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Abstract  Dynamic characteristics of a rotor system having an initial bow and coupling 

fault of imbalance-rub are investigated in this paper. Due to the large-amplitude whirling motion, 

the geometrical nonlinearity of shaft becomes significant. Then the influences of the initial bow 

and geometrical nonlinearity on the natural frequencies corresponding to the linear part of the 

rotor system are studied. Moreover, the coupling faults of imbalance-rub are introduced to the 

rotor system. Complicated nonlinear phenomena are revealed by bifurcation diagrams, time 

histories, Poincaré sections and spectrums. The influences of several key design parameters, 

such as initial bow, shaft radius, and casing stiffness are analysed. One of the main findings of 

this investigation is that when initial bow and geometrical nonlinearity coexists in the system, 

the resonance characteristics are obviously affected by the initial bowed degree. Meanwhile, 

this coexistence could lead to the jump phenomenon, which rapidly increases the amplitude of 

whirling motion. These are useful in fault diagnosis and feature recognition of rotating ma-

chines. 

 

1. Introduction 

Higher energy efficiency and thrust-weight ratio of aircraft engines may be achieved by mini-

mizing initial clearances between rotating blade tips and their surrounding casing. Initial clear-

ances are inevitable in rotating facilities in practice but a too small clearance greatly increases 

the possibility of rub-impact. Under this circumstance, the normal operation of rotating machine 

may be affected frequently. So understanding the rub-impact mechanism and analyzing the 

dynamic behavior of a rotor system with clearance are an important means to diagnose mal-

functions and to improve longevity of these machines [1]. 

Although it is not a primary fault, rub-impact can result in decreased machine life (via in-

creased wear, heightened susceptibility to fatigue, adverse thermal effects), and even cata-

strophic failure [2,3]. During the past decades, a significant amount of research about the rub-

impact mechanism and the resulting nonlinear vibration behavior has been conducted. Howev-

er, the linear-elastic/dry friction contact model remains prevalent in current rotor-stator contact 

modelling [4-10]. In this contact model, the impact stiffness is seen as the structural stiffness of 

casing and the existence of initial clearance leads to nonlinear characteristics. In the process of 

rub-impact, the contact damping also plays an important role, which reflects the dissipation of 

mechanical energy into heat energy. In this regard, the Kelvin-Voigt model was adopted [11]. 

The Kelvin-Voigt model can relatively conveniently describe the rub-impact mechanism, while 

the impact force may be less than zero in some cases, which is unrealistic and hence is a 

shortcoming of this model. 
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In aviation industry, coating technology has been developed 

rapidly and a variety of coatings have been utilized on engine 

components for oxidation and corrosion control, thermal barrier 

applications and gas path sealing [12-15]. When dealing with 

rub-impact of aero-engine components with coatings, the influ-

ences of coatings, especially gas seal coatings and thermal 

barrier coatings, on the mechanical mechanism of rub-impact 

should be accounted for. In fact, both local deformation of coat-

ings and structural deformation of aero-engine components co-

exist in the whole process of rub-impact. Thereby, with the 

effects of coatings, how to describe both structural deformation 

of aero-engine components and local deformation of coatings 

is worth studying. 

Another research focus is about the dynamic response of a 

rotor system with rub-impact coupling faults. Modern nonlinear 

dynamics theory is widely treated as an important and effective 

means for studying the nonlinear characteristics of a rotor sys-

tem. Taking a Jeffcott rotor with partial rub-impact as the sub-

ject, Chu et al. [16] studied the complicated nonlinear behav-

iour based on the chaos-bifurcation theory and obtained the 

routes from periodic motion to chaos. Zhang et al. [17] set up a 

micro rotor model and analysed the motion stability of the sys-

tem with rub-impact. As for the coupling faults of imbalance-

axial rub, Yuan et al. [18] developed a novel dynamic rotor 

model and investigated the relevant features. According to the 

contact dynamic theory, Ma et al. [19,20] studied the rubbing-

induced vibration of a rotor system with different rubbing types, 

including single-point rubbing, multiple-point rubbing, and full 

annular rubbing. Patel et al. [21] studied the influence of a rotor 

to stator contact on the lateral-torsional coupled vibrations and 

conducted a parametric analysis of speed, relative inertia, coef-

ficient of friction and contact damping. In reference [22], the 

torsional vibration of a Jeffcott rotor in continuous contact with 

a stator is analytically and numerically studied for both forward 

and backward whirling motions. Taghipour et al. [23] discussed 

the vibration reduction of a Jeffcott rotor system by means of a 

linear tuned mass dampers (TMD), nonlinear energy sinks 

(NES), and combined energy sinks (TMD-NES). Hong et al. 

[24] investigated the modal characteristic of a rotor system with 

rub-impact as an additional constraint. By combination of simu-

lation and experiment, Torkhani et al. [25] analyzed the differ-

ent rub degrees during speed transients. Considering a non-

ideal drive system, Lahriri et al. [26] studied the nonlinear dy-

namics and identified the specific location of rubbing. Edwards 

et al. [27] carried out a detailed parametric investigation for a 

rotor system and gave the regions corresponding to collision 

and quasi-periodic motion. The rotor system in aero-engine 

includes several important parts, such as discs, blades, shafts 

and drums. Therefore, Qin et al. [28,29] established the cylin-

drical shell model with arbitrary boundary conditions for study-

ing the free vibration characteristics of the drums. On this basis, 

Chen et al. [30] simulated the rub-impact fault between the 

rotating shell and stator in the rotor system. 

Because of gravity effect in the case of horizontal placement, 

thermal distortion and shrink fit, initial bow of a shaft does exist 

in rotating machines. In this condition, the initial bow can direct-

ly change the space position of the disc during whirling motion 

and affect the condition of rub-impact to some extent. Shen et 

al. [31,32] set up a rub rotor-bearing model with initial bow and 

discussed the influences of several key parameters, including 

initial bow, rotational speed and phase angle. Besides, Rao 

[33] studied the vibration of a rotor system under the coupling 

faults of disc imbalance-initial bow of a shaft. In [34], a rotor 

model having both mass unbalance and bow was analyzed to 

find the influence of these faults on the synchronous response. 

Nicholas et al. [35] adopted the theoretical and experimental 

methods to analyze the imbalance response of a single flexible 

rotor with residual bow of a shaft. Parkison et al. [36] pointed 

out that the vibration response of a rotor system was closely 

related to the initial shaft bow and disc eccentricity. Hu et al. 

[37] developed a nonlinear coupled dynamic model of a rod 

fastening rotor under rub-impact and initial shaft bow. Darpe et 

al. [38] discussed the effect of the residual bow on the stiffness 

characteristic of the rotating cracked shaft. The unbalance 

response of a Jeffcott rotor with shaft bow and/or runout was 

theoretically and experimentally studied in [39]. 

Besides, for most of flexible rotor systems, material nonline-

arity and geometrical nonlinearity may be present. Up to now, 

the investigations involving material nonlinearity are far more 

widespread than those involving geometrical nonlinearity [40-

42]. The former focuses on the physical relation between 

stress and strain, while the latter emphasizes the geometrical 

relation between strain and displacement. Geometrical nonlin-

earity not only affects the stiffness of a rotor system but also 

potentially its coupling faults. Yang et al. [43] proposed a dy-

namics model for explaining the geometrical nonlinearity of a 

shaft. 

In summary, the individual characteristics (initial bow, rub 

and geometrical nonlinearity) have been studied. However, the 

investigations about the coupling effects of these three factors 

are still not sufficient. Compared with single fault, the coupling 

faults have more detrimental influences. Therefore, in order to 

achieve stability and safety of rotating machine, it is extremely 

important to understand the vibration behaviour of a rotor sys-

tem with coupling faults. 

In view of the above situation, a rotor system considering an 

initial bow of shaft and rub coupling faults is established in this 

paper. To describe the large deformation of the flexible shaft, 

the nonlinear geometric relation between displacement and 

strain is introduced to the modelling process. The impact 

mechanism of disc-casing with thermal barrier coatings is re-

vealed by the contact model [44], and the tangential friction is 

characterized by the Coulomb model [45]. Then, both basic 

and complicated vibration behaviour is determined by the nu-

merous simulation. The influences of initial shaft bow, radius of 

cross section and stiffness of casing as typical structural pa-

rameters on the system dynamics variations are investigated 

as well. 

 

2. Dynamic rotor model 
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2.1Rotor model 

The motions for the model of a rotor system with an initial 

bow are derived in this section. An initial deflection r0 repre-

senting the bow exists in the flexible massless shaft and geo-

metrical nonlinearity of the shaft appears in the whirling motion 

with large amplitude. 

The global coordinate system is o-xyz, which is fixed to the 

Earth. And the local coordinate system is o1-x1y1z1, which ro-

tates with the flexible shaft. The green parts shown in Fig. 1 are 

used to describe the thermal barrier coatings that are painted 

on the surfaces of disc and casing. 

Since that the rotor system is subjected to centrifugal force, 

which is caused by mass eccentricity, whirling motion happens. 

Meanwhile, the disc is assumed to be rigid and the flexible 

shaft is massless during the process of mathematic modeling. 

According to this assumption, the centrifugal force of the sys-

tem is only provided by disc eccentricity. In addition, the bear-

ing supports at both sides are treated as the simple support 

condition. 
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Fig. 1. Schematic diagram of a rotor system with initial bow and geometrical 

nonlinearity. 

 

When the whirling motion with large amplitude happens, the 

geometrical relation between strain and displacement appears 

nonlinear rather than linear. Therefore, according to the au-

thors’ previous work [43], the elastic restoring force of the shaft 

can be expressed as 

 

   
1 3

2 2 2 22 2
1 1 1 1r zF k x y x y      (1) 

 

where x1 and y1 denote the elastic deformation of the shaft 

with initial bow in the local coordinate system o1-x1y1z1. 

In Eq. (1), kz represents the equivalent linear stiffness, which 

is consistent with that obtained by the flexibility coefficient 

method in mechanics of materials. And α represents the equiv-

alent nonlinear stiffness, which is mainly caused by the large 

deformation of shaft, namely 
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where E is the elastic modulus of shaft, I is the second mo-

ment of area, A is the area of cross section and l is the length 

of shaft. 

Fig. 2 illustrates the relation between the local coordinate 

system and the global coordinate system during the whirling 

motion of the rotor system. The green parts represent the 

thermal barrier coatings, the light yellow part represents the 

rigid disc, and the black part represents the stationary casing. 

In the global coordinate system, the position vector from the 

origin o to the centre of the disc mass can be written as 

 

2  2oc oo o c   (3) 

 

Then the position vector oc is further divided into two com-

ponents in the o-x direction and o-y direction, respectively. 
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where e is the eccentricity of disc, ω is the rotational speed, 

x and y are two coordinates of the disc centre in the global 

coordinate system. 

It is obvious from Fig. 2 that the coordinates of disc centre (x 

and y) are composed of two parts, i.e., initial bow of shaft and 

further elastic bending deflection of the shaft. The specific ex-

pressions are given as 
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where β is the phase angle between mass eccentricity of the 

disc and initial bow of the shaft, r0 is the initial bow of shaft. 
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Fig. 2. Relative position between the local coordinate system and the global 

coordinate system during the whirling motion. 

 

In this case, the actual amplitude of whirling motion can be 

written in the following form 
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     
2 2

1 0 1 0cos + sinx r t y r t           (6) 

 

Compared with the existing research on rub-impact, Eqs. (5) 

and (6) suggest that the initial permanent bow of shaft has a 

direct influence on the rotor-stator rub. 

This can be used to estimate whether rub-impact between 

the disc and the casing happens. The above expression will be 

used in section 2.2 

For certain fan rotors, the operating speeds are commonly 

higher than the first critical speed, but lower than the second 

critical speed. Under this circumstance, the first shaft mode is 

needed and the second mode will not be excited. In addition, 

the disc is sometimes installed in the middle of shaft. With this 

in mind, the normal of disc will be parallel to the axes o1-z1 and 

o-z. And thus the gyroscopic effect of disc does not exist in the 

rotor system. Only two translational degrees of freedom of disc 

can reveal the motion trail of the system, as shown in Fig. 3. 
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Fig. 3. Whirling motion of the rotor system with initial bow of shaft. 
 

Next, the Lagrange’s equation is used to derive the equation 

of motion for the bowed rotor system. According to the dis-

placement of mass centre of the disc given in Eq. (4), the kinet-

ic energy of the system can be written as 

 

   
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  (7) 

 

The dissipated energy of the rotor system caused by the vis-

cous structural damping is expressed as 
 

2 21 1
= ,

2 2
z zD c x c y   (8) 

 

where cz denotes the viscous damping of the flexible mass-

less shaft. 

As the disc is assumed to be a rigid body, the strain energy 

of the rotor system comes from the elastic deformation of the 

shaft. With the initial bow and geometrical nonlinearity both 

considered, the strain energy of the rotor system can be de-

rived as 
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By utilizing Eqs. (7)-(9), the vibration equations of the dy-

namic model with two degrees of freedom can be obtained, 

namely 
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where Fx(x,y) and Fy(x,y) are the components of rub-impact 

force in the two directions of o-x and o-y, respectively. 

The total equivalent linear stiffness of the rotor system is 
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which suggests that these two equivalent stiffness are time 

varying, and they are mainly determined by the shaft stiffness, 

initial bow and phase angle. 

Moreover, the initial bow and geometrical nonlinearity can al-

so lead to the additional loads, which can be expressed as 
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The above derivation process suggests that the dynamic ro-

tor model proposed in this paper is a non-smooth nonlinear 

system because of the rub-impact fault. In order to gain a good 

understanding of the dynamic behaviour, the basic natural 

frequencies of the linear part of the rotor system are analyzed 
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at first. For the linear part of the rotor system, the mass matrix 

M and the stiffness matrix K can be respectively written as 
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where the expression of the variable in Eq.(14) is 
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In this condition, the first two natural frequencies of the linear 

part can be further calculated as 
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Eqs. (16) and (17) illustrate that the first two natural frequen-

cies of the system depends not only on the structural stiffness, 

but also on the initial bow and nonlinear stiffness. The main 

reason for this phenomenon is that the geometrical nonlinearity 

and the initial shaft bow coexists in the rotor system. In the 

following part, the more clear relations between the natural 

frequencies and the initial bow are given by the numerical sim-

ulation. 

Assuming that the relation of strain-displacement is linear, 

the rotor system proposed in this paper can be reduced to that 

used in reference [31, 37], that is to say, when no rub-impact 

happens, the system becomes a linear one with initial shaft 

bow. The corresponding natural frequency is only affected by 

shaft stiffness and disc mass. If the geometrically nonlinear 

shaft is a straight one rather than a bowed one, the rotor sys-

tem shown in Fig. 1 can be simplified to the one given in refer-

ence [43]. 

 

2.2Contact force model 

The relation between contact condition of rotor-stator and ini-

tial shaft bow is analyzed in this section. Meanwhile, the effects 

of thermal barrier coatings on the contact stiffness are taken 

into consideration. 

As shown in Fig. 2, the total whirling response is composed 

of the initial shaft bow and the subsequent elastic shaft deflec-

tion. The initial clearance between the disc and the casing can 

be written as 

 

0 2 1=R R    (18) 

 

where R1 and R2 are disc and casing radii, respectively. 

When the actual amplitude of whirling motion δ is smaller 

than the initial clearance δ0, no rub-impact fault happens. Oth-

erwise, there will a rub-impact in the rotor system. Thus, the 

piecewise form of the contact force model can be written as 
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In order to describe the mechanical mechanism of rotor-

stator rub in presence of surface coatings, the whole process 

of rub-impact is divided into four parts. The first part is no rub-

impact. In the second part, the slight rub-impact happens and 

the corresponding displacement is approximately equal to the 

local deformation of surface coatings. In the third part, the rub-

impact gradually becomes serious and the displacement is 

composed of large local deformation of surface coatings and 

small structural deformation of rotor-stator components. At last, 

the large local deformation and structural deformation will coex-

ist in the rub-impact. Accordingly, the contact stiffness k is giv-

en in the following four forms: 
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where kc denotes the structural stiffness of the casing, kh the 

contact stiffness of coatings painted on the disc and the casing, 

χ the constant coefficient for describing the initial stage of rub. 
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According to its relationship with δ, the local deformation of 

the coatings can be further written as 
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Please refer to the authors’ previous work given in the refer-

ence [44] for detailed derivation of the above physical formulas. 

 

2.3Friction force model 

In order to describe the friction mechanism between the disc 

and the casing, the Coulomb model is adopted in this section. 

Since that the tangential friction force is assumed to propor-

tional to the normal contact force, the friction force can also be 

written in the piecewise form, namely 

 

 0 0

0

   

0                    <
T

k
F

    

 

  
 


  (24) 

where μ  denotes the friction coefficient that depends on the 

surface smoothness of the coatings. 

Therefore, according to Eqs. (19)-(24), the components of 

the rub-impact force used in Eqs. (10) and (11) can be further 

expressed as 

 

 

 

2 2

2 2

,

,

T N
x

N T
y

F y F x
F x y

x y

F y F x
F x y

x y







  
 

  (25) 

 

It is worth noting that when using the contact model and fric-

tion model, all the deformations (casing deformation and coat-

ing deformation) are elastic, and the thermal effect caused by 

rub has not yet been considered. 

 

3. Results and discussion 

In this section, the modal characteristics of the rotor system 

are calculated. Because of these features, such as geometrical 

nonlinearity of shaft, mass imbalance, rub-impact and initial 

bow of shaft, performing the theoretically qualitative analysis 

becomes relative difficult, so that this case appears impossible 

to obtain the solutions in a closed form. Therefore, the numeri-

cal methods have to be resorted, in which the structure param-

eters are given in Table 1. 

According to the existing research on the nonlinear vibration, 

the Runge-Kutta method is used, in which the time step of 

direct numerical integration is set to π/1000. In order to guaran-

tee the accuracy of the calculation results, the Runge-Kutta 

method and the Newmark-β method have been compared in 

the process of the numerical simulation. 

 
Table 1. Main parameters of the rotor system with initial bow 
 

Parameters Value 

Disc mass, m (kg) 29.18 

Disc eccentricity, e (mm) 0.3 

Shaft length, l (mm) 448.8 

Shaft radius, r (mm) 12.2 

Initial bow, r0 (mm) 0.1 

Disc radius, R1 (mm) 300 

Shaft elastic modulus, E (GPa) 210 

Shaft damping, cs (N.s/m) 1200 

Initial clearance, δ0 (mm) 0.025 

Coating elastic modus, E1,E2 (GPa) 200 

Coating Possion ratio, ν1, ν2 0.3 

Casing radius, R2 (mm) 300.025 

 

3.1Natural frequency of the linear part of the 
rotor system 

The rotor system established in this paper contains several 

important factors, including initial shaft bow, geometrical non-

linearity of shaft, imbalance and rub-impact fault. To under-

stand the mechanical characteristics of this kind of nonlinear 

system more clearly, the natural frequencies of the linear part 

of the rotor system are analyzed in this section. 

As introduced in Eqs. (16) and (17), the initial bow of shaft 

and the geometrical nonlinearity of shaft have an obvious influ-

ence on the natural frequencies of the linear part of the rotor 

system. For comparative analysis, the natural frequencies of 

the system with or without such coupling of geometrical nonlin-

earity-initial bow are discussed respectively. 

When the above factors (i.e., initial bow and geometrical 

nonlinearity) are not taken into consideration, the rotor system 

reduces to the classic Jeffcott rotor system. In this condition, 

the total equivalent linear stiffness of the system is equal to the 

shaft stiffness. Correspondingly, the natural frequencies are 

calculated as 259.74 rad/s. 

From Eq. (12), it can be found there will be fluctuation phe-

nomenon in the total equivalent linear stiffness. The ranges of 

these two stiffness can be expressed as 

 
* 2 2

0 0

* 2 2
0 0

, 3

, 3

zx z z

zy z z

k k r k r

k k r k r

 

 

      


     

  (26) 

 

Obviously, the stiffness fluctuations are closely related to the 

initial bow of shaft and the geometrical nonlinearity of shaft. 

Then the change law of the above stiffness fluctuations is 

shown in Fig. 4. At a small initial shaft bow exists, the fluctua-
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tions of the total equivalent linear stiffness are not very obvious. 

With the increase of initial shaft bow, this kind of fluctuation 

becomes impossible to ignore in the dynamic analysis. 

 

 
 

Fig. 4. Effect of initial shaft bow on the fluctuations of the total equivalent 

linear stiffness. 

 

Next, the effects of initial shaft bow on the natural frequen-

cies of the linear part of the system are further discussed. 

Generally speaking, the natural frequencies are determined by 

the structural stiffness and mass in a linear system. However, 

for the dynamic model proposed in this paper, the geometrical 

nonlinearity and the initial shaft bow coexist in the system. 

 

 
 

Fig. 5. Effect of initial shaft bow on the first order natural frequency. 

 

 
 

Fig. 6. Effect of initial shaft bow on the second order natural frequency. 

 

From Eqs. (16) and (17), it can be seen that the first two or-

der natural frequencies are mainly determined by the equiva-

lent linear stiffness, equivalent nonlinear stiffness, initial bow 

and disc mass. Under this circumstance, with given the above 

initial shaft bow, the variations of the first two natural frequen-

cies of linear part are respectively shown in Figs. 5 and 6. If the 

geometrical nonlinearity of shaft is not taken into consideration, 

the natural frequencies of the system will not be affected by the 

initial shaft bow. Therefore, the discussion on the influence of 

the initial shaft bow is one of the innovations of this paper. 

 

3.2Whirling orbit of the rotor system with ini-
tial bow 

When the rub-impact fault between the disc and the casing is 

not taken into consideration, the evolution of the whirling orbit 

caused by the different initial bow is discussed in this section. 

The rotational speed remains 500 rad/s and the whirling orbits 

of the rotor system with initial bow are shown in Fig. 7. 

 

 
a)                                b) 

 

Fig. 7. Whirling orbits of the rotor system with different initial shaft bow: (a) 

global view and (b) local view. 

 

It is clear that the whirling orbit trace out circles with different 

radii. With the increase of initial shaft bow, the amplitude of 

whirling motion gradually becomes large. Moreover, there is an 

obvious jump phenomenon in Fig. 8(a). The main reason for 

the jump phenomenon is that the rotor dynamic model estab-

lished in this paper is a nonlinear one. When the initial bow 

increases to a certain extent, a supercritical Hopf bifurcation 

happens. 

This suggests that when the initial shaft bow has reached a 

critical level, the vibration amplitude of the system becomes 

intensified instantaneously and the corresponding stability will 

be affected to a large extent. 

Fig. 8(b) gives the relative difference between initial shaft 

bow and whirling amplitude. In the zones (I) and (III), the verti-

cal axis of Fig. 8(b) is larger than zero, which means that the 

amplitude of whirling motion is larger than the initial shaft bow. 

Correspondingly, the motion state of the system is illustrated in 

Fig. 9(a). However, in the zone (II), the vertical axis of Fig. 8(b) 

is smaller than zero, which suggests that the amplitude of whirl-

ing motion is smaller than the initial shaft bow. At this moment, 

the motion state is exhibited in Fig. 9(b). 

The above analysis illustrates that for the rotor system hav-

ing initial shaft bow, the amplitude of whirling motion is not 

always larger than the initial bow, but is closely related to the 

rotational speed and initial bow. This phenomenon can be fur-

ther used to enhance the understanding of vibration character-
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istics of complicated rotating machinery. 

 
a) 

 
b) 

 

Fig. 8. Variations of whirling amplitude under the effects of different initial 

bow: (a) disc radial displacement and (b) relative difference of whirling 

amplitude-initial bow. 
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a)                                b) 

 

Fig. 9. Two states during the whirling motion of the rotor system: (a) whirling 

amplitude is larger than initial bow, and (b) whirling amplitude is smaller 

than initial bow. 

 

3.3Sweep frequency analysis under the cou-
pling faults 

On the basis of the previous analysis, the coupling features 

of imbalance-rub acting on the rotor system with initial bow are 

further investigated in this section. Taking rotational speed as 

the control parameter, the forward sweep analysis of the sys-

tem is conducted first. When the sweep analysis is done in this 

paper, the initial condition of numerical simulation at each rota-

tional speed remains unchanged. In this condition, the forward 

frequency sweep is the same as the backward frequency 

sweep. To make it easier to distinguish the response differ-

ences between two types of rotor system, both the Jeffcott 

rotor system and the rotor with initial bow are analyzed. 

 

 
a) 

 
b) 

 

Fig. 10. Forward sweep analysis when considering the imbalance-rub 

coupling faults: (a) Jeffcott rotor system and (b) rotor system with initial 

shaft bow r0=0.1 mm. 

 

Due to the rub-impact fault between the disc and the casing, 

the constraint stiffness provided by the casing is added to the 

Jeffcott rotor system. Under this circumstance, the resonant 

frequency could increase from 259.74 rad/s to 400 rad/s. With-

in the range of rotational speed 100-700 rad/s, the dynamic 

responses obtained by the forward frequency sweep are main-

ly represented with 1T-periodic motion and 2T-periodic motion, 

as shown in Fig. 10(a). Meanwhile, the largest amplitude of 

lateral vibration is about 0.258 mm (see Fig. 11(a)). 

In the same range of rotational speed, the forward sweep 

analysis of the rotor system with initial bow is also made. As 

depicted in Fig. 10(b), there are more diverse features in the 

dynamic response, such as period 1, period 2, period 3 and 

period 4. Since the geometrical nonlinearity and initial shaft 

bow coexist in the system, the resonant frequency will further 

change from 400 rad/s to 409 rad/s. Moreover, the range of 2T-

periodic motion shown in Fig. 10(b) is much wider than that 

shown in Fig. 10(a). In addition, compared with the Jeffcott 

rotor system, the amplitude in the sweep process (see Fig. 

10(b)) is generally amplified by the initial bow and geometrical 

nonlinearity. 

For the rotor system with initial bow and other coupling faults, 

the lateral vibration corresponding to the largest amplitude of 

whirling motion is depicted in Fig. 11(b). It is clear that the am-

plitude is about 0.718 mm and the equilibrium position of the 

response becomes 0.026 mm rather than 0 mm. 
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a) 

 
b) 

 

Fig. 11. Lateral vibration corresponding to the largest whirling amplitude 

when considering the imbalance-rub coupling faults: (a) Jeffcott rotor and (b) 

the rotor established in this paper. 

 

 
a) 

 
b) 

 

Fig. 12. Lateral vibration corresponding to the first rub-impact when consid-

ering the imbalance-rub coupling faults: (a) Jeffcott rotor and (b) the rotor 

established in this paper. 

 

At the end of this section, the rub-impact problems of the 

Jeffcott rotor system and the rotor system with initial bow are 

analyzed as well. When the rotational speed reaches 187 rad/s, 

the rub-impact fault first appears in the Jeffcott rotor system. By 

examining Figs. 12(a) and 13(a), the rub-impact fault can be 

identified as the full annular type. 

Keeping the initial clearance between the disc and the cas-

ing unchanged, the Jeffcott rotor system is replaced by the 

rotor system with initial bow. In this case, the rub-impact fault 

will happen at the lower rotational speed, namely 100 rad/s. As 

shown in Figs. 12(b) and 13(b), the lateral vibration becomes 

more complicated and its spectrum diagram includes various 

frequency components, such as 1X=100 rad/s, 2X, 3X, 4X and 

5X. At this point, the rub-impact is no longer a full annular one 

but a partial one. 

 

 
a) 

 
b) 

 

Fig. 13. Spectrum plot corresponding to the first rub-impact when consider-

ing the imbalance-rub coupling faults: (a) Jeffcott rotor and (b) the rotor 

established in this paper. 

 

Therefore, it can be concluded that the existence of initial 

bow and geometrical nonlinearity could easily raise the proba-

bility of contact, which may affect the form of fault and lead to 

an irregular motion state. 
 

3.4Parametric analysis under the coupling 
faults 

It is very important to design the reasonable structural pa-

rameters in the field of rotor dynamics. In the following part of 

this study, the initial shaft bow, radius of cross section, and 

structural stiffness of casing are selected as the key system 

parameters. The goal is to determine whether these mentioned 

parameters dominate the dynamic characteristics of the rotor 

system with initial bow. 
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3.4.1Effects of initial bow 

Considering two cases of initial bow as 0.5 mm and 1mm, 

the forward sweep analysis of the rotor system with initial bow 

and other coupling faults is conducted in this section. From 

Figs. 10(b) and 14(a), it can be seen that the resonant fre-

quency will increase from 409 rad/s to 419 rad/s. At the same 

time, the rotor vibration will be further intensified and the maxi-

mum amplitude becomes 2.613 mm. 

 

 
a) 

 
b) 

 

Fig. 14. Effect of initial shaft bow on the lateral sweep characteristics of the 

rotor system with initial bow and coupling faults: (a) r0=0.5 mm and (b). r0=1 

mm. 

 

For the purpose of comparison, the forward frequency 

sweep of the system with initial bow r0=1mm is also obtained. It 

is obvious that the larger the initial shaft bow is, the higher the 

resonant frequency would become, as shown in Fig. 14(b). 

This means that the resonant frequency is further modified 

from 419 rad/s to 435 rad/s. Moreover, there is a slight jump 

phenomenon at 310 rad/s. 

The intrinsic relationship between initial bow and resonant 

characteristics is further studied under coupling faults. The 

discrete points shown in Fig. 15(a) illustrate that when the initial 

bow increases from 0.1 mm to 5 mm, the resonant frequency 

gradually increases from 409 rad/s to 625 rad/s. Accordingly, 

the resonant amplitude grows up from 0.72 mm to 24.10 mm, 

as shown in Fig. 15(b). 

To understand the variation of the above frequency charac-

teristics, the least-square method is used to fit the discrete 

numerical points, which leads to 
6 2 6

0 0=3.727 10 0.0267 10 400r r r         (27) 

2
0 0= 191.769 5.7069 0.0002x r r       (28) 

 

where the coefficients of the two polynomials are mainly de-

termined by the structural parameters and coupling faults, such 

as system stiffness, imbalance excitation and rub degree. They 

indicate that resonant characteristics are nonlinear functions of 

the initial shaft bow. 

The research work in this section explains that the influence 

of initial shaft bow is mainly on the motion amplitude and natu-

ral frequencies. In contrast, initial shaft bow slightly affects the 

motion complexity. 

 

 
a) 

 
b) 

 

Fig. 15. Resonant characteristic of the rotor system with initial bow and 

other coupling faults in the different condition of initial bow: (a) resonant 

frequency and (b) resonant amplitude. 

 

3.4.2Effects of casing stiffness 

As introduced in Eqs. (20) and (21), the structural stiffness of 

casing plays an important role in the rub-impact fault. Thus, this 

section focuses on the effects of casing stiffness on the whirl-

ing orbits. 

Assuming that the rotational speed of the rotor system is 400 

rad/s, the structural stiffness of casing is set to kc=[1,6,10,60] 

MN/m. Using the parameter values given in Table 1, the dy-

namic responses are numerically calculated and then whirling 

orbits under these four conditions are given in Fig. 16. 

When the structural stiffness of casing is 1 MN/m, the whirl-

ing orbit is an elliptical circle (see Fig. 16(a)), which means that 

the motion state is period 1. For the case of kc=6 MN/m, the 

whirling orbits change from an elliptical circle into distorted 

figure of 8 (see Fig. 16(b)). Through the analysis of Poincaré 

section, the motion can be identified as period 2. If the casing 

becomes slightly stiffer, the previous 2T-periodic motion begins 
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to break down — the whirling orbit is no longer composed of 

one curve, as shown in Fig. 16(c). Further on, from Fig. 16(d), it 

is evident that the whirling orbits form numerous irregular 

curves. These suggest that the motion state of the system 

changes from quasi-periodic to chaotic. 

 

  
a)                                 b) 

 
c)                                 d) 

 

Fig. 16. Effect of casing stiffness on the whirling orbits of the rotor system 

with initial bow at 400 rad/s: (a) kc=1 MN/m, (b) kc=6 MN/m, (c) kc=10 MN/m, 

and kc=60 MN/m. 

 

The results obtained in this section reveal that the casing 

stiffness will directly dominate the motion mode and even 

change the motion stability. Therefore, how to consider both 

the strength of the stator component itself and the motion sta-

bility of the rotating component is a problem that needs to be 

paid attention to in practical engineering. 
 

3.4.3Effects of radius of cross section 

For the flexible shaft studied in this paper, both equivalent 

linear stiffness and equivalent nonlinear stiffness are closely 

related to the radius of cross section of shaft. In this section the 

influences of this radius are analyzed. 

The radius of cross section of shaft is set to 7 mm and 5 mm, 

respectively. For different radii, the calculated results are de-

picted in Fig. 17, where the lateral axis is rotational speed and 

the vertical axis is whirling displacement. 

By comparing Fig. 10(b) with Fig. 17, it can be observed that 

due to the decrease of radius of cross section, there are a se-

ries of rich nonlinear phenomena in the range of rotational 

speed [100,700] rad/s. For example, when the rotational speed 

is 150 rad/s, the 2T-periodic motion is observed in the case of 

r0=7 mm and the quasi-periodic motion is found in the case of 

r0=5 mm, as shown in Figs. 18(a) and (b). In addition, when the 

rotational speed is 300 rad/s, the Poincaré section of the rotor 

system with r0=7 mm and r0=5 mm is given in Figs. 18(c) and 

(d). 

 

 
a) 

 

 
b) 

 

Fig. 17. Effect of radius of cross section on the lateral sweep characteristics 

of the rotor system with different initial bow: (a) r0=7 mm, and (b) r0=5 mm. 

 

Overall, the results demonstrate that the nonlinear dynamic 

behaviour is very sensitive to the radius of cross section of 

shaft, specifically, the thinner the shaft is, the richer phenome-

na the rotor system generates. 

 

  
a)                                 b) 

   
c)                                 d) 

 

Fig. 18. Poincaré section of the rotor system in the different conditions: (a) 

r0=7 mm, ω=150 rad/s, (b) r0=5 mm, ω=150 rad/s, (c) r0=7 mm, ω=300 

rad/s, and (d) r0=5 mm, ω=300 rad/s. 
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4. Conclusions 

To predict mechanical behaviour of complex rotating ma-

chinery under multiple coupling actions, a rotor dynamic model 

is presented in this paper. During the modelling process, the 

initial shaft bow and geometrical nonlinearity are taken into 

consideration. Then, the equations of motion for this two-

degree-of-freedom system are obtained by utilizing the La-

grange’s equation. For contact analysis, the piecewise force 

model is used to describe the impact mechanism of rotor-stator 

at different stages. Meanwhile, the Coulomb model is applied 

to reveal the frictional characteristics between them. For the 

linear part of the nonlinear rotor system, the variations of the 

natural frequencies caused by the initial bow and the geomet-

rical nonlinearity are analyzed at first. Next, without considering 

the rub-impact fault, the whirling amplitude and the whirling 

orbit of the system are determined. Finally, the forward sweep 

analysis of the system having the initial bow and the imbal-

ance-rub coupling faults is conducted for different system pa-

rameters, including initial bow, casing stiffness and radius of 

cross section. Some conclusions are summarized as follows: 

(1) Under the large imbalance excitation, the whirling motion 

with large amplitude happens and then the geometrical nonlin-

earity of shaft becomes significant. When the initial shaft bow 

and geometrical nonlinearity coexists in the rotor system, the 

coupling effects of them make a potential contribution to natural 

characteristics. Under this circumstance, the prediction of the 

natural characteristics only by the linear stiffness of the shaft 

and the mass of disc may not be accurate enough to some 

extent. 

(2) In the absence of coupling faults, a jump may occur in the 

whirling responses of the rotor system with the increase of the 

initial shaft bow. However, this phenomenon is detrimental to 

the smooth operation of rotating machinery.  

(3) Due to initial shaft bow and geometrical nonlinearity, rub-

impact fault is more likely to happen at the lower rotational 

speed, which affects the motion state and the stability of the 

system. 

(4) Parametric analysis reveals that the initial shaft bow 

mainly affects the amplitude of whirling motion, while the cas-

ing stiffness and radius of cross section could change the mo-

tion state and increase motion complexity. 

 

Acknowledgment 

This work was supported by National Natural Science Foun-

dation of China (Grant No. 11702228, 11772273), and Funda-

mental Research Funds for the Central Universities 

(2682017CX087). The first author, Yang Yang, would like to 

thank the support from the China Scholarship Council (CSC). 

 

References 

[1] Z. C. Sun, J. X. Xu and T. Zhou, Analysis on complicated 

characteristics of a high-speed rotor system with rub-impact, 

Mechanism and Machine Theory, 37 (2002) 659-672. 

[2] G. Chen, A new rotor-ball bearing-stator coupling dynamics 

model for whole aero-engine vibration, Journal of Vibration and 

Acoustics, 131 (6) (2009) 061009 1-9. 

[3] P. Varney, and I. Green, Nonlinear phenomena, bifurcations, 

and routes to chaos in an asymmetrically supported rotor-

stator contact systems, Journal of Sound and Vibration, 336 

(2015) 207-226. 

[4] J. Cao, C. Ma, Z. Jiang, and S. Liu, Nonlinear dynamic analy-

sis of fractional order rub-impact rotor system, Communica-

tions in Nonlinear Science and Numerical Simulation, 16 (2011) 

1443-1463. 

[5] F. Lin, M. P. Schoen, and U. A. Korde, Numerical investigation 

with rub-related vibration in rotating machinery, Journal of Vi-

bration and Control, 7 (2001) 833-848. 

[6] F. Chu, and W. Lu, Determination of the rubbing location in a 

multi-disk rotor system by means of dynamic stiffness identifi-

cation, Journal of Sound and Vibration, 248 (2001) 235-246. 

[7] B. O. Al-Bedoor, Transient torsional and lateral vibrations of 

unbalanced rotors with rotor-to-stator rubbing, Journal of 

Sound and Vibration, 229 (2000) 627-645. 

[8] W. Qin, G. Chen, and G. Meng, Nonlinear responses of a rub-

impact overhung rotor, Chaos, Solitons & Fractals, 19 (2004) 

1161-1172. 

[9] T. Yong-Wei, and Y. Jiang-Gang, Research on vibration in-

duced by the coupled heat and force due to rotor-to-stator rub, 

Journal of Vibration and Control, 17 (2010) 549-566. 

[10] P. Goldman, and A. Muszynska, Rotor-to-stator, rub-related, 

thermal/mechanical effects in rotating machinery, Chaos, Soli-

tons & Fractals, 5 (9) (1995) 1579-1601. 

[11] G. Gilardi, and I. Sharf, Literature survey of contact dynamics 

modeling, Mechanism and Machine Theory, 37 (2002) 1213-

1239. 

[12] T. N. Rhys-Jones, Thermally sprayed coating systems for 

surface protection and clearance control applications in aero 

engines, Surface and Coatings Technology, 43-44 (1990) 402-

415. 

[13] A. Batailly, M. Legrand, and A. Millecamps, Numerical-

experimental comparison in the simulation of rotor/stator inter-

action through blade-tip/abradable coating contact, Journal of 

Engineering for Gas Turbines and Power, 134 (2012) 082504 

1-11. 

[14] C. Padova, M. G. Dunn, J. Barton, K. Turner, A. Turner, and D. 

DiTommaso, Casing treatment and blade-tip configuration ef-

fects on controlled gas turbine blade tip/shroud rubs at engine 

conditions, Journal of Turbomachinery, 133 (2011) 011016 1-

12. 

[15] M. Z. Yi, J. W. He, B. Y. Huang, and H. J. Zhou, Friction and 

wear behaviour and abradability of abradable seal coating, 

Wear, 231 (1) (1999) 47-53. 

[16] F. Chu, and Z. Zhang, Bifurcation and chaos in rub-impact 

Jeffcott rotor system, Journal of Sound and Vibration, 210 

(1998) 1-18. 

[17] W. M. Zhang, and G. Meng, Stability, bifurcation and chaos of 

a high-speed rub-impact rotor system in MEMS, Sensors and 



  
 
 

 

13 

Actuators A: Physical, 127 (1) (2006) 163-178. 

[18] Z. W. Yuan, F. L. Chu, S. B. Wang, and X. M. Yue, Influence 

of rotor’s radial rub-impact on imbalance responses, Mecha-

nism and Machine Theory, 42 (12) (2007) 1663-1667. 

[19] H. Ma, C. Y. Shi, Q. K. Han, and B. C. Wen, Fixed-point rub-

bing fault characteristic analysis of a rotor system based on 

contact theory, Mechanical Systems and Signal Processing, 38 

(1) (2013) 137-153. 

[20] H. Ma, Q. B. Zhao, X. Y. Zhao, Q. K. Han, and B. C. Wen, 

Dynamic characteristics analysis of a rotor-stator system under 

different rubbing forms, Applied Mathematical Modeling, 39 (8) 

(2015) 2392-2408. 

[21] T. H. Patel, M. J. Zuo, and X. M. Zhao, Nonlinear lateral-

torsional coupled motion of a rotor contacting a viscoelastically 

suspended stator, Nonlinear Dynamics, 69 (2012) 325-339. 

[22] N. Vlajic, X. B. Liu, H. Karki, and B. Balachandran, Torsional 

oscillations of a rotor with continuous stator contact, Interna-

tional Journal of Mechanical Sciences, 83 (2014) 65-75. 

[23] J. Taghipour, M. Dardel, and M. H. Pashaei, Vibration mitiga-

tion of a nonlinear rotor system with linear and nonlinear vibra-

tion absorbers, Mechanism and Machine Theory, 128 (2018) 

586-615. 

[24] J. Hong, P. C. Yu, D. Y. Zhang, and Y. H. Ma, Nonlinear dy-

namic analysis using the complex nonlinear modes for a rotor 

system with an additional constraint due to rub-impact, Me-

chanical Systems and Signal Processing, 116 (2019) 443-461. 

[25] M. Torkhani, L. Mary, and P. Voinis, Light, medium and heavy 

partial rubs during speed transients of rotating machines: nu-

merical simulation and experimental observation, Mechanical 

Systems and Signal Processing, 29 (2012) 45-66. 

[26] S. Lahriri, H. I. Weber, I. F. Santos, and H. Hartmann, Rotor-

stator contact dynamics using a non-ideal drive-Theoretical 

and experimental aspects, Journal of Sound and Vibration, 331 

(20) (2012) 4518-4536. 

[27] S. Edwards, A. Lees, and M. Friswell, The influence of tor-

sional on rotor/stator contact in rotating machinery, Journal of 

Sound and Vibration, 225 (1999) 767-778. 

[28] Z. Y. Qin, X. J. Pang, B. Safaei, and F. L . Chu, Free vibration 

analysis of rotating functionally graded CNT reinforced compo-

site cylindrical shells with arbitrary boundary conditions, Com-

posite Structures, 220 (2019) 847-860. 

[29] Z. Y. Qin, F. L. Chu, and J. Zu, Free vibrations of cylindrical 

shells with arbitrary boundary conditions: A comparison study, 

International Journal of Mechanical Sciences, 133 (2017) 91-

99. 

[30] L. M. Chen, Z. Y. Qin, and F. L. Chu, Dynamic characteristics 

of rub-impact on rotor system with cylindrical shell, Internation-

al Journal of Mechanical Sciences, 133 (2017) 51-64. 

[31] X. Y. Shen, J. H. Jia, and M. Zhao, Nonlinear analysis of a 

rub-impact rotor-bearing system with initial permanent rotor 

bow, Archive of Applied Mechanics, 78 (2008) 225-240. 

[32] X. Y. Shen, J. H. Jia, and M. Zhao, Numerical analysis of a 

rub-impact rotor-bearing system with mass imbalance, Journal 

of Vibration and Control, 13(12) (2007) 1819-1834. 

[33] J. Rao, A note on Jeffcott warped rotor, Mechanism and Ma-

chine Theory, 36 (2001) 563-575. 

[34] M. B. Deepthikumar, A. S. Sekhar, and M. R. Srikanthan, Bal-

ancing of flexible rotor with bow using transfer matrix method, 

Journal of Vibration and Control, 20 (2) (2014) 225-240. 

[35] J. C. Nicholas, E. J. Gunter, and P. E. Allaire, Effect of residual 

shaft bow on unbalance response and balancing of a single 

mass flexible rotor: Part I: Balancing, Journal of Engineering for 

Gas Turbines and Power, 98 (2) (1976) 171-178. 

[36] A. G. Parkinson, M. S. Darlow, and A. J. Smalley, Balancing 

flexible rotating shafts with an initial bend, AIAA Journal, 22 (5) 

(1984) 683-689. 

[37] L. Hu, Y. B. Liu, W. Teng, and C. Zhou, Nonlinear coupled 

dynamics of a rod fastening rotor under rub-impact and initial 

permanent deflection, Energies, 9 (11) (2016) 883 1-19. 

[38] A. K. Darpe, K. Gupta, and A. Chawla, Dynamics of a bowed 

rotor with a transverse surface crack , Journal of Sound and 

Vibration, 296 (2006) 888-907. 

[39] R. D. Flack, J. H. Rooke, J. R. Bielk, and E. J. Gunter, Com-

parison of the unbalance responses of Jeffcott rotors with shaft 

bow and shaft runout, Journal of Mechanical Design, 104 

(1982) 318-328. 

[40] L. J. Cveticanin, The oscillations of a textile machine rotor on 

which the textile is wound up, Mechanism and Machine Theory, 

26 (3) (1991) 253-260. 

[41] L. J. Cveticanin, A necessary condition for chaos in rotor sys-

tems, Mechanism and Machine Theory, 32 (3) (1997) 411-416. 

[42] A. Ertas, and E. K. Chew, Nonlinear dynamic responses of a 

rotating machine, International Journal of Non-Linear Mechan-

ics, 25 (2) (1990) 241-251. 

[43] Y. Yang, D. Q. Cao, and Y. Q. Xu, Rubbing analysis of a non-

linear rotor with surface coatings, International Journal of Non-

Linear Mechanics, 84 (2016) 105-115. 

[44] Y. Yang, D. Q. Cao, and D. Y. Wang, Investigation of dynamic 

characteristics of a rotor system with surface coatings, Me-

chanical Systems and Signal Processing, 84 (2017) 469-484. 

[45] J. P. Den Hartog, Forced vibrations with combined coulomb 

and viscous friction, Transactions of the A.S.M.E, 53-9 (1931) 

107-115. 

 

Author information 

 

Yang Yang is a lecture of the School of 

Mechanics and Engineering, Southwest 

Jiaotong University, Chengdu, China. 

He received his Ph.D in Dynamics and 

Control from Harbin Institute of Technol-

ogy. His research interests include rotor 

dynamics, fault diagnosis, nonlinear 

vibration and control. 

 


