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Abstract—Assessing cardiac function with trans-thoracic ultra-
sound is a challenging task, mainly due to its fast motion and its
anatomical position which only allows for a narrow intercostal
imaging window. These factors often lead to the use of diverging
waves, even when contrast agents are employed. While capable of
achieving a very high frames rate, an acquisition with diverging
waves from a narrow aperture suffers from serious image quality
degradation. In this regard, it is often impossible to mitigate this
problem using common processing methods, such as coherent
compounding.

In this study, we cast the problem of reconstructing the
contrast enhanced ultrasound images as regularised inverse
problem, analogous to the compressed sensing one, where the
sensing matrix is fundamentally described by the delay operator
associated with the time of flight. The results show that this
framework can improve the Signal to Noise Ratio (SNR) of the
image by up to 5.85dB compared to delay and sum (DAS) and
is therefore a promising way to reconstruct contrast enhanced
cardiac images. The experiments also highlight that the way noise
is modelled has a significant impact on the final image quality.

Index Terms—cardiac, ultrasound, contrast, sparse, com-
pressed sensing

I. INTRODUCTION

High frame rate ultrasound (HFR US) imaging is a tomo-
graphic technique that, in the last decade, is slowly affirming
itself as an alternative to classical focused ultrasound. The
main difference between the two methods relies on the lack
of focusing in HFR US, which allows to insonify the entire
field of view with a single emission, while needing just a
few steered emissions to achieve the same image quality as
standard focused methods [1], [2]. HFR US has also been suc-
cessfully used to image contrast agents [3], highly echogenic
gas filled microbubbles injected in the blood stream, as well
as being applied in contrast-enhanced echocardiography [4].

Imaging the heart and cardiovascular system with HFR
US has several advantages. For example, the relatively small
number of emissions reduces the presence of motion artefacts
of classical images, which often reply upon hundreds of
transmissions to generate a single image [5]; also, the fast
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frame rate allows new precise flow quantification methods,
such as Ultrasound Image Velocimetry [6], to be leveraged
for cardiac applications.

The reconstruction stage of the image formation process is
still largely based on DAS and coherent compounding [2],
even if Fourier beamforming techniques [7] are becoming
increasingly popular. One of the main advantages of DAS
is its simple and highly parallelizable algorithmic structure,
which allows for parallel reconstruction of each different pixel
and therefore is a promising candidate for real-time image
reconstruction of HFR US. However, the unfocused nature
of HFR US transmissions requires compounding of multiple
transmissions which, coupled with the fast velocity of blood
flow in the heart, generates artifacts and changes in contrast
quantification [8], while at the same time heavily reduces the
frame rate.

If the measurement system, in this case the ultrasound
acquisition platform, can be described using a linear operator,
then compressive imaging is becoming an increasingly popular
choice for improving the quality of the reconstructed images
for many biomedical applications. For B-Mode ultrasound,
Besson et al. have proposed a beamforming framework based
on compressed sensing theory [9] that directly applies the
methods developed for generic image reconstruction, demon-
strating the possibility of reconstructing high-quality ultra-
sound images with limited number of measurements or trans-
missions. The core idea of the compressed sensing framework
is that the target image belongs to a subset of the space of
all possible images, and that the use of a regularization term
helps steer the optimization towards an image that belongs to
such a subset.

In this paper, we study how the feasibility of such a
framework to reconstruct contrast enhanced cardiac images.

II. THEORY

A. Time delay model and DAS

Reflection US imaging relies on the collection of the waves
scattered by a medium after being acoustically illuminated by a
source wave-field φt(x, t). In the case of non-contrast imaging,
for transmitted waves of low amplitude that generate a small
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perturbation of the particles position, the wave-field φ(x, t)
can be described by the wave equation

∇2φ−m(x)
∂

∂t
φ = φt, (1)

where m(x) = 1/c2(x). In this case, the quantity of interest
that one tries to derive from some measurements of φ is the
speed of sound (SoS) c. In biomedical ultrasound, the SoS is
often approximated by a constant value (usually c0 = 1540
m/s for soft tissues) perturbed by a small function

m(x) =
1

c0
+ εm̂(x). (2)

With such a model, the quantity of interest that we aim to
reconstruct is m̂(x). By further splitting the wave-field in
incident and scattered components, φ = φi + φs, the wave
equation can be rewritten in its integral form and under
mild conditions this equation can be iteratively solved for the
scattered field using the Born approximation [10]. If one stops
at the first iteration, the solution reads as

φs ≈ −ε
∫∫

dx̂dt̂
[
G(x, x̂, t− t̂)φ′′i (x̂, t̂)

]
m̂(x̂). (3)

Note that, in medical ultrasound, the Green’s function G most
often refers to the constant velocity case.

B. Linear vs non-linear response

So far, we have assumed that the linear wave equation
model holds. However, this is violated in the presence of mi-
crobubbles. At frequencies and pressures available in clinical
scanners, microbubbles are often described using the Rayleigh-
Plesset equation [11]. This model has non-linear terms that
describe microbubble oscillations as the output of a non-linear
resonator: this predicts that contrast agent responses contain
harmonics of the transmitted signals, a prediction that has
been verified and is often used as the basis for discriminating
microbubble signal from tissue echoes. [12]–[15].

For this reason, our measurement operator assumes that the
emitted pulse is a Dirac delta, thus modelling the pulse as part
of the image to be reconstructed, which is the reason why US
images exhibit speckle. Lastly, we need to consider the fact
that the wave-field is sampled only at finite positions, corre-
sponding to the transducer element locations. If each element
is approximated as a point-like transducer whose temporal
impulse response presents a flat temporal spectrum, then eq.
(3) reduces to eq. (1) of [16] without element directionality:
this shows that the standard way of thinking about HFR
US acquisitions is basically an application of the first Born
approximation. We name the associated measurement model
the Time of Flight (ToF) operator and denote it by the letter
A.

The problem of US image reconstruction can therefore be
stated as finding the best m̂(x) which follows the model

φs = Am̂+ ν, (4)

where φs are the recorded acoustic data and ν is a noise vector
that models acquisition noise and modelling errors.

C. Model inversion

Besson and colleagues, in [16], show that the DAS algo-
rithm is basically the adjoint associated with the ToF operator,
thus DAS is approximately equal to Aᵀ: we refer the reader
to this work for a more detailed discussion and for further
comments on Compressed Sensing (CS) in the context of
ultrasound beamforming.

Here, what we are interested in is the class of inversion
algorithms that aim to find the original vector m by solving
the following optimization problem

arg min
m̂

L(φs, m̂) + λR(m̂), (5)

where L is a data-fidelity term and R is a non-negative
regularization functional weighted by a positive real factor λ.

The previous formulation can be derived from a Bayesian
point of view: the key idea is to define a prior probability
distribution over m, namely P (m), such that the probability
of seeing the data φs given the reflectivity function m becomes

P (m̂|φs) =
P (φs|m̂)P (m̂)

P (φs)
. (6)

Maximizing the log likelihood of this probability with respect
to m gives

ˆ̂m = arg min
m̂

− logP (φs|m̂)− logP (m̂). (7)

Taking this point of view, it is readily seen that the regu-
larization term λR(m̂) corresponds to the prior probability
associated to a given tissue reflectivity function m̂. If we
assume that noise is Gaussian and homoscedastic, then the log-
likelihood for the data fidelity term becomes the well-known
mean squared error (MSE) loss function

− logP (φs|m̂) ∝ ‖Am̂− φs‖2. (8)

This is a questionable assumption, as noise in this formulation
is mainly given by model inaccuracies, reflectors outside the
field of view and electronic noise. While it may be hard to
predict the probability distribution of the modelling inaccura-
cies, it is clear that it is clear that errors in the avergae SoS, for
instance, will create a bias in the reconstruction error which is
not necessarily Gaussian. This is especially true for cardiac
imaging, as the waves travel trough very inhomogeneous
media with large variations of SoS, such as the cardiac muscle
and chamber, the latter being full of microbubbles. The same
argument goes for errors in element sensitivity, ultrasound
absorption, etc. The presence of reflectors outside the field
of view will also likely result in a heteroscedastic covariance
matrix, as its contribution will be more prominent for the
latest part of the received RF data. Lastly, electronic noise is
heteroscedastic, since ultrasound imaging often employs Time
Gain Compensation (TGC) which results in a variable noise
power across the RF data [17].

Another possibility is to assume, for example, that noise
follows a Laplacian distribution, which leads to:

− logP (φs|m̂) ∝ ‖Am̂− φs‖1. (9)
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Fig. 1: In-vitro experimental setup.
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Fig. 2: SNR and CNR evolution for different regularization
parameters.

The mean absolute error (MAE) will give less relative impor-
tance to large error values compared to MSE.

A second crucial question is how to choose a good prior
P (m). We postpone this point to further studies and for the
time being we follow the work of [16] and use the same prior.

III. METHODS

A. Ultrasound acquisitions

Data is acquired using a P4-1 probe emitting a diverging
wave of 3 cycles and center frequency of 1.5MHz. Pulse
inversion is used to highlight contrast signals and the received
RF data are high-pass filtered, using a 5th order Butterworth
filtered with cut-off frequency at 2.7 MHz.

The phantom, depicted in Fig. 1, consists of two pieces
of tissue mimicking material immersed in a tank of degassed
water with Sonovue microbubbles dispersed at clinical concen-
tration. The images are reconstructed using the full received
data or with half of channels missing, to test the power of the
regularized formulation with missing data.

B. Sparse problem inversion

The reconstruction of the image is done by solving

m̂ = arg min
m̂

‖Am̂− φs‖2p + λ‖Ψm̂‖1, (10)

where Ψ is defined as in eq. (21) of [16] and p ∈ {1, 2}. The
optimization is done using sub-gradient descent in PyTorch

Contrast CTNR SNR CNR

DAS -0.81 -7.96 7.66 -0.27
MAE 3.85 -1.55 13.51 1.00
MSE 6.15 -0.91 9.21 -0.27

DAS (half channels) 1.14 -5.09 3.20 -0.81
MAE (half channels) 2.60 -4.01 10.28 -0.56
MSE (half channels) 2.86 -3.47 8.18 -0.41

TABLE I: Evaluation of the various reconstruction methods
(dB).

[18] with momentum and a step size of 0.01. The operator A
includes element directionality at the second harmonic [19] as
well as the spherical amplitude decay. The use of p = 1 and
p = 2 is denoted as MAE and MSE respectively throughout
the manuscript.

C. Analysis

Image quality is measured by comparing the signal in
the microbubble region to tissue and noise, whose ROIs are
depicted in Fig. 1. The following metrics are used:

SNR =
µ2
contrast

µ2
noise

CNR =
‖µcontrast − µnoise‖2

σ2
contrast + σ2

noise
(11)

Contrast =
µ2
contrast

µ2
tissue

CTNR =
‖µcontrast − µtissue‖2

σ2
contrast + σ2

tissue

,

(12)

where µ and σ2 denote the mean and variance of the signal
in the ROI.

IV. RESULTS AND DISCUSSION

The solution of the regularized problem strongly depends
on the choice of the parameter λ. To find a value that gives a
good balance between noise suppression and discarded data,
we plot the value of SNR and CNR for different λ in Fig.
2. The two problems give very different solutions in terms
of SNR and CNR, with the MAE formulation capable of
achieving SNR values of almost 25 and CNR values of more
than 1.2, while the MSE formulation can reach at most 17.5
and 1.0 respectively. This already highlights the importance of
carefully evaluating the noise model for the problem at hand.

The images reconstructed using the best regularization
weight are shown in Fig. 3 and their quality is analyzed
in Tab. I. The results show that MAE always outperforms
MSE in terms of SNR, by 4.3dB and 2.1dB for the full
and half channels reconstructions respectively. Both methods
outperform DAS in all the image quality metrics, showing that
such regularized framework is suitable also for reconstructing
contrast enhanced cardiac images. At the same time, the values
of CNR for MAE are slightly better (+0.73dB) or comparable
(-0.15dB) to the MSE case. The values of Contrast and CTNR
are always higher for the MSE case: while this may seem to
suggest that the MSE method is better at suppressing tissue
signals, another possibility is that the MSE method tends to
slightly suppress weak signals and, being that the tissue signal
is weaker than the contrast one, it shows improved Contrast
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Fig. 3: PI images reconstructed using the various methods for a full aperture (top) and when half of the channels are missing
(bottom). Images are shown with a dynamic range of 30dB, normalized by their own maximum

and CTR measures with respect to MAE. In particular, this
possibility can be detrimental for applications such as the
evaluation of the myocardial circulation, as it may suppress
the weak contrast signal expressed in the cardiac muscle.

V. CONCLUSIONS

This works shows that sparsity regularized inversion of
contrast acquisitions with time of flight model improves the
image quality compared with DAS and can be used to enhance
the reconstruction of contrast enhanced cardiac acquisitions.
However, it also suggests that the exact formulations of the
problem, especially in terms of noise, has a significant impact
on the final image quality and must be carefully evaluated.
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