Ligandi imidazolinskih receptora

Katarina Nikolić, Danica Agbaba

Univerzitet u Beogradu, Farmaceutski fakultet, Institut za farmaceutsku hemiju, Beograd, Srbija

Izvod

Imidazolinski receptori (IR) na osnovu farmakološkog efekta podeljeni su u tri osnovne klase: I₁-imidazolinski receptori (I₁-IR) – učestvuju u centralnoj inhibiciji simpatikusa koja prouzrokuje sniženje krvnog pritiska; I₂-imidazolinski receptori (I₂-IR) – predstavljaju alosterno mesto vezivanja monoamino oksidaze B (MAO-B) i I₃-imidazolinski receptori (I₃-IR) – regulišu sekreciju insulina iz β-ćelija pankreasa. Zbog svoje uloge u organizmu sve tri klase imidazolinskih receptora predstavljaju veoma važno ciljno mesto za istraživanja novih lekova. Zato su prethodnih godina veoma intenzivno izučavani farmakološki efekti aktivacije I₁--IR, I₂-IR i I₃-IR podtipova imidazolinskih receptora i njihova povezanost sa aktivacijom drugih signalnih puteva. Nedavno sintetisani i ispitani visokoselektivni agonisti i antagonisti I₁--IR i I₂-IR omogućili su izvođenje detaljnijih teorijskih studija radi definisanja osnovnih farmakofora ovih liganada. U ovom preglednom radu biće prikazani glavni odnosi između afiniteta ka specifičnim podtipovima imidazolinskih receptora (I₁-IR i I₂-IR) i strukture liganada, ispitivani pomoću 2D-QSAR (*quantitative structure–activity relationship*) studija, 3D --QSAR studija i analize 3D-strukture farmakofore.

Ključne reči: imidazolinski receptori; alfa₂-adrenergički receptori; QSAR; farmakofore; rilmenidin; klonidin; centralni antihipertenzivi; analgetici; antidiabetici.

Dostupno na Internetu sa adrese časopisa: http://www.ache.org.rs/HI/

Pre više od dve decenije Bousquet i saradnici su otkrili da klonidinu-srodni centralni antihipertenzivi ostvaruju svoj farmakološki efekat kroz aktivaciju ne samo α_2 -adrenergičkih receptora (α_2 -AR) nego i aktivacijom imidazolinskih receptora (IR) [1,2]. Imidazolinski receptori se farmakološki razlikuju od α_2 -AR jer se ne mogu aktivirati kateholaminima [3]. Veliki broj studija se bavio interakcijama i međusobnim uticajem I-IR i α_2 -AR [4,5-8]. Sposobnost velikog broja imidazolinskih liganada i srodnih jedinjenja da aktiviraju i I-IR i α_2 -AR ukazuju na prisutnu analogiju u orijentaciji glavnih vezujućih grupa u aktivnom centru oba receptorska sistema. Iz tog razloga neke relativno male promene u strukturi liganada mogu prouzrokovati značajnu promenu u afinitetu i selektivnost za I-IR i α_2 -AR [9]. Detaljne biohemijske i farmakološke studije su definisale tri glavne klase imidazolinskih receptora: I1-imidazolinski receptori (I₁-IR), I₂-imidazolinski receptori (I₂-IR) i I₃-imidazolinski receptori (I₃-IR) [10,11]. Hipotenzivni efekat klonidinu- rilmenidinu- i moksinidinu-srodnih centralnih antihipertenziva nastaje kao rezultat aktivacije i neadrenergičkih I₁-imidazolinskih receptora i α_2 -adrenergičkih receptora (α_2 -AR) u primarnom regulatoru simpatikusa - Rostral Ventrolateral Medulla (RVLM), dok sedativno sporedno dejstvo ovih centralnih antihipertenziva nastaje usled aktivacije samo α_2 -AR u locus coeruleus-u [1,3-5,12-14]. RVLM neuroni primaju eksci-

Prepiska: K. Nikolić, Institut za farmaceutsku hemiju, Farmaceutski fakultet, Vojvode Stepe 450, 11000 Beograd, Srbija. E-pošta: knikolic@pharmacy.bg.ac.rs

Rad primljen: 21. februar, 2012

Rad prihvaćen: 10. april, 2012

tatorni signal iz gornjih delova mozga, *nucleus tractus* solitarii (NTS) i *area postrema*, dok inhibitorni signal dolazi od *caudal ventrolateral medulla* (CVLM). Stimulisani RVLM neuroni dalje vrše ekscitaciju neurona u intermediolateralnim (IML) neuronima, koji zatim vrše aktivaciju simpatikusa na ciljnim organima [8]. Pojačan ekscitatorni signal i/ili smanjen inhibitorni signal dovodi po povećane RLVM aktivnosti, pojačanog rada simpatikusa i do hipertenzije [5,8]. Aktivacijom α_2 -AR vrši se presinaptička inhibicija RLVM neurona, dok stimulacijom I₁-IR u RLVM oblasti dolazi do aktivacije inhibitornih interneurona, inhibicije RLVM neurona i smanjene aktivacije simpatikusa [5,8].

PREGLEDNI RAD

UDK 615.212:616:547.78

Hem. Ind. 66 (5) 619-635 (2012)

doi: 10.2298/HEMIND120221037N

Pored toga, ustanovljena je pozitivna linearna korelacija između jačine hipotenzivnog efekta imidazolinskih jedinjenja i njihovog afiniteta za imidazolinske receptore [5,15]. Pošto selektivniji I₁-IR agonisti izazivaju manje sporednih sedativnih efekata, kao što su sedacija, bradikardija i suvoća usta [16,17], od ostalih niskoselektivnih centralnih antihipertenziva, pristupilo se razvoju novih jedinjenja sa relativno visokom I₁/ α_2 -selektivnošću i visokim afinitetom za I₁-imidazolinske receptore. Centralni antihipertenzivi druge generacije, kao što su rilmenidin i miksonidin, ispoljili su veću I₁-IR/ α_2 --AR selektivnost i zato izazivaju manje sporednih efekata nego niskoselektivan antihipertenziv prve generacije – klonidin [5,14,18].

Pored toga je utvrđeno da su α_{2A} -AR uključeni u centralni hipotenzivni efekat derivata klonidina, dok moksonidin može da izazove sniženje krvnog pritiska i kod miševa kojima su genetskim inženjeringom blokirani α_{2A} -AR [20]. Svi navedeni rezultati ukazuju da je

optimalan balans u aktivaciji I₁-IR i α_{2A} -AR neophodan za postizanje snažnog centralnog hipotenzivnog efekta imidazolinskih liganada [20].Visokoselektivni I₁-IR ligandi, koji se vezuju za I₁-IR i u potpunosti nemaju afinitet za α_2 -AR, potencijalno su korisni za ispitivanje imidazolinskog receptorskog sistema i u istraživanju novih terapeutika koji su bazirani samo na aktivaciji I₁-IR. Novosintetisani selektivni I₁-IR ligandi, kao što su S23515 [21], S23757 [21], LNP509 [22], LNP 906 [23] i LNP911

I₁-imidazolinskog receptorskog sistema. Određivanje afiniteta vezivanja liganda za I₁-IR je vršeno primenom metode kompetitivne inhibicije vezivanja radioliganda, kao što su [³H]-klonidin, [¹²⁵I] *p*-jodoklonidin ([¹²⁵I] PIC) [¹²⁵I] LNP 911, na plazma membranama specifičnih neurona [25-28], na plazma membranama ćelija centralnog dela nadbubrežne žlezde (*chromaffin cells*) [21,22,29], na plazma membranama ćelija neuroendokrinog tumora *chromaffin* ćelija (*rat pheochromocytoma cells* (PC 12)) [23,24,30–33], plazma membranama humanih trombocita [34] i plazma membranama ćelija prostate psa [35].

[24], predstavljaju veoma dobre modele za ispitivanje

Aktivacija I₁-imidazolinskih receptora u osnovi pokreće dva glavna signalna puta, aktivaciju fosfatidilholin-zavisne fosfolipaze C (*phosphatidylcholine-sensitive phospholipase* C (PC-PLC)) [31,36,37] i inhibiciju aktivacije adenilciklaze [32]. Zbog toga određeni I₁-IR ligand može da ima efekat agoniste aktivirajući oba navedena signalna puta I₁-IR (npr. I₁-IR agonista – rilmenidin), može aktivirati samo jedan signalni put I₁-IR i blokirati drugi signalni put I₁-IR (npr. parcijalni agonista I₁-IR – efaroksan) ili može blokirati oba signalna puta I₁-IR (npr. I₁--IR antagonista – S23757 [21]).

S obzirom na to da se veoma razlikuju farmakološki efekti I₁-IR agonista, I₁-IR antagonista i I₁-IR parcijalnih agonista neophodno je bilo definisati 3D-strukturu farmakofore odgovornu za I₁-IR agonističku aktivnost, odrediti 3D-strukturu farmakofore odgovornu za I₁-IR antagonističku aktivnost i razviti odgovarajuće QSAR (*quantitative structure–activity relationship*) modele za predviđanje aktivnosti I₁-IR agonista i I₁-IR antagonista [24,32,34].

Pored aktivacije dva glavna signalna puta, agonisti I₁-IR prouzrokuju i mnoge druge promene u aktivnosti ćelije, kao što su: intenzivnija fosforilacija *Mitogen-Activated Protein Kinases* (MAPK1 i MAPK3) u RLVM neuronima što prouzrokuje hipotenziju [38]; aktivacija protein-kinaze C (PKC) [39]; fosforilacija *Extracellular Signal Regulated Kinase* (ERK1 i ERK2) i c-Jun kinaza [40,41]; oslobađanje arahidonske kiseline i prostaglandina E2 [21,41]; povećanu ekspresiju fosfataze MAPK enzima [40] i povećanu ekspresiju feniletanolamin-*N*-metil transferaze [41].

Do sada nije utvrđena 3D-struktura I₁-IR proteina, ali je uspešno kloniran *Imidazoline Receptor Antisera*-

Selected (IRAS) gen koji je najverovatnije odgovoran za sintezu I1-IR proteina [42]. Prenos IRAS cDNA u PC 12 i Chinese Hamster Ovary (CHO) ćelije je doveo do ekspresije I1-IR [42,43]. Humani IRAS protein, nazvan nischarin, uspešno je identifikovan i kloniran [42,44–46]. Ustanovljeno je da je ekspresija nischarin-a u ćeliji od ključnog značaja za očuvanje aktivnosti I1-IR i pokretanje odgovarajućih signalnih puteva kao što su aktivacija PC-PLC i fosforilacija ERK enzima [46-49]. Zato se pretpostavlja da je nischarin zapravo I₁-IR, ili funkcionalna jedinica I1-IR ili membranski medijator uključen u aktivaciju I1-IR signalnih puteva [46-49]. Pored toga, nischarin ima značajnu ulogu u funkciji Rho-familije GTP--aza [42,46]; aktiviranju signalne kaskade koja pokreće procese rasta i apoptoze ćelije [42,46,50]; supresiji Rac1-migracije ćelija [50] i aktivaciji ciklin D1 promotera [42,45,50]. Nedavno izvedene studije karcinoma dojke su definisale nischarin kao novi veoma snažan supresor razvoja tumora [51]. S obzirom na to da 3D-struktura I₁--IR proteina nije još uvek određena, nije moguće izvesti precizne virtuelne *docking* studije na ovom receptoru. Zbog toga su QSAR analiza i razvoj 3D-strukture farmakofora I₁-IR liganada optimalane metode za dizajn novih I₁-IR liganada, kao jedinjenja sa potencijalno veoma raznovrsnim farmakološkim dejstvom.

Klasa I₁-imidazolinskih receptora je definisana kao receptori koji pokazuju najveći afinitet ka 2-aminoimidazolinima ($[{}^{3}H]$ -klonidin), umereni afinitet ka imidazolinima ($[{}^{3}H]$ -idazoksan) i mali afinitet ka gvanidinima (npr. amilorid) [26,52,53].

Klasa I₂-imidazolinskih receptora je opisana kao receptori sa visokim afinitetom za gvanidine i imidazoline ([³H]-idazoksan) i slab afinitet za 2-aminoimidazoline [54]. Podtipovi I_{2A}- i I_{2B}-imidazolinskih receptora su definisani na osnovu razlike u njihovom afinitetu za amilorid [54]. I₂-imidazolinski receptori predstavljaju alosterno aktivno mesto koje je povezano sa katalitičkim aktivnim centrom monoamino-oksidaze (MAO) [55]. Pored toga, primarna struktura I₂-imidazolinskih receptora pokazuje visok stepen homologije sa MAO enzimom [56–58]. Eksperimentalno je potvrđeno da se I₂-IR u najvećoj meri nalaze na spoljnoj membrani mitohondrija.

Pošto I₂-IR nije do sada kloniran istraživanje ovih receptora je jedino moguće izvesti pomoću selektivnih I₂-IR liganada. I₂-imidazolinski receptori su uključeni u patofiziologiju neuroloških stanja, kao što su depresija [59,60], hiperfagija [61,62] i analgezija [63,64]. I₂-IR su najviše zastupljeni u glija ćelijama [65], trombocitima, jetri i adipocitima.

Klasa I₃-imidazolinskih receptora je uključena u proces indukcije sekrecije insulina iz β-ćelija pankreasa [66,67]. Derivat imidazolina – efaroksan je definisan kao selektivan agonista I₃-IR dok je njegov imidazolinski analog (KU14R) selektivni antagonista I₃-IR [68]. Dizajn i sinteza novih selektivnih I_1 -IR, I_2 -IR i I_3 -IR liganada će omogućiti otkrivanje novih lekova sa manje izraženim sporednim efektima, detaljnija istraživanja efekata aktivacije specifičnih I_1 -, I_2 - i I_3 -imidazolinskih receptora, kao i određivanje 3D-strukture I-IR strukture.

Nedavno sintetisani visokoselektivni agonisti i antagonisti I₁- i I₂-imidazolinskih receptora su omogućili da teorijske studije ukažu na glavne strukturne karakteristike i farmakofore liganada koji pokazuju snažan afinitet i relativno visoku selektivnost za I₁-IR i I₂-IR. Za I₃--IR još uvek nije sintetisan dovoljan broj selektivnih I₃-IR liganda za izvođenje preciznih teorijskih studija. Ova revijalna studija se bavi analizom strukturnih karakteristika liganada neophodnih za selektivnu aktivaciju I₁- i I₂-IR u odnosu na ostale imidazolinske receptore i α_2 adrenergičke receptore; ispitivanjem pokretanja specifičnih signalnih puteva od strane aktiviranih I-IR, kao i poređenjem kompleksnih farmakoloških efekata I-IR liganada.

Prikazana su i najnovija dostignuća u oblasti ispitivanja liganada imidazolinskih receptora, ukazujući na eksperimentalne i teorijske studije koje su najviše uticale na napredak u istraživanju imidazolinskih receptora i selektivnijih liganada imidazolinskih receptora.

ENDOGENI LIGANDI IMIDAZOLINSKIH RECEPTORA

S obzirom na to da prirodni endogeni ligandi imidazolinskih receptora (*Clonidine Displacing Substances* – CDS) pokazuju dobru selektivnost ka IR, njihove strukture predstavljaju veoma dobru osnovu za razvoj novih aktivnijih i selektivnijih imidazolinskih liganada. Prvo su izolovani agmatin [69] i ribozid-imidazol sirćetne kiseline (*imidazol-4-acetic acid ribotide* (IAA-RP)) [70] kao endogeni ligandi imidazolinskih receptora (slika 1). Agmatin pokazuje umereni afinitet ka α_2 -AR, I_1 -IR i I_2 -IR [71]. Agmatin se ponaša kao endogeni antagonista ili inverzni agonista imidazolinskih receptora, dok je IAA--RP endogeni agonista I_1 -IR u nadbubrežnoj žlezdi i agonista I_3 -IR u tkivu pankreasa [70].

Pored toga, harmani [72,73] i harmalani [74] (Slika 1) definisani su kao endogeni ligandi I₁-IR i I₂-IR koji pokazuju centralni hipotenzivni efekat sličan efektu klonidina [73]. Harmanii harmalani pripadaju grupi β -karbolinskih alkaloida koji nastaju kondenzacijom indolamina, kao što je na primer triptamin, i karboksilnih kiselina ili aldehida. Ova jedinjenja su izolovana iz humanog tkiva kao proizvod sekundarnog metabolizma [72–74].

Ligandi I₁-imidazolinskih receptora

Agonisti I₁-imidazolinskih receptora prouzrokuju aktiviranje PC-PLC [31,36,37] i cAMP signalnih puteva ćelije [32]. Nakon vezivanja za I₁-IR benazolin i moksonidin vrše aktivaciju oba signalna puta, dok efaroksan i BDF-6143 aktiviraju cAMP put i istovremeno blokiraju aktivaciju PC-PLC signalnog puta [31,32,36]. Pored toga, S23757 [21], LNP 906 [23] i LNP911 [24] antagonisti su i PC-PLC i cAMP signalnog puta. Ovi rezultati su ukazali na nove aspekte ispitivanja uloge I₁-IR u fiziološkim aktivnostima ćelije.

Centralni hipotenzivni efekat I₁-IR agonista je rezultat aktivacije i interakcije I₁-IR i α_2 -AR [37,38]. Pošto klonidin, rilmenidin i moksonidin nisu pokazali značajan hipotenzivni efekat na α_{2ABC} -AR-deficijentnim miševima, zaključeno je da je aktivacija α_{2ABC} -AR neophodna za antihipertenzivno dejstvo ovih jedinjenja [20]. Centralni hipotenzivni efekat neselektivnih I₁-IR liganada (npr. klonidin) bio je u dobroj korelaciji sa njihovim afinitetom ka I₁-IR. Njihov hipotenzivni efekat se može bloki-

rati antagonistom I₁-IR (npr. idazoksan) ili antagonistom α_2 -AR (johimbin) [5,15]. Centralni hipotenzivni efekat selektivnijih I₁-IR liganada (npr. moksonidin, rilmenidin) bio je u veoma dobroj korelaciji sa njihovim afinitetom ka I₁-IR. Njihov hipotenzivni efekat se može blokirati antagonistom I₁-IR (npr. idazoksan), ali ne i sa antagonistom α_2 -AR (johimbin) [5,15].

Farmakološke studije su pokazale da je aktivacija I₁-IR povezana sa nekoliko funkcija, kao što su: kardiovaskularna funkcija, regulacija očnog pritiska, regulacija renalne ekskrecije natrijuma i kontrola oslobađanja kateholamina (adrenalin, noradrenalin) iz hromafin ćelija (neuroendokrine ćelije nadbubrežne žlezde) [37,38]. Hipotenzivni efekat I₁-IR agonista je u najvećoj meri posledica povećane sinteze MAPK u ćelijama RLVM [38].

Usled niske selektivnosti do sada korišćenih radioliganada ([³H] klonidina i [¹²⁵I] *p*-jodoklonidina ([¹²⁵I] PIC)) nije bila moguće odrediti 3D-strukturu I₁-IR proteina [25,29]. Pronalaženjem novih visokoselektivnih i veoma aktivnih I₁-IR liganada, kao što su cis-/trans-diciklopropilmetil-(4,5-dimetil-4,5-dihidro-3H-pirol-2-il)--amin (LNP-509) [22], 2-(2-hloro-4-jodo-fenilamino)-5--metil-pirolin (LNP 911) [24], (2-(5-azido-2-hloro-4-jodo-fenilamino)-5-metil-pirolin (LNP 906) [23], (+)-5-(2--bromofenoksi)-metil-2-amino-4,5-dihidro-1,3-oksazol (S23515) [21], (+)-2-(2-fluoro-5-metilfenil)-4,5-dihidro--1H-imidazol (S23757) [21], stekli su se uslovi za karakterizaciju I1-IR proteina. S obzirom na to da su određene veoma različite vrednosti afiniteta vezivanja istih liganada za I1-IR izvedene pomoću različitih radioliganada ([¹²⁵I] PIC) i [¹²⁵I] LNP 911) i na različitim ćelijama (PC 12 i humani trombociti) [24,32,75], zaključeno je da nije moguće direktno porediti rezultate različitih in vitro analiza afiniteta I₁-IR liganada [76].

Uočena je korelacija između afiniteta I_1 -IR liganda (klonidin; lofeksidin; BDF 6143; rilmenidin; p-jodo-klonidin; LNP 911) na [¹²⁵I] LNP 911 aktivnom centru I_1 --

IR i afiniteta istih liganada na [¹²⁵I] PIC aktivnom centru I_1 -IR [24] (tabela 1).

Do danas je sintetisan i ispitan na I₁-IR, I₂-IR, α_{2A} -AR, α_{2B} -AR, α_{2C} -AR veliki broj različitih hemijskih grupa I₁-IR liganada kao što su derivati: gvanidina, 2-aminoimidazolina, 2-aminooksazolina, aminopirolina, 2-arilimidazolini, 2-fenilimidazolini, 2-imidazolina, endogeni amini i karbolini [21-24,32,33,77-79] (slika 2 i tabela 2).

Prikazane konstante afiniteta I₁-IR liganada se odnose na ćelije bubrega zeca za I₂-IR i ćelije kore velikog mozga pacova za α_2 -AR. Klonidin (slika 2, jedinjenje **16**) prvo je jedinjenje za koje je ustanovljeno da ostvaruje svoj antihipertenzivni efekat i preko aktivacije I₁-IR. Klonidin pokazuje veći afinitet ka I_1 -IR i α_2 -AR, nego prema I₂-IR (tabela 2). Derivat klonidina, *p*-jodoklonidin (slika 2, jedinjenje 29) pokazao je veći afinitet i selektivnost ka I₁-IR u odnosu na I₂-IR, ali je zadržao i sposobnost aktivacije α_2 -AR (tabela 2). Dalje promene na strukturi klonidina su dovele do formiranja moksonidina i rilmenidina (slika 2, jedinjenja 17 i 20), koji su ispoljili snažan afinitet ka I1-IR i visoku selektivnost ka I1-IR u odnosu na I_2 -IR and α_2 -AR (tabela 2). Afiniteti vezivanja nove grupe aminopirolinski analoga rilmenidina (slika 2, jedinjenja 1, 2, 6, 8, 10, 11 i 14) određivani su na I₁-IR, I₂-IR i α_2 -AR (tabela 2) [22]. Izosterna zamena pirolinskim prstenom u molekulu rilmenidina dovela je do drastičnog pada afiniteta ka α_2 -AR, dok je afinitet ka I₁-IR samo neznatno oslabio. Nedavno je ustanovljeno da je benazolin (slika 2, jedinjenje 27) veoma snažan I-IR ligand, koji aktivira I₁-IR i I₂-IR podtipove imidazolinskih receptora, i pored toga pokazuje veoma visoku selektivnost u odnosu na α_1 -AR i α_2 -AR [32]. Bazirano na strukturi benazolina izvršena je sinteza i ispitivanje 2-fenilimidazolinskih derivata na I₁-IR, I₂-IR, α_1 -AR i α_2 -AR [77]. Nekoliko ispitivanih jedinjenja, kao na primer 2'-metoksifenil-2imidazolin (slika 2, jedinjenje 26), pokazali su snažan i selektivan afinitet ka I₁-IR u odnosu na I₂-IR, α_1 -AR i α_2 -

Tabela 1. Afiniteti I₁-IR liganada dobijenih različitim eksperimentalnim metodama [24,32,34] Table 1. Binding affinities of the I₁-IR liganads obtained by use of different experimental methods [24,32,34]

	K _i (I ₁ -IR) / nM					
Jedinjenje	Sa [¹²⁵ I]LNP 911 na PC12 ćelijama [24]	Sa [¹²⁵ I] <i>p</i> -jodoklonidinom na PC12 ćelijama [24,32]	Sa [¹²⁵ I] <i>p</i> -jodoklonidinom na trombocitima [34]			
LNP 911	1,4±1,7	0,3 [24]				
<i>p</i> -Jodoklonidin	9,5±6,3	0,8 [24]	4,8 ± 1,2			
Rilmenidin	43,9±0,5	20,0 [24]	59,2 ± 5,8			
BDF 6143	62,3±7,0	28±6,0 [32]	232,0 ± 126,0			
Lofeksidin	507±69	5,6 [24]				
Klonidin	693±37	125±75 [32]	55,0 ± 10,0			
Benazolin	3,903±437	1,3 [32]				
<i>p</i> -Aminoklonidin	4,492±784					
Moksonidin	7,215±461	34±5 [32]	4,2 ± 3,2			
Idazoksan	7,655±876		1,255,0 ± 745.0			
Efaroksan	8,567±747	144±170 [32]	52,4 ± 30,4			

-AR (tabela 2) [77]. Na osnovu rezultata ove studije zaključeno je da I1-imidazolinski receptori pokazuju snažan afinitet ka 2-fenil-imidazolinima sa metil ili metoksi grupom u 2' ili 3' položaju [77]. Supstitucijom etilenskog mosta feniletilen-imidazolinskih derivata (slika 2, jedinjenje 5) ciklopropanskim prestenom (slika 2, (15,2S)-(+) izomer-jedinjenje 21) došlo je do značajnog porasta selektivnosti za I₁-IR u odnosu na I₂-IR [33] (tabela 2). Uočena je i veća I₁-IR aktivnost (1S,2S)-(+) enantiomera (slika 2, jedinjenje 21) u odnosu na njegov (1R,2R)-(-) enetiomer (slika 2, jedinjenje 12) (tabela 2). Pored toga istom studijom su ispitivana dva enantiomera α -metil derivata feniletilen-2-imidazolina (slika 2, jedinjenja 4 i 28) [33]. Izmeren je veći afinitet ka I₁-IR i veća I_1 -IR/ α_2 -AR i I_1/I_2 -IR selektivnost (S)-(-)-enantiomera (slika 2, jedinjenje 28) u odnosu na negov (R)-(+) enantiomer (slika 2, jedinjenje 4). Jača I₁-IR aktivnost i veća I_1 -IR/ α_2 -AR i I_1/I_2 -IR selektivnost jednog u odnosu na drugi enantiomer ukazuje na stereospecifičnost aktivnih centara I₁-IR, I₂-IR i α_2 -AR [33].

Nova grupa I1-IR liganada, 2-aminoimidazolina, nas-

tala je povezivanjem strukture agmatina i imidazolinskog prstena. Inkorporiranjem gvanidinske strukture u imidazolinski prsten dovelo je do značajnog pojačanja afiniteta ka I₁-IR [79].

Pored centralnog hipotenzivnog efekta selektivni I_1 -IR ligandi dovode do: antiaritmičkog efekta; pojačane renalne cirkulacije; diureze i natriureze zajedno sa inhibicijom reapsorpcije natrijuma i eksrecije kalijuma; inhibicije aktivnosti renalnog simpatikusa; pojačane glukozom-indukovane sekrecije insulina iz β -ćelija pankreasa [13,18,21,76].

Svi ovi farmakološki efekti selektivnih I_1 -IR liganada ukazuju da se razvojem selektivnih i snažnih I_1 -IR liganada mogu dobiti veoma efikasni antihipertenzivni lekovi.

S obzirom na to da trodimenziona struktura I₁-IR proteina još uvek nije određena onemogućeno je izvođenje preciznijih virtuelnih *docking* studija interakcije ligand-receptor, kao i razvoj novih I₁-IR liganada baziran na strukturi ciljnog mesta dejstva leka (*structure-based drug design* – SBDD). Zbog toga se pristupilo istraživanju novih jedinjenja sa većim i selektivnijim afinite-

Slika 2. Hemijske strukture I₁-IR liganada. Figure 2. Structural formulas of I₁-IR ligands.

Jedinjenje	p <i>Ki</i> (I ₁ -IR)	I ₁ -IR: upotrebljen radioligand, membrana/ćelija	p <i>Ki</i> (I ₂ -IR)	p <i>Ki</i> (α ₂ -AR)
1	4,00 [22]	[³ H] klonidin, <i>chromaffin</i> ćelije ovce	<5 [22]	<5 [22]
2	4,00 [22]	[³ H] klonidin, <i>chromaffin</i> ćelije ovce	<5 [22]	<5 [22]
3	5,14 [33]	[¹²⁵ I] PIC, PC 12	7,00 [33]	5,80 [33]
4	5,20 [33]	[¹²⁵ I] PIC, PC 12	4,90 [33]	5,40 [33]
5	5,43 [33]	[¹²⁵ I] PIC, PC 12	8,60 [33]	5,70 [33]
6	5,80 [22]	[³ H] klonidin, <i>chromaffin</i> ćelije ovce	<5 [22]	<5 [22]
7	6,15 [33]	[¹²⁵ I] PIC, PC 12	9,05 [33]	7,28 [33]
8	6,19 [22]	[³ H] klonidin, <i>chromaffin</i> ćelije ovce	<5 [22]	<5 [22]
9	6,23 [33]	[¹²⁵ I] PIC, PC 12	5 <i>,</i> 60 [33]	5,90 [33]
10 -LNP 509	6,27 [22]	[³ H] klonidin, <i>chromaffin</i> ćelije ovce	<5 [22]	<5 [22]
11	6,29 [22]	[³ H] klonidin, <i>chromaffin</i> ćelije ovce	<5 [22]	<5 [22]
12	6,46 [33]	[¹²⁵ I] PIC, PC 12	8,22 [33]	6,92 [33]
13	6,51 [33]	[¹²⁵ I] PIC, PC 12	5,75 [33]	7,01 [33]
14	6,77 [22]	[³ H] klonidin, <i>chromaffin</i> ćelije ovce	<5 [22]	<5 [22]
15-Efaroksan	6,84 [32]	[¹²⁵ I] PIC, PC 12	-	8,01 α _{2A} -AR, 8,00 α _{2B} -AR, 8,01 α _{2C} -AR [75]
16-Klonidin	6,90 [32]	[¹²⁵ I] PIC, PC 12	6,02 [67]	8,06 α _{2A} -AR, 7,50 α _{2B} -AR, 8,03 α _{2C} -AR [75]
17-Moksonidin	7,47 [32]	[¹²⁵ I] PIC, PC 12	<5 [32]	5,44 α _{2A} -AR, 5,59 α _{2B} -AR, 5,03 α _{2C} -AR [75]
18-BDF 6143	7,55 [32]	[¹²⁵ I] PIC, PC 12	-	8,55 α _{2A} -AR, 8,31 α _{2B} -AR, 8,96 α _{2C} -AR [75]
19	7,72 [33]	[¹²⁵ I] PIC, PC 12	8,72 [33]	4,85 [33]
20-Rilmenidin	7,90 [24]	[¹²⁵ I] PIC, PC 12	<5 [22]	7,44 α _{2A} -AR, 7,37 α _{2B} -AR, 7,90 α _{2C} -AR [75]
21	7,93 [33]	[¹²⁵ I] PIC, PC 12	6,91 [33]	6,62 [33]
22 -S23515	8,19 [21]	[³ H] klonidin, plazma membrana chromaffin ćelija	<4 [21]	6,39 [21]
23 -LNP 906	8,22 [23]	[¹²⁵ I] PIC, PC 12	3,88 [23]	5,65 α _{2A} -AR, 5,43 α _{2B} -AR, 5,08 α _{2C} -AR [75]
24-Lofeksidin	8,25 [24]	[¹²⁵ I] PIC, PC 12	-	_
25 -S23757	8,28 [21]	[³ H] klonidin, plazma membrana chromaffin ćelija	<4 [21]	8,21 [21]
26	8,53 [77]	[³ H] klonidin, plazma membrana chromaffin ćelija	5 [77]	<5 [77]
27-Benazolin	8,89 [32]	[¹²⁵ I] PIC, PC 12	9,07 [92]	5,45 α _{2Α} -AR [32]
28	8,97 [33]	[¹²⁵ I] PIC, PC 12	6,84 [33]	5,30 [33]
29 - <i>p</i> -Jodoklonidin (PIC)	9,10 [24]	[¹²⁵ I] PIC, PC 12	<5 [24]	8,66 α _{2A} -AR, 8,13 α _{2B} -AR, 9,10 α _{2C} -AR [75]
30 -LNP 911	9,75 [24]	[¹²⁵ I] PIC, PC 12	4,79 [24]	<4 α _{2Α} -AR [24]

Tabela 2. Eksperimentalno određeni afiniteti I₁-IR liganada ka I₁-IR, I₂-IR i α_2 -AR. (pKi = log (1/Ki)) Table 2. Binding affinities of the I₁-IR liganads for I₁-IR, I₂-IR i α_2 -AR. (pKi = log (1/Ki))

tom ka I₁-IR pomoću metoda koje su bazirane na strukturnim karakteristikama I₁-IR liganada (*ligand-based drug design* – LBDD), kao što su 2D-QSAR (*quantitative structure–activity relationship*) studije, 3D-QSAR studije i analize 3D-strukture farmakofore I₁-IR liganada [78,80–94].

QSAR metod uspostavlja matematičku zavisnost između biološke aktivnosti grupe ispitivanih jedinjenja i vrednosti molekulskih parametara ispitivanih jedinjenja kao što su geometrija, hidrofobnost, elektronski i fizičkohemijski parametri. QSAR studija ima za cilj da uspostavljenu funkcionalnu zavisnost između biološke aktivnosti grupe jedinjenja i određenih molekulskih parametara upotrebi za predviđanje biološke aktivnosti novih jedinjenja i predlaganje struktura novih aktivnijih jedinjenja. Na ovaj način se drastično smanjuje broj sintetisanih i ispitivanih jedinjenja niske biološke aktivnosti.

Osnovni zahtevi za formiranje pouzdanog QSAR modela su: raspon biološke aktivnosti ispitivanih jedinjenja treba da bude što veći (najmanje 2 log jedinice), kako bi Y-domen bio dovoljno širok. log(1/Ki) = pKi; vrednosti biološke aktivnosti treba da budu ravnomerno raspoređene od minimalne do maksimalne vrednosti; sve vrednosti bioloških aktivnosti bi trebalo da su dobijene istom eksperimentalnom metodom; ispitivana jedinjenja bi trebala da budu strukturno relativno srodna.

Novi I₁-IR liganadi su veoma korisni za strukturne, funkcionalne i farmakološke studije I₁-IR. S obzirom na to da I₁-IR učestvuju u aktivaciji nekoliko veoma važnih signalnih puteva ćelije novi I₁-IR liganadi potencijalno mogu ispoljiti veoma različitu farmakološku aktivnost.

Do sada izvedene LBDD studije su izdvojile nekoliko najvažnijih fizičko-hemijskih parametara I₁-IR liganada odgovornih za afinitet ka I₁-IR, kao i molekulske deskriptore I₁-IR/ α_2 -AR and I₁/I₂-IR selectivnosti. Nedavno izvedene 2D-QSAR studije I₁-IR liganada su ukazale da porast lipofilnosti (log $D_{pH 7.4}$), molarne refractivnosti i dipolnog momenta, zajedno sa padom u naelektrisanju na N-atomu u heterociklusu I₁-IR liganada, dovodi do snažnijeg afiniteta ka I₁-IR [80,81], dok su lipophilnost (ClogP) i HOMO (*highest ocupied molecular orbital*) energija o I₁-IR liganada važni deskriptori I₁-IR/ α_2 -AR selektivnosti [80]. Ostale 2D-QSAR studije I₁-IR liganada su ukazale da elektrostatički i sterni deskriptori ovih jedinjenja imaju najjači uticaj na njihov afinitet ka I₁-IR i I₂-IR [78,92,93].

Pored toga, 3D-QSAR (CoMFA, GRID i GOLPE) studije su izdvojile kombinaciju elektrostatičkih i sternih polja kao najznačajnijih MIF (*molecular interaction field*) deskriptora I₁-IR afiniteta [94]. Na osnovu 3D--QSAR studije formiran je i model farmakofore I₁-IR liganada koji se sastoji iz dva hidrofobna regiona (HY1 i HY2), dve grupe donora vodonične veze (*hydrogenbond donor groups* – HBD), aromatičnog prstena (AR) i pozitivno naelektrisanog dela strukture (*positively charged moiety* – PC) (slika 3) [94].

Slika 3. Šematski prikaz farmakofore I₁-IR liganada. Primer p-jodoklonidina.

Figure 3. Pharmacophore model of I_1 -IR ligand: p-Iodoclonidine case.

Ligandi I2-imidazolinskih receptora

I₂-imidazolinski receptori (I₂-IR) definisani su kao receptori sa velikim afinitetom ka gvanidinima i imidazolinima (npr. idazoksan) i ujedno veoma malim afinitetom ka 2-aminoimidazolinima [54]. I₂-imidazolinski receptori su uključeni u patofiziologiju psihičkih poremećaja, bola, Parkinsonove i Alzheimer-ove bolesti [95]. Pored toga, I₂-IR agonisti prouzrokuju porast koncentracije monoamina u mozgu [96].

S obzirom na to da trodimenziona struktura I₂-IR proteina još uvek nije određena, bolje razumevanje farmakoloških efekata aktivacije I₂-IR se bazira na pronalaženju selektivnih I₂-IR liganada u odnosu na I₁-IR i α_2 -AR. Do sada sintetisani i izučavani ligandi I₂-IR pripadaju derivatima: imidazolina, 2-aminoimidazolina, gvanidina i karbolina.

Prikazane konstante afiniteta I₁-IR liganada (tabela 3) odnose se na ćelije bubrega zeca za I₂-IR, ćelije nadbubrežne žlezde ovce za I₁-IR i ćelije kore velikog mozga pacova za α_2 -AR.

Idazoksan (slika 4, jedinjenje **30**) α_2 -AR antagonista je sa izraženim afinitetom ka I₁-IR, I₂-IR, and α_2 -AR [97]. Manje strukturne modifikacije molekula idazoksana, kao što je uvođenje metoksi supstituenta na ugljenikov atom benzodioksanskog ciklusa (RX 821002), dovode do značajnog pada afiniteta ka I₂-IR i snažnijeg afiniteta ka α_2 -AR [98]. Nekoliko benzodioksan, benzodioksolan i benzofuran analoga idazoksana (slika 4, jedinjenja **31**– **-37**) ispitivano je na I₂-IR i α_2 -AR (tabela 3) [99–101].

Uvođenje dvostruke veze u ciklus hromana kod hromanskih analoga idazoksana povećava rigidnost i planarnost ovih jedinjenja, što dovodi do snažnijeg afiniteta i veće selektivnosti ka I₂-IR (slika 4, jedinjenje **35**) [92]. Ispitivanje ove grupe jedinjenja je dovelo do otkrića veoma snažnih i selektivnih I₂-IR liganda kao što su benzofuranski analog idazoksana, 2-BFI i 7-hloro-2-BFI (slika 4, jedinjenje **35** i **37**) [101].

N-supstitucija 2-BFI je dovela do pada afiniteta ka I_2 -IR i ujedno do parasta afiniteta ka dopaminskim D_2 -receptorima [102].

Za 5-izotiociano-2-BFI analog, BU99006 (slika 4, jedinjenje **38**), utvrđeno je da se ponaša kao ireverzibilni I₂--IR ligand koji ispoljava jak i selektivan afinitet ka I₂-IR u nervnim ćelijama pacova [103].

Pošto su I₂-IR uključeni patofiziologiju psihičkih poremećaja pristupilo se manjim hemijskim modifikacijama aromatičnog i imidazolinskog dela 2-BFI molekula u cilju formiranja molekula koje bi ostvarilo sinergistički efekat aktivacijom i I₂-IR i odgovarajućih dopaminskih receptora [102].

Nedavno sintetisani bioizosteri idazoksana, kao što su benzoksazin derivati i triciklični analozi (slika 4, jedinjenja **39–41**), ispitivani su na I₁-IR, I₂-IR, α_1 -AR i α_2 -AR [104]. Zamena atoma kiseonika na položaju-4 molekula idazoksana sa atomom azota (slika 4, jedinjenja **39**) dovela je do održavanja sličnog afiniteta ka I₂-IR, ali je dovela do značajnog porasta I₂-IR/ α_2 -AR selektivnosti u odnosu na neselektivan idazoksan (tabela 3) [104].

Uvođenje dvostruke veze kod oksazinoindol i oksazinohinolinskih tricikličnih analoga (slika 4, jedinjenja **41**) dovelo je do formiranja najaktivnijih i najselektivnijih I₂-IR liganada (tabela 3), dok je porast veličine prs-

Jedinjenje	р <i>Кі</i> (І ₂ -ІR)	р <i>Кі</i> (І ₁ -ІR)	I ₂ -IR / α_2 -AR Selektivnost	p <i>Ki</i> (α ₂ -AR)
31-Idazoksan	7,97	5,90	5,2	7,25
32	8,06	-	41,3	6,44
33	8,57	-	161,5	6,36
34	7,40	-	10	6,40
35	8,43	-	191	6,15
36 -2BFI	8,89	-	2874	4,57
37	8,55	-	2192	6,18
38 -BU99006	8,60	≈5,60	≈1000	≈5,60
39	7,29	-	>2000	≈3,99
40	8,70	7,66	35,3	7,15
41	8,45	7,88	102	6,44
42-Cirazolin	7,90	-	-	-
43	5,57	-	0,036	7,01
44	9,05	-	58,8	7,28
45	8,60	-	794	5,70
46	6,91	-	10	5,91 α ₂ -AR, 5,22 α ₁ -AR
47	8,74	5,37	7762	4,85
48 -BU224	8,70	5,78	-	-
49 -BU226	8,85	5,37	-	-
50	-	-	-	-
51	-	-	-	-
52	8,30	-	110	6,26
53	8,22 I _{2A} -IR, 8,70 I _{2B} -IR	-	-	-
54	7,47	-	6,3 α _{2A} -AR, 28 α _{2B} -AR, 57 α _{2C} -AR	6,67 α_{2A} -AR, 6,02 α_{2B} -AR, 5,71 α_{2C} -AR
55	9,37	-	23000	5,00
56	8,02	-	-	-
57	8,14	-	-	-
58-FTIMD	8,53	<5	>3000	<5

Tabela 3. Eksperimentalno određeni afiniteti I_2 -IR liganada ka I_1 -IR, I_2 -IR i α_2 -AR [77,96-117]. (pKi = log (1/Ki)) Table 3. Binding affinities of the I_2 -IR liganads for I_1 -IR, I_2 -IR i α_2 -AR [77,96-117]. (pKi = log(1/Ki))

tena i smanjenje baznosti oksazino-N-atoma prouzrokovalo značajan pad afiniteta ka I₂-IR [104].

Cirazolin, 2-fenoksimetil derivat imidazolina (slika 4, jedinjenja **42**), veoma je snažan I₂-IR ligand, α_1 -AR agonista i α_2 -AR antagonista, sa izraženom I₂-IR/ α_1 -AR selekrivnošću [105,106]. Most između imidazolina i fenil prstena molekula cirazolina ima ključnu ulogu u modulaciji afiniteta i selektivnosti ka I₂-IR i α -AR [92,93]. Stoga metilacija na β -položaju mosta značajno smanjuje afinitet ka I₂-IR i I₂-IR/ α_2 -AR selektivnost derivata cirazolina (slika 4, jedinjenja **43** i **44**) [107]. Izosterna zamena atoma kiseonika mosta sa metilenskom grupom (slika 4, jedinjenja **45**) dovodi do porasta afiniteta ka I₂-IR, smanjenog afiniteta ka α_2 -AR i veoma smanjenog afiniteta ka α_1 -AR [92]. Iz tog razloga je ovo jedinjenje (slika 4, jedinjenja **45**) izabrano kao novi I₂-IR *lead* na kom su vršene dalje modifikacije.

Nedavno izvedene studije sa dve serije 2-aril-etilenimidazolin derivata (slika 4, jedinjenja **45**) potvrdile su modulatorni efekat ovih jedinjenja na morfinom izazvanu analgeziju i utvrdile visok stepen analogije između aktivnog centra I₂-IR i α_{2c} -AR [108]. Snažan I₂-IR afinitet i visoka I₂-IR/ α_2 -AR selektivnost α -metil analoga jedinjenja **45** (slika 4, jedinjenja **46**) kao i izražen I₁-IR afinitet i I₁-IR/ α_2 -AR selektivnost (*S*)-(-)- β -metil analoga jedinjenja **45** (slika 2, jedinjenje **28**), ukazali su na ključnu ulogu etilenskog mosta u modulaciji I₁-IR i I₂-IR selektivnosti ove grupe jedinjenja [33]. Pored toga, stereospecifični zahtevi I₁-IR i I₂-IR su veoma važna karakteristika aktivnih centara ovih receptora.

Prethodno izvedene 2D-QSAR studije I_2 -IR liganda su odabrale elektrostatičke i sterne parametre ovih jedinjenja kao deskriprote sa najvećim uticajem na afinitet ka I_2 -IR [33,91–93].

QSAR studije 2-fenoksimetil analoga imidazolina i njihovih derivata su ukazale na: ključni značaj lipofilnosti oko orto položaja fenil prstena za snažniji afinitet ka I₂-IR, odlučujuću ulogu nesupstituisanog etilenskog mosta između aromatičnog i imidazolinskog dela molekula na visoku selektivnost ka I₂-IR u odnosu na I₁-IR i

Slika 4. Hemijske strukture I₂-IR liganada. Figure 4. Structural formulas of I₂-IR ligands.

 α_2 -AR, kao i na zanemarljiv uticaj ciklopropil grupe na l₂-IR i α_1 -AR afinitet ovih jedinjenja [33,78,92,93,109].

U skladu sa rezultatima ovih 2D-QSAR studija, 3D--QSAR (CoMFA, GRID i GOLPE) istraživanja su odabrala kombinaciju lipofilnih i sternih molekulskih polja kao najznačajnije MIF deskriptore za afinitet ka I₂-IR [94]. Na osnovu 3D-QSAR studija formiran je i model farma-kofore I₂-IR liganada koji se sastoji iz dva hidrofobna regiona (HY1 i HY2), aromatičnog prstena (AR) i pozitivno naelektrisanog dela strukture (*positively charged moiety* (PC)) (slika 5) [94]. Farmakofora I₂-IR liganada se sastoji u najvećoj meri od četiri komponente (HY1, HY2, AR i PC) (slika 5), dok je farmakofora I₁-IR liganada sačinjena iz pet delova (HY1, HY2, AR, PC i HBD). Pošto farmakofora I₂-IR liganada ne sadrži HBD komponentu može se zaključiti da je HDB ligand-receptor interakcija važna determinanta I₁-IR/I₂-IR selektivnosti [94].

Smanjenje konformacione fleksibilnosti jedinjenja **45** sa *trans*-stiril mostom u molekulu tracizolina (slika 4, jedinjenje **47**) dovelo je do snažne i selektivne aktivnosti na I₂-IR (tabela 3), dok je još rigidnije jedinjenje benazolina (slika 2, jedinjenja **27**) pokazalo još snažniju aktivnost na I₂-IR i veću selektivnost u odnosu na α -AR (pKi I₂ 9,07; pKi α_2 4,40; pKi α_1 5,64) [92]. Pošto je benazoin snažan I₁-IR i I₂-IR ligand [110], pristupilo se sintezi i ispitivanju izostera benazolina koji bi se selektivno vezivali za I₁-IR ili I₂-IR (slika 4, jedinjenja **48** i **49**). Supstitucija naftil prstena hinolinom (slika 4, jedinjenja **48**, BU224) i izohinolinom (slika 4, jedinjenja **49**, BU226) dovela je do formiranja selektivnih I₂-IR liganada u odnosu na I₁-IR [96].

Aktivnosti i strukture tracizoline kongenera i analoga cirazolina su upotrebljeni za formiranje 3D-QSAR modela koji su izvršili izbor najznačajnijih elektrostatičkih, sternih i lipofilnih deskriptora I₂-IR liganada kao što su: poželjne lipofilne/sterne interakcije oko 2-*orto* i 3-*meta* položaja fenilnog prstena; poželjne elektronske/hidrofilne interakcije na 5-*meta* položaju; nepoželjna velika gustina elektrona iznad orto-položaja, nepoželjne sterne smetnje oko imidazolinskog prstena [109,111].

Slika 5. Šematski prikaz farmakofore I₂-IR liganada. Primer jedinjenja **45**. Figure 5. Pharmacophore model of I₂-IR ligand: the case of

compounds **45**.

Pored toga, aromatični gvanidini, kao što su amilorid (slika 4, jedinjenje **50**) i guanabenz (slika 4, jedinjenje **51**) upotrebljeni su za karakterizaciju I_{2A} -IR i I_{2B} -IR podtipova. *N*,*N*-Dimetil-guanabenz derivati su jedinjenja koja su pokazala najveći afinitet ka I_2 -IR Najsnažniji i najselektivniji afinitet ka I_2 -IR je određen za 2-bromo--*N*,*N*-dimetil-guanabenz derivat (slika 4, jedinjenje **52**) [112].

Aganodine, molekul sličan guanabenzu (slika 4, jedinjenje **53**), veoma je snažan ligand oba podtipa I₂-IR (p*Ki* I_{2A} 8,22 i p*Ki* I_{2B} 8,70) [113]. Brimonidine, 2-aminoimidazolin derivat (slika 4, jedinjenje **54**), pokazao je snažan afinitet ka I₂-IR i ujedno malu selektivnost u odnosu na α_2 -AR podtip (tabela 3) [64,114], dok je 2-aminoimidazolin derivat RS45041 (slika 4, jedinjenje **55**) veoma selektivan I₂-IR ligand (tabela 3) [115,116].

Hibridizacija 1,2,3,4-tetrahidro- β -karbolina (slika 4, jedinjenje **56**) i 2-BFI (slika 4, jedinjenje **36**) dovelo je do formiranja imidazopiridoindol molekula (slika 4, jedinjenje **57**). Jedinjenje **57** je pokazalo sličan afinitet ka I₂-IR (pKi I₂ 8,14) kao 1,2,3,4-tetrahidro- β -karbolin (p*Ki* I₂ 8,02), ali nižu selektivnost u odnosu na I₁-IR i α_2 -AR zbog prisustva imidazolinske strukture u molekulu [117].

Na osnovu strukture benazolina, veoma snažnog I-IR liganda, sintetisani su 2-fenilimidazolin derivati i ispitani na I₁-IR, I₂-IR, α_1 -AR i α_2 -AR [77]. Nekoliko 2-fenilimidazolin derivata, kao što je na primer 3'-fluoro-4'metilfenil-2-imidazolin (slika 4, jedinjenje **58**), pokazala su snažnu i selektivnu aktivnost na I₂-IR u odnosu na I₁-IR, α_1 -AR i α_2 -AR (tabela 3) [77]. Rezultati ove studije su ukazali da uvođenje fluoro grupe u *meta* položaju fenil-prstena dovodi do porasta afiniteta i selektivnosti na I₂-IR u odnosu na I₁-IR, α_1 -AR i α_2 -AR (77].

Novosintetisani hibridni molekuli, sačinjeni od fentanila i snažnog I₂–IR liganda (gvanidin ili BU224) povezanih alifatičnim ili aromatičnim grupama, ispitani su na I₂–IR i μ -opoidnim receptorima [118,119]. Serija fentanil-alkan-gvanidina je pokazala snažan afinitet ka I₂–IR i μ -opoidnim receptorima [118,119]. Derivati 1,2,3,4-tetrahidropirazino[1,2-a] indola, kao što je na primer 8-metoksi-1,2,3,4-tetrahidropirazino-[1,2-*a*]indol (Ki I₂ 6,2 nM), predstavljaju novu klasu I₂–IR liganada [120].

Nedavno je ustanovljeno da derivat gvanidina – metformin (slika 4, jedinjenje **59**) može da aktivira oba podtipa I₂–IR. Eksperimentalno je određeno da aktivacija I_{2A}-IR utiče na povećano oslobađanje β -endorfina, dok je aktivacija I_{2B}-IR utiče na snižavanje nivoa glukoze kod tipa-1 dijabetesa [121].

Ligandi I₃-imidazolinskih receptora

Indukcija sekrecije insulina iz β-ćelija pankreasa pod dejstvom imidazolinskih liganada nastaje kao rezultat aktivacije I₃ imidazolinskih receptora [67–69,122–126]. Još uvek nije utvrđen precizan mehanizam modulacije sekrecije insulina i homeostaze glukoze pod uticajem I₃-IR. Insulinotropska aktivnost I₃-IR liganada je u početku opisivana kao rezultat zatvaranja ATP-senzitivnog kalijumskog kanala (K_{ATP}) [127]. Detaljnija farmakološka ispitivanja su ustanovila da je aktivni centar I₃-IR smešten unutar (K_{ATP}) kanala [128,129].

Trodimenziona struktura I₃-IR proteina još uvek nije određena zbog nedostatka specifičnog radioliganda. Pored toga, zbog malog broja do sada otkrivenih I₃-IR liganda nije bilo moguće definisati glavne strukturne zahteve za selektivne I₃-IR ligande.

Efaroksan (slika 2, jedinjenje **15**) definisan je kao relativno selektivan I₃-IR agonista, dok je njegov imidazolinski analog KU14R (slika 6, jedinjenje **60**) I₃-IR antagonista [130].

Midaglizole, derivat imidazola (slika 6, jedinjenje 61), pokazao je antihiperglikemički efekat na životinjskim modelima dijabetes kao i kod pacijenata sa tipo-2 dijabetesa [131–133].

Nedavno su imidazolinski I₃-IR ligandi podeljeni na I₃-IR ligande prve generacije kao što je RX871024 (slika 6, jedinjenje **62**) – koji ostvaruje insulinotropski efekat pri normalnom i povišenom nivou glukoze u krvi preko zatvaranja K_{ATP} kanala [126] i I₃-IR ligande nove generacije kao što su: BL11282 (LY374284) (slika 6, jedinjenje **63**) [134], NNC77-0074 (slika 6, jedinjenje **64**) [135], NNC77-0020 (slika 6, jedinjenje **65**) [136]), koji pokazuju glukoza-zavisan insulinotropski efekat pri povišenim nivoima glukoze u krvi – ostvaren bez blokade K_{ATP} kanala [126,134,137].

Za NNC77-0074 jedinjenja (slika 6, jedinjenje **64**) utvrđeno je da snažno inhibira sekreciju glukagona preko modulcije egzocitoze granula koje sadrže glucagon [135], dok jedinjenje NNC77-0020 (slika 6, jedinjenje **65**) vrši glukoza-zavisnu modulaciju sekrecije hormona pankreasa preko stimulacije sekrecije insulina i somatostatina i inhibicije sekrecije glukagona [136].

Usled glukoza-zavisnog insulinotropskog efekta nove generacije I₃-IR liganada primena ovih jedinjenja u terapiji može značajno smanjiti rizik od hipoglikemičkih kri-

59 (KU14R)

60 (Midaglizol, DG-5128)

62 (BL 11282)

63 (NNC77-074)

64 (NNC77-020)

Slika 6. Hemijske strukture I₃-IR liganada. Figure 6. Structural formulas of I₃-IR ligands.

za i zato se ovi ligandi mogu upotrebiti i za razvoj novih bezbednijih antidijabetika.

Nedavno izvedene *in vitro* studije na HIT ćelijama (*Hamster Pancreatic Beta cells*) identifikovale su vezujuće mesto visokog i niskog afiniteta za [³H]-klonidin [138]. Pored toga je ustanovljeno da vezujuće mesto niskog afiniteta za [³H]-klonidin predstavlja zapravo deo pore K_{ATP} kanala [138]. Prisustvo različitih I₃-imidazolinskih receptora je utvrđeno i farmakoloških eksperimentima sa I₃-IR agonistom efaroksanom i harmanom [139].

ZAKLJUČAK

Istraživanje imidazolinskih receptora je veoma interesantna oblast za hemičare, farmakologe i biologe. Nepostojanje detaljnijih informacija o tercijernoj strukturi imidazolinskih receptora onemogućilo je značajniji napredak u ovoj oblasti. Zbog toga je razvoj novih snažnijih i selektivnijih I-IR liganada baziran prvenstveno na QSAR studijama različitih grupa I-IR liganada.

Glavni farmakološki efekat aktivacije I₁-IR je hipotenzija. Nizak procenat sporednih neželjenih efekata, antiaritmička aktivnost i povoljni metabolički i renalni efekti selektivnijih I₁-IR liganada ukazuju da ova grupa jedinjenja predstavlja odličnu polaznu tačku za razvoj novih snažnijih i bezbednijih antihipertenziva.

Farmakološka aktivnost I₂-IR liganada obuhvata modulaciju psihičkih poremećaja, analgezije, Parkinsonove i Alchajmerove bolesti, dok aktivacija I₃-IR prouzrokuje sekreciju insulina iz β -ćelija pankreasa.

Razvijene trodimenzione strukture farmakofora I₁-IR i I₂-IR liganada se mogu upotrebiti za pretraživanje baza trodimenzionih struktura jedinjenja radi pronalaženja novih polaznih struktura potencijalnih I₁-IR i I₂-IR liganada. Do sada nisu izvedene 2D-QSAR i 3D-QSAR studije I₃-IR liganada zbog nedovoljnog broja do sada sintetisanih selektivnih I₃-IR liganada.

Zahvalnica

Ovaj rad je finansiran od strane Ministarstva prosvete, nauke i tehnoškog razvoja Republike Srbije, Ugovor broj 172033.

LITERATURA

 H. Schmitt, J.R. Boissier, J.F. Giudicelli, J. Fichelle, Cardiovascular effects of 2-(2,6-dichlorophenylamino)-2imidazoline hydrochloride (ST 115). II. Central sympathetic structures, J. Eur. J. Pharmacol. 2 (1968) 340–346.

- [2] H. Schmitt, S. Fenard, Action of alpha-adrenergic blocking drugs on the sympathetic centres and their interactions with the central sympatho-inhibitory effect of clonidine, Arzheimittel-Forschung 23 (1973) 40–45.
- [3] P. Bousquet, J. Schwartz, Alpha-adrenergic drugs. Pharmacological tools for the study of the central vasomotor control, Biochem. Pharmacol. **32** (1983) 1459–65.
- [4] P. Bousquet, J. Feldman, J. Schwartz, Central cardiovascular effects of alpha-adrenergic drugs: differences between catecholamines and imidazolines, J. Pharmacol. Exp. Ther. 230 (1984) 232–236.
- [5] P. Ernsberger, R. Guiliano, R.N. Willette, D.J. Reis, Role of imidazole receptors in the vasodepressor response to clonidine analogs in the rostral ventrolateral medulla, J. Pharmacol. Exp. Ther. **253** (1990) 408–418.
- [6] D.N. Mayorov, S.L. Burke, G.A. Head, Relative importance of rostral ventrolateral medulla in sympathoinhibitory action of rilmenidine in conscious and anesthetized rabbits, J. Cardiovasc. Pharmacol. **37** (2001) 252– –261.
- [7] D. Mayorov, M. Chernobelski, O. Medvedev, Sympathoinhibitory action of rilmenidine in conscious sinoaortically denervated rats, J. Cardiovasc. Pharmacol. 22 (1993) 314–320.
- [8] V. Bruban, V. Estato, S. Schann, J.D. Ehrhardt, L. Monassier, P. Renard, E. Scalbert, J. Feldman, P. Bousquet, Evidence for synergy between α₂-adrenergic and nonadrenergic mechanisms in central blood pressure regulation, Circulation **105** (2002) 1116–1121.
- [9] J.P. Hieble, R.R. Jr. Ruffolo, Possible Structural and Functional Relationships between Imidazoline Receptors and α₂-Adrenoceptors, Ann. N. Y. Acad. Sci. **763** (1995) 8–21.
- [10] S. Regunathan, D.J. Reis, Imidazoline receptors and their endogenous ligands, Ann. Rev. Pharmacol. Toxicol. 36 (1996) 511–544.
- [11] P. Ernsberger, M.A. Haxhiu, The I₁-imidazoline-binding site is a functional receptor mediating vasodepression via the ventral medulla. Am. J. Physiol. **273** (1997) R1572–R1579.
- [12] P. Bousquet, G. Bricca, M. Dontenwill, J. Feldman, H. Greney, A. Belcourt, J. Stutzmann, E. Tibirica, From the α_2 -adrenoceptors to the imidazoline preferring receptors, Fundam. Clin. Pharmacol. **6** (Suppl 1) (1992) 15S–-21S.
- [13] G.A. Head, D.N. Mayorov, Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc. Hematol. Agents Med. Chem. 4 (2006) 17–32.
- [14] C.K.S. Chan, S.L. Burke, G.A. Head, Contribution of imidazoline receptors and α_2 -adrenoceptors in the rostral ventrolateral medulla to sympathetic baroreflex inhibition by systemic rilmenidine, J. Hypertension **25** (2007) 147–155.
- [15] E. Tibirica, J. Feldman, P. Bousquet, Differences in the ability of yohimbine to antagonize the hypotensive effect of clonidine in normotensive and spontaneously hypertensive anesthetized rats, J. Pharmacol. Exp. Ther. 244 (1988) 1062–1066.
- [16] B. Delbarre, H. Schmitt, Sedative effects of α-sympathomimetic drugs and their antagonism by adrenergic and

cholinergic blocking drugs. Eur. J. Pharmacol. **13** (1971) 356–363.

- [17] G.B. De Sarro, C. Ascioti, F. Froio, V. Libri, G. Nistico, Evidence that locus coeruleus is the site where clonidine and drugs acting at α_1 -and α_2 -adrenoceptors affect sleep and arousal mechanisms, Br. J. Pharmacol. **90** (1987) 675–685.
- [18] G.A. Head, C.K.S. Chan, S.L. Burke, Relationship between imidazoline and α_2 -adrenoceptors involved in the sympatho-inhibitory actions of centrally acting antihypertensive agents, J. Auton. Nerv. Syst. **72** (1998) 163–169.
- [19] L. Hein, L.E. Limbird, R.M. Eglen, B.K. Kobilka, Gene substitution/knock-out to delineate the role of the α2adrenoceptor subtypes in mediating central effects of catecholamines and imidazolines, Ann. N. Y. Acad. Sci. 881 (1999) 265–271.
- [20] F.P. Talentino-Silva, M.A. Haxiu, S. Waldbaum, I.A. Breshaj, P. Ernsberger, Alpha₂-adrenergic receptors are not required for central anti-hypertensive action of moxonidine in mice, Brain Res. 862 (2000) 26–35.
- [21] V. Bruban, J. Feldman, H. Greney et al. Respective contributions of α -adrenergic and non-adrenergic mechanisms in the hypotensive effect of imidazoline-like drugs, Br. J. Pharmacol. **133** (2001) 261–266.
- [22] S. Schann, V. Bruban, K. Pompermayer, J. Feldman, B. Pfeiffer, P. Renard, E. Scalbert, P. Bousquet, J-D. Ehrhardt, Synthesis and biological evaluation of pyrrolinic isosteres of rilmenidine. Discovery of cis-/trans-dicyclopropylmethyl-(4,5-dimethyl-4,5-dihydro-3*H*-pyrrol-2-yl)--amine (LNP 509), an I₁ imidazoline receptor selective ligand with hypotensive activity, J. Med. Chem. **44** (2001) 1588–1593.
- [23] D. Urosevic, S. Schann, J-D. Ehrhardt, P. Bousquet, H. Greney, LNP 906, the first high-affinity photoaffinity ligand selective for I₁ imidazoline receptors, Br. J. Pharmacol. **142** (2004) 609–617.
- [24] H. Greney, D. Urosevic, S. Schann, L. Dupuy, V. Bruban, J-D. Ehrhardt, P. Bousquet, M. Dontenwill, [¹²⁵I]-2-(2-Chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), a High-Affinity Radioligand Selective for I₁ Imidazoline Receptors, Mol. Pharmacology 62 (2002) 181– -191.
- [25] J.E. Piletz, A.C. Andorn, J.R. Unnerstall, A. Halaris, Binding of $[{}^{3}H]$ -*p*-aminoclonidine to α_{2} -adrenoceptor states plus a non-adrenergic site on human platelet plasma membranes,. Biochem. Pharmacol. **42** (1991) 569–584.
- [26] F.M. Heemskerk, M. Dontenwill, H. Greney, C. Vonthron, P. Bousquet, Evidence for the existence of imidazoline-specific binding sites in synaptosomal plasma membranes of the bovine brainstem, J. Neurochem. **71** (1998) 2193–2202.
- [27] P. Ernsberger, I.H. Shen, Membrane localization and guanine nucleotide sensitivity of medullary I₁ imidazoline binding sites, Neurochem. Int. **30** (1997) 17–23.
- [28] M. Dontenwill, C. Vonthron, H. Greney, C. Magnier, F. Heemskerk, P. Bousquet, Identification of human I₁ receptors and their relationship to α_2 -adrenoceptors, Ann. N. Y. Acad. Sci. **881** (1999) 123–135.

- [29] G.J. Molderings, D. Moura, K. Fink, H. Bonisch, M. Gothert, Binding of $[{}^{3}H]$ clonidine to I₁-imidazoline sites in bovine adrenal medullary membranes, Naunyn-Schmiedeberg's Arch. Pharmacol. **348** (1993) 70–76.
- [30] P. Ernsberger, J.E. Piletz, L.M. Graff, M.E. Graves, Optimization of radioligand binding assays for I₁-imidazoline sites, Ann. N. Y. Acad. Sci. **763** (1995) 163–168.
- [31] D. Separovic, M. Kester, P. Ernsberger, Coupling of I₁imidazoline receptors to diacylglyceride accumulation in PC12 rat pheochromocytoma cells, Mol. Pharmacol. 49 (1996) 668–675.
- [32] H. Greney, P. Ronde, C. Magnier, F. Maranca, C. Rascente, W. Quaglia, M. Giannella, M. Pigini, L. Brasili, C. Lugnier, P. Bousquet, Dontenwill, M. Coupling of I₁-imidazoline receptors to the cAMP pathway: studies with a highly selective ligand, benazoline, Mol. Pharm. **57** (2000) 1142–1151.
- [33] F. Gentili, P. Bousquet, L. Brasili, M. Dontenwill, J. Feldman, F. Ghelfi, M. Giannella, A. Piergentili, W. Quaglia, M. Pigini, Imidazoline Binding Sites (IBS) Profile Modulation: Key Role of the Bridge in Determining I₁-IBS or I₂-IBS Selectivity within a Series of 2-Phenoxymethylimidazoline Analogues, J. Med. Chem. **46** (2003) 2169–2176.
- [34] J.E. Piletz, K. Sletten, Nonadrenergic imidazoline binding sites on human platelets, J. Pharmacol. Exp Ther. 267 (1993) 1493–1502.
- [35] D. Felsen, P. Ernsberger, P.M. Sutaria, R.J. Nejat, P. Nguyen, M. May, D.S. Breslin, D.N. Marion, D. Jr. Vaughan, Identification, localization and functional analysis of imidazoline and alpha adrenergic receptors in canine prostate, J. Pharmacol. Exp Ther. **268** (1994) 1063–1071.
- [36] D. Separovic, M. Kester, M.A. Haxhiu, P. Ernsberger, Activation of phosphatidylcholine-selective phospholipase C by I₁-imidazoline receptors in PC12 cells and rostral ventrolateral medulla, Brain Res. **749** (1997) 335–339.
- [37] J. Zhang, M.M. El Mas, A.A. Abdel-Rahman, Imidazoline I(1) receptor-induced activation of phosphatidylcholinespecific phospholipase C elicits mitogen-activated protein kinase phosphorylation in PC12 cells. Eur. J. Pharmacol. 415 (2001) 117–125.
- [38] J. Zhang, A.A. Abdel-Rahman, Mitogen-activated protein kinase phosphorylation in the rostral ventrolateral medulla plays a key role in imidazoline (I1)-receptor-mediated hypotension, J. Pharmacol. Exp Ther. **314** (2005) 945–952.
- [39] L. Edwards, D. Fishman, P. Horowitz, N. Bourbon, M. Kester, P. Ernsberger, The I(1)-imidazoline receptor in PC12 pheochromocytoma cells activates protein kinases C, extracellular signal-regulated kinase (ERK) and c-jun N-terminal kinase (JNK), J. Neurochem. **79** (2001) 931– -940.
- [40] L. Edwards, P. Ernsberger, The I(1)-imidazoline receptor in PC12 pheochromocytoma cells reverses NGF-induced ERK activation and induces MKP-2 phosphatase, Brain Res. 980 (2003) 71–79.
- [41] P. Ernsberger, The I(1)-imidazoline receptor and its cellular signaling pathways, Ann. N.Y. Acad. Sci. 881 (1999) 35–53.

- [42] J.E. Piletz, T.R. Ivanov, J.D. Sharp P. Ernsberger, C.H. Chang, R.T. Pickard, G. Gold, B. Roth, H. Zhu, J.C. Jones, J. Baldwin, D.J. Reis, Imidazoline receptor antiseraselected (IRAS) cDNA: Cloning and characterization. DNA Cell Biol. **19** (2000) 319–329.
- [43] M. Dontenwill, J.E. Piletz, M. Chen, J. Baldwin, G. Pascal, P. Ronde, L. Dupuy, H. Greney, K. Takeda, P. Bousquet, IRAS is an anti-apoptotic protein. Ann. N.Y. Acad. Sci. 1009 (2003) 400–412.
- [44] S.K. Alahari, J.W. Lee, R.L. Juliano, Nischarin, a novel protein that interacts with the integrin alpha5 subunit and inhibits cell migration, J. Cell Biol. 151 (2000) 1141– -1154.
- [45] J.E. Piletz, J.C. Jones, H. Zhu, O. Bishara, P. Ernsberger, Imidazoline receptor antisera-selected cDNA clone and mRNA distribution, Ann. N.Y. Acad. Sci. 881 (1999) 1–7.
- [46] J.E. Piletz, G. Wang, H. Zhu, Cell signaling by imidazoline-1 receptor candidate, IRAS, and the nischarin homologue, Ann. N.Y. Acad. Sci. **1009** (2003b) 392–399.
- [47] J. Zhang, A.A. Abdel-Rahman, Nischarin as a functional imidazoline (I1) receptor, FEBS Letters 580 (2006) 3070– -3074.
- [48] F. Li, N. Wu, R.B. Su, J.Q. Zheng, B. Xu, X.Q. Lu, B. Cong, J. Li, Involvement of Phosphatidylcholine-Selective Phospholipase C in Activation of Mitogen-Activated Protein Kinase Pathways in Imidazoline Receptor Antisera-Selected Protein, J. Cell. Biochem. **98** (2006) 1615–1628.
- [49] Z. Sun, Ch.H. Chang, P. Ernsberger, Identification of IRAS/Nischarin as an I1-imidazoline receptor in PC12 rat pheochromocytoma cells, J. Neurochem. **101** (2007) 99– -108.
- [50] S.K. Alahari, Nischarin inhibits Rac induced migration and invasion of epithelial cells by affecting signaling cascades involving PAK, Exp. Cell Res. 288 (2003) 415– -424.
- [51] S. Baranwal, Y. Wang, R. Rathinam, J. Lee, L. Jin, R. McGoey, Y. Pylayeva, F. Giancotti, G.C. Blobe, S.K. Alahari, Molecular characterization of the tumor-suppressive function of nischarin in breast cancer, J. Natl. Cancer. Inst. **103** (2011) 1513–1528.
- [52] M.P. Meeley, P.R. Ernsberger, A.R. Granata, D.J. Reis, An endogenous clonidine-displacing substance from bovine brain: receptor binding and hypotensive actions in the ventrolateral medulla, Life Sci. **38** (1986) 1119–1126.
- [53] G. Bricca, M. Dontenwill, A. Molines, J. Feldman, A. Belcourt, P. Bousquet, Evidence for the existence of a homogenous population of imidazoline receptors in the human brainstem, Eur. J. Pharmacol. **150** (1988) 401– -402.
- [54] F. Tesson, C. Prip-Buus, A. Lemoine, J.P. Pegorier, A. Parini, Subcellular distribution of imidazolineguanidinium-receptive sites in human and rabbit liver. Major localization to the mitochondrial outer membrane, J. Biol. Chem. 266 (1991) 155–160.
- [55] A. Holt, B. Wieland, G.B. Baker, Allosteric modulation of semicarbazide-sensitive amine oxidase activities in vitro by imidazoline receptor ligands, Br. J. Pharmacol. **143** (2004) 495–507.

- [56] I. Limon, I. Coupry, S.M. Lanier, A. Parini, Purification and characterization of mitochondrial imidazolineguanidinium receptive site from rabbit kidney, J. Biol. Chem. 267 (1992) 21645–21649.
- [57] H. Wang, S. Regunathan, M.P. Meeley, D.J. Reis, Isolation and characterization of imidazoline receptor protein from bovine adrenal chromaffin cells, Mol. Pharmacol. 42 (1992) 792–801.
- [58] A. Remaury, H. Paris, The insulin-secreting cell line, RINm5F, expresses an α_2 -adrenoceptor and non adrenergic idazoxan binding sites, J. Pharm. Exp. Ther. **260** (1991) 417–426.
- [59] D.P. Finn, O. Marti, M.S. Harbuz, A. Valles, X. Belda, C. Marquez, D.S. Jessop, M.D. Lalies, A. Armario, D.J. Nutt, A.L. Hudson, Behavioral, neuroendocrine and neurochemical effects of the imidazoline I₂ receptor selective ligand BU224 in naive rats and rats exposed to the stress of the forced swim test, Psychopharmacology (Berl) 167 (2003) 195–202.
- [60] A. Halaris, J.E. Piletz, Relevance of imidazoline receptors and agmatine to psychiatry: a decade of progress, Ann. N.Y. Acad. Sci. **1009** (2003) 1–20.
- [61] H.C. Jackson, I.J. Griffin, D.J. Nutt, The effects of idazoxan and other alpha 2-adrenoceptor antagonists on food and water intake in the rat, Br. J. Pharmacol. **104** (1991) 258–262.
- [62] C. Polidori, F. Gentili, M. Pigini, W. Quaglia, I. Panocka, M. Massi, Hyperphagic effect of novel compounds with high affinity for imidazoline I(2) binding sites, Eur. J. Pharmacol. **392** (2000) 41–49.
- [63] A. Diaz, S. Mayet, A.H. Dickenson, BU-224 produces spinal antinociception as an agonist at imidazoline I₂ receptors, Eur. J. Pharmacol. **333** (1997) 9–15.
- [64] M.F. Jett, L.R. Hedley, M.P. Dillon, R.M. Eglen, J.C. Hunter, Behavioral effects of RS-45041-190, a selective I₂ imidazoline ligand, in rats, Ann. N.Y. Acad. Sci. 881 (1999) 369–371.
- [65] J.I. Martin-Gomez, J. Ruiz, L.F. Callado, J.M. Garibi, L. Aguinaco, F. Barturen, J. Javier Meana, Increased density of I₂-imidazoline receptors in human glioblastomas, Neuroreport 7(8) (1996) 1393–1396.
- [66] R.M. Eglen, A.L. Hudson, D.A. Kendall, D.J. Nutt, N.G. Morgan, V.G. Wilson, M.P. Dillon, "Seeing through a glass darkly": casting light on imidazoline "I" sites, Trends Pharmacol. Sci. 19 (1998) 381–390.
- [67] N.G. Morgan, S.L. Chan, Imidazoline binding sites in the endocrine pancreas: can they fulfill their potential as targets for the development of new insulin secretagogues? Curr. Pharm. Des. 7 (2001) 1413–1431.
- [68] J. Clews, N.G. Morgan, C.A. Ramsden, Preparation of the I₃ imidazoline receptor antagonist KU14R and related 2,3-dihydrobenzo[b]furan derivatives, Synthesis **10** (2001) 1546–1550.
- [69] G. Li, S. Regunathan, C.J. Barrow, J. Eshraghi, R. Cooper, D.J. Reis, Agmatine: An endogenous clonidine-displacing substance in the brain, Science 263 (1994) 966–969.
- [70] G.D. Prell, G.P. Martinelli, G.R. Holstein, J. Matulic-Adamic, K.A. Watanabe, S.L. Chan, N.G. Morgan, M.A. Haxhiu, P. Ernsberger, Imidazoleacetic acid-ribotide: an

endogenous ligand that stimulates imidazol(in)e receptors, Proc. Natl Acad. Sci. USA **101** (2004) 13677–13682.

- [71] A. Halaris, J. Plietz, Agmatine: Metabolic pathway and spectrum of activity in brain, CNS Drugs 21 (2007) 885– –900.
- [72] S.M. Husbands, R.A. Glennon, S. Gorgerat, R. Gough, R. Tyacke, J. Crosby, D.J. Nutt, J.W. Lewis, A.L. Hudson, Beta-carboline binding to imidazoline receptors, Drug Alcohol Depend. 64 (2001) 203–208.
- [73] I.F. Musgrave, E. Badoer, Harmane produces hypotension following microinjection into the RVLM: possible role of I₁-imidazoline receptors, Br. J. Pharmacol. **129** (2000) 1057–1059.
- [74] Ch.A. Parker, N.J. Anderson, E.S.J. Robinson, R. Price, R.J. Tyacke, S.M. Husbands, M.P. Dillon, R.M. Eglen, A.L. Hudson, D.J. Nutt, M.P. Crump, J. Crosby, Harmane and Harmalan Are Bioactive Components of Classical Clonidine-Displacing Substance, Biochemistry 43 (2004) 16385–16392.
- [75] J.E. Piletz, H. Zhu, D.N. Chikkala, Comparison of ligand binding affinities at human l₁-imidazoline binding sites and the high affinity state of alpha-2 adrenoceptor subtypes, J. Pharmacol. Exp. Ther. 279(2) (1996) 694– 702.
- [76] K. Nikolic, D. Agbaba, Imidazoline Antihypertensive Drugs: Selective I₁-Imidazoline Receptors Activation, Cardiovascular Therapeutics 00 1–8 (2011), doi: 10.1111/j.1755-5922.2011.00269.x. Article first published online: 23 march 2011.
- [77] M. Anastassiadou, S. Danoun, L. Cane, G. Baziard-Mouysset, M. Payard, D-H. Caignard, M-C. Rettori, P. Renard, Synthesis and pharmacological evaluation of imidazoline sites I₁ and I₂ selective ligands, Bioorg. Med. Chem. 9(3) (2001) 585–592.
- [78] F. Gentili, P. Bousquet, A. Carrieri, J. Feldman, F. Ghelfi, M. Giannella, A. Piergentili, W. Quaglia, C. Vesprini, M. Pigini, Rational design of the new antihypertensive I₁receptor ligand 2-(2-biphenyl-2-yl-1-methyl-ethyl)-4,5--dihydro-1*H*-imidazole, Lett. Drug Des. Discov. 2 (2005) 571-578
- [79] A.P. Treder, R. Andruszkiewicz, W. Zgoda, C. Ford, A.L. Hudson, New analogues of agmatine with higher affinity to imidazoline receptors, Bioorg. Med. Chem. Lett. **19** (2009) 1009–1011.
- [80] K. Nikolic, S. Filipic, D. Agbaba, QSAR study of Imidazoline antihypertensive drugs. Bioorg. Med. Chem. 16 (2008) 7134–7140.
- [81] K. Nikolic, S. Filipic, D. Agbaba, QSAR study of selective I₁-Imidazoline Receptor Ligands, SAR & QSAR Environ. Res. 20 (2008) 133–144.
- [82] S. Filipic, K. Nikolic, M. Krizman, D. Agbaba, The quantitive structure-retention relationship (QSRR) analysis of some centrally acting antihypertensives and diuretics, QSAR Comb. Sci. 27 (2008) 1036–1044.
- [83] S. Eric, M. Pavlovic, G. Popović, D. Agbaba, Study of retention parameters obtained in RP-TLC system and their application on QSAR/QSPR of some alpha adrenergic and imidazoline receptor ligands, J. Chromatogr. Sci. 45 (2007) 140–145.

- [84] S. Eric, T. Solmajer, J. Zupan, M. Novic, M. Oblak, D Agbaba, Prediction of selectivity of α_1 -adrenergic antagonists by counterpropagation neural network (CP-ANN), Farmaco **59** (2004) 389–395.
- [85] S. Eric, T. Solmajer, J. Zupan, M. Novic, M. Oblak, D. Agbaba, Quantitative structure-activity relationships of α_1 adrenergic antagonists, J. Molec. Model. **10**(2) (2004) 139–150.
- [86] K. Vučićević, G. Popović, K. Nikolic, I. Vovk, D. Agbaba, An experimental design approach to selecting the optimum HPLC conditions for the determination of 2-arylimidazoline derivatives, J. Liq. Chromat. Rel. Techn. **32** (2009) 656–667.
- [87] S. Filipic, K. Nikolic, M. Krizman, D. Agbaba, Theoretical study of inclusion complexes between β-cyclodextrin and guanidine/imidazoline analogs, Drugs Fut. 33 (Suppl. A) (2008) P067: 2008.
- [88] S. Filipic, K. Nikolic, D. Agbaba, Separation and migration behavior of some centrally acting antihypertensives, Arh. Farm. 60 (2010) 912–913.
- [89] S. Filipic, K. Nikolic, I. Vovk, M. Krizman, D. Agbaba, The Quantitative Structure-Retention Relationship (QSRR) analysis of some centrally acting antihypertensives and diuretics in cyclodextrin-mediated capillary electrophoresis, Mac. Pharmac. Bull. 57 Supp II (2011) 37.
- [90] S. Eric, T. Solmajer, M. Oblak, M. Kotnik, D. Agbaba, Modelling of alpha1-adrenergic receptors: The application in the design of selective α_{1b}-adrenergic antagonists, D Biopolymers **80** (2005) 561.
- [91] A. Carrieri, L. Brasili, F. Leonetti, M. Pigini, M. Giannella, P. Bousquet, A. Carotti, 2-D and 3-D modeling of imidazoline receptor ligands: Insights into pharmacophore, Bioorg. Med. Chem. 5 (1997) 843–856.
- [92] M. Pigini, P. Bousquet, A. Carotti, M. Dontenwill, M. Giannella, R. Moriconi, A. Piergentili, W. Quaglia, S.K. Tayebati, L. Brasili, Imidazoline receptors: Qualitative structure-activity relationships and discovery of tracizo-line and benazoline. Two ligands with high affinity and unprecedented selectivity, Bioorg. Med. Chem. 5 (1997) 833–841.
- [93] M. Pigini, P. Bousquet, L. Brasili, A. Carrieri, M. Dontenwill, F. Gentili, M. Giannella, F. Leonetti, A. Piergentili, W. Quaglia, A. Carotti, Binding of tracizolines to the imidazoline receptor. Role of lipophilicity in quantitative structure-activity relationship models, Ann. N.Y. Acad. Sci. 881 (1999) 118–122.
- [94] O. Nicolotti, A. Carotti, A. Carrieri, M. Pigini, F. Gentili, L. Brasili, M. Giannella, W. Quaglia, A. Piergentili, P. Bousquet, M. Dontenwill, Pharmacophore development and 3D-QSAR study of I₁ imidazoline binding site ligands, Med. Chem. Res. **13** (2004) 170–189.
- [95] C. Dardonville, I. Rozas, Imidazoline binding sites and their ligands: An overview of the different chemical structures, Med. Res. Reviews 24 (2004) 639–661.
- [96] A.L. Hudson, R. Gough, R. Tyacke, L. Lione, M. Lalies, J. Lewis, S. Husbands, P. Knight, F. Murray, P. Hutson, D.J. Nutt, Novel selective compounds for the investigation of imidazoline receptors, Ann. N.Y. Acad. Sci. 881 (1999) 81–91.

- [97] P. Ernsberger, K.L. Westbrooks, M.O. Christen, S.G. Schafer, A second generation of centrally antihypertensive agents act on putative I₁ imidazoline receptor, J. Cardiovasc. Pharmacol. **20** (1992) S1–S10.
- [98] D. Langin, H. Paris, M. Lafontan, Binding of [³H] idazoxan and of its methoxy derivative [³H] RX821002 in human fat cells: [³H] idazoxan but not [³H] RX821002 labels additional non-alpha 2-adrenergic binding sites, Mol. Pharmacol. **37** (1990) 876–885.
- [99] C.B. Chapleo, P.L. Myers, R.C. Butler, J.C. Doxey, A.G. Roach, C.F. Smith, Alpha-adrenoreceptor reagents. 1. Synthesis of some 1,4-benzodioxans as selective presynaptic alpha 2-adrenoreceptor antagonists and potential antidepressants, J. Med. Chem. 26 (1983) 823–831.
- [100] C.B. Chapleo, P.L. Myers, R.C. Butler, J.A. Davis, J.C. Doxey, S.D. Higgins, M. Myers, A.G. Roach, C.F. Smith, M.R. Stillings et al, Alpha-adrenoreceptor reagents. 2. Effects of modification of the 1,4-benzodioxan ring system on alpha-adrenoreceptor activity, J. Med. Chem. 27 (1984) 570–576.
- [101]A.L. Hudson, C.B. Chapleo, J.W. Lewis, S. Husbands, K. Grivas, N.J. Mallard, D.J. Nutt, Identification of ligands selective for central I₂-imidazoline binding sites, Neurochem. Int. **30** (1997) 47–53.
- [102]G. Giorgioni, D. Ambrosini, C. Vesprini, A. Hudson, C. Nasuti, A. Di Stefano, P. Sozio, O. Ciampi, B. Costa, C. Martini, A. Carrieri, G. Carbonara, C. Enzensperger, M. Pigini, Novel imidazoline compounds as partial or full agonists of D₂-like dopamine receptors inspired by I₂imidazoline binding sites ligand 2-BFI, Bioorg. Med. Chem. **18** (2010) 7085–7091.
- [103] R.J. Tyacke, E.S. Robinson, D.J. Nutt, A.L. Hudson, 5-Isothiocyanato-2-benzofuranyl-2-imidazoline (BU99006) an irreversible imidazoline(2) binding site ligand: In vitro and in vivo characterisation in rat brain, Neuropharmacology 43 (2002) 75–83.
- [104] F. Touzeau, A. Arrault, G. Guillaumet, E. Scalbert, B. Pfeiffer, M-C. Rettori, P. Renard, J-Y. Merour, Synthesis and biological evaluation of new 2-(4,5-dihydro-1*H*imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives, J. Med. Chem. **46** (2003) 1962–1979.
- [105] R.R.Jr. Ruffolo, J.E. Waddell, Receptor interactions of imidazolines. IX. Cirazoline is an alpha-1 adrenergic agonist and an alpha-2 adrenergic antagonist, J. Pharmacol. Exp. Ther. 222 (1982) 29–36.
- [106] L. Brasili, M. Pigini, G. Marucci, W. Quaglia, L. Malmusi, S.M. Lanier, B. Lanier, Separation of α-adrenergic and imidazoline/guanidinium receptive sites (IGRS) activity in a series of imidazoline analogues of Cirazoline, Bioorg. Med. Chem. **3** (1995) 1503–1509.
- [107] F. Gentili, P. Bousquet, L. Brasili, M. Caretto, A. Carrieri, M. Dontenwill, M. Giannella, G. Marucci, M. Perfumi, A. Piergentili, W. Quaglia, C. Rascente, M. Pigini, α₂-Adrenoreceptors profile modulation and high antinociceptive activity of (S)-(-)-2-[1-(biphenyl-2-yloxy)ethyl]-4,5-dihydro-1*H*-imidazole, J. Med. Chem. **45** (2002) 32–40.
- [108] F. Gentili, C. Cardinaletti, C. Vesprini, F. Ghelfi, A. Farande, M. Giannella, A. Piergentili, W. Quaglia, L. Mattioli, M. Perfumi, A. Hudson, M. Pigini, Novel Ligands Rationally Designed for Characterizing I₂-Imidazoline

Binding Sites Nature and Functions, J. Med. Chem. **51** (2008) 5130–5134.

- [109] M. Pigini, P. Bousquet, L. Brasili, A. Carrieri, R. Cavagna, M. Dontenwill, F. Gentili, M. Giannella, F. Leonetti, A. Piergentili, W. Quaglia, A. Carotti, Ligand binding to I₂ imidazoline receptor: The role of lipophilicity in quantitative structure–activity relationship models, Bioorg. Med. Chem. 6 (1998) 2245–2260.
- [110] V. Bruban, J. Feldman, M. Dontenwill, H. Greney, L. Brasili, M. Giannella, M. Pigini, P. Bousquet, An unexpected central hypertensive effect of the new imidazoline compound benazoline, Ann. N.Y. Acad. Sci. 881 (1999) 102– -105.
- [111] N. Baurin, E. Vangrevelinghe, L. Morin-Allory, J.Y. Merour, P. Renard, M. Payard, G. Guillaumet, C. Marot, 3D-QSAR CoMFA study on imidazolinergic I(2) ligands: A significant model through a combined exploration of structural diversity and methodology, J. Med. Chem. 43 (2000) 1109–1122.
- [112] J.E.S. Wikberg, A.L. Hudson, A series of novel imidazoline I₂-receptor selective Schiff bases of 1-(benzylidenamino)-3,3-dimethylguanidine, Neurochem. Int. **30** (1996) 95–99.
- [113]G. Olmos, R. Alemany, M.A. Boronat, J.A. Garcia-Sevilla, Pharmacologic and molecular discrimination of I₂-imidazoline receptor subtypes, Ann. N.Y. Acad. Sci. 881 (1999) 144–160.
- [114] J.R. Jasper, J.D. Lesnick, L.K. Chang, S.S. Yamanishi, T.K. Chang, S.A. Hsu, D.A. Daunt, D.W. Bonhaus, R.M. Eglen, Ligand efficacy and potency at recombinant alpha₂ adrenergic receptors: Agonist-mediated[³⁵S]GTPgammaS binding, Biochem. Pharmacol. **55** (1998) 1035– -1043.
- [115] C.M. Brown, A.C. MacKinnon, W.S. Redfern, A. Williams, C. Linton, M. Stewart, R.U. Clague, R. Clark, M. Spedding, RS-45041-190: A selective, high-affinity ligand for I₂ imidazoline receptors, Br. J. Pharmacol. **116** (1995) 1737–1744.
- [116] A.C. MacKinnon, W.S. Redfern, C.M. Brown, [³H]-RS-45041-190: A selective high-affinity radioligand for I₂ imidazoline receptors, Br. J. Pharmacol. **116** (1995) 1729–1736.
- [117] R.A. Glennon, B. Grella, R.J. Tyacke, A. Lau, J. Westaway, A.L. Hudson, Binding of an imidazopyridoindole at imidazoline I₂ receptors, Bioorg. Med. Chem. Lett. **14** (2004) 527–529.
- [118] C. Dardonville, C. Fernandez-Fernandez, S.L. Gibbons, G.J. Ryan, N. Jagerovic, A.M. Gabilondo, J.J. Meana, L.F. Callado, Synthesis and pharmacological studies of new hybrid derivatives of fentanyl active at the μ -opioid receptor and I₂-imidazoline binding sites, Bioorg. Med. Chem. **14** (2006) 6570–6580.
- [119]C. Dardonville, N. Jagerovic, L.F. Callado, J.J. Meana, Fentanyl derivatives bearing aliphatic alkaneguanidinium moieties: A new series of hybrid molecules with significant binding affinity for μ-opioid receptors and I₂imidazoline binding sites, Bioorg. Med. Chem. Lett. 14 (2004) 491–493.

- [120] J. Chang-Fong, R.J. Tyacke, A. Lau, J. Westaway, A.L. Hudson, R.A. Glennon, Pyrazino[1,2-a]indoles as novel high-affinity and selective imidazoline I₂ receptor ligands, Bioorg. Med. Chem. Lett. **14** (2004) 1003–1005.
- [121] J.P. Lee, W. Chen, H.T. Wu, K.C. Lin, J.T. Cheng, Metformin can Activate Imidazoline I-2 Receptors to Lower Plasma Glucose in Type 1-like Diabetic Rats, Horm. Metab. Res. 43 (2011) 26–30.
- [122] J. Clews, N.G. Morgan, C.A. Ramsden, Preparation of Novel 2-(Benzo[b]furan-2-yl)-1-H-imidazolines for Photoaffinity Labeling and Affinity Isolation of Imidazoline Binding Proteins, J. Heterocyclic Chem. **38** (2001) 519– -521.
- [123]S.L. Chan, C.A. Brown, K.E. Scarpello, N.G. Morgan, The imidazoline site involved in control of insulin secretion: Characteristics that distinguish it from I₁- and I₂-sites, Br. J. Pharmacol. **112** (1994) 1065–1070.
- [124] M. Gothert, M. Bruess, H. Boenisch, G.J. Molderings, Presynaptic imidazoline receptors: new developments in characterization and classification, Ann. N.Y. Acad. Sci. 881 (1999) 171–184.
- [125] N.G. Morgan, S.L. Chan, M. Mourtada, L.K. Monks, C.A. Ramsden, Imidazolines and pancreatic hormone secretion, Ann. N.Y. Acad. Sci. 881 (1999) 217–228.
- [126]S. Efendic, A.M. Efanov, P.O. Berggren, S.V. Zaitsev, Two generations of insulinotropic imidazoline compounds, Diabetes 5 (Suppl. 3) (2002) S448-S454.
- [127]T.D. Plant, J.C. Henquin, Phentolamine and yohimbine inhibit ATP-sensitive K+ channels in mouse pancreatic βcells, Br. J. Pharmacol. **101** (1990) 115–120.
- [128] P. Proks, F.M. Ashcroft, Phentolamine block of K_{ATP} channels is mediated by Kir6.2, Proc. Natl. Acad. Sci. USA **94** (1997) 11716–11720.
- [129]E. Mukai, H. Ishida, M. Horie, A. Noma, Y. Seino, M. Takano, The antiarrhythmic agent cibenzoline inhibits K(ATP) channels by binding to Kir6.2, Biochem. Biophys. Res. Commun. 251 (1998) 477–481.
- [130]S.L.F. Chan, A.L. Pallett, J. Clews, C.A. Ramsden, N.G. Morgan, Evidence that the ability of imidazoline compounds to stimulate insulin secretion is not due to interaction with a receptors, Eur. J. Pharmacol. **323** (1997) 241–244.
- [131]K. Kameda, S. Ono, I. Koyama, Y Abiko, Insulin releasing action of 2-[2-(4,5-dihydro-1H-imadazol-2-yl)-1-phenylethyl]puridine dihydrochloride sesquihydrate (DG-5128), a new, orally effective hypoglycaemic agent, Acta Endocrinol. **99** (1982) 410–415.
- [132]S. Kawazu, M. Suzuki, T. Watanabe, J. Ishii, Studies of midaglizole (DG-5128). A new type of oral hypoglycemic drug in healthy subjects, Diabetes 36 (1987) 216–220.
- [133]S. Kawazu, M. Suzuki, K. Negishi, J. Ishii, H. Sando, H. Katagiri, Y. Kanazawa, S. Yamanouchi, Y. Akanuma, H. Kajinumma, K. Suzuki, K. Watanabe, T. Itoh, T. Koba-yashi, K. Kosaka, Initial phase II clinical studies on mida-glizole (DG-5128), A new hypoglycemic agent. Diabetes 36 (1987) 221–226.
- [134] A.M. Efanov, S.V. Zaitsev, H.J. Mest, A. Raap, I.B. Appelskog, O. Larsson, P.O. Berggren, S. Efendic, The novel imidazoline compound BL11282 potentiates glucose-

induced insulin secretion in pancreatic β -cells in the absence of modulation of K_{ATP} channel activity, Diabetes **50** (2001) 797–802.

- [135] M. Hoy, H.L. Olsen, H.S. Andersen, K. Bokvist, K. Buschard, J. Hansen, P. Jacobsen, J.S. Petersen, P. Rorsman, J. Gromada, Imidazoline NNC77-0074 stimulates insulin secretion and inhibits glucagon release by control of Ca2+-dependent exocytosis in pancreatic α -and β -cells, J. Eur. J. Pharmacol. **466** (2003) 213–221.
- [136] M. Hoy, H.L. Olsen, K. Bokvist, J.S. Petersen, J. Gromada, The imidazoline NNC77-0020 affects glucose-dependent insulin, glucagon and somatostatin secretion in mouse pancreatic islets, Naunyn Schmiedebergs Arch. Pharmacol. 368 (2003) 284–293.
- [137] M.B. Brenner, J. Gromada, A.M. Efanov, K. Bokvist, H.J. Mest, Restoration of first-phase insulin secretion by the imidazoline compound LY374284 in pancreatic islets of diabetic db/db mice, Ann. N.Y. Acad. Sci. **1009** (2003) 332–340.
- [138] T. Grosse-Lackmann, B.J. Zunkler, I. Rustenbeck, Specificity of nonadrenergic imidazoline binding sites in insulin-secreting cells and relation to the block of ATPsensitive K+ channels, Ann. N.Y. Acad. Sci. 1009 (2003) 371–377.
- [139]N.G. Morgan, E.J. Cooper, P.E. Squires, C.E. Hills, C.A. Parker, A.L. Hudson, Comparative Effects of Efaroxan and b-Carbolines on the Secretory Activity of Rodent and Human β -Cells, Ann. N.Y. Acad. Sci. **1009** (2003) 167–174.

SUMMARY

IMIDAZOLINE RECEPTORS LIGANDS

Katarina Nikolić, Danica Agbaba

University of Belgrade, Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, Belgrade, Serbia

(Review paper)

Extensive biochemical and pharmacological studies have determined three different subtypes of imidazoline receptors: I_1 -imidazoline receptors (I_1 -IR) – involved in central inhibition of sympathicus that produce hypotensive effect; I_2 -imidazoline receptors (I_2 -IR) – modulate monoamine oxidase B activity (MAO-B); I_3 -imidazoline receptors (I_3 -IR) – regulate insulin secretion from pancreatic β -cells. Therefore, the $I_1/I_2/I_3$ imidazoline receptors are selected as new, interesting targets for drug design and discovery. Novel selective $I_1/I_2/I_3$ agonists and antagonists have recently been developed. In the present review, we provide a brief update to the field of imidazoline research, highlighting some of the chemical diversity and progress made in the 2D-QSAR, 3D-QSAR and quantitative pharmacophore development studies of I_1 -IR and I_2 -IR imidazoline receptor ligands. Theoretical studies of I_3 -IR ligands.