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Abstract

Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared
findings with recent trials of pharmacological inhibitors of PCSK9.

Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted
PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing
data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration.

Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in
direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42;
0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57;
1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were
1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials.
No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease,
or Alzheimer’s disease – outcomes for which large-scale trial data were unavailable.

Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major
blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown;
although precision was moderate.

Keywords: Genetic association studies, Mendelian randomisation, LDL-cholesterol, Phenome-wide association scan

Background
Statins and ezetimibe reduce the risk of major coronary
events and ischemic stroke via lowering of low density
lipoprotein-cholesterol (LDL-C) [1–3]. Loss-of-function
mutations in PCSK9 are associated with lower LDL-C and
a reduced risk of coronary heart disease (CHD) [4, 5].
Antibodies (mAbs) inhibiting PCSK9, reduce LDL-C in
patients with hypercholesterolaemia, and received market
access in 2015. The FOURIER and ODYSSEY OUT-
COMES trials tested the efficacy of PCSK9-inhibition
versus placebo on the background of statin treatment and
both found that PCSK9 inhibition led to a 15% relative
risk reduction of major vascular events in patients with
established CVD and recent acute coronary syndrome
over a median follow up of 2.2 to 2.8 years [6, 7].
Evidence is limited on the effect of PCSK9 inhibition on

clinical outcomes, and on safety outcomes that might only
become apparent with prolonged use. Nor is evidence
available on the efficacy and safety of PCSK9 inhibitors in
subjects other than the high-risk patients studied in trials.
Mendelian randomisation for target validation uses
naturally-occurring variation in a gene encoding a drug
target to identify mechanism-based consequences of
pharmacological modification of the same target [8]. Such
studies have previously proved useful in predicting success
and failure in clinical trials and have assisted in delineating
on-target from off-target actions of first-in-class drugs [9–

13]. For example, previous studies showed that variants in
HMGCR, encoding the target for statins, were associated
with lower concentrations of LDL-C and lower risk of cor-
onary heart disease [9] (CHD), while confirming the on-
target nature of the effect of statins on higher body weight
and higher risk of type 2 diabetes (T2DM) [9].
We characterised the phenotypic consequences of

genetic variation at PCSK9 in a large, general popula-
tion sample focussing on therapeutically relevant bio-
markers, cardiovascular disease (CVD), individual CVD
components and non-CVD outcomes such as cancer,
Alzheimer’s disease, and chronic obstructive pulmonary
disease (COPD). Effect estimates from the genetic ana-
lysis were compared to those from intervention trials
where the outcomes under evaluation overlapped.

Methods
We summarise methods briefly here as they have been
previously described in detail [14].

Genetic variant selection
SNPs rs11583680 (minor allele frequency [MAF] = 0.14),
rs11591147 (MAF = 0.01), rs2479409 (MAF = 0.36) and
rs11206510 (MAF = 0.17) were selected as genetic instru-
ments at the PCSK9 locus based on the following criteria:
(1) an LDL-C association as reported by the Global Lipids
Genetics Consortium (GLGC) [15]; (2) low pairwise linkage
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disequilibrium (LD) (r2 ≤ 0.30) with other SNPs in the re-
gion (based on 1000 Genomes CEU data); and (3) the com-
bined annotation dependent depletion (CADD) score [16]
which assesses potential functionality (see Additional file 1:
Table S1).
Previously, we explored the between-SNP correla-

tions (see Additional file 2: Figure S1 of Schmidt et al.
2017 [14]), revealing an $r^2$ of 0.26 between
rs11206510 and rs11583680, confirming all other SNPs
were approximately independent (r2 ≤ 0.07). Subse-
quent adjustment for the residual LD (correlation)
structure did not impact results (see Appendix Figure
90 of Schmidt et al. 2017 [14]).

Individual participant-level and summary-level data
Participating studies (Additional file 1: Table S2) provided
analyses of individual participant-level data (IPD) based
on a common analysis script (available from AFS), submit-
ting summary estimates to the UCL analysis centre. These
data were supplemented with public domain data from
relevant genetic consortia (Additional file 1: Table S3).
Studies contributing summary estimates to genetic con-
sortia were excluded from the IPD component of the ana-
lysis to avoid duplication.
Biomarker data were collected on the major routinely

measured blood lipids (LDL-C, HDL-C, triglycerides [TG],
total cholesterol [TC]); apolipoproteins A1 [ApoA1] and B
[ApoB], and nominal lipoprotein (Lp)(a); systolic (SBP) and
diastolic (DBP) blood pressure; inflammation markers C-
reactive protein (CRP), interleukin-6 (IL-6), and fibrino-
gen; haemoglobin; glycated haemoglobin (HbA1c); liver
enzymes gamma-glutamyltransferase (GGT), alanine ami-
notransferase (ALT), aspartate transaminase (AST), and
alkaline phosphatase (ALP); serum creatinine, and cogni-
tive function (standardized to mean 0, and standard devi-
ation 1, see Additional file 1: Table S5).
We focussed on individual clinical endpoints, rather than

composites, which have been assessed in outcome trials, as
well as disease end-points commonly seen in patients likely
to be eligible for PCSK9 inhibitor treatment. Ischemic CVD
endpoints studied were myocardial infarction (MI), ische-
mic stroke, revascularization, and angina. The following
non-ischemic CVD events were considered: haemorrhagic
stroke, heart failure, and atrial fibrillation. Non-CVD out-
come data was collected on common chronic diseases:
COPD, any cancer (including those of the breast, pros-
tate, colon and lung), Alzheimer’s disease, and T2DM.
Study endpoints and biomarker were chosen based on a
combination of 1) available sample size, 2) clinical rele-
vance, and 3) evaluation in RCTs of PCSK9 inhibition, we
did not a priori hypothesize on the likelihood of PCSK9
being associated with any of the available phenotypes.
Specific cancer sites evaluated here: chronic lymphocytic
leukaemia, multiple myeloma, Hodgkin, meningioma,

glioma, melanoma, colorectal cancer, prostate cancer,
breast cancer, lung adenocarcinoma, and small-cell lung
cancer.
Finally, aggregated trial data on the effect of monoclo-

nal PCSK9 (13 alirocumab trials, and 4 evolocumab
trials) inhibitors were compared to placebo for MI, revas-
cularization, ischemic or haemorrhagic stroke, cancer, and
T2DM abstracted from the Cochrane systematic review
[6, 17], with the addition of the OUTCOMES alirocumab
trial published afterwards [18]. We compared effects on
biomarkers and clinical endpoints common to both the
genetic analysis and trials.

Statistical analyses
In all analyses, we assumed an additive allelic effect with
genotypes coded as 0, 1 and 2, corresponding to the
number of LDL-C lowering alleles; model comparison
tests did not show signs of non-additivity [14]. Continu-
ous biomarkers were analysed using linear regression
and binary endpoints using logistic regression. Study-
specific associations were pooled for each SNP using the
inverse variance weighted method for fixed effect meta-
analysis. Study-specific associations were excluded if the
SNP was not in Hardy-Weinberg equilibrium (see
Additional file 1: Table S4, based on a Holm-Bonferroni
alpha criterion), with no variants failing this test. We
estimated the effect at the PCSK9 locus by combining all
four SNPs in a gene centric score (GS) as the inverse
variance weighted effect of the 4 variants, that were sub-
sequently scaled by the inverse variance weighted effect
on LDL-C.
Trial data were assembled as per Schmidt et al. 2017

[6]. Briefly, systematic searches were performed using
the Cochrane Central Register of Controlled Trials
(CENTRAL), MEDLINE, Embase, Web of Science
registries, Clinicaltrials.gov and the International Clinical
Trials Registry Platform databases. Data from placebo
controlled trials were extracted and combined using the
inverse variance weighted method for continuous data
and a random-intercept logistic regression model for
binary data [6].
Results are presented as mean differences (MD) or odds

ratios (OR) with 95% confidence intervals (CI). Analyses
were conducted using the statistical programme R version
3.4.1 [19]. For study specific estimates please contact AFS.

Results
Participant level data were available from up to 246,355
individuals, and were supplemented by summary effect
estimates from data repositories, resulting in a sample
size of 320,170 individuals, including 95,865 cases of MI,
16,437 stroke, 11,920 ischemic stroke, 51,623 T2DM, 54,
702 cancer, 25,630 Alzheimer’s disease and 12,412 of
COPD.
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Lipid and apolipoprotein associations
As reported previously [14], the four PCSK9 SNPs
were associated with lower LDL-C blood concentra-
tions ranging from − 0.02 mmol/L (95% CI -0.03, −
0.02) per allele for rs11583680 to − 0.34 mmol/L (95%
CI -0.36; − 0.32) for rs11591147 (See Additional file 2:
Figure S1). PCSK9 SNPs associated with a lower
LDL-C concentration were also associated with lower
concentrations of apolipoprotein B proportionate to
the LDL-C association.
Associations of the GS with the other lipids or apolipo-

proteins, scaled to a 1mmol/L lower LDL-C were
(Table 1): 0.05mmol/L (95% CI 0.02, 0.07) for HDL-C, −
0.07mmol/L (95% CI -0.12, − 0.01) for TG, − 1.06mmol/L
(95% CI -1.12, − 1.00) for TC, − 0.20 g/L (95% CI -0.25, −
0.18) for ApoB, 0.02 g/L (95% CI -0.01, 0.06) for ApoA1,
and − 4.12mg/dL (95% CI -8.62, 0.38) for Lp(a).
The associations of the PCSK9 GS with blood-based

lipid markers were directionally concordant with effects
from treatment trials of therapeutic inhibition of PCSK9
(Fig. 1).

Genetic associations with other biochemical and
physiological measures
The GS estimates with SBP and DBP were 0.03mmHg
(95% CI -0.05, 0.10) and 0.08mmHg (95% CI 0.0001, 0.15),
respectively, per 1mmol/L lower LDL-C. The PCSK9 GS
was associated with nominally lower ALP (IU/L) -0.06
(95% CI -0.09, − 0.02), but not with other liver enzymes
(Table 1).

Genetic associations with ischemic cardiovascular events
The PCSK9 GS was associated with a lower risk of
MI (OR 0.53; 95% CI 0.42; 0.68; 95,865 cases), which
was directionally consistent with results from placebo-
controlled PCSK9 inhibition trials: OR 0.90 (95% CI
0.86, 0.93), with both estimates scaled to a 1 mmol/L
lower LDL-C (Figs. 2 and 3). The genetic effect esti-
mate for ischemic stroke was OR 0.84 (95% CI 0.57,
1.22, 11,920 cases), concordant in direction to that of
the drugs trials (OR 0.85 95% CI 0.78; 0.93). Simi-
larly, the PCSK9 GS association with coronary revas-
cularization (OR 0.75 95% CI 0.44; 1.27) was
directionally consistent with the PCSK9 inhibitor tri-
als (OR 0.90; 95% CI 0.86, 0.93) (Fig. 3).

Table 1 Biomarker associations of a PCSK9 gene centric score,
effect presented as mean difference (MD) with 95% confidence
interval in brackets with the effects scaled to a 1 mmol/L
decrease in LDL-C

Biomarker Total sample size MD (95% CI)

Lipids related biomarkers

HDL-C in mmol/L 314,078 0.05 (0.02; 0.07)

TG in mmol/L 298,069 −0.07 (− 0.12; − 0.01)

TC in mmol/L 320,170 − 1.06 (− 1.12; − 1.00)

ApoA1 in g/L 55,477 0.02 (− 0.01; 0.06)

ApoB in g/L 54,643 −0.20 (− 0.25; − 0.18)

LP [a] in mg/dL 21,181 −4.12 (−8.62; 0.38)

Safety related biomarkers

SBP in mmHG 182,487 0.03 (−0.05; 0.10)

DBP in mmHG 182,497 0.08 (0.001; 0.15)

CRP in log (mg/L) 91,990 0.03 (−0.07; 0.14)

IL-6 in log (pmol/L) 22,370 −0.08 (− 0.21; 0.04)

GGT in log (IU/L) 69,488 0.03 (−0.04; 0.10)

Fibrinogen in log(g/dL) 63,288 0.02 (−0.01; 0.04)

Hemoglobin in g/L 52,109 1.16 (−0.38; 2.70)

ALT in log (IU/L) 83,223 0.03 (−0.02; 0.08)

AST in log (IU/L) 49,556 0.01 (−0.03; 0.05)

ALP in log (IU/L) 60,222 −0.06 (− 0.09; − 0.02)

Creatinine in umol/L 100,206 0.06 (−1.43; 1.55)

Nota bene, TG triglycerides, TC Total cholesterol, ApoA1 Apolipoprotein A1,
ApoB Apolipoprotein B, LPa Lipoprotein a, SBP Systolic blood pressure, DBP
Diastolic blood pressure, CRP C-reactive protein, IL-6 Interleukin-6, GGT
Gamma-glutamyltransferase, ALT Alanine transaminase, AST Aspartate
transaminase, ALP Alkaline phosphatase

Fig. 1 Lipid and lipoprotein associations of a PCSK9 gene-centric
score (GS) compared to placebo-controlled randomized trials of
therapeutic inhibition of PCSK9. Footnote: Effect estimates are
presented as mean differences, with 95% confidence interval (CI).
Trial estimates are presented as percentage change from
baseline (during 6 months of follow-up), and GS estimates scaled to
a 1mmol/L lower LDL-C (mmol/L). Results are pooled using a fixed
effect model. Trial estimates are based on the systematic review by
Schmidt et al 2017 [6, 17]
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Genetic associations with non-ischemic cardiovascular
disease
The point estimate for the GS association with hemorrhagic
stroke (Fig. 2), OR 1.29 (95% CI 0.76, 2.19), was discordant
to the estimate from PCSK9 inhibitor trials (OR 0.96 95%
CI 0.75; 1.23) (Fig. 3), although the confidence intervals
overlapped. Comparing the association of PCSK9 GS with
hemorrhagic and ischemic stroke indicated the GS had a
differential effect (p-value = 0.02). No PCSK9 GS associ-
ation was observed with atrial fibrillation (OR 0.92 95% CI
0.72; 1.18; 41,485 cases), or heart failure (OR 1.06 95% CI
0.48; 2.32; 1803 cases) (Fig. 2).

Associations with non-cardiovascular disease and related
biomarkers
The PCSK9 GS was not associated with the risk of any can-
cer (OR 0.97: 95%CI 0.81; 1.17; 54,702 cases, see Fig. 4), nor
with any of 12 specific types of cancer (Additional file 2:
Figure S2). We did not observe an association with
either Alzheimer’s disease or cognitive performance: for
Alzheimer’s the OR was 0.91 (95% CI 0.55, 1.51) and
for cognition (per standard deviation) -0.03 (95% CI
-0.22, 0.16). As reported before [14] the GS was associ-
ated with T2DM (OR 1.29 95% CI 1.11; 1.50) (Fig. 4),
higher body weight (1.03 kg, 95% CI 0.24, 1.82), waist to
hip ratio 0.006 (95% CI 0.003, 0.011) and fasting glucose
0.09mmol/L (95% CI 0.02, 0.15). The OR for COPD was
0.89 (95% CI 0.67, 1.18).

Discussion
The genetic findings presented here show that vari-
ation in PCSK9 is associated with lower circulating

LDL-C and apoB concentrations, lower risk of MI
and, with lesser confidence, the risk of ischemic
stroke and coronary revascularization. These effects
are consistent in direction to effects observed in
PCSK9 inhibitor trial’s [20].
A recent systematic review of trial data [21] indicated

PCSK9 inhibition was associated with increased fasting
glucose (0.17 as standardized mean difference [SMD]
95% CI 0.14; 0.19) and glycosylated haemoglobin (0.10
SMD 95% CI 0.07, 0.12, 21), although these associa-
tions were dependent on the inclusion of the terminated
bococizumab trials. Recently we, and others, showed
natural genetic variation PCSK9 was associated with ele-
vated fasting glucose and T2DM [14, 22, 23] and that
variation at other LDL-C-associated loci also influence
risk of T2DM [24, 25]. However, the FOURIER and
ODYSSEY OUTCOMES trials, the largest treatment trials
of PCSK9 inhibitors to date, did not find an association
with risk of incident T2DM, at a median follow up of 2.2
and 2.8 years respectively. It is possible this reflects a
genuine discordance between the findings from trials and
genetic analyses. Alternatively, the exposure durations in
the two largest trials may simply have been too short for
subjects to develop T2DM. The risk increasing effect of
statins on T2DM was only apparent after conducting a

Fig. 2 Associations of a PCSK9 gene-centric score with ischemic and
non-ischemic cardiovascular endpoints. Footnote: Effect estimates
are presented as odds ratios (OR), with 95% confidence interval (CI)
scaled to a 1 mmol/L lower LDL-C (mmol/L). Results are pooled
using a fixed effect model. The size of the squares are proportional
to the inverse of the variance Fig. 3 Clinical endpoint associations of the PCSK9 gene-centric score

(GS) as compared to placebo-controlled randomized trials of
therapeutic inhibition of PCSK9. Footnote: Effect estimates are
presented as odds ratios (OR), with 95% confidence interval (CI), for
the GS scaled to a 1 mmol/L lower LDL-C (mmol/L). Results are
pooled using a fixed effect model. Trial estimates are based on the
systematic review by Schmidt et al 2017 [6], with the estimates on
ischemic stroke and revascularization solely based on the FOURIER
and ODYSSEY OUTCOMES trials
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meta-analysis of 13 statin trials in which 4278 T2DM
cases were observed during an average follow-up of 4
years [26].
In general, inconsistencies between associations of

variants in a gene encoding a drug target and the ef-
fects of the corresponding treatment are possible on a
number of theoretical grounds. The effects of genetic
variation (present from conception) may be mitigated
by developmental adaptation or environmental changes. A
lack of association of a genetic variant with an outcome
therefore does not preclude an effect of a treatment
administered in later life, when adaptive responses
may no longer be available, or in the presence of a
particular environment [27]. We selected a subset of
all genetic variants at PCSK9 that capture information
on many others and which have some annotated func-
tion. However, other approaches to more fully capture
the entire gene-centric effect are worthy of future in-
vestigation [28].
The association of PCSK9 variants with LDL-C and

MI has been reported before [5], and was a motivating
factor for the development of PCSK9 inhibiting drugs.
Lotta and colleagues [22] reported a similar OR for MI
of 0.60 (95% CI 0.48, 0.75) per 1 mmol/L decrease in
LDL-C using the PCSK9 rs11591147 SNP. Using a seven
SNP PCSK9 GS, Ference et al. reported a MI OR of 0.44
(95% CI 0.31, 0.64) per 1 mmol/L decrease in LDL-C
[23]. These scaled genetic effects are larger than the
treatment effect observed in trials which others have
noted previously [29], and ascribed to the lifelong effect
of genetic variation versus the short-term effect of drug
treatment in later life.

The available trial data showed PCSK9 inhibitors had
a similar effect on MI (OR 0.90, 95% CI 0.86; 0.93) and
ischemic stroke (OR 0.85 95% CI 0.78; 0.93). By contrast,
the genetic analysis indicated a directionally concordant,
but larger effect on MI (OR 0.53; 95% CI 0.42; 0.68) than
ischemic stroke, (OR 0.84 95% CI 0.57; 1.22). The gen-
etic analysis was, however, based on only 11,920 stroke
cases, about one-fifth of the number of cases available
for the genetic analysis of MI and as such confidence
interval overlapped. We did observe a differential associ-
ation between PCKS9 SNPs and ischemic and
hemorrhagic stroke (interaction p-value = 0.02). Findings
from statin trials previously suggested LDL-C lowering
through inhibition of HMG-coA reductase is associated
with a reduced risk of ischemic but potentially increased
risk of hemorrhagic stroke [30–32]. Our findings suggest
that a different effect on ischemic and hemorrhagic
stroke subtypes may be eventually identified for PCSK9
inhibitors.
Despite previous concerns about a potential effect of

this class of drugs on cognition [33], the genetic analysis
did not reveal a significant association of the PCSK9 var-
iants with cognitive function or Alzheimer’s disease, nor
with COPD or cancer, though this does not preclude an
effect on such outcomes from drug treatment given in
later life. While we explored the associations with any
cancer (54,702 events) as well as individual cancer sites
(Additional file 2: Figure S2), we did not have data on
some clinically relevant cancer types such as endometrial
cancer.
This neutral effect on cognition has been recently re-

ported by the EBBINGHAUS study, nested within the
FOURIER trial, which reported a non-significant PCSK9
inhibitor effect on multiple measures of cognition con-
firming (using a non-inferiority design) an absence of
effect [33]; it should be noted that similar to the FOU-
RIER, the EBBINGHAUS follow-up time was limited.
The absence of an effect on cognition during PCSK9 in-
hibitor treatment was also observed in the ODYSSEY
OUTCOMES trial, which had a median follow-up [7] of
2.8 years.
Drugs (even apparently specific monoclonal anti-

bodies) can exert actions on more than one protein if
such targets belong to a family of structurally similar
proteins. PCSK9, for example, is one of nine related
proprotein convertases [34]. Such ‘off-target’ actions,
whether beneficial or deleterious, would not be shared
by variants in the gene encoding the target of interest. In
addition, monoclonal antibodies prevent interaction be-
tween circulating PCSK9 and LDL-receptor and should
not, in theory, influence any intracellular action of the
protein [35].
Genetic association studies of the type conducted here

tend to examine the risk of a first clinical event, whereas

Fig. 4 Associations of a PCSK9 gene-centric score (GS) with non-
cardiovascular events. Footnote: Effect estimates are presented as
odds ratios (OR), with 95% confidence interval (CI) scaled to a 1
mmol/L lower LDL-C (mmol/L). Results are pooled using a fixed
effect model. The size of the squares are proportional to the inverse of
the variance. Note, that all GS estimates are based on 4 SNPs, except
for the Alzheimer’s disease estimate which excluded the SNP
rs11591147 due to lack of data
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clinical trials such as ODYSSEY OUTCOMES focus on
patients with established disease, where mechanisms
may be modified. Proteins influencing the risk of a first
event may also influence the risk of subsequent events,
as observed in the case of the target of statin drugs that
are effective in both primary and secondary prevention
[1]. For this and other reasons [36–38], examination of
the effects of PCSK9 variants on the risk of subsequent
CHD events in patients with established coronary ath-
erosclerosis is the subject of a separate analysis led by
the GENIUS-CHD consortium [38].

Conclusions
PCSK9 SNPs associated with lower LDL-C predict a
substantial reduction in the risk of MI and concordant
associations with a reduction in risk of ischemic stroke,
but with a modestly increased risk of T2DM. In this pre-
liminary analysis we did not observe associations with
other non-cardiovascular safety outcomes such as can-
cer, COPD, Alzheimer’s disease or atrial fibrillation.
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