implicit representations and allow topology changes. In this
method, algorithms evolve the contour onto the object region by minimising the energy
functional and the contour energy is computed using temporal information in the form of
the temporal gradient which is obtained by calculating the optical flow. There are some
similarities with the active contour technique described previously in section 2.3 and
more information about the technicalities of the current algorithms is given by Mansouri
et al. [52] and Bertalmio et al. [53].

To summarise the silhouette tracking category, one can say that the most important
advantage of a contour tracker is that it can model a large variety of object shapes.
Contours are represented by explicit (control points and splines) or implicit (level sets)
representations with the use of these representations depends on the context of the
application. Contour trackers are employed when tracking the complete region of an
object is required. Qualitatively, the contour based methods can be compared on the
basis of requirement of training and occlusion handling. Moreover some algorithms only
use information on the contour boundary for evolution while others use the complete
region. Occlusion handling is another important aspect of silhouette tracking methods.
Usually methods do not address the occlusion problem explicitly. A common approach
is to assume constant motion or constant acceleration where, during occlusion, the object
silhouette from the previous frame is translated to its hypothetical new position. Another
important issue related to silhouette trackers is their capability for dealing with object

split and merge. For instance, while tracking a silhouette of a person carrying an object,
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when the person leaves an object, a part of the person’s contour will be placed on the left
object (region split). These topology changes of region split or merge can be handled

well by implicit contour representations [27].

2.4.4 Small object tracking techniques

In addition to these three categories of tracking techniques, another ‘category’ is
introduced next which deals with the detection of very small objects, i.e. objects
occupying less than a pixel to a few pixels on an image plane. It is not included as a
proper tracking category in this literature review in the same breath as the three
described so far because several techniques are used with the aim to satisfy the single
objective of detecting a small object or target. This type of detection has certain specific
challenges such as the difficulty to identify objects by their shape and spatial detail, and
the increased impact of noise. The detection of small objects is important in some
applications, e.g. biomedical experiments, vehicle tracking for transportation systems or
target tracking for military purposes. As an example, one of the most difficult goals of
Automatic Target Recognition (ATR) is to spot incoming targets at long range where the
motion is small and signal to noise is poor, and to be able to track such targets long
enough to identify whether the target is approaching in a dangerous manner or not [54].

One approach is to exploit the useful properties of wavelet filters to provide
detection of the motion of these small, low-contrast objects [54]. Wavelet filters have
been shown to be superior than Fourier methods for detecting localised high frequency
behaviour in an otherwise predominantly low frequency signal [55]. A wavelet
transform is a mathematical function used to divide a given function, e.g. an image, into
different frequency components called wavelets which are of limited duration [15]. The
approach that is adopted in this ATR system performs a temporal filtering of the image
sequence using a wavelet filter rather than a spatial filtering across the image. By
combining evidence over several frames coherent motion stands out above the noise,
providing a much higher signal to noise ratio. For each filtered image, the absolute
values of the wavelet coefficients are used to estimate potential positions of objects. This
is then thresholded and passed through a morphological opening process (erosion

followed by dilation) which removes isolated noise regions [15], leaving just the targets
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and noise regions. Depending on the pixel connectivity criterion used [15], a set of
connected regions can be obtained and is then passed to a Kalman filter for tracking
[54]. One main drawback of this method is that the targets can become smeared over a
larger region of the images if the wavelet filters used are not chosen correctly.

In the biomedical field, single particle tracking is the use of computer analysis of
video images to follow the sub-micron motion of micro-organisms under microscopic
observation [56]. Several techniques have been developed to track these very small
elements which very often have dimensions less than the resolution of the microscope.
One such technique is the direct fitting of Gaussian curves to intensity profiles [57]. As
the fluorescent images of these particles are diffraction-limited spots with a Gaussian
intensity distribution, fluorescent spots in each image can be located by an image
analysis routine which identifies peaks having approximately the diffraction limited
width. One disadvantage of this technique is that it performs poorly when the spots to be
detected are closely spaced [57]. Another technique is one based on correlation [58].
This method compares an image / to a kernel K which contains the object being tracked.
K is shifted relative to / in one-pixel increments. For each increment, a correlation value
is calculated that describes how well the values in K match those of the underlying
image, I. At the relative shift where K and I are most similar, one finds a maximum in
the correlation matrix. However, correlation tends to match the brightest regions of two
images rather than the best topographical fit, resulting in errors in some cases, and it is
also more computationally intensive than the Gaussian fitting technique [56]. Another
example based on correlation is the Sum-Absolute Difference (SAD) technique [59].
SAD determines the translation of [ relative to K that minimises the sum of absolute
differences between the overlapping pixels. It has been used in tracking of speckles and
it is also simple to implement in digital hardware as it requires only a single difference
operation [60]. Other techniques that deal with low resolution imagery can also be
adapted to deal with tracking of small objects. One very good example is the super-
resolution technique which uses many low resolution frames in an image sequence to

increase the general quality of the images and hence make object detection easier [61].
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2.5 Behaviour recognition

Monitoring systems usually come with some kind of human behaviour recognition
facility. Most of these systems work on human motion recognition in the context of
walking recognition or simple activity detection in limited known spaces. There are two
main approaches that are commonly used for this purpose. These are the template
matching and the state-space techniques respectively [62].

In template matching, human behaviours are characterised by patterns in the first
place. Then, the features of a person are extracted from image sequences and matched
with the pre-defined patterns to recognise the person's behaviour. For example, Bobick
& Davis [63] generate motion-energy images (MEI) and motion-history images (MHI)
from an image sequence to interpret motion. The MEI represents the changed pixels in
the image sequence. The motion images in a sequence are calculated by differencing
successive frames and then thresholding into binary values. These motion images are
accumulated in time to form the MEIL, which are binary images containing motion blobs.
The MHI is computed from the MEI where moving pixels have higher intensities. The
template of each behaviour consists of MEI and MHI derived from training examples of
the behaviour viewed from different angles. The behaviour of a person is detected by
matching the MEI and MHI of the image sequence to the behaviour templates. Although
template matching techniques are computationally inexpensive, they are sensitive to the
variance in the movement duration and in the various patterns of the same activity that
exist [62].

The state-space approach on the other hand defines each static posture as a state and
motion sequence as a composition of these states [62]. The states together with the
transitions between the states form part of a deterministic model called a Finite State
Machine [64]. Under such a scenario, duration of motion is no longer an issue because
each state can visit itself repeatedly. This approach defines a set of states for a single
person or multiple people. Each behaviour is represented by a model, which consists of
some states and the probabilities of transitioning from one state to another. From the
video sequence, a sequence of states is extracted. Then, this sequence is matched with
the predefined behaviour models to detect the corresponding behaviour of single or

multiple people. In the system developed by Ayers et al. [64], an accurate description of
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the layout of the scene is needed. It uses prior knowledge about the layout of the room
such as entrance and exit points, about the location of objects of interest such as
telephones and beds, and about how certain objects are used and what sorts of actions
human beings can do. This knowledge allows the system to use context to help make
decisions about which actions are occurring in a room and hence reduce unnecessary
computation. For more complex behaviours, the current deterministic model has its
limitations as it cannot account for uncertainties. To deal with these, probabilistic

models in human behaviour recognition can be used [62].

2.6 Summary

This chapter is an attempt to provide a survey on the various tracking techniques
that exist and examples of where they are being applied are also given. However one has
to appreciate that this is not an exhaustive list and various other combinations of object
detection and tracking exist. The first stage of a monitoring or surveillance system is to
detect the object/s by using various segmentation techniques. Several detection
techniques have been discussed with each one used because the requirements are
different. One detection technique that is not introduced in this chapter but which is of
great importance to this thesis is one used in hyper-spectral imagery obtained from
satellite remote sensing images to detect small objects. This technique is given more
attention in the next chapter 3 with a view to adapting it for detection in indoor
environments. Another stage of a monitoring system that is of upmost importance to this
project is the actual tracking of an object of interest. Several techniques were described
here with special attention given to the State-Space model and Kalman filters. A state-
space model usually consists of two sets of equations, the system equations and the
observation equations, and predictive filters such as the Kalman filter are very powerful
tools in solving these equations. This is implemented and demonstrated in later chapters.
The final section in this chapter talked briefly about the contribution of human behaviour
recognition in the development of a visual monitoring system. The next chapter gives
more information about the other parts of the monitoring system such as the image
sensors to be used, the colour spaces to be chosen and the detection mechanisms to be

implemented.
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3. Related information on processing techniques

3.1 Introduction

The previous chapter gave a description of various object detection and tracking
techniques that are currently used in monitoring systems. In this chapter, information
more relevant to this thesis is given starting from how an image sequence is captured
from a low resolution colour sensor, followed by an examination of the theory behind
colour spaces and ending with the use of pixel un-mixing techniques on low resolution
images to detect the presence of objects. The main types of sensors that need to be
investigated to fit in the generic monitoring system diagram (Fig 2-1) are digital image
sensors, and particularly those that allow colour to be sensed. Several low resolution
sensor technologies exist and each one has its own advantages and disadvantages
depending on the manufacturing process and the intended use. The ability to sense
colour is usually incorporated by selecting three specific light wavebands from the
visible electromagnetic spectrum and mixing them together. The selection can be done
by using filters. After a colour image is recorded, there are several ways to represent that
colour. These representations, known as colour spaces, have been developed over the
years to address specific requirements. In this thesis, one of the requirements is to try to
achieve colour constancy, which is the ability of a vision system to diminish or in the
ideal case remove, the effect of a changing illumination. The colour distribution of an
object in a scene differs under different lighting conditions and even under the same
lighting conditions, background colours and shadows may influence colour values that
are recorded. Furthermore, if an object is moving, the apparent colour values change as
the object’s position relative to the camera or light changes. Another requirement before
selecting the colour space is to make sure it is compatible with the un-mixing technique

to detect small objects as described in sections 3.4 and 3.5.
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3.2 Image sensors

Sensors differ by their modes of operation, operating frequencies, nature of output
signals, and resolutions. There are two basic modes of operation: (1) Active sensors, e.g.
microwave radars, provide their own source of target illumination, and they are equipped
with both a transmitting and a receiving system. (2) Passive sensors do not provide target
illumination and depend on the surrounding environment for detection. Passive sensors,
e.g. photographic cameras that use reflected light energy as their source of ‘target’
illumination, consist of only a receiver system. Optical and infrared sensors can also be
used to produce multi-spectral images using various light wavelengths (or frequencies)
to produce these images.

An image sensing device can be defined as being one that converts an optical image
to an electric signal when incident light hits it. Figure 3-1(a) shows the components of a
single sensor with a light sensitive material called a photodiode or photosite. The filter is
used to select and allow certain wavebands of light only to reach the photodiode. The
latter records the intensity or brightness of the light that falls on it by accumulating a
charge; the more light, the higher the charge and hence the output voltage waveform
obtained is generally proportional to the amount light entering the diode [15]. In order to
capture a 2-D image, each of these individual sensors can be arranged in the form of a 2-
D array (or rows and columns if the matrix notation is used) as shown in Figure 3-1(b).
The brightness recorded by each photosite is then stored as a set of numbers that can
then be used to set the brightness of dots on a screen or density of ink on a printed page
to reconstruct the image. Each photosite can represent one pixel in the captured image,
and the higher the resolution, as specified by the number of pixels, the sharper the
images will be. An image sensor is typically a charge-coupled device (CCD) or a
complementary metal-oxide-semiconductor (CMOS) active-pixel sensor. Before going
on to describe the functioning and benefits of these two types of image sensors, it is
good to know what characteristics make a sensor good. Some of the most important
characteristics of a sensor are its linearity, sensitivity, signal-to-noise level, wavelength

response, charge transfer efficiency and size [66].
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Figure 3-1 : (a) Basic single imaging sensor arrangement (b) Layout of photo-sensitive sites as
an array (or ‘matrix’) of sensors.

Linearity or linear response refers to the sensor’s reaction to varying levels of
radiation intensity. This response is usually called gamma to describe the slope of a
response curve when the sensor response is plotted against the radiation intensity [66]. A
gamma of 1 corresponds to a sensor with a linear response to radiation. A gamma of less
than 1 corresponds to a sensor that compresses the dark end of the range, while a gamma
greater than 1 corresponds to a sensor that compresses the bright end.

Another characteristic of a sensor that needs to be taken into consideration is its
sensitivity. A sensor requires a discrete amount of time in which to accumulate enough
photons to generate a strong signal. Sensitivity is the measure of a sensor’s dynamic
response to scene brightness [66], and the response curve for a light sensitive sensor can
be divided into three parts: the dark area, the linear area and the saturation area. The dark
area of the response curve is concerned with the sensor's response to very low light. The
output of the sensor in the dark area is very low, is noisy and is unpredictable. As the
light falling on a sensor is increased gradually, the sensor’s response becomes almost
linear whereby the output of the sensor begins to increase predictably as the amount of
light increases. The area of linearity is also called the dynamic range of a sensor [66],
which is a measure of the maximum and minimum intensities that can be simultaneously
detected in the same field of view. The output remains linear until a stage called the
saturation point. An increase the light intensity beyond this point results in a non-linear

increase in the output of the sensor, as shown in Figure 3-2. If some pixels of an image
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sensor are in the saturated zone, the charge caused by any additional photons (light) will
overflow and have no effect on the pixel values, resulting in clipped or overexposed
pixels. Blooming occurs when this charge flows over to surrounding pixels, brightening

or overexposing them in the process [66].

Dark Area Linear Area

Sensor response

Radiation intensity

Figure 3-2 : Sensor response curve

The signal-to-noise ratio (commonly abbreviated S/N or SNR) of a sensor is also an
important feature. Several factors contribute to sensor noise: the non-linear
characteristics of the analogue-to-digital converter, electronic noise from other
components and high-frequency clocks, degradation of the amplifier circuitry [66]. SNR
is the comparison measurement of the incoming light signal versus the various inherent
or generated noise levels and is a measure of the variation of a signal that indicates the
confidence with which the magnitude of the signal can be estimated. In general, the
larger the SNR, the better a sensor is. Sometimes in images with high background
signals, the contrast signal to noise ratio (CSNR), which measures the ratio of the
contrast information level of distorted signal to the contrast level of the error signal, is a
more relevant measure [67]. Two other characteristics that apply to image sensors are
spatial resolution and frame rate. Intuitively, spatial resolution can be considered to be a
measure of the smallest discernible detail in an image [15]. Digital image sensors have
finite minimum regions of detection (known as pixels) that set a limit on their spatial

resolution. Spatial resolution is also affected by other factors such as the quality of the

3-45



Image sensors

lens or imaging system. Contrast is an important factor in resolution as high contrast
objects (e.g. black and white lines) are more readily discerned than low contrast objects
(e.g. adjacent grey lines). On the other hand, the frame rate of a digital image sensor is
the fastest rate at which subsequent images can be recorded and saved. This is usually
measured in frames per second (fps) and it can have a range of values depending on the
intended use, for example an image sensor system monitoring the growth of a plant
needs far less frames per second than one used in the guidance of an autonomous
vehicle. There is often a trade-off between the rate of measurement of an image sensor

and its spatial precision if the amount of processing power available is limited.

3.2.1 Examples of digital image sensors

Charge transferred along row
> —> —> —>

A 4

Output shift register

|g=—== Vertical timing signal
Horizontal timing signal

Sensor array

A

Video Signal Amplifier

Figure 3-3 : CCD transports the charge across the chip and reads it at corner of the array [68].

The charge coupled device (CCD) and the complementary metal oxide
semiconductor (CMOS) active pixel sensor are two very common technologies used in
image sensors. Both image sensors convert light into electrical charges in almost the
same way. The main differences occur in the manipulation of the charges. Upon
receiving a timing signal, each sensitive element in the CCD transfers its contents to the
adjacent element in the same row and the charge is then read at one corner of the array
as shown in Figure 3-3. An analogue-to-digital converter (ADC) then turns each pixel's

value into a digital value by measuring the amount of charge at each photosite and
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converting that measurement to binary form. The more advanced functions, such as the
clock drivers, timing logic, and signal processing are normally put on separate chips
which mean CCD sensors contain several chips.

A CMOS sensor, on the other hand, includes transistors at each photosite, and every
pixel can be read individually, much like a computer’s random access memory (RAM)
chip. It is not necessary to sweep all the pixels to one location, and, unlike CCD sensors,
with which all their information is processed externally to the sensor, each CMOS pixel
can be processed individually and immediately. That allows the sensor to respond to
specific lighting conditions faster [69]. In other words, some image processing can be
done within the CMOS sensor itself, something that is impossible with CCD devices.
The circuitry found in a CMOS sensor is similar to that in standard chips such as RAM
and hence CMOS sensors can be produced using the same equipment and production
lines, in contrast to CCD chips which require special fabrication methods. As a result
CMOS sensors can be relatively inexpensive compared to CCD on a pixel-by-pixel
basis. CMOS image sensors can incorporate other circuits on the same chip, eliminating
the many separate chips required for a CCD. However CMOS sensors perform badly in
low light conditions [69]. Their sensitivity to low light is decreased because part of each
photosite is covered with the circuitry responsible for the basic image processing
mentioned before. The percentage of a pixel devoted to collecting light is called the
pixel’s fill factor. CCDs have a 100% fill factor but CMOS have much less. The lower
the fill factor, the less sensitive the sensor is and the longer exposure times must be.
CMOS is the technology of choice for high-volume, space-constrained applications
where high image quality requirements are not necessary, e.g. security cameras and bar-
code scanners. CCD offers superior image quality and flexibility at the expense of
system size, and it is the most suitable technology for high-end imaging applications,
such as digital photography, broadcast television, and most scientific and medical
applications. However several manufacturers are working on improving CMOS sensors
and the gap in image quality between CMOS and CCD is expected to decrease [69].

The basic arrangement of photosites as shown in Figure 3-1 (b) cannot capture colour
information as it is. It only keeps track of the total intensity of the light that strikes its

surface. In order to get a full colour image, most sensors use filtering to record light in
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its three primary colours, i.e. red, green and blue. This collection of intensity values can
be modelled as layers that when combined will contain the necessary information to

produce a colour image. Colour theory is explained in the next section.

3.3 Colour spaces

One important step in the development of this monitoring system is to choose the
right colour space. Although colour images are acquired by combining signals coming
from wavelengths of light representing roughly red, green, and blue, there are many
ways in which this colour information can be used. For human beings, colour is a
subjective perceptual experience of light in the visible region of the electromagnetic
spectrum. Colour can also be used to define the characteristic of a visible radiant energy
itself as defined by Wyszecki and Stiles [70]: “Colour is that characteristic of visible
radiant energy by which an observer may distinguish differences between two structure-
[free fields of view of the same size and shape, such as may be caused by differences in
the spectral composition of the radiant energy concerned in the observation”. The eye
contains sensors called cone cells that are responsible for colour vision. Experimental
evidence has established that the 6 to 7 million cones in the human eye can be divided
into three principal sensing categories corresponding roughly to red, green and blue,
which are usually referred to as the primary colours [15]. Colour perception is a
phenomenon that is not only dependent on the eye but also higher-level processes in the
human brain. The International Commission on Illumination, mostly referred to as CIE
for its French translation ‘Commission Internationale de I'Eclairage’, set up a
specification, called the CIE XYZ space, as an attempt to parameterise this very complex
nature of colour in 1931. Conceptually, the CIE experiments involved getting a certain
number of people to match spectral colours (monochromatic light) using a colour made
by adding varying proportions of red, green and blue ‘primaries’, or the tristimulus
values X, Y, and Z as they are more formally described by CIE. A particular colour is
then specified by its trichromatic coefficients x, y, and z which are the normalised

tristimulus values, i.e.

X Y
xX=——, y=——— and z=———
X+Y+Z X+Y+Z7 X+Y+2Z
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As such x + y + z =1 and hence only two values are needed to specify a particular
colour. This gave rise to the CIE chromaticity diagram shown in Figure 3-4. The
positions of the various spectrum pure colours — from violet at 380 nm to red at 780 nm
— are indicated around the boundary of the tongue-shaped diagram. Any point within the
boundary represents a colour that consists of a mixture of pure spectrum colours. The
point of equal energy, E, corresponds to equal fractions of the three primary colours and
represent the CIE standard for white light. A point located on the boundary is fully
saturated and as a point leaves the boundary to move towards E, more white light is
added to the colour. It becomes less and less saturated until it reaches zero saturation at

point E [15].

¥ - chromaticity coondinate

0.0 0. I‘. 0.2 03 04 0.5 0.6 0.7 0.8
380OM \ | chromaticity coordinate

Figure 3-4 : CIE 1931 Chromaticity diagram. The equal-energy point E is located at the centre
and has coordinates (x,y) = (1/3, 1/3) [71].

Based on the CIE standard chromaticity diagram, several colour spaces have been
developed to facilitate the specification of colours in a generally accepted way for digital
images. As humans, we may define a colour by its attributes of brightness, hue and
saturation but a computer screen will produce a colour picture in terms of the excitations
of red, green and blue phosphors on a CRT faceplate or LEDs in newer displays. A

colour space is an abstract mathematical model describing the way colours can be
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represented as a sequence of numbers, typically as three or four values of colour compo-
nents. The colour models are oriented towards hardware (such as monitors) or towards
applications where colour manipulation is a goal (such as animation graphics). There

exist several colour spaces and the most common ones are discussed next.

3.3.1 The RGB colour space

One of the most common colour spaces is the Red-Green-Blue (RGB) colour
space. RGB 1is a linear colour space that formally uses single wavelength primaries,
645.16 nm for Red, 526.32 nm for Green and 444.44 nm for Blue [72]. This model is
based on a Cartesian coordinate system which is best shown as a cube with the primary
colours at three corners, three secondary colours cyan, magenta and yellow at three other
corners, black at the origin and white at the corner furthest from the origin. It is an
additive colour model in which red, green, and blue light are added together in various
ways to reproduce a broad array of colours. For §8-bit images, each pixel can be
represented as having three values of the three primary colours in the range between 0
and 255. The brightness value I at each pixel can also be defined by / = R + G + B,
where the range of each component’s value is [0... 255]. A colour image created and
stored in this way is said to have a depth of 24 bits because three image planes of eight
bits each are required. The total number of colours that can be represented is hence

(2%’= 16,777,216 [15].
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Figure 3-5 : RGB Colour space [15].
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This model should be familiar to most people who have used cameras and computer
monitors as it is used in many electronic systems involving sensing and displaying of
colour in general. It is a hardware-oriented model which means that the resultant colour
depends on the equipment and the set-up used to produce it. Each monitor, for example,
will display a colour in a slightly different way depending on its age, calibration and
materials used. Another drawback of this colour space is that it is not robust to changes
in lighting. As the lighting changes, so does the corresponding location of a point in the
colour space. RGB cannot describe colour in a constant way when illumination changes.
One way to improve the RGB representation is to normalise each colour component
value with the brightness value / to give us the Normalised RGB (NRGB) space as
follows [73]:

r=R/I, g=G/I, b=B/I (3-2)

where r + g + b = 1.This transformation reduces the sensitivity of the colour information
to the brightness value of a pixel and hence provides a way to achieve colour constancy.
Only two of these three normalised variables are needed to specify any colour within the
range allowed by the primaries since r + g + b = 1. (b = 1 is given by the absence of r

and g).

(b)

Figure 3-6 : (a) Original RGB image (b) Image shown after colour channels have been
normalised.

3.3.2 The HSV colour space

The Hue-Saturation-Value (HSV) colour space, which is also device dependent, is a

model closer to the way humans tend to perceive colour than RGB. For example, when
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asked the colour of a random car on the streets, one does not answer by giving percent-
ages of each of the primary colours that compose the final colour because humans do not
think of colour images as being composed of single images that combine together to
form a final colour image. When people view a coloured object, they tend to described it
as pale, deep, or light red for example. In a similar fashion, HSV tries to model colour
the same way that humans interpret it. In this representation, Hue is a colour attribute
that describes a pure colour (e.g. pure red, pure yellow or pure orange) and is repre-
sented as an angle which varies from 0 to 360. Saturation defines the relative purity or
the amount of white light mixed with a hue and is measured from 0 to 1. Value refers to
the brightness of the image, which is a subjective descriptor. Value is that quality that
distinguishes a light colour from a dark one. The HSV model decouples the intensity

component from the colour-carrying information (hue and saturation) in a colour image.

Gree

Co

Figure 3-7 : HSV colour space using the hexcone model
It is often represented by the hexcone model proposed by A. R. Smith [74] which
has the shape of a hexagonal cone. Converting from RGB to HSV is simply a matter of
developing the equations to map RGB Cartesian coordinate values to the cone coordi-
nates of the HSV model which are readily available from numerous textbooks such as

the one by Gonzalez and Woods [15].

(3-3)

(6 if B<G
" 1360-6 if B>G
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with 8 = cos"{ 0.5[(R - G)+(R- B)] }
(R-GY +(R-B\G-B)
§= 1—kﬁ[min(R,G,B)] (3-4)

The HSV model is based on polar coordinates rather than Cartesian with the hue of the
primary colours separated by 120°. Decreasing S corresponds to increasing whiteness,

and decreasing V corresponds to increasing blackness.

3.3.3 The YCbCr colour space

This is another hardware-oriented model used very frequently in video systems, and
unlike the RGB space the luminance is separated from the chrominance data.
Chrominance is the property that the average person thinks of as the ‘colour’ of light or
an object, and it is the colour portion of a video signal that is closely related to hue and
saturation, requiring luminance to make it visible [4]. The Y value represents the
luminance (or brightness) component, while the Ch and Cr values (where Cbh = Blue
minus 'black and white', and Cr = Red minus 'black and white') represent the

chrominance component of the image.

Figure 3-8 : YCbCr Colour Space [75]
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This colour model was invented for colour television systems and it had to be
compatible with black-and-white (B&W) TV systems. The luminance component
already existed as the B&W signal and the colour channels (Cb and Cr) were added on
top of the luminance channel to give the YCbCr space. YCbCr is used in common digital
video compression algorithms such as MPEG-2 as it allows image compression
techniques to take advantage of the fact that the eye is more discriminating of brightness
levels than colour [76]. YCbCr is not an absolute colour space in the sense that it is
derived from RGB space. It is rather a way of encoding RGB information, and the actual
colour displayed depends on the RGB colorants used to display the signal. There are
several ways to convert from RGB to YCbCr color space with the most common being
the CCIR (International Radio Consultative Committee) Recommendation 601-1, as

shown in next equation [77].

Y 16 65.738  129.057 25.064 | R
Cb|=|128 +?;g —37.945 -74.494 112439 |G| (3-5)
Cr 128 112.439 -94.154 -18.285| B

3.3.4 The CIE L*a*b* colour space

CIE L*a*b* is a device independent model developed by the Commission Interna-
tionale d'Eclairage (CIE) and is derived from the CIE XYZ colour space (Figure 3-4).
The three parameters in the model represent the lightness of the colour (L*, L* = ( yields
black and L* = 100 indicates white), its position between red and green (a*, negative
values indicate green while positive values indicate red) and its position between yellow
and blue (b*, negative values indicate blue and positive values indicate yellow). Image
data can be imagined as being plotted in 3 dimensions along 3 independent (orthogonal)
axes, one for brightness and two for colour. The colour axes are based on the fact that a

colour cannot be both red and green, or both blue and yellow.
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Green

Figure 3-9 : CIE L*a*b* Colour Space

Although not always very intuitive to use, L*a*b* is designed to approximate hu-
man vision with its L component closely matching human perception of lightness. The
a* and b* components contain the required ‘colour’ information. L*a*b* is also defined
as being a perceptually uniform colour space. A uniform colour space is one in which
the distance in coordinate space is a good guide to the significance of the difference
between two colours — in such a space, if the distance in coordinate space were below a
threshold, a human observer would not be able to tell the colours apart [72]. More
information on this colour space and its properties are available in standard reference
textbooks such as Wyszecki and Stiles [70]. The quantities L* a* and b* are obtained

from the tristimulus values according to the following transformations:

- 1/3
L*=116 —j -16

B x 1/3 y 13
a* =500 (—] - [—] J (3-6)
Xﬂ Yl’l
13 1/3
Y”! ZII

where X,, Y,, and Z, are the X, Y, and Z values of a reference white patch [72].

Figure 3-10 shows the information contained in each dimension of these four colour

spaces. Although each dimension (or channel) has values which are of different scales, it
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is possible to compare and contrast the layers when they are all mapped to a pseudo-
colour for visualisation purposes, e.g. greyscale mapping. The colour spaces mentioned
so far are used in various applications based on the requirements. In this thesis, a robust
way of modelling true colour in the presence of lighting variations is required. One way
to achieve this is to use a colour space that satisfies this condition. By robust here, it is
meant that certain features of an image are maintained even when the light changes. An
example of a not very robust colour space is shown in Figure 3-12 where the same image
taken under different lighting conditions gave different point distributions in the RGB
colour space. Other colour spaces such as the HSV tend to preserve the value of
coloured elements in its Hue channel if the lighting conditions are not dropped
dramatically to near darkness. However given the circular representation of data, this
colour space may not be suitable for the triangle wrapping and un-mixing processes that
are introduced in the next section 3.4. The Normalised RGB (NRGB) colour space
although not fully immune to changing lighting conditions tends to preserve the most
important information as shown in Figure 3-13. NRGB is used as the main colour space
for most of the tests in this thesis. This is because of the main detection technique used
involves the need to wrap a triangle around a set of points and it was found that the
distribution of points of the NRGB colour space when faced with varying levels of
lighting conditions change in such a way that the triangle wrapping process adapts itself
well to maintain a closely wrapped triangle. This whole concept about triangle wrapping
to detect objects is explained in sections 3.4 and 3.5 while the perceived advantage of the
NRGB colour space over the other colour spaces in dealing with triangle wrapping for a

changing point distribution is shown in the next chapter 4.
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Figure 3-10 : Each row shows the information contained in the 3 dimensions for each colour
space. The information has been converted to a greyscale map for visualisation.
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Figure 3-11 : Same image taken under bright and dark light conditions.
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Figure 3-12 : RGB point distribution for bright and dark image.
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Figure 3-13 : Normalised RGB point distribution for bright and dark image
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3.4 Detection algorithms used in spectral imaging applications

In satellite reconnaissance, sub-pixel target detection is very common and many
algorithms have been developed to deal with situations where each pixel contains several
distinct types of object or background, each with a different colour or spectral signature.
In this context, ‘colour’ is a general term that is related to the intensities in different
visible and/or thermal (i.e. infrared) wavebands — the number of wavebands can be
significantly larger than the usual three colours that are familiar in the visible band
simple sensors. A multi-spectral image consists of a few colour layers with each layer
representing an image acquired at a particular wavelength band whereas a hyper-spectral
image (HSI) is acquired from many (100 or even more) contiguous and very narrow
(about 0.010 um wide) spectral bands that typically span the visible, near-infrared, and
short wave infrared portions of the spectrum (0.4 pm - 2.5 um) [78]. Spectral imaging
techniques exploit the fact that all materials reflect, absorb, and emit electromagnetic
energy, at specific wavelengths, in distinctive patterns related to their molecular
composition. This enables the construction of an almost continuous radiance spectrum
for every pixel in the scene. There is a restriction in the band wavelengths that are used
due to the fact that the reflected radiance is attenuated after passing through the
atmosphere and this attenuation is wavelength dependent.

The reflectance spectrum of a material is a plot of the fraction of radiation reflected
as a function of the incident wavelength and serves as a unique signature, called the
spectral signature, for the material [78]. Figure 3-14 shows the spectral signature of
different types of surface materials. HSI data exploitation makes possible the remote
identification of ground materials-of-interest based on their spectral signatures. If one
wants to identify a component of a particular pixel, one can just analyse how the spectral
reflectance behaves for each wavelength and then match it to a library of wavelengths. A
form of matched filtering can also be performed. In signal processing, matched filtering
is used to maximise a signal relative to noise and clutter, and this same concept is used
when detecting objects of interest based on their spectral signatures. The response of the
desired and known component is maximised and the response of the composite unknown

background is suppressed, thus ‘matching’ the known signature. As the number of
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components to be identified is limited (e.g. vegetation, soil, water, road etc), the libraries
for these elements have already been set up and this provides a rapid means of detecting

these specific materials.
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Figure 3-14 : Spectral reflectance curves of different types of surface materials [78].

The main problem that arises when the spatial resolution is not high enough is that
natural surfaces are rarely composed of a single uniform material and hence, many
different classes of material may be present in each pixel. This problem is often
described as the mixed-pixel classification and many researchers have investigated this
field called spectral mixing in general [79]. There are two main approaches to classify
mixing within pixels: Linear and non-linear approaches. Several researchers have
investigated mixing scales and linearity. Singer and McCord [80] found that if the scale
of the mixing is large (macroscopic), mixing occurs in a linear fashion while for
microscopic or intimate mixtures, the mixing is generally nonlinear. In the linear model,
the mixing of the light happens in the sensor, as the rays from the different patches on
the ground are reflected in the field of view of the sensor element. In the intimate
mixture model, the incident light suffers many multiple reflections from the different
components before it ends up in the sensor element as shown in Figure 3-15. The spatial

scale of the mixing and the physical distribution of the materials govern the degree of

non-linearity.
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Figure 3-15 : Top: Linear mixing model with mixing of light occurs at the sensor. Bottom:
Non-linear with mixing happening on the ground. [79]

The linear approach to mixed pixel classification is best described by the Linear
Mixing Model (LMM) [81]. LMM assumes that the spectrum of a mixed pixel is a linear
combination of the spectra of the constituent pure classes and that the spectral
proportions of the pure classes reflect the area covered by the proportions on the ground.
In other words, each pixel in a given image contains a proportion of one or more definite
colours (or spectra) and that each mixed pixel may be decomposed into a linear
combination of the individual colours or pure classes, also known as endmembers [78,

81]. LMM is described mathematically as a linear vector-matrix equation,
PW =F a,+e (3-7)

where a,, is the Lx1 vector of L endmember fractions for the pixel xy, and E is the KXL
endmember signature matrix, with each column containing one of the spectral vectors.

P,, is the K-dimensional spectral vector at pixel xy and € represents noise. The a’s
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represent the amount of each constituent in a given pixel, and are often referred to as the
abundance coefficients with the following ‘additivity’ and positivity constraints applied

to them.
L
Ya,=1 and @, 20 (3-8)
1=1

Solving the LMM equation is called un-mixing. If the spectra of the pure classes are
known, the apparent fractional abundance of each endmember material in each pixel can
be easily deduced. These known endmembers can be drawn from the data (averages of
regions picked using previous knowledge), drawn from a library of pure materials by
interactively browsing through the imaging spectrometer data to determine what pure
materials exist in the image, or determined using expert systems to identify materials.
The mixing endmember matrix is made up of spectra from the image or a reference
library. The problem can be thought of in terms of an over-determined linear least
squares problem [78]. The mixing matrix is inverted and multiplied by the observed
spectra to get least-squares estimates of the unknown endmember abundance fractions.
Constraints can be placed on the solutions to give positive fractions that sum to unity.
Shade and shadow are included either implicitly (fractions sum to 1 or less) or explicitly
as an endmember (fractions sum to 1) [79].

The un-mixing method described so far assumes that the spectral libraries are
available. However it can happen that they are not available. There is another technique
called the ‘full un-mixing’ that uses the imaging spectrometer data themselves to
‘derive’ the mixing endmembers [82]. This technique can be summarised as follows:

e A linear ‘sub-space’ that spans the entire signal in the data is derived.

e The data are projected onto this subspace. This lowers the dimensionality of the

un-mixing.

e The data are ‘shrink-wrapped’ by a simplex of n-dimensions. Examples of

simplexes in different dimensions are a line, a triangle and a tetrahedron for n= 1,
n =2, and n = 3 respectively.
e The simplex is used to derive abundance estimates of the pure endmembers. The

estimates that are obtained are positive fractions that sum to unity.
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Mixed pixels are visualised as points in n-dimensional scatter-plot space (spectral
space), where n is the number of bands. In two-dimensional feature space, if only two
endmembers mix, then the mixed pixels will fall in a line and the pure endmembers will
fall at the two ends of the mixing line. If three endmembers mix, then the mixed pixels
will fall inside a triangle. If these endmembers are ‘pure’ and if they are an exhaustive
basis for all spectral vectors in the image, the spectral vector for any pixel must lie
within the convex hull defined by the envelope around the endmembers. In other words,

mixtures of endmembers ‘fill in’ between the endmembers.

Band 2
Band 2

Band 1 Band 1
(a) (b)

Figure 3-16 : (a) Two endmembers (b) Three endmembers

In Figure 3-16 (b), the corners of the triangle represented by a, b and ¢ could represent
soil, rocks and vegetation for example. Un-mixing can then be applied to estimate the
proportion of each class member for each pixel vector. Assuming that there is no noise at

first, each element of equation 3-6 can be written out as follows:

asoil
':PBandl:l _ ,:Esoill Ert)cksl Evegetan'onl } a (3_9)

rocks
PBand2 EmiIZ EmcksZ vegetation 2

a

vegetation

Equation 3-8 is underdetermined since there are three unknowns, i.e. the fraction
components, but only two equations for the bands 1 and 2 respectively. However the

requirement that all linear combinations of the three fraction components add up to unity
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can be combined with equation 3-9 to form an augmented mixing equation such that the

latter can be solved for the fractions as shown in the next equation 3-10 [78].

-1

am,‘[ Esaill Erockvl Evege!ali(ml P Bandl

= 3-10
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The task of identifying the endmembers in a scene is a difficult task and two main
approaches exist to deal with it, namely interactive and automated endmember extraction
techniques. The pixel purity index (PPI) method [83] is the most representative
interactive approach. Its operation first involves randomly generating lines in the chosen
n-dimensional space. All of the data points in the space are then projected onto the lines
after a maximum noise fraction (MNF) transform has been applied to them to reduce
their dimensionality [83]. Those pixel values that fall at the extremes of the lines are
counted. After many repeated projections to different lines, those pixels with a count
above a certain threshold are declared ‘pure’ or an endmember. However this method
usually gives many redundant spectra in the pure pixel list and the actual endmember
spectra can only be selected after a combination of intelligent review of the spectra
themselves and through n-dimensional visualisation. An alternative is the N-FINDR
method [84] which is an automated approach that finds the set of pixels that define the
simplex with the maximum volume, potentially inscribed within the dataset. Randomly
selected pixels qualify as endmembers, and a trial volume is calculated. In order to
improve the initial volume estimate, a trial volume is calculated for every pixel in each
endmember position by replacing that endmember and recalculating the volume. If the
replacement results in a volume increase, the pixel replaces the endmember. This
procedure, which does not require any input parameters, is repeated until there are no
replacements of endmembers left. Once the endmembers are found, their spectra can be
used to un-mix the original image using equation 3-10. This produces a set of images,
each of which shows the fractional abundance of an endmember in each pixel. Other
automatic endmember extraction techniques are introduced in section 3.5. It should be
noted that both PPI and N-FINDR rely on spectral properties of the data alone,

neglecting the information related to the spatial arrangement of pixels in the scene.
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The other approach to model mixing within pixels is the non-linear one. Nonlinear
mixed pixel analysis involves a detailed knowledge of multiple scattering effects that
may arise due to the intimate association of components residing inside each pixel and it
is described extensively by Hapke [85]. However it has been observed that linear un-
mixing techniques, while at best an approximation, appear to work well in many
circumstances involving non-linear mixtures with the effects of multiple scattering in the
majority of applications assumed to be negligible if a linear model is used [86].
Moreover indoor environments have relatively few light sources and they contain few
shiny surfaces. These objects do not scatter and reflect light in a way serious enough
way to model mixing in the non-linear manner. The un-mixing of the LMM is the
process that is adapted to detect objects in low resolution videos for this project and this

adaptation is expounded both in the next section and in chapter 4.

3.5 Un-mixing process to detect objects and estimate their sizes

In low resolution images, each pixel can often represent more than just one colour
value. The combination of finite pixel sizes and small number of pixels available results
in mixing within individual pixels and the LMM (together with its un-mixing) is an
approach that can be used to separate the colours present in a pixel. In a two-dimensional
feature space (for example Normalised Red v/s Normalised Green), a distribution similar
to Figure 3-17(a) might be expected for an image with three main colours. If the end-
members are ‘pure’, one can expect the spectral vector for any pixel in the image to lie
within the triangular envelope around the endmembers. Pixels containing only one
endmember will be found near the vertices of the simplex, those with two endmembers
will be located near the facet of the simplex opposite the vertex associated with the
missing endmember as shown in Figure 3-17(b), and the pixels with all three endmem-
bers will tend to be found near the centre of the triangle. The position of a point within
the triangle gives information about the proportion of an endmember contained in that
pixel. An example of a real low resolution image is shown in Figure 3-18. It can be seen
how the data points representing each colour are based around three corners and then

other points fill in the rest of the space in between the corners.
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Figure 3-17(a) : Endmembers are encircled. Triangular envelope wraps around the data values

and endmembers, (b) Parallel contours of equal abundance of Endmember 1[75].

Normalised Green

u} 02 0.4 06 08 1
(© Normalised Red

40 40

Figure 3-18 : (a) Real low resolution image. (c) Triangular envelope wraps around data values
and endmember zones are circled. Fig. 1(b), (d) and (e) show the portions of the images that

represent these three endmembers.
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Knowing the point distribution on its own is not however very useful. To be able to
perform the un-mixing process, a triangle wrapped around the data points as closely as
possible is required and this process of obtaining the triangle automatically is explained
in the next chapter 4.2. When a triangle is available around the data points, the un-
mixing process can be performed and this is done to estimate fractions of each
endmember component from a given pixel as explained in equation 3-10. The 2-D
explanation example shown in Figure 3-17 above is chosen here because it is easy to
visualise. However it must be noted that this approach scales up to higher dimensions.
For example, if a fourth endmember is added to the first three, three dimensions will
then be required and the mixing triangle will become a tetrahedron to determine if a
point is outside or inside the mixing space. This means that for unambiguous colour un-
mixing, the dimensionality of the mixed data must usually be one less than the number
of independent endmembers. In domestic environments with simple image sensors, k
usually represents two bands e.g. normalised red and green intensity values from RGB
data capturing and it can be assumed that there are three main colours in such rooms, e.g.
background wall-paint, a main furniture and a moving person with clothing containing
one major colour that stands out. The E values of equation 3-10 are assigned the
coordinate values of the triangle’s vertices while P is assigned the normalised intensity
values of the pixel being un-mixed. This process is also sometimes called pixel
decomposition. One might argue the point here that this un-mixing procedure is very
inefficient if it has to be calculated for each pixel present in an image frame. This is
somewhat true but at the same time one has to be aware that not all pixels need to be un-
mixed as not all pixels are mixed, i.e. not all pixels in a low resolution image represent
more than one or part of one object at a time. Mixed pixels tend to be found at object
boundaries where they represent areas that partially belong to one object and partially to
another one or a background. The reverse process of matching the data points near a
particular corner to a pixel location in the image can be done to estimate the position of
the ‘centre of mass’ or centroid of an object, as will be explained in the next section
3.5.1. This method is more appropriate when there are three or four main colours in an
image sequence and the object to be tracked occupies a significant number of pixels (at

least 3 pixels in a 20x 20 image).
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3.5.1 Finding the ‘centre of mass’ of an object

The centroid of a 2-D object is a unique point that balances it on a pinpoint if it were
cut out of a rigid, uniform sheet of cardboard. There exist many formulas to find the
centroids of regular shapes such as squares, rectangles, etc. In computer images, objects
are represented by pixels and are often of irregular shapes. It is hence difficult to apply
standard equations from geometry to find the centre of mass of these objects. For
irregularly shaped objects, the actual feature shape and location of all the pixels present
can be taken into account to enable the centroid to be obtained. One quick way to
achieve this is by finding the largest and smallest coordinates in the horizontal and
vertical directions first. These limiting coordinates then define a bounding box around
the object in the spatial domain and the midpoint of this box can be taken as the centre of
mass [68]. This method is not always ideal because it is too easily biased by just a few
pixels, e.g. a whisker sticking out of an object will pull the centroid in the direction of
the whisker [68]. However the objects of interest in this thesis are expected to be ‘solid’
ones, e.g. piece of clothing, and therefore this technique is acceptable. A way to derive
the centre of mass of an object using bounded-box method augmented with pixel un-
mixing is devised. As shown before in Figure 3-17(b), the location of a point relative to
a vertex within the un-mixing triangle determines the proportion of that endmember in
the pixel being analysed. These proportions can be added to the main central bounded-
box (or blob) to give a better estimate of the object’s shape and area, and hence its
centroid. To understand this concept, consider Figure 3-19. An intial centroid estimate
can be obtained in a direct and simple way for the full pixels numbered 6, 7, 10, and 11.
The intensity values of these pixels are normally found very close to the triangle vertex
representing the object’s colour in the data space projection. These points are usually
found at a distance of less than one. quarter of the length of each of the two sides joining
at this vertex along each side. When these intensity value points are projected back to the
spatial domain, a bounding box is obtained and its midpoint is the initial centroid
estimate. This estimate can then be improved by using pixel decomposition. Pixel
decomposition or un-mixing allows us to know the amount of the desired object present
in the pixels found at or near the boundaries of the object, and by adding these

proportions to the initial centroid estimate, the latter’s accuracy can be improved.

3-68



Finding the ‘centre of mass’ of an object

9 10 11 12
13 14 15 ﬂ
A F - B

Figure 3-19 : Estimating the ‘centre of mass’ of an object. Pixels 6, 7, 10 and 11 are used to
obtain initial centroid estimate. The remaining pixels are un-mixed to improve the estimate.

Before explaining how this improvement to the centroid’s estimate is achieved, it is
good to see how the proportion of an object in a particular pixel can be calculated in a
real world example. The top row of Figure 3-20 is an example of an image sequence
containing a yellow object moving from right to left on a background with two main
colours. A pixel (highlighted by a red square) is under observation because it contains
different colour proportions over time as the object goes through it. The bottom row of
Figure 3-20 shows the intensity values point distribution of each frame when these
values are projected into the Normalised RGB colour space. A triangle is wrapped
around each data set and the location of the chosen pixel’s value is shown with a red
cross. As the object moves into the pixel and covers it for a few frames, the cross moves
towards the vertex of the triangle representing that object’s colour. This means that the
proportion of yellow in the pixel is increasing while the contribution of the other
endmember colour decreases. Figure 3-21 shows a magnified version of the image
sequence at frame 50 and the corresponding pixel value location in the data space

projection. It can be seen from Figure 3-21 (b) that the pixel under observation is neither
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pure yellow nor pure green but a mixture of both. This information is reflected in the
data space projection where the cross lies in between the vertices representing these two
endmembers. The location of this cross is used to estimate the proportion of a particular

endmember in that pixel by using equation 3-10.
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Figure 3-20 : Top row is an image sequence containing a yellow object moving from left to
right on a background with two main colours. A pixel (highlighted by a red square) is under
observation. Bottom row shows the corresponding data point distributions and a triangle
wrapped around them for the un-mixing process.
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Figure 3-21 : (a) The location of a pixel value in the data space projection, (b) Blow-up of the
pixel in the image sequence at frame 50
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Figure 3-22 shows the calculated proportions of each endmember in the observed pixel
as the object moves through it. The zones between the vertical dotted lines represent the
period when mixing within the pixel is occurring. It has to be noted that the proportions
add up to unity at any instant in time. However the proportions obtained for each
endmember are not always accurate because the triangle used for the un-mixing process
is not tightly around the data points. This is addressed in the next chapter where an
automatic triangle wrapping algorithm is developed to work on a sequence of data

points.
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Figure 3-22 : Proportions of each endmember in the observed pixel over time
Being able to calculate the proportion of an endmember in a pixel is just part of the
quest to improve the centroid location. The idea is to decompose all the other mixed
pixels in Figure 3-19 and then add up their respective proportions of the desired
endmember. To achieve this, the mixed-pixels around the central blob that contain more
than 50% of the desired endmember are un-mixed. The intensity values of these pixels
are found in a band within the un-mixing triangle as shown in Figure 3-23. Those pixels
with more than 75% of endmember present are not decomposed because they are already
taken into account in the derivation of the initial bounding box or blob and those with
less than 50% are simply ignored. Any pixel within this desired band is given the weight

equivalent to a pixel containing half the intensity value of the desired endmember. Using
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this information, an improved estimate of the centroid of the object is obtained by using
a weighted centre of mass approach based on the intensities of the pixels as explained in
equation 3-11 below. Given each pixel (i,j) with intensity level /; in the m x n window
shown in Figure 3-19, the coordinates (X, Y) of the centroid relative to the local axes of

the window are [87]:
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The coordinates of the centroid in the image co-ordinate system are (x,+ X, y,+ Y)
where both x, and y have a value of 1 in digital image processing applications. While

this is still not a fully precise location of the centroid, one has to be aware that the
requirements are not as strict as microscopic tracking in biomedical applications for
example and a small error is allowed here. Moreover because of the nature of digital
image representation in computers, rounding occurs which result in near impossibility to
obtain locations of sub-pixel precision. Yet, this method of detecting an object and

estimating its location does give good results as will be shown in the next chapters.
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Figure 3-23 : Location of intensity data points of mixed pixels
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3.6 Summary

This chapter has given further information about the various parts of this project.
The tracking of small objects is an established field and is very useful in certain sectors
such as biomedical and military tracking. A different technique, based on satellite
reconnaissance applications, to the ones currently used in these fields is proposed to be
used in this experimental project. This technique involves using the un-mixing process to
estimate the location and the size of an object. However before reaching that stage, the
appropriate colour space has to be chosen. A colour space is a model for representing
colour in digital images in terms of intensity values. It defines a one-, two-, three-, or
four-dimensional space whose dimensions, or components, contain information about
the colours. The colour space to be chosen has to be able to minimise the effect of
changing ambient lighting on an image by keeping some information about the colours
constant whatever the light conditions are. Another requirement for the colour space is
that it must be compatible with the un-mixing process that is proposed to be used as a
detection mechanism of small objects. The un-mixing process as used in satellite
imagery applications involves a step whereby a triangle has to be wrapped around many
data points as closely as possible. Algorithms that are able to automatically generate this

triangle are explained and developed in the next chapter.
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Figure 3-24 : (a) Three colours cannot be unmixed because no triangle is formed (b) four
colours can be unmixed in 2-D space.
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As mentioned in section 3.2, if three endmembers mix in two-dimensional feature
space, then the mixed pixels will fall inside a triangle and the spectral vector for any
pixel must lie within the convex hull defined by the envelope around the endmembers.
Given only the spectral distribution, pixel un-mixing can then be practised on it to infer
the constituency of each pixel depending on the location of its spectral vector within the
triangle. There are however some special situations where three colours cannot be
separated using this technique, and some where four colours can be separated in 2-D as
shown in Figure 3-24. The presence of three main colours with the distribution of the
data points enabling a triangle to be formed also does not always mean that the un-
mixing process will work well. For example, when the object being investigated is very
small, e.g. 1 or 2 pixels, it can happen that the triangle wraps itself around the wrong

points. To understand this, consider the un-mixing triangle shown in Figure 3-25.

Figure 3-25 : Points a, ¢, and d represent the three true end-members for an image, however due
to a lack of any pure pixels of type d, the selected end-members are a, ¢, and b (a mixed pixel).

Points a, ¢, and d represent the three true end-members for an image, however due
to a lack of many pure pixels of type d, the selected end-members are a, ¢, and b (a
mixed pixel). This means that the estimates of the proportions of d in a particular pixel
will not be exact if d is the object that contains the colour that one is interested in. One

way to tackle very small objects (1 pixel or less than a pixel in size) is by making use of
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the intensity profiles at pixel boundaries when these objects go through the pixels. By
using the time derivatives of the intensity at each pixel, and the spatial derivatives of
intensity obtained by comparing the intensity of neighbouring pixels, the displacement
and even velocity can be estimated. Because of the very nature of these objects that are
small, the intensity modulation that they bring about in a pixel is very small and is often
heavily affected by noise in an image. A method to filter these values has to be used first
to recover the information that is needed to be able to estimate the location of these
objects, and this technique for detection sub-pixel sized objects is introduced in the next

chapter.
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Detecting objects - Introduction

4. Detecting objects

4.1 Introduction

One of the main parts of this thesis is the development of a suite of algorithms to
detect small objects with sizes ranging from less than a pixel (sub-pixel) to a few pixels
wide. This chapter is mainly concerned with how the un-mixing process is adapted to
detect small objects in image sequences of indoor environments. An automated triangle
wrapping mechanism is developed and implemented as part of this preliminary and very
important step of un-mixing. The search for the optimum triangle can be done by an
exhaustive search over an allowable range of parameters. However, the computational
cost increases with both the dimension of the parameter space and the dimension of the
dataset, and thus an alternative search method using an optimisation technique has to be
found. Several optimisation techniques are tested and a complete description of the
results obtained in the test experiments is given together with the choice of the optimiser
to be used. For very small objects, i.e. those less than a pixel in size, another technique
to these objects using intensities at boundaries of adjacent pixels as the objects move
through the pixels is described in section 4.3. A third technique involving the detection

of human skin in image sequences is also introduced in section 4.4.
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4.2 Triangle Wrapping Algorithms and detection of small objects

A very important task in the detection process of small objects as described in
section 3.5 is to find an automated way to perform the triangular wrappings. There exist
many ways to obtain a triangle wrapped closely around a set of data points. Three
commonly used algorithms are: the Simplex Shrink-Wrap [1], the Minimum Volume
Transform [88] and the N-FINDR algorithm [89]. The Simplex Shrink-Wrap is a
gradient-descent algorithm on an objective function defined on the vertices of the
triangle [1]. The objective function is the sum of two terms: first term is the volume of
the simplex to be minimised and second term is a penalty term which has the effect of
‘pushing’ the faces of the simplex away from the data points. The gradient of each of
these terms is determined analytically, and used in the gradient descent algorithm. The
penalty term includes a multiplicative constant which approaches zero as the gradient
descent algorithm progresses, causing the iterates to converge to the vertices of a
simplex which fits tightly around the given data points. This process begins with a large
initial simplex and shrinks it down around the data cloud. Intuitively, one can imagine
the process as the multidimensional analogy of a wrapping a sheet of plastic around a
convex set containing the data; hence the term ‘Shrink-Wrap’. The problem addressed
here is that of finding the simplex which gives the best fit to a given set of data points,
where a best fit simplex implies to be one with minimum area, subject to the constraint
that all the data vectors lie in the interior [1]. While the first term in the objective
function is there to be minimised, the second term is slightly different. It is a penalty
function chosen to enforce the constraint that all the data lie in the interior of the
simplex. Qualitatively, it means that this penalty function should be small when the
simplex is large and its faces are far from the data points, and conversely it should be
large, as any simplex face gets near the data points. The behaviour of the Simplex
Shrink-Wrap algorithm is illustrated in Figure 4-1. The first panel shows the data cloud
and the true endmembers projected into the plane; the second panel shows the initial
simplex; the third panel shows the sequence of iterates (sampled every 10 iterations to
improve clarity) and the final panel shows the estimated simplex at the last iteration. The

manner in which the shrinking simplex rotates and aligns itself with the shape of the data
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cloud is of particular interest. However the problem addressed in the paper is somewhat
idealised and one can imagine the effect that outliers will have on this triangle wrapping

algorithm because of its constraint that all the data points to lie within the triangle.
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Figure 4-1 : Behaviour of the Simplex Shrink Wrap. (a) Available data points (b) Initial triangle
(c) Progress of the wrapping algorithm, triangles superimposed on each other (d) Final triangle
Image source [1], pp 505

Another triangle wrapping algorithm popular in the remote sensing community is
the Minimum Volume Transform (MVT). The MVT method starts with a large initial
triangle and reduces it down to shrink it round the data. It does so by repeatedly varying
the orientation of one facet at a time while all the data points are embraced by the
simplex all the time until the minimum-area simplex is obtained [88]. The MVT needs at
least one vertex, called the ‘dark point’, to be known beforehand. To achieve this, it
applies a linear transformation to move the data points in such a way that they become
confined to the corner of two lines joining each other. A third line is then added to
complete a triangle with a view to obtain one with a minimum area. This technique
might have reasonably been termed a minimum-area transform but the term ‘minimum-

volume’ (MVT) is used because that paper was based on a three-dimensional case. For
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consistency across all dimensions, one might also think that the term ‘minimum-content’
would be more accurate.

A third algorithm that often comes in the satellite reconnaissance literature is the N-
FINDR algorithm [89]. The N-FINDR algorithm works from the 'inside-out, i.e., it takes
a set of points in the data set and then 'pushes' the triangle until a maximum area triangle
is found. During the optimisation process, the N-FINDR finds those vertices by
randomly selecting a set of P pixels from the scene as initial endmembers, and
calculating the volume of the simplex formed by these initial endmembers. This process
is iterated through the following steps to test every pixel in the image as an endmember.
First, each of the initial endmembers is replaced one at a time with the pixel being tested.
Second, the volumes (or areas for 2-D) of the simplexes formed by each replacement are
calculated. Finally, the algorithm evaluates if replacing any of the initial endmembers
with the pixel being tested results in a larger simplex volume. If this is the case, the pixel
being tested replaces the initial endmember and the process is repeated again until each
pixel is evaluated as a potential endmember. This procedure is repeated until there are no
more replacements of endmembers that can result in an increase in area. The pixels
which remain as endmembers at the end of the process are considered to be the final
endmembers. This algorithm’s efficiency is dependent on the number of points
contained in the data cloud and if there are too many points, it can take a long time to
give the maximum area. Implementing N-FINDR can require very high and expensive
computational complexity because of the exhaustive search for optimal P endmembers
simultaneously among all possible P-endmember combinations in the data. When the
data sample vectors are huge, the computational cost can be unmanageable and it may
take quite long time to converge to a desired set of endmembers. To try to decrease this
cost, modifications to the search process can be brought to the N-FINDR algorithm that
do not generally conduct a fully exhaustive search, but rather focus on endmembers
selected from some feasible regions for iterations. However, in order for such modified
algorithms to be also effective, initial endmembers must be representative and cannot be
arbitrary. Therefore, a judicious selection of initial endmembers is necessary.

These techniques mentioned so far are designed for static satellite imagery and its

accompanying characteristics. In this thesis, another triangle wrapping technique is
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developed that answers the requirements of noisy and quickly changing data points
brought about by changes in room lighting or poor image sensors. Moreover the un-
mixing is done without prior knowledge of any endmember location. The optimisation
procedure has to be time dependent and deal with highly dynamic situations. The
method used here is closest to that of the Simplex Shrink-Wrap because a minimum area
triangle is sought and the objective function in the optimisation process is based on the
vertices. A multi-objective function based on the area of the triangle and the number of
points outside the triangle is defined to be minimised. However, unlike the Simplex
Shrink-Wrap, there is no constraint to put all the points inside the triangle. The data
points used here are assumed to come from the Normalised Red and Green channels of
an image using the Normalised RGB colour space.

The objectives for the triangle wrapping are twofold; to fit a triangle around as
many data points as possible ignoring noisy outliers, while at the same time keeping the
triangle to small finite proportions. This is a multi-objective optimisation, which can be
implemented through a weighted-sum approach. The overall minimising cost function is

defined as:
f(%)= Area(%)+ w-[H- W-Points(%)] 4-1)

where X =(x,,x,,%.,Y,,Y;,Vc) is a vector composed of the triangle’s vertices
coordinates. Area(:) is a function calculating the overall area of the defined triangle,
while Points(-) returns the number of points within the triangle. H and W are the width
and height of the image plane. The non-negative term [H . W~Points(5c’)] helps in
minimising the number of points outside the triangle. w>0 is a user-defined weight
balancing the two objectives which are of different scales and units. In this way, when
F(-) 1s minimised, the smallest triangle that optimally contains most of the data points is

found while the effect of outliers is mitigated.

4.2.1 Multi-objective optimisation

Multi-objective optimisation, also known as multi-criteria, is the process of
simultaneously optimising two or more conflicting objectives subject to certain

constraints [90]. This approach can be found in various fields wherever optimal
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decisions need to be taken in the presence of trade-offs between two conflicting
objectives, e.g. maximising profit and minimising the cost of a product, and minimising
weight while maximising the strength of a particular component. The term ‘optimise’
means finding such a solution which will give the values of all the objective functions
acceptable to the decision maker. These objective functions may also be commensurable
(measured in the same units) or non-commensurable (measured in different units) [90].
Without loss of generality, all objectives are of the minimisation type - a minimisation
type objective can be converted to a maximisation type by multiplying by negative one.
A minimisation multi-objective decision problem with M objectives is defined as

follows:

Minimise f, (x), m=12,....M;
: L) () ; )
subjectto  x;’ <x; <x; i=12,...,n
where x is a vector of n decision variables, x = [xl,xz,...,x" |, each subject to take a

value within lower bound x,.(” and upper bound x,.(U). The idea is to find a vector x* that

minimises a given set of M objective functions f(x) = {fl (x), f,(X)s.., fiy (x)} within a
solution space called objective space X. The predominant solution concept in defining
solutions for multi-objective optimisation problems is that of Pareto optimality [90]. A
solution in the feasible solution space is called Pareto optimal if there is no other feasible
solution in the solution space that reduces at least one objective function without increas-
ing another one [90]. A Pareto optimal solution cannot be improved with respect to any
objective without worsening at least one other objective. The set of all feasible solutions
in X is referred to as the Pareto optimal set, and for a given Pareto optimal set, the
corresponding objective function values in the objective space are called the Pareto
front. One goal in multi-objective optimisation is to find a set of solutions as close as
possible to the Pareto-optimal front.

For many problems, the number of Pareto optimal solutions is enormous (perhaps
infinite). To solve a particular multi-objective problem, one approach is to construct a
single aggregate objective function (AOF) from the multiple objectives that exist. The
basic idea is to combine all of the objective functions into a single functional form,

called the AOF [91]. A well-known combination is the weighted linear sum of the
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objectives. One specifies scalar weights for each objective to be optimised, and then
combines them into a single function that can be solved by any single-objective opti-
miser (examples of such optimisers are given in next sub-section). Clearly, the solution
obtained will depend on the values (more precisely, the relative values) of the weights
specified. The solutions obtained using the weighted sums are always Pareto optimal,
but coming up with meaningful combinations of weights can be challenging. In practice,
it can be very difficult to precisely and accurately select these weights, even for someone
familiar with the problem domain. Compounding this drawback is that scaling amongst
objectives is needed and small perturbations in the weights can sometimes lead to quite
different solutions. In equation 4-1, the AOF Area(¥)+w- [H - W-Points(¥)] with a
weight w is obtained from the two functions Area(%) and [H - W—Points(jc‘)] respectively.
The first function calculates the area of a triangle and this value can be between 0 and
0.5 square units in magnitude if a Normalised RGB colour space is used. The second
function calculates the number of points that are outside the triangle and its value can be
any value from zero to the number of pixels in the image (e.g. maximum of 900 values
in a 30x30 image). Although the value of 900 is very unlikely as this would mean that
the triangle is not enclosing any point, a value of anything less than 20 is very likely
when there are noisy outliers in the data. Hence to be able to balance the two functions, a
‘small’ value of less than one is needed and this value can only be obtained by trial and
error unfortunately.

Another approach to solve the multi-objective function is the Multi-Objective
Evolutionary Algorithm (MOEA) approach. One example of an evolutionary algorithm
is the Genetic Algorithm (GA) that was developed by Holland et al. in the 1960s and
1970s [94]. GAs are inspired by the evolution theory explaining the origin of species and
are described in deep details later in sub-section 4.2.2.3. Being a population-based
approach, GAs are well suited to solve multi-objective optimisation problems [90]. The
ability of GAs to simultaneously search different regions of a solution space makes it
possible to find a diverse set of solutions for difficult problems with non-convex and/or
discontinuous solution spaces. In addition, if enough information is available, multi-
objective GAs do not require the user to prioritise, scale, or weigh objectives. However

they are more complex and time-consuming to set up than the weighted sum approach.
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4.2.2 Optimisation algorithms

With the multi-objective function finalised, an optimisation search technique is
required to minimise it. The choice depends on the type of problem under consideration
and optimisation algorithms can be divided into two broad categories [93]:

® Gradient-based algorithms, such as the Robbins-Monro stochastic
approximation algorithm can be considered to be a generalisation of the
deterministic steepest descent. It requires that direct measurements of the
gradient are available, but these measurements are generally a gradient
estimate because the underlying data is usually noisy [93].

® Gradient-free algorithms such as the simple random search, the Nelder-
Mead method, the Simulated Annealing or the genetic algorithm method.
These methods can be useful for a broad search over the domain of the
parameters being optimised, and can provide initialisation for a more
powerful local search algorithm.

Approaches based on the use of gradient estimations tend to be fast, but are
sensitive to the presence of local optima. Additional discussion of these methods with
their relative advantages and disadvantages can be found in [94]. In order to minimise
Equation 4-1 for the purpose of this thesis, three gradient-free optimisation techniques
are tested and - where possible - the following constraints are enforced, namely that the
values of the vertices are always within 0 and 1 (as these were the normalised colour-
space image boundaries) and secondly that the area of the triangle can not be higher than
0.5 square units (as the maximum area of a triangle within a unit square is 0.5). The
three optimisation methods tested are:

(1) stochastic search method

(2) deterministic method

(3) genetic algorithm method.

4.2.2.1 Stochastic search method

The stochastic method used is a directed random search algorithm. Stochastic search

methods for optimisation are based on exploring the domain ® in a random manner to
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find a point that minimises f = f(¥), where f is the cost function. The advantages of this

method include relative ease of coding in software, the need to only obtain F
measurements (versus gradients or other ancillary information), reasonable
computational efficiency (especially for those direct search algorithms that make use of
some local information in their search), broad applicability to non-trivial loss functions
and/or to x that may be continuous, discrete, or some hybrid form, and astrong
theoretical foundation [95]. The simplest random search method is the ‘blind random

search’ and it can be described as in the following algorithm:

Step O (initialisation) Choose an initial value of X = X, inside of ®. Set k = 0.

Step 1 (candidate value) Generate a new independent valuex  (k+1)e ®,

new

according to the chosen probability distribution. If F(X , (k+1)) <

F(X,),set x,,, =X, (k+1). Else take ¥, =X,

new

Step2  (return or stop) Stop if maximum number of F evaluations has been
reached or user is otherwise satisfied with the current estimate for x;

else, return to step 1 with the new & set to the former k + 1.

This algorithm is unique among all general stochastic optimisation algorithms in
that it is the only one without any adjustable algorithm coefficients that need to be
"tuned" to the problem at hand. It also converges almost surely (a.s.) to the optimum x"
under very general conditions [94]. While blind random search is a reasonable algorithm
when X is low dimensional, it can be shown that the method is generally a very slow
algorithm for even moderately dimensioned X. This is a direct consequence of the
exponential increase in the size of the search space as the problem dimension p increases
[94]. It also does not adapt the current sampling strategy to information that has been
garnered in the search process.

An improvement on this method is called the ‘Enhanced Localised Random Search’
method whereby the search is more localised in the neighbourhood of an estimate,

allowing for a better exploitation of information that has previously been obtained about
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the shape of the objective function. The following is a simplified version of the full

version of the algorithm as described by Solis and Wets [96]:

Step 0
Step 1

Step 2

Step 3

Step 4
Step 5

(initialization) Choose an initial value of ¥ = X, inside of ®. Set k=0
(candidate value) Generate a random d; and a bias term b;. Check if

X, + b + di € O. If not, generate new d; or move X, + bk + di to nearest
valid point. Let X, (k +1) be X, +dy . by or the modified point.

(check for improvement) If F(X,,, (k+1))< F(X,), set %,,, =

new

X0y (k+1) and by, ; = 0.2 + 0.4d; and go to Step 5. Otherwise, go to

new

Step 3.

(candidate value) Use the random dj and a bias term by of Step 1. Let
X new(k+1)= X, +b, —d, or its nearest valid point within ©. If
F(Xnew(k+1) < F(X,), set ¥,,, =% new(k+1) and b,,, =b, —0.4d, and
go to step 5. Otherwise, go to Step 4.

(update bias) Set x,,, =X, and by.; = 0.5 Go to Step 5.

(return or stop) Stop if maximum number of F evaluations has been
reached or if user satisfied with current estimate; else, return to step 1

with new k set to former k + 1.

This algorithm allows one to focus the search more tightly as evidence is accrued on

the location of the solution. It also exploits the knowledge on ‘good’ or ‘bad’ directions.

For example, if a move in one direction produces a decrease in loss, bias is added to the

next iteration to allow the algorithm to continue moving in ‘good’ direction or similarly

if a move in one direction produces an increase in loss, bias is added to the next iteration

to move the algorithm in the opposite way. This algorithm is chosen to be the stochastic

search method implemented in this thesis.

4.2.2.2 Deterministic method

The deterministic method used is the gradient free Nelder-Mead nonlinear algorithm

[97]. It is based on the concept of a simplex, a geometric object (convex hull) of p + 1
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vertices enclosing all the p + 1 points in p dimensions, e.g. a line segment on a line, a
triangle on a plane, a tetrahedron in three-dimensional space and so forth. This algorithm
is the baseline gradient-free multivariate optimisation technique in MATLAB (function
fminsearch [98]) and is one of the most popular optimisation techniques when
comparison of objective function values only is concerned. The basic idea in this method
is that at each iteration a new point is generated in or near the current simplex. The new
point then replaces one of the current simplex vertices, yielding a new simplex. This new
point is generated by certain transformations such as reflection, expansion and

contraction as detailed in the algorithm description in Figure 4-2.

0
emax emm max emm
9cent ecent
® 6refl
B2max Oreti B2max
6exp
Reflection Expansion when

L(erefl) < L(emin)

emax Gmm emax emin emax 6min
cent Ocent Bcent
0
conet 0 9cont 0
92max refl e2max el e2max il
Contraction when Contraction when Shrink after failed
L(ereﬂ) < L(emax) L(erefl) 2 L(ernax) contraction When
(“outside”) (“inside”) L(Bren) < L(Bmax)

Figure 4-2 : Nonlinear simplex algorithm for p = 2, where 6 is the parameter vector (adapted
from [99])

The algorithm steps shown here are identical to those in MATLAB fminsearch
function. These steps differ slightly from the original Nelder-Mead algorithm but they

have become widely accepted because performance has been improved. A full
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description of the algorithm is available in Spall’s book [94, p. 57]. To put it simply, the
algorithm searches for X * by moving the convex hull within ©. If the algorithm works
properly, the convex hull shrinks or collapses onto ¥ *. One has to also note that there is
no randomness injected in this technique. This method is very often effective in both
noise free and noisy function measurements, but there is no general convergence theory
and there are many numerical counter-examples where it is shown that it does not

converge.

4.2.2.3 Genetic algorithm method

The third method to be evaluated is a standard genetic algorithm (GA) which is a
good method for solving both constrained and unconstrained optimisation problems.
GAs are the most popular evolutionary computation (EC) algorithms and are based on
principles of natural selection and survival of the fittest whereby at each step individuals
are selected probabilistically from the current population to be parents and then are used
to produce the new solutions (offspring) for the next generation [100]. In GA

terminology, a cost function such as, F(¥), is often referred to as the fitness function to

emphasise the evolutionary concept of the fittest of a species having a greater likelihood
of surviving and passing on its genetic material [94].

A fundamental difference between GAs and the previous two methods is that GAs
work on a population of encoded solutions. A GA can simultaneously consider multiple
candidate solutions to a minimisation of F and iterate by moving this population of
candidate solutions towards a global optimum as shown in Figure 4-3. This is motivated
by a hope, that the new population will be better than the old one. Solutions which are
selected to form new solutions (offsprings) are selected according to their fitness - the
more suitable they are the more chances they have to reproduce. This is repeated until
some condition (for example number of populations or improvement of the best

solution) is satisfied.
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Figure 4-3 : Minimisation of a cost function. Successful operations of a GA with a population
of 12 candidate solutions clustering around the global minimum after a number of iterations or

generations [94]

The basic outline of this algorithm can be described as below [99]:

Step 0

Step 1

Step 2

Step 3
Step 4

Step 5

[Start] Generate random population of n chromosomes (suitable

solutions for the problem)

[Fitness] Evaluate the fitness F(x) of each chromosome x in the
population

[New population] Create a new population by repeating following steps
until the new population is complete

[Selection] Select two parent chromosomes from a population according
to their fitness (the better fitness, the bigger chance to be selected)
[Crossover] With a crossover probability cross over the parents to form a
new offspring (children). If no crossover was performed, offspring is an
exact copy of parents.

[Mutation] With a mutation probability mutate new offspring at each
locus (position in chromosome).

[Accepting] Place new offspring in a new population

[Replace] Use new generated population for a further run of algorithm
[Test] If the end condition is satisfied, stop, and return the best solution
in current population

[Loop] Go to step 1

4-89



Genetic algorithm method

GAss are relatively new optimisation techniques and so far they have been shown to
be particularly useful in solving timetabling and scheduling problems [101], engineering
problems and global optimisation problems. They are also used in the fields of computer
science and artificial intelligence where their ability to solve complicated optimisation
problems together with the mystique surrounding them have contributed to make them
very popular. However one must be careful not to make exaggerated claims concerning
GAs as there appears to be no formal evidence of consistently superior performance
relative to other stochastic algorithms. As disadvantage, the use of a population versus a
single solution affects the range of practical problems that can be considered. For
example, a GA is not generally suited to working with real-time physical experiments.
GAs usually require more function evaluations than the other two techniques to reach the
same cost function values, i.e. convergence may be slow. In some cases, GAs may have
a tendency to converge towards local optima or even arbitrary points rather than the
global optimum of the problem. The likelihood of this occurring depends on the shape of
the fitness landscape and this problem may be alleviated by using a different fitness
function, increasing the rate of mutation, or by using selection techniques that maintain a

diverse population of solutions.

4.2.3 Triangle optimisation on static data

The next step is to test the optimisation algorithms on static artificial data that
resemble a triangular distribution using the multi-objective cost function shown in
equation 4-1. All three techniques obtain their starting triangle vertex values by
identifying the centre coordinates of three regions of high point density after using a k-
means clustering algorithm [102]. However it can happen that three distinct regions of
high point density are not available due to high levels of noise or the fact that the object
of interest has not yet entered the field of view of a camera monitoring a room with two
main background colours. To get round this, permutations of the maximum and
minimum values of the data plots are used to obtain candidate starting triangles, and then
a choice is made depending on which triangle is enclosing the highest number of points
as shown in flowchart in Figure 4-4. Although all the optimisation techniques should in

theory be able to find a triangle to wrap closely around the data points given enough
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function evaluations, this informed initialisation help a lot in accelerating the search.
After the starting points are obtained, the triangle optimisation procedure can then be
started. However before going on to discuss the results of the optimisation techniques, it
is worth noting that the cost function itself, i.e. f(X)= Area(%)+w-[H-W - Points(¥)],
has to tested first to see if it is a well defined function for this problem situation.

f(¥) contains two main calculations that have to be implemented. These are
Area(%) and Points(¥) respectively, i.e. how to find area of a triangle and how to find

the number of points that are enclosed by a triangle. The area of a triangle with vertices

A, B and C can be obtained using vector products given by:
Area = %X‘EXA—C (4-3)

To find the number of points that are enclosed inside a triangle, two main methods
are possible. The first one makes use of the inherent property that a point inside a
triangle will divide the triangle into three smaller triangles and that the sum of the areas
of these three triangles will be equal to the area of the main triangle as shown in Figure
4-5. The second method involves using the delaunay and tsearch functions available in
MATLAB. Given a set of data points, the Delaunay triangulation is a set of lines or
edges connecting each point to its natural neighbours satisfying an ‘empty circle’
property, i.e. for each edge a circle containing the edge's endpoints can be found but not
containing any other points [103]. The MATLAB implementation of Delaunay is based
on the QuickHull(ghull) technique of doing shapes with convex shapes [104]. The
QuickHull algorithm computes the convex hull of a set of points in two or more
dimensions, where a convex hull of a set of points is the smallest convex set that
includes the points. Both techniques are implemented in MATLAB and it is found that
the second one involving the use of the delaunay function (i.e. ghull method) performs a
lot better in terms of time spent in calculating the number of points inside a triangle. This

method is hence chosen as the preferred technique.
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Find coordinates of 3 centres of high
point intensity using the kmeans
function available from MATLAB

Yes

3 starting
coordinates?

Find maximum and minimum values
of data points

\ 4

Do triangles 1 and 2 using permutations
of the max/min values. Find number of
points enclosed in each triangle.

. . No
Pointsin

A1>A27?

Use A1 Use A2

R / Output:

B K X —
/ Starting vertices

Figure 4-4 : Flowchart to find the starting vertices of the triangle to be used in the optimisation
procedure.
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Area = Amain = Amain #
Anain Al + A2+ A3 Al+A2+A3
(a) (b) (c)

Figure 4-5 : Determining whether a point lies inside a triangle or not by using the sum of the
areas of the sub-triangles obtained.

The process of evaluating if the objective function is properly defined can then
carried out. This is done by applying the stochastic search optimisation technique on the
objective function with synthetic data generated for this purpose. The synthetic data
consisted of a certain number of points with 2-D coordinate values ranging between 0
and 1 and the points were distributed around three imaginary corners of an ideal triangle.
The results are shown in Figure 4-6 and Figure 4-7. One can see how the optimiser is
trying to fit a triangle around as many data points as possible after each iteration process
while at the same time decreasing the error in the distance from the ideal vertices that
will enclose all the data points with a minimum area. The objective function value also
follows a decreasing trend and hence its validity is confirmed.

With the objective function’s validity established, the three optimisation techniques
mentioned in the previous section are then evaluated. A small experiment is devised in
which each technique is given a set of data points that roughly forms a triangular shape
when plotted on 2-D space and then each technique’s performance is evaluated after
running the experiment 100 times. A weight w of small magnitude 0.001 and a
maximum number of iterations (generations for the GA) of 20 are used for all the three

techniques used to minimise the cost function f{x).
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Figure 4-6 : Triangle obtained (dotted-line sides) at each step of the stochastic optimisation
iteration process. Final triangle obtained after 20 iterations shown in thick lines.
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values as the stochastic search optimisation process evolves.
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The stochastic optimiser is implemented using the algorithm described in section
4.2.2.1 with an explanatory flowchart shown in Figure 4-8 while the deterministic and
GA optimisers are available directly from the MATLAB Optimisation Toolbox as
fminsearch and ga functions respectively. The fminsearch function can be used as in the
fOllOWing syntax: [vertices, fval] = fminsearch(@CostFunction, vertices,
options) ; This particular command starts at the point vertices and attempts to find a
local minimum of the function described in CostFunction. It minimises the cost
function with the optimisation options such as the termination tolerances on the function
value and the number of iterations allowed specified. The final output consists of the
optimised value of the vertices and the cost function. Repeating the Nelder-Mead
optimisation procedure on the same data points would result in the same final triangle
because of its deterministic nature and so to test for the stability of this particular
method, a random number is added to the starting vertices for each run. Concerning the
genetic algorithm implementation, the ga function can be executed from the MATLAB
command line as with the fOllOWing syntax: [vertices fval] = ga(@fitnessfun,
nvars, options); where nvars is the number of independent variables for the fitness
function (here 6 values for the x and y coordinate values of each vertex) and options
contains certain settings such as population size, crossover fraction, migration direction
and tolerance values. An initial population of 30 vector values close to the starting
vertices is used as initial candidate solutions for the GA implementation.  The
implementation for these three methods is available in appendix Al.

The results for both a random run and the average of multiple runs are shown in
Figure 4-9. It can be observed that all the techniques on average decrease the value of
the objective function in a smooth way as the number of iterations increase. The random
optimiser converge less quickly than the other two, while between the random optimiser
and the deterministic method, the latter is found to give smaller objective function
values. On the other hand, the Genetic Algorithm gives the best fitness function values
and most points inside triangle. It has to be pointed out that each algorithm performs a
different number of function evaluations for each iteration and hence the amount of

computation involved at each iteration cannot be directly compared.
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Figure 4-8 : Flowchart showing how the stochastic optimiser was implemented.
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These tests also demonstrate the usefulness of the user-defined weight w balancing
the two objectives which are of different scales and units. In Figure 4-9 (c) and (e), it can
be seen how a smaller triangle (e) can contain more points than in one with a larger area
shown in (c). In this way, one can suggest that the idea of finding the smallest triangle
that optimally contained most of the data points by wrapping around them has been
achieved.

While these methods worked fine on this static test data, one has to take into
consideration that the application this optimisation is targeted at is one with a dynamic
environment where the colour balance is constantly changing. This is a time-varying
problem and hence a dynamic programming approach to optimisation can be more
suitable to satisfy these conditions. Dynamic programming is an algorithmic technique
that computes solutions by solving simpler overlapping sub-problems and it is was
developed by the mathematician Richard Bellman who described the way of solving
problems where best decisions have to be found one after another [105]. In the forty-odd
years since this development, the number of uses and applications of dynamic
programming has increased enormously. For this current case, since the optimisation has
to be done on each frame with the latter changing ten times every second (10 fps), the
optimised vertices of one frame can also be used as a priori information for the next
frame to Be optimised. Section 4.2.4 gives more information about the choice of the ideal
optimiser to deal with the dynamic situation. As a word of caution to avoid any
confusion, the word ‘programming’ in ‘dynamic programming’ has no particular
connection to computer programming at all, and instead comes from the term

‘mathematical programming’, a synonym of optimisation.
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Figure 4-9: (a) and (b) Random Search, (c) and (d) Nelder - Mead, (¢) and (f) Genetic
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4.24 Triangle optimisation and un-mixing on synthetic dynamic data

This section begins with the explanation of how the optimisation process is further
modified to adapt to the quickly changing colour balances that occur in dynamic
environments. It then describes and discusses the results of the various experiments that
are performed. A model of an image sequence that contains a moving object similar to
what will be obtained from of a low resolution camera is implemented. A high resolution
image matrix is first created and the high resolution image sequence is then down
sampled so that the size of the object ranges from a few pixels to less than a pixel in size
in the down-sampled low resolution synthetic image (Figure 4-10). Typical values for
the example of the model used are 500x500 pixel size high resolution image
background and an object of circular or square shape of size of around 20x20 pixels in
the beginning. These values are chosen assuming that the field of view of the sensor
camera is SmX5m, and that a human head with diameter of 20 cm being tracked. The
down-sampling factor is initially of order 25 which results in a series of low resolution
frame images of size 20x20, and the moving object being less than 1 pixel of size. A
constant random image noise over all the pixels, typical of electronic noise, is also added
to make the simulated imagery as close as possible to reality. The background images
are also changed during the experiment to evaluate how background colours affect the
detection of the small target. The object size and the down-sampling factor are varied,
and different object speeds are also tried to see how the detection and tracking process

respond at different rates of displacement.

Figure 4-10: High resolution artificial imagery with noise being down-sampled.
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To be able to use the un-mixing technique, the triangle optimisation procedure
described in the previous section has to be evaluated on a sequence of frames rather than
single images. To carry out this evaluation, a moving coloured object on a background
with two major colours is first generated together with some image noise for a total of
250 frames at a rate of 10 frames per second. The changing data point distribution thus
obtained is then subject to the three optimisation techniques on each frame. It is found
that the Nelder-Mead (NM) approach fails when the starting points are not close to being
ideal values, i.e. starting coordinates not lying near the extremities of the point
distribution. In a sequence of frames where the data point distribution is constantly
changing resulting in the starting points being rarely ideal, this method cannot perform
well as a result. To be able to use the Nelder-Mead method in a dynamic environment,
the starting vertices will have to be calculated for each frame and the optimiser working
on each frame separately. This approach will however defeat the purpose of dynamic
programming. The random search optimiser provides a way of obtaining a triangle
wrapped around changing data points with a low computational complexity but this
method often fails when the data changes very rapidly and hence result in the vertices of
the triangle being far from the actual ‘corners’ of the data points. The GA is more robust
and its robustness is further improved when a few modifications are made to the
optimiser to better deal with the changes that occur between frames. As with the static
GA optimisation, an initial population of candidate solutions is fed to the optimiser at the
first frame but the difference this time being that the best scores obtained at each GA
optimisation step are fed back into the optimiser for the next frame to achieve a better
frame to frame propagation as part of the modifications as depicted in flowchart of
Figure 4-11. The population size of 20 chosen here is completely a random choice and
one can increase or decrease that size at the expense or gain in timing efficiency. A
reasonable amount was found to be any value between 20 and 40. Too small a value will
not allow the frame to frame propagation process to actually make its presence felt while
too large a value will cause the optimisation to last longer than the time taken for a frame
to change and hence of no use when it comes to using the population values of a current

frame for the next frame.
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Figure 4-11 : Adapting the GA optimiser for dynamic programming. Population information
from a frame is fed back into optimisation step of next frame.

The effects of the population feedback to the following frame can be better
appreciated in Figure 4-12 where the scores of the GA can be seen decreasing in almost a
saw-tooth way in between the frames while at the same time the values of the objective

function follow a decreasing trend. Both the dynamic and static optimisation occurring
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in this process can be clearly observed in this way. Sometimes a sharp increase in the
objective function’s value (e.g. between the vertical dotted lines in Figure 4-12) can be
observed and this sudden increase usually means that there has been a change in the
actual distribution of the data points such as when there is a new object entering the field
of view or when there is a change in the lighting. This figure also shows how the GA is

trying to bring down the cost function value whenever a new frame occurs.
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Figure 4-12 : Behaviour of Best Score values of the GA. Between the frames denoted by the
crosses, static optimisation is taking place. Dynamic optimisation happens when the general
trend in Best Score values is a decreasing one. A sharp increase within the dotted lines indicates
a change in data points and location of vertices.

While the observations on the behaviour of the optimisers are based on visual
checks, two similar and related experiments are designed to evaluate quantitatively the
optimisers on dynamic data. The first one involves finding the number of objective
function evaluations needed to achieve a desired level of accuracy. Data points are
generated in such a way to simulate the dynamic nature of data points that occur in a real
image sequence. In a real image sequence, the data points obtained from successive
frames are not static even if there are no big changes in lighting or there is no new object

entering and leaving the scene. This is due mainly to noise present in the sensor. To
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simulate this behaviour, data points that lie in a general triangular shape are first
generated. These points are created by filling an ideal triangle with 500 points. This ideal
triangle is represented by the vector X which contains the vertices. A random

perturbation of magnitude ¢ is then added to the starting vertices to give a new set of
vertices X,,, and a new data point distribution p. & is a uniformly distributed random

number between —o and + o, with ¢ =0.1 initially. Different small random values
are then added to each data point of p and this addition is repeated on ten copies of p to

give p;, where j=1,2,...,10. Each data point distribution in p ; 1s then ‘displayed’

successively during one second. This has the effect of simulating a data point
distribution coming from an image sequence with a frame rate of 10 fps. At the end of
this process, the value of o is increased to 0.2 and the whole process repeated again for

0=0.1,0.2,0.3,0.4. This can be summarised by the equations 4-4 and 4-5,
X, =x+& (4-4)
p,=p+¢&, forj=12,...,10. (4-5)

where £ is a uniformly distributed random number between —o¢ and +o for
0=0.1,0.2,0.3,0.4 and &, is a uniformly distributed random number between —0.1

and +0.1.

For each set of vertices X, , the three optimisers (GA, Random and Nelder-Mead)

new?

are used to obtain the best possible fit triangle with all of them using the same number
(50) of cost function evaluations. The optimisers are only given starting vertices at the
beginning of the simulation. The experiment is repeated 25 times and the average rms
errors of the triangles' vertices from the known ideal vertices are calculated. The results
are shown in Figure 4-13. All three optimisers give almost the same error values at low
perturbation values with all the error values increasing in different proportions as the
perturbation is increased. However the rate of increase for the GA is smaller than the
other two. The difference in average error of the GA from the other two is also more
considerable when the perturbation factor is at its highest value. Hence, given the same
number of maximum allowed function evaluations, it is experimentally shown that the

GA achieves much better error rates with increasing noise level.
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Figure 4-13 : Behaviour of the rms error of triangle vertices from ideal vertices for the three

chosen optimisation techniques as the perturbation in the data points is increased.

The second experiment that is carried out has as intention to evaluate how fast an
optimiser can react to a change in data point distribution before it reaches a certain
predefined accuracy. This experiment is similar to the previous one apart from the fact
that each optimiser is allowed any number of function evaluations until it reaches a
certain low value of the cost function (0.5) and the time needed to reach that value is
recorded. The experiment is run on an Intel Core2 Duo 2.13 GHz processor and it is
repeated 25 times. The results obtained are shown in Figure 4-14. It can be seen that the
random optimiser takes the longest time in almost all cases while the Nelder-Mead (NM)
approach performs best at low values of ¢ but its ability to react to changes decreases
when the starting points are not close to being ideal. It is also observed that at higher
perturbation values, both the Random and the NM optimisers take more than 0.1 sec to
achieve the set accuracy value, i.e. more than the amount of time that the frame is
available in a 10 fps image sequence. This second experiment shows how the GA is able
to obtain lower cost function values faster than the others especially when the data points
change quickly. Although NM achieves similar or even better results than the GA at low
perturbation, it is expected that the higher perturbation factors (noise levels) are closer to

real-world imagery and hence this technique is dropped as a possible optimiser choice.
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Figure 4-14 : Bar chart showing the time required to reach a predefined cost function value as

perturbation is increased.

One could argue that the random optimiser is similar to NM for high perturbation
values but it is not discarded yet as it is a method that is easily implemented and can
offer a quick and computationally cheap alternative to the optimisers when data points
are not too noisy. With the Nelder-Mead optimiser out of the running, the other two
methods are then subjected to other tests in dynamic scenes to see how they performed.
These tests all involve finding the ‘centre of mass’ of an object, obtained from
weightings determined from spectral un-mixing as explained in section 3.5 (see Figure
3-19), and changing other parameters such as object size and image noise for each test.
Figure 4-15 shows the average error when using the GA and Random optimisers in the
un-mixing process as the diameter of object is increased for several paths. It can be
observed that the position error generally decreases with the increasing size of the
object. This is what one would expect as the number of data-points representing the
object in the un-mixing triangle increases with increasing object size. The high position
error value when the object is just one pixel wide shows that one data-point is not always
enough to obtain a proper simplex for the un-mixing process. As the objects get bigger,
the position errors tend to settle to a value of slightly less than a pixel, which is an

accurate position estimate.
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Figure 4-15 : Error in finding the centre of object as the size of object increases.

Another experiment is to find how the optimisers would react when subjected to
noisy images. Images obtained from low resolution sensors usually contain electronic
noise and a random image noise is a good way to model this type of noise. A slight
improvement that can be brought to the model in the future is to add noise that increases
with the signal level, resulting in the bright areas being noisier than the dark ones. This

type of noise is common in CCD cameras whereby noise is a Poisson process and

increases as «/ﬁ , N being the number of detected photoelectrons on the CCD. For the
purpose of this experiment, the variance of the random noise is increased to see how the
optimisers deal with the constantly changing data distribution with increased number of
outliers present. The results on several paths taken by an object moving in noisy
environment are shown in Figure 4-16. The GA optimiser’s error increases with
increasing noise but it still managed to keep the position error to less than one pixel. The
random optimiser on the other hand follows a quite unusual trend with a sharp increase
in error at first followed by a decrease and then eventually increasing again. It was
difficult to understand the reason behind this but after careful analysis it was deduced

that the initial high peak (at noise variance = 1) is perfectly correct. The random
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optimiser finds it difficult to adapt to the noisy data around the three main regions of
high data point concentrations. However as the noise increases, the data distribution tend
to fill the gaps between the three regions of high concentrations and the optimiser is able
to use these points to maintain a steady triangular wrap around the distribution. As the
noise increases to higher variances, the position errors start to increase for both
optimisers, which is a perfectly understandable situation, and one can predict even

higher errors if the noise is increased further.
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Figure 4-16 : Error in finding the centre of an object as image noise increases

Although both the Random and the GA optimisers are performing well, the random
optimiser has the disadvantage of not being able to adapt well to quickly changing point
distributions or rapid changes in pixel intensity. The values of the weighting w and the
bias term b, (see Figure 4-8) are also seen to play a bigger role in the random optimiser
than the GA when faced with highly noisy data containing many outliers. Having to
adapt and fine tune the random optimiser for each type of noisy video input means that it
cannot perform in a generic way on any data and hence its use is compromised. The GA
method is more stable to increasingly noisy images and is thus chosen to be the
optimiser in the un-mixing process for real videos in dynamic environments. With the
position of the centre of object estimated in this way, a Kalman filter can then be used to

generate a continuous track for the object as will be shown in Chapter 5.
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4.3 Sub-pixel sized object detection

The un-mixing method used to detect small objects of a few pixels wide cannot
be applied to objects that are smaller than a pixel. This is shown in Figure 4-15 where
the position error is high for one-pixel sized objects. As one of the aims of this project is
to develop a suite of detection methods to measure small objects whose sizes range from
a few pixels wide down to minuscule objects that are even less than a pixel, another
method had to be devised to cover detection of the sub-pixel sized objects. There are
several ways to track sub-pixel sized objects. In biomedical microscopy, it is very
common to track the motion of very small particles using algorithms such as cross-
correlation, centroid, and direct Gaussian fit [56]. In correlation-based processing of
velocimetry data, the Gaussian character of the spots gives rise to a Gaussian correlation
profile that is used to determine sub-pixel displacement [107]. In this project, the
modulation of intensity at pixel boundaries is used as a way to detect and measure
motion for sub-pixel sized objects. An object of size smaller than a pixel modulates the
intensity profile of a pixel in a certain way when it passes through the particular pixel.
These changes in intensity can be a valuable source of information to enable the
detection of sub-pixel displacement, and hence motion. As shown in Figure 4-17, even

when the square translates less than a pixel, its motion modulates pixel intensities.
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Figure 4-17: Sub-pixel displacement. Even when square object translates by less than a full

pixel, there is a change in intensity level of the pixels it is entering and leaving
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By using the time derivatives of the intensity at each pixel, and the spatial
derivatives of intensity obtained by comparing the intensity of neighbouring pixels, the
displacement and even velocity can be estimated as is explained next. Figure 4-18 shows
an example of what one would expect to see in the intensity distribution of a pixel if a
square object of less than one pixel in size passes through it. Assuming the object is
moving at constant velocity and the size one pixel represents in real world is known, the
speed of the object and even its size can be estimated. Time ¢; is the time taken for the
leading edge of an object to cover a distance X, equal to the size of the pixel and ¢; is
the transit time across the boundary of a pixel. The speed V,; of the object is obtained by
dividing the distance X,; by #; while the transit time #; information is used in

determining the object size X,;; as explained in equations 4-6 and 4-7 below [9].

X ix
vV, =—= (4-6)
obj ¢
3
t
Xobj = (_lj X Xpix (4'7)
t3

It has to be noted that the graph in Figure 4-18 shows the absolute value of the
change in intensity values and not how the values of intensity themselves change, i.e.
even if a red moving object is less intense than a predominantly red background, the
change will always be a positive change of the similar shape as below. The only
assumption that is made is that the object is not starting from a background of exactly

equal colour values.
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Figure 4-18: Model for finding speed of motion and size of object [9]

With this model in mind an experiment is devised to see how the intensity at a pixel
behaves as objects of different sub-pixel sizes passes through it. A simulation of a square
object moving horizontally on a black background is created and the intensity change at
one particular pixel is analysed as the object goes through it. The size of the square is
changed at each run and it ranges from 0.2 pixel to 1 pixel in length. The pixel intensity

change is shown in Figure 4-19. The implementation code is available in Appendix A2.
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Figure 4-19 : Intensity change in a pixel as a square object of increasing sub-pixel sizes goes
through it.

The behaviour of the pixel intensity as a sub-pixel sized object goes through it is
found to be similar to the model explained in Figure 4-18 and it can hence be deduced
that it is also be possible to estimate the speed and size of the object using equations 4-6
and 4-7 respectively. The next stage of the experiment is to devise a way of detecting
automatically when the edge of an object enters and leaves a pixel for all the pixels
present in a particular image frame to be able to determine the object’s position. While
Figure 4-18 and Figure 4-19 show ideal models of intensity change at a pixel, in real life
the intensity profile is more likely to be corrupted with sensor noise and other
imperfections such as change in lighting. In the noisy artificial imagery that is generated
according to the method described in section 4.2.4 containing a moving sub-pixel sized
object, a random row and column of pixels give profiles in the Normalised Red channel
like those in Figure 4-20. One of the tasks here is to filter the intensity values to obtain
the ‘zero-crossings’ as these points give information about when the leading edge and

trailing edge of an object enters and leaves a pixel respectively.
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Figure 4-20 : Intensity change in a random row and column of pixels.

Filtering can be achieved by:
1) Finding the average and variance of the first five values.
2) Subtracting the average from the next values to remove the constant offset.

3) Using the variance to set a threshold value to detect the zero-crossings.

In some cases such as in Figure 4-20(b) where the object of interest starts its motion
at the pixel being investigated, the average and standard deviation obtained for the initial
five frames are not useful in removing the constant offset. To get round this problem,
one can use the fact that the variance or standard deviation is very large whenever the
intensity values are showing characteristics that they are peaking or have just had their
peak value. If the standard deviation is too high, the average and standard deviation of
the next five frames is then calculated and so forth until the standard deviation get to a
small value. The filtering algorithm is explained in the flowchart Figure 4-21 and
implementation code with offline processing of a dataset can be found in the appended

CD.
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Figure 4-21 : Flowchart for filtering algorithm

An example result is shown in
Figure 4-22 and Figure 4-23. Figure 4-23 is an example of when the average and
standard deviation obtained for the initial five frames are not useful in removing the

constant offset in the intensity distribution.
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Figure 4-22 : (a) shows the intensity values for a particular pixel of an image as time passes (b)
shows the filtered values with indications when the object is entering and leaving the pixel.

Another related use of these intensity profiles is shown in Figure 4-24. In this figure,

an object is moving vertically down on an image plane. The object is entering pixel 4 at

frame n+1 and entering pixel 5 at frame n+7. The highlighted frames show the time

taken 7, for the leading edge of the object to travel across a pixel, and hence the speed of

the object can also be estimated from this technique if the distance that this pixel

represents in the real world is known. With the location of the sub-pixel sized objects

obtained in this way, the next step is then to use predictive filters to track the leading and

trailing edges of the object and hence generate a continuous track for the object.
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Figure 4-23 : (a) shows the intensity values for a particular pixel of an image as time passes (b)
shows the filtered values with indications when the object is entering and leaving the pixel.
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Figure 4-24 : Time taken for one edge of object to cross pixel

4-115



Human skin detection

4.4 Human skin detection

As the objects to be monitored are likely to be human beings, a component that is
present in every human being is tested to become an invariant in the detection process.
This component is the human skin, particularly its chromatic properties. It is claimed
that under certain light conditions and depending on the colour spaces used, skin
chrominance varies little between different skin types [111]. This invariance of the skin
chrominance can be ideal to assist in the detection of people. In particular, faces and
hands tend to remain uncovered in most situations and are therefore good candidates for
monitoring human activity. Skin detection already plays an important role in a wide
range of image processing applications ranging from face detection, face tracking,
gesture analysis, and content-based image retrieval systems. Skin detection
methodologies based on the chromaticity information of the skin as a cue is gaining even
more attention as it provides computationally effective yet, robust information against
rotations, scaling and partial occlusions [108]. Skin detection using colour information
can however be a challenging task as the skin appearance in images is affected by
various factors such as:

e lllumination: A change in the light source distribution and in the illumination
level (indoor, outdoor, highlights, shadows, non-white lights) produces a change in
the colour of the skin in the image (colour constancy problem). The illumination
variation is the most important problem among current skin detection systems that
seriously degrades the performance.

e Camera characteristics: Even under the same illumination, the skin-colour
distribution for the same person differs from one camera to another depending on
the camera sensor characteristics. The colour reproduced by a CCD camera is
dependent on the spectral reflectance, the prevailing illumination conditions and
the camera sensor sensitivities.

e Ethnicity: Skin colour also varies from person to person belonging to different
ethnic groups.

e Other factors: Different factors such as subject appearances (makeup, hairstyle

and glasses), background, shadows and motion also influence skin appearance.
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Many of the problems encountered in the visible spectrum can be overcome by
using non-visual spectrum such as infrared (IR) and spectral imaging as skin colour
properties tend to be more robust in these domains [109]. However, it is an expensive
process and its use is limited to specific application areas such as biomedical
applications. Numerous techniques are available in literature for skin detection using
colour in the visible spectrum. In this section of the thesis, a brief review of the various
skin modelling and classification strategies based on colour information in the visual
spectrum is presented. The review is divided into two main categories. Firstly, the
various colour spaces used for skin modelling and detection are evaluated together with
an explanation of the different skin modelling and classification approaches. The
primary steps for skin detection are (1) to represent the image pixels in a suitable colour
space, (2) to model the skin and non-skin pixels using a suitable distribution and (3) to
classify the modelled distributions. Secondly, a few approaches that use skin-colour
constancy and dynamic adaptation techniques to improve the skin detection performance
in dynamically changing illumination and environmental conditions are introduced. The
section is concluded by evaluating images of low resolution containing skin samples and

testing the suitability of the colour spaces for the un-mixing procedure.

4.4.1 Skin modelling and characterisation

The main problem in using skin tones in image processing is in separating (or
segmenting) the skin regions from the other background regions automatically and
reliably. Human observers have little difficulty in segmenting an image into regions
defined by colour. Automatic segmentation proves to be somewhat more difficult. The
perception of colour by humans is a psychological experience as much as it is a physical
phenomenon and hence makes the segmentation of a video image into skin-coloured
regions and background more complex than a straightforward matching of wavelengths.
While the skin colour of a single subject may appear to an observer as being very
consistent across an image, there is likely to be wide variation in the wavelengths
representing the colour. To deal with this variation, a human skin colour model has to be

derived to decide whether a pixel contains skin or not based on a decision rule.
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From a classification point of view, this process can be viewed as a two-class
problem: skin-pixel vs. non-skin pixel classification [108]. Several techniques on skin-
colour model classification, ranging from simple look-up table approaches to complex
pattern recognition approaches have been published [110].

In this thesis, a pixel-based skin detection method, i.e. one that classifies each pixel
as skin or non-skin individually independently from its neighbours as opposed to region-
based methods, is used to achieve this skin modelling task. The procedure executed is as
follows. Firstly, a large database of photos containing human beings from a wide
spectrum of ethnic origins is collected. Care is taken to collect photos which are taken
under different lighting conditions and which contain various parts of the human body

skin, such as face and arms as shown in Figure 4-25.

Figure 4-25 : Sample of photos containing skin of human beings from various ethnic origins
and taken under different lighting conditions.

Secondly, a tedious process of cropping and selecting only the sections of the
images containing human skin is initiated. All the skin colour samples are then stored in

database Skin_only for further processing.

Figure 4-26 : Cropping images to obtain only skin-containing images.
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Thirdly, for each image / contained in the database Skin_only, every pixel’s p;
chrominance value is plotted on a 2-D graph with axes dependent on the colour spaces
being used as shown in Figure 4-27. This technique is similar to the histogram based
approach used by Soriano et al. in their attempt to find a skin locus to characterise skin
appearance [111]. The colour space (usually, the chrominance plane only) is first
quantised into a number of bins, each corresponding to a particular range of colour
component value pairs (in 2D case) or triads (in 3D case). These bins, forming a 2D or
3D histogram, are referred to as the ‘lookup table’ (LUT). Each bin stores the number of
times this particular colour occurs in the training skin images. The final step that remains
is to convolve the distribution with a Gaussian to obtain a cloud of points for the skin

chrominance model.
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Figure 4-27 : Collecting skin chromaticity values for each pixel present in the image sample
containing skin only for a hypothetical colour space

The colour spaces that are used in the experiment to test for consistency in skin
colour chrominance are (i) Normalised RGB (NRGB), (i1) HSV, (iii) L*a*b* and (iv)
YCbCr. For the NRGB colour space, only two of the three normalised variables are
needed to specify any colour within the range allowed by the primaries as previously
explained in section 3.3.1. Only normalised red and normalised green channels are used
in this experiment and the results obtained has values that tended to agree with Wang
and Yuan [112]. Given an image of size x by y, the following colour ranges can be used

to represent skin chromaticity:

oy €10.35,0.47] and NGreen,, ,, € [0.28, 0.40]

(4-8)

1 if NRed
=0 otherwise
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As for the Hue-Saturation-Value (HSV) colour space, the representation that most
closely resembles the way human beings perceive colours, Sobottka and Pitas derived
hue and saturation ranges of 0° to 50° and 0.23 to 0.68 respectively to characterise skin
colour [113]. These values are found to agree with the values obtained in the current
experiment. However one more condition is added. This new condition is that pixels
with Value < 0.1 are discarded because under this threshold the information contained in
the Hue is not stable [114]. Given an image of size x by y, the following equation can
then be used to filter out the skin:

(4-9)

(xy) =

. {1 if H,e[0,50"]and S, e [0.23,0.68 andV, , >0.1

0 otherwise

For the CIE L*a*b* space, the ab chrominance values are used to construct the
model. The luminance component L* of the colour representation cannot be a reliable
measure for detecting facial regions as the reflected light intensity tends to vary
considerably across a human face. The skin samples were found to lie within the ranges
of =5 to 35 for a* and -7 to 40 for b*. These values are not exactly similar (—10 to 40
for a* and —10 to 60 for b*) to those published in literature by Cai and Goshaby [115].
However one has to be aware that the technique employed by Cai is different from the
one presented here. Rather than just classifying pixels to skin and non-skin regions, Cai
assigns a weight to each pixel, showing the likelihood of the pixel belonging to the skin.
The weights are obtained from a chroma chart that is prepared through a training
process. For the sake of continuity with the other colour spaces, it is decided to use the
results obtained in this project’s experiment in the skin filter equation below where O is

the output image:

(4-10)

1 if a*,, e[-5,35]and b, €[-7,40]
@) 710 otherwise

The final colour space to be tested is the YCbCr. This colour space, like the
previous two, allows for an effective use of the chrominance information (Cb and Cr) for

modelling human skin. It is also very convenient in the sense that this format is typically
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used in video coding, and therefore the use of the same, instead of another, format for
segmentation can avoid extra computation required in conversion as proposed by Chai
and Ngan [116]. The following ranges are found to be the most appropriate to represent

skin colours:

1 if Ch,  €[77,127]and Cr, € [133,173]
) = N o 4-11)

0 otherwise

The distributions obtained from Figure 4-26’s cropped image of a hand is shown

below for all the evaluated colour spaces.
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Figure 4-28 : Skin distributions for YCbCr (a) — (c), CIE L*a*b* (d) — (f), HSV (g) — (i), and
Normalised RGB (j) - (1). First two columns are histogram distributions.
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The ranges of values obtained for the various colour spaces are then tested on random

high resolution images containing human skin. An example is shown in Figure 4-29.

(a) - nRGB {b) - HSV

(c) - Original Image

(d) - L*a*b* {e) - YCbCr

Figure 4-29 : Skin filter using all the four spaces separately applied to an image.

It can be seen that each colour space has its share of false positives and negatives
depending on the image being used. The filtering process also does not perform well
when the input images have ‘bright spots’ on the subject’s face due to reflection of
intense lighting or dark shadows on the face as a result of the use of strong directional
lighting that has partially blackened the facial region. Even under the same lighting

conditions, background colours and shadows can also influence skin-colour appearance.
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Furthermore, if a person moves, the apparent skin colours change as the person’s
position relative to the camera or light change. The human visual system can
dynamically adapt to the varying lighting conditions and can approximately preserve the
actual colour of the object. However, image capturing devices with limited signal
processing are not capable of adapting to the rapidly varying illuminations across scenes.

And finally, it is observed that very dark and light skins are not detected properly.

4.5 Choice of a colour space for the un-mixing procedure involving
low resolution images

While all these techniques mentioned can help in further enhancing the skin
detection process, one has to realise that their main targets are human faces in high
resolution images. In this thesis, the images involved are of low spatial resolution with
only parts of the human skin visible depending on the camera orientation and the
clothing worn by the people being monitored. A second very important requirement to
keep in mind is that the colour space to be chosen has to be compatible with the un-
mixing procedure described in section 3.5. Figure 4-30 shows the distributions that are
obtained for each colour space when a low resolution image containing three main
colours was analysed. NRGB, CIE L*a*b* and YCbCr represented colour values in a
Euclidean way and hence very appropriate for spectral un-mixing. The HSV colour
space has a circular representation of colour and hence it is not suitable for the simplex
wrapping process and the accompanying linear mixing model (LMM). The polar plot of
Hue v/s Saturation in Figure 4-30(b) will make it very difficult to apply the linear un-
mixing model directly to the data and as a result it is decided to discard this colour space
from further use. However, one must be aware of the powerful characteristics of the
HSV space such as its invariability to changing light conditions and hence a single
channel, e.g. Hue only, could be used in a detection process involving colour cues only.
As for the three colour spaces which display un-mixing friendly properties, none of them
is an untouchable candidate. It is decided to use the Normalised RGB in this thesis
during the experiments on the real videos (shown in Chapter 5) because this colour space
is almost readily available from the recording camera. However the other two colour

spaces can also be used.
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4.6 Summary

This chapter consists of a systematic consideration of the techniques to detect very
small objects that are used in this thesis. When objects are a few pixels wide, they can be
detected by using the Linear Mixing Model and the accompanying un-mixing process.
This model, which assumes that each pixel in a given image contains a proportion of one
or more definite colours (or spectra), can be used to decompose each mixed pixel into a
linear combination of the individual colours. Once a pixel is decomposed, depending on
its location in the un-mixing triangle of an image data values, it can be assigned to a
particular object’s colour by using a weighting function to connect the pixels that contain
proportions of that object. The un-mixing triangle is obtained by using an optimisation
function based on the vertices to enclose the data points as tightly as possible. A multi-
objective function is derived to achieve this. This multi-objective function uses a
weighted sum approach to balance the two objectives present. The values for the weight
used during the tests are in the magnitude region of 0.001 to 0.01 but this range cannot
be pre-determined unfortunately. It depends on the noise present in the data as outliers
need to be taken into consideration. Although this is a disadvantage and other more
complicated techniques exist to solve with multi-objective functions in a more generic
way, it is not considered to be a major setback as it is found that the weighting value
used do not have to be changed so frequently. The weighting value needs to be specified
at the beginning of a video sequence depending on the quality of the image available but
then it can be left to stay constant as the triangle optimisation process occurs and hence
no extra computation is required. The genetic algorithm (GA) optimisation technique is
chosen as the optimiser to be used for real video sequences because of its robustness to
quickly changing and/or noisy data points. Two other detection techniques are also
described. The first one is used to detect objects that are less than a pixel in size and it
uses information about pixel intensity profiles to achieve this. The second one is a
human skin detector that uses the common characteristics that exist in the skins of
people of different ethnic origins to achieve detection. While these two techniques are
not the main approaches to detection used in this thesis, they are still considered as they
could enhance the main detection technique which is the un-mixing technique. More

experimental results are given in Chapter 5.
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Introduction

5. Data collection, experiments and results

5.1 Introduction

This chapter contains all the experiments on real videos that are undertaken to test
the various algorithms and ideas proposed in the previous chapters. As mentioned
before, this project is most likely to be deployed within a domiciliary care environment.
With this in mind, an experimental scenario is devised to collect information about this
particular type of environment and how human beings behave in them. Privacy is very
important in these types of environments and the uneasiness felt by people being
watched may be reduced by ensuring that the image quality is very poor and by not
allowing the image data to leave the home at all. For the video testing part, while figures
are given with detailed captions, it is often difficult to view the results on paper. Video
clips of all the experiments have been stored on the CD available in the appendix for an
easier understanding and evaluation of the results. It has to be noted that the frame rate

in all the low resolution test videos is at a constant value of 10 fps.
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5.2 Data Collection — Experimental Plan

During the data gathering exercise, a high resolution camera is used to record the
various videos. The video camera recorder used is a Sony Digital Handycam® Model
No. DCR-PCIE and the videos are recorded on high resolution Digital Video (DV)
tapes. Each component of the experimental scenario lasts five minutes. Images taken
from such type of cameras can vary greatly depending on the settings of the camera such
as exposure, brightness, contrast, auto-zoom etc. All the internal camera image
processing features that exist in the camera are turned off because in practice, none of

these features are available when low resolution sensors are used.

5.2.1 Camera Location

The domestic environment where this project is most likely to be relevant in is
homes for elderly people. The rooms in these homes are often cluttered with furniture
such as wardrobes, tables and sofas and hence the position and orientation of the camera
have to be chosen so that there is minimum occlusion of the person(s) being monitored.
Wall-mounted cameras do not satisfy these requirements and a better alternative is to
have a wide-angle, central ceiling mounted camera to track one or more persons in a
certain area (model in Figure 5-1). This ensures that the maximum area is covered by the
field of view of the camera and it also decreases the camera intrusiveness factor since the

camera can be hidden behind a glass case or masked to look like a light source.

Figure 5-1: Central ceiling mounted camera view.

One drawback of a centrally mounted ceiling camera is that, apart from the head,
some very important information such as the colour of the clothing worn and some
articulated body movements will not be always visible. Therefore a more appropriate
location is in a corner of the ceiling or just above strategic entry/exit places such as

doorways as shown in Figure 5-2. These places are described as entry zones and are
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regions of high activity [117]. Inactivity zones such as sofas and chairs are called so
because they involve little motion of the person. Typical use of a room involves
entering through entry zones followed by visits to one or more inactivity zones and
finally exiting the room. Using a sensor with a wide field of view enables the whole

floor surface to be within the line of sight of the camera.

Wide-angle FOV Sensor

Wall
Wall

Figure 5-2 : Side view of a sensor arrangement placed at a strategic place in a corner of the
ceiling. Sensor has a wide-angle Field of View (FOV).

5.2.2 Lighting conditions

As explained in former chapters, colour cues in general are to be used to obtain
robust detection and tracking of people. The image sequences recorded within an indoor
environment changes quickly due to both continuous and sudden changes in lighting
conditions, e.g. the diurnal variation of daylight and the switching of lights on and off. In
order to achieve a certain degree of robustness in the detection process, the intended
chromatic processing experimentation has to be as immune to light changes as possible.
This is a general problem in colour vision, called colour constancy. The colour
appearance depends on the brightness and the colour temperature of the light source. The
dependency on the brightness can be resolved by transforming into different chromatic

colour spaces such as the Hue-Saturation-Intensity (HSV) or Normalised RGB colour
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spaces. The information obtained from the usual three visible band colours (Red, Green
and Blue) generated by a conventional visible band camera can be transformed to these
more stable colour spaces. This transformation allows the detection process to be
adaptive to different lighting conditions, where the RGB colours are likely to change
more that the hue and saturation components of the HSV values for example. However
in this thesis, Normlised RGB colour space only is used in the experimental test cases
for the reasons given in section 4.5.

Different sets of room lighting conditions such as bright daylight, directional
sunlight, cloudy day, electric bulbs lights and tubes emitting white light are recorded.
Colour appearance is often unstable due to changes in both background and foreground
lighting and the effect of sudden lighting condition changes such as flicking on/off the
room lights is also recorded. For example, one test scenario involves starting with the
blinds closed and then opening the blinds really fast. This floods the camera with new
light coming from outside. The second test is then to quickly drop the blinds so that the
scene grows dark really fast. All the test videos investigating the effect of lighting
conditions are recorded and stored according to Table 5-1 below. These videos

(available on CD in the Appendix) are the high-resolution ones obtained from the

camera.
Lighting Condition Filename
Bright daylight bright.wmv
Cloudy day cloudy.wmv
Directional light directional.wmv
Electric bulbs bulbs.wmv
Sudden change of light sudden_change.wmv

Table 5-1 : Changing lighting conditions
5.2.3 People including clothing and motion

An important factor to be considered when dealing with image monitoring systems
depends on what is being monitored in the first place, e.g. cars, luggage, people etc. In
this thesis, people are being monitored and hence the different variables that people can

exhibit have to be investigated. The first variable to be investigated is the different paths
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that can be taken by a person within a room. Some of the tracks that are undertaken are
shown in Figure 5-3 . Most of the collected data consisted of only one person moving
around in the room in different directions and manners. However, a second person is
also added to see how the trackers would react when there are multiple targets. The test

videos are recorded and saved according to Table 5-2.

Figure 5-3 : (a) and (b) show simple paths taken by one person, (c) shows zigzag path taken by
one person, and (d) shows two persons walking in the room

Track Taken Filename
Single person, Straight line oneperson_straightline.wmv
Single person, Going in circle oneperson_circle.wmyv
Single person, occlusion oneperson_occlusion.wmv
Multiple persons, separate paths twopersons_separate.wmv
Multiple persons, crossing paths twopersons_cross.wmv

Table 5-2 : Paths taken by one or more persons.
Another variable investigated is the speed of motion. The detection process of the

monitoring system has to be able to cope with different speeds of motion. An average
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walking speed inside an office environment is usually within the range 0.5 — 1 metre per
second (m/s), although this depends heavily on factors such as height, weight, and age.
For this data gathering exercise, speeds of motion are classified as slow, normal and fast,
where normal is the general walking speed of a fit person in an enclosed space or room.

Files are saved according to Table 5-3.

Speed Filename
Slow slow.wmv
Normal normal.wmv
Fast fast.wmv

Table 5-3 — Speed of motion

The clothing of people is also another important variable that needs to be
considered. By clothing, it is meant the colour of the clothes used (intensity of colour,
number of colours on a person, dark, bright etc) and the amount of the body skin it
covers. It is expected that the detection system based on the un-mixing procedure will
work best if the person is wearing clothing with a saturated colour that stands out from
the background. However tests have to be made to ascertain how less colourful clothing

would fare in this context. Files are saved according to Table 5-4.

Clothing Filename
Highly saturated pure colour (Red) red_shirt. wmv
Highly saturated pure colour (Green) green_shirt.wmv
Pale colour, different background colour pale_shirt_diff _background.wmv
Pale colour, similar background colour pale_shirt_similar_shirt. wmv
Multi-coloured clothing multi_coloured_shirt.wmv

Table 5-4 - Clothing

5.2.4 External Factors

The last variable to be given attention is what can be classified as ‘external factors’.

This section is concerned with other moving objects that can interfere and influence the

5-132



Data Collection — Experimental Plan

detection and tracking system. Examples are curtains or roller blinds being moved by
wind, house plants being swayed by wind or an electric table fan rotating while in
operation. The motion of background objects is important, e.g. a curtain being blown by
the wind could move forward and across pixel boundaries and depending on the method
of motion detection being used this can generate a large number of false alarms. These
background movements are not expected to impact considerably on the detection
algorithms that are developed but their effects have to be considered nevertheless. Table

5-5 below shows the different videos that are recorded.

External Factor Filename
Curtains moving in background curtains.wmv
Rotating fan causing light to vary fan.wmv
Plant moved by wind plant.wmv

Table 5-5 : External Factors
5.2.5 Video recording and processing

A snapshot of the high resolution videos taken during the experimental scenario
described above is shown in Figure 5-4. The captured videos are then reduced to the
required sizes by using the bi-cubic interpolation technique [118]. In this technique, each
output pixel value is a weighted average of pixels in the nearest 4-by-4 (or higher)
neighbourhood. The analysis of these low resolution image sequences, i.e. the detection
and tracking processes, is then done on an Intel Core® 2 Duo processor computer
running Matlab 2008 with image resolutions ranging from 15x15 pixels to
35x35pixels at a low frame rate of 10 fps more appropriate of a low quality sensor. A
snapshot of the recording sequence in low resolution is shown in Figure 5-5. Please note
that the images in the figure have been enlarged to enable them to be visible for printing.
Each ‘pixel’ in these low resolution images printed here is in fact a collection of pixels

representing the same sample point.
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Figure 5-5 : Low resolution equivalent of the snapshots.
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5.3 Results

5.3.1 Detecting the object and estimating its position

The first step in the testing and evaluation part of the experiment is to see if the
methods of finding the centre of mass of an object using the un-mixing process together
with bounding box approach to locate a central blob (see 3.5) can be used effectively on
basic real imagery.. The first video to be tested is a 25x25 pixel image sequence with
an object (a single person) of a few pixels in size moving in an approximate circular path

(see Figure 5-6(a)). The lighting in this first test video is also kept constant.

Frame Number = 225

0.6
05+ 4
0.4+ 4
0.3F 4
+  Data Points
0.2 s Triangle Wrapping
4+ Full pixels of detected object
01k — — — Boundary for pull pixel |
: 1 1 I T

0.2 0.3 0.4 05
(e)

Figure 5-6 : (a) Image sequence containing a moving object (b) Detected centre of mass of object
(c) Triangle wrapping around data points, and selected data points in red that represent the
object’s location in the image plane.
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The vertex containing the object (or colour) of interest is chosen by the user by first
going through each vertex and seeing what portion of the image it represents (e.g. object,
background 1, background 2 etc). This selection by trial and error can be improved in the
future by using all the three vertices to un-mix pixels during the initial frames and then
checking which one of the three centroid locations obtained is changing. A changing
centre of mass position means a moving object while a fixed one means a background. A
threshold boundary of 0.25 on each side of the un-mixing triangle is used to allocate
certain data points as being full pixels of the detected object, i.e. any points that lie
within the fraction 0.25 of the length of each of the two sides meeting at the vertex
representing the object (or colour) of interest are considered to be full pixels of that
particular colour of interest (See page 3-71 of section 3.5.1 and also Figure 3-23 for
detailed explanation). A snapshot of the detection process with the middle-vertex chosen

as the un-mixing vertex is shown in Figure 5-6.

1 ) 100 1 * 100

100 B . 1 - 100

1 © 100 @

Figure 5-7: Position estimates of the object found when image resolution is (a) 15 x 15 (b) 20 x
20 (c¢) 25 x 25 (d) 30 x 30 pixels. The estimates have then been scaled up to a resolution of 100 x

100 pixels for comparison purposes.
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With the centre of mass detection mechanism seen to be working, the experiment is
then repeated for image resolutions ranging from 15x15 pixels to 30x30 pixels. The
locations of these centroids for each resolution for the duration of the whole image
sequence are shown in Figure 5-7. The values for these locations have been scaled up to
an image resolution of 100x100 pixels to allow easier comparison of the results. The
path obtained by joining each centroid’s position estimate at a resolution of 15x15
consisted mostly of jagged lines but it still gave the impression of a circular trajectory
when looking at the overall picture. This is a very good estimate for such a poor quality
of image. One can see how the paths drawn by joining each centroid’s position estimate
get smoother as the resolution increases. These paths are super-imposed on each other in
Figure 5-8 to appreciate even further the accuracy of the detected centroids as the image
resolution changes. One way to smoothen the paths for the very low resolution image
sequences is to use a Kalman filter. Not only can the Kalman filter smoothen the paths
but it can also insert a certain dose of prediction at each point detection which is very

useful in the overall tracking process. This is explained in the next subsection.
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Figure 5-8 : Detected points superimposed on each other
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5.3.2 Tracking the object using Kalman filters

With the position of the centre of object estimated in this way, a filter such as the
Kalman filter can then be used to initiate a tracking process and improve the object
position estimates. A constant velocity model with a state vector containing x and y
coordinates whenever a measurement is made and velocity obtained from a change in
position as a function of time is implemented using the equations 2-8 to 2-13. Two

variables, the measurement noise N and the covariance error matrix £ that are

mentioned in Chapter 2, are given initial values as shown in equation 5-1. This particular

value of E shows that an error of 2 pixels is assumed for both position and velocity

estimates at the beginning.

2
2.0 0

N, = and E =
710 2 10
0

Main Frame Loop e

(5-1)

S O N O
S B~ O O
~ O O O

v

Filter
initialised?

Two successive
measurements
made ?

Measure-
ment made

NO

Predict State
and Error —No

Innovation
Run Full Filter —

A Initialise Filter

Figure 5-9 : Flowchart explaining the functioning of the Kalman filter with particular attention
to the initialisation step.
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The filter is initialised by using the two-point differencing method whereby the
velocity is first estimated only after two position measurements are made. Once the filter
is running, an estimate for the next measurement can be obtained by using information
from previous data as shown in the flowchart in Figure 5-9. The results for the different
image resolutions are shown next in Figure 5-10 with the thick white lines representing
the paths obtained after running the Kalman filter (The estimates have then been scaled
up to a resolution of 100 x 100 pixels for comparison purposes). This process is done
online, i.e. in real time every time a centroid position update is available. It can be seen
how the Kalman filtered paths are smoother the paths obtained after the un-mixing
process only. There is less jaggedness even for the very low quality image sequences.
The tracks are super-imposed on each other in Figure 5-11 for easier comparison. The

implefnentation code of the Kalman filter is available in Appendix A3.
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Figure 5-10 : Track estimation shown by thick white line after Kalman filter has been applied to
each image resolution of (a) 15 x 15 (b) 20 x 20 (c) 25 x 25 (d) 30 x 30 pixels. The estimates
have then been scaled up to a resolution of 100 x 100 pixels for comparison purposes.

5-139



Tracking the object using Kalman filters

—3¢— 30 x 30 |8
- 25 x 25 §
--€-- 20x 20 &

100 B .
1 100

Figure 5-11 : Filtered tracks obtained from different resolutions superimposed on each other

It has been shown how the paths are made smoother but it is difficult to evaluate
how efficient the Kalman filter is because of lack of ground truth. Normally this data
will be in terms of a certain number of reference points on the floor which the object
(here a person) has to cover. Then any deviation from these reference points can be
considered as errors in track estimates. However, because of the nature of the un-mixing
which singles out and track the person’s coloured shirt rather the whole person itself, it
is difficult to relate this data to the reference points. These results cannot be tested with
other monitoring systems also because none that uses the same technique of tracking the
colour only is available. To evaluate the effect of the Kalman filter, it is better to apply it
to an artificially generated image sequence which contains three main colours with one
of them moving around within the image boundaries. An example of un-mixing and data
filtering at an instant in time on a 25 x 25 pixel resolution image sequence is shown in
Figure 5-12. In general, it is found that the Kalman tracker filters the data well as the
position errors are smaller in magnitude and smoother than after the un-mixing alone as
shown in Figure 5-12 (c). The degree of smoothness is shown in (d) and (e) where the
paths obtained after un-mixing only and Kalman filtering respectively are super-imposed

on the real path. However every time the object changes direction, higher error values
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are obtained and this could be partly explained by the fact that a constant velocity model
was used. A future improvement is to use a more complex Kalman tracker to better
predict the position coordinates of the object when the latter changes velocity and
direction. This constant changing of directions is not expected to happen very often
within indoor environments with elderly people and one can assume that the constant

velocity model is appropriate enough for now.
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Figure 5-12 : (a) Original imagery at an instant in time - here Frame 230, (b) Position estimate
of the object at Frame 230 after un-mixing, (c) Kalman filter gives position error values which
generally smaller in magnitude and smoother than the ones obtained after un-mix only, (d) Path
after un-mixing only, super-imposed on real path, (e) Path obtained after Kalman filter is used,
super-imposed on real path.
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One has to be aware that the Kalman filter applied in this manner is not being used
to predict paths ahead in time but just for the smoothing of the detected noisy position
measurements of the moving object. However sometimes it can happen that a position
update is not available, e.g. temporary occlusion of object or failure of wrapping triangle
to fit tightly around a quickly changing data points. To show how the Kalman filter can
be used to estimate the position without a measurement, another test is done where the
filter is only fed position measurements after every other five frames. The result is
shown in Figure 5-13. It can be seen that even without any measurement made, the
Kalman filter can give an estimate of the path reliably with position error values of less
than 2 pixels. However these values tend to go very high when the object changes

direction drastically.
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