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Abstract. A class of autonomous discrete dynamical systems as population models for
competing species are considered when each nullcline surface is a hyperplane. Criteria
are established for global attraction of an interior or a boundary fixed point by a geo-
metric method utilising the relative position of these nullcline planes only, independent
of the growth rate function. These criteria are universal for a broad class of systems, so
they can be applied directly to some known models appearing in the literature including
Ricker competition models, Leslie-Gower models, Atkinson-Allen models, and generalised
Atkinson-Allen models. Then global asymptotic stability is obtained by finding the eigen-
values of the Jacobian matrix at the fixed point. An intriguing question is proposed: Can
a globally attracting fixed point induce a homoclinic cycle?

Note. This is the paper accepted by Discrete and Continuous Dynamical Sys-
tems (B) on 7th November 2019.

1. Introduction

We consider the discrete dynamical system

(1) x(n) = Tn(x), x(0) = x ∈ RN+ , n = 1, 2, . . . ,

where RN+ is the the first orthant in RN with R+ = [0,+∞) and the map T : RN+ → RN+ is
defined by

(2) Ti(x) = xiGi((Ax)i), i ∈ IN = {1, 2, . . . , N},
the entries of the N ×N matrix

(3) A =


a11 a12 · · · a1N
a21 a22 · · · a2N
· · · · · · · · · · · ·
aN1 aN2 · · · aNN


satisfy aii > 0 and aij ≥ 0 for all i, j ∈ IN , (Ax)i denotes the ith component of Ax. We
assume that the functions Gi ∈ C1(R+, (0,+∞)) satisfy the following conditions:
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(a1) Gi is decreasing on R+, Gi(ri) = 1 for some ri > 0 and G′i(ri) < 0.

(a2) For x ∈ RN+ and each i ∈ IN , ∂Ti(x)
∂xi

> 0 for 0 ≤ xi < ri.

(a3) For each nonempty J ⊂ IN and for any two points x, y ∈ RN+ satisfying yi = xi ∈
[0, ri] for i ∈ IN \ J , 0 = xj < yj ≤ rj and (Ay)j ≤ rj for j ∈ J and (Ay)i = ri for
some i ∈ J , the functions Tk(x+ t(y − x)), k ∈ J , are increasing for t ∈ [0, 1].

(A simplified version of (a3) will be given in section 2 as (a3)′.)

The discrete dynamical system (1) defined above can be viewed as a population model of
N competing species, where xi(n) denotes the population size of the ith species at time n
(e.g. nth generation or end of nth time period). Indeed, if aij > 0, the existing population
of the jth species reduces the growth rate Gi of the ith species; if aij = 0, although the
current population of the jth species does not affect the next generation of the ith species
Ti(x) directly, it may reduce the growth rate Gi((AT

nx)i)(n ≥ 1) of later generations. This
reflects the nature of mutual competition between any two species.

System (1) with (2)–(3) and (a1)–(a3) is competitive not only in ecological context, but
the map T is also mathematically a competitive map under the additional condition that

the spectral radius of the matrix M(x) = diag(−xiG
′
i

Gi
)A satisfies

(4) ρ(M(x)) < 1,∀x ∈ [0, r].

Recall that a general map T : S → T (S) for a set S ⊂ RN+ is called competitive if x < y
whenever T (x) < T (y) for x, y ∈ S, and strongly competitive (or retrotone) if x � y
whenever T (x) < T (y) with x, y ∈ S and y � 0 [35, 33, 15, 14] (see section 2 for detailed

definition for “<” and “�”). By (a1) and (a2) we have G′i ≤ 0 and −xiG
′
i

Gi
< 1. Then

(4) implies that DT (x)−1 ≥ 0, so T is a competitive map. But since DT (x)−1 may have
zero entries, (4) does not imply strong competitiveness of T . However, we are not sure
whether (a1)–(a3) imply (4). Thus, without the condition (4) we are not sure whether T
is a competitive map.

Since aii > 0 for all i ∈ IN , by letting y = Dx with D = diag{a11, . . . , aNN} and y(n) =
Dx(n), we have

y(n+ 1) = DT (x(n)) = DT (D−1y(n)) = T̄ (y(n)),

T̄i(y) = aiiTi(x) = yiGi((AD
−1y)i) = yiGi((Āy)i)

with āii = 1 and āij ≥ 0. Without loss of generality, from now onward we assume that

(5) ∀i, j ∈ IN , aii = 1, aij ≥ 0.

System (1) with (2)–(5) and (a1)–(a3) includes many known models as special instances.
For example, if Gi(u) = eri−u, 0 < ri ≤ 1, then (2) becomes

(6) Ti(x) = xie
ri−(Ax)i , i ∈ IN ,
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and systems with such a form for T are known as Ricker competition models. If Gi(u) =
1+ri
1+u for i ∈ IN , then

(7) Ti(x) =
bixi

1 + (Ax)i
, (bi = 1 + ri), i ∈ IN ,

and systems with such a form for T are known as Leslie-Gower competition models. If

Gi(u) = b+
2(1− b)

1 + u
, 0 < b < 1, i ∈ IN ,

then

(8) Ti(x) = bxi +
2(1− b)xi
1 + (Ax)i

, (ri = 1), i ∈ IN ,

and systems with such a form for T are known as Atkinson-Allen models. If

Gi(u) = bi +
(1 + ri)(1− bi)

1 + u
, 0 < bi < 1, ri > 0, i ∈ IN ,

then

(9) Ti(x) = bixi +
(1 + ri)(1− bi)xi

1 + (Ax)i
, i ∈ IN .

Systems with such a form for T are known as generalised Atkinson-Allen Models. It can be
checked that all these models defined by (6)–(9) and any system defined by a combination
of (6)–(9) meet the requirement of (a1)–(a3) (see Appendix 1). Thus, these models are
typical examples of system (1) with (2)–(5) and (a1)–(a3).

A more general discrete population model, known as Kolmogorov system, is (1) with T
defined by

(10) Ti(x) = xiFi(x), i ∈ IN ,

where F : RN+ → RN+ is smooth enough with Fi(x) > 0 and ∂Fi
∂xj
≤ 0(i 6= j). Hirsch [15],

Herrera [13], Wang and Jiang [36] (see also [22] and the references therein) proved the
existence and uniqueness of a carrying simplex Σ ⊂ RN+ under certain conditions. Since

Σ is a global attractor of (1) with (10) restricted to RN+ \ {0}, the global dynamics of

the system on RN+ \ {0} is essentially described by the dynamics on Σ if it exists. Then
many researchers explored the behaviour of the dynamics of (1) with (10) on Σ. For a few
examples, Jiang, Niu and Wang [25] investigated existence and local stability of heteroclinic
cycles of competitive maps via carrying simplices; Herrera [14] investigated exclusion and
dominance under conditions which guarantee the existence of Σ; Balreira, Elaydi and Luis
[5] provided criteria for global stability of an interior fixed point under the existence of the
carrying simplex.

For system (1) with T defined by (2) and (3) with aij > 0 for all i, j ∈ IN and each Gi
decreasing, Franke and Yakubu [8, 9] described the competition model and studied the
exclusion of some species and proved that k-weakly dominant G plus invariance of a set
implies that the k-th species will survive and all other species will die out.
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For Ricker models (1) with (6), Smith [34] analysed the dynamics in detail for two compet-
ing species (N = 2). Roeger [31] (see also [32]) studied the local dynamics near the interior
fixed point and Neimark-Sacker bifurcations for the special 3D maps (6) with r1 = r2 = r3.
Hofbauer et al. [16] studied the long term survival of N species. Hirsch [15] showed that (1)
with (6) possesses a carrying simplex under mild conditions. Gyllenberg et al. [12] classi-
fied all 3D Ricker maps (6) admitting a carrying simplex Σ and derived a total of 33 stable
equivalence classes with a typical phase portrait on Σ given for each class. The authors of
[5] applied their stability criteria to 3D Ricker models and derived a sufficient condition
for the interior fixed point to be globally asymptotically stable when r1 = r2 = r3 < 1 and
aij = a < 1(i 6= j).

For Leslie-Gower models (1) with (7), Cushing et al. [7] thoroughly analysed the 2D
model and showed convergence of every orbit to a fixed point. For 3D models, Jiang et al.
[25] analysed the existence and stability of heteroclinic cycles. For N -dimensional models,
Hirsch [15] and Herrera [14] verified the existence of the carrying simplex Σ under some
conditions, but Jiang and Niu [24] showed the unconditional existence of Σ. Moreover,
the authors of [24] classified all 3D Leslie-Gower models via the boundary dynamics on Σ
and derived a total of 33 stable equivalent classes. For a special case of 3D models with
b1 = b2 = b3 and aij = a(i 6= j), Balreira et al. [5] obtained a condition for global stability
of the interior fixed point.

The Atkinson-Allen models (1) with (8) were first built as a plant competition model by
Atkinson [3] and Allen et al. [2] (see also a discrete model in [30]). For 3D models, Jiang
and Niu [23] proved the index formula for fixed points on the carrying simplex and, based
on which, gave a complete classification of 3D models into 33 stable equivalent classes.
The generalised Atkinson-Allen models (1) with (9) were proposed by Gyllenberg et al.
[10] and a complete analysis for 3D models with (9) was given similar to [23].

In this paper, we are concerned with the global dynamics and, in particular, the global
asymptotic stability of a boundary or interior fixed point, of the system (1) with (2)–(5)
and (a1)–(a3). There are some available methods and results for stability: the Liapunov
function method initiated by LaSalle [27] for general discrete dynamical systems, the G-
function method for asymptotic stability introduced by Bouyekhf and Gruyitch [6], the
method of using convexity of the per-capita growth rate by Kon [26], the split Liapunov
function method developed by Baigent and Hou [4] for Kolmogorov systems (1) with (10),
the stability criteria for monotone Kolmogorov systems obtained by Balreira et al. [5]
and a revised version by Gyllenberg et al. [11], and some stability results for specific
systems (see the references in [6], [4], [5] and [11]). No doubt that all of these are precious
contributions to the development of stability theory and methods for discrete dynamical
systems. However, it is also obvious that the application of each of these methods or
criteria has its limitation due to its conditions and requirements. For this reason, more
alternative methods will be welcome and expected.

The aim of this paper is to provide a geometric method for global attraction and stability
of a fixed point either in the interior or the boundary of RN+ for (1) with (2)–(5) and
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(a1)–(a3). We do not rely on the construction of Liapunov functions, nor on the existence
of the carrying simplex. The nature of global attraction will be simply derived by the
relative position of the N nullcline hyperplanes defined by the component equations of
Ax = r within the N -dimensional cell [0, r]. Superficially, this method can be viewed as an
extension to our discrete system (1) of the geometric method for Lotka-Volterra differential
systems

(11)
dxi
dt

= xi(ri − (Ax)i), i ∈ IN ,

and Kolmogorov differential systems

dxi
dt

= xifi(x), i ∈ IN ,

buried in a large number of publications (e.g. [37, 1, 28, 29, 17, 18, 19, 20, 21]) since
conditions derived for the discrete system here is similar to those for (11). But if we
bear in mind the essential difference between an orbit x(n), n ≥ 1, for (1) and an orbit
x(t), t ≥ 0, for (11) described below, we shall realise that this is not a simple extension
as the similarity of the conditions for both discrete and continuous systems suggests: the
former consists of isolated points and the latter is a smooth continuous curve; the former
can go from one side to the other side of a plane without actual intersection with the plane,
i.e. jumps over the plane, but the latter going from one side to the other of a plane must
have a intersection point with the plane. Indeed, from later sections we shall appreciate
the subtlety of the techniques employed to tackle some hard obstacles laying in the process
of proofs of the main theorems.

The virtue of the method is that the derived criteria for global attraction only uses the
matrix A and the point r, irrelevant to the functions Gk as long as (a1)–(a3) are met,
and the criteria can be applied to a broad class of systems (1) with (2)–(5) and (a1)–
(a3), universal to all the above models with T defined by (6)–(9). Then, by finding the
eigenvalues of the Jacobian matrix DT (x∗), we know that either the fixed point is globally
asymptotically stable or a homoclinic cycle is induced.

The rest of the paper is organised as follows: 2. Notation and preliminaries. 3. Main
results. 4. Some examples. 5. Proof of the main theorems. 6. Proof of Lemma 5.2. 7.
Conclusion. Appendix 1. Proof of (a1)–(a3) for models (6–(9). Appendix 2. Proof of
Proposition 2.3. Appendix 3. Proof of Lemma 5.1.

2. Notation and preliminaries

Denote the interior of RN+ by intRN+ and the boundary of RN+ by ∂RN+ , and define

(12) πi = {x ∈ RN+ : xi = 0}, i ∈ IN .

Then πi is the part of the ith coordinate plane restricted to RN+ and is part of ∂RN+ . For

any u, v ∈ RN+ , we write u � v or v � u if v − u ∈ intRN+ , u ≤ v or v ≥ u if v − u ∈ RN+ ,
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and u < v or v > u if u ≤ v but u 6= v. If u ≤ v, we define

(13) [u, v] = {x ∈ RN : u ≤ x ≤ v}.

Then [u, v] is a k-dimensional cell if v − u has exactly k non-zero components. For any
u ∈ RN+ and I ⊂ IN , we also introduce the following notation

RN+ (u) = {x ∈ RN+ : x ≥ u},(14)

πi(u) = {x ∈ RN+ (u) : xi = ui},(15)

Γi = {x ∈ RN+ : (Ax)i = ri}, i ∈ IN .(16)

Then Γi is the ith nullcline plane for T defined by (2)–(5) and (a1)–(a3), i.e. Ti(x) = xi
on Γi. We abuse the notation slightly by using 0 to denote scalar number zero, vector zero
and the origin in RN . For any plane Γ in RN+ with 0 6∈ Γ, RN+ is divided into three mutually

exclusive connected subsets Γ−,Γ and Γ+ with 0 ∈ Γ− such that RN+ = Γ− ∪ Γ ∪ Γ+. A

point x ∈ RN+ is said to be below (on or above) Γ if x ∈ Γ− (x ∈ Γ or x ∈ Γ+). A nonempty

set S ⊂ RN+ is said to be on Γ if S ⊂ Γ; S is said to be below (above) Γ if S ⊂ (Γ− ∪ Γ)
(S ⊂ (Γ ∪ Γ+)) but S 6⊂ Γ; S is said to be strictly below (strictly above) Γ if S ⊂ Γ−

(S ⊂ Γ+).

For v ∈ RN+ and any J ⊂ IN , we define vJ ∈ RN+ by vJj = vj if j ∈ J and vJj = 0 otherwise.

Then vIN = v and v∅ = 0. Let |J | denote the number of elements in J .

We view ∩k∈∅πk as RN+ and denote the nonnegative half xi-axis by Xi.

With the above notation, the condition (a3) given in section 1 can be simplified as fol-
lows:

(a3)′ For any nonempty J ⊂ IN and for any point x ∈ [0, r] which is on Γi for some

i ∈ J but on or below Γj for all j ∈ J , the functions Tj(x
IN\J + txJ), j ∈ J , are

increasing for t ∈ [0, 1].

Note from (5) and (16) that the plane Γi intersects the half axis Xi at a point Qi, i.e.
Γi ∩Xi = {Qi}, with ri as its ith component and 0 as other components. Thus, T has N
axial fixed points Qi, i ∈ IN . Clearly, 0 is a repelling fixed point since the Jacobian matrix
of T at the origin is DT (0) = diag{G1(0), . . . , GN (0)} with Gi(0) > 1 for all i ∈ IN by
(a1). We shall see that the point r = (r1, . . . , rN )T � 0 plays a very important role in this
paper.

For any point x ∈ RN+ , the positive orbit γ+(x) is defined as

(17) γ+(x) = {Tn(x) : n = 0, 1, 2, · · · }.

If T is invertible, then the negative orbit γ−(x) and the orbit γ(x) can be defined as

(18) γ−(x) = {(T−1)n(x) : n = 0, 1, 2, · · · }
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and γ(x) = γ+(x) ∪ γ−(x). The positive limit set ω(x) and the negative limit set α(x) are

defined as usual: ω(x) = ∩∞n=0γ
+(x(n)) and α(x) = ∩∞n=0γ

−((T−1)n(x)). A nonempty set
S ⊂ RN+ is said to be invariant if T (S) = S, positive invariant if T (S) ⊂ S, and globally

attracting if ω(x) ⊂ S for all x ∈ RN+ .

Denote the open ball centred at x ∈ RN with radius δ > 0 by B(x, δ). A fixed point
x∗ ∈ RN+ is called stable if for any ε > 0 there is a δ > 0 such that x ∈ B(x∗, δ)∩RN+ implies

x(n) = Tn(x) ∈ B(x∗, ε)∩RN+ for all integers n > 0. For a nonempty subset J ⊂ IN and a

fixed point x∗ ∈ RN+ \{0} with x∗i > 0 if and only if i ∈ J , x∗ is said to be globally attracting

if for any x ∈ RN+ \ (∪i∈Jπi) we have ω(x) = {x∗}, and globally asymptotically stable if it is
stable and globally attracting. Therefore, for a globally asymptotically stable fixed point
x∗ > 0, if x∗ ∈ intRN+ then it attracts all the interior points; if x∗ ∈ ∂RN+ it attracts not
only the interior points but also the boundary points with xi > 0 for all i ∈ J .

The principal idea of proving global attraction of a fixed point x∗ ∈ RN+ \ {0} is as fol-
lows:

(i) If there is a point u(0) ≥ 0 such that y ≥ u(0) for all x ∈ RN+ \ (∪i∈Jπi) and all

y ∈ ω(x), then we can always find a point v(0) > u(0) such that ω(x) ⊂ [u(0), v(0)]
for all x ∈ RN+ \ (∪i∈Jπi).

(ii) If ω(x) ⊂ [u(0), v(0)] for all x ∈ RN+ \ (∪i∈Jπi) then we can always find a point u(1)

with u(0) < u(1) < v(0) such that ω(x) ⊂ [u(1), v(0)] for all x ∈ RN+ \ (∪i∈Jπi).

(iii) Then repetition of (i) and (ii) leads to ω(x) = {x∗} for all x ∈ RN+ \ (∪i∈Jπi) under
the assumptions.

The proofs of these are technical, so we leave them to later sections except the proof for
(i) (Proposition 2.1) with the following reason: At this stage we need to observe that the
cell [0, r] is positive invariant and globally attracting. Instead of giving a direct proof for
this observation here, we prove Proposition 2.1 from which the observation immediately
follows.

Let J ⊂ IN be a nonempty set and let u ∈ RN+ such that ui = 0 for each i ∈ IN \ J and

u ∈ Γ−j for all j ∈ J . Define v ≥ u by

(19) ∀i ∈ IN , vi =

{
ui if u ∈ Γi ∪ Γ+

i ,

ri − (AuIN\{i})i if u ∈ Γ−i .

Then v is on or above Γi for all i ∈ IN . Moreover, for any w ≥ u, if wi > vi for some
i ∈ IN then w is above Γi since (Aw)i > vi + (AuIN\{i})i = ri. From (19) we see that if
u = 0 then v = r.

Proposition 2.1. Assume the existence of a nonempty set J ⊂ IN and a point u ∈ RN+
satisfying ui = 0 for all i ∈ IN \ J and u ∈ Γ−j for all j ∈ J such that ω(x) ⊂ RN+ (u) for
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all x ∈ RN+ \ (∪i∈Jπi). Then, for (1) with (2)–(5) and (a1)–(a3) and v defined by (19),

ω(x) ⊂ [u, v] for all x ∈ RN+ \ (∪i∈Jπi) and T (y) ≤ v for all y ∈ [u, v].

Proof. Take an arbitrary i ∈ IN and an arbitrary x ∈ RN+\(∪j∈Jπj). Then ω(x) ⊂ RN+ (u) by

assumption. Thus, for any small enough δ > 0, there is N1 such that γ+(TN1(x)) ⊂ RN+ (u′),
where u′ ∈ [0, u] with u′j = max{0, uj − δ} for all j ∈ IN . So x(n) ≥ u′ for all n ≥ N1. Let

v′ ≥ u′ be defined by (19) with the replacement of u, v by u′ and v′. If TN1
i (x) > v′i then

TN1(x) ∈ Γ+
i by (16) and (19), so TN1+1

i (x) < TN1
i (x) and xi(n) is decreasing in n as long

as x(n) ∈ Γ+
i for n > N1. Thus, either there is an integer K > N1 such that xi(K) ≤ v′i

or xi(n) > v′i for all n > N1. In the latter case, x(n) ∈ Γ+
i so the sequence {xi(n)}

is decreasing and bounded below by v′i. We claim that limn→+∞ xi(n) = v′i. Indeed, if

xi(n) ↓ η > v′i as n → +∞, then (Ax(n))i ≥ (Au′IN\{i})i + η > ri so Gi((Ax(n))i) ≤
Gi((Au

′IN\{i})i + η) = ξ < Gi(ri) = 1 for all n > N1 and

xi(N1 + k + 1) = xi(N1 + k)Gi((Ax(N1 + k))i) ≤ ξxi(N1 + k) ≤ ξk+1xi(N1)→ 0

as k → +∞, a contradiction to xi(n) > v′i for all n > N1. This shows the above claim.
In the former case, we show that xi(n) ∈ [u′i, v

′
i] for all n > K. If x(K) ∈ Γi ∪ Γ+

i , then
Gi((Ax(K))i) ≤ 1 so

xi(K + 1) = Ti(x(K)) = xi(K)Gi((Ax(K))i) ≤ xi(K) ≤ v′i.
If x(K) ∈ Γ−i , then Gi((Ax(K))i) > 1 and there is y ∈ Γi such that (y − x(K))IN\{i} = 0,

xi(K) < yi = ri − (Ax(K)IN\{i})i ≤ ri − (Au′IN\{i})i = v′i

and yi = Ti(y). By (a2), Ti(x(K)) < Ti(y) = yi ≤ v′i. This shows that Ti(x(K)) ≤ v′i if
xi(K) ≤ v′i. Repeating the above process, we obtain xi(n) ≤ v′i, so xi(n) ∈ [u′i, v

′
i], for all

n ≥ K. Then ω(x) ⊂ [u′, v′] follows from the arbitrariness of i ∈ IN . By letting δ → 0 we
obtain ω(x) ⊂ [u, v] for all x ∈ RN+ \ (∪j∈Jπj).

For any y ∈ [u, v] and i ∈ IN , if y ∈ (Γi ∪ Γ+
i ) then Ti(y) ≤ yi ≤ vi. If y ∈ Γ−i then

there is a ȳ ∈ Γi such that (ȳ − y)IN\{i} = 0. By (a2), Ti(y) < Ti(ȳ) = ȳi ≤ vi. Hence,
T (y) ≤ v. �

From Proposition 2.1 with u = 0 we see that [0, r] is positive invariant and globally attract-
ing on RN+ . Since (a1) implies that 0 a repelling fixed point, we also observe that system

(1) with (2)–(5) and (a1)–(a3) on RN+ \ {0} has a closed invariant set in [0, r] \ {0} that is
a global attractor.

Proposition 2.2. There is a closed invariant set S0 ⊂ [0, r] \ {0} that is a global attractor
of system (1) with (2)–(5) and (a1)–(a3) on RN+ \ {0}.

Proof. Let S1 = [0, r] \ ∩i∈INΓ−i . Since 0 < Gi((Ar)i) ≤ 1 and Gi((Ar)i) ≤ Gi((Ax)i) ≤
Gi(0) for all i ∈ IN and x ∈ [0, r], we have

δ0 = min{G1((Ar)1), . . . , GN ((Ar)N )} ∈ (0, 1].
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Let

S2 = {x ∈ [0, r] : x = δy for some y ∈ S1, δ ∈ [δ0, 1]}.
Then S2 is closed and S1 ⊂ S2 ⊂ [0, r] \ {0}. Since T (x) ≥ x, T (x) 6= x for all x ∈
∩i∈INΓ−i \ {0} and T (x) ≥ δ0x ∈ S2 for all x ∈ S1, by the positive invariance of [0, r] the

set S2 is positive invariant. As [0, r] is globally attracting on RN+ and 0 is repelling, we can

easily check that S2 is globally attracting on RN+ \ {0}. Then S0 = ∩∞n=0T
n(S2) meets the

requirement. �

Note that under conditions which guarantee the existence of a carrying simplex Σ, we must
have S0 = Σ.

For a fixed i ∈ IN , consider the following geometric condition

(20) ∀k ∈ IN \ {i},Γk ∩ [0, r] ∩ πi is strictly below Γi

and the algebraic inequality

(21) max{0, aij(rj − (ArIN\{i,j})j)} < ri − (ArIN\{i,j})i.

Our next proposition establishes the relationship between (20) and (21).

Proposition 2.3. Regarding (20) and (21) the following statements hold.

(i) Let J ⊂ IN with |J | > 1. If (20) holds for all i ∈ J , then (21) holds for all i, j ∈ J
with i 6= j.

(ii) Conversely, if (21) holds for a fixed i ∈ IN and all j ∈ IN \ {i}, then (20) holds.

(iii) Hence, condition (20) holds for all i ∈ IN if and only if (21) holds for all i, j ∈ IN
with i 6= j.

Although the proof of this proposition is similar to that of Lemma 2.4 in [17], to ease the
pain of juggling between different contexts under different notation, a self-contained proof
of Proposition 2.3 is provided in Appendix 2 at the end of this paper.

3. Main results

We shall see that the global attraction of an interior or boundary fixed point x∗, even its
existence, will be determined purely by the relative position of the N planes Γ1, . . . ,ΓN on
[0, r] ∩ πi for all i ∈ IN . If x∗ ∈ intRN+ , the Jacobian matrix of T at x∗ is

(22) DT (x∗) = I + diag[x∗1G
′
1(r1), . . . , x

∗
NG
′
N (rN )]A.

If x∗ ∈ ∂RN+ such that x∗j = 0 if and only if j ∈ J ⊂ IN , then DT (x∗) is given by (22) with

the replacement of 1 on the jth row of I by Gj((Ax
∗)j) for all j ∈ J .
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3.1. Results for global attraction. Our first expected result is for existence and global
attraction of an interior fixed point.

Theorem 3.1. Assume that Γj ∩ [0, r] ∩ πi is strictly below Γi for each i ∈ IN and every
j ∈ IN \ {i}. Then system (1) with (2)–(5) and (a1)–(a3) has a unique interior fixed point
x∗ ∈ [0, r] ∩ intRN+ and it is globally attracting in intRN+ .

Note that if the point rIN\{i} is below Γi, then the set [0, r] ∩ πi = [0, rIN\{i}] is strictly
below Γi, so Γj ∩ [0, r] ∩ πi is strictly below Γi. This particular case of Theorem 3.1 is
stated as a corollary below.

Corollary 3.2. Assume that rIN\{i} is below Γi for all i ∈ IN . Then the conclusion of
Theorem 3.1 holds.

The next result is for existence and global attraction of a general boundary fixed point.

Theorem 3.3. Let J ⊂ IN with 1 ≤ |J | ≤ N − 1. Assume that the following conditions
hold.

(i) For each i ∈ J and every j ∈ IN \ {i}, Γj ∩ [0, r] ∩ πi is strictly below Γi.

(ii) For each k ∈ IN \ J , there is an ik ∈ J such that Γk ∩ (∩j∈IN\Jπj) is below Γik .

Then system (1) with (2)–(5) and (a1)–(a3) has a fixed point x∗ ∈ [0, r] with x∗i > 0 if and
only if i ∈ J and x∗ is globally attracting.

Remark 1. Note from Theorem 3.1 that condition (i) in Theorem 3.3 ensures that the

|J |-dimensional subsystem has a globally attracting fixed point in intR|J |+ , so system (1)
has a fixed point x∗ ∈ [0, r] with x∗i > 0 if and only if i ∈ J . From the proof given later we
shall see that the global attraction of x∗ in RN+ \ (∪j∈Jπj) requires that

(ii)′ x∗ is on or above Γk for every k ∈ IN \ J .

Since x∗ ∈ ∩j∈JΓj , it is clear that condition (ii) in Theorem 3.3 guarantees (ii)′ above.
Thus, if we know x∗ already, we may replace (ii) by the weaker condition (ii)′. However,
for global asymptotic stability of x∗, we require that every eigenvalue λ of DT (x∗) satisfies
|λ| < 1 (see Theorem 3.9 in the next subsection). Since each Gk((Ax

∗)k) for k ∈ IN \ J
is an eigenvalue of DT (x∗) and Gk((Ax

∗)k) < 1 if x∗ is above Γk, for global asymptotic
stability, x∗ must be above Γk for all k ∈ IN \ J .

Corollary 3.4. Assume that rIN\{i} is below Γi for all i ∈ J . Then there is a fixed point
x∗ ∈ RN+ such that x∗i > 0 if and only if i ∈ J . If x∗ is on or above Γj for all j ∈ IN \ J ,
then x∗ is globally attracting.

So far the above results are stated under geometric conditions in terms of the relative
position of the nullcline planes restricted to [0, r] ∩ πi for i ∈ IN . For convenience in
checking these geometric conditions, we need to find equivalent algebraic conditions in
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terms of aij and ri only. Actually, Proposition 2.3 serves this purpose. By Proposition 2.3
(iii), Theorem 3.1 can be restated as follows.

Theorem 3.5. Assume that

(23) ∀i, j ∈ IN (i 6= j), max{0, aij(rj − (ArIN\{i,j})j)} < ri − (ArIN\{i,j})i.

Then system (1) with (2)–(5) and (a1)–(a3) has a unique fixed point x∗ ∈ [0, r] ∩ intRN+
and it is globally attracting.

Note that the point rIN\{i} is below Γi if and only if (ArIN\{i})i < ri, which is the same as
(Ar)i < 2ri. Then Corollary 3.2 can be restated as follows.

Corollary 3.6. Assume that Ar � 2r. Then the conclusion of Theorem 3.5 holds.

The condition that Γk ∩ (∩j∈IN\Jπj) is below Γik means that aikjrk ≤ akjrik for all j ∈ J .
Then, by Proposition 2.3 (ii), we restate Theorem 3.3 and Corollary 3.4 below.

Theorem 3.7. Let J ⊂ IN with 1 ≤ |J | ≤ N − 1. Assume that the following conditions
hold.

(i) For each i ∈ J and every j ∈ IN \ {i},

max{0, aij(rj − (ArIN\{i,j})j)} < ri − (ArIN\{i,j})i.

(ii) For each k ∈ IN \ J , there is an ik ∈ J such that aikjrk ≤ akjrik for all j ∈ J .

Then system (1) with (2)–(5) and (a1)–(a3) has a fixed point x∗ ∈ [0, r] with x∗i > 0 if and
only if i ∈ J and x∗ is globally attracting.

Corollary 3.8. Assume that (Ar)i < 2ri for all i ∈ J . Then there is a fixed point x∗ ∈ RN+
such that x∗i > 0 if and only if i ∈ J . If (Ax∗)j ≥ rj for al j ∈ IN \ J , then x∗ is globally
attracting.

3.2. Results for global asymptotic stability. In this subsection, we first state a general
theorem for global asymptotic stability when global attraction is know. Then we give
a particular case of Theorem 3.7 when an axial fixed point is globally asymptotically
stable.

Theorem 3.9. Assume that x∗ ∈ RN+ \ {0} is a globally attracting fixed point. Then the
following conclusions hold: (i) If each eigenvalue λ of DT (x∗) satisfies |λ| < 1, then x∗ is
globally asymptotically stable. (ii) If DT (x∗) is invertible and has an eigenvalue λ satisfying
|λ| > 1, then there is a homoclinic cycle.

Proof. (i) If each eigenvalue λ of DT (x∗) satisfies |λ| < 1, then x∗ is locally asymptotically
stable. Then the global asymptotic stability of x∗ follows from its local stability and global
attraction. (ii) If DT (x∗) is invertible and has an eigenvalue λ satisfying |λ| > 1, then
there is a point x ∈ RN+ \ ({x∗} ∪i∈J πi) such that α(x) = {x∗}. By the global attraction
of x∗, we also have ω(x) = {x∗}. Then γ(x) with x∗ forms a homoclinic cycle. �
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Remark 2. We shall see examples in section 4 demonstrating the application of Theorem
3.9 (i). But we are not sure whether examples of the case for Theorem 3.9 (ii) exist. See
the open problems in section 7.

The next theorem is for global stability of an axial fixed point Qi.

Theorem 3.10. Assume that Γj ∩ [0, r] ∩ πi is strictly below Γi and Qi is above Γj for
some i ∈ IN and all j ∈ IN \ {i}. Then Qi is globally asymptotically stable.

The following is a particular case of Theorem 3.10 with a simple condition that rIN\{i} is
below Γi.

Corollary 3.11. Assume that rIN\{i} is below Γi and Qi is above Γj for some i ∈ IN and
all j ∈ IN \ {i}. Then Qi is globally asymptotically stable.

The condition that the axial fixed point Qi is above Γj holds if and only if ajiri > rj . Then,
by Proposition 2.3 (ii), Theorem 3.10 and Corollary 3.11 can be restated as follows.

Theorem 3.12. Assume that rj < ajiri and

(24) max{0, aij(rj − (ArIN\{i,j})j)} < ri − (ArIN\{i,j})i

for some i ∈ IN and all j ∈ IN \{i}. Then the axial fixed point Qi is globally asymptotically
stable.

Corollary 3.13. Assume that (Ar)i < 2ri and rj < ajiri for some i ∈ IN and all j ∈
IN \ {i}. Then Qi is globally asymptotically stable.

3.3. Combination of the results for global attraction and Theorem 3.9. After
stating the criteria for global attraction of an interior or boundary fixed point and the
additional condition required for global asymptotic stability, we are now able to combine
Theorems 3.1, 3.3 and 3.9 into a unified version of these results.

Theorem 3.14. Let J ⊂ IN with J 6= ∅. Assume that for each i ∈ J and every j ∈ IN \{i},
Γj ∩ [0, r]∩ πi is strictly below Γi. Then system (1) with (2)–(5) and (a1)–(a3) has a fixed
point x∗ ∈ RN+ such that x∗i > 0 if and only if i ∈ J . If either J = IN or

(i) for each k ∈ IN \ J , there is an ik ∈ J such that Γk ∩ (∩j∈IN\Jπj) is below Γik ,

then x∗ is globally attracting. In addition, if

(ii) every eigenvalue λ of DT (x∗) satisfies |λ| < 1,

then x∗ is globally asymptotically stable.

Combination of Corollary 3.2, Corollary 3.4 and Theorem 3.9 gives the following corol-
lary.
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Corollary 3.15. Let J ⊂ IN with J 6= ∅. Assume that rIN\{i} is below Γi for each i ∈ J .
Then system (1) with (2)–(5) and (a1)–(a3) has a fixed point x∗ ∈ RN+ such that x∗i > 0 if
and only if i ∈ J . If either J = IN or

(i) x∗ is on or above Γj for all j ∈ IN \ J ,

then x∗ is globally attracting. In addition, if

(ii) every eigenvalue λ of DT (x∗) satisfies |λ| < 1,

then x∗ is globally asymptotically stable.

Using Proposition 2.3 and combining Theorems 3.5, 3.7 and 3.9, we obtain the following
theorem.

Theorem 3.16. Let J ⊂ IN with J 6= ∅. Assume that

max{0, aij(rj − (ArIN\{i,j})j)} < ri − (ArIN\{i,j})i

for each i ∈ J and every j ∈ IN \ {i}. Then system (1) with (2)–(5) and (a1)–(a3) has a
fixed point x∗ ∈ RN+ such that x∗i > 0 if and only if i ∈ J . If either J = IN or

(i) for each k ∈ IN \ J , there is an ik ∈ J such that aikjrk ≤ akjrik for all j ∈ J ,

then x∗ is globally attracting. In addition, if

(ii) every eigenvalue λ of DT (x∗) satisfies |λ| < 1,

then x∗ is globally asymptotically stable.

Combination of Corollary 3.6, Corollary 3.8 and Theorem 3.9 gives the following corol-
lary.

Corollary 3.17. Let J ⊂ IN with J 6= ∅. Assume that (Ar)i < 2ri for all i ∈ J . Then
system (1) with (2)–(5) and (a1)–(a3) has a fixed point x∗ ∈ RN+ such that x∗i > 0 if and
only if i ∈ J . If either J = IN or

(i) (Ax∗)j ≥ rj for all j ∈ IN \ J ,

then x∗ is globally attracting. In addition, if

(ii) every eigenvalue λ of DT (x∗) satisfies |λ| < 1,

then x∗ is globally asymptotically stable.

4. Some examples

The results obtained in section 3 above are for system (1) with (2)–(5) and (a1)–(a3).
Since the Ricker models (6), the Leslie-Gower models (7), the Atkinson-Allen models (8),
the extended Atkinson-Allen models (9) and models formed by any combination of (6)–(9)
with (3) and (5) satisfy (a1)–(a3), these results can be directly applied to such models.
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We first apply our results to these four models with N = 2 and derive simple conditions
for global asymptotic stability. Then we analyse the global stability for three dimensional
systems of these four models with a circulant matrix A and r = r0(1, 1, 1)T for r0 > 0. An
example of 4-dimensional system is given to demonstrate the global asymptotic stability
of an axial fixed point. A final example is for a system of combination of the four models
having a general boundary fixed point.

Example 4.1. Consider the two-dimensional system (1) with (2)–(5) and (a1)–(a3). Then,
with α ≥ 0 and β ≥ 0, the matrix A and the component equations of Ax = r for Γ1 and
Γ2 can be written as

A =

(
1 α
β 1

)
, Γ1 = {x ∈ R2

+ : x1 + αx2 = r1}, Γ2 = {x ∈ R2
+ : βx1 + x2 = r2}.

The system has axial fixed pointsQ1 andQ2 with coordinates (r1, 0) and (0, r2) respectively.
Then Q1 is below (above) Γ2 if and only if βr1 < r2 (βr1 > r2), and Q2 is below (above) Γ1

if and only if αr2 < r1 (αr2 > r1). If there is an interior fixed point x∗, then x∗1 = r1−αr2
1−αβ ,

x∗2 = r2−βr1
1−αβ and

DT (x∗) =

(
1 + x∗1G

′
1(r1) αx∗1G

′
1(r1)

βx∗2G
′
2(r2) 1 + x∗2G

′
2(r2)

)
.

The two eigenvalues λ1,2 of DT (x∗) are

λ1,2 = 1 +
1

2
[(x∗1G

′
1(r1) + x∗2G

′
2(r2))± Z],

where

Z =
√

(x∗1G
′
1(r1) + x∗2G

′
2(r2))

2 − 4x∗1x
∗
2G
′
1(r1)G

′
2(r2)(1− αβ).

By (a1), G′1(r1) < 0 and G′2(r2) < 0. If 1 − αβ > 0 then Z > 0 and λ2 < λ1 < 1. To
require |λ1,2| < 1, we only need λ2 > −1 or λ2 − 1 > −2. This is equivalent to

4 + (x∗1G
′
1(r1) + x∗2G

′
2(r2)) > Z.

If 4 + (x∗1G
′
1(r1) + x∗2G

′
2(r2)) ≥ 0, the above inequality can be simplified as

4 + 2(x∗1G
′
1(r1) + x∗2G

′
2(r2)) + x∗1x

∗
2G
′
1(r1)G

′
2(r2)(1− αβ) > 0.

As x∗1x
∗
2G
′
1(r1)G

′
2(r2)(1− αβ) > 0, if

(25) 2 + (x∗1G
′
1(r1) + x∗2G

′
2(r2)) ≥ 0,

then |λ1,2| < 1. By Corollaries 3.11 and 3.2 and Theorem 3.9, we obtain the following.

Theorem 4.2. The following statements hold for (1) with (2)–(5) and (a1)–(a3) when
N = 2 and A is given above.

(i) If βr1 < r2 and αr2 > r1, then Q2 is globally asymptotically stable.

(ii) If βr1 > r2 and αr2 < r1, then Q1 is globally asymptotically stable.

(iii) If βr1 < r2 and αr2 < r1, then there is a globally attracting interior fixed point x∗.
In addition, if (25) holds then x∗ is globally asymptotically stable.
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Next, we check that the inequality (25) holds for each of the four models (6)–(9) under the
condition βr1 < r2 and αr2 < r1. Clearly, αβ < 1. For Ricker models, Gi(u) = eri−u, so
G′i(ri) = −1 and

2 + (x∗1G
′
1(r1) + x∗2G

′
2(r2)) = 2− r1 − αr2

1− αβ
− r2 − βr1

1− αβ

≥ 2− r1 − αβr1
1− αβ

− r2 − βαr2
1− αβ

= 2− r1 − r2.

Then (25) follows from 0 < ri ≤ 1. For Leslie-Gower models, Gi(u) = 1+ri
1+u , so G′i(ri) =

− 1
1+ri

and

2 + (x∗1G
′
1(r1) + x∗2G

′
2(r2)) = 2− r1 − αr2

(1 + r1)(1− αβ)
− r2 − βr1

(1 + r2)(1− αβ)

≥ 2− r1
1 + r1

− r2
1 + r2

> 0.

For Atkinson-Allen models, Gi(u) = b+ 2(1−b)
1+u with 0 < b < 1 and ri = 1, so G′i(ri) = −1−b

2
and

2 + (x∗1G
′
1(r1) + x∗2G

′
2(r2)) = 2− (1− α)(1− b)

2(1− αβ)
− (1− β)(1− b)

2(1− αβ)

≥ 2− 1− b
2
− 1− b

2
= 1 + b > 0.

For generalised Atkinson-Allen models, Gi(u) = bi + (1+ri)(1−bi)
1+u , so G′i(ri) = − 1−bi

1+ri
and

2 + (x∗1G
′
1(r1) + x∗2G

′
2(r2)) = 2− (1− b1)(r1 − αr2)

(1 + r1)(1− αβ)
− (1− b2)(r2 − βr1)

(1 + r2)(1− αβ)

≥ 2− r1
1 + r1

− r2
1 + r2

> 0.

Therefore, from Theorem 4.2 (iii) we see that if βr1 < r2 and αr2 < r1, then there is a
globally asymptotically stable interior fixed point x∗ for the four models (6)–(9). Note
that, under the conditions α > 0 and β > 0, the results obtained here for Ricker and
Leslie-Gower models is consistent with those given in [5].

Example 4.3. Consider the four models given by (6)–(9) with N = 3, ri = r0 > 0 for
i ∈ I3 and, with α ≥ 0 and β ≥ 0,

(26) A =

 1 α β
β 1 α
α β 1

 .

Then Ax = r has a solution x∗ ∈ intR3
+ with x∗i = r0

1+α+β for i ∈ I3. We now derive a

condition for global attraction of x∗ by using Theorem 3.5. For i = 3 and j = 1, (21)
becomes

max{0, a31(r1 − (Ar{2})1)} < r3 − (Ar{2})3,
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Figure 1. A stability region for (α, β) obtained by Theorems 3.5 and 3.9.

i.e.

(27) max{0, α(r0 − αr0)} < r0 − βr0.

As r0 > 0, (27) implies that β < 1. For i = 3 and j = 2, (21) becomes

max{0, a32(r2 − (Ar{1})2)} < r3 − (Ar{1})3,

i.e.

(28) max{0, β(r0 − βr0)} < r0 − αr0,

from which follows α < 1. Then (27) and (28) can be simplified as

(29) 0 ≤ α < 1, 0 ≤ β < 1, α+ β(1− β) < 1, β + α(1− α) < 1.

Then, by Theorem 3.5, x∗ is globally attracting if α and β satisfy (29). The (α, β) region
given by (29) is shown in Figure 1. Note that this region is independent of the value r0
and it is a region for global attraction of x∗. (It may not be the largest region for global
attraction. See comparisons given after the proof for global asymptotic stability.)

Next we show the global asymptotic stability of x∗, when (α, β) is in this region, for (6) with
0 < r0 ≤ 1, for (7) with 0 < r0 < +∞, for (8) with r0 = 1, and for (9) with bi = b ∈ (0, 1)
and 0 < r0 < +∞.

For (6) with ri = r0 ∈ (0, 1], we have Gi(u) = er0−u and G′i(ri) = −1 so DT (x∗) =
I − r0

1+α+βA. As A is a circulant matrix, and so is DT (x∗), we can easily check that

DT (x∗) has eigenvalues λ1 = 1− r0 ∈ [0, 1) and

λ2,3 =
1

2(1 + α+ β)
{[2(1 + α+ β)− r0(2− α− β)]± i

√
3r0|α− β|}.
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Then |λ2,3| < 1 if and only if

[2(1 + α+ β)− r0(2− α− β)]2 + 3r20(α− β)2 < 4(1 + α+ β)2,

which is simplified to

r0[(α+ β − 2)2 + 3(α− β)2] < 4(1 + α+ β)(2− α− β).

Since 0 < r0 ≤ 1, the above inequality holds if

(α+ β − 2)2 + 3(α− β)2 < 4(1 + α+ β)(2− α− β),

which can be simplified to

(30) 2(α2 + β2) + αβ < 1 + 2(α+ β).

By α < 1 and β < 1, we have 1
2(α+ β) < 1 so

2(α2 + β2) + αβ ≤ 2(α2 + β2) +
1

2
(α2 + β2)

≤ 2(α+ β) +
1

2
(α+ β) < 1 + 2(α+ β).

Thus, (30) holds and |λ2,3| < 1. By Theorem 3.9, x∗ is globally asymptotically stable.

For (7) with ri = r0 ∈ (0,+∞), we have Gi(u) = 1+r0
1+u and G′i(ri) = − 1

1+r0
so DT (x∗) =

I− r0
1+r0

1
1+α+βA with 0 < r0

1+r0
< 1. For (8) with b ∈ (0, 1) and ri = 1, Gi(u) = b+ 2(1−b)

1+u and

G′i(ri) = −1−b
2 so DT (x∗) = I − 1−b

2
1

1+α+βA with 1−b
2 ∈ (0, 1). For (9) with bi = b ∈ (0, 1)

and ri = r0, Gi(u) = b+ (1+r0)(1−b)
1+u and G′i(ri) = − 1−b

1+r0
, so DT (x∗) = I − r0(1−b)

1+r0
1

1+α+βA

with r0(1−b)
1+r0

∈ (0, 1). Then, by the same analysis as that for (6), the eigenvalues of DT (x∗)

satisfy |λ| < 1, so x∗ is globally asymptotically stable.

We have mentioned in section 1 that the stability problem for three-dimensional Ricker
models and Leslie-Gower models were dealt with in [4], [5] and [11]. (There might be other
references, but these three are the latest.) Now it is time to compare our stability region
in Figure 1 and those given in the references.

We first state that the stability region obtained by using the criteria for global asymptotic
stability given in [5] and [11] is the open rectangle

(31) {(α, β) : 0 < α < 1, 0 < β < 1}

for each of the four models under the assumption that the carrying simplex exists. For the
four models with A given by (26), from Example 4.1 or by the computation given in [5]
for general planar systems, we know that (31) is the condition for each axial fixed point to
be a repeller on the carrying simplex and for the existence and global asymptotic stability
of a fixed point Pi ∈ πi in the interior of each boundary plane πi. We now show that each

Pi is a saddle point. Note that P3 has coordinates ( r0(1−α)1−αβ , r0(1−β)1−αβ , 0). For Ricker models,
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DT (P3) has an eigenvalue er0−(AP3)3 = e
r0(1−α(1−α)+β(1−β)1−αβ )

. Under the condition (31), we
have

αβ + α(1− α) + β(1− β) ≤ 1

2
(α2 + β2) + α− α2 + β − β2

= −1

2
[(1− α)2 + (1− β)2 − 2] < 1,

so er0−(AP3)3 > 1 and P3 is a saddle point. Similarly, P1 and P2 are also saddle points. By
Theorem 2.1 in [11] we know that the interior fixed point x∗ of Ricker models is globally
asymptotically stable. The above analysis for each Pi to be a saddle point for Ricker models
is also applicable to the other three models. By Remark 2.1 in [11], the interior fixed point
x∗ is globally asymptotically stable for all of the four models. Comparing our region in
Figure 1 with (31) we see that neither of them is contained in the other. Obviously, our
theorems permit α = 0 or β = 0 or both, but the existence of carrying simplex requires
α > 0 and β > 0. If α > 0, β > 0 and the carrying simplex exists, then the region given
by (31) is larger than our region in Figure 1. In particular, the carrying simplex always
exists for Leslie-Gower models [24]. However, for Ricker models with (26) and ri = r0 > 0,
a sufficient condition for existence of a carrying simplex (e.g. Lemma 2.1 in [11]) requires
that r0 satisfies 0 < r0 <

1
1+α+β . Does a carrying simplex exist for Ricker models when

1
1+α+β ≤ r0 ≤ 1? In case a carrying simplex does not exist, the stability region (31) is

invalid and our region in Figure 1 is safe.

Next, we compare our stability region in Figure 1 with the conditions obtained in [4] by
using Liapunov function method. For Ricker models to have an interior fixed point x∗ that
is globally asymptotically stable, a sufficient condition given by Theorem 1.4 in [4] is that
0 < α, 0 < β, 0 < r0 < 1, α+ β < 2, and either

(32) 3r0(1 + α2 + β2 − α− β − αβ) < (2− α− β)(1 + α+ β)

or

(33) r0(5− α2 − β2 − 5α− 5β + 7αβ) ≥ (2− α− β)(1 + α+ β).

(Note that the Ricker models given in [4] has the form Ti(x) = xi exp(r0(1− (Ax)i)), which
is different from our (6). But a simple scaling y = x/r0 will transform (6) to the form
given in [4].) Clearly, this is not applicable when α = 0 or β = 0 or both, so our stability
result has an advantage in this case. When α > 0 and β > 0, since the region in Figure
1 is independent of r0 whereas both (32) and (33) depend on r0, it is hard to see which
one is better. For α = 0.99, β = 0.01, r0 = 0.9, the inequalities in (29) hold but calculation
of the two sides of (32) gives 2.61981 > 2 and calculation of the two sides of (33) gives
−0.81981 < 2, so neither (32) nor (33) is met. For α = 0.5, β = 1.2, r0 = 0.5, (α, β) is
neither in the region defined by (29) nor in the region defined by (31). But calculation of
(32) gives 0.585 < 0.81 so (32) is satisfied. These particular instances demonstrate that
the stability condition for Ricker models obtained here and those in [5], [11] and [4] are
mutual supplements. For Leslie-Gower models, a stability condition given by Theorem 1.3
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in [4] is that 0 < α, 0 < β, α+ β < 2, and either

(34) (1 + r0)(4α
2 + 4β2 − 4α− 4β − αβ + 1) < 3(α2 + β2 − α− β − αβ + 1)

or

(35) 3(1 + r0)(1− 2α− 2β + 3αβ) ≥ 5(1− α− β) + 7αβ − α2 − β2.

For α = 0.01, β = 0.99, r0 = 3, the inequalities in (29) are met. But calculation of the
two sides of (34) gives 3.6436 > 2.9109 and calculation of the two sides of (35) gives
−11.6436 < −0.9109, so neither (34) nor (35) is satisfied. For α = 0.5, β = 1.2, r0 = 1,
neither (29) nor (31) is not met, but (34) holds. Therefore, the stability condition for Leslie-
Gower models obtained here and those in [5], [11] and [4] are mutual supplements.

Example 4.4. Consider the four models (6)–(9) with N = 4, ri = r0 > 0 for i ∈ I4 and

A =


1 a12 a13 2
a21 1 a23 3
a31 a32 1 4
1
4 0 1

2 1

 .

Then (ArI4\{4})4 = 1
4r0 + 1

2r0 < r0 so [0, rI4\{4}] is below Γ4. The axial fixed point

Q4 = (0, 0, 0, r0)
T satisfies (AQ4)1 = 2r0 > r0, (AQ4)2 = 3r0 > r0, (AQ4)3 = 4r0 > r0. So

Q4 is above Γ1, Γ2 and Γ3. Then, by Corollary 3.11, Q4 is globally asymptotically stable.

Example 4.5. Consider the three-dimensional system (1) with (2), where r1 = r2 = r3 =
1,

G1(u) = e1−u, G2(u) =
2

1 + u
, G3(u) = b+

2(1− b)
1 + u

with b ∈ (0, 1) and, with α ∈ [0, 1),

A =

 1 α 1
2

α 1 1
2

1 1 1

 .

Note that π1 ∩ Γ1 is given by αx2 + 1
2x3 = 1, π1 ∩ Γ2 by x2 + 1

2x3 = 1, and π1 ∩ Γ3 by
x2 +x3 = 1. From the three equations we see that π1 ∩Γ3 is below π1 ∩Γ2, which is below
π1 ∩ Γ1. By drawing the three lines we see that [0, r] ∩ π1 ∩ (Γ2 ∪ Γ3) is strictly below Γ1.
Similarly, [0, r]∩π2 ∩ (Γ1 ∪Γ3) is strictly below Γ2. We can check that x∗ = ( 1

1+α ,
1

1+α , 0)T

is a fixed point satisfying (Ax∗)3 = 2
1+α > 1, so x∗ is above Γ3. Then, by Theorem 3.3, x∗

is globally attracting. We show that the eigenvalues of DT (x∗) satisfy |λ| < 1. From (22)
and the lines below it we know that

G3((Ax
∗)3) = b+

2(1− b)
1 + 2

1+α

= b+
2 + 2α

3 + α
(1− b)
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is an eigenvalue. As 0 < 2+2α
3+α < 1, we see that G3((Ax

∗)3) ∈ (0, 1). The other eigenvalues

of DT (x∗) are those of(
1 + x∗1G

′
1(r1) αx∗1G

′
1(r1)

αx∗2G
′
2(r2) 1 + x∗2G

′
2(r2)

)
=

( α
1+α − α

1+α

− α
2(1+α)

1+2α
2(1+α)

)
.

Its two eigenvalues are

λ1,2 =
1

4(1 + α)
(1 + 4α±

√
1 + 8α2).

As α ∈ [0, 1) implies
√

1 + 8α2 < 3, we see that λ1,2 ∈ (0, 1). Thus, the eigenvalues of
DT (x∗) satisfy |λ| < 1 so that x∗ is globally asymptotically stable by Theorem 3.9.

5. Proof of the main theorems

Note that Theorems 3.5–3.7 and Corollaries 3.6–3.8 are restatements of Theorems 3.1–
3.3 and Corollaries 3.2–3.4. Note also that Corollaries 3.2–3.4 are particular cases of
Theorems 3.1–3.3. Hence, we need only prove Theorems 3.1–3.3. We shall adopt the
following strategy: prove the local stability of Qi under the conditions of Theorem 3.10
first, then provide a unified proof for existence of a fixed point x∗ with x∗j > 0 if and only

if j ∈ J ⊂ IN , 1 ≤ |J | ≤ N , and its global attraction under the conditions of Theorem
3.3. Then this proof is for Theorem 3.1 when |J | = N , i.e. J = IN , so that IN \ J = ∅
and condition (ii) in Theorem 3.3 is redundant. When |J | = 1, i.e. J = {i} for some fixed
i ∈ IN , the proof is for global attraction of Qi in Theorem 3.10.

Proof of Theorem 3.10. From (22) and the lines below it we know that

DT (Qi) = diag[G1((AQi)1), . . . , GN ((AQi)N )] + Ã,

where the ith row of Ã is (riG
′
i(ri)ai1, . . . , riG

′
i(ri)aiN ) and each of the other entries of Ã

is 0. Under the conditions of Theorem 3.10, Qi is above Γj , so (AQi)j > rj and the jth
eigenvalue of DT (Qi) satisfies Gj((AQi)j) ∈ (0, 1), for all j ∈ IN \ {i}. The ith eigenvalue
of DT (Qi) is Gi((AQi)i) + riG

′
i(ri)aii = 1 + riG

′
i(ri). By (a2), uGi(u) is increasing so

d
du [uGi(u)] = Gi(u) +uG′i(u) ≥ 0 for u ∈ [0, ri]. Thus, 1 + riG

′
i(ri) = Gi(ri) + riG

′
i(ri) ≥ 0.

By (a1), G′i(ri) < 0 so 1+riG
′
i(ri) < 1. Since Qi is globally attracting (to be proved later),

by Theorem 3.9, Qi is globally asymptotically stable. �

The lemma below is for existence of a fixed point x∗ in Theorem 3.1.

Lemma 5.1. Assume that

(36) ∀i, j ∈ IN (i 6= j), Γj ∩ [0, r] ∩ πi is strictly below Γi.

Then there is a point 0 < x∗ ≤ r such that ∩i∈INΓi = {x∗}.
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Figure 2. Configuration of h([u, v] ∩ (∪k∈{i,j}(Γk ∪ Γ−k ))) for aij = 0, (a)
aji > 0, (b) aji = 0.

The proof of Lemma 5.1 is similar to that of Lemma 3.1 in [17] so we omit it here. Con-
sidering that the proof in [17] is not easy to follow under different context, for clarity we
provide the proof of Lemma 5.1 in Appendix 3.

Let J ⊂ IN be any nonempty subset such that conditions (i) and (ii) of Theorem 3.3 hold.
For this J , let [u, v] ⊂ RN+ be a cell as described in Proposition 2.1, i.e. ω(x) ⊂ [u, v] for

all x ∈ RN+ \ (∪j∈Jπj) and T (y) ≤ v for all y ∈ [u, v]. Let J1 ⊂ IN such that vi > ui if
and only if i ∈ J1. Then J ⊂ J1, [u, v] ⊂ πj and [u, v] is above Γj for all j ∈ IN \ J1.
Since the dynamics on πj is not affected by the position of Γj on πj , we need only consider
the set [u, v] ∩ (∪j∈J1(Γj ∪ Γ−j )). As J 6= ∅, if J = J1 = {j}, then v ∈ Γj , u is below

Γj but is on or above Γi for all i ∈ IN \ {j}, [u, v] is a line segment on the xj-axis, so
[u, v]∩(∪i∈J1(Γi∪Γ−i )) = [u, v]∩(Γj∪Γ−j ) = [u, v] is a convex set. However, if |J1| = k ≥ 2,

[u, v]∩ (∪i∈J1(Γi ∪Γ−i )) may not be convex. In general, let h([u, v]∩ (∪i∈J1(Γi ∪Γ−i ))) be a

convex set containing [u, v] ∩ (∪i∈J1(Γi ∪ Γ−i )) and bounded by the surface planes of [u, v]

and possibly a plane Γ such that [u, v] ∩ (∪i∈J1(Γi ∪ Γ−i )) is below Γ and has as many
touching points with Γ as possible. For example, when |J1| = 1 with J1 = {j},

h([u, v] ∩ (∪i∈J1(Γi ∪ Γ−i ))) = h([u, v] ∩ (Γj ∪ Γ−j )) = h([u, v]) = [u, v].

When |J1| = 2 with J1 = {i, j}, there are following three cases for the configuration of
h([u, v] ∩ (∪k∈{i,j}(Γk ∪ Γ−k ))).

Case 1: aij = 0. No matter whether aji = 0 or aji > 0, we always have

[u, v] ∩ (∪k∈{i,j}(Γk ∪ Γ−k )) = [u, v] ∩ (Γi ∪ Γ−i ) = [u, v],

so h([u, v] ∩ (∪k∈{i,j}(Γk ∪ Γ−k ))) = [u, v] as shown in Figure 2.
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Figure 3. Configuration of h([u, v] ∩ (∪k∈{i,j}(Γk ∪ Γ−k ))) when aij >
0, aji > 0 and [u, v] ∩ Γj is on or below Γi. (a) Γi = Γj , (b) uj ≥ 0,
(c) uj = 0.

 

 

 

Figure 4. Configuration of h([u, v] ∩ (∪k∈{i,j}(Γk ∪ Γ−k ))) when there is a
fixed point x∗ in the interior of [u, v].

Case 2: aij > 0, aji > 0, [u, v] ∩ Γj is on or below Γi. In this case, Γ = Γi and

h([u, v] ∩ (∪k∈{i,j}(Γk ∪ Γ−k ))) = [u, v] ∩ (∪k∈{i,j}(Γk ∪ Γ−k ) = [u, v] ∩ (Γi ∪ Γ−i )

as shown in Figure 3.

Case 3: [u, v]∩Γi∩Γj = {x∗}, uk < x∗k < vk for k ∈ {i, j}. In this case, [u, v]∩(∪k∈{i,j}(Γk∪
Γ−k )) is a proper subset of h([u, v]∩(∪k∈{i,j}(Γk∪Γ−k ))), which is bounded by the boundary
lines of [u, v] and the line Γ determined by A and B shown in Figure 4.
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Let P (i) : RN → RN−1 be the projection such that P (i) simply omit the ith component of

each x ∈ RN , i.e. P
(i)
j (x) = xj for all j ∈ IN \ {i} but P (i)(x) has no ith component.

Lemma 5.2. Assume that [u, v] as described in Proposition 2.1 contains ω(x) for all
x ∈ RN+ \ (∪i∈Jπi) and J ⊂ J1 ⊂ IN such that vj > uj if and only if j ∈ J1. Then

ω(x) ⊂ h([u, v] ∩ (∪k∈J1(Γk ∪ Γ−k ))) for all x ∈ RN+ \ (∪i∈Jπi). Moreover, if |J1| ≥ 2, then

for each k ∈ J , ω(x) ⊂ [uk, vk]× P (k)(Sk(u)) for all x ∈ RN+ \ (∪i∈Jπi), where

Sk(u) = h(πk(u) ∩ [u, v] ∩ (∪`∈J1\{k}(Γ` ∪ Γ−` ))).

As the proof of Lemma 5.2 is lengthy but technical, we shall dedicate the next section to
it.

We now prove the existence of a fixed point x∗ with x∗i ∈ (0, ri] if and only if i ∈ J and
the global attraction of x∗.

Proof of Theorems 3.1–3.3 for global attraction. If J = IN , the existence of a fixed point
x∗ with 0� x∗ ≤ r follows from condition (i) of Theorem 3.3 and Lemma 5.1. If J = {i}
for some i ∈ IN , then x∗ = Qi is the required fixed point. In general, if J 6= IN , we can view

the |J |-dimensional subsystem on ∩j∈IN\Jπj as a system on R|J |+ . Then, by condition (i)

and applying Lemma 5.1 to this |J |-dimensional system, we obtain a fixed point x∗ ∈ RN+
with x∗i ∈ (0, ri] if and only if i ∈ J .

To show the global attraction of x∗, we let u = u(t) = tx∗, then v = v(t) is defined by (19),
for t ∈ [0, 1). We show that for each t ∈ [0, 1), ω(x) ⊂ [u(t), v(t)] for all x ∈ RN+ \ (∪i∈Jπi).
Then the global attraction of x∗ follows from [u(1), v(1)] = {x∗} by letting t→ 1.

From Proposition 2.1 with u = 0 we know that [u(0), v(0)] = [0, r] is positive invariant and
ω(x) ⊂ [0, r] for all x ∈ RN+ . As v = r � 0 = u, we have J1 = IN . By Lemma 5.2 with
u = 0, for each i ∈ J with

Si(0) = h(πi ∩ [0, r] ∩ (∪j∈IN\{i}(Γj ∪ Γ−j ))),

ω(x) ⊂ [0, ri]× P (i)(Si(0)) for all x ∈ RN+ \ (∪j∈Jπj). By condition (i), the set

πi ∩ [0, r] ∩ (∪j∈IN\{i}(Γj ∪ Γ−j ))

is strictly below Γi. By the convexity and definition of the set h(S) for a set S, Si(0) is
strictly below Γi so (Ay)i < ri for all y ∈ Si(0). Since Si(0) is compact and Si(0) ⊂ πi,
there is a δi ∈ (0, 12x

∗
i ) such that the set

[0, 2δi]× P (i)(B(Si(0), δi)) = {x ∈ RN+ : xi ∈ [0, 2δi], x
IN\{i} ∈ B(Si(0), δi)}

is strictly below Γi, so 2δi < x∗i ≤ ri, where B(Si(0), δi) is the closure of

B(Si(0), δi) = {y ∈ πi : ∃x ∈ Si(0) such that |x− y| < δi}.
We show that

(37) ∀x ∈ RN+ \ (∪j∈Jπj), ω(x) ∩ ([0, δi]× P (i)(Si(0))) = ∅.
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Suppose (37) is not true. Then, for some x0 ∈ RN+ \ (∪j∈Jπj), there is y0 ∈ ω(x0)∩ ([0, δi]×
P (i)(Si(0))) and an increasing sequence {nk} such that Tnk(x0) → y0 as k → ∞. As

ω(x0) ⊂ [0, ri] × P (i)(Si(0)), y0i ≤ δi < 2δi < ri, and xi ≤ ri implies Ti(x) ≤ ri for any
x ∈ RN+ , there is an integer N0 > 0 such that

∀n ≥ N0, T
n(x0) ∈ [0, ri]× P (i)(B(Si(0), δi)).

For any point x ∈ [0, ri]×P (i)(B(Si(0), δi)) with xi > 2δi, there is a point y ∈ Γi such that

(y − x)IN\{i} = 0. If x ∈ Γ−i , by (a1) and (a2) we have xi < Ti(x) < Ti(y) = yi ≤ ri. If

x ∈ Γ+
i , by (a1) and (a2) again, 2δi < yi = Ti(y) < Ti(x) < xi ≤ ri. Thus, if Tni (x0) > 2δi

for some n ≥ N0 then Tn+ki (x0) > 2δi for all k ≥ 0. As limk→∞ T
nk
i (x0) = y0i ≤ δi, we

must have

∀n ≥ N0, T
n(x0) ∈ [0, 2δi]× P (i)(B(Si(0), δi)).

Since the compact set [0, 2δi] × P (i)(B(Si(0), δi)) is strictly below Γi, there is an r̄i < ri
such that (Ay)i ≤ r̄i, so that Ti(y) = yiGi((Ay)i) ≥ yiGi(r̄i) > yi, for all y ∈ [0, 2δi] ×
P (i)(B(Si(0), δi)). Thus,

TN0+k
i (x0) ≥ TN0

i (x0)(Gi(r̄i))
k → +∞ (k →∞),

a contradiction to the boundedness of {Tn(x0)}. This shows (37).

Since (37) holds for all i ∈ J , there is a δ ∈ (0, 1] such that

∀x ∈ RN+ \ (∪j∈Jπj), ω(x) ⊂ RN+ (u(δ)),

where u(δ) = δx∗. By Proposition 2.1,

(38) ∀x ∈ RN+ \ (∪j∈Jπj), ω(x) ⊂ [u(δ), v(δ)],

and T (y) ≤ v(δ) for all y ∈ [u(δ), v(δ)]. We claim that the supremum δ0 of δ satisfying
(38) is 1. If not, then v(δ0) 6= u(δ0), ω(x) ⊂ [u(δ0), v(δ0)] for all x ∈ RN+ \ (∪j∈Jπj), and
T (y) ≤ v(δ0) for all y ∈ [u(δ0), v(δ0)]. Now with new J1 ⊂ IN such that vi(δ0) > ui(δ0) if
and only if i ∈ J1, we see that vi(δ0) = ui(δ0) = 0 for i ∈ IN \ J1 and for any i ∈ J1, by
(19),

vi(δ0) = ri − (Au(δ0)
IN\{i})i = ri − δ0(Ax∗)i + δ0x

∗
i .

If J1 = J = {i} for some i ∈ IN , then [u(δ0), v(δ0)] = [δ0Qi, Qi] is on the xi-axis and δ0Qi
is on or above Γj for all j ∈ IN \ {i} and, by (38), ω(x) ⊂ [δ0Qi, Qi] for all x ∈ RN+ \ πi.
By (a2), Ti(x) is increasing for xi ∈ [δ0ri, ri]. So, for any δ1 ∈ (δ0, 1], we have ω(x) ⊂
[δ1Qi, Qi] = [u(δ1), v(δ1)] for all x ∈ RN+ \ πi. This contradicts the definition of δ0.

Now suppose |J1| ≥ 2 and we also derive a contradiction. By Lemma 5.2, we have

∀i ∈ J, ∀x ∈ RN+ \ (∪j∈Jπj), ω(x) ⊂ [ui(δ0), vi(δ0)]× P (i)(Si(u(δ0))).

We define an affine map f : RN+ → RN+ (u(δ0)) by

∀x ∈ RN+ , f(x) = δ0x
∗ + (1− δ0)x.
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Then f(x∗) = x∗ and f(x) − x∗ = (1 − δ0)(x − x∗), so f maps the line segment x∗x

to x∗f(x) ⊂ x∗x, [0, r] to f([0, r]) = [u(δ0), f(r)], and [0, rIN\{i}] to f([0, rIN\{i}]) =

[u(δ0), f(rIN\{i})] for all i ∈ IN .

For a fixed i ∈ J , f(rIN\{i}) = δ0x
∗ + (1− δ0)rIN\{i}. For any j ∈ IN \ {i}, if j ∈ IN \ J1

then vj(δ0) = 0 < (1− δ0)rj = fj(r
IN\{i}); if j ∈ J then

vj(δ0) = rj − δ0rj + δ0x
∗
j = fj(r

IN\{i});

if j ∈ J1 \ J then (Ax∗)j ≥ rj so

vj(δ0) ≤ rj − δ0rj = fj(r
IN\{i}).

Thus, u(δ0)
{i} + v(δ0)

IN\{i} ≤ f(rIN\{i}) so

πi(u(δ0)) ∩ [u(δ0), v(δ0)] = [u(δ0), u(δ0)
{i} + v(δ0)

IN\{i}] ⊂ f([0, rIN\{i}]).

For j ∈ J1 \ {i} and any x ∈ πi(u(δ0))∩ [u(δ0), v(δ0)]∩Γj , we show that (Ax)i < ri so that

x is below Γi. Since x ∈ f([0, rIN\{i}]) and f is invertible, then

y = f−1(x) =
1

1− δ0
(x− δ0x∗) ∈ [0, rIN\{i}].

As x ∈ Γj and x∗ is on or above Γj by condition (ii) of Theorem 3.3, we have (Ax∗)j ≥ rj
and (Ax)j = rj , so

(Ay)j =
1

1− δ0
((Ax)j − δ0(Ax∗)j) ≤

1

1− δ0
(rj − δ0rj) = rj .

This shows that y ∈ πi ∩ [0, r] ∩ (Γj ∪ Γ−j ). By condition (i) of Theorem 3.3, y is below Γi
so (Ay)i < ri. Then, as (Ax∗)i = ri, we have

(Ax)i = δ0(Ax
∗)i + (1− δ0)(Ay)i < δ0ri + (1− δ0)ri = ri

so x is below Γi. This shows that πi(u(δ0)) ∩ [u(δ0), v(δ0)] ∩ (Γj ∪ Γ−j ) is strictly below Γi
for all j ∈ J1 \ {i}. Then Si(u(δ0)) is strictly below Γi. By Lemma 5.2, [ui(δ0), vi(δ0)] ×
P (i)(Si(u(δ0))) contains ω(x) for all x ∈ RN+ \ (∪j∈Jπj). Then the same argument as before

leads to the existence of a number δi > δ0 such that [δ0x
∗
i , δix

∗
i ]× P (i)(Si(u(δ0))) does not

contain any point of ω(x) for any x ∈ RN+ \ (∪j∈Jπj). Then, for δ̄ = min{δi : i ∈ J} > δ0,

we have ω(x) ⊂ RN+ (u(δ̄)) for all x ∈ RN+ \ (∪j∈Jπj). By Proposition 2.1 again, we have

ω(x) ⊂ [u(δ̄), v(δ̄)] for all x ∈ RN+ \ (∪j∈Jπj) and y ∈ [u(δ̄), v(δ̄)] implies T (y) ≤ v(δ̄). But
by the definition of δ0, we should have δ̄ ≤ δ0, a contradiction. This shows that δ0 = 1, so
x∗ is globally attracting. �

6. Proof of Lemma 5.2

In order to prove Lemma 5.2, we first prove the following two lemmas. Note that the u in
the next two lemmas are different from, but less restrictive than, the u in Proposition 2.1
as we do not require uj = 0 for j ∈ IN \ J1 here.
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Lemma 6.1. For any u ∈ [0, r], let v ∈ [u, r] be defined by (19). Then,

(39) ∀w ∈ [v, r], ∀x ∈ [u,w], T (x) ≤ w.

Proof. Take w ∈ [v, r], x ∈ [u,w], j ∈ IN and fix them. If x ∈ Γj∪Γ+
j then Tj(x) ≤ xj ≤ wj .

If x ∈ Γ−j then there is a y ∈ Γj ∩ [u, v] ⊂ Γj ∩ [u,w] such that y ≥ x and (y−x)IN\{j} = 0.

By (a2), Tj(x) < Tj(y) = yj ≤ wj . Thus, for all x ∈ [u,w], T (x) ≤ w and (39) holds. �

Lemma 6.2. For u, v, w as in Lemma 6.1, let J1 ⊂ IN such that u ∈ Γ−i if and only if

i ∈ J1. For any J2 ⊂ IN with J1 ⊂ J2, let S = h([u,w]∩ (∪j∈J2(Γj ∪ Γ−j ))). If S 6= ∅, then

(40) ∀x ∈ S,∃y ∈ S such that T (x) ≤ y.

Proof. We prove (40) by induction on |J1|. When |J1| = 0, i.e. J1 = ∅, [u,w] is above Γj
for all j ∈ IN . Thus, for all x ∈ S, T (x) ≤ x so (40) holds. When |J1| = 1, J1 = {i} for
some i ∈ IN . As u is below Γi but on or above Γj for all j ∈ IN \ {i}, [u, v] and [u,w] are
above Γj for all j ∈ IN \ {i}. For any x ∈ S, if x ∈ Γi ∪Γ+

i then x is on or above Γk for all

k ∈ IN so (40) holds with y = x. If x ∈ Γ−i , then there is a y ∈ Γi ∩ S such that x ≤ y and

(y − x)IN\{i} = 0. By (a2), Ti(x) < Ti(y) = yi. For each j ∈ IN \ {i}, as x is on or above
Γj , we have Tj(x) ≤ xj = yj . Hence, T (x) ≤ y and (40) holds when |J1| = 1.

(IH) Suppose (40) holds when 0 ≤ |J1| ≤ k for some positive integer k < N .

We show that (40) holds when |J1| = k + 1. For any x ∈ S such that x ∈ Γi ∪ Γ+
i for

some i ∈ J1, let J3 ⊂ IN such that x is below Γj if and only if j ∈ J3. Since x is on or
above Γk for all k ∈ {i} ∪ (IN \ J1), we have J3 ⊂ J1 \ {i} so 0 ≤ |J3| ≤ |J1| − 1 = k. As
u ≤ x ≤ w ≤ r and u ≤ v ≤ w, defining x′ ∈ [x, r] by (19), i.e.

x′j =

{
xj if j ∈ IN \ J3,
rj − (AxIN\{j})j if j ∈ J3,

we have x′j = xj ≤ wj for j ∈ IN \ J3 and x′j ≤ rj − (AuIN\{j})j = vj ≤ wj for j ∈ J3.
Thus, x ≤ x′ ≤ w ≤ r. Then, by (IH),

∀z ∈ h([x,w] ∩ (∪j∈J2(Γj ∪ Γ−j ))), ∃y ∈ h([x,w] ∩ (∪j∈J2(Γj ∪ Γ−j )))

such that T (z) ≤ y. Note that

x ∈ h([x,w] ∩ (∪j∈J2(Γj ∪ Γ−j ))) ⊂ h([u,w] ∩ (∪j∈J2(Γj ∪ Γ−j ))) = S.

Thus, for this x ∈ S, there is a y ∈ S such that T (x) ≤ y.

Note that u ∈ ∩j∈J1Γ−j so [u,w] ∩ (∩j∈J1Γ−j ) 6= ∅ and it is a subset of S. We next show
that

∀z ∈ [u,w] ∩ (∩j∈J1Γ−j ), ∃y ∈ S such that T (z) ≤ y.
From the previous paragraph we know that, for any x ∈ S ∩ Γi for some i ∈ J1 but
x ∈ Γj ∪ Γ−j for all j ∈ J1 \ {i}, there is a y ∈ h([x,w] ∩ (∪j∈J2(Γj ∪ Γ−j ))) ⊂ S such that

T (x) ≤ y. If xJ1 = 0 then p(t) = txJ1 + xIN\J1 = x for all t ∈ [0, 1]. Otherwise, these
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points p(t) form a line segment p(0)p(1) = xIN\J1x. By (a3), Tj(p(t)) for each j ∈ J1 is
increasing for t ∈ [0, 1]. Thus, if p(t) ∈ S, then p(t) is on or above Γk for all k ∈ IN \J1, so

∀j ∈ J1, Tj(p(t)) ≤ Tj(x) ≤ yj , ∀k ∈ IN \ J1, Tk(p(t)) ≤ pk(t) ≤ xk ≤ yk.

Hence, T (p(t)) ≤ y if p(t) ∈ S. Since the set S ∩ (∩j∈J1(Γj ∪ Γ−j )) consists of such points

p(t) ∈ S, we have proved (40) when |J1| = k + 1. By induction, (40) holds for all J1 with
0 ≤ |J1| ≤ N . �

Equipped with Lemma 6.2, we are now in a position to prove Lemma 5.2.

Proof of Lemma 5.2. By assumption, [u, v] is as described in Proposition 2.1, so uj = 0
for j ∈ IN \ J and u ∈ Γ−i for all i ∈ J , and by (19), vj = uj = 0 for j ∈ IN \ J1 and

vi = ri − (AuIN\{i})i for i ∈ J1. By Lemma 6.1,

(41) ∀w ∈ [v, r], ∀x ∈ [u,w], T (x) ≤ w.

By Lemma 6.2 for w = v and J2 = J1 with S = h([u, v] ∩ (∪j∈J1(Γj ∩ Γ−j ))), we have

(42) ∀x ∈ S,∃y ∈ S such that T (x) ≤ y.

We first show the conclusion

(43) ∀x ∈ RN+ \ (∪j∈Jπj), ω(x) ⊂ S.

By assumption, ω(x) ⊂ [u, v] for all x ∈ RN+ \ (∪j∈Jπj). If S = [u, v] then (43) is obviously
true. If S 6= [u, v] then (43) follows from

(44) ∀x ∈ RN+ \ (∪j∈Jπj), ω(x) ∩ ([u, v] \ S) = ∅.

We now show the truth of (44) by contradiction. Suppose (44) is not true. Then there
exist a point x0 ∈ RN+ \ (∪j∈Jπj) and a point y0 ∈ ω(x0) ∩ ([u, v] \ S). Since ω(x0) is
invariant, there is a y1 ∈ ω(x0) such that T (y1) = y0. By the definition of the set S,
T (y1) = y0 6≤ x for any x ∈ S. Thus, by (42), y1 6∈ S. As y1 ∈ ω(x0) ⊂ [u, v], we must
have y1 ∈ ω(x0) ∩ ([u, v] \ S). Note that [u, v] \ S is strictly above Γj for all j ∈ J1. Thus,
y0j = Tj(y

1) < y1j for all j ∈ J1. As y0i = y1i = 0 for all i ∈ IN \J1, we have y0 ≤ y1 ≤ v. For

any y ≥ y0 and any j ∈ J1, (Ay)j ≥ (Ay0)j > rj so Gj((Ay)j) ≤ Gj((Ay0)j) < Gj(rj) = 1.
Thus,

∀j ∈ J1,∀y ∈ [y0, v], Gj((Ay)j) ≤ max
i∈J1

Gi((Ay
0)i) = K < 1.

Then, by y1 ∈ [y0, v], we have y0 ≤ Ky1. Repeating the above process, we obtain a
sequence {yn} ⊂ ω(x0) ∩ ([u, v] \ S) satisfying

∀n ≥ 0, y0 ≤ yn ≤ yn+1 ≤ v, yn ≤ Kyn+1.

It then follows that y0 ≤ Knyn ≤ Knv for all n ≥ 0. By letting n→∞, we obtain y0 = 0,
a contradiction to y0 above Γj for all j ∈ J1. This shows the truth of (44). Then (43)
follows from (44).
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Next, taking a fixed k ∈ J , we show that, if |J1| ≥ 2,

(45) ∀x ∈ RN+ \ (∪j∈Jπj), ω(x) ⊂ [uk, vk]× P (k)(Sk(u)).

This is true if Sk(u) = [u, uk + vIN\{k}] so [uk, vk]× P (k)(Sk(u)) = [u, v] or when Sk(u) 6=
[u, uk + vIN\{k}],

(46) ∀x ∈ RN+ \ (∪j∈Jπj), ω(x) ∩ ([u, v] \ [uk, vk]× P (k)(Sk(u))) = ∅.

In order to show (46), we first show that

(47) ∀x ∈ [uk, vk]× P (k)(Sk(u)), ∃y ∈ [uk, vk]× P (k)(Sk(u))) such that T (x) ≤ y.

For this purpose, we consider the (N − 1)-dimensional system

y(n) = T̃n(y), y = P (k)(x), T̃ (P (k)(x)) = P (k)(T (x))

for all x ∈ RN+ with xk = uk. Then T̃j(y) = Tj(x) for all j ∈ IN \ {k}. We can easily

check that the assumptions (a1)–(a3) for T also hold for T̃ . By Lemma 6.1 with w =

u{k} + vIN\{k}, we have T̃ (P (k)(x)) ≤ P (k)(v) for all x ∈ [u, u{k} + vIN\{k}]. Then, by

Lemma 6.2 with w = u{k} + vIN\{k} and J2 = J1 \ {k}, we have

(48) ∀x ∈ Sk(u), ∃z ∈ Sk(u) such that T̃ (P (k)(x)) ≤ P (k)(z),

i.e. Tj(x) ≤ zj for all j ∈ IN \ {k}.

Now for each x ∈ [uk, vk]× P (k)(Sk(u)), there is x̄ ∈ Sk(u) such that x ≥ x̄ and P (k)(x̄) =

P (k)(x). By (a1), Tj(x) ≤ Tj(x̄) for all j ∈ IN \{k}. For this x̄, by (48) there is a z ∈ Sk(u)

such that T̃ (P (k)(x̄) ≤ P (k)(z). Since x ∈ [u, v], by (41) with w = v we have T (x) ≤ v, so

Tk(x) ≤ vk. Then, taking y ∈ [uk, vk] × P (k)(Sk(u)) with P (k)(y) = P (k)(z) and yk = vk,
we have T (x) ≤ y. This shows (47).

We now show (46) by contradiction. Suppose (46) is not true. Then there exist a point
x0 ∈ RN+ \ (∪j∈Jπj), a point

y0 ∈ ω(x0) ∩ ([u, v] \ [uk, vk]× P (k)(Sk(u))),

and a point ȳ ∈ [u, v] \ [uk, vk] × P (k)(Sk(u)) such that P (k)(ȳ) = P (k)(y0) and ȳk = uk.
By the invariance of ω(x0), there is a y1 ∈ ω(x0) ⊂ [u, v] such that T (y1) = y0. From the

definition of Sk(u) we know that y0 6≤ x for any x ∈ [uk, vk]× P (k)(Sk(u)). Then, by (47),

we must have y1 6∈ [uk, vk]× P (k)(Sk(u)) so

y1 ∈ ω(x0) ∩ ([u, v] \ [uk, vk]× P (k)(Sk(u))).

Note that the set [u, v]\[uk, vk]×P (k)(Sk(u)) is strictly above Γj for every j ∈ J1\{k}. Thus,
y1 is above Γj , so y0j = Tj(y

1) < y1j , for all j ∈ J1 \ {k}. Let K = maxj∈J1\{k}Gj((Ay
0)j).

Then 0 < K < 1 and

∀j ∈ J1 \ {k}, y0j = y1jGj((Ay
1)j) ≤ y1jGj((Ay0)j) ≤ Ky1j .
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Repeating the above process, we obtain a sequence {yn} ⊂ ω(x0) ∩ ([u, v] \ [uk, vk] ×
P (k)(Sk(u)) such that

∀j ∈ J1 \ {k}, ∀n ≥ 0, y0j ≤ ynj < yn+1
j ≤ vj , ynj ≤ Kyn+1

j .

It then follows from these that y0j ≤ Knynj ≤ vjK
k → 0 as n → ∞. Thus, y0j = 0 for

j ∈ J1 \ {k}, so ȳIN\{k} = (y0)IN\{k} = 0 and ȳ = u{k} is above Γj for all j ∈ J1 \ {k}.
But u is below Γi for all i ∈ J1 by assumption and u{k} ≤ u, so u{k} must be below Γj for
j ∈ J1 \ {k} 6= ∅, a contradiction. This shows the truth of (46). Then (45) follows from
(46). �

7. Conclusion

For a class of discrete dynamical systems (1) with (2)–(5) and (a1)–(a3), we have success-
fully applied the geometric method of using the relative position of the N nullcline planes
Γi restricted to the cell [0, r] to the study of global dynamics and established criteria for
the system to have a globally attracting nontrivial fixed point x∗. Then global asymptotic
stability of x∗ or existence of a homoclinic cycle can be determined by the eigenvalues of the
Jacobian DT (x∗). We have demonstrated application of the criteria for global asymptotic
stability of a fixed point by various concrete examples.

For global asymptotic stability of a fixed point of Kolmogorov type discrete dynamical
systems, one typical theorem among the existing criteria in literature was given in [5] and
a revised version was given in [11] by assuming the existence of a carrying simplex on a
monotone region; another typical result was given in [4] by using split Lyapunov function
method. Comparing our results with these two typical results, we reach the following
conclusions:

(i) While both of the existing typical results deal with global asymptotic stability of
an interior fixed point only, our results cover global asymptotic stability of both
interior and boundary fixed points.

(ii) The requirement for existence of a carrying simplex in the existing results in [5] and
[11] is very restrictive for systems (1) with (2)–(5) and (a1)–(a3). Almost every
available sufficient condition for existence of carrying simplex requires aij > 0 for
all i, j ∈ IN . But it is a great relief that we do not require the existence of a
carrying simplex and only require aii > 0, aij ≥ 0, and permit aij = 0, for distinct
i, j ∈ IN .

(iii) Although the theorems given in [4] are useful in general, and powerful in some
particular cases, it is generally difficult in constructing suitable Liapunov functions.
Fortunately, we are not bothered here with construction of Liapunov functions and
we need only check geometric conditions relating to the relative position of the N
nullcline planes restricted to [0, r] ∩ ∂RN+ or equivalent algebraic conditions using
aij and rk only.
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(iv) From the comparisons given in section 4 at the end of Examples 4.1 and 4.3 we
see that none of the three results by three different methods is better than others
in general, but each has its advantages for some particular cases. Therefore, all of
the results are supplements to each other and enrich the theory and methods of
discrete dynamical systems.

Due to the restriction of time, space and the author’s knowledge, there are a few problems
that the author has not solved to make this paper more attractive and complete. Solutions
to the problems below are expected for future investigation. (The author should be grateful
to anyone who offers advice by private communications.)

1. For a discrete dynamical system in general, or for system (1) with (2)–(5) and
(a1)–(a3) in particular, is a globally attracting fixed point always stable so always
globally asymptotically stable? A proof for YES or a counter-example for NO is
expected.

2. CONJECTURE. Assume that x∗ is a globally attracting fixed point and the Jaco-
bian DT (x∗) is invertible. Then either x∗ is globally asymptotically stable or there
is a homoclinic cycle. Is this conjecture correct?

3. If the answer to problem 1 above is YES, then our Theorem 3.9 (ii) is void. Other-
wise, find an example that a fixed point x∗ is globally attracting and DT (x∗) has
an eigenvalue with modulus greater than 1 so that x∗ induces a homoclinic cycle.

4. For system (1) with (2)–(5), are the assumptions (a1)–(a3) enough to guarantee
the existence of a carrying simplex Σ so that the global attractor S0 of the system
on RN+ \ {0} obtained in Proposition 2.2 satisfies S0 = Σ?

Appendix 1 Proofs of (a1)–(a3) for models (6)–(9)

We check that models (6)–(9) and their combinations satisfy (a1)–(a3).

Ricker models (6): Gi(u) = eri−u, ri ∈ (0, 1],

Ti(x) = xiGi((Ax)i) = xie
ri−(Ax)i , i ∈ IN .

Clearly, Gi(ri) = 1, G′i(u) = −eri−u < 0, and for xi ∈ [0, ri),

∂Ti(x)

∂xi
= (1− xi)eri−(Ax)i > (1− ri)eri−(Ax)i ≥ 0.

So (a1) and (a2) are satisfied. For each nonempty J ⊂ IN and every y ∈ [0, r]∩Γi ∩j∈J\{i}
(Γj ∪ Γ−j ) with yj > 0 for all j ∈ J , we have 0 < (AyJ)j ≤ (Ay)j ≤ rj ≤ 1. Then

d

dt
Tj(y

IN\J + tyJ) =
d

dt
[tyje

rj−(AyIN\J+tAyJ )j ]

= yj(1− t(AyJ)j)e
rj−(AyIN\J+tAyJ )j

≥ yj(1− t)erj−(Ay
IN\J+tAyJ )j > 0
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for t ∈ [0, 1) and all j ∈ J . Thus, (a3) holds.

Leslie-Gower models (7): Gi(u) = 1+ri
1+u , ri ∈ (0,+∞),

Ti(x) = xiGi((Ax)i) =
(1 + ri)xi
1 + (Ax)i

, i ∈ IN .

Obviously, Gi(ri) = 1, G′i(u) = − 1+ri
(1+u)2

< 0, and for xi ≥ 0,

∂Ti(x)

∂xi
=

(1 + ri)(1 + (AxIN\{i})i)

(1 + (Ax)i)2
> 0.

So (a1) and (a2) are satisfied. For each nonempty J ⊂ IN and every y ∈ [0, r]∩Γi ∩j∈J\{i}
(Γj ∪ Γ−j ) with yj > 0 for all j ∈ J , we have

d

dt
Tj(y

IN\J + tyJ) =
d

dt

tyj(1 + rj)

1 + (AyIN\J)j + t(AyJ)j

=
yj(1 + rj)(1 + (AyIN\J)j)

[1 + (AyIN\J)j + t(AyJ)j ]2
> 0

for t ∈ [0, 1) and all j ∈ J . Thus, (a3) holds.

Atkinson-Allen models (8): Gi(u) = b+ 2(1−b)
1+u , ri = 1, 0 < b < 1,

Ti(x) = xiGi((Ax)i) = bxi +
2(1− b)xi
1 + (Ax)i

, i ∈ IN .

Since Gi(1) = 1, G′i(u) = − 2(1−b)
(1+u)2

< 0, and for xi ≥ 0,

∂Ti(x)

∂xi
= b+

2(1− b)(1 + (AxIN\{i})i)

(1 + (Ax)i)2
> 0,

(a1) and (a2) are met. For each nonempty J ⊂ IN and every y as above, we have

d

dt
Tj(y

IN\J + tyJ) =
d

dt
[btyj +

2tyj(1− b)
1 + (AyIN\J)j + t(AyJ)j

]

= byj +
2yj(1− b)(1 + (AyIN\J)j)

[1 + (AyIN\J)j + t(AyJ)j ]2
> 0

for t ∈ [0, 1) and all j ∈ J . So (a3) is satisfied.

Generalised Atkinson-Allen models (9): Gi(u) = bi + (1+ri)(1−bi)
1+u , ri ∈ (0,+∞), 0 < bi <

1,

Ti(x) = xiGi((Ax)i) = bixi +
(1 + ri)(1− bi)xi

1 + (Ax)i
, i ∈ IN .

Clearly, Gi(ri) = 1, G′i(u) = − (1+ri)(1−bi)
(1+u)2

< 0, and for xi ≥ 0,

∂Ti(x)

∂xi
= bi +

(1 + ri)(1− bi)(1 + (AxIN\{i})i)

(1 + (Ax)i)2
> 0.
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So (a1) and (a2) are fulfilled. For each nonempty J ⊂ IN and every y as above, we
have

d

dt
Tj(y

IN\J + tyJ) =
d

dt
[bjtyj +

(1 + rj)tyj(1− bj)
1 + (AyIN\J)j + t(AyJ)j

]

= bjyj +
(1 + rj)yj(1− bj)(1 + (AyIN\J)j)

[1 + (AyIN\J)j + t(AyJ)j ]2
> 0

for t ∈ [0, 1) and all j ∈ J . So (a3) is met.

From the above detailed check we see that for system (1) with (2)–(5), for each i ∈ IN , if

Gi(u) is taken to be any one of eri−u, 1+ri1+u , b + 2(1−b)
1+u or bi + (1+ri)(1−bi)

1+u , then the system

as a combination of (6)–(9) still satisfies (a1)–(a3).

Appendix 2. Proof of Proposition 2.3

Proof of Proposition 2.3. (i) Under (20) for all i ∈ J , we suppose (ArIN\{i,j})i ≥ ri for

some i, j ∈ J with i 6= j. Then the point rIN\{i,j} is on or above Γi. As 0 is below Γi, we
have

∅ 6=
(

[0, rIN\{i,j}] ∩ Γi

)
⊂
(

[0, rIN\{i}] ∩ Γi

)
.

By (20), [0, rIN\{i}] ∩ Γj = Γj ∩ [0, r] ∩ πi is strictly below Γi, so [0, rIN\{i}] ∩ Γi is strictly

above Γj . Thus, [0, rIN\{i,j}] ∩ Γi as a nonempty subset of [0, rIN\{i}] ∩ Γi is strictly above

Γj . On the other hand, as (20) also holds with the replacement of i by j, [0, rIN\{j}] ∩
Γi = Γi ∩ [0, r] ∩ πj is strictly below Γj , so [0, rIN\{i,j}] ∩ Γi as a nonempty subset of

[0, rIN\{j}] ∩ Γi is strictly be low Γj , a contradiction to [0, rIN\{i,j}] ∩ Γi strictly above

Γj . This contradiction shows that (ArIN\{i,j})i < ri, i.e. rIN\{i,j} is below Γi and Γj for

all i, j ∈ J with i 6= j. Since (ArIN\{i})j ≥ ajjrj = rj , r
IN\{i} is on or above Γj . Hence,

[rIN\{i,j}, rIN\{i}]∩Γj = {z}, where (z−r)IN\{i,j} = 0, zi = 0 and zj = rj−(ArIN\{i,j})j > 0.

As z ∈ [0, rIN\{i}] ∩ Γj , by (20) z is below Γi so

(Az)i = aij(rj − (ArIN\{i,j})j) + (ArIN\{i,j})i < ri.

Then (21) follows for all i, j ∈ J with i 6= j.

(ii) If rIN\{i} is below Γi then [0, rIN\{i}] = [0, r] ∩ πi is strictly below Γi so (20) holds. If

rIN\{i} is on or above Γi, by (21) we have (ArIN\{i,j})i < ri so rIN\{i,j} is below Γi for all

j ∈ IN \ {i}. Thus, [rIN\{i,j}, rIN\{i}] ∩ Γi = {Pj}. It can be checked that

(49) [0, rIN\{i}] ∩ Γi =

 ∑
j∈IN\{i}

cjPj : cj ≥ 0,
∑

j∈IN\{i}

cj = 1

 .

For each fixed k ∈ IN \ {i}, we show that Pj is above Γk for all j ∈ IN \ {i}. In fact,

if j 6= k then (ArIN\{i,j})k ≥ akkrk = rk, so rIN\{i,j} is on or above Γk. For j = k, if

rIN\{i,k} is above Γk then Pk is above Γk as Pk ≥ rIN\{i,k}; if rIN\{i,k} is on or below Γk,
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as [rIN\{i,k}, rIN\{i}] ∩ Γk = {z} and z is below Γi, [rIN\{i,k}, rIN\{i}] ∩ Γk is strictly below

Γi, so [rIN\{i,k}, rIN\{i}] ∩ Γi is strictly above Γk. Hence, Pk is above Γk. As rIN\{i} ≥ Pk,
rIN\{i} must be above Γk. Since rIN\{i,j} is on or above Γk for all j ∈ IN \ {i, k}, the line

segment [rIN\{i,j}, rIN\{i}] \ {rIN\{i,j}}, which contains Pj , is strictly above Γk. Therefore,

Pj is above Γk for all j ∈ IN \ {i}. By (49), [0, rIN\{i}] ∩ Γi is strictly above Γk. Hence,

[0, rIN\{i}] ∩ Γk is strictly below Γi for all k ∈ IN \ {i}, i.e. (20) holds.

(iii) This is a combination of (i) and (ii). �

Appendix 3. Proof of Lemma 5.1

Proof of Lemma 5.1. We prove the statement by induction on N . When N = 2, Γ1 and
Γ2 are straight line segments in R2

+, (36) means that the fixed point Q1 on Γ1 is below Γ2

and the fixed point Q2 on Γ2 is below Γ1. This implies that Γ1 has a point above Γ2 and a
point Q1 below Γ2, so Γ1 and Γ2 has a unique intersection point x∗ ∈ intR2

+, i.e. Ax = r
has a unique solution x∗ � 0. That x∗ ≤ r follows from aii = 1 and aij ≥ 0.

Suppose the statement is true on RN−1+ . We show the truth of the statement on RN+ .

Viewing πN as RN−1+ and Γ1 ∩ πN , . . . ,ΓN−1 ∩ πN as planes in RN−1+ , by (36) we have

∀i ∈ IN−1,∀j ∈ IN−1 \ {i}, (Γj ∩ [0, r] ∩ πi) ∩ πN is strictly below Γi.

By the inductive hypothesis, (∩i∈IN−1
Γi) ∩ πN = {z∗} with z∗N = 0 and 0 < z∗i ≤ ri for all

i ∈ IN−1. This implies that A0z = r̃ has unique solution z̃∗ ∈ intRN−1+ with 0 � z̃∗ ≤ r̃,
where A0 is the submatrix of A obtained by deleting the Nth row and column of A and
r̃ ∈ intRN−1+ is obtained from r by deleting the Nth component. Thus, A−10 exists and

z̃∗ = A−10 r̃. From this we deduce that the set

∩i∈IN−1
Γi = {z ∈ RN+ : ∀i ∈ IN−1, (Az)i = ri}

is a line segment in RN+ and it can be written as

∩i∈IN−1
Γi = {z(δ) = (z̃(δ)T , δ)T : 0 ≤ δ ≤ δ0 ≤ rN},

where, with C̃N = (a1N , . . . , a(N−1)N )T ,

z̃(δ) = A−10 {r̃ − δC̃N} = z̃∗ − δA−10 C̃N .

As z̃(0) = z̃∗ � 0 and z(δ) is continuous in δ, we have z̃(δ) � 0 and z(δ) � 0 for δ > 0
small enough. Since z∗ is below ΓN by (36), z(δ) is also below ΓN for δ > 0 small enough.
Let

δ∗ = sup{δ ∈ (0, δ0] : z(δ)� 0, z(δ) is below ΓN}.
Then 0 ≤ z(δ∗) ≤ r and z(δ∗) is on or below ΓN . We show that z(δ∗) � 0 and z(δ∗) =
∩i∈INΓi. Suppose z(δ∗) 6� 0, then zj(δ

∗) = 0 for some j ∈ IN−1 so z(δ∗) ∈ Γj ∩ [0, r] ∩ πj .
By (36), for this j and all k ∈ IN \{j}, Γk∩ [0, r]∩πj is strictly below Γj so ΓN ∩ [0, r]∩πj is
strictly below Γj . Thus, Γj ∩ [0, r]∩πj is strictly above ΓN . As z(δ∗) ∈ Γj ∩ [0, r]∩πj , z(δ∗)
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is above ΓN , a contradiction to z(δ∗) on or below ΓN . Therefore, we must have z(δ∗)� 0.
Then, by the definition of δ∗, z(δ∗) cannot be below ΓN so z(δ∗) must be on ΓN . �
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