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Abstract

We introduce a location-scale model for conditional heavy-tailed distributions

when the covariate is deterministic. First, nonparametric estimators of the loca-

tion and scale functions are introduced. Second, an estimator of the conditional

extreme-value index is derived. The asymptotic properties of the estimators are

established under mild assumptions and their finite sample properties are illus-

trated both on simulated and real data.

Keywords: Nonparametric estimation, location-scale function, tail-index, extreme-

values, conditional quantile.

1 Introduction

The literature on extreme-value analysis of independent and identically distributed

observations is very elaborate, see for instance [4, 13, 27]. However, the regression point

of view has been less extensively studied. The goal is to describe how tail characteristics

such as extreme quantiles or small exceedance probabilities of the quantity of interest Y

may depend on some explanatory variable x. Furthermore, as noted in [4, Chapter 7],

such covariate information allows to combine datasets from different sources which may

lead to better point estimates and thus improved inference.

A parametric approach is considered in [35] where a linear trend is fitted to the

expectation of the extreme-value distribution. We also refer to [12] for other exam-

ples of parametric models. Turning to semi-parametric models, [29] proposed to mix
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a non-parametric estimation of the trend with a parametric assumption on Y given

x. Similarly, a semi-parametric estimator of γ is introduced in [3] as γ(ψ(β′x)) where

ψ is a known link function and β is interpreted as a vector of regression coefficients.

Fully non-parametric estimators have been first introduced in [7, 11] through respec-

tively local polynomial and spline models. We also refer to [13, Theorem 3.5.2] for the

approximation of the nearest neighbors distribution using the Hellinger distance and

to [14] for the study of their asymptotic distribution. Focusing on the estimation of

the tail-index of the conditional distribution of Y given x, moving windows and nearest

neighbors approaches are developed respectively by [16, 17] in a fixed design setting.

Kernels methods are proposed in [10, 9, 20, 21, 25] to tackle the random design case.

Finally, these methods have been adapted to the situation where the covariate is a

random field or infinite dimensional, see respectively [1] and [18, 19].

The aim of our work is to estimate in a semi-parametric way the tail-index γ in

a location-scale model for conditional heavy-tailed distributions. The so-called con-

ditional tail-index is assumed to be constant while the location and scale parameters

depend on the covariate, in a fixed design setting. The underlying idea of this model

is to achieve a balance between the flexibility of non-parametric approaches (for the

location and scale functions) and the stability of parametric estimators (for the condi-

tional tail-index) compared to purely non-parametric ones. This intuition has also been

implemented in [31]: An extreme-value distribution with constant extreme-value index

is fitted to standardized rainfall maxima. Here, we introduce a statistical framework to

assess the benefits of such approaches in terms of convergence rates of the estimators.

This paper is organized as follows. The location-scale model for heavy-tailed dis-

tribution is introduced in Section 2. The associated inference procedures are described

in Section 3. Asymptotic results are provided in Section 4 while the finite sample be-

haviour of the estimators is illustrated in Section 5 on simulated data and in Section 6

on insurance data. Proofs are postponed to the Appendix.

2 Conditional location-scale family of heavy-tailed

distributions

Let Y be a real random variable. We assume that the conditional survival function of

Y given x ∈ [0, 1] can be written as

F̄Y (y | x) := P(Y > y | x) = F̄Z

(
y − a(x)

b(x)

)
, (1)
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for y ≥ y0(x) > a(x). The functions a : [0, 1]→ R and b : [0, 1]→ R+ are referred to as

the location and scale functions respectively while F̄Z is the survival function of a real

random variable Z which is assumed to be heavy-tailed:

F̄Z(z) = z−1/γ`(z), z > 0. (2)

Here, γ > 0 is called the conditional tail-index and ` is a slowly-varying function at

infinity i.e. for all λ > 0,

lim
z→∞

`(λz)

`(z)
= 1.

F̄Z is said to be regularly varying at infinity with index −1/γ. This property is de-

noted for short by F̄Z ∈ RV−1/γ, see [6] for a detailed account on regular variations.

Combining (1) and (2) yields

F̄Y (y | x) =

(
y − a(x)

b(x)

)−1/γ

`

(
y − a(x)

b(x)

)
, (3)

for y ≥ y0(x) > a(x) where the functions a(·), b(·) and the conditional tail-index γ are

unknown. We thus obtain a semi-parametric location-scale model for the (heavy) tail

of Y given x. The main assumption is that the conditional tail-index γ is independent

of the covariate. On the one hand, the proposed semi-parametric modeling offers more

flexibility than purely parametric approaches. On the other hand, assuming a constant

conditional tail-index γ should yield more reliable estimates in small sample contexts

than purely nonparametric approaches. A similar idea is developed in [31]: An extreme-

value distribution with constant extreme-value index is fitted to standardized rainfall

maxima.

In the following, a fixed design setting is adopted, and thus the covariate x is

supposed to be nonrandom. Model (1) can be rewritten as

Y = a(x) + b(x)Z, (4)

where x ∈ [0, 1] and Z is a random variable distributed according to (2). Starting with

a n-sample {(Y1, x1), . . . , (Yn, xn)} from (4), it is clear that, since Z is not observed,

a(·) and b(·) may only be estimated up to additive and multiplicative factors. This

identifiability issue can be fixed by introducing some constraints on F̄Z . To this end,

for all α ∈ (0, 1) consider the αth quantile of Z:

qZ(α) = inf{z ∈ R; F̄Z(z) ≤ α},

and assume there exist 0 < µ3 < µ2 < µ1 < 1 such that

qZ(µ2) = 0 and qZ(µ3)− qZ(µ1) = 1. (5)
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From (4), it straightforwardly follows that, for all α ∈ (0, 1), the conditional quantile

of Y given x ∈ [0, 1] is

qY (α | x) = a(x) + b(x)qZ(α), (6)

and therefore the location and scale functions are defined in an unique way by

a(x) = qY (µ2 | x) and b(x) = qY (µ3 | x)− qY (µ1 | x), (7)

for all x ∈ [0, 1]. This remark is the starting point of the inference procedure.

3 Inference

Let {(Y1, x1), . . . , (Yn, xn)} be a n-sample from (4): Yi = a(xi) + b(xi)Zi, i = 1, . . . , n

where Z1, . . . , Zn are independent and identically distributed (iid) from (2). For the

sake of simplicity, it is assumed that the design points are equidistant: xi = i/n for

all i = 1, . . . , n and x0 := 0. This assumption could be weakened to max
i
|xi − xi−1| =

O(1/n) used for instance in [2, 33]. A three-stage inference procedure is adopted.

(i) First, let q̂n,Y (α | x) be a nonparametric estimator of the conditional quantile

qY (α | x) where α ∈ (0, 1) and x ∈ [0, 1]. In view of (7), the location and scale functions

are estimated for all x ∈ [0, 1] by

ân(x) = q̂n,Y (µ2 | x) and b̂n(x) = q̂n,Y (µ3 | x)− q̂n,Y (µ1 | x). (8)

(ii) Second, the non-observed Z1, . . . , Zn can be estimated by the residuals

Ẑi =
Yi − ân(xi)

b̂n(xi)
, (9)

for all i = 1, . . . , n. In practice, nonparametric estimators can suffer from boundary

effects [8, 32] and therefore only design points sufficiently far from 0 and 1 are consid-

ered. Let us denote by In the set of indices associated with such design points and set

mn =card(In).

(iii) Finally, let (kn) be an intermediate sequence of integers, i.e. such that 1 <

kn ≤ n, kn →∞ and kn/n→ 0 as n→∞. The (kn + 1) top order statistics associated

with the pseudo-observations Ẑi, i ∈ In are denoted by Ẑmn−kn,mn ≤ · · · ≤ Ẑmn,mn . The

conditional tail-index is estimated using an Hill-type statistics:

γ̂n =
1

kn

kn−1∑
i=0

log Ẑmn−i,mn − log Ẑmn−kn,mn . (10)
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This estimator is similar to Hill estimator [30], but in our context, it is built on non iid

pseudo-observations.

The proposed procedure relies on the choice of an estimator for the conditional

quantiles. Here, a kernel estimator for F̄Y (y | x) is considered (see for instance [33]).

For all (x, y) ∈ [0, 1]× R let

ˆ̄Fn,Y (y | x) =
n∑
i=1

1{Yi>y}

∫ xi

xi−1

Kh(x− t)dt, (11)

where 1{·} is the indicator function, Kh(·) := K(·/h)/h with K a density function on

R called a kernel and h = hn is a nonrandom sequence called the bandwidth such

as hn → 0 as n → ∞. The corresponding estimator of qY (α | x) is defined for all

(x, α) ∈ [0, 1]× (0, 1) by

q̂n,Y (α | x) = ˆ̄F←n,Y (α | x) := inf{y; ˆ̄Fn,Y (y | x) ≤ α}. (12)

In this context, In = {bnhc, n−bnhc} and mn = n−2bnhc+1. Remark that In is prop-

erly defined for all large n since h < 1/2 eventually. Nonparametric regression quantiles

obtained by inverting a kernel estimator of the conditional distribution function have

been extensively investigated, see, for example [5, 34, 36], among others.

4 Main results

The following general assumptions are required to establish our results. The first one

gathers all the conditions to define a conditional location-scale families of heavy-tailed

distributions.

(A.1) (Y1, x1), . . . , (Yn, xn) are independent observations from the conditional location-

scale family of heavy-tailed distributions defined by (1), (2) and (5). The functions

a(·) and b(·) are continuous on [0, 1] and the survival function F̄Z(·) is continuously

differentiable on R with associated density fZ(·) = −F̄ ′Z(·).

Under (A.1), the quantile function qZ(·) exists and we let HZ(·) := 1/fZ(qZ(·)) the

quantile density function and UZ(·) = qZ(1/·) the tail quantile function of Z. The

second assumption is a Lipschitz condition on the conditional survival function of Y .

Lemma 1 in Appendix provides sufficient conditions on a(·), b(·) and F̄Z(·) such that it

is verified.

(A.2) For any compact set C ⊂ R, there exists c1 > 0 such that for all (s, t) ∈ [0, 1]2

sup
y∈C

∣∣∣∣ F̄Y (y | s)
F̄Y (y | t)

− 1

∣∣∣∣ ≤ c1|s− t|.
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The next assumption is standard in the nonparametric kernel estimation framework.

(A.3) K is a bounded density with support S ⊂ [−1, 1] and verifying the Lipschitz

property: There exists c2 > 0 such that

|K(u)−K(v)| ≤ c2|u− v|

for all (u, v) ∈ S2.

Under (A.3), let ‖K‖∞ = sup
t∈S

K(t) and ‖K‖2 =

(∫
S

K2(t)dt

)1/2

. Finally, the so-

called second-order condition is introduced (see for instance [27, eq (3.2.5)]:

(A.4) For all λ > 0, as z →∞,

UZ(λz)

UZ(z)
− λγ ∼ A(z)λγ

λρ − 1

ρ
,

where γ > 0, ρ < 0 and A is a positive or negative function such that A(z) → 0

as z →∞.

The rationale behind (A.4) is the following. From [6, Theorem 1.5.12], it is clear

that (2) is equivalent to UZ ∈ RV γ, that is UZ(λz)/UZ(z) → λγ as z → ∞ for all

λ > 0. The role of the second-order condition is thus to control the rate of the previous

convergence thanks to the function A(·). Moreover, it can be shown that |A| is regularly

varying with index ρ, see [27, Lemma 2.2.3]. It is then clear that ρ, referred to as the

second-order parameter, is a crucial quantity, tuning the rate of convergence of most

extreme-value estimators, see [27, Chapter 3] for examples.

Our first result states the joint asymptotic normality of the estimators (8) of the location

and scale parameters at a point tn ∈ (0, 1) not too close from the boundaries of the

unit interval.

Theorem 1. Assume (A.1), (A.2), (A.3) hold and fZ(qZ(µj)) > 0 for j ∈ {1, 2, 3}.
If nh→∞ and nh3 → 0 as n→∞ then, for all sequence (tn) ⊂ [h, 1− h],

√
nh

b(tn)

(
ân(tn)− a(tn)

b̂n(tn)− b(tn)

)
d−→ N

(
0R2 , ‖K‖2

2 D
)
,

where the coefficients of the matrix D are given by

D1,1 = µ2(1− µ2)H2
Z(µ2),

D1,2 = D2,1 = µ2(1− µ1)HZ(µ1)HZ(µ2)− µ3(1− µ2)HZ(µ2)HZ(µ3),

D2,2 = µ1(1− µ1)H2
Z(µ1)− 2µ3(1− µ1)HZ(µ1)HZ(µ3) + µ3(1− µ3)H2

Z(µ3).
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A uniform consistency result can also be established:

Theorem 2. Assume (A.1), (A.2) and (A.3) hold. Let In = {bnhc, . . . , n − bnhc}
and suppose nh/ log n→∞ and nh3/ log n→ 0 as n→∞. Then,√

nh

log n
max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ = OP(1) and

√
nh

log n
max
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)
b(xi)

∣∣∣∣∣ = OP(1).

Theorem 2 will reveal useful to prove that the residuals Ẑi are close to the unobserved Zi,

i = 1, . . . , n. This justifies the computation of the Hill estimator (10) on the residuals.

Our final main result provides the asymptotic normality of this conditional tail-index

estimator.

Theorem 3. Assume (A.1)-(A.4) hold. Let (kn) be an intermediate sequence of in-

tegers. Suppose nh/(kn log n)→∞, nh3/ log n→ 0 and
√
knA(n/kn)→ 0 as n→∞.

Then, √
kn(γ̂n − γ)

d−→ N (0, γ2).

It appears that our methodology is able to estimate the tail-index in the conditional

location-scale family at the same rate 1/
√
kn as in iid case, see [26] for a review. As

expected, the conditional location-scale family is a more favorable situation than the

purely nonparametric framework for the estimation of the conditional tail index where

the rate of convergence 1/
√
knh is impacted by the covariate, see [10, Corollary 1

& 2], [9, Theorem 3] and [25, Theorem 2]. To be more specific, remark first that

conditions nh/(kn log n) → ∞ and nh3/ log n → 0 imply that kn = o((n/ log n)2/3).

Second, following [27, Eq. (3.2.10)], if A is exactly a power function, then condition√
knA(n/kn)→ 0 as n→∞ yields kn = o(n−2ρ/(1−2ρ)). Up to logarithmic factors, the

constraint is then kn = o(n(−2ρ/(1−2ρ))∧(2/3)). If ρ ≥ −1, the rate of convergence of γ̂n is

thus nρ/(1−2ρ) which is the classical rate for estimators of the tail-index, see for instance

[28, Remark 3].

Let us also remark that, since nh/(kn log n) → ∞ and since b(·) is lower bounded

under (A.1), Theorem 1 and Theorem 3 entail that

√
kn

 γ̂n − γ
ân(tn)− a(tn)

b̂n(tn)− b(tn)

 d−→ N
(
0R3 , γ2 E

)
,

where the coefficients of the matrix E are given by E1,1 = 1 and Ei,j = 0 if i ∈ {2, 3} or

j ∈ {2, 3}. The joint limiting distribution is degenerated since γ̂n converges at a slower

rate than ân(tn) and b̂n(tn).
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5 Illustration on simulated data

The finite-sample performance of the estimators of the location and scale functions as

well as of the conditional tail-index are illustrated on simulated data from model (4).

The location and scale functions are defined respectively by a(x) = cos(2πx) and

b(x) = 1 + x2 for x ∈ [0, 1]. Let Z0 be a standard Student-tν random variable where

ν ∈ {1, 2, 4} denotes the degrees of freedom (df). Let µ1 = 3/4, µ2 = 1/2 and µ3 = 1/4

and introduce Z = Z0/(2qZ0(µ1)) the rescaled Student random variable. By symmetry,

qZ(µ2) = 0 and qZ(µ3) = −qZ(µ1). Besides, qZ(µ1) = qZ0(µ1)/(2qZ0(µ1)) = 1/2 by

construction and thus (5) holds. This choice also ensures that Z is heavy-tailed and

that the second-order condition (A.4) holds with conditional tail-index γ = 1/ν and

conditional second-order parameter ρ = −2/ν.

In all the experiments, N = 100 replications of a dataset of size n = 1000 are

considered. The kernel function K is chosen to be the quartic (or biweight) kernel

K(x) =
15

16

(
1− x2

)2
1{|x|≤1},

and the bandwidth is fixed to h = 0.1.

We denote respectively by ân,i(·), b̂n,i(·) and γ̂n,i the estimates of a(·), b(·) and γ

obtained on the i−th replication, i ∈ {1, . . . , N}. The associated mean values are also

computed as

¯̂an(·) :=
1

N

N∑
i=1

ân,i(·), ¯̂
bn(·) :=

1

N

N∑
i=1

b̂n,i(·) and ¯̂γn :=
1

N

N∑
i=1

γ̂n,i.

The results are depicted on Figure 1 (ν = 1), Figure 2 (ν = 2) and Figure 3 (ν = 4).

On the top-left panels (a), the true conditional quantiles q(µj|·), j ∈ {1, 2, 3} are

superimposed to one replication of the simulated datasets. The estimated location and

scale functions a(·) and b(·) are compared with the mean estimates ¯̂an(·) and
¯̂
bn(·)

on the top-right (b) and bottom-left panels (c) respectively. Finally, the estimated

conditional tail-indices γ̂n,i, i = 1, . . . , N , the mean estimated value ¯̂γn and the true

conditional tail-index are displayed as functions of kn ∈ {1, . . . , 300} on the bottom-

right panels (d). As expected, it appears on Figure 1(a)–3(a) that the tail heaviness

of Y |x decreases as ν increases. The estimation accuracy of the location and scale

function does not seem to be sensitive to ν, see Figure 1(b,c)–3(b,c). On the contrary,

it appears on Figure 1(d)–3(d) that large values of ν yield a large bias in the estimation

of the conditional tail-index. This trend was expected, since the conditional second-

order parameter is the main driver of the bias, as explained in Section 4, and since
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|ρ| = 1/(2ν) for a Student distribution. Small values of |ρ| in (A.4) entail high bias in

extreme-value estimators such as Hill’s statistics. A way to mitigate this bias could be to

replace the conditional tail-index estimator (10) by a bias-reduced Hill-type estimators,

see for instance [26].

6 Real data example

We consider here a dataset on motorcycle insurance policies and claims over the period

1994-1998 collected from the former Swedish insurance provider Wasa. The dataset is

available from www.math.su.se/GLMbook and the R package insuranceData. We focus

on two variables: the claim severity Y (defined as the ratio of claim cost by number of

claims for each given policyholder) in SEK, and the age x of the policyholder in years.

Removing missing data and an affine transformation of a covariate result in n = 670

pairs (xi, Yi) with xi ∈ [0, 1]. Some graphical diagnostics have been performed in [23] to

check that the heavy-tailed assumption makes sense for Y . Our goal is to estimate the

conditional extreme quantile qY (αn | x) where nαn → 0 and x ∈ (0, 1). Two estimators

are considered. The first one relies on the semi-parametric model via (6):

q̃n,Y (αn | x) = ân(x) + b̂n(x)q̂n,Z(αn),

and on Weissman estimator [37] applied to the pseudo-observations Ẑi, i ∈ In:

q̂n,Z(αn) = Ẑmn−kn,mn

(
αnmn

kn

)−γ̂n
.

The second one is the nonparametric conditional Weissman estimator introduced in [10]:

q̌n,Y (αn | x) = q̂n,Y (kn/mn | x)

(
αnmn

kn

)−γ̌n(x)

,

where q̂n,Y (kn/mn | x) is defined in (12) and γ̌n(x) is an estimator of the conditional tail

index. Here, we selected a recent estimator introduced in [23] and denoted by γ̂
(3)
kn

(x)

in the previously mentioned paper.

As in Section 5, we set the normalizing parameters to µ1 = 3/4, µ2 = 1/2 and

µ3 = 1/4. The quartic kernel is used and the bandwidth h = 0.065 is chosen by

the cross-validation procedure implemented in R as h.cv. The estimated location and

scaled functions are superimposed to the dataset on Figure 4. The residuals are then

computed according to (9).

To confirm that the location-scale model (3) is appropriate, Figure 5 displays a

quantile-quantile plot of the weighted log-spacings within the top of the residuals
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against the quantiles of the standard exponential distribution. Formally, let Wi,mn =

i log(Ẑmn−i+1,mn/Ẑmn−i,n), 1 ≤ i ≤ kn − 1, denote the weighted log-spacings computed

from the consecutive top order statistics of the residuals. It is known that, if Ẑ is

heavy-tailed with tail-index γ then, the Wi,mn are approximately independent copies of

an exponential random variable with mean γ, see for instance [4]. Here, the number

of upper statistics is fixed to kn = 130 by a visual inspection of the Hill plot (not re-

produced here). The relationship appearing on Figure 5 is approximately linear, which

constitutes a graphical evidence that the heavy-tail assumption (2) on Z makes sense

and that the choice of kn is appropriate.

Finally, the two conditional quantile estimators q̃n,Y (αn | ·) and q̌n,Y (αn | ·) are

graphically compared on Figure 6 for αn = 8/n. Both of them yield level curves with

similar shapes and located above the sample. Unsurprisingly, the estimator q̃n,Y (αn | ·)
based on the location-scale model has a smoother behavior than q̌n,Y (αn | ·) since it

relies on the assumption that the tail-index does not depend on the covariate.

7 Appendix: Proofs

Technical lemmas are collected in Paragraph 7.1 while preliminary results of general

interest are provided in Paragraph 7.2. Finally, the proofs of the main results are given

in Paragraph 7.3.

7.1 Auxiliary lemmas

We begin by providing some sufficient conditions such that (A.2) holds.

Lemma 1. If (A.1) holds and there exist (ca, cb, cF ) ∈ R3
+ and mb > 0 such that for

all (y, z, t, s) ∈ R2 × [0, 1]2,

mb ≤ |b(t)|,

|a(t)− a(s)| ≤ ca|t− s|,

|b(t)− b(s)| ≤ cb|t− s|,

| log F̄Z(y)− log F̄Z(z)| ≤ cF |y − z|,

then (A.2) holds.

Proof. Let us first remark that, since |a(·)| and |b(·)| are continuous functions on the

compact set [0, 1], they are necessarily upper bounded by some finite constants denoted
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by Ma and Mb. Second, consider the quantity

∆(y, t, s) := log F̄Y (y | t)− log F̄Y (y | s) = log F̄Z

(
y − a(t)

b(t)

)
− log F̄Z

(
y − a(s)

b(s)

)
.

The Lipschitz assumption on log F̄Z yields for all (t, s) ∈ [0, 1]2 and y ∈ R:

|∆(y, t, s)| ≤ cF

∣∣∣∣y − a(t)

b(t)
− y − a(s)

b(s)

∣∣∣∣
= cF

∣∣∣∣y(b(s)− b(t)) + a(s)(b(t)− b(s)) + b(s)(a(s)− a(t))

b(t)b(s)

∣∣∣∣
≤ cF

m2
b

(|y|cb +Macb +Mbca)|t− s|,

in view of the assumptions on a(·) and b(·). Let C ⊂ R be a compact set. It follows

that the supremum of |∆(y, t, s)| on (y, t, s) ∈ C × [0, 1]2 is bounded and thus there

exists c̃ > 0 such that

sup
y∈C
| exp(∆(y, t, s))− 1| ≤ c̃ sup

y∈C
|∆(y, t, s)|.

Letting My := sup{|y| ∈ C}, assumption (A.2) holds with c1 = c̃ cF ((My + Ma)cb +

Mbca)/m
2
b .

The next result is an adaptation of Bochner’s lemma to our fixed design setting.

Lemma 2. Let ψ(. | .) : Rp × [0, 1] → R+, p ≥ 1, be a positive function and C a

compact subset of Rp. For all sequences (tn) ⊂ [h, 1− h] and (yn) ⊂ C, define

ψn(yn | tn) :=
n∑
i=1

ψ(yn | xi)
∫ xi

xi−1

Qh(tn − s)ds,

where xi = i/n for all i = 0, . . . , n and Qh(·) = Q(·/h)/h, with Q is a measurable

positive function with support S ⊂ [−1, 1]. If there exists c > 0 such that ∀ (x, s) ∈
[0, 1]2,

sup
y∈C

∣∣∣∣ψ(y | x)

ψ(y | s)
− 1

∣∣∣∣ ≤ c|x− s|,

then, as n→∞, ∣∣∣∣ψn(yn | tn)

ψ(yn | tn)
−
∫
S

Q(u)du

∣∣∣∣ = O

(
1

n

)
+O(h).

11



Proof. Consider the expansion

ψn(yn | tn)

ψ(yn | tn)
−
∫
S

Q(u)du =

∑n
i=1 ψ(yn | xi)

∫ xi
xi−1

Qh(tn − s)ds
ψ(yn | tn)

−
∫
S

Q(u)du

=

∫ 1

0
ψ(yn | s)Qh(tn − s)ds− ψ(yn | tn)

∫
S
Q(u)du

ψ(yn | tn)

+

∑n
i=1 ψ(yn | xi)

∫ xi
xi−1

Qh(tn − s)ds−
∫ 1

0
ψ(yn | s)Qh(tn − s)ds

ψ(yn | tn)

=:
Tn,1

ψ(yn | tn)
+

Tn,2
ψ(yn | tn)

,

and let us first focus on Tn,1. The change of variable u = (tn − s)/h yields

Tn,1 =

∫ tn/h

(tn−1)/h

ψ(yn | tn − uh)Q(u)du− ψ(yn | tn)

∫
S

Q(u)du.

Since (tn) ⊂ [h, 1− h], it follows that S ⊂ [−1, 1] ⊂
[
tn − 1

h
,
tn
h

]
and therefore

Tn,1 =

∫
S

[ψ(yn | tn − uh)− ψ(yn | tn)]Q(u)du.

As a consequence, for all yn ∈ C,∣∣∣∣ Tn,1
ψ(yn | tn)

∣∣∣∣ ≤ ∫
S

∣∣∣∣ψ(yn | tn − uh)

ψ(yn | tn)
− 1

∣∣∣∣Q(u)du ≤ ch

∫
S

|u|Q(u)du = O(h). (13)

Let us now turn to the second term

Tn,2 =
n∑
i=1

∫ xi

xi−1

[ψ(yn | xi)− ψ(yn | s)]Qh(tn − s)ds.

We have, for all yn ∈ C,∣∣∣∣ Tn,2
ψ(yn | tn)

∣∣∣∣ ≤ n∑
i=1

∫ xi

xi−1

ψ(yn | s)
ψ(yn | tn)

∣∣∣∣ψ(yn | xi)
ψ(yn | s)

− 1

∣∣∣∣Qh(tn − s)ds

≤ c

ψ(yn | tn)

n∑
i=1

∫ xi

xi−1

ψ(yn | s)|xi − s|Qh(tn − s)ds

≤ c

nψ(yn | tn)

n∑
i=1

∫ xi

xi−1

ψ(yn | s)Qh(tn − s)ds

=
c

nψ(yn | tn)

∫ 1

0

ψ(yn | s)Qh(tn − s)ds

=
c

n

(
Tn,1

ψ(yn | tn)
+

∫
S

Q(u)du

)
= O

(
1

n

)
, (14)

in view of (13). Finally, collecting (13) and (14), the conclusion follows.

12



As a consequence of Lemma 2, the asymptotic bias and variance of the estimator (11)

of the conditional survival function can be derived.

Lemma 3. Suppose (A.2) and (A.3) hold. Let (tn) ⊂ [h, 1− h] and (yn) ⊂ C, where

C is a compact subset of R, be two nonrandom sequences.

(i) Then, ∣∣∣∣∣∣
E
(

ˆ̄Fn,Y (yn | tn)
)

F̄Y (yn | tn)
− 1

∣∣∣∣∣∣ = O

(
1

n

)
+O(h).

(ii) If, moreover, nh→∞ as n→∞ and lim inf FY (yn | tn) > 0, then

var
(

ˆ̄Fn,Y (yn | tn)
)
∼ ‖K‖

2
2

nh
FY (yn | tn)F̄Y (yn | tn).

Proof. (i) Remarking that

E
[

ˆ̄Fn,Y (yn | tn)
]

= E

[
n∑
i=1

1{Yi>yn}

∫ xi

xi−1

Kh(tn − s)ds

]
=

n∑
i=1

F̄Y (yn | xi)
∫ xi

xi−1

Kh(tn−s)ds,

the conclusion follows from Lemma 2.

(ii) Let us consider the expansion:

var
(

ˆ̄Fn,Y (yn | tn)
)

=
n∑
i=1

var

(
1{Yi>yn}

∫ xi

xi−1

Kh(tn − s)ds
)

=
n∑
i=1

F̄Y (yn | xi)Sn,i −
n∑
i=1

F̄ 2
Y (yn | xi)Sn,i

=: Tn,1 − Tn,2,

where

Sn,i :=

(∫ xi

xi−1

Kh(tn − s)ds
)2

=
1

h2

∫ xi

xi−1

∫ xi

xi−1

K

(
tn − s1

h

)
K

(
tn − s2

h

)
ds1ds2.

(15)

Let us write

K

(
tn − s2

h

)
= K

(
tn − s1

h

)
+K

(
tn − s2

h

)
−K

(
tn − s1

h

)
,

with, under (A.3),∣∣∣∣K (tn − s2

h

)
−K

(
tn − s1

h

)∣∣∣∣ ≤ c2|s2 − s1|
h

= O

(
1

nh

)
,

13



uniformly on (s1, s2) ∈ [xi−1, xi]
2 and i = 1, . . . , n. It thus follows that

Sn,i =
1

h2

∫ xi

xi−1

∫ xi

xi−1

[
K2

(
tn − s1

h

)
+K

(
tn − s1

h

)
O

(
1

nh

)]
ds1ds2

=
1

nh2

∫ xi

xi−1

K2

(
tn − s
h

)
ds+O

(
1

n2h3

)∫ xi

xi−1

K

(
tn − s
h

)
ds.

Defining M(v) = K2(v)/‖K‖2
2 yields

Sn,i =
‖K‖2

2

nh

∫ xi

xi−1

Mh(tn − s)ds+O

(
1

n2h2

)∫ xi

xi−1

Kh(tn − s)ds. (16)

Replacing in Tn,1, we obtain:

Tn,1 =
‖K‖2

2

nh

{
n∑
i=1

F̄Y (yn | xi)
∫ xi

xi−1

Mh(tn − s)ds

+ O

(
1

nh

) n∑
i=1

F̄Y (yn | xi)
∫ xi

xi−1

Kh(tn − s)ds

}
.

Applying Lemma 2 twice and recalling that nh→∞ as n→∞ entail

Tn,1 =
‖K‖2

2

nh
F̄Y (yn | tn)

(
1 +O(h) +O

(
1

nh

))
.

Similarly,

Tn,2 =
‖K‖2

2

nh
F̄ 2
Y (yn | tn)

(
1 +O(h) +O

(
1

nh

))
,

and the conclusion follows:

Tn,1 − Tn,2 =
‖K‖2

2

nh
F̄Y (yn | tn)FY (yn | tn)

(
1 +

1

FY (yn | tn)

(
O(h) +O

(
1

nh

)))
=
‖K‖2

2

nh
F̄Y (yn | tn)FY (yn | tn) (1 + o(1)),

under the assumption lim inf FY (yn | tn) > 0.

The next lemma controls the error between each unobserved random variable Zi and

its estimation Ẑi, for all i = 1, . . . , n.

Lemma 4. Assume (A.1), (A.2) and (A.3) hold. Let In = {bnhc, . . . , n−bnhc} and

suppose nh/ log n→∞ and nh3/ log n→ 0 as n→∞. Then, for all i ∈ In,

|Ẑi − Zi| ≤ Rn,i(1 + |Zi|), where max
i∈In

Rn,i = OP

(√
log n

nh

)
= oP(1).
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Proof. Remark that for all i ∈ In, one has

|Ẑi − Zi| =

∣∣∣∣∣Yi − ân(xi)

b̂n(xi)
− Zi

∣∣∣∣∣ =

∣∣∣∣∣a(xi)− ân(xi)

b̂n(xi)
+
b̂n(xi)− b(xi)

b̂n(xi)
Zi

∣∣∣∣∣
≤

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣
(∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣+

∣∣∣∣∣ b̂n(xi)− b(xi)
b(xi)

∣∣∣∣∣ |Zi|
)

≤

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣max

{∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ ;
∣∣∣∣∣ b̂n(xi)− b(xi)

b(xi)

∣∣∣∣∣
}

(1 + |Zi|)

=:

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣max
{∣∣∣ξ(a)

i,n

∣∣∣ ; ∣∣∣ξ(b)
i,n

∣∣∣} (1 + |Zi|) .

Let us define, for all i ∈ In,

ξ
(a)
i,n =

ân(xi)− a(xi)

b(xi)
, ξ

(b)
i,n =

b̂n(xi)− b(xi)
b(xi)

and Rn,i =

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣max
{∣∣∣ξ(a)

i,n

∣∣∣ ; ∣∣∣ξ(b)
i,n

∣∣∣} .
On the one hand, Theorem 2 entails

max
i∈In

Rn,i ≤ max
i∈In

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣max

{
max
i∈In

∣∣∣ξ(a)
i,n

∣∣∣ ; max
i∈In

∣∣∣ξ(b)
i,n

∣∣∣}

= max
i∈In

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣OP

(√
log n

nh

)
.

On the other hand,

P

(
max
i∈In

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣ ≥ 2

)
= P

(
max
i∈In

∣∣∣∣∣ 1

1 + ξ
(b)
i,n

∣∣∣∣∣ ≥ 2

)
≤ P

(
max
i∈In

∣∣∣ξ(b)
i,n

∣∣∣ ≥ 1

2

)

≤ P

(√
nh

log n
max
i∈In

∣∣∣ξ(b)
i,n

∣∣∣ ≥ 1

2

√
nh

log n

)
.

Again, Theorem 2 shows that the following uniform consistency holds: For all ε > 0,

there exists M(ε) > 0 such that

P

(√
nh

log n
max
i∈In

∣∣∣ξ(b)
i,n

∣∣∣ ≥M(ε)

)
≤ ε.

Now, for n large enough (nh/ log n)1/2 > 2M(ε) so that

P

(
max
i∈In

∣∣∣∣∣ b(xi)b̂n(xi)

∣∣∣∣∣ ≥ 2

)
≤ P

(
max
i∈In

√
nh

log n

∣∣∣ξ(b)
i,n

∣∣∣ ≥M(ε)

)
≤ ε,
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i.e. max
i∈In
|b(xi)/b̂n(xi)| = OP(1). As a result,

max
i∈In

Rn,i = OP

(√
log n

nh

)
,

which completes the proof of the lemma.

Finally, Lemma 5 is an adaptation of [22, Proposition 1]. It permits to derive the error

made on the estimation of the order statistics Zmn−i,mn , i = 0, . . . ,mn − 1 from the

error made on the unsorted Zi, i ∈ In.

Lemma 5. Let In = {bnhc, . . . , n − bnhc} and mn = card(In). Consider (kn) an

intermediate sequence of integers. If, for all i ∈ In, |Ẑi − Zi| ≤ Rn,i (1 + |Zi|) , with

max
i∈In

Rn,i
P→ 0, then

max
0≤i≤kn

∣∣∣∣∣log
Ẑmn−i,mn

Zmn−i,mn

∣∣∣∣∣ = OP

(
max
i∈In

Rn,i

)
.

Proof. Remarking that mn = n − 2bnhc + 1 ∼ n as n → ∞ and (2) entails that the

distribution of Z has an infinite upper endpoint, the conclusion follows by applying [22,

Proposition 1].

7.2 Preliminary results

Let ∨ (resp. ∧) denote the maximum (resp. the minimum). The next proposition

provides a joint asymptotic normality result for the estimator (11) of the conditional

survival function evaluated at points depending on n.

Proposition 1. Assume (A.1), (A.2) and (A.3) hold. Let (tn) ⊂ [h, 1 − h] and

(αj)j=1,...,J a strictly decreasing sequence in (0, 1). For all j ∈ {1, . . . , J}, define yj,n =

qY (αj | tn) + b(tn)εj,n, where εj,n → 0 as n→∞. If in addition nh→∞ and nh3 → 0

as n→∞, then{
√
nh
[

ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)
]}

j=1,...,J

d−→ N
(
0RJ , ‖K‖2

2B
)
,

where Bk,l = αk∨l(1− αk∧l) for all (k, l) ∈ {1, . . . , J}2.

Proof. Let us first remark that, for all j ∈ {1, . . . , J}, in view of (6), the sequence

yj,n = a(tn) + b(tn)(qZ(αj) + εj,n) is bounded since εj,n → 0 as n → ∞ and since

a(·) and b(·) are continuous functions defined on compact sets. Besides, from (1),
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FY (yj,n | tn) = FZ(qZ(αj) + εj,n)→ 1− αj > 0 as n→∞ and thus the assumptions of

Lemma 3(i,ii) are satisfied. Let β 6= 0 in RJ , J ≥ 1 and consider the random variable

Γn =
J∑
j=1

βj

{
ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)

}
=

J∑
j=1

βj

{
ˆ̄Fn,Y (yj,n | tn)− E

(
ˆ̄Fn,Y (yj,n | tn)

)}
+

J∑
j=1

βj

{
E
(

ˆ̄Fn,Y (yj,n | tn)
)
− F̄Y (yj,n | tn)

}
=: Γn,1 + Γn,2.

Let us first consider the random term:

Γn,1 =
n∑
i=1

∫ xi

xi−1

Kh(tn − s)ds
J∑
j=1

βj
{
1{Yi>yj,n} − E

(
1{Yi>yj,n}

)}
=:

n∑
i=1

Ti,n.

By definition, E(Γn,1) = 0, and by independence of Y1, . . . , Yn,

var(Γn,1) =
n∑
i=1

var(Ti,n)

=
n∑
i=1

(∫ xi

xi−1

Kh(tn − s)ds
)2

var

(
J∑
j=1

βj1{Yi>yj,n}

)

=:
n∑
i=1

Sn,i β
tΣ(i,n)β, (17)

where Sn,i is defined by (15) in the proof of Lemma 3, and where Σ(i,n) is the matrix

whose coefficients are defined for (k, l) ∈ {1, . . . , J}2 by Σ
(i,n)
k,l = cov

(
1{Yi>yk,n},1{Yi>yl,n}

)
.

In view of (16),

Sn,i =
‖K‖2

2

nh

∫ xi

xi−1

Mh(tn − s)ds+O

(
1

n2h2

)∫ xi

xi−1

Kh(tn − s)ds

and

Σ
(i,n)
k,l = E

(
1{Yi>yk,n∨yl,n}

)
− E

(
1{Yi>yk,n}

)
E
(
1{Yi>yl,n}

)
= F̄Y (yk,n ∨ yl,n | xi)− F̄Y (yk,n | xi)F̄Y (yl,n | xi)

= F̄Y (yk,n ∨ yl,n | xi)− F̄Y (yk,n ∨ yl,n | xi)F̄Y (yk,n ∧ yl,n | xi)

= F̄Y (yk,n ∨ yl,n | xi)FY (yk,n ∧ yl,n | xi)

=: ϕ(yk,n, yl,n | xi), (18)

17



where ϕ is the function R2× [0, 1]→ [0, 1] defined by ϕ(., . | .) = F̄Y (.∨ . | .)FY (.∧ . | .).
Replacing in (17) yields var(Γn,1) = βtC(n)β, where C(n) is the covariance matrix whose

coefficients are defined by

C
(n)
k,l =

‖K‖2
2

nh

n∑
i=1

ϕ(yk,n, yl,n | xi)
∫ xi

xi−1

Mh(tn − s)ds

+ O

(
1

n2h2

) n∑
i=1

ϕ(yk,n, yl,n | xi)
∫ xi

xi−1

Kh(tn − s)ds.

Applying Lemma 2 twice and recalling that nh→∞ entail

C
(n)
k,l =

‖K‖2
2

nh
ϕ(yk,n, yl,n | tn) (1 +O(h)) +O

(
1

n2h2

)
ϕ(yk,n, yl,n | tn) (1 +O(h))

=
‖K‖2

2

nh
ϕ(yk,n, yl,n | tn)(1 + o(1)).

As a result,

var(Γn,1) ∼ ‖K‖
2
2

nh
βtB(n)β,

where

B
(n)
k,l = ϕ(yk,n, yl,n | tn) = F̄Y (yk,n ∨ yl,n | tn)FY (yk,n ∧ yl,n | tn).

Let us remark that, in view of (6),

yk,n − yl,n = qY (αk | tn)− qY (αl | tn) + b(tn)(εk,n − εl,n)

= b(tn)(qZ(αk)− qZ(αl) + εk,n − εl,n)

∼ b(tn)(qZ(αk)− qZ(αl)),

as n→∞. Thus, assuming for instance k < l implies αk > αl and thus qZ(αk) < qZ(αl)

leading to yk,n < yl,n for n large enough. More generally, yk,n ∨ yl,n = yk∨l,n and

yk,n ∧ yl,n = yk∧l,n for n large enough and thus

B
(n)
k,l = F̄Y (yk∨l,n | tn)FY (yk∧l,n | tn).

From (1) and (6), we have

F̄Y (yk,n | tn) = F̄Z

(
yk,n − a(tn)

b(tn)

)
= F̄Z (qZ(αk) + εk,n) = αk + o(1),

in view of the continuity of F̄Z . As a result, B
(n)
k,l → Bk,l = αk∨l(1 − αk∧l) as n → ∞

and therefore

var(Γn,1) ∼ ‖K‖
2
2

nh
βtBβ.
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The proof of the asymptotic normality of Γn,1 is based on Lyapounov criteria for trian-

gular arrays of independent random variables:

n∑
i=1

E|Ti,n|3
/

var(Γn,1)→ 0 (19)

as n → ∞. Let us first remark that, for all i = 1, . . . , n, the random variable Ti,n is

bounded:

|Ti,n| ≤
∫ xi

xi−1

Kh(tn − s)ds
J∑
j=1

βj
∣∣1{Yi>yj,n} − E

(
1{Yi>yj,n}

)∣∣
≤

∫ xi

xi−1

Kh(tn − s)ds
J∑
j=1

|βj|

≤ ‖K‖∞
nh

J∑
j=1

|βj| =: ζn

in view of (A.3). As a consequence,

n∑
i=1

E|Ti,n|3 ≤ ζn

n∑
i=1

E(T 2
i,n) = ζn

n∑
i=1

var(Ti,n) = ζnvar(Γn,1)

and it is thus clear that (19) holds under the assumption nh→∞. A a result,

√
nhΓn,1

d−→ N
(
0, ‖K‖2

2 β
tBβ

)
. (20)

Let us now turn to the nonrandom term

Γn,2 =
J∑
j=1

βjF̄Y (yj,n | tn)

E
[

ˆ̄Fn,Y (yj,n | tn)
]

F̄Y (yj,n | tn)
− 1

 .
Lemma 3(i) together with the assumptions nh3 → 0 and nh→∞ as n→∞ entail

√
nh|Γn,2| ≤

√
nh

J∑
j=1

|βj|

∣∣∣∣∣∣
E
[

ˆ̄Fn,Y (yj,n | tn)
]

F̄Y (yj,n | tn)
− 1

∣∣∣∣∣∣ = O(
√
nh3) = o(1). (21)

Finally, collecting (20) and (21),
√
nhΓn converges to a centered Gaussian random

variable with variance ‖K‖2
2 β

tBβ, and the result follows.

The following proposition provides the joint asymptotic normality of the estimator (12)

of conditional quantiles. It can be read as an adaptation of classical results [5, 34, 36]

to the location-scale setting.
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Proposition 2. Assume (A.1), (A.2) and (A.3) hold. Let (tn) ⊂ [h, 1 − h] and

(αj)j=1,...,J a strictly decreasing sequence in (0, 1) such that fZ(qZ(αj)) > 0 for all

j ∈ {1, . . . , J}. If nh→∞ and nh3 → 0 as n→∞, then{√
nh

b(tn)

[
q̂n,Y (αj | tn)− qY (αj | tn)

]}
j=1,...,J

d−→ N
(
0RJ , ‖K‖2

2 C
)
,

where C is the covariance matrix defined by Ck,l = αk∨l(1− αk∧l)HZ(αk)HZ(αl) for all

(k, l) ∈ {1, . . . , J}2.

Proof. Let (s1, . . . , sJ) ∈ RJ , νj,n := sjb(tn)/
√
nh for all j = 1, . . . , J and consider:

Wn(s1, . . . , sJ) = P

(
J⋂
j=1

{√
nh

b(tn)

(
q̂n,Y (αj | tn)− qY (αj | tn)

)
≤ sj

})

= P

(
J⋂
j=1

{
q̂n,Y (αj | tn) ≤ qY (αj | tn) + νj,n

})

= P
( J⋂
j=1

{
Vj,n ≤ vj,n

})
,

where, for j = 1, . . . , J ,

Vj,n :=
√
nh

[
ˆ̄Fn,Y

(
qY (αj | tn) + νj,n | tn

)
− F̄Y

(
qY (αj | tn) + νj,n | tn

)]
,

vj,n :=
√
nh

[
αj − F̄Y (qY (αj | tn) + νj,n | tn)

]
.

Let us first examine the nonrandom term vj,n. In view of (1) and (6), it follows that

F̄Y (qY (αj | tn) + νj,n | tn) = F̄Z

(
qY (αj | tn) + νj,n − a(tn)

b(tn)

)
= F̄Z

(
qZ(αj) +

sj√
nh

)
.

Since F̄Z(·) is differentiable, for all j ∈ {1, . . . , J}, there exists θj,n ∈ (0, 1) such that

F̄Z

(
qZ(αj) +

sj√
nh

)
= αj −

sj√
nh
fZ

(
qZ(αj) +

sjθj,n√
nh

)
.

In view of the continuity of fZ(·) and since sj/
√
nh→ 0 as n→∞, it follows that

fZ

(
qZ(αj) +

sjθj,n√
nh

)
=

1 + o(1)

HZ(αj)
,
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leading to

vj,n =
sj

HZ(αj)
(1 + o(1)). (22)

Let us now turn to the random variable Vj,n. For all j = 1, . . . , J, let

yj,n = qY (αj | tn) + νj,n = qY (αj | tn) + b(tn)
sj√
nh

=: qY (αj | tn) + b(tn)εj,n,

where εj,n → 0 as n→∞. Then, Proposition 1 entails that{√
nh
(

ˆ̄Fn,Y (yj,n | tn)− F̄Y (yj,n | tn)
)}

j=1,...,J

= {Vj,n}j=1,...,J

converges to a centered Gaussian random variable with covariance matrix ‖K‖2
2 B.

Taking account of (22) yields that Wn converges to the cumulative distribution func-

tion of a centered Gaussian distribution with covariance matrix ‖K‖2
2 C, evaluated at

(s1, . . . , sJ), which is the desired result.

The following proposition provides a uniform consistency result for the estimator (12)

of conditional quantiles of Y given a sequence of design points (not too close from the

boundaries 0 and 1).

Proposition 3. Assume (A.1), (A.2) and (A.3) hold. Let In = {bnhc, . . . , n−bnhc}
and suppose nh/ log n→∞ and nh3/ log n→ 0 as n→∞. Then, for all α ∈ (0, 1),√

nh

log n
max
i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)
b(xi)

∣∣∣∣ = OP(1).

Proof. Let ε ∈ (0, 1) and α ∈ (0, 1). Define vn = (nh/ log n)1/2,

M(ε, α) = 2‖K‖2HZ(α) (α(1− α) (1− log(ε/2)))1/2 ,
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and for all i ∈ In let q±i,n = qY (α | xi)±M(ε, α)b(xi)/vn. Let us consider the expansion:

δn := P
(
vnmax

i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)
b(xi)

∣∣∣∣ ≥M(ε, α)

)
= P

(⋃
i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)
b(xi)

∣∣∣∣ ≥M(ε, α)/vn

)

= P

(⋃
i∈In

{
q̂n,Y (α | xi) ≥ q+

i,n

}
∪
{
q̂n,Y (α | xi) ≤ q−i,n

})

= P

(⋃
i∈In

{
α ≤ ˆ̄Fn,Y

(
q+
i,n | xi

)}
∪
{
α ≥ ˆ̄Fn,Y

(
q−i,n | xi

)})

≤ P

(⋃
i∈In

{
α− E ˆ̄Fn,Y

(
q+
i,n | xi) ≤ ( ˆ̄Fn,Y − E ˆ̄Fn,Y )(q+

i,n | xi)
})

+ P

(⋃
i∈In

{
α− E ˆ̄Fn,Y

(
q−i,n | xi

)
≥ ( ˆ̄Fn,Y − E ˆ̄Fn,Y )(q−i,n | xi)

})

=: P

(⋃
i∈In

α+
i,n ≤ ξ+

i,n

)
+ P

(⋃
i∈In

α−i,n ≥ ξ−i,n

)
=: δ+

n + δ−n .

Let us focus on the term δ+
n . Assumption nh/ log n → ∞ entails that vn → ∞ as

n→∞ and thus q+
i,n is bounded. Therefore Lemma 3(i) yields

α+
i,n := α− E ˆ̄Fn,Y

(
q+
i,n | xi

)
= α− F̄Y

(
q+
i,n | xi

)
(1 +O(h))

= F̄Z(qZ(α))− F̄Z
(
qZ(α) +

M(ε, α)

vn

)
(1 +O(h))

=
M(ε, α)

vn
fZ

(
qZ(α) +

M(ε, α)

vn
θ

)
+O(h),

for some θ ∈ (0, 1). Since fZ(.) is continuous, it follows that

α+
i,n =

M(ε, α)

vnHZ(α)
(1 + o(1)) +O(h) =:

κ1(ε, α)

vn
(1 + o(1)) ,

in view of the assumption nh3/ log n→ 0 as n→∞. As a preliminary result,

δ+
n = P

(⋃
i∈In

ξ+
i,n ≥

κ1(ε, α)

vn
(1 + o(1))

)
≤
∑
i∈In

P
(
ξ+
i,n ≥

κ1(ε, α)

vn
(1 + o(1))

)
. (23)

In addition,

P
(
ξ+
i,n ≥

κ1(ε, α)

vn
(1 + o(1))

)
= P

(
( ˆ̄Fn,Y − E ˆ̄Fn,Y )(q+

i,n | xi) ≥
κ1(ε, α)

vn
(1 + o(1))

)
:= P

(
n∑
j=1

X̃j ≥
κ1(ε, α)

vn
(1 + o(1))

)
, (24)
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where, for all j = 1, . . . , n, the random variables

X̃j :=
[
1{Yj>q+i,n}

− P
(
Yj > q+

i,n | xi
)] ∫ xj

xj−1

Kh(xi − s)ds

are independent, centered and bounded:

|X̃j| ≤
∫ xj

xj−1

Kh(xi − s)ds ≤
‖K‖∞
nh

.

Lemma 3(ii) entails

n∑
j=1

E(X̃2
j ) = var

(
n∑
j=1

X̃j

)
= var

[
ˆ̄Fn,Y

(
q+
i,n | xi

)]
=

F̄Y
(
q+
i,n | xi

)
FY
(
q+
i,n | xi

)
nh

‖K‖2
2(1 + o(1)).

Besides, q+
i,n → qY (α | xi) as n → ∞ and thus F̄Y

(
q+
i,n | xi

)
→ α as n → ∞ in view of

the continuity of F̄Y (· | xi). It follows that,

n∑
j=1

E(X̃2
j ) =

α(1− α)

nh
‖K‖2

2(1 + o(1)) =:
κ2(α)

nh
(1 + o(1)).

Applying Bernstein’s inequality for bounded random variables yields

(24) ≤ exp

(
−

κ21(ε,α) logn(1+o(1))

2nh
κ2(α)(1+o(1))

nh
+ κ1(ε,α)(1+o(1))

3nhvn

)

= exp

(
− κ2

1(ε, α) log n

2κ2(α) + 2κ1(ε,α)(1+o(1))
3vn

(1 + o(1))

)

= exp

(
−κ

2
1(ε, α) log n

2κ2(α)
(1 + o(1))

)
= exp [−2 (1− log(ε/2)) log n (1 + o(1))]

≤ exp [− (1− log(ε/2)) log n] , (25)

for n large enough. Collecting (23)-(25) yields

δ+
n ≤ n exp [− (1− log(ε/2)) log n] = exp (log(ε/2) log n) ≤ ε/2

for n large enough. The proof that δ−n ≤ ε/2 follows the same lines. As a conclusion,

we have shown that, for all α ∈ (0, 1) and ε ∈ (0, 1) there exists M(ε, α) > 0 such that

P

(√
nh

log n
max
i∈In

∣∣∣∣ q̂n,Y (α | xi)− qY (α | xi)
b(xi)

∣∣∣∣ ≥M(ε, α)

)
≤ ε,

which is the desired result.
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7.3 Proofs of main results

The proof of Theorem 1 directly relies on Proposition 2:

Proof of Theorem 1. Let us remark that

√
nh

b(tn)

(
ân(tn)− a(tn)

b̂n(tn)− b(tn)

)
= Ãξn,

where Ã =

(
0 1 0

1 0 −1

)
and ξn =

√
nh

b(tn)

q̂n,Y (µ3 | tn)− qY (µ3 | tn)

q̂n,Y (µ2 | tn)− qY (µ2 | tn)

q̂n,Y (µ1 | tn)− qY (µ1 | tn)

 .

Applying Proposition 2 with J = 3, α1 = µ1, α2 = µ2 and α3 = µ3 yields

ξn
d−→ N

(
0R3 , ‖K‖2

2 C
)
,

where

C =

 µ1(1− µ1)H2
Z(µ1) µ2(1− µ1)HZ(µ2)(HZ(µ1) µ3(1− µ1)HZ(µ3)HZ(µ1)

µ2(1− µ1)HZ(µ2)HZ(µ1) µ2(1− µ2)H2
Z(µ2) µ3(1− µ2)HZ(µ2)HZ(µ3)

µ3(1− µ1)HZ(µ3)HZ(µ1) µ3(1− µ2)HZ(µ2)HZ(µ3) µ3(1− µ3)H2
Z(µ3)

 .

Therefore,

Ãξn
d−→ N

(
0R2 , ‖K‖2

2 ÃCÃ
t
)
,

and the conclusion follows from standard calculations.

Theorem 2 is a straightforward consequence of Proposition 3:

Proof of Theorem 2. Remarking that

max
i∈In

∣∣∣∣ ân(xi)− a(xi)

b(xi)

∣∣∣∣ = max
i∈In

∣∣∣∣ q̂n,Y (µ2 | xi)− qY (µ2 | xi)
b(xi)

∣∣∣∣ ,
the first part of the result is a consequence of Proposition 3 applied with α = µ2 .

Similarly,

max
i∈In

∣∣∣∣∣ b̂n(xi)− b(xi)
b(xi)

∣∣∣∣∣ = max
i∈In

∣∣∣∣ q̂n,Y (µ3 | xi)− q̂n,Y (µ1 | xi)− qY (µ3 | xi) + qY (µ1 | xi)
b(xi)

∣∣∣∣
≤ max

i∈In

∣∣∣∣ q̂n,Y (µ3 | xi)− qY (µ3 | xi)
b(xi)

∣∣∣∣
+ max

i∈In

∣∣∣∣ q̂n,Y (µ1 | xi)− qY (µ1 | xi)
b(xi)

∣∣∣∣ ,
and the conclusion follows from Proposition 3 successively applied with α = µ3 and

α = µ1.
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Proof of Theorem 3. Let us consider the expansion√
kn(γ̂n − γ) =

√
kn(γ̂n − γ̃n) +

√
kn(γ̃n − γ) =: Υ1,n + Υ2,n,

where

γ̃n =
1

kn

kn−1∑
i=0

logZmn−i,mn − logZmn−kn,mn

is the Hill estimator computed on the unobserved random variables Z1, . . . , Zn. The

first term is controlled by remarking that

|Υ1,n| =
1√
kn

∣∣∣∣∣
kn−1∑
i=0

log(Ẑmn−i,mn − logZmn−i,mn)− (log Ẑmn−kn,mn − logZmn−kn,mn)

∣∣∣∣∣
≤ 1√

kn

kn−1∑
i=0

∣∣∣∣∣log
Ẑmn−i,mn

Zmn−i,mn

∣∣∣∣∣+

∣∣∣∣∣log
Ẑmn−kn,mn

Zmn−kn,mn

∣∣∣∣∣
≤

√
kn max

0≤i≤kn

∣∣∣∣∣log
Ẑmn−i,mn

Zmn−i,mn

∣∣∣∣∣ .
Combining Lemma 4 and Lemma 5 yields

|Υ1,n| = OP

(√
kn log n

nh

)
= oP(1), (26)

in view of the assumption nh/(kn log n) → ∞ as n → ∞. Let us now focus on Υ2,n.

Remarking that mn ∼ n as n → ∞ it is clear that mn/kn → ∞ as n → ∞. Be-

sides, since |A| ∈ RVρ, we thus have A(mn/kn) ∼ A(n/kn) as n → ∞. Therefore,√
knA(mn/kn) → 0 as n → ∞ and, since Z1, . . . , Zn are iid from (2), classical results

on Hill estimator apply, see for instance [27, Theorem 3.2.5], leading to

Υ2,n
d−→ N (0, γ2). (27)

The conclusion follows by combining (26) and (27).
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Figure 1: Student distribution with ν = 1 df. (a): Simulated data (+) and condi-

tional quantiles q(3/4|·) (magenta), q(1/2|·) (green) and q(1/4|·) (blue). (b): Location

function a(·) (black) and mean estimate ¯̂an(·) (red). (c): Scale function b(·) (black)

and mean estimate
¯̂
bn(·) (red). (d): Conditional tail-index γ (black), estimates γ̂n,i,

i = 1, . . . , N (blue) and mean estimate ¯̂γn (red) as functions of kn ∈ {1, . . . , 300}.
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Figure 2: Student distribution with ν = 2 df. (a): Simulated data (+) and condi-

tional quantiles q(3/4|·) (magenta), q(1/2|·) (green) and q(1/4|·) (blue). (b): Location

function a(·) (black) and mean estimate ¯̂an(·) (red). (c): Scale function b(·) (black)

and mean estimate
¯̂
bn(·) (red). (d): Conditional tail-index γ (black), estimates γ̂n,i,

i = 1, . . . , N (blue) and mean estimate ¯̂γn (red) as functions of kn ∈ {1, . . . , 300}.
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Figure 3: Student distribution with ν = 4 df. (a): Simulated data (+) and condi-

tional quantiles q(3/4|·) (magenta), q(1/2|·) (green) and q(1/4|·) (blue). (b): Location

function a(·) (black) and mean estimate ¯̂an(·) (red). (c): Scale function b(·) (black)

and mean estimate
¯̂
bn(·) (red). (d): Conditional tail-index γ (black), estimates γ̂n,i,

i = 1, . . . , N (blue) and mean estimate ¯̂γn (red) as functions of kn ∈ {1, . . . , 300}.
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Figure 4: Illustration on motorcycle insurance data. Horizontally: Age of the poli-

cyholder (hundred of years), vertically: Claim severity (SEK, log scale). Data (+),

estimated location function ân(·) (red) and scale function b̂n(·) (blue).
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Figure 5: Illustration on motorcycle insurance data, quantile-quantile plot. Horizon-

tally: Standard exponential quantiles, vertically: Weighted log-spacings computed on

the residuals. The continuous line has slope γ̂n.
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Figure 6: Illustration on motorcycle insurance data. Horizontally: Age of the poli-

cyholder (hundred of years), vertically: Claim severity (SEK, log scale). Data (+),

nonparametric conditional Weissman estimator q̌n,Y (αn | ·) (blue) and semi-parametric

extreme quantile estimator q̃n,Y (αn | ·) (red).

34


	Introduction
	Conditional location-scale family of heavy-tailed distributions
	Inference
	Main results
	Illustration on simulated data
	Real data example
	Appendix: Proofs
	Auxiliary lemmas
	Preliminary results
	Proofs of main results


