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Alzheimer disease (AD) is the most common cause of senile
dementia (Smith 1998) and represents a complex and
progressive neurodegenerative disorder of the human brain.
The great majority of patients are classified as sporadic (90–
95%) with predominating degenerative brain disorder in old
age (Schellenberg 1995; Cruts et al. 1996; Blacker and Tanzi
1998; Hoyer 2006). The cause of sporadic AD is still
unknown, however, age, or more specifically age-related
alterations, are likely key. In relation to the latter regard,
among the first genetic lesions found to be specifically
associated with aging were aberrations in chromosome
number and/or structure, primarily the sex chromosomes
(Wojda et al. 2006).

One chromosomal alteration, premature centromere divi-
sion (PCD), a phenomenon representing the loss of control
over the sequential separation and segregation of chromo-
some centromeres, is characterized by distinctive and easily
recognizable separation of chromatids occurring earlier than
usual (Fitzgerald et al. 1986; Mehes and Buhler 1995;
Spremo-Potparević et al. 2000; Spremo-Potparevic et al.
2004). Conditions which express PCD include Robert’s
syndrome, Down’s syndrome, neoplasias, and exposure to

toxic chemicals (Major et al. 1999) and PCD can affect many
chromosomes. PCD, as a potential cause of improper
chromosome segregation, is one of the genetic mechanisms
related to increased aneuploidy, and many studies have shown
a significant increase in chromosome loss in peripheral blood
lymphocytes and a high percentage of PCD, in both men and
women of advanced age (Ward et al. 1979; Migliore et al.
1999; Wojda et al. 2006; Zivkovic et al. 2006). The most
frequently investigated chromosomes in AD patients are the
sex chromosomes because of their frequent aneuploidy rates
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Abstract

Premature centromere division (PCD) represents a loss of

control over the sequential separation and segregation of

chromosome centromeres. Although first described in aging

women, PCD on the X chromosome (PCD,X) is markedly ele-

vated in peripheral blood lymphocytes of individuals suffering

from Alzheimer disease (AD). The present study evaluated

PCD,X, using a fluorescent in situ hybridization method, in

interphase nuclei of frontal cerebral cortex neurons from spo-

radic AD patients and age-matched controls. The average

frequency of PCD,X in AD patients (8.60 ± 1.20%) was almost

three times higher (p < 0.01) than in the control group

(2.96 ± 1.20). However, consistent with previous studies, no

mitotic cells were found in neurons in either AD or control brain,

suggesting an intrinsic inability of post-mitotic neurons to

divide. In view of the fact that it has been well-documented that

neurons in AD can re-enter into the cell division cycle, the

findings presented here of increased PCD advance the

hypothesis that deregulation of the cell cycle may contribute to

neuronal degeneration and subsequent cognitive deficits in AD.
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which are correlated with age (Fitzgerald and McEwan 1977;
Bajnoczky and Mehes 1988; Mosch et al. 2007).

Ectopic neuronal cell cycle re-entry has been well-docu-
mented in the brain of AD patients as well as in mouse models
of AD (McShea et al. 1997, 2007; Herrup and Arendt 2002;
Yang et al. 2006; Arendt and Bruckner 2007). In addition,
shortened telomeres (Franco et al. 2006), neuronal binucle-
ation events (Zhu et al. 2008), and increased aneuploidy
(Geller and Potter 1999) provide further evidence for
chromosomal instability in AD. While we have previously
shown that the X chromosome is susceptible to the phenom-
enon of PCD in peripheral blood lymphocytes in AD patients
(Spremo-Potparevic et al. 2004), whether this is also evident
in the brain is unknown. As highly differentiated cells,
neurons are not thought to undergo cell division. Therefore, in
female cerebral cortex, it was expected to obtain two dot-like
signals in each nucleus, i.e., one dot per each centromere of X
chromosome. However, if PCD of X chromosome is present,
bipartite signals will appear in one or both X centromeres,
resulting in 3 or 4 dot signals per nucleus (Fig. 1).

Materials and methods

Subjects
Frontal cortical brain tissue was collected at autopsy from five

sporadic female AD patients (ages 74–79 years), and five age-

matched female controls (ages 73–78 years) following approved

protocols and with written family consent. Figure 2 includes a

further description of the cases used. In all cases, a pathohistological

cross section of tissue from the frontal cerebral cortex was used for

diagnosis according to established criteria.

Slide preparation
Brain tissue was routinely formalin fixed, paraffin embedded, and

sectioned at 4 lm. Slides were dewaxed in xylol for 30 min,

dehydrated in absolute ethanol for 5 min and air-dried at 22�C.
Slides were than treated with 0.2 N HCl for 20 min, deionized H2O

for 3 min and 2x SSC (1 · SSC: 0.15 M NaCl and 0.15 M sodium

citrate pH 7.0) 1 and 10 min, respectively. Protease treatment was

performed with pepsin (4 mg/mL) for 10 min at 37�C, followed by

washing in 2 · SSC for 10 min. The slides were fixed in 10%

formalin for 10 min, washed in 2 · SSC for 10 min and air-dried.

Adjacent serial sections from each case were stained with

hematoxylin and eosin (H&E). Cellular size and morphology, as

well as nuclear size, were used to confirm the location of the

pyramidal neurons in the adjacent sections for application of

fluorescent in situ hybridization (FISH) for analysis of PCD on the

X chromosome (PCD,X) in the neuronal nuclei.

Application of FISH for analysis of PCD on the X chromosome in
interphase nuclei
The probe specific for the X centromeric a repetitive sequences, locus

DXZ (DXZa) was used (Cooke and Hindley 1979). The probe was

labeled with biotin-16 dUTP in nick-translation reaction using a

bio-nick labeling system (Gibco-BRL, Paisley, UK). For each slide,

200 ng of the probe was mixed in 16 lL of hybridization buffer,

Fig. 1 Schematic representation of FISH visualization of PCD using a specific probe to the centromeric region of the X chromosomes, DXZa ( ).

Normal cells (PCD)) show two distinct signals, whereas premature centromere division (PCD+) results in three or four signals.

Fig. 2 (a) Clinical characteristics and quantification of PCD,X in five

AD female patients and five female controls. In all patients, as well as

in controls, at least 100 interphase nuclei from frontal cerebral cortex

neurons were analyzed. (b) The percentage of nuclei displaying

PCD,X is significantly higher in the AD cases analyzed when com-

pared with age-matched controls (p < 0.01; Mann–Whitney).
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consisting of 50% formamide, 10% dextran-sulfate, 1% sodium

dodecyl sulfate, 1· Denhardt’s, 2 · SSC and 0.04 M Sodium

phosphate pH 7.0, denatured for 10 min at 68�C, and applied to slides.

Hybridization and detection
After overnight hybridization at 37�C, detection was performed

essentially as previously described (Verbić et al. 2000). Briefly, the
biotinylated probe was detected with Fluorescein Avidin DCS

(Vector Laboratories, Peterborough, UK) and Biotinylated anti-

avidin D (Vector Laboratories). For amplification of signals, three

layers of Fluorescein Avidin DCS were applied. The slides were

mounted in 0.4 lg/mL diamindino pheniylindole (DAPI) and

0.4 lg/mL propidium iodide, counterstained in Vectashield Antifade

Buffer (Vector Laboratories). The slides, blinded as to diagnosis,

were viewed under an Olympus BX 50 (Olympus Optical Co.,

GmBH, Hamburg, Germany) epifluorescent microscope with an

appropriate filter combination for detecting fluorescein (Spectrum

Green) and DAPI and analyzed using Cytovision 3.1 (Applied

Imaging Corporation, Santa Clara, CA, USA).

Centromere analysis
FISH analysis of PCD on the X chromosome was analyzed in

interphase nuclei from neurons of the frontal cerebral cortex using

the FISH centromere assay (Fig. 1). In addition to nuclear size, the

location of all neurons within each field was determined by direct

comparison with the adjacent H&E stained sections. Only nuclei

contained within neurons were evaluated by FISH on adjacent

sections. In both groups, AD patients and controls, at least 100

interphase nuclei were analyzed per patient.

Statistical analysis
Statistical analysis was performed by Mann–Whitney test using the

Statgraph 4.2 software.

Results

After analyzing neuronal nuclei from all AD and control
samples, the average frequency of PCD,X in AD group was
found to be 8.60 ± 1.81%, whereas, in a group of five age-
matched female controls, the average frequency of PCD,X
was found to be 2.96 ± 1.20% (Fig. 2). In both AD and
control cases, in all analyzed nuclei, PCD,X was present on
only one of two X chromosomes, resulting in three dots. No
cell showed four dots. The bipartite signal of X chromosome
where PCD was verified was scored as PCD+ (Fig. 3a and c),
while the X chromosome where PCD was not present was
scored as PCD- (Fig. 3a and b). No mitotic neuronal cells
were found in either AD or control brain (Fig. 3a).

The presented results show almost three times higher
incidence (p < 0.01) of PCD,X in the neurons of the frontal
lobe cortex in AD patients than in age-matched controls.

Discussion

A long standing dogma in neuroscience is that neurons in the
adult CNS are in the terminal stage of differentiation.

However, over the last decade, accumulating evidence
indicates that neurons may be capable of re-entering the cell
division cycle under pathological conditions (Arendt et al.
1995, 1996, 1998; Vincent et al. 1996, 1997; McShea et al.
1997, 2007; Nagy and Esiri 1997; Nagy et al. 1998, 2000;
Raina et al. 2004) and in rare instances display binucleation
(Zhu et al. 2008). This capability likely depends on extra-
cellular signals, i.e., on the balance between mitogenic
stimuli and differentiating factors (Hengst and Reed 1996;
Lavoie et al. 1996; McShea et al. 1999; Nagy et al. 2000;
Zhu et al. 2004), and various mitogenic signals cause cell
cycle re-entry of neurons in the CNS of AD patients,
including loss of synaptic connections (Nagy et al. 2000) and
cerebral hypoxia (Smith et al. 1999). Furthermore, there is
evidence that amyloid-b protein is mitogenic in cultured
neurons (Schubert et al. 1989; McDonald et al. 1998; Pyo
et al. 1998). Interestingly, AD affects twice as many women
as men, indicating that hormonal factors may also play an
important role in the loss of the differentiated phenotype in
neurons (Bernal and Nunez 1995; Singer et al. 1998; Denver
et al. 1999; Perez-Juste and Aranda 1999; Pike 1999;
Webber et al. 2006, 2007). Additionally, genetic influences
are also involved since mutations in the presenilin 1 gene,
resulting in abnormal presenilin function, have been found to
lead to chromosome missegregation (Boeras et al. 2008).
The present study, by employing a novel method that enables
a direct visual proof of centromere division, further suggests
that neurons of cerebral cortex begin to re-enter into the cell
division cycle.

Using the FISH method, the presence of PCD,X was
verified in frontal cerebral cortex cells of all analyzed
individuals. For this study, female subjects were analyzed,
because in earlier studies, PCD, X was found in both male and
in female lymphocytes, yet was only significantly different
between AD and control in female population (Spremo-
Potparevic et al. 2004). In sporadic AD patients, the frequency
of PCD,X was significantly higher than in control group. To
generate PCD+ signals, the cell must first transit fromG0 to G1

phase of the cell cycle, complete DNA replication (S phase)
and go further to G2 phase. Only a chromosome that has
completed replication can generate two signals from one
centromere, i.e., each chromatid from chromosome with PCD
behaves like a separate chromosome (Fig. 1).

Although our results corroborate DNA replication in the
neurons of the frontal cerebral cortex (Mosch et al. 2007), in
no cases were mitotic cells evident. Therefore, it is conceiv-
able that neurons do not pass the G2-M transition but rather,
after G2 phase, neurons may undergo cell death (Zhu et al.
1999). One mechanism that may drive cell death is the
expression of the cell cycle-dependent kinase cdc2 which,
when activated, promotes phosphorylation of BCL2-antago-
nist of cell death (Zhu et al. 1999; Konishi et al. 2002). Of
note, cdc2 is expressed at higher levels in AD and is
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localized within glia and neurofibrillary tangles (Vincent
et al. 1997).

One of the first results based on FISH method for the
analysis of centromere regions of chromosomes 18 and 21 in
hippocampal interphase nuclei, pointed to an ultimate cell
death as a consequence of genetic misbalance caused by a
‘supposed’ tetraploid state of their genome (Yang et al.
2001). However, considering the data generated here, these
findings may represent interphase PCD, also observable as
two dot-like signals per each analyzed chromosome, rather
than tetraploidy. Using another novel slide-based cytometry
method, others suggested that some neurons in AD can pass
through a functional interphase with a complete DNA
replication (Mosch et al. 2007). Here we also demonstrated
that only one of two X chromosomes generates PCD+ signals
and the question arises which of the two X chromosomes
undergoes PCD. Soon after the discovery of PCD,X in

peripheral blood lymphocytes of elderly women, autoradio-
graphic studies reveled that PCD predominantly occurs on a
partially inactive X chromosome (Fitzgerald and McEwan
1977; Galloway and Buckton 1978; Abruzzo et al. 1985).
Therefore, one significant consequence of inactivation of
excess centromeres is a differential pattern of replication
versus separation when compared to the active centromere.
Inactivation destabilizes the time pattern of centromere
replication between two X chromosomes, leading to genome
instability, i.e., aneuploidy (Litmanovitch et al. 1998).
Inactivated centromeres exhibit early replication and, inter-
estingly, PCD (Litmanovitch et al. 1998). In fact, a dysregu-
lated centromere segregation has been hypothesized as one
pathway leading to the neurodegeneration in diseases such as
AD (Bajic et al. 2008).

The interaction between cell cycle re-entry and other
disease parameters such as oxidative stress (Barlow et al.

(a)

(b) (c)

Fig. 3 Configurations of fluorescent hybrid-

ization signals identifying the X chromosome

specific a satellite loci (DXZa) in interphase

nuclei of neuronal cells of female AD

patients. (a) Interphase nuclei of neurons

from the frontal cerebral cortex of a female

AD patient. Original magnification 1000 ·.

Arrows show premature centromere division

of one X chromosome (PCD+), and normal

centromere of the other X chromosome in the

same nucleus (PCD)). Other nuclei have

two dot signals, one for each X chromosome,

which represent normal centromeres of both

X chromosomes (PCD)). At higher magnifi-

cation (b), AD female patient nucleus with

one dot like signal for one X chromosome

(PCD)), and one bipartite signal for the other

X chromosome (PCD+); (c) AD female

patient nucleus with two dot like signals,

each for one X chromosome (PCD)).
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1999; Nunomura et al. 1999) is likely critical in the
development of the disease phenotype (Zhu et al. 2004). In
this regard, it is of note that mutations associated with the
familial forms of AD are not only associated with alterations
in oxidative stress (Nunomura et al. 2004) but also cell cycle
alterations (Prat et al. 2002).

In conclusion, the results of this work provide compelling
evidence for re-entry into the cell cycle of cerebral cortical
neurons leading to PCD in the interphase of the cell cycle
immediately after replication. This pattern of genome
instability can be viewed as a disorder of the hierarchical
control of the sequence of centromere separation and
segregation. Based on the findings of PCD in the neurons
as well as peripheral blood lymphocytes (Spremo-Potparevic
et al. 2004), PCD,X may be a possible cytogenetic biomar-
ker in patients with AD.
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