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imbalance in the response of pre- 
and post-synaptic components to 
amyloidopathy
terri-Leigh Stephen1,4, Francesco tamagnini1,2,3, Judith piegsa1,3, Katherine Sung1, 
Joshua Harvey1, Alice oliver-evans1, Tracey K. Murray1, Zeshan Ahmed1, Michael L. Hutton1, 
Andrew Randall3, Michael J. o’neill1,5 & Johanna S. Jackson  1,6

Alzheimer’s disease (AD)-associated synaptic dysfunction drives the progression of pathology from 
its earliest stages. Amyloid β (Aβ) species, both soluble and in plaque deposits, have been causally 
related to the progressive, structural and functional impairments observed in AD. It is, however, still 
unclear how Aβ plaques develop over time and how they progressively affect local synapse density and 
turnover. Here we observed, in a mouse model of AD, that Aβ plaques grow faster in the earlier stages 
of the disease and if their initial area is >500 µm2; this may be due to deposition occurring in the outer 
regions of the plaque, the plaque cloud. In addition, synaptic turnover is higher in the presence of 
amyloid pathology and this is paralleled by a reduction in pre- but not post-synaptic densities. Plaque 
proximity does not appear to have an impact on synaptic dynamics. These observations indicate an 
imbalance in the response of the pre- and post-synaptic terminals and that therapeutics, alongside 
targeting the underlying pathology, need to address changes in synapse dynamics.

Alzheimer’s disease (AD) is the world’s leading cause of dementia and is thought to be primarily a synaptopathy1,2. 
Indeed, synapse loss and altered connectivity occurs in the earliest stages of AD, preceding its histopathological 
hallmarks and possibly driving the progression of cognitive decline3–6. Mutations in the gene encoding the amy-
loid precursor protein (APP) carry the greatest incidence of early-onset familial AD (FAD), along with presenilin 
1 and 27. APP is widely expressed in neurons and is thought to be responsible for synapse formation and repair8. 
Animal models with human APP mutations exhibit synapse loss9 and dysfunction10, gliosis11, cognitive impair-
ments12 and, in some cases, neuron loss10 alongside the progressive accumulation of pathogenic Aβ species13.

To further understand synapse dynamics in amyloidopathy, we used the J20 mouse model, which has human 
APP mutations consistent with FAD14,15. In this model, soluble Aβ is apparent at 2 months of age, with the first 
plaques forming in the 5th month, in some animals, and in all animals by the 10th month16. From the moment Aβ 
plaques start to appear, pathogenic amyloid species are not uniformly distributed across the brain parenchyma. 
Consequently, there may be differing effects on synapse structure and function in relation to their proximity to 
plaques9. Previous observations identified an inverse relationship between dendritic spine density and amyloid 
plaque pathology9,17.

As Aβ deposits represent a reservoir of pathogenic amyloid species, we first investigated plaque growth 
rates in relation to their initial area, plaque region and animal’s age in vivo, using the amyloid-binding dye 
methoxy-XO418, which labels both condensed cores and the surrounding fibrillar Aβ subspecies19, referred to 
here as the cloud. In addition, we hypothesized that synapse density and turnover in the neocortex are altered in 
the presence of Aβ plaques between 7 and 10 months of age and are differentially affected by plaque proximity.
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Results
To measure synapse dynamics in relation to plaque deposition in AD-associated amyloidopathy, we used in vivo 
two-photon imaging of methoxy-XO4-labelled plaques and GFP-expressing pyramidal neurons in the soma-
tosensory cortex (SSC) of J20 mice and wild-type (WT) littermate controls (Fig. 1a). The same regions of interest 
were imaged longitudinally on a weekly basis. We studied two groups of J20 animals at different ages ranging 
from early (30–42 weeks/7–10 months old) to late stages (49–61 weeks/11–14 months old) (Fig. 1b) of the disease. 
WT littermates were used as a negative control cohort for the younger age-point (30–42 weeks/old) only. Both of 
the stages evaluated were characterized by the presence of pathogenic Aβ species and synapse loss in transgenic 
animals16,20.

Amyloid plaque growth-rate is faster in younger animals and for larger plaques. The total area 
of Aβ plaques increased in both the early and late cohorts (Fig. 1c and S.Fig. 1, early p = 0.0002 and 1b late 
p = 0.0002). The plaque-to-plaque average growth rate (Rate of Rise: RoR, units: µm2/week) was measured as the 
slope of a linear function fit for each plaque’s surface area over time. We observed that Aβ plaques grew faster in 
younger animals (Fig. 1c right, p < 0.0001). As the plaques were not homogenous in size, we separated them into 
three groups, based on the initial raw total area: small (<300 µm2) medium (300–500 µm2) and large (>500 µm2). 
Plaques that are initially large and those found in younger animals grew faster (Fig. 1d, p = 0.001 and p < 0.0001, 
respectively); in addition, age and plaque initial size interact in affecting plaque growth rate (Fig. 1d, p = 0.0016). 
For the complete set of pairwise comparisons, see SI-Table 1.

We separately investigated the growth rate of the plaque’s dense core and surrounding cloud, across the two 
age-points (Fig. 1e). We observed that the age-point and the plaque region both affected and interacted with each 
other in relation to plaque growth rate (See insert in Fig. 1e for F and P values): the cloud grew faster than the 
core at both the early (p < 0.0001) and late (Bonferroni’s corrected unpaired t-test; p = 0.008) groups. While, the 
core’s growth rate was not different (Bonferroni’s corrected unpaired t-test; p = 0.542), the cloud’s growth rate was 
faster in the early group, compared to the late group (p < 0.0001). For the complete set of pairwise comparisons, 
see SI-Table 2. From these results, we can conclude that plaques grow faster in younger animals and if they have a 
large cloud surrounding the core. This is presumably due to Aβ aggregation occurring quicker at the level of the 
plaque cloud.

Axonal terminaux boutons but not dendritic spines are reduced in J20 transgenic mice.  
Hippocampal synapse loss has been observed in the J20 model as early as 3 months20. However, the subtle dif-
ferences between pre- and post-synaptic components have not been elucidated in relation to significant levels 
of amyloid, or in the cortex. Therefore, we examined whether the pre- and post-synaptic components (axonal 
terminaux boutons (TBs) and dendritic spines, respectively) of cytosolic GFP-transduced cortical pyramidal neu-
rons, were altered in the J20 model, in an age range exhibiting significant plaque accumulation (between 7 and 10 
months/30 and 42 weeks), compared to WT littermates (Fig. 2a). There was no overall observable difference in 
spine density (Fig. 2b, p = 1), however, there was a significant decrease in the density of TBs in J20s compared to 
WT controls in the SSC (Fig. 2c, p = 0.04).

The stability of dendritic spines and axonal boutons is altered in J20 transgenic mice. Continual 
addition and loss of synapses is thought to underlie the fine tuning of neuronal function to match cognitive 
demands21–24. Disruption of synapse turnover or stability is thought to occur in disease, potentially indicative 
of the early stages of dementia25–27. Thus, to further examine how synapse dynamics are altered in our model of 
amyloidopathy, spine and TB survival, as a fraction of the first-time point, were initially analyzed. There was a sig-
nificant decrease in the survival fraction of both spines and TBs compared to WT control animals (Fig. 3a, spines 
p = 0.04 and TBs p < 0.001). The turnover ratio (TOR) was also disrupted, as there was a significant increase in the 
TOR for both dendritic spines and TBs in the J20 group (Fig. 3c, spines p = 0.04 and TBs p < 0.001). In addition, 
comparing the turnover of spines and TBs, as an average of all the time points, indicated a significantly higher 
turnover of TBs compared to spines in J20s (Fig. 3e, p = 0.01). On further analysis, this disruption in turnover 
was driven by an increase in gained spines while the number of lost spines was unaffected (Fig. 3f, gains p = 0.02 
losses p = 0.06). The increased turnover of axonal TBs was driven by both gained and lost boutons (Fig. 3g, gains 
p = 0.02 losses p = 0.004). These observations reveal that, in the J20 model, both spines and TBs are less stable and 
the balance of turnover is significantly disrupted at the level of both the pre- and post-synapse.

Alterations in synapse density and stability is not affected by plaque proximity. As previously 
shown, synapse density is negatively correlated to the proximity of amyloid plaques in the Tg2576 (APP Swedish 
mutation) Aβ overexpressing transgenic mouse28.Thus, we aimed to assess this in the J20 amyloid model. The 
proximity of the nearest plaque was measured for each axon or dendrite (Fig. 4a). Neurites were considered 
close to a plaque if the nearest plaque was within 300 µm. The densities of both axonal and dendritic synapse 
components were not differentially affected if the nearest plaque was less than 300 µm away when compared to 
those without a plaque nearby at any time point (Fig. 4b, p = 0.5 and c, p = 0.2). Notably, new plaques appeared 
during our longitudinal imaging periods, meaning plaques were at different stages of maturity and of different 
sizes. Consequently, we decided to consider a neuronal process as close to a newly formed plaque at five weeks 
post-plaque appearance. However, newly formed plaque distance did not significantly correlate with the spine 
or TB density (Fig. 4e, p = 0.7 and p = 0.2, respectively). The stability (Fig. 4e, spine p = 0.7 and TB p = 0.08) and 
turnover (Fig. 4f, spine p = 1 and TB p = 0.2) of spines and TBs was also unaffected by their proximity to the near-
est plaque. Post-mortem evaluation of synaptophysin and PSD-95 puncta close to plaques confirmed that, even 
within 50 µm of plaques (Fig. 4g), pre-synaptic terminals (Fig. 4h, p < 0.001) were lost compared to WTs whereas 
post-synaptic spines were unaffected (Fig. 4i, p > 0.05).
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Figure 1. Amyloid plaque dynamics in AD-early vs late stage. (a) Imaging paradigm with example image 
of adeno-associated virus (AAV) GFP-transduced pyramidal neurons of the SSC (green) alongside blood 
vessels labelled with Texas-red (red) and plaques labelled with methoxy-X04 (yellow). Right images show 
colocalization of the Aβ antibody 3D6 and methoxy-X04 ex vivo. (b) Experimental timeline of early (30–42 
weeks) and late (49–61 weeks) J20 groups. (c) Representative image series showing amyloid plaque growth 
starting at 30 weeks (left) and quantification of total plaque growth (right) normalized to the second imaging 
session (one-way analysis of variance (ANOVA), early p = 0.0002 and late p = 0.0002). Plaques grew faster in 
younger mice (unpaired t-test; p < 0.0001). (d) Left: raw total plaque area (µm2) in the early and late groups 
separated into size categories; small (<200 µm2, blue), medium (200–500 µm2, orange) and large (>500 µm2, 
red). Small plaques (Two-way ANOVA, Factor: Plaque’s initial size, Variable: slope, F = 7.451, p = 0.001) in 
younger animals (Two-way ANOVA, Factor: age, Variable: slope, F = 16.435, p < 0.0001) grew faster. Right: 
Scatter-box plot showing the plaque-to-plaque growth rate (Rate of Rise: RoR, units: µm2/week) grouped per 
age and plaque’s initial size. Two-way ANOVA revealed that both age and plaque initial size affect the plaque 
RoR (p = 0.02). Post-hoc Bonferroni corrected t-tests revealed that larger plaques grow faster in the early group 
(Two-way ANOVA, Factor: age × Plaque’s initial size, Variable: slope, F = 4.389, p = 0.0016 (SI Table 1). In 
all scatter-box plot figures, the box represents the mean, the SEM boundaries (top and bottom line) and the 
median; the distribution line on the right shows the normality of the distribution for each data population.  
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Discussion
The loss of synapses in AD has been observed in humans and several mouse models2,29,30, however, the specific, 
time-dependent dynamics of synaptic alterations warrants further investigation. Further, while the growth of 
amyloid plaques has been previously characterized in vivo30–34, their growth dynamics, as a function of size and 
age, and the relationship between plaque growth and synapse dynamics still remains to be determined. Subtle 
changes in fine plaque and synaptic detail, and their interactions over time, captured here using in vivo multipho-
ton imaging, cannot readily be studied using conventional post-mortem analyses.

In this current study, we present three main findings: firstly, amyloid plaques grow at a faster rate if they 
are large and in young animals, secondly axonal boutons, but not dendritic spines, are lost in amyloidopathy 
and thirdly, the stability of both synaptic structures is compromised in the J20 transgenic model. The age- and 
size-dependent differences in plaque growth rate in J20 mice may be due to deposition dynamics occurring in the 
plaque cloud, rather than the dense core. This suggests that the main area of plaque growth may be the cloud: the 
slow growth of small plaques may be due to the reduced extension of the cloud. Age, plaque size and extension of 
the cloud, may be important for developing drug interventions35.

Whilst we characterized the growth of individual plaques in this study, the overall density of plaques in the 
SSC also increased over this time period16. The growth of individual plaques was affected by the initial size, 
especially in the younger animals. The higher density of plaques in the older animals (late group) may account 
for the reduced growth with age31, contrary to what was seen by Hefendehl and colleagues in the APPPS1 model. 
This finding is largely consistent with Meyer-Luehmann and colleagues, who show that younger (and therefore 
smaller) plaques had an initial rapid increase in size before their growth rate slowed32. Another possibility is that 
larger plaques are formed by the clustering of small plaques34. In this study, whilst we often saw plaques relatively 
close to each other (within a few hundred micrometers, although not as close as reported by McCarter and col-
leagues), we did not observe any plaques merging. There is a possibility that this had occurred before our imaging 
began, especially as we observed some larger plaques with two-lobed cores, so we cannot completely rule this out. 
Whilst it is possible that the different groups may have differing rates of Aβ production, the aggregated Aβ in both 
groups would be deposited either as a new plaque or join an existing plaque. In young animals, where more new 
plaques are developing33, Aβ would join the relatively few existing plaques, reflected by a higher rate of growth in 
these plaques, especially in the plaque cloud. However, in older animals, where there are more plaques, new Aβ 
would be distributed amongst the many plaques present so each plaque would show a slower, possibly saturated, 
rate of growth. We hypothesize that the cloud consists of loosely packed fiber-like structures that extend outward 
from the densely packed core, as described previously19. Recent literature has proposed a link between plaque 
compaction and microglial-dependent plaque interactions that have a direct effect on the degree of neurite dam-
age36. Indeed, a study by Condello and colleagues has shown that rapidly growing plaques are associated with 
greater levels of local neuronal dystrophy and that this damage plateaus as plaque growth rate slows37. Of further 
note, microglia have been shown to form a physical ‘barrier’ around plaques, limiting their expansion resulting 
in smaller, more compact plaques38. This could explain the heterogeneity in plaque growth, where the growth 
rate of smaller plaques might be limited by microglia. It should be noted that the older group of animals received 
a control compound in a drug discovery study, which was not found to have an effect on amyloid pathology, 
although other more subtle effects cannot be ruled out. Finally, cerebral amyloid angiopathy (CAA) has been 
reported to occur in J20 mice39,40. This is of relevance as the accumulation and growth of Aβ plaques is driven by 
both increased Aβ peptide production and decreased degradation and perivascular drainage, in both sporadic 
and FAD41. Teasing out the interplay of effects of Aβ toxic species on both vascular and neuronal function, will be 
of key importance in order to clarify the pathogenesis of AD. Although CAA was observed in these animals, we 
were careful to image plaques away from blood vessels to avoid it being a confounding factor in the parenchymal 
Aβ accumulation. To address the vascular effects of Aβ accumulation, we have recently investigated the function 
of the blood-brain barrier (BBB) in J20 mice and did not observe any differences between WTs and J20 animals 
(data not shown).

This is the first study of its kind to quantify the growth of different components of amyloid plaques (specifi-
cally comparing the cloud and the dense core), at different time points, using this temporal resolution. Overall, 
these observations help us to understand how amyloid pathology progresses over time and may help to identify 
patients for newly developed therapies. This could potentially be achieved by the validation of the detection of 
single Aβ plaques in the retina as a selective and specific diagnostic tool for AD42. Aβ plaque number, growth rate 
(both in number and size), cloud: core surface ratio and the correlation of these parameters with the cognitive 
state of the patient, may provide vital information on the progression of the disease and what therapeutic strategy 
may be the most effective, for individual patients.

To date, very few studies have looked at dendritic spine density in the J20 model. A 36% reduction was 
observed in the hippocampus at 11 months43, however, equivalent measurements were not made in the cortex. 
Interestingly, Hong and colleagues reported a significant decrease in hippocampal PSD-95 puncta in J20 mice, 
at 3 months of age, without a change in synaptophysin staining in ex vivo sections20. However, Mucke and col-
leagues16, who originally characterized the J20 model, reported a loss of synaptophysin terminals not correlated 
with plaque load, suggesting that plaques are not the cause of synapse loss, consistent with our findings. In the 

(e) Left: Normalized area of the plaque cloud (yellow) and core (pink) in the early (broken lines) and late groups 
(solid lines). Right: plaque-to-plaque average RoR, grouped per age and plaque region. The cloud grew faster 
than the core (Bonferroni’s corrected unpaired t-test; p < 0.0001) and only the clouds grew faster in younger 
mice (Bonferroni’s corrected unpaired t-test; p < 0.0001). Early group n = 13 plaques, late group n = 58 plaques. 
Unless otherwise stated, data are presented as means ± SEM.
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Tg2576 model, Spires and colleagues reported a decrease in cortical spines9 and Bittner and colleagues showed a 
decrease in cortical and hippocampal spines in 3xTg mice (both within and >50 µm from plaques, but only from 
13 months of age onwards)17. Here we show that dendritic spine density was unaffected in the cortex (both in vivo 
and by post-mortem analysis), possibly due to differences in AD models, brain region and/or plaque proximity. 
This finding was consistent with a previous study30 reporting changes in spine density within 50 µm of plaques. 
However, we did observe a reduction in their survival and a change to their turnover, regardless of plaque prox-
imity. The J20 model has not been reported to exhibit significant levels of neurodegeneration; in line with this 
we did not observe any dystrophic neurites. Other studies have shown dystrophic neurites and dramatic synapse 
loss around plaques, however, these occurred within 15 µm of a plaque44. Here, neurites were imaged 50–200 µm 
from the nearest plaque edge, which would explain why no dystrophic neurites were observed. Therefore, axonal 
bouton loss was on cells that did not degenerate during the experimental time frame.

This study presents novel in vivo measurements of axonal bouton density, revealing a significant reduction in 
TBs. This is consistent with a loss of synaptophysin staining found here (Fig. 4h) and in other similar studies9,45. 
However, Liebscher and colleagues did not show any change in bouton density either close to (<50 µm) or fur-
ther from plaques (>50 µm) in male APPPS1 mice. Changes in turnover were only seen <50 µm from plaques30. 
Liebscher and colleagues used a Thy-1 GFP-M model, which, they say, mainly labels cortical layer 5 cells. Their 
axonal morphology looks consistent with layer 5 labelling due to the high density of en passant boutons and fewer 
TBs46. Using a virally targeted method, we observed staining in all cortical layers, however, most of the axonal 
labelling appeared to be from layer 6, due to the higher density of TBs, which are highly plastic46. An explanation 

Figure 2. Axonal terminaux boutons but not dendritic spines are reduced in J20s. (a) Representative maximum 
projections of dendritic spines and axonal TBs in J20 animals and littermate controls (WT) at 30–33 weeks of 
age. Red arrows show lost, blue arrows show persistent and green arrows show gained spines/ boutons.  
(b) Quantification of dendritic spine density in J20s and WT control animals showing no significant difference 
(two-way repeated measure (RM) ANOVA genotype × age F(605, 13) = 0.32, p = 1). (c) Quantification of TB 
density shows a progressive loss with age compared to WT controls (two-way RM ANOVA genotype × age 
F(517,13) = 1.8, p = 0.04). J20 spines n = 21, WT spines n = 34, J20 TBs n = 16, WT boutons n = 36. Error bars 
represent SEM.
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for the disparity in pre- and post-synaptic regulation could be that bouton loss occurs prior to spine loss in the cor-
tex, where spines are subsequently upregulated to compensate for this, at least in the earlier stages of the disease. 
This ability may be lost in older animals and, thus, could explain the differences observed in the above-mentioned 
studies and our findings, with regards to spine density. Another explanation could be that axonal boutons are 
upregulated due to dendritic spine instability, but over compensation by the axons results in TB loss. Or, as a 
recent study has shown47, Aβ is enriched only at the pre- and not at the post-synapse, which may also explain why, 
in our study, axonal boutons are more affected than dendritic spines. In addition, it is becoming clear that there are 
potential sex differences in these models, as seen in a recent report in the 5xFAD model of AD48.

Further, the imbalance between the pre- and post-synaptic components, seen here, is consistent with what we 
have reported in the Tg4510 model of tauopathy27. Whilst this mismatch may be explained in tauopathy by the 
movement of pathological tau to the somatodendritic compartment49, the mechanisms of how Aβ causes synapse 

Figure 3. The stability of dendritic spines and axonal terminaux boutons is altered in J20s. (a,b) Quantification 
of spine (a; two-way RM ANOVA genotype F(540,1) = 4.4, p = 0.04) and TB (b; two-way RM ANOVA genotype 
F(461,1) = 13.7, p < 0.001) survival, as a fraction of the first time-point (30 weeks), in J20s and WT controls. 
(c,d) TOR, showing the change compared to the previous session, of spines (c; two-way RM ANOVA genotype 
F(552,1) = 4.4, p = 0.04) and TBs (d; two-way RM ANOVA genotype F(471,12) = 112.3, p < 0.001) in J20s and WT 
controls. (e) Average total turnover across all time points showed a significant difference in spine and TB TOR 
in the J20 group but not in the WTs (two-way ANOVA F(103,1) = 6.3, p = 0.01). (f,g) Gains and losses of dendritic 
spines (f; two-way RM ANOVA gains genotype F(552,1) = 5.6, p = 0.02; losses genotype F(552,1) = 3.8, p = 0.06) 
and TBs (g; two-way RM ANOVA gains genotype F(482,1) = 5.8, p = 0.02; losses genotype × age F(482,12) = 2.5, 
p = 0.004) in J20s compared to WT controls. J20 spines n = 21, WT spines n = 34, J20 TBs n = 16, WT TBs 
n = 36. Error bars represent SEM.
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loss are less clear. Several studies have proposed candidate Aβ receptors such as p75NTR50, Frizzled51 and LilrB2/ 
PirB52, all of which have been implicated in altered synaptic plasticity, but mainly on the post-synaptic side51–53. 
Presumably, there is a soluble Aβ gradient, where synapses close to amyloid plaques are more likely to be lost 
through the toxic effects of soluble Aβ. Aside from this there could be a component of glial regulation implicated 
in this imbalance. Indeed, Hong and colleagues have shown that local activation of the innate immune system, via 
the glial complement system, mediates early synaptic loss in AD, before apparent plaque formation, and impor-
tantly, inhibiting this response ameliorates synapse loss20. This highlights the importance of both astrocytes and 
microglia in AD-related synapse loss.

Figure 4. Changes in spine and bouton dynamics are not affected by plaque proximity or maturity. (a) The 
distance of each neurite to the center of the nearest plaque was measured. (b,c) Dendrites (b; two-way RM 
ANOVA plaque F(204,1) = 0.5, p = 0.5) and axons (c; two-way RM ANOVA plaque F(141,11) = 1.7, p = 0.2) within 
300 µm of a plaque did not have a significant difference in synapse density compared to those further away from 
a plaque (>300 µm). (d–f) Plaque distances were measured for each neurite five weeks post-plaque appearance, 
to control for the appearance of new plaques. This did not affect spine (d; Pearson correlation p = 0.7) or TB 
density (d; Pearson correlation p = 0.2), survival fraction (e; Pearson correlation, spines p = 0.7, TBs p = 0.08) 
or turnover ratio (f; Pearson correlation, spines p = 1, TBs p = 0.2). (g) CLARITY-cleared brain slices were 
stained for synaptophysin and PSD-95 and the immunoreactivity around plaques quantified. (h) Synaptophysin 
intensity was significantly reduced within 50 µm of plaques with a significant interaction between distance to 
plaque and group (two-way RM ANOVA F(949,64) = 2.5, p < 0.001). (i) PSD-95 puncta intensity was not altered 
close to plaques (two-way RM ANOVA F(1438,64) = 0.5, p > 0.05).
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Another novel finding in this study was that, despite their stability, dendritic spine survival was significantly 
reduced. On the other hand, spine turnover, driven by the formation of newly formed spines, was increased, pre-
sumably leading to the maintenance of stable spine density. Conversely, the significant reduction in TB density 
was paralleled by the highly significant reduction in survival fraction and loss of TBs, with only a modest, but sig-
nificant, increase in gained TBs, which was not sufficient to maintain a stable TB density. The loss of presynaptic 
boutons, but persistence of spine levels, would be sufficient to account for the decline in input-output relation-
ships observed in multiple neurophysiological studies of synaptic transmission in murine models of amyloidopa-
thy (reviewed in8), although other explanations are feasible, for example, changes in action potential waveforms54.

In conclusion, our study reveals the unique, long-term growth dynamics of individual amyloid plaques and 
how this changes with disease progression. This is of particular importance when considering treatments that tar-
get amyoidopathy. In addition, our findings are consistent with previous work showing that synapses are targeted 
in amyloidopathy and we have shown, for the first time, that altered synapse dynamics leads to unstable synapses. 
Whilst studies are underway that seek to address the underlying pathology in AD and halt the disease, synaptic 
loss would still remain and continue to cause cognitive deficits. Thus, synaptic loss and instability would need to 
be addressed, alongside understanding the underlying mechanisms, for cognitive benefits in AD.

Materials and Methods
Animals. The J20 Aβ-overexpressing line carries a PDGF-β promoter-driven transgene for human APP, 
with Indiana (V717F) and Swedish (K670M – N671L) mutations. Both mutations are associated with FAD14,15. 
Adult female mice of the J20 line (n = 15 animals) and WT littermate controls (n = 15 animals) were used from 
7 months (27 weeks) of age. Adult female mice from 11 months (45 weeks) (n = 14 animals) were also used for 
plaque analysis. This second set of animals was administered with a control vehicle for a drug discovery study, 
however, it was confirmed, with post-mortem immunohistochemistry, that this had no effect on measures of 
amyloid pathology (data not shown). All mice were given ad libitum access to food and water and maintained 
in a 12-hour light-dark cycle. All procedures were conducted by researchers holding a UK personal license and 
experimental protocols were approved and conducted in accordance with the UK Animals (Scientific Procedures) 
Act 1986 and subject to internal ethical review (Animal Welfare and Ethical Review Board at Lilly UK).

Surgery. Cranial windows were surgically implanted over the SSC as previously described27. Briefly, mice 
were anaesthetized with isofluorane and administered dexamethasone (30 mg/kg) to limit brain swelling and 
the analgesic, buprenorphine (5 mg/kg), pre-operatively. The skull was exposed and a 5 mm diameter craniot-
omy drilled over the SSC. AAV (serotype 2) expressing cytosolic enhanced-GFP was stereotaxically injected into 
the SSC, ~300 µm below the dura. A glass coverslip was placed over the craniotomy and sealed with glue and 
dental cement. A screw was placed in the skull on the contralateral side for added stability. The whole skull was 
subsequently covered in dental cement and a metal bar placed on top to allow head fixation at the two-photon 
microscope. Mice were allowed to recover for 3 weeks before imaging began. It was confirmed, by immunohisto-
chemistry, that the cranial window did not cause an increase in amyloid pathology or microgliosis in any of the 
groups (data not shown).

Imaging. 5 mg/kg methoxy-XO4 (45% PBS, 45% propylene glycol, 10% DMSO) (2.9 mM) was injected intra-
peritoneally 24 hours prior to two-photon imaging to label the fibrillary beta sheet deposits of amyloid plaques. 
25 μl of dextran-Texas red was injected intravenously immediately prior to imaging to visualize blood vessels in 
some imaging sessions. A purpose built two-photon microscope equipped with a tunable coherent Ti:Sapphire 
laser (MaiTAI, SpectraPhysics) and PrairieView acquisition software was used for all imaging experiments. Mice 
were anaesthetized with isofluorane and secured to the microscope via the metal bar attached to the skull and a 
custom-built fixed support. Lacri-lube was applied to the eyes to prevent dehydration and temperature of >34 °C 
maintained by a heating blanket and rectal thermal probe. An Olympus 10X objective (NA = 0.3) was used to 
identify characteristic blood vessels to reliably relocate regions-of-interest (ROIs) at each imaging time point. 
In each animal an Olympus 40× (NA = 0.8) water immersion objective was used to acquire several ROI stacks 
(300 µm × 300 µm, 512 × 512 pixels, z-step size = 3 µm for plaques or 75 µm × 75 µm, 512 × 512 pixels, z-step 
size = 0.5 µm for neurites). A pulsed 910 nm wavelength laser beam was used with a typical power at the sample 
of 35 mW.

Analysis. Two-photon images were converted into stacks with ImageJ and the StackReg plugin was used to 
align the GFP stacks in case of any movement. The GFP stacks were deconvolved with Huygens Deconvolution 
software using a quick maximum likelihood estimation with an experimentally-defined point-spread-function. 
The red channel stacks (with methoxy-X04 signal) were left unprocessed. Plaque images were denoised and max-
imum projections created. Plaque area was measured by manually outlining the total plaque and subsequently the 
core and measuring the area in ImageJ. Only plaques >20 µm in diameter were analysed to avoid the possibility 
of noise/ debris being included. More specifically, the core was defined as the inner part of the plaque, character-
ized by a continuous perimeter and a higher, more compact fluorescence intensity. The cloud was defined as the 
area surrounding the core, characterized by a discontinuous (hazy) perimeter and a lower, less compact fluores-
cence intensity. Initial, pilot experiments found the core fluorescence intensity to be approximately double the 
cloud intensity and the cloud fluorescence intensity to be approximately three times higher than the background; 
although these parameters were not routinely measured in the final analyses. The cloud area was calculated by 
subtracting the core area from the total plaque area. Prior to this all images were blinded using a custom ImageJ 
plugin so that time points were unknown at the point of analysis. The average rate of rise (RoR; µm2/week) of each 
plaque, was measured as the slope of a linear function interpolated for the plaque-to-plaque surface value in time 
(weeks). For dendritic spine and axonal bouton analysis each time-point was registered to the second imaging 
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session using MIPAV and converted to a 4D stack using a custom ImageJ macro. Each neurite to be analyzed was 
traced and the length measured using another custom macro. Subsequently, the spines or boutons were manually 
counted using the cell counter ImageJ plugin. Spines/boutons were counted in 3D image stacks while maximum 
projections are shown in the figures. Only TBs, not en passant boutons, were counted and identified as protru-
sions emanating from side of the axon with a head and neck. From this the density (μm−1) and TOR (survival, as a 
fraction of the first time-point) were calculated. Statistics were performed using GraphPad Prism 7 or Sigma Plot 
13. RM ANOVA comparisons (with Holm-Sidak method post-test) were utilized where multiple comparisons 
were made, unless otherwise stated.

Research data. Due to confidentiality agreements with research collaborators, supporting data can only be 
made available to bona fide researchers subject to a non-disclosure agreement. Details of the data and how to 
request access are available on request to the corresponding author.

CLARITY staining. Transcardiac perfusion with 4% paraformaldehyde was performed in a separate cohort 
of J20 animals at 10 months of age. Brains were sliced in 1 mm sections (Brain matrix, Alto) after 1 to 5 days 
incubation in 4% paraformaldehyde. To preserve molecular information and structural integrity brain slices were 
incubated with a hydrogel solution (4% acrylamide and 0.25% VA-044 in 1X PBS). Therefore, the tubes were 
degassed and the hydrogel was allowed to polymerise for 3 h at 37 °C. The slices were transferred into clearing 
solution (SDS, sodium borate) at 37 °C using the X-CLARITY system (Logos Biosystems). The slices were placed 
in a tube containing 1 ml of 5% BSA. The required amount of primary antibody was pipetted directly in the BSA 
solution and incubated for 4 days at 37 °C. Excess of antibody was washed away with PBS for 3 × 2 h at 37 °C. 
Secondary antibodies diluted in 5% BSA were incubated for 4 days at 37 °C and excess removed by washing the 
slices with PBS for 3 × 2 h at 37 °C. Concentric circles 5 µm apart were drawn on maximum projection images 
around the plaque and the mean fluorescence measured radiating out from the edge of the plaque.

Data Availability
Due to confidentiality agreements with research collaborators, supporting data can only be made available to 
bona fide researchers subject to a non-disclosure agreement. Details of the data and how to request access are 
available on request to the corresponding author.
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