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A B S T R A C T

In the last two decades, considerable efforts have been devoted to finding a way to enhance cognitive function by
cognitive training. To date, the attempt to boost broad cognitive functions in the general population has failed.
However, it is still possible that some cognitive training regimens exert a positive influence on specific popu-
lations, such as older adults. In this meta-analytic review, we investigated the effects of working memory (WM)
training on older adults' cognitive skills. Three robust-variance-estimation meta-analyses (N=2140, m=43,
and k=698) were run to analyze the effects of the intervention on (a) the trained tasks, (b) near-transfer
measures, and (c) far-transfer measures. While large effects were found for the trained tasks (g =0.877), only
modest (g =0.274) and near-zero (g =0.121) effects were obtained in the near-transfer and far-transfer meta-
analyses, respectively. Publication-bias analysis provided adjusted estimates that were slightly lower. Moreover,
when active control groups were implemented, the far-transfer effects were null (g =−0.008). Finally, the
effects were highly consistent across studies (i.e., low or null true heterogeneity), especially in the near- and far-
transfer models. While confirming the difficulty in obtaining transfer effects with cognitive training, these results
corroborate recent empirical evidence suggesting that WM is not isomorphic with other fundamental cognitive
skills such as fluid intelligence.

1. Introduction

The detrimental effects of aging on cognitive function are notorious.
Cognitive skills such as executive functions, working memory, rea-
soning, and processing speed significantly decrease in the elderly
(Salthouse, 2009). Finding a way to slow down cognitive decline or at
least partially restore earlier cognitive function is a key issue for so-
ciety. Working-memory (WM) training has been proposed as one pos-
sible solution to this problem.

Working memory (WM) can be defined as a cognitive system used to
store and manipulate the information needed to carry out cognitive
tasks (Baddeley, 1992, 2000). WM capacity, that is, the number of items
WM can retain and manipulate, is strongly correlated with fluid in-
telligence (Engle, Tuholski, Laughlin, & Conway, 1999; Kane,
Hambrick, & Conway, 2005) and several measures of cognitive control
(e.g., Conway, Cowan, & Bunting, 2001; Kane & Engle, 2003; Redick,
Calvo, Gay, & Engle, 2011). Furthermore, WM is correlated with
reading (Peng et al., 2018) and mathematical skills (Peng, Namkung,

Barnes, & Sun, 2016). WM also plays a fundamental role in cognitive
development. For example, deficits in WM capacity in children are as-
sociated with attention-deficit/hyperactivity disorder (ADHD;
Klingberg et al., 2005), reading and mathematical difficulties
(Passolunghi, 2006; Swanson, 2006), and language impairment
(Archibald & Gathercole, 2006). Given the importance of WM for a
broad range of cognitive and academic skills and its strong correlation
with fluid intelligence, WM training has been proposed to boost cog-
nitive function in general (e.g., Jaeggi, Buschkuehl, Jonides, & Perrig,
2008).

The fundamental assumption behind WM training is that WM is
somehow malleable to training. Several explanatory mechanisms have
been hypothesized. To begin with, WM training may lead to long-
lasting modifications in WM-related neural circuits that are involved in
attentional control processes and fluid intelligence as well (Jaeggi et al.,
2008; Klingberg, 2010). This way, fostering WM may induce benefits to
other cognitive skills. This claim is also based on the fact that WM and
fluid intelligence appear to have a shared capacity constraint (Halford,
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Cowan, & Andrews, 2007). The performance in tasks measuring fluid
intelligence (e.g., Raven's progressive matrices) is bounded by the
amount of information that can be handled by WM. If WM capacity can
be increased, then an improvement in such tasks may occur (Jaeggi
et al., 2008). In turn, improving fluid intelligence would benefit many
other cognitive and academic skills. Another complementary explana-
tion of the generalization of WM training refers to the role of attentional
processes in both fluid intelligence and working memory (for details,
see Gray, Chabris, & Braver, 2003). Like with the other cognitive
training programs, the critical assumption underlying these hypotheses
is that WM training fosters domain-general mechanisms such as WM
capacity and cognitive control, which in turn enhances other cognitive,
academic, and real-life skills.

More recently, Taatgen (2013, 2016) has suggested that cognitive
enhancement may be a byproduct of the acquisition of a particular skill.
According to this hypothesis, extensive training in a given task enables
individuals to acquire not only domain-specific skills (i.e., how to
perform the trained task) but also small elements of more abstract
production rules. These small elements do not encompass any domain-
specific content and thus can be generalized across different cognitive
tasks. In other words, this theory postulates the existence of domain-
general skills that are combinations of processing elements. These do-
main-general skills can be learned by domain-specific training and
transfer across cognitive tasks.

1.1. Meta-analytic evidence with younger individuals

Overall, these theoretical mechanisms have not been borne out by
the empirical evidence, which has established that WM training does
not exert any generalized benefit on cognitive function. Four compre-
hensive meta-analyses (Melby-Lervåg & Hulme, 2013; Melby-Lervåg,
Redick, & Hulme, 2016; Schwaighofer, Fischer, & Buhner, 2015;
Weicker, Villringer, & Thöne-Otto, 2016) have found that WM training
impacts on the ability to perform the trained tasks and, to a lesser de-
gree, tasks similar to the trained tasks (i.e., near transfer). However,
WM training appears to have little or no effect on cognitive tests un-
related to the trained tasks (i.e., far transfer), especially when treated
groups were compared to active control groups to rule out possible
placebo effects (e.g., Melby-Lervåg et al., 2016).

Other smaller meta-analyses that were aimed at evaluating the ef-
fects of WM training in particular populations (e.g., healthy younger
adults) or training regimens (e.g., n-back training) have confirmed this
pattern of results. Au et al. (2015) carried out a meta-analysis of the
effects of practicing n-back tasks on measures of fluid intelligence in
younger adults. The re-analysis of their dataset shows that the overall
effect size is around zero when experimental groups are compared to
active-control groups (for a detailed discussion, see Au, Buschkuehl,
Duncan, & Jaeggi, 2016; Dougherty, Hamovits, & Tidwell, 2016; Melby-
Lervåg & Hulme, 2016). More recent meta-analytic evidence confirms
this pattern of results. Soveri, Antfolk, Karlsson, Salo, and Laine (2017)
have analyzed the impact of n-back training on healthy adults' cognitive
skills. While a robust effect on n-back tasks' performance is evident, the
treatment seems to exert no appreciable influence on far-transfer
measures such as cognitive control or fluid intelligence, especially when
active-control groups are implemented. In the same vein, Sala and
Gobet (2017) have investigated the possible benefits of WM training in
typically developing children and found evidence of near-transfer ef-
fects only. Similar findings have been seen in children and adolescent
with learning disabilities (Aksayli, Sala, & Gobet, 2019; Peijnenborgh,
Hurks, Aldenkamp, Vles, & Hendriksen, 2016). WM training thus seems
to be no exception to the general difficulty of enhancing overall cog-
nitive ability by training (e.g., Moreau, Macnamara, & Hambrick, 2018;
Sala & Gobet, 2019; Simons et al., 2016).

It must be noted that most of the abovementioned empirical evi-
dence refers to young populations such as healthy children, adolescents,
and younger adults. The difficulty of boosting cognitive ability and,

hence, obtaining far-transfer effects is evident in populations whose
cognitive function is developing or at its full potential. By contrast, the
impact of WM training is less clear with older adults' cognitive skills.

1.2. Meta-analytic evidence with older adults

The effects of WM training on older adults' cognitive skills have
been the object of extensive empirical research, as can be seen by the
several meta-analytic reviews that have been carried out on the topic.
Below, we present a summary of the most important meta-analyses
conducted so far. However, these meta-analyses are either under-
powered (i.e., few studies included) or run with a suboptimal modeling
approach. Thus, none of these meta-analyses has reached a definite
conclusion regarding the current state of the art in this literature.

Lampit, Hallock, and Valenzuela's (2014) meta-analysis included
studies about several computerized cognitive-training programs, nine of
which were WM-training interventions. While small to moderate near-
transfer effects were obtained following WM training, modest to null
effects were found with far-transfer effects. Karbach and Verhaeghen
(2014) reached more optimistic conclusions. They carried out a meta-
analysis of 13 studies involving older adults and found that WM
training exerted a positive impact on several near- and far-transfer
cognitive measures. However, Melby-Lervåg and Hulme (2016) con-
tested the validity of the findings. In their re-analysis, they argued that
– when the intervention groups were compared to active controls and
the differences at baseline controlled for – the effects were significantly
smaller than the ones reported in Karbach and Verhaeghen (2014).
Thus, the observed effects may have been due to placebo effects and
statistical artifacts. Overall, the limited number of studies did not allow
to draw any definite conclusion.

Schwaighofer et al. (2015) included 47 studies, of which ten con-
cerned older adults. As already mentioned, this meta-analysis offered
only modest evidence of far-transfer effects overall. In addition, no
impact of age was observed. The effects were very small (at best,
around 0.150 standardized mean difference; SMD), even without cor-
rection for publication bias, and were not sustained at follow-up (i.e.,
an assessment occurring several months after the end of the training).
Again, the small number of the studies including older adults made it
difficult to draw reliable conclusions.

In another meta-analysis, Melby-Lervåg et al. (2016) reported the
same pattern of results as Melby-Lervåg and Hulme (2016). When
compared to active controls, the effects of WM training were moderate
on near-transfer measures and null on far-transfer measures. Never-
theless, Melby-Lervåg and colleagues' findings may have been influ-
enced by two of their inclusion criteria. First, they included only in-
terventions implementing computerized WM-training programs. In fact,
non-computerized training regimens may even be more suitable for
those older adults who are unfamiliar with technology. Second, they
excluded all studies reporting near-transfer but not far-transfer mea-
sures (e.g., McAvinue et al., 2013). However, near-transfer effects may
represent significant benefits for older adults. Moreover, measures of
cognitive control (e.g., Stroop task) were not collected and inserted into
the meta-analytic models. Such strict inclusion criteria thus limited the
number of included studies (n=12) and outcome measures analyzed.

Weicker et al.'s (2016) meta-analysis was more inclusive than the
previous ones (n=22). Both the near- and far-transfer effects were
slightly larger than Melby-Lervåg and colleagues' meta-analyses. The
main limitation of Weicker et al. (2016) was running many independent
models including a small number of effect sizes each for different
cognitive tests. Such models often lack the necessary statistical power to
implement an appropriate sensitivity analysis (e.g., publication bias
and outlier analysis).

Nguyen, Murphy, and Andrews (2019) focus on a variety of com-
puterized cognitive training programs for older adults, including WM
training. Their results highlight positive effects in several cognitive
areas (e.g., executive functions, visuospatial skills, and processing
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speed). Regarding WM training in particular, their meta-analytic review
contains 21 studies and reports a medium overall effect on older adults'
performance on memory tasks. Also, this meta-analysis incudes an in-
tercept model showing a small positive overall far-transfer effect in the
WM-training groups. No further analysis is conducted, probably due to
the small number of effect sizes.

Importantly, none of the above meta-analyses employed multilevel
modeling to correct for potential biases due to statistical dependence of
the effect sizes. (It is worth noting that averaging dependent effects
without applying any statistical correction can lead to biased estimates
too; e.g., Cheung & Chan, 2014). Mewborn, Lindbergh, and Miller's
(2017) meta-analysis examined the effects of several cognitive-training
regimens on older adults' cognitive skills. This meta-analysis included
16 WM-training studies and, unlike the above meta-analyses, correctly
implemented multilevel modeling. However, only a single overall effect
size was computed, which represented the effects of WM training on
trained tasks, near-, and far-transfer measures (g =0.480). Thus, it was
not clear how much each of these measures contributed to the overall
effect.

Finally, Teixeira-Santos et al.'s (2019) meta-analysis included 27
studies about WM training in healthy older adults (1130 participants).
Both a multilevel model and a sensitivity analysis were implemented.
So far, this meta-analysis was the largest and probably the technically
soundest review on the topic. The meta-analysis was, however, some-
what limited in scope because it focused only on far-transfer effects
related to reasoning. The effects of WM training on other cognitive
skills such as language skills, processing speed, and executive functions
were not considered, which led to the exclusion of many potentially
eligible studies. The results indicated a small positive training effect on
the participants' fluid intelligence and more robust, yet quite hetero-
geneous, effects on memory-related tasks.

1.3. The present study

The above summary highlights the fact that previous meta-analyses
have not offered consistent conclusions about the potential of WM
training in the elderly. We believe that these discrepancies are mainly
due to three factors. First, as already mentioned, only two meta-ana-
lyses have employed multilevel modeling, none of which is a compre-
hensive investigation of the cognitive effects of WM training in the el-
derly. The way statistical dependence is (or is not) addressed may lead
to different conclusions, especially when the meta-analytic models in-
clude a small number of effect sizes and clusters. Second, the categor-
ization of potentially relevant moderators differs from meta-analysis to
meta-analysis. For example, it is often not totally clear how transfer
distance (near vs. far) is assigned to the effect size (for a discussion see
Melby-Lervåg & Hulme, 2016). Analogously, the conditions defining
active control groups are often too loose. As shown by Simons et al.
(2016), active controls should be involved in cognitively engaging ac-
tivities to effectively control for placebo effects. However, this more
accurate criterion has never been applied in reviews about WM training
in the elderly. Third, the estimation and investigation of between- and
within-study variability is often inconclusive and biased. The lack of
multilevel modeling or any other type of statistical correction related to
the nested structure of data artificially increases heterogeneity, which
leads to an inflated overall effect size when publication bias is present.
Furthermore, the impact on the pre-post-test effect sizes of baseline
differences between treated participants and controls has never been
systematically analyzed. Not controlling for baseline differences is a
notable limitation because a certain amount of noise due to regression
to the mean is always present.1 This noise can be read as true

heterogeneity by the meta-analytic model. Therefore, not ruling out this
bias would potentially give the illusion that the literature of interest is
more mixed than it actually is. Also, it is often unclear how sampling
error variance, of which true heterogeneity is a function, is calculated,
which may be another source of artificial variability across and within
meta-analyses. Crucially, all these statistical artifacts can bias meta-
regression analysis results because the noise introduced may be inter-
preted as real effects due to one or more moderating variable. This state
of affairs has probably led to incorrect conclusions about how (in)
consistent the findings are in the literature at both the primary-study
and meta-analytic level (e.g., Green et al., 2019; Pergher, Shalchy,
Pahor, Jaeggi, & Seitz, 2019).

The present meta-analytic review is aimed at solving the above is-
sues. We have built a more comprehensive series of meta-analytic
models than in previous studies. In addition, this meta-analysis includes
not only significantly more studies and participants than the previous
ones, but also a rigorous sensitivity analysis to control for statistical
dependence of the effect sizes, publication bias, and influential cases.
Finally, the categorization of relevant moderators and the sampling
error variance estimation have been based on more appropriate and
conservative criteria.

2. Method

2.1. Literature search

In line with the PRISMA statement (Moher, Liberati, Tetzlaff, &
Altman, 2009), a systematic search strategy was implemented to find
the relevant studies. The methods and results are presented according
to up-to-date reporting standards (Appelbaum et al., 2018). The fol-
lowing Boolean string was used: (“working memory training” OR “WM
training”) AND (“older adults” OR elderly OR seniors OR geriatrics OR
ageing OR aging OR “age related”). We searched Complementary Index,
Academic Search Complete, Medline, Science Direct, Psyc-Info, and
ProQuest Dissertation & Theses databases to identify all the potentially
relevant studies. Earlier narrative and meta-analytic reviews were ex-
amined, and their reference lists scanned. In addition, we e-mailed re-
searchers in the field (n=28) asking for unpublished/inaccessible
data. We received 16 responses, seven of which were positive. Finally,
we used Google Scholar to perform citation searches for three pub-
lications: Karbach and Verhaeghen (2014), Melby-Lervåg and Hulme
(2013), and Melby-Lervåg et al. (2016).

2.2. Inclusion/exclusion criteria

The studies were included according to the following six criteria
(selected a priori):

1. The study included an intervention aimed at training WM skills. Like
in Melby-Lervåg et al. (2016), the WM tasks had to constitute at
least 50% of the intervention. Training programs including tDCS
were excluded. A meta-analytic review of such studies can be found
in Nilsson, Lebedev, Rydström, and Lövdén (2017). Also, no study
employing exergames (i.e., tasks that are both physically and cog-
nitively demanding) was included. A meta-analysis of such studies
in older adults is included in Sala et al. (2019);

2. The study included at least one control group;
3. At least one transfer measure of cognitive skill was collected. Self-
reported measures (e.g., Cognitive Failure Questionnaire) were ex-
cluded;

1 Random differences at pre-test naturally tend to disappear because partici-
pants' results at post-test naturally tend towards the mean values. The effect
sizes are a function of the pre-post-test differences between the two groups. If,

(footnote continued)
for example, the control group is, by chance, superior at pre-test (g_pre < 0),
and no differences are found at post-test (g_post= 0), then g would be positive
(because the experimental group improved more than the control group).
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4. The participants' mean age was 60 or above. This criterion was
consistent with a previous meta-analysis of WM training (Soveri
et al., 2017);

5. The participants in the study were older adults with no serious
clinical condition (e.g., dementia, brain injury);

6. The data presented in the study (or provided by the author) were
sufficient to calculate an effect size.

We searched for relevant published and unpublished articles
through June 1st, 2019. We found 43 studies, conducted from 2008 to
2019, that met the inclusion criteria. These studies included 534 effect
sizes and a total of 2140 participants. Also, a subsample of the included
studies reported follow-up effects (k=164). All the data are reported in
the supplemental materials available online. Fig. 1 summarizes the
entire procedure.

2.3. Meta-analytic models

Consistent with Melby-Lervåg et al. (2016), each effect size was
labeled as criterion, near transfer, or far transfer. The criterion effect sizes
referred to the measures assessing the participants' performance on the
trained tasks. The near-transfer effect sizes referred to memory-related
measures. Examples of such measures were digit-span, n-back, and
episodic memory tasks. Finally, far-transfer effect sizes were extracted
from all the other cognitive measures. The details about the cognitive
tests used in the primary studies and other descriptive statistics can be
found in the Supplemental materials available online (Tables S1–S4).

Two authors coded each effect size for moderator variables

independently. The Cohen's kappa was κ=0.98. The two authors re-
solved every discrepancy by discussion. We ran one meta-analytic
model for each type of effect size.

2.4. Moderators

We chose (a priori) four main moderators that were included in the
meta-regression analyses:

1. Allocation (dichotomous variable): Whether the participants were
randomly allocated to the groups; random allocation is one of the
most important features to assess the quality of an intervention.
Ideally, randomization ensures that the experimental and control
groups do not differ with regard to any variable (e.g., cognitive
skills, SES, etc.) at pre-test assessment;

2. Type of control group (active or non-active; dichotomous variable):
Whether the WM training-treated group was compared to a cogni-
tively active alternative activity (e.g., visual-search task, non-adap-
tive WM training). Alternative tasks with negligible cognitive demand
(e.g., watching videos, physical training, and filling in questionnaires)
were labeled as “non-active.” This criterion was in line with com-
monly accepted guidelines (e.g., Boot, Simons, Stothart, & Stutts,
2013; Simons et al., 2016).2 Inter-rater agreement was 98%;

3. Duration of training (continuous variable): The total mean time of
training in hours. When the mean time of training was not provided,
we used the median value of the provided range;

4. Baseline difference (continuous variable): The standardized mean
difference (Hedges's g) between the experimental and control groups
at baseline. This moderator was added to control for possible sta-
tistical artifacts (e.g., inflation of true heterogeneity) due to re-
gression to the mean (Melby-Lervåg & Hulme, 2016). A negative and
statistically significant regression coefficient would suggest the
presence of some true heterogeneity due to regression to the mean
(i.e., the pre-post-test gain is inversely related to the pre-test dif-
ferences between the groups).

It is well-known that meta-regression often lacks adequate statistical
power (Hempel et al., 2013). To minimize problems related to low
statistical power (e.g., Type II error), two secondary categorical mod-
erators (with df > 1) were tested separately with the Holm's method.3

Like the Bonferroni correction, this technique allows us to adjust the p-
value of each pairwise comparison to reduce the likelihood of Type I
error (for details, see Viechtbauer, 2010):

1. Type of training task: Whether the training task employed was
Cogmed, n-back, complex span, or other (e.g., mixed training). This
categorization was the same as the one used in Melby-Lervåg et al.
(2016);

2. Outcome measure: This moderator was added only in the near-
transfer and far-transfer models. In the near-transfer models, the
effect sizes were classified as nearer-transfer when the outcome

Fig. 1. Flow diagram of the search strategy in the meta-analytic review.

2 Some of these control group activities were referred to as “active” in pri-
mary studies. The application of this criterion led us to recode them as non-
active (e.g., Borella et al., 2014).
3 In addition, we conducted separate analyses for the studies carried out by

the researchers of the University of Padova (Borella and Carretti). This lab
produced a significant number of studies about the effects of WM training on
older adults' cognitive skills (n=10). No other lab published more than three
articles on the topic. It was thus recommendable to check for differences be-
tween Borella and Carretti's studies and studies by other researchers. This
moderator was not added in the main analysis because it was confounded with
the type of control group (non-active in all Borella and Carretti's studies) and
duration of training (much shorter than the studies conducted by other la-
boratories). These analyses are reported in the supplemental materials available
online.
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measure was a variant of the training task (e.g., verbal n-back task
with spatial n-back as the training task), near-transfer when the
outcome measure was a common measure of STM/WM capacity,
and less-near-transfer when the outcome measure was a proxy for
episodic memory (e.g., free recall tasks).4 The Cohen's kappa was
κ=0.98. In the far-transfer model, we categorized the effects into
four groups. The effect sizes were labeled as Gf when referring to
fluid reasoning tasks, Gs when referring to processing speed tasks,
EF for executive functions tasks, and Language for language-related
tasks (e.g., semantic comprehension). The Cohen's kappa was
κ=0.96.

This taxonomy substantially mirrors the one designed by Noack,
Lövdén, Schmiedek, and Lindenberger (2009) for defining transfer
distance in cognitive-training research. Based on Carroll (1993) three-
stratum model, the taxonomy defines the transfer between tasks
(Stratum I) from different broad skills in Stratum II as “far,” the transfer
between different tasks within the same Stratum II skill as “near,” and
the transfer between similar tasks within the same Stratum II skill as
“nearest.”

2.5. Effect sizes and sampling error variance calculation

The effect sizes were calculated for each relevant measure reported
in the primary studies. The standardized mean difference (Cohen's d)
was calculated with the following formula:

=d
M M
SD

ge gc

pooled pre (1)

whereMge andMgc are the mean gain of the experimental group and the
control group immediately after the end of the training, respectively,
and SDpooled-pre is the pooled standard deviation of the two pre-test
standard deviations. This formula represents the most appropriate way
to calculate the standardized mean difference in intervention studies
with a repeated-measure design (for details, see Morris, 2008; Schmidt
& Hunter, 2015, pp. 352–353). When negative effects represented im-
proved performance, the means were multiplied by −1.

We then converted the Cohen's ds into Hedges' g (Hedges & Olkin,
1985) by using the following formula

= ×
×
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where N is the total sample size (Schmidt & Hunter, 2015; pp.
274–275).

The formula used to calculate the sampling error variances was
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where rxx is the test-retest reliability of the measure, Ne and Nc are the
sizes of the experimental group and the control group, de and dc are the
within-group standardized mean differences of the experimental group
and the control group, and r is the pre-post-test correlations of the
experimental group and the control group, respectively (Schmidt &

Hunter, 2015; pp. 343–355). Since the pre-post-test correlations and
test-retest coefficients were rarely provided in the primary studies, we
assumed the reliability coefficient (rxx) to be equal to the pre-post-test
correlation (i.e., no treatment by subject interaction was assumed;
Schmidt & Hunter, 2015; pp. 350–351), and we imposed the pre-post-
test correlation to be rxx= r=0.650.5 This value was employed be-
cause it was the approximate mean pre-post-test correlation in Guye
and von Bastian (2017), which was the largest study in the field.

2.6. Modeling approach

To prevent any bias caused by potential cherry-picking practices, we
calculated the effect sizes for each relevant dependent variable reported
in the studies. Several studies presented multiple-group comparisons –
for example, between one experimental group and two control groups
(one active and one passive), or between two experimental groups and
one control group. In these cases, we calculated as many effect sizes as
the number of comparisons. Our models thus included some statistically
dependent effect sizes.

To control for statistical dependence between effect sizes, we used
robust variance estimation (RVE) with hierarchical weights and small-
sample corrections to calculate the overall effect size and perform meta-
regression analysis (Hedges, Tipton, & Johnson, 2010). RVE allows one
to model statistically dependent effect sizes and calculates adjusted
(i.e., increased) overall standard errors. RVE also provides an estima-
tion of the within-cluster true (i.e., not due to random error) hetero-
geneity and between-cluster true heterogeneity components (ω2 and τ2,
respectively). We thus grouped all the effect sizes extracted from one
study into the same cluster. We ran (a) intercept models to calculate the
overall effect size in each meta-analytic model and (b) meta-regression
models to assess the amount of true heterogeneity explained by the four
main moderators. We ran the RVE models with the Robumeta software
R package (Fisher, Tipton, & Zhipeng, 2017).

2.7. Sensitivity analysis

A systematic set of analyses was run to test the robustness of the
results estimated by RVE. All the analyses were performed with the
Metafor software R package (Viechtbauer, 2010). First, we performed
Viechtbauer and Cheung's (2010) influential cases analysis in every
meta-analytic model. This analysis consisted of a series of leave-one-out
diagnostics for evaluating whether some effect sizes – due to their
magnitude or sampling error variance – had an unusually large influ-
ence on the meta-analytic means. We excluded those influential effect
sizes that contributed to the inflation of true heterogeneity. Also, we
removed those effect sizes that were> 3.000 in absolute value even if
they had not been detected by the influential case analysis. This cri-
terion was applied post-hoc in order to test the robustness of the results
and reduce the risk of statistical artifacts in the analyses due to inflated
true heterogeneity. We report the results of the RVE models both with
and without influential effect sizes.

Second, after removing the influential effect sizes, we merged the
effects from the same study with the method designed by Cheung and
Chan (2014). This method estimates an adjusted sampling error var-
iance based on (a) the number of within-cluster effect sizes and (b) how
homogeneous these effect sizes are (for more details, see the R codes in
the supplemental materials). Then, we ran a random-effect model with
the merged effect sizes. The number of reported effect sizes varied
much across studies (from 1 to 34). Adopting a sample-wise procedure
(i.e., merging the effects) served as a further check for the results
provided by the RVE models.

Third, we ran a set of publication-bias analyses with the random-

4 The classification of episodic-memory measures differs among meta-ana-
lyses. For example, while Weicker et al. (2016) categorize them as far-transfer,
Tetlow and Edwards (2017) includes them in the near-transfer models. The
latter decision, in our opinion, makes more sense. In fact, both episodic-
memory tasks and WM training tasks require recall skills (for a review, see
Unsworth & Engle, 2007). WM training programs may contribute to developing
recall strategies such as simple mnemonics, which in turn may be used in
episodic memory tasks.

5 We replicated the analyses using different values of pre-post-test correla-
tions ranging between 0.500 and 0.800. Only negligible differences were found.
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effect models (RVE does not allow to correct for publication bias ana-
lysis or test for possible influential cases). Publication bias is unan-
imously acknowledged as a serious problem in meta-analysis and sci-
entific research in general (Begg & Berlin, 1988; Schmidt & Hunter,
2015; Schmidt & Oh, 2016). Therefore, it has been proposed to use
multiple analyses not only to detect the possible publication bias but
also to triangulate the true (i.e., unbiased) effect size (e.g., Kepes,
Banks, & Oh, 2014; Kepes & McDaniel, 2015). We thus adopted a sys-
tematic and multivariate approach to assess publication bias. We pro-
duced a funnel plot depicting the relationship between the effect sizes
and their standard errors. Then, we used the trim-and-fill analysis with
the L0 and R0 estimators described in Duval and Tweedie (2000) to
estimate the corrected overall effect size. The trim-and-fill analysis es-
timates the number of missing studies due to the systematic suppression
of the null and negative effect sizes on one side of the funnel plot. The
method then imputes the missing effect sizes based on the observed
distribution asymmetry to generate a more symmetrical funnel plot.
The adjusted overall effect size and standard error is also provided. The
L0 and R0 estimators differ from each other regarding the type of non-
parametric test they employ. Using two different estimators is re-
commended in order to increase the reliability of the estimates. Finally,
since trim-and-fill analysis have been documented to sometimes pro-
vide false negatives (i.e., no effect sizes filled in the presence of pub-
lication bias; Simonsohn, Nelson, & Simmons, 2014), we used the PET-
PEESE estimates as a further method to assess publication bias (Stanley
& Doucouliagos, 2014). The PET estimator is the intercept of a
weighted linear regression where the dependent variable is the effect
size, the independent variable is the standard error, and the weight is
the inverse of the standard error squared (i.e., precision). The PEESE
estimator is obtained by replacing the standard error with the standard
error squared as the independent variable. If PET suggests the presence
of a real effect (i.e., intercept different from zero; p < .100, one-tailed),
the PEESE estimator must be considered as the corrected overall effect
size (Stanley, 2017; Stanley & Doucouliagos, 2014). As an updated
version of the Egger's test (Egger, Smith, Schneider, & Minder, 1997),
PET-PEESE can also be considered a test of symmetry of the funnel plot.
It should be noted that the PET-PEESE method suffers from some
shortcomings. Specifically, the technique sometimes fails to provide
trustworthy results when (a) there are fewer than 20 observations, (b)
true heterogeneity is high, and (c) only small-sample-size studies are
present in the dataset (Stanley, 2017). For a discussion of the reliability
of different publication-bias detection techniques under different con-
ditions, see Carter, Schonbrodt, Gervais, and Hilgard (2019).

2.8. Follow-up effects

Along with data referring to immediate post-test performance, a few
primary studies reported follow-up effects. The effect sizes were cal-
culated by replacing the pre-post-test gains with the difference between
the follow-up mean minus the pre-test mean in formula (1). Given the

relatively small number of effect sizes in follow-up models, we did not
run any sensitivity analysis.

2.9. Re-analysis of Melby-Lervåg et al. (2016)

In order to compare the effects of WM training on older adults
(age≥60) with younger adults (18 < age < 60), we re-analyzed a
subsample of the dataset used by Melby-Lervåg et al. (2016). This da-
taset contained 44 studies (441 effect sizes) implementing a WM-
training intervention in healthy younger adults. The categorization of
the effects into three broad categories (criterion, near transfer, and far
transfer) was the same as the one adopted in our meta-analytic in-
vestigation with older adults. This allowed us to make a comparison
between older and younger adults' differential improvement in the
three types of outcome measure. Larger gains in the population of older
adults would suggest, for instance, that WM training may induce
compensation effects. Furthermore, the formulas used to extract the
effect sizes from primary studies was the same as the one used with
older adults. For the sampling error variance, Eq. (3) could not be
employed because de and dc were not provided in the original dataset.
We thus used the following formula (Hedges & Olkin, 1985):

= × × +var N
N N

g1
3

4 1
8g

2

(4)

which is slightly less conservative (i.e., smaller variances on average)
than Eq. (3).

We employed the same modeling approach (i.e., RVE and sensitivity
analysis) as above. The dataset is included in the Supplemental mate-
rials available online.

3. Results: meta-analysis of older adults' studies

We present, in order, the criterion meta-analysis, the near-transfer
meta-analysis, and the far-transfer meta-analysis. Table 1 provides a
summary of the results.

3.1. Criterion meta-analysis

In this section, we examine the effects of WM training on the
training tasks. Thus, this analysis does not refer to any transfer effects.
Rather, it measures the impact of practicing WM training tasks on older
adults' ability to perform the same tasks.

3.1.1. Main model
The RVE model included all the effect sizes related to criterion

measures. The overall effect size was g =0.877, 95% CI [0.691; 1.063],
m=28, k=72, df=15.61, p < .001, ω2=0.000, τ2=0.252.

We ran a meta-regression model including all the four main mod-
erators. Despite the presence of some between-cluster true hetero-
geneity, no moderator was significant. The type of WM training task

Table 1
Overall effects in the three meta-analyses of older adults' studies sorted by significant moderators.

Model (1) g (RVE) (2) Adj. g (range) (3) Heterogeneity (4) Residual heterogeneity (5) RE τ2 (6)

Criterion 0.877 0.479–0.544 ω2=0.000, τ2=0.252 ω2=0.016, τ2=0.019 τ2=0.004 (n.s.)
Near 0.274 0.159–0.246 ω2=0.003, τ2=0.033 ω2=0.000, τ2=0.000 τ2=0.009 (n.s.)
Nearer 0.345 – – – τ2=0.000 (n.s.)
Near 0.225 – – – τ2=0.006 (n.s.)
Less-near 0.191 – – – τ2=0.000 (n.s.)

Far 0.121 −0.030–0.113 ω2=0.000, τ2=0.016 ω2=0.000, τ2=0.000 τ2=0.010 (n.s.)
Non-Active 0.262 – ω2= 0.000, τ2= 0.040 ω2=0.000, τ2= 0.010 τ2= 0.020 (n.s.)
Active −0.008 – ω2= 0.000, τ2= 0.000 ω2=0.000, τ2= 0.000 τ2= 0.000 (n.s.)

Note. (1) The meta-analytic model; (2) The overall RVE effect size; (3) The range of the publication bias adjusted estimates; (4) The amount of true heterogeneity of
the model; (5) The heterogeneity after excluding influential cases and running meta-regression; (6) The random-effect between-study true heterogeneity after
merging the statistically dependent effect sizes.
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(secondary moderator) was not significant either (all ps= 1.000;
Cogmed: g =0.547, n-back: g =0.577, complex span: g =0.569, and
other: g =0.935).

3.1.1.1. Sensitivity analysis. One influential case was detected. Other
four effect sizes were excluded because they were excessively large
(g > 3.000). The results without these effect sizes were much less
heterogeneous. The overall effect size was g = 0.762, 95% CI [0.613;
0.910], m=25, k=67, df=14.48, p < .001, ω2=0.063, τ2=0.034.
The meta-regression analysis showed that, this time, Baseline was a
significant moderator and explained a significant amount of true
heterogeneity (b=−0.528, p= .008; ω2=0.016, τ2=0.019). Based
on Hempel et al.'s (2013) simulation, the probability of identifying a
significant (p < .050) effect size of 0.200 SMD for a binary moderator
in this analysis was around 40% to 50%. Also, Allocation and Type of
control group approached significance (ps < 0.100), and thus might
have been mistakenly found non-significant (Type II error). By contrast,
Duration of training was largely non-significant (p= .710), which
suggested that this moderator had no impact on the effect sizes
regardless of statistical power. The type of WM training task
(secondary moderator) was not significant (all ps= 1.000). Given the
smaller number of studies per comparison, this moderator's power to
find a significant small effect (0.200 SMD) was probably not> 20%.

3.1.1.2. Publication bias analysis. As specified in the Method section, we
used Cheung and Chan's (2014) method to merge the effects (after
excluding the influential cases) and perform publication bias analyses.
The funnel plot is shown in Fig. 2.

The overall effect size of the random-effect model was g =0.614,
95% CI [0.495; 0.733], p < .001, k=25, τ2=0.004. The test of het-
erogeneity was not significant (QM(24)=24.90, p= .411). The overall
effect size estimated by the trim-and-fill analysis was g =0.544, 95%
CI [0.434; 0.655], p < .001 with the L0 estimator and g = 0.482, 95%
CI [0.369; 0.596], p < .001 with the R0 estimator. The PET and PEESE
estimators were g = 0.220, 95% CI [0.085; 0.356], p= .004 and g =
0.479, 95% CI [0.392; 0.566], p < .001, respectively. In this case, the
PET estimator was not reliable (p < .100, one tailed), and thus PEESE
was the correct estimator.

3.1.2. Follow-up
Ten studies reported follow-up effects. The RVE overall effect size

was g = 1.016, 95% CI [0.730; 1.302], m=10, k=17, df=7.20,
p < .001, ω2=0.035, τ2=0.015.

3.1.3. Discussion
This meta-analysis analyzed the impact of the WM training pro-

grams on the trained tasks. The uncorrected overall effect size was large
g( =0.877) and relatively robust to influential case analysis and pub-
lication bias analysis. As suggested by trim-and-fill and the PEESE es-
timator, the unbiased effect is statistically significant and probably
between g =0.500 and g =0.550.

The models reported some amount of true heterogeneity. A good
amount of the between-cluster true heterogeneity is accounted for by a
few extreme cases and baseline differences (τ2=0.019). The within-
clustered true heterogeneity was only partially explained by these two
factors (ω2=0.016). This residual true heterogeneity was probably due
to the different conditions in some particular tasks (e.g., 2-back vs 0-
back). In fact, the pre-test means of some task conditions were very
close to the maximum value. Thus, since no substantial pre-post-test
improvement was possible (i.e., ceiling effect), these effect sizes were
significantly smaller than the average. This hypothesis is upheld by the
fact that a small and non-significant amount of true heterogeneity is
observed after merging the statistically dependent effects (τ2=0.004,
ns). We can thus conclude that the WM training programs did exert a
meaningful and consistent impact on the participants' ability to perform
the trained tasks.

3.2. Near-transfer meta-analysis

In this section, we examine the impact of WM training on the ability
of older adults to perform memory tasks. These tasks are similar to the
trained tasks because they tap into the same cognitive constructs (e.g.,
WM capacity) or the same skills (e.g., recall).

3.2.1. Main model
The RVE model included all the effect sizes related to memory

measures on tasks not used during training. The overall effect size was g
= 0.274, 95% CI [0.192; 0.355], m=39, k=214, df=25.86,
p < .001, ω2=0.003, τ2=0.033.

We ran a meta-regression model including all the four main mod-
erators. Baseline difference was the only significant moderator
(b=−0.416, p < .001) and explained nearly all the true hetero-
geneity (ω2=0.000, τ2=0.006). Regarding the secondary moderators,
while the type of WM training task was not a significant moderator
(ps= 1.000 in all the pairwise comparisons; Cogmed: g =0.447 n-
back: g =0.176, complex span: g =0.326, and other: g =0.215), the
similarity between trained task and outcome measure was significant.
No significant difference was found between near-transfer and less-
near-transfer (episodic-memory tasks) effect sizes (g =0.225 and
g =0.191, respectively; p= .920), but the nearer-transfer effect sizes
(g =0.345) were significantly greater than near-transfer effects
(p= .012) and less-near-transfer measures (p= .043). Finally, statis-
tical power did not seem to be an issue in this case. Based on Hempel
et al.'s (2013) estimations, the power (assumed g=0.200 and
alpha=0.050) of the non-statistically significant moderators varied
from about 30% (type of training task) to 80% (all the other mod-
erators). Moreover, the residual heterogeneity was close to zero, which
suggests that no other moderating variable is present beyond the ones
already individuated.

3.2.1.1. Sensitivity analysis. Three influential cases were detected. The
results without these effect sizes were g =0.254, 95% CI [0.179;
0.328], m=39, k=211, df=24.79, p < .001, ω2=0.000,
τ2=0.017. Baseline difference was still the only significant
moderator (b=−0.425, p < .001) and explained all the observed

Fig. 2. Funnel plot of standard errors and effect sizes (gs) in the criterion meta-
analysis (main model).
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true heterogeneity (ω2=0.000, τ2=0.000). The type of WM training
task was not significant (all ps= 1.000). Regarding the similarity
between trained task and outcome measure, the only significant
comparison was between nearer-transfer and near-transfer effect sizes
(p= .017). The comparison between less-near-transfer overall effect
size and nearer-transfer overall effect size showed the same trend (i.e.,
nearer-transfer > less-near-transfer) but, this time did not reach
statistical significance (p= .084) due to the small number of studies
in the two subgroups.

3.2.1.2. Publication bias analysis. The funnel plot is shown in Fig. 3.
With respect to publication analysis, the overall effect size of the

random-effect model was g =0.246, 95% CI [0.164; 0.328], p < .001,
k=39, τ2=0.009. The test of heterogeneity was non-significant (Q
(38)=38.88, p= .430). The overall effect size estimated by the trim-
and-fill analysis was g =0.159, 95% CI [0.067; 0.251], p < .001 with
the L0 estimator, and g =0.246, 95% CI [0.164; 0.328], p < .001 with
the R0 estimator. The PET and PEESE estimators were g =0.059, 95%
CI [−0.096; 0.215], p= .457 and g =0.189, 95% CI [0.098; 0.280],
p < .001, respectively. Notably, the PET estimator probably under-
estimated the true effect in this case because most of the effect sizes
were extracted from small sample sizes (for more details, see Stanley,
2017). The other publication-bias corrected estimates (trim-and-fill and
PEESE) seemed more reliable.

3.2.2. Follow-up
Fifteen studies reported follow-up effects. The RVE overall effect

size was g =0.378, 95% CI [0.252; 0.504], m=15, k=77, df=9.93,
p < .001, ω2=0.000, τ2=0.000.

3.2.3. Discussion
This meta-analysis investigated the impact of the WM training

programs on memory-related measures–measures that were thus si-
milar, but not identical, to the trained tasks. Overall, the results showed
a robust, yet modest, effect of the WM interventions on near-transfer
measures. While the uncorrected overall effect was g =0.274, the
sensitivity analysis estimated the probable true effect between
g =0.159 and g =0.246 (both significant; as seen earlier, the PET
estimator is probably overcorrected).

Regarding moderators, baseline difference, along with a few

influential cases, explained all the observed true heterogeneity
(ω2=0.000, τ2=0.000). The effect of the training on near-transfer
outcomes was thus highly consistent across tasks and studies. As ex-
pected, the training programs tended to be more effective on nearer-
transfer tasks.

Finally, the overall effect size at follow-up (g =0.378) was prob-
ably an overestimation due to selection bias. In fact, only 15 out of 39
studies (77 out of 214 effect sizes) reported follow-up measures. It is
possible that, in some of the other 24 studies, follow-up measures were
not collected because the effect sizes at post-test were not sufficiently
large to justify further assessments.

3.3. Far-transfer meta-analysis

In this section, we examine the impact of WM training on the ability
of older adults to perform non-memory-related cognitive tasks. These
tasks do not share any feature with the trained tasks. That is, they tap
into different skills and cognitive constructs (e.g., fluid reasoning).

3.3.1. Main model
The RVE model included all the effect sizes related to far-transfer

measures. The overall effect size was g =0.121, 95% CI [0.032; 0.211],
m=38, k=248, df=16.51, p= .011, ω2=0.000, τ2=0.016.

We ran a meta-regression model including all the four main mod-
erators. The type of control group and baseline differences were the
only significant moderators (b=0.203, p= .009 and b=−0.302,
p= .019, respectively). This moderator explained all the observed true
heterogeneity (ω2=0.000, τ2=0.000). None of the secondary mod-
erators was significant (all ps≥ 0.593; Type of training task: Cogmed:
g =−0.054, n-back: g =0.092, complex span: g =0.207, and other:
g =0.126; Outcome measure: Gf: g =0.095, Gs: g =0.074, EF:
g =0.105, and Lang: g =0.136). Finally, given that the residual true
heterogeneity was null, it is highly improbable that other moderators
could have been found to be significant or that those that were included
in these analyses were incorrectly found non-significant (e.g., because
of lack of statistical power).

3.3.1.1. Sensitivity analysis. Twelve influential cases were detected,
none of which inflated the amount of true heterogeneity. Only one
effect was excluded because it was> 3.000. The results without this
effect size were g =0.114, 95% CI [0.029; 0.199], m=38, k=247,
df=14.89, p= .012, ω2=0.000, τ2=0.004. The only significant
moderators were the type of control group and baseline differences
(p= .007 and p= .012, respectively), and they explained all the
observed true heterogeneity (ω2=0.000, τ2=0.000). Consequently,
none of the secondary moderators was significant (all ps≥ 0.434).

3.3.1.2. Publication bias analysis. The funnel plot is shown in Fig. 4.
Concerning the publication bias analysis, the overall effect size of

the random-effect model was g =0.114, 95% CI [0.030; 0.199],
p= .008, k=38, τ2=0.010. The test of heterogeneity was non-sig-
nificant (Q(37)=42.01, p= .263). The overall effect size estimated by
the trim-and-fill analysis was g =0.113, 95% CI [0.028; 0.197],
p= .009 with the L0 and g =0.064, 95% CI [−0.039; 0.166], p= .221
with the R0 estimator. The PET and PEESE estimators were
g =−0.030, 95% CI [−0.172; 0.119], p= .683 and g =0.046, 95%
CI [−0.047; 0.138], p= .337, respectively.

3.3.2. Type of control group
Compared to non-active controls groups, the overall effect size of

the RVE model including all the effect sizes related to far-transfer
measures was g =0.262, 95% CI [0.122; 0.401], m=25, k=129,
df=16.60, p= .001, ω2=0.000, τ2=0.040. Compared to active
controls, the overall effect size was g =−0.008, 95% CI [−0.105;
0.090], m=19, k=119, df=6.07, p= .854, ω2=0.000, τ2=0.000.

Fig. 3. Funnel plot of standard errors and effect sizes (gs) in the near-transfer
meta-analysis (main model).

G. Sala, et al. Intelligence 77 (2019) 101386

8



3.3.2.1. Sensitivity analysis. In the non-active-control sub-group, two
influential cases were detected. The results without these effect sizes
were g =0.236, 95% CI [0.105; 0.368], m=25, k=127, df=16.00,
p= .002, ω2=0.000, τ2=0.010. In the active-control sub-group, no
influential cases affecting heterogeneity were detected.

3.3.3. Follow-up
Thirteen studies reported follow-up effects. The RVE overall effect

size was g =0.241, 95% CI [0.086; 0.396], m=13, k=70, df=7.92,
p= .007, ω2=0.000, τ2=0.002.

3.3.4. Discussion
This meta-analysis investigated the impact of WM training programs

on far-transfer measures – i.e., measures unrelated to the trained tasks.
Overall, the analyses showed modest to null overall effect sizes that
were highly homogeneous. The only significant moderators were type
of control group and baseline difference. While a modest positive effect
(g =0.262) was observed in studies implementing non-active control
groups, when active-control groups were employed the effect was
practically zero (g =−0.008). Finally, like in the near-transfer meta-
analysis, the proportion of studies reporting follow-up measures was
small (13 out of 38, 70 out of 248 effect sizes), which made the esti-
mated overall effect (g =0.241) unreliable.

4. Re-analysis of Melby-Lervåg et al. (2016)

We reanalyzed the data reported in Melby-Lervåg et al. (2016)
concerning the effects of WM training on younger adults. As specified
above, this analysis allowed us to make a direct comparison between
the effects of WM training on younger adults' and older adults' cognitive
skills. The categorization of the effects (criterion, near transfer, and far
transfer) and the modeling approach was the same as in the models
examining WM training in the older adults. Table 2 summarizes the
main results.

4.1. Criterion meta-analysis

4.1.1. Main model
The RVE model included all the effect sizes related to criterion

measures. The overall effect size was g =1.170, 95% CI [0.713; 1.627],

m=12, k=34, df=5.99, p < .001, ω2=0.061, τ2=0.392.

4.1.1.1. Sensitivity analysis. Two influential cases were detected.
Another effect size was excluded because it was excessively large.
The results without these effect sizes were g =0.958, 95% CI [0.660;
1.256], m=10, k=31, df=4.94, p < .001, ω2=0.020, τ2=0.142.

4.1.1.2. Publication bias analysis. After merging the effects, the overall
effect size of the random-effect model was g =0.836, 95% CI [0.624;
1.049], p < .001, k=10, τ2=0.039. The test of heterogeneity was
non-significant (Q(9)=15.16, p= .087). The overall effect size
estimated by the trim-and-fill analysis was g =0.823, 95% CI [0.609;
1.036], p < .001 with the L0 estimator; no bias was detected with the
R0 estimator. The PET and PEESE estimators were g =0.841, 95% CI
[0.396; 1.286], p= .006 and g =0.821, 95% CI [0.598; 1.043],
p < .001, respectively.

4.1.2. Discussion
This meta-analysis analyzed the impact of the WM training pro-

grams on the trained tasks. The unadjusted overall effect size was large
g( =1.170) and heterogeneous. The exclusion of some extreme effects
and merging of the statistically dependent effect sizes reduced the true
heterogeneity to a non-significant amount (τ2=0.039, p= .087).
Publication bias analysis estimated a smaller, yet still large, overall
effect size (g about 0.820). These effects were systematically greater
than the ones in the older adults.

4.2. Near-transfer meta-analysis

4.2.1. Main model
The RVE model included all the effect sizes related to near-transfer

measures. The overall effect size was g =0.208, 95% CI [0.129; 0.286],
m=31, k=160, df=11.82, p < .001, ω2=0.053, τ2=0.008.

4.2.1.1. Sensitivity analysis. Three influential cases were detected. The
results without these effect sizes were g =0.183, 95% CI [0.105;
0.260], m=31, k=157, df=11.39, p < .001, ω2=0.023,
τ2=0.013.

4.2.1.2. Publication bias analysis. After merging the effects, the overall
effect size of the random-effect model was g =0.180, 95% CI [0.119;
0.241], p < .001, k=31, τ2=0.000. The overall effect size estimated
by the trim-and-fill analysis was g =0.176, 95% CI [0.115; 0.237],
p < .001 with the L0 and g =0.162, 95% CI [0.090; 0.233], p < .001
with the R0 estimator. The PET and PEESE estimators were g =0.165,
95% CI [0.060; 0.269], p= .004 and g =0.169, 95% CI [0.095; 0.242],
p < .001, respectively.

4.2.2. Discussion
This meta-analysis examined the impact of the WM training pro-

grams on memory-related measures. Overall, the results showed a
slightly smaller effect than the one estimated in older adults (g =0.208
vs. g =0.274). The adjusted estimates ranged between g =0.162 and
g =0.176. Like with older adults, the effects were substantially
homogenous, with most of the true heterogeneity explained by a few
effect sizes. No true heterogeneity was observed after merging the
statistically dependent effect sizes.

4.3. Far-transfer meta-analysis

4.3.1. Main model
The RVE model included all the effect sizes related to far-transfer

measures. The overall effect size was g =0.099, 95% CI [0.015; 0.182],
m=44, k=247, df=15.26, p= .024, ω2=0.000, τ2 < 0.001.

4.3.1.1. Sensitivity analysis. Six influential cases were detected, three of

Fig. 4. Funnel plot of standard errors and effect sizes (gs) in the far-transfer
meta-analysis (main model).
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which were excluded because they inflated the amount of true
heterogeneity. The results without these effect sizes were g =0.097,
95% CI [0.024; 0.170], m=44, k=244, df=15.96, p= .012,
ω2=0.000, τ2=0.000.

4.3.1.2. Publication bias analysis. After merging the effects, the overall
effect size of the random-effect model was g =0.107, 95% CI [0.043;
0.170], p < .001, k=44, τ2=0.000. The overall effect size estimated
by the trim-and-fill analysis was g =0.092, 95% CI [0.029; 0.155],
p= .004 with the L0 and g =0.105, 95% CI [0.042; 0.168], p < .001
with the R0 estimator. The PET and PEESE estimators were
g =−0.003, 95% CI [−0.119; 0.113], p= .961 and g =0.061, 95%
CI [−0.003; 0.126], p= .069, respectively.

4.3.2. Type of control group
The overall effect size of the RVE model including all the effect sizes

related to far-transfer measures in groups compared to non-active
controls was g =0.161, 95% CI [0.035; 0.288], m=26, k=113,
df=8.62, p= .018, ω2=0.000, τ2=0.016. The overall effect size of
the RVE model including all the effect sizes related to far-transfer
measures in groups compared to active controls was g = 0.059, 95% CI
[−0.030; 0.147], m=27, k=134, df=9.91, p= .170, ω2=0.000,
τ2=0.000.

4.3.2.1. Sensitivity analysis. In the non-active-control sub-group, the
results without the three influential effect sizes were g =0.138, 95% CI
[0.020; 0.256], m=26, k=110, df=7.98, p= .027, ω2=0.000,
τ2=0.000. None of the three influential cases was included in the
active-control subgroup.

4.3.3. Discussion
This meta-analysis investigated the impact of WM training programs

on far-transfer measures – i.e., measures unrelated to the trained tasks.
Like in the meta-analysis of WM training in older adults, the analyses
showed highly homogeneous small (with non-active controls) to near-
zero (with active controls) overall effect sizes.

5. General discussion

This meta-analytic investigation has addressed the question of the
impact of WM training on older adults' cognitive skills. The three meta-
analyses provide a picture consistent with the literature on WM training
in children and young adults: strong effects in the trained tasks, small
effects (near transfer and episodic memory) to medium effects (nearer
transfer) in the memory tasks, and small (with non-active controls) to
null effects (with active controls) in the far-transfer tasks. Table 1
summarizes the main findings.

Crucially, the meta-analytic models, especially the ones examining
transfer effects, exhibit high consistency both within-study and be-
tween-study (i.e., very small or null ω2 and τ2). In all three meta-ana-
lyses, most of (or all) the residual true heterogeneity (if any) was ac-
counted for by a few influential cases, differences at baseline, and type
of control group. No other moderator was significant. Put together,
these outcomes show that the results reported by the studies assessing
the impact of WM training on older adults' cognitive function are

actually extremely consistent. Therefore, there is no reason to think that
this literature has produced mixed results so far.

The re-analysis of Melby-Lervåg et al.'s (2016) dataset on younger
adults yielded similar outcomes: robust criterion effects, small near-
transfer effects, and near-zero far-transfer effects (Table 2).

Consistent with the analysis of older adults' results, most of the
models showed low true heterogeneity, which is mostly due to a small
number of influential cases. The only notable difference between
younger and older adults was the size of the overall criterion effects.
While the corrected overall effect ranged between 0.500 and 0.550
SMD in the older adults, the estimate was about 0.800–0.850 SMD with
younger adults. This difference is probably due to younger populations
being better at acquiring new skills by training. Nonetheless, no ap-
preciable difference was observed with regard to transfer effects.

Finally, it must be noted that most of the primary studies do not
report any information about the reliability coefficients of the tests
used. Therefore, no correction for measurement error has been applied
in any of the meta-analytic models. Although this objectively con-
stitutes a technical limitation, we think that its practical consequences
are minimal, especially for what concerns near- and far-transfer models.
In fact, applying a multiplicative correction to such small or null effect
sizes would result in adjustments of a few hundredths of standardized
mean difference at best.

5.1. Theoretical and practical implications

Our findings suggest that WM training in older adults represents no
exception to the general difficulty of enhancing overall cognitive ability
by training. The size of the effects was directly related to the overlap
between the outcome measures and the trained tasks. More generally,
the findings further establish that training leads to only limited gen-
eralization across different domains of skills. In fact, these findings echo
those obtained with other cognitive-training regimens such as video-
game training and brain-training programs (e.g., Rebok et al., 2014;
Sala et al., 2019; Simons et al., 2016). The vast amount of negative
evidence acquired so far leads us to conclude that even assuming that
cognitive skills are trainable, the benefits remain domain specific. These
results are in line with the prediction of theories of skill acquisition
based on task domain-specificity (Chase & Ericsson, 1982; Gathercole,
Dunning, Holmes, & Norris, 2019; Gobet, 2016; Gobet & Simon, 1996).
Conversely, those theories predicting far transfer are not supported
(e.g., Jaeggi et al., 2008; Taatgen, 2013, 2016).

Another interesting theoretical insight is offered by the concurrent
presence of some near-transfer effects and absence of far-transfer ef-
fects, especially on measures of fluid intelligence. As seen, fluid in-
telligence and WM have been claimed to share similar mechanisms
(e.g., shared capacity constraint; Jaeggi et al., 2008). Our results do not
support this hypothesis. By contrast, our findings are in line with more
recent evidence suggesting that WM and fluid intelligence differ from
each other in terms of the underlying neural mechanisms (up-regulation
and down-regulation of modularity; Lebedev, Nilsson, & Lövdén, 2018).
The present meta-analysis, therefore, corroborates the hypothesis ac-
cording to which WM and fluid intelligence are two non-isomorphic
cognitive constructs supported by distinct neural mechanisms.

From a practical point of view, the most relevant implication is that

Table 2
Overall effects in the re-analysis of melby-lervåg et al. sorted by significant moderators.

Model (1) g (RVE) (2) Adj. g (range) (3) Heterogeneity (4) Residual heterogeneity (5) RE τ2 (6)

Criterion 1.170 0.821–0.823 ω2=0.061, τ2=0.392 ω2=0.020, τ2=0.142 τ2=0.039 (n.s.)
Near 0.208 0.162–0.176 ω2=0.053, τ2=0.008 ω2=0.023, τ2=0.013 τ2=0.000 (n.s.)
Far 0.099 −0.003–0.105 ω2=0.000, τ2 < 0.001 ω2=0.000, τ2=0.000 τ2=0.000 (n.s.)
Non-Active 0.161 – ω2=0.000, τ2= 0.016 ω2= 0.000, τ2= 0.000 τ2= 0.006 (n.s.)
Active 0.059 – ω2=0.000, τ2= 0.000 ω2= 0.000, τ2= 0.000 τ2= 0.000 (n.s.)

Note. See Note to Table 1 for abbreviations.
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WM-training programs do not improve overall cognitive function in
healthy older adults. Thus, they cannot be recommended as tools for
slowing down cognitive decline or restoring overall cognitive ability.
That said, less clear is the position to take with regard to the near-
transfer effects induced by WM training. As pointed out earlier, in-
creased memory skills may have a significant impact on older adults'
quality of life, even without any far-transfer effect. However, two as-
pects of our results cast some doubt on the benefits of WM training for
older adults' memory skills. First, the corrected (i.e., unbiased) near-
transfer effect was relatively small (between g =0.159 and g =0.246).
Second, the fact that the size of near-transfer effects is analogous in
younger and older adults (about 0.150–0.250 SMD) suggests that the
mechanisms underlying transfer do not depend on intrinsic features of
WM plasticity. While training effects (i.e., criterion effects) appear to
slightly decrease with age, possibly as a result of neural plasticity de-
cline, no such pattern of results is observed in near-transfer measures.
In our opinion, this state of affairs upholds the idea that WM training
does not impact on WM capacity as a domain-general cognitive me-
chanism. Rather, such small effects can be easily accounted for by as-
suming that participants learn how to carry out a particular class of
memory tasks rather than enhance their memory capacity (Gathercole
et al., 2019; Melby-Lervåg et al., 2016; Sala & Gobet, 2019; Shipstead,
Redick, & Engle, 2012). Put simply, practicing WM tasks may help to
develop the ability to perform similar tasks (e.g., free recall, n-back, and
span tasks) without having any impact on domain-general cognitive
constructs such as short-term or long-term memory. If so, the con-
sequent lack of transfer from the laboratory to real-life tasks would
make WM training of little practical interest. Based on the available
empirical evidence and due to the doubts about the nature of the ob-
served near transfer and its small size, we conclude that WM training, to
date, should not be recommended as a tool for improving or restoring
older adults' memory skills. Therefore, the near-transfer effects fol-
lowing WM training programs may not be worth the effort and, pos-
sibly, should be abandoned in favor of other types of intervention, such
as teaching mnemonics (e.g., Hertzog, Lövdén, Lindenberger, &
Schmiedek, 2017; McCabe, Redick, & Engle, 2016; Verhaeghen,
Marcoen, & Goossens, 1992). That being said, we think that further
research is needed to clarify this issue.

5.2. Recommendations for future research

Given the evidence produced so far, further searching for the ben-
efits of WM training on domain-general cognitive skills seems un-
productive regardless of the particular population under examination.
This appears particularly obvious if we consider that (a) no appreciable
effect has been obtained in any of the far-transfer outcome measures
and (b) no true heterogeneity suggesting differential effects has been
found. Rather, the field should focus on clarifying the actual size and
nature of the observed near-transfer effects. We present some sugges-
tions for improving the methodological quality of WM training ex-
periments with older adults.

Due to the similarities between trained tasks and some memory
tests, the latter may not be adequate proxies for domain-general and
transferable memory skills. To address this issue, future studies should
include multivariate measures of short-term memory and WM. A set of
several measures is necessary to investigate the effects of WM training
on latent factors representing cognitive skills rather than single tasks
(Noack et al., 2009; Schmiedek, Lövdén, & Lindenberger, 2010;
Shipstead et al., 2012). Structural equation modeling (SEM) is the ideal
approach for discriminating between task-related and factor-related
effects. Assuming that WM training does improve WM as a core cog-
nitive mechanism, and not only the ability to perform some memory
tasks, we should expect the training-related improvements to occur
through a latent factor exhibiting longitudinal strict measurement in-
variance. Simply put, since the baseline latent factor represents a par-
ticular domain-general memory skill (e.g., WM capacity), we should

expect the post-test latent factor to measure the construct with the same
metric, scale, and precision as at pre-test assessment. If this condition is
not met, then it would be reasonable to conclude that WM training does
not enhance domain-general memory skills. We realize that adminis-
tering many cognitive tests and recruiting large samples––which are
necessary to power a structural model––require significant financial
and organizational resources. Nonetheless, we think that these char-
acteristics, together with rigorous experimental designs, are necessary
to produce robust findings that can contribute to our theoretical
knowledge of the phenomenon and provide reliable advice for policy-
makers.
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