
HAL Id: hal-02367564
https://hal.archives-ouvertes.fr/hal-02367564

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing resource sharing in node-capacitated overlay
networks

Jimmy Leblet, Fabio Pianese, Gwendal Simon

To cite this version:
Jimmy Leblet, Fabio Pianese, Gwendal Simon. Optimizing resource sharing in node-capacitated
overlay networks. Autonomous and Spontaneous Networks Symposium, Nov 2008, Paris, France.
pp.1-17. �hal-02367564�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/237388912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02367564
https://hal.archives-ouvertes.fr
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in Node-Capacitated Overlay Networks

Jimmy Leblet Fabio Pianese∗ Gwendal Simon
Computer Science Department

Institut TELECOM; TELECOM Bretagne
France

Abstract

A frequently occurring problem in the field of distributed systems is to determine an al-
location of a generic resource so that the demand of every node in the system is fulfilled.
Node-capacitated graphs, i.e. graphs where the weight of a node corresponds to the amount of
resources it can give to the system, provide an appealing model that can be readily applied to
real-world applications, such as peer-to-peer and grid-based systems. In this paper, we propose
a model for this problem and show that it can be reduced to a problem of maximizing a flow in
a bipartite network. We then describe a distributed fault-tolerant algorithm which allows each
peer to compute the allocation of its resources using only local knowledge. Finally, we show
that computing the maximal flow in a bounded-degree graph is NP-complete, which means that
optimizing resource sharing in bounded-degree overlays is still an open problem.

1 Introduction

In this paper, we put forth a generic model for resource allocation in node-capacitated networks.
Our model considers an oriented underlay graph G = (V, E) where each node x in V is characterized
by an amount of resources it owns r(x) and a demand d(x), and where each edge in E can support
the transmission of any quantity of these resources from one node to another. Resources are an
abstract representation of some capability, such as data storage, upload bandwidth, power, etc. We
will assume that resources can be partitioned and that there exists an integer unit of measure (e.g.
the byte for storage resource). In economics, these resources are referred to as rival resources [3].
We aim to build, on top of this underlay, an oriented weighted overlay graph G = (V,E,w) where:

1. all nodes of the underlay are comprised in the overlay (V = V)

2. a non-empty subset of the underlay links are used as the edges of the overlay (E ⊆ E), and

3. the weight w(e) associated with an edge e = (x → y) ∈ E corresponds to the amount of
resources that are given by node x to node y.

We focus on the hardest case where the global amount of demand is equal to the owned resources:∑
x∈V d(x) =

∑
x∈V r(x). More precisely, we focus on a family of weight functions W such that
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(i) the sum of weights of edges from a node x is equal to r(x), that is every node delivers all the
resources it owns, formally

∑
e=(x→·)w(e) = r(x) and (ii) the quantity of resources received by

a peer x corresponds to its demand d(x), formally ∀x ∈ V,
∑

e=(·→x)w(e) = d(x). Any weight
function in W may be seen as a complete allocation of resources from peers to other peers, so
is a basis for an optimal resource sharing into what thus forms an overlay. The challenge is to
determine a weight function fulfilling every demand in a distributed manner.

1.1 Applicative Goals

A number of problems related to networked systems involve at some level the allocation of a scarce
resource. We will now focus our attention on the applicative interest of two particular sub-families
of W, which allow a ready application of this model in several well-known contexts.

In the first sub-family of W that we examine, called perfectly reciprocal and noted Wreci, the
demand of nodes is equal to the resources they own, that is ∀x ∈ V, d(x) = r(x). In short, an overlay
fulfilling these demands guarantees that a node receives exactly the same amount of resources it
gives. A typical application is a form of distributed data backup system where, due to external
constraints, the scarce rival resource is the storage space [7]. The goal of each entity x in the system
is storing a finite amount of data d(x) over the other entities. As storage space r(x) can only be
provided by individual users of the system, the system-wide storage capacity cannot exceed the sum
of the capacities R =

∑
x∈V r(x) that the users make available, i.e.

∑
x d(x) ≤

∑
x r(x). In this

scenario, any weight allocation in Wreci provides a fair constraint on the relationship between the
resources a node requires and offers. Such allocation, proportional to the individual contribution,
is expected to build an appealing enforcement mechanism that could address the problem of free-
riders raised in [8]. Such policies can be obviously extended to similar applications and contexts:
for instance, in the case of Video-on-Demand (VoD) streaming in cooperative settings [21], it may
be required that nodes which provide a larger amount of upload capacity r(x) be served video data
with a higher priority. The use of a Wreci weight allocation policy on the available upload capacity
could produce effects that are similar to those achieved by tit-for-tat incentive policies [5].

The second sub-family of W, called equally shared and noted Wequa, considers that each node
receives exactly the same amount of resources. As Wequa is inW, an equally shared weight function
guarantees that the amount of resources received by a node is equal to the sum of the resources
owned by all nodes R divided by the number of nodes in G. An interesting scenario is the dimension-
ing and control of power grid infrastructures, especially “microgrids” (MG) [17]. These emergent
examples of decentralized power generation and distribution systems can operate both as part of
the standard power grid and as isolated systems. Apart from the economic and environmental
advantages of local power generation, the decentralized operation of power sources may dampen
the effect of large-scale power outages [1]. MGs are a collection of power generator equipment (solar
panel, wind turbines, batteries, etc.) and loads, interconnected by power lines. Each “node” x of
the MG can thus be characterized by a power output r(x) and a power demand d(x). When discon-
nected from the global power grid, the MG has to satisfy the usual condition

∑
x d(x) =

∑
x r(x).

In such a scenario, which we may imagine as an emergency situation, a desirable allocation strategy
would try to split the available power equally among all the nodes of the MG: the use of any weight
allocation in Wequa would enable the controller of each node to route its power output to its grid
neighbors according to this egalitarian strategy. This allocation strategy could be also interesting
when extended to other applications, such as live video streaming in cooperative peer-to-peer net-
work environments. Basically, a live streaming system strives to allocate the upload capacity r(x)

2



available at each peer so that every peer in the system can receive the video at its original full rate
d(x), which is the same for all peers.

1.2 Related Work

Most problems related with weighted graphs describe the weights on edges as distances (travelling
salesman problem), capacities (maximum flow problem), costs (minimum spanning tree), etc. On
the other hand, vertex-weighted graphs are quite less common. Here is a set of selected works.
The facility location problem [6] considers the cost of transportation of commodities (which is
represented by weights on edges) and the cost for locating facilities (which are represented by
weights on vertices). The goal is to choose the best locations for facilities, i.e. the locations
minimizing the overall cost. The maximum balanced connected partition problem [4] looks for a
partition of a vertex weighted graph into two sub-graphs so that both subgraphs are connected and
the overall weight is optimally balanced on both subgraphs. As described in [11], the generalization
of this partitioning problem, called node capacitated graph partitioning problem, can be used to
model memory requirement in compiler design application, the number of finite element meshes in
finite element computation or the cell size in the design of electronic circuits.

Several recent studies consider node-capacitated graphs, especially in relation to the problem
of routing when a capacity constraint must be upheld at the nodes. For example, [13] provides a
strongly polynomial-time algorithm for the node capacitated ring routing problem and [16] presents
upper bounds for oblivious routing in undirected networks with node capacities. Other studies focus
on the problem of broadcasting live streams of data in unstructured network with node capacity
constraints. For instance, [20] proposes a fully distributed algorithm for the node capacitated
broadcast problem and show that this algorithm achieves the optimal rate in some network classes.
This work is probably the closest in scope to ours, but our goal differs as we investigate the more
generic problem of local resource sharing where each peer can be both a source and a sink.

A number of studies have dealt with overlay building on top of a given underlay in a distributed
manner. The predominant approach considers a selfish setting in which every peer determines
the best “rewiring” strategy to optimize some local utility function. These efforts, pioneered by
[10], define a network creation game in which nodes have to establish links to distant nodes at a
minimum cost while maximizing a distance-based quality of service metrics (also, the NP-hardness
of the problem is thereby proved). Finally, [18] defines the selfish neighbor selection problem
and provides some heuristics based on the k-median problem on asymmetric distance when the
out-degree of a peer (that is the number of connections it can establish) is bounded.

1.3 Summary

We first show that the problem of building an optimal overlay on top of a given node-capacitated
underlay can be reduced to a problem of maximizing a flow into a network. It is well known that
this problem can be solved in polynomial time in a centralized manner. However, few distributed
algorithms have been proposed to solve this problem. The first contribution of this paper, described
in Section 2 is a distributed algorithm especially designed for our problem. This algorithm does
not require a knowledge of the number of active participants and is self-stabilizing. Moreover, we
show that it will return a valid solution, if a solution exists, for any given demand function.

Then we study bounded outdegree overlays. We argue that an explicit limitation of the number
of active connections at every peer is among the most expected features when building an overlay.
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We prove in Section 3 that building a bounded-outdegree maximal flow over a given underlay graph
is unfortunately NP-complete. This result is the second main contribution of our paper and means
that the problem of building an optimal bounded-outdegree overlay on top of a given underlay is
still open, as our reduction to a maximal flow problem cannot be applied in this case.

2 Algorithm

2.1 Preambles and Notations

In a maximal flow problem, the goal is to find the maximal value that a flow between a single
source and a single sink can achieve in a network where each edge (x→ y) has a maximal nominal
capacity c((x → y)). The two most famous algorithms that achieve an optimal solution are the
Ford-Fulkerson [12] and the Edmonds-Karp [9] algorithms. These algorithms have a time complexity
in O(m · f) and O(n ·m2) respectively, where n is the number of vertices of the flow network, m
the number of edges and f the value of the maximal flow.

For a network N = (V,E, c), a flow f : E → R+ is said to be valid if we have f(e) ≤ c(e)
for every arc e ∈ E and

∑
e=(·→x) f(e) =

∑
e=(x→·) f(e) for every node x ∈ V which is neither

the source nor the sink. The residual graph of this flow is defined as the weighted directed graph
Rf = (V,Ef , u) of remaining capacities on arcs of N . An arc ef = (x→ y) belongs to Ef if:

• either ef belongs to E and f(ef ) < c(ef ) and then capacity u(ef ) is equal to c(ef )− f(ef )

• or the arc erevf = (y → x) belongs to E and f(erevf ) 6= 0, then capacity u(ef ) is f(erevf ).

If there exists a path from the source to the sink in Rf then we can add to the flow along this
path a positive value of flow equal to the minimum capacity of arcs along this path. The flow is
maximal when no such path exists anymore. The Ford-Fulkerson algorithm consists of computing
Rf , then seeking a path in the residual graph, finally increasing the flow along this path and do it
again until there is no path from the source to the sink in Rf . The algorithm begins with the null
flow which is obviously valid.

2.2 Reduction to Maximal Flow Problem

We now give some definitions that allow to transform the problem of the overlay creation into a
max-flow problem. With an oriented overlay G = (V, E), a resource distribution function r and a
demand function d, we associate a network N(G, r, d) = (V ′, E′, c). The set V ′ contains a sink q, a
source s and, for every peer x ∈ V, two vertices x+ and x−. Let V + be the set {x+ : x ∈ V} and
V − = {x+ : x ∈ V}. Formally, we have V ′ = V + ∪ V − ∪ {s, q}.

The set of oriented edges E′ linking the vertices of the network can be seen as three distinct
subsets. The first one contains n edges from the source to each vertex x+. The capacity of an edge
(s→ x+) is the amount of resources r(x) the peer x can supply. The second one includes n edges
from each vertex x− to the sink. The capacity does here depend on the demand d(x). For example,
a weight function w in Wreci aims to fulfill (x− → q) equal to r(x) for all x, although it is R

n for a
weight function in Wequa. Finally, in the third subset of edges, we assign one edge from x+ to y− if
there is an edge (x→ y) in the overlay graph. The capacity of this edge is infinite1. Thus we can

1This transformation can cover a peer-to-peer system where some links are constrained by setting the capacity to
the limitation of this link instead of ∞.
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Figure 1: Transformation of an overlay containing two peers x and y.

define E′ as E′ = {(s → x+), (x− → q) : x ∈ V} ∪ {(x+ → y−) : (x → y) ∈ E}. A transformation
of a basic overlay containing only two peers to its associated network is represented in Fig. 1.

weight function w ∈ W to apply to the overlay G. Indeed, let f be a flow achieving the maximum
value. The function w can be defined as, for every arc (x → y) ∈ E , let w(x → y) be equal to
f(x+ → y−). The amount of exchanged resources by w is then exactly the value of f .

For any demand distribution d such that
∑

x∈V d(x) ≤
∑

x∈V r(x), the maximal value of a
maximal flow is equal to the sum of demands because the capacity of the links from the nodes
in V + to the nodes in V − is infinite. Therefore, by the definition of the flow conservation, if the
value of f is equal to the sum of demands, we obtain that w reaches the maximal demands. More
generally, any maximal flow f of N(G, r, d) allows to determine an associated weight function for
G such that the demand d(x) for every x in V is fulfilled if and only if the value of f is the sum
of demands. In other words, an optimal resource allocation can be immediately deduced from a
computation of the maximum flow, which is known to be done in polynomial time.

In a maximal flow problem, the goal is to find the maximal value that a flow between a single
source and a single sink can achieve in a network where each edge (x→ y) has a maximal nominal
capacity c(x→ y). The two most famous algorithms that achieve an optimal solution are the Ford-
Fulkerson [12] and the Edmonds-Karp [9] algorithms. These algorithms have a time complexity in
O(m · f) and O(n ·m2) respectively, where n is the number of vertices of the flow network, m the
number of edges and f the value of the maximal flow.

Such a transformation from a problem related with node-weighted graphs to a maximal flow
on edge-weighted graphs is not unusual. Typically, several recent studies have used the same
method for the problem of routing [13, 16] or broadcasting [20] when a capacity constraint must
be upheld at the nodes. We emphasize however that the problem we tackle here has never been
formulated with such a graph-based model where each vertex is associated with two weights. On
the contrary, works dealing with close problems have used powerful but costly techniques, such as
integer programming, to provide approximate algorithms [19]. In comparison, this elegant though
simple model gives exact solutions in polynomial time.

2.3 Algorithm

Exploiting the full capacity of a given peer-to-peer overlay would be of real interest if it could be
achieved without global view by peers themselves. In other words, we are looking for a distributed
algorithm able to cope with transient peers and to rely only on local information from immediate
neighborhood. Basically, known distributed algorithms for the max-flow problem are based on
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either the Ford-Fulkerson method, but only for synchronous systems to our knowledge [2, 14], or
the preflow-push method [15]. In their seminal article, Goldberg and Tarjan emphasize that their
algorithm admits efficient distributed and parallel implementations. However, it is neither tolerant
to faults nor scalable. In particular, two criteria are required to end the preflow-push algorithm, but
both require to know the number of active nodes. On the other hand, the Ford-Fulkerson algorithm
does not require such global knowledge, hence it appears as a more appealing basis, though it has
to be substantially adapted to fit with our model.

We describe now a distributed and self-stabilizing algorithm that allow peers to compute a
global optimal resource allocation. This algorithm requires the only knowledge of the immediate
neighborhood, and is able to eventually reach a global optimal state from any configuration. The
originality of our algorithm is that, according to Ford-Fulkerson principle, not only each peer tries
to find a way to supply its resources but also it pushes back its received resources in a kind of
residual overlay graph.

2.3.1 Algorithm Description

We assume each node can communicate directly with other nodes via bidirectional links. Each
node runs the same local algorithm and may start executing the algorithm either at any arbitrary
time or upon receiving a message triggering algorithm execution.

When a node x joins the system, it only knows its demand d(x), its resources r(x) and its
neighborhood N (x). Besides, x also knows its remaining offer ρ(x) and its remaining demand
δ(x). That is, these two variables give the value of, respectively, what amount of resources is still
available at x, and what amount of resources x is still demanding. The algorithm is based on
activations. A node x is activated once either it receives a message from one of its neighbors, or the
failure of a neighbor is detected. The protocol consists of only three messages: require, supply
and back.

Each node manages a buffer to store the requests of other nodes. When a node has to select one
of its requesters, it can use any policy to choose it in its buffer, typically first-in-first-out. When a
peer x joins the system, it sends a require message with its demand to all its neighbors, so that it
will be marked as a requesting peer, and it will hopefully be eventually served. Once it is fulfilled,
it should alert its neighbors that they have to discard the entry on their buffer. This is done by a
require message with a null value. In the following, we do not give details on buffer management
or variables update in order to let the reading as easy as possible.

The require message contains a path ψ and a value ∆. The pseudo-code of the treatment at
reception is detailed in Figure 2. This message is the result of a chain of messages initiated by
a peer xk whose demand is not fulfilled at the time it sends the first message. The first message
of the chain is require with ψ = [xk] and ∆ = δ(xk). A negative value ∆ means “please send
me some resources”. This message is sent to all neighbors of xk. Consider now the peer xk−1

receiving this message (line 1-10). If its remaining offer is not null, it can obviously supply xk (lines
2-5). If it has already allocate its whole offer or if the remaining offer was not sufficient to serve
xk, it can consider re-allocating its offer in a different way, for example, supplying xk instead of
supplying another neighbor. In order to investigate such an opportunity (lines 6-10), the peer xk−1

then forwards the message require with ψ = [xk−1, xk] and a new computed ∆ whose value is now
positive. A positive value means “give me back my resources, I want to supply xk”. The message
is sent to all peers that are already supplied by xk−1. The peer xk−2 receiving this message (lines
11-19) can forward the require message again with ψ = [xk−2, xk−1, xk] and a new computed ∆
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1 if ∆ negative then
2 if ρ > 0 then
3 send “supply, min(ρ,∆)” to x1

4 ∆←− ∆−min(ρ,Delta)
5 end if
6 if ∆ 6= 0 then
7 S = {y ∈ N (x) : w(x→ y) > 0}
8 send “require, [x, x1, · · · , xk],−∆” to S
9 end if

10 end if
11 if ∆ positive then
12 if δ < 0 and w(x1 → x) > 0 then
13 send “back,min(∆, w(x1 → x))” to x1

14 ∆←− ∆−min(∆, w(x1 → x))
15 end if
16 if ∆ 6= 0 then
17 send “require, [x, x1, · · · , xk],−∆” to N (x)
18 end if
19 end if

Figure 2: Reception “require, [x1, · · ·xk], ∆” (node x)

whose value is now negative. The receiver should interpret this message as “send me some resources
so that I can free the resources xk−1 is supplying to me and let xk−1 supply xk”. And so on.

The supply message contains an amount of resources. It is sent by a peer that (i) has been
activated by the reception of a message, (ii) has stored a message require with a negative value
−∆, and (iii) has some resources to offer. This message is actually a reservation of the resources
from the sender of this message to the destination, which is the requiring neighbor. The amount
of resources is free, but it can obviously not be greater than the remaining offer, nor than ∆. At
reception, the treatment is detailed in Figure 3.

The back message does also contain an amount of resources. It is sent by a peer that (i) has
been activated by the reception of a message supply with an amount of resources ω, and (ii) is
fulfilled. This situation may occur in two cases. First, when two messages supply are concurrently
arriving. In this case, the peer sends immediately these resources back to the sender (lines 8-9
in Figure 3). In the other case, this peer has forwarded a message require with a positive value
because a re-allocation is required (lines 6-7 in Figure 3). The amount of resources is easy to
compute, it is the excess of resources. Note that a peer does never receive more resources than
its demand: as soon as it receives a supply message while it is already fulfilled, it forwards the
resources in excess.

2.3.2 Algorithm Interpretation

We give another interpretation of this algorithm, based on the aforementioned transformation. This
interpretation is the core of the proofs that this algorithm terminates and the final allocation is
optimal.

Each peer cares about its associated nodes x+ and x−. The goal is to detect some existing
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1 δnew ←− δ − Ω
2 if (δ > 0 and δnew = 0) then
3 send “require,∅, 0” to N (x)
4 end if
5 if δnew < 0 then
6 if (∃ a requiring z ∈ N (x) with positive ∆) then
7 send “back, −δnew” to z
8 else
9 send “back, −δnew” to y

10 end if
11 end if

Figure 3: Reception “supply, Ω” from y (node x)

paths from both nodes to the sink with a non-empty capacity. The remaining offer and demand
can be here transformed into one unique variable called Excess for, respectively, the node x+ and
x−. That is, a positive Excess(x+) means that the node x does not share all its available resources.
The value Excess(x+) is initially set to r(x). The evolution of Excess(x−) is more complex. Its
value is initially set to −d(x), so it is negative. While Excess(x−) is negative, the demand d(x) is
not fulfilled. A positive value of Excess(x−) can occur and means that x receives more resources
that it demands. The discussion related with Figure 3 describes these cases. The goal is to reach a
state where both Excess(x+) and Excess(x−) are null, which is equivalent to both remaining offer
and demand null.

The protocol can easily be explained in this model. When a peer x sends a require message
with a negative value ∆, it means that this message has been sent by the node x− although a
positive value ∆ means a message from x+. The supply message can only be sent by x+, and back
message by x−. The use of these latter message is based on Ford-Fulkerson principle: the flow is
also circulating on the residual graph created by the allocations.

We denote by ψ(x+) (respectively ψ(x−)) the current path from the node x+ (respectively x−)
to the sink. A path to the sink is obviously equivalent to a path to a node y− which is requiring
resources. We denote by ω(ψ(x+)) (respectively ω(ψ(x−))) the amount of resources that can be
allocated to the path p(x+) (respectively p(x−).

The computation of paths, which is done at every activation, is described in Alg. 4. For the
node x+ (lines 2-8), the challenge is to find a node y− either whose demand is not fulfilled, or which
knows a way to reach a not fulfilled node z−. For x−, a negative Excess(x−) leads trivially to
psi(x−) = [x−] (line 12), otherwise the path p(x−) depends on an existing node y+ such that both
psi(y+) is not empty and y sends resources to x (line 14-17). If no neighbor of x exhibits any path
to the sink, then x has no path anymore (lines 7 and 19).

The second step is to send flow along paths. A node x◦ with ◦ ∈ {+,−} can send flow if it
has both a positive excess Excess(x◦) and a valid path p(x◦) 6= ∅. It then sends the maximal
amount of resources it can, i.e. the smallest value between δ(x◦) and Excess(x◦), to the next node
in p(x◦). If it still has some available resources, it then computes a new path p(x◦) and sends, if
possible, flow along this new path. The node sends flow along new and not yet used paths until it
has no more available resources or no more known paths to fill. It can then update its variables
and become inactive.
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1 − · · ·− x+ − · · ·−
2 pick u ∈ N (x) such that ψ(u−) 6= ∅ and x+ /∈ ψ(u−)
3 if u exists then
4 ψ(x+)← ψ(u−) and add x+ to ψ(x+)
5 ω(ψ(x+))← ω(ψ(u−))
6 else
7 ψ(x+)← ∅; ω(ψ(x+))← 0
8 end if
9

10 − · · ·− x− − · · ·−
11 if Excess(x−) < 0 then
12 ψ(x−)← [x] ; ω(ψ(x−))← −Excess(x−)
13 else
14 pick u ∈ N (x) such that ψ(u+) 6= ∅ and x− /∈ ψ(u+) and w((u→ x)) 6= 0
15 if u exists then
16 ψ(x−)← ψ(u+) and add x− to ψ(u+)
17 ω(ψ(x−))← min (ω(ψ(u+)), w((u→ x)))
18 else
19 ψ(x−)← ∅ ; ω(ψ(x−))← 0
20 end if
21 end if

Figure 4: Computing Paths

As our target environment are asynchronous distributed systems where processes can crash at
any time, a path p(x◦) may have disappeared in the current residual graph. So this node will send
resources to a node y• which does not necessarily belong to a path to the sink. But, if a path from
x◦ exists to the sink, then the flow sent to y• will eventually go back to x◦ and go along the correct
path. So if a basic failure detector can eventually notify the crash of a neighbor, a node retrieving
the resources it gave to this faulty neighbor can update its neighborhood and re-become active.
The system will thus re-converge to a new maximal solution.

2.4 Algorithm Proof

We could use in the following proofs a fully realistic model including various communication time
and various computing time, but, mostly for clarity, we assume in the sequel that messages have
no travelling time, that algorithm running time is null and that messages are immediately treated.
Therefore, for a time t and a time t+ ε with ε > 0, there is a unique finite sequence (x1, · · · , xl) of
activated nodes. At a given time t, a working configuration Ct is defined by, for each x ∈ V , the
value of δt(x+), δt(x−), pt(x+), pt(x−), Excesst(x+), Excesst(x−) and for each y ∈ N (x) the value
of wt((x→ y)). Each system configuration is associated with a unique valid flow ft. If no node x−

exhibits a positive Excesst(x−), then the valid flow ft is directly deduced from wt and we denote
by Rt the corresponding residual graph.

We now explain, for the purpose of proofs, how to obtain ft if there is at least one node x− with
a positive Excesst(x−). We first assume a total order on nodes, for example V = {x1, · · · , xn}.
A node x− having a positive excess should discard this excess. Let j ≤ n be the smallest index
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1 − · · ·− reduce Excess(x+) − · · ·−
2 Nsent = ∅
3 − · · ·− Set of nodes to whom x+ has already sent resources − · · ·−
4 while (Excess(x+) > 0) and(p(x+) 6= ∅) do
5 let y− be the second element of p(x+)
6 w((x→ y)) + = min(Excess(x+), δ(x+))
7 Excess(x+) − = min (Excess(x+), δ(x+))
8 add y to the set Nsent
9 msg to y: w((x→ y)) = min(Excess(x+), δ(x+))

10 run Alg. 4 lines 1-8
11 end while
12 − · · ·− reduce Excess(x−) − · · ·−
13 Nsent = ∅
14 while (Excess(x−) > 0) and (p(x−) 6= ∅) do
15 let y+ be the second element of p(x−)
16 w((y → x)) − = min(Excess(x−), δ(x−))
17 Excess(x−) − = min(Excess(x−), δ(x−))
18 msg to y: w((y → x)) = Excess(x−)
19 add y to the set Nsent
20 run Alg. 4 lines 9-20
21 end while

————————————-

Figure 5: Sending Flow Along Paths
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such that
∑j

i=1wt((xi → x)) ≥ Excess(x−). The excess of x− can be discard easily by somehow
“refusing” the resources given by all nodes in {x+

1 , · · · , x
+
j }. More precisely, we set the flow f((x+

i →
x−)) to 0 for all 1 ≤ i < j and the flow f((x+

j → x−)) is set with the rest of the excess, formally∑j
i=1wt((xi → x)) − Excess(x−). Then, the flow is not conserved at all nodes impacted by this

operation, i.e. all nodes in {x+
1 , · · · , x

+
j }. Therefore, we reset the flow between the source and

these nodes so that the flow is conserved.
For the clarity of following proofs, let ExcessNodest be the set of nodes having positive excess

and GlobalExcesst the sum of all positive excesses GlobalExcesst =
∑

x◦∈ExcessNodest
Excess(x◦).

Lemma 1. For any time t and for any ε > 0, we have GlobalExcesst ≥ GlobalExcesst+ε.

The proof of this lemma is detailed in Appendix.

Lemma 2. At a given time t, if there exists a path p = [s, x+
1 , x

−
2 , · · · , x

−
k , q] in Rt from a node

x+
1 to a node x−k , then either we have Excesst(x+

1 ) > 0 or there exists y− 6= x−2 such that we have
both wt((x1 → y)) > 0 and Excesst(y−) ≥ wt((x1 → y)).

Proof . The proof directly follows from the definition of Rt. �

By considering inactive nodes and shortest paths inRt and by Lemma 2, we obtain the following
theorem, and thus the following corollary.

Theorem 1. At a given time t, if all nodes are inactive then there is no path from s to q in Rt.

Corollary 1. At a given time t, if all nodes are inactive then the flow induced by wt is maximal.

Theorem 2. At a given time t, let p = [s, x+
1 , · · · , x

−
k , q] a shortest path in Rt from s to q, then

there exists ε > 0 such that there is no path from s to q in Rt+ε beginning by x+
1 and ending by x−k .

Moreover, we have GlobalExcesst > GlobalExcesst+ε.

Outline of the Proof . Let p = [s, x+
1 , · · · , x

−
k , q] a shortest path in Rt from s to q. Assume, by

contradiction, that for every ε > 0 there exists a path from s to q in Rt+ε beginning by x+
1 and

ending by x−k . First of all, as p exists, we have by Theorem 1 that there is at least one node that
will become active. Moreover, as there always exists a path from s to q in Rt+ε containing both
x+

1 and x−k , we obtain an infinite sequence S of activated nodes after the time t.
First, we claim that there is at least one node from the set {x1, · · · , xk} that is activated after

the time t, that is more formally that there exists xi ∈ V such that we have both x◦i ∈ p, with
◦ ∈ {+,−}, and xi ∈ S. Indeed, assume by contradiction that there is no nodes from {x1, · · · , xk}
that belongs to S. Then, as p is a shortest path in Rt from s to q ending by x−k , we have that
Excesst+ε(x−k ) < 0, and thus pt+ε(x−k ) = [x−k ]. Now, as x+

k−1 is never activated after the time t and
as p is a shortest path in Rt, we have that pt(x+

k−1) = pt+ε(x+
k−1) = [x+

k−1, x
−
k ]. By induction, we

obtain that pt(x+
1 ) = pt+ε(x+

1 ) = [x+
1 , · · · , x

+
k−1, x

−
k ] and pt(x−2 ) = pt+ε(x−2 ) = [x−2 , · · · , x

+
k−1, x

−
k ].

By Lemma 2, we have either that Excesst(x+
1 ) > 0 or there exists y− 6= x−2 such that we have both

wt((x1 → y)) > 0 and Excesst(y−) ≥ wt((x1 → y)). Thus we obtain that, we have pt(y−) 6= ∅
and pt(y−) = pt+ε(x−y ). Now as either x+

1 or y− have positive excess at time t which contradicts
that pt(x+

1 ) 6= ∅ and pt(x−2 ) 6= ∅, because after a node x◦ has been activated we can not have both
Excess(x◦) > 0 and p(x◦) 6= ∅. So either x1 or y belongs to S. Notice that in the second case, as y
is activated and as y− has positive excess, the fact that p(y−) is none void implies that p(y−) will
change, and thus y will send a message to x1, which will become active.
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Second, we claim that the node x+
1 or a node y− such that w((x1 → y)) > 0 will have a sending

activation after time t, where a sending activation of the node x◦ is an activation of the node x
with a decreasing Excess(x◦). This claim directly follows from the proof of the previous claim.

Third, we claim that the node x◦ that is activated (x◦ = x+
1 or x◦ = y−) has a finite number of

sending activation. We show that, for a node y−1 and the node x◦, the number of sending activation
of x◦ at a time t such that pt(x◦) = [x◦, yl, · · · , y−1 ] is finite. This facts follows from the facts that
the number of possible paths between x◦ and y−1 is finite, that paths contains no cycles and that a
sent resource from x◦ can come back to x◦ a finite number of times.

From this last claim, we obtain that there exists a time t′ such that there is no nodes having
sending activation after time t′ and thus, by claim 3, that there is no path from s to q in Rt′ ,
which is a contradiction. Moreover, as there is a path between s and q in Rt and as there is
no path from s to q in Rt′ and as there exists sending activation, we have that there exists y−

such that we have both Excesst(y−) < 0 and Excesst′(y−) < Excesst(y−), and thus we obtain
GlobalExcesst > GlobalExcesst′ . �

Proposition 1. If at a given time, there is no path from s to q in Rt then there exists ε > 0 such
that at time t+ ε all nodes are inactive.

From previous theorems and this last proposition, we obtain the following theorem.

Theorem 3. The algorithm terminates and it will converge to the maximal flow.

Proof . As the value of GlobalExcess decreases with time and as it is a positive integer, from
Theorem 2, there exists a time t such that there is no path from s to q in Rt. By Proposition 1,
we obtain that the algorithm terminates and by Corollary 1, that the obtained flow is maximal. �

3 Bounded Outdegree Overlays

In this Section we assume a peer xi to have not more than ∆(xi) connections, that is the overlay
graph has a bounded out-degree: |N+(xi)| ≤ ∆(xi). This assumption is not only helpful to reduce
the search space for the design of an optimal overlay graph but stems from practical considerations.
Indeed, in most real systems the number of connections a peer can establish concurrently is limited,
both for scalability and performance reasons.

As for the unbounded case, we can reduce the problem of the overlay construction to a max-flow
problem: the constraint on the number of connections a peer can establish becomes a constraint
on the out-degree of the network flow. Hence, the problem is to determine the maximum flow of
a edge-capacitated directed graph under the constraint that for each vertex xi ∈ V , the out-degree
induced by the flow is less or equal to ∆(xi). Formally, we express our problem as follows:
Bounded-Outdegree Maximal Flow
Instance : Directed graph G = (V,A), specified vertices s and q, capacity c(a) ∈ N∗ for a ∈ A,
bound on out-degree ∆(v) ∈ N∗ for v ∈ V and positive integer K.
Question : Is there a flow function f : A −→ N such that :

(i) f(a) ≤ c(a) for all a ∈ A,

(ii) for each v ∈ V \ {s, q},
∑

(u,v)∈A f((u, v)) =
∑

(v,u)∈A f((v, u)), i.e. flow is conserved at v,
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(iii) for each v ∈ V , |{u ∈ V : f((v, u)) 6= 0}| ≤ ∆(v), i.e. the outdegree of v in the flow is at
most ∆(v),

(iv)
∑

(u,q)∈A f((u, q))−
∑

(q,u)∈A f((q, u)) ≥ K, i.e. the net flow in q is at least K.

We first recall the definition of the NP-complete Minimum Cover problem, then we prove that
our problem is also NP-complete, even if the directed graph induced by V \ {s, q} is bipartite.
Minimum cover
Instance : Collection C of subsets of a finite set S, positive integer L ≤ |C|.
Question : Does C contain a cover for S of size L or less, i.e. a subset C ′ ⊆ C with |C ′| ≤ L such
that every element of S belongs to at least one member of C ′ ?

Theorem 4. Bounded-Outdegree Maximal Flow is NP-complete.

Proof . Given an instance of Bounded-Outdegree Maximal Flow and a flow f , verifying the condi-
tions (i) to (iv) is polynomial in the size of the problem: hence, this problem belongs to NP.

We now transform Minimum Cover to Bounded-Outdegree Maximal Flow. Let C = {C1, · · · , Cm}
a collection of subsets of a finite set S = {x1, · · · , xn} and let L a positive integer such that L ≤ |C|.
We define G = (V,A) with V = {s, q} ∪ S ∪ C and A = {(s, Ci) : i ∈ {1, · · · ,m}} ∪ {(xi, q) : i ∈
{1, · · · , n}} ∪ {(Ci, xj) : i ∈ {1, · · · ,m}, j ∈ {1, · · · , n} and xj ∈ Ci}. Let c((s, Ci)) = |Ci| and
c(a) = 1 otherwise and let ∆(s) = L and ∆(v) = |V | otherwise and let K = |S| It is clear that
the instance of Bounded-outdegree Maximal flow can be constructed in polynomial time. We claim
that C contains a cover for S of size L or less if and only if there exists a flow f which respect the
conditions (i) to (iv).

Clearly, if we have a minimum cover C ′ of C of size lower or equal to L, then we can define a
mapping φ from S to C ′ such that xi ∈ φ(xi). Then we can define the flow f as f((s, Ci)) = 0 if
Ci /∈ C ′ and f((s, Ci)) = |φ−1(Ci)| otherwise, f((Ci, xj)) = 1 if Ci = φ(xj) and 0 otherwise, and
f((xj , q)) = 1. One can check that f verifies conditions (i) to (iv) of the definition of Bounded-
Outdegree Maximal Flow.

Now, let f a flow that fulfills conditions (i) to (iv) of the definition of Bounded-Outdegree
Maximal Flow. One can check that C ′ = {Ci : f((s, Ci)) 6= 0} is a minimum cover of S of size
lower or equal to L. Indeed, as K = |S|, the definition of the G implies that for every xj ∈ S, there
exists Ci ∈ C ′ such that xj ∈ Ci (we must have that f((Ci, xj)) = 1). Now as ∆(s) ≤ L, we have
that |C ′| ≤ L. �

4 Conclusion

Node-capacitated graphs have recently become a hot topic as it appears as an appealing model
for peer-to-peer systems where the core network is transparent and resource constraints are on the
peers. This paper provides a formal graph-based model for the problem of local resource sharing in
node-capacitated underlays and exhibits two families of resource allocation revealing a substantial
practical interest. We show that building an overlay such that the demand in resources of every
peer is fulfilled can be reduced to computing the maximal flow in a bipartite network. Then we
design a distributed fault-tolerant algorithm which is provably correct, but we also show that this
algorithm can not be directly used to build bounded-outdegree overlays.

Note however that despite Bounded-outdegree Maximal flow is NP-complete, it does not imply
that the problem of building an optimal overlay on top of a given node-capacitated underlay with
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constraints on the outdegree of this overlay is NP-complete. It only shows that the technique used
here for unbounded outdegree overlays can not be directly applied to bounded outdegree overlays.
The problem of determining a bounded outdegree overlay is consequently still open.
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Appendices

A Proofs

Lemma. For any time t and for any ε > 0, we have GlobalExcesst ≤ GlobalExcesst+ε.

Outline of the Proof . In order to prove this lemma, we have only to consider nodes before
and after that they become active. Let x be an inactive node and let t the time before than
x becomes active. We denote by Ct′ the configuration of the system after that the node x has
running the algorithm and that the messages sent by x have been treated. So, the only nodes
such that the Excess values could have been changed are in N (x) ∪ {x}. We then obtain that
we have both

∑
y∈N (x)Excesst(y

+) + Excesst(x+) =
∑

y∈N (x)Excesst′(y
+) + Excesst′(x+) and∑

y∈N (x)Excesst(y
−) + Excesst(x−) =

∑
y∈N (x)Excesst′(y

−) + Excesst′(x−). So the difference
GlobalExcesst′ −GlobalExcesst is the sum of excess of nodes having negative excess at time t and
positive excess at time t′. As the only nodes that have negative excess at time t and positive excess
at time t′ are nodes belonging to the set {y− : y ∈ N (x)}, we obtain that :

GlobalExcesst′ −GlobalExcesst =
∑

y∈N (x)
Excesst(y−)<0
Excesst′ (y

−)≥0

Excesst(y−)

Thus, we obtain that GlobalExcesst′ ≤ GlobalExcesst �

Theorem. At a given time t, if all nodes are inactive then there is no path from s to q in Rt.

Proof . Assume by contradiction that at time t all nodes are inactive and that there exist paths from
s to q in Rt. Let p = [s, x+

1 , · · · , x
−
j , q] a shortest path from s to q in Rt. Notice that by definition of

N , we have j ≥ 2. First of all, as p exists we have that Excesst(x−j ) < 0 and thus that pt(x−j ) = [x−j ].
As xj is inactive and as p is a shortest path in Rt, we have that pt(x+

j−1) = [x+
j−1, x

−
j ]. Now, as

xj−1 is inactive and as p is a shortest path in Rt, we have that pt(x−j−2) = [x−j−2, x
+
j−1, x

−
j ]. By

induction, one can prove that this remains true for every i ∈ {1, · · · , j}. So we obtain that pt(x+
1 ) =

[x+
1 , · · · , x

−
j ] and pt(x−2 ) = [x−2 , · · · , x

−
j ]. By Lemma 2, we have either that Excesst(x+

1 ) > 0 or
there exists y− 6= x−2 such that we have both wt((x1 → y)) > 0 and Excesst(y−) ≥ wt((x1 → y)).
Thus as we have both p(x+

1 ) and p(y−) are none void and by Lemma 2 one of them have positive
excess, this contradicts the fact that both nodes x1 and y are inactive. �

Corollary. At a given time t, if all nodes are inactive then the flow induced by wt is maximal.

Proof . This corollary directly follows from the proof of the Ford-Fulkerson’s algorithm, from the
fact that the flow induced by wt is a valid flow in the network N and from Theorem 1. �

Proposition. If at a given time, there is no path from s to q in Rt then there exists ε > 0 such
that at time t+ ε all nodes are inactive.

Proof . We denote by F the set of nodes having negative excess, that is F = {y− : Excess(y−) < 0}.
By definition of F , we have that for any ε > 0 and for any y− ∈ F , pt+ε = [y−] and δt+ε(y−) =
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−Excesst+ε(y−) = −Excesst(y−). This means that nodes belonging to F send no more message
to its neighbors. We denote by F1 the set of nodes that are adjacent in Rt to at least one element
of F , so there exists ε1 > 0 such that after the time t+ ε1 the values of p(x+) and δ(x+) does not
change anymore for x+ ∈ F1. This means that nodes belonging to F1 send no more message to its
neighbors after the time t + ε1. In the same way, we can define Fi as the set of nodes such that
the minimal distance in Rt between a node from F and this node is i. By induction, one can show
that there exists εi > 0 with εi ≥ εi−1 such that after the time t + εi the values of p(x) and δ(x)
does not change anymore for x ∈ Fi. As the number of nodes in the system is finite, there exists
an integer j such that we have Fj = Fj+1. So, at time t+ εj , we have that all nodes from Fj does
not send message anymore. Clearly, we obtain that Fj is the set of nodes x such that there exists
a path in Rt from x to q.

Now, let G the set of nodes x such that pt+εj = ∅. As there is no path from s to q in Rt and
thus in Rt+εj , we obtain that G is not empty. Moreover, nodes from G send no more message
to its neighbors after the time t + εj . Now, again, if we define Gi as the set of nodes such that
the minimal distance in Rt between a node from G and this node is i, we obtain that there exists
ε′i ≥ ε′i−1 (with ε′0 = εj) such that all nodes from Gi does not send message anymore. If we denote
by k the integer such that we have Gk = Gk+1, we obtain that Fj ∪Gk = is the set of nodes of the
system. and thus, that at time t+ ε′j all nodes are inactive. �
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