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s u m m a r y

Premature centromere division, or premature centromere separation (PCS), occurs when chromatid sep-
aration is dysfunctional, occurring earlier than usual during the interphase stage of mitosis. This phenom-
enon, seen in Robert’s syndrome and various cancers, has also been documented in peripheral as well as
neuronal cells of Alzheimer’s disease (AD). In the latter instances, fluorescent in situ hybridization (FISH),
applied to the centromere region of the X-chromosome in interphase nuclei of lymphocytes from periph-
eral blood in AD patients, demonstrated premature chromosomal separation before mitotic metaphase
directly after completion of DNA replication in G2 phase of the cell cycle. Furthermore, and perhaps unex-
pectedly given the presumptive post-mitotic status of terminally differentiated neurons, neurons in AD
patients also showed significantly increased levels of PCS of the X-chromosome. Taken together with
other phenomena such as cell cycle re-activation and ectopic re-expression of cyclins and cyclin depen-
dent proteins, we propose that AD is an oncogenic phenotype leading to accelarated aging of the affected
brain.

� 2009 Elsevier Ltd. All rights reserved.
Introduction

The centromere plays a fundamental role in accurate chromo-
some segregation during mitosis and meiosis in eukaryotes. Cen-
tromere functions include sister chromatid adhesion and
separation, microtubule attachment, chromosome movement and
mitotic checkpoint control [1]. Sequential separation and segrega-
tion of centromeres are genetically controlled [2], and this se-
quence of temporal order is altered in Alzheimer disease (AD),
i.e., centromeres prematurely divide in a process known as prema-
ture centromere separation (PCS) (Fig. 1). PCS is often regarded as a
manifestation of genome instability leading to aneuploidy in aging
[2,3], AD [4–6], and other chromosome instability syndromes [7,8].

Primary neurons in the normal brain are viewed as being quies-
cent and in G0. However, in AD, multiple lines of evidence suggest
that neurons vulnerable to degeneration emerge from this post-
mitotic state–phenotypically suggestive of cells that are cycling,
rather than in the normal, terminally differentiated, non-dividing
state. The successful duplication of DNA [9] indicates that at least
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some neurons successfully complete S phase. This precludes the
possibility that the re-expression of various cell cycle markers is
merely an epiphenomena caused by reduced proteasomal activity.

Although various mitotic markers are upregulated in vulnerable
neurons in AD, no evidence of actual mitosis has ever been found,
suggesting that these neurons are arrested at a point(s) prior to the
actual event of cellular division. However, it is well known that
once neurons enter S phase, as is the case in neurons in AD [9],
the arrested cells lack the ability to return to G0 and therefore must
either complete the cycle or die. Therefore, given the lack of evi-
dence for successful completion of the cell cycle, it is likely that
the re-activation of cell cycle machinery in post-mitotic neurons
leads to their death. In support of this theory, when a powerful
oncogene, SV40 T antigen, is expressed specifically in maturing
Purkinje cells in transgenic mice, the cells replicate their DNA
(i.e., initiate cell cycle) but then subsequently degenerate and die
[10]. Similarly, the expression of SV40 T antigen by the rhodopsin
promoter causes photoreceptor degeneration, again associated
with cell cycle re-activation and DNA synthesis [11].

Linking PCS with cell cycle changes, PCS appears in the inter-
phase of the cell cycle [12,13]. In initial studies, the FISH method
for analysis of the centromere regions of chromosomes 18 and
21 in hippocampal interphase nuclei pointed to the ultimate death
of these cells as a consequence of genetic imbalance and
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Fig. 1. Premature centromere separation (PCS) demonstrates genomic instability in
AD patients. Arrow indicates prematurely separated chromosome with two
centromeres, one for each sister chromatid. Surrounding chromosomes are depicted
in their normal, undivided states, each with one centromere.
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tetraploidy [14]. Results from the PCS research [12,15], moreover,
such as the identification of binucleated cells in hippocampus
[16] also further revealed a lack of said cells’ entry into mitosis.
Therefore, it is conceivable that AD hippocampal cells do not pass
G2-M transition, but rather undergo apoptosis following G2 phase.

In an effort to further identify chromosomal dysfunction in AD,
this study probed the characteristic PCS of AD neuronal cells. Using
FISH, an analysis of premature centromere division of the X-chro-
mosome was made of slides of neurons from the frontal cerebral
cortex, in a group of sporadic AD patients and in age-matched con-
Fig. 2. Fluorescent signals for the centromeric region of chromosome X on interphase nuc
bipartite signals (PCD + on both X-chromosome); (b) interphase nuclei in AD female w
interphase nuclei of a female from the control group with two separated dot like signa
interphase nuclei of a male from the control group with one dot like signal (PCD�).
trols [12]. The presence of PCS on the X-chromosome was verified
in all analyzed individuals. The group of AD sporadic patients had
an average frequency of this alteration of 8.60 ± 1.81% compared to
the control group with an average frequency of 2.96 ± 1.20% show-
ing a highly statistical significance (P < 0.01). Both peripheral blood
lymphocytes and neuronal cells express the PCS, X phenotype in
women but not in men. We hypothesize that this is a result of
the excess X-chromosome that is inactivated.

Neuronal death in AD exerts accelerating aging of the brain [17],
but does the X-PCS trait show us a possibility of accelerated chro-
mosome instability, and thus aging in AD patients?

In other studies, the fluorescent in situ hybridization (FISH)
method applied to the centromere region of the X-chromosome
in interphase nuclei of lymphocytes from peripheral blood in AD
patients (Fig. 2) demonstrates that PCS appears well before mitotic
metaphase, directly after completion of DNA replication in G2

phase of the cell cycle [13]. Further, using interphase genetics, sta-
tistically significant differences of PCS, X trait are found between
women and men, and women with AD expressed an increase in
PCS, X trait when compared to age-matched controls [13]. These
findings in peripheral cells suggest, like other studies [18], that
the AD phenotype is not necessarily restricted to the central ner-
vous system.
Is X-chromosome replication asynchronicity leading to accelerated
instability?

One of the distinctive hallmarks of X-chromosome in female
mammalian cells is their asynchronous, allocyclic, replication pat-
terns during the S phase. Through FISH analysis of the interphase
nuclei of the normal female [19], it has been revealed that the late
replicating chromosome X undergoes a process of inactivation that
involves a transcription silencing of genes. Importantly, it is now
known that not all genes on the inactivated X-chromosome actu-
ally succumb to said inactivation; such biological imbalance ulti-
mately translates to imperfect chromosome replication. Loci such
lei in AD patients and control group. (a) Interphase nuclei in AD female contains two
ith a nuclei and one dot like signal (PCD�), and one bipartite signal (PCD+); (c)

ls (PCD-); (d) interphase nuclei of a AD male with one bipartite signal (PCD+); (e)
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as hypoxanthine–guanine phosphoribosyltransferase (HPRT) and
Fragile X-chromosome (FRAXA), for example, which are normally
inactivated, display a high degree of replication asynchrony
whereas loci that are normally not inactivated, such as ribosomal
protein S4, X-linked (RPS4X) and Zinc finger, X-linked (ZFX) are
found to replicate very synchronously. Also, the X-inactive-specific
transcript gene (XIST) that is expressed from the inactive X-chro-
mosome revealed that it also replicated asynchronously [19,20]
with the expressed copy apparently replicating first. Ultimately,
it appears that normal versus abnormal X-chromosome homologue
replication, separation and segregation is strongly related to the
function of time.

In AD, the X-PCS phenotype is accelerated in women. For exam-
ple, women have twice the frequency of the DXS 1047 202-bp
allele (tandem repeat polymorphisms located on the X-chromo-
some) as men, however the presence of the allele does not affect
the age of onset of dementia in either sex [21,22]. Notably, carriers
of X-chromosome -linked mutations, such as individuals with
Fragile X-associated tremor/ataxia syndrome (FXTAS), demon-
strate marked ataxia and neurodegeneration coinciding with
increased age [23]. Such results, as well as the aforementioned
inadequacies of X-chromosome replication function, show that
X-chromosome might have a higher susceptibility to AD than other
chromosomes. One possible conclusion is that the inactivated
X-chromosome is more susceptible to instability as a direct conse-
quence of replication asynchrony of wrongly activated loci on the
inactivated chromosome member.
Discussion

The fact that AD affects twice as many women as men, and that
women develop AD mainly after the menopause, indicate that pos-
sible hormonal factors may play an important role in the loss of the
differentiated phenotype in neurons [24–27].

Replication asynchrony increases in women at risk for having
aneuploidy offspring, and produces twice the demonstrated rela-
tionship between loss of replication control, centromere dysfunc-
tion and predisposition to non-disjunction [28,29]. Moreover,
these aspects worsen with time as repeated divisions increase
the likelihood of replication dysfunction. For instance, repeated
non-disjunction of chromosome X, 18, and 21 by PCS in women
clinically normal and who have offspring with Down’s syndrome
have twice the chance to develop AD [3,30,31]. Interestingly, there
is a preferential susceptibility of chromosomes X, 18, and 21 in
aged and AD subjects, especially the X-chromosome in women
[32]. Also, a recent genome-wide association study provided sub-
stantial evidence for an association between genetic variation in
the protocadherin 11 gene (PCDH 11) on the X-chromosome and
increased late-onset Alzheimer’s disease in females [33].

Another possibility for X-chromosome instability is the alter-
ation in the expression of the androgen receptor gene that lies on
the X-chromosome. The androgen receptor is implicated in X-chro-
mosome instability by its interconnections to a CDK kinase,
CDK11p58 [34] and its negative regulation. CDK11p58 kinase also
plays a crucial role in mitotic progression and is required for the
maintenance of sister chromatid cohesion as well as the comple-
tion of mitosis in human cells [35]. The androgen receptor can
therefore be used to assess deviations in distribution (skewed X
inactivation) of the X inactivation pattern.
Conclusion

The dysfunctional centromere separation of the X-chromosome
due to aberrant cellular aging and its relation to neuronal survival
could clearly be an important consideration in the neurodegenera-
tive cascade of AD. Our hypothesis that alteration of locus inactiva-
tion patterns of the X-chromosome may have a fundamental
impact on the understanding of neuronal cell cycle re-entry and
accelerating aging in AD.
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