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ABSTRACT 

Stochastic Time Series Modelling of the Banking Sector of the Nigerian Stock Market 

We investigate empirical finance issues: stylized facts, market efficiency, anomaly, bubble and 

volatility, characterizing stock prices of sixteen (16) Nigerian banks in the Nigerian stock 

exchange (NSE) from June 1999 to December 2014, encompassing periods of financial and 

banking reforms by the Central Bank of Nigeria (CBN) and the 2007-2009 global financial 

crisis witnessed by the Nigerian financial system. Both daily and monthly returns are examined 

and compared. Various financial and stochastic time series methods are applied to these series. 

These include a variety of initial plots, tests and models.  The tests include: Jarque-Bera and a 

host of other normality tests; Ljung-Box (Q) test of autocorrelation; Augmented Dickey Fuller 

(ADF), Phillip-Peron, and KPSS tests; variance ratio test, BDS tests, runs test for Random 

Walk, unit root and market efficiency tests; Duration dependent test and appropriate GARCH 

families of models. The results are compared to the existing literature for other countries and 

also other studies in Nigeria but at the market index level. The results largely reveal that while 

in some cases about 90% of the banks behave uniformly with respect to some of the concepts, 

in most other cases their behaviour differs significantly depending on the concepts investigated. 

Also, it is found that while the results of this study agree in a few cases with some of the 

outcomes of the overall market level - for example, the banking industry is largely weak-form 

inefficient in most other circumstances, there are marked differences. Specifically, unlike at 

the overall market level, bubbles were identified in some of the banks and only two anomalies 

such as January-holiday and turn-of the-month were found with most of the banks. Therefore, 

a good understanding of how each bank reacted to different scenarios is identified. This should 

form a basis upon which good investment decisions could be made. This also provides a good 

understanding of which bank is performing well or at risk, so that appropriate decisions that 

would enhance the performance of the banking market are made by market regulators.  
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X and Y. E.g 
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Are used for random variables  

 

is the 𝑖𝑡ℎ random variable, for 𝑖 =  1, 2, … , 𝑁 

Lower case x and 

y  E.g. 

𝑥𝑖 

Are the non-random scalars or the realisation for X and Y respectively. 

 

 is the 𝑖𝑡ℎ sample values drawn from a sample 

𝑿(𝒊):  is the 𝑖𝑡ℎ ordered random variable drawn from the population 

. 𝒙(𝒊):. is the 𝑖𝑡ℎ ordered sample values 

�̅�: called x-bar,  

 

representing the mean value obtained from a sample 

�̅�:  is the mean for log returns 

�̌�:  Median for return series 

𝑹𝒕:  is the simple return at time t 
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2:  is the squared returns (squared log-returns) at time t 
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𝑄2 𝑜𝑟 𝑄0.5 :  It is the second quartile or median, representing the central value of an ordered 

data. 

𝑄3 𝑜𝑟 𝑄0.75:  is the third quartile, representing the median of the upper half of the data falling 

above the median 

𝜎2: Sigma 

square-  

 

It is generally used to represent population variance in statistics. However in this 

study, it is mostly called unconditional variance. 
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2  It is called conditional variance or conditional volatility at time t in this study. 
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𝑡(𝜑=1):  The Dickey-Fuller test statistic for random walk 

φ:  unit root parameter between the two series (rt&rt−1) 

εt:  Independently and identically distributed random error terms 
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2 :  Chi-squared distribution with h degrees of freedom, where h is any integer 
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�̂�0.25: Q-hat- It is the estimated sample first quartile (at 25th-percentile) 
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𝑉(2):  Two-period variance 

𝑉�̂�(𝑁): variance N-period estimated 

∀:  Used as "For all" 

Σ:  Sigma- Sum of the data 

𝑇𝑠𝑡:  Student –t distribution 

𝑃𝑡:  

 

Closing price of stock returns at the current time (𝑡). 



XXI 

 

𝑝𝑡:  Logarithm of the price at the current time; i.e. ln (𝑃𝑡). 

𝑃𝑡−1:  

 

Closing price of stock returns at immediate previous time. 

𝑝𝑡−1:  Logarithm of the price at immediate previous time; i.e. ln (𝑃𝑡−1). 

φ𝑖  
 

is the 𝑖𝑡ℎ parameter of the autoregressive model in [4.34], for 𝑖 =  1, 2, … , 𝑝 

ℑ: drift parameter of the random walk model in 4.40 

exp[. ]:  Exponential function 

𝜙𝑖:  is the 𝑖𝑡ℎ coefficient of the squared residual autoregressive model in equation 

[4.74], for 𝑖 =  1, 2, … , 𝑝 

𝜐1: :  is the 𝑖𝑡ℎ parameter of the autoregressive model in equation [4.75], for 𝑖 =

 1, 2, … , 𝑝 

𝐶 ,𝑚:  Spatial correlation's measure between points m and 휀 

ℎ𝑖𝑡:  representing hazard function 

𝐷𝑡:  Dividend at time t [5.9; 5.10] 

𝑒𝑟𝑡   : Exponential rate of returns at time t in [5.12] 

𝛼0/ 𝜔:  Long run volatility or unconditional variance 

휀𝑡−𝑝
2 :  squared residuals for time t-p in the GARCH model 

BS:  Black-Scholes 

ℎ(𝑡, 𝑋):  Cox-proportional hazard function 

𝜎𝑡+1:  Conditional volatility at time t+1 

𝑆(𝑡):  Survivor function, representing conditional density function for duration of time 

length t, 

𝜈:  is the coefficient for auto regression of order 4 {AR (4)} in [8.6] 

𝜉:  regression coefficient of Cox-model in [8.4] 

𝑊𝐸:  Length of the estimation window in EWMA model 

𝛿:  representing measure of long memory in APARCH model in [9.29; 9.30; 9.31] 

𝐸[. ]:  Expected value of a function 

𝑆𝑛(𝑥):  It is the empirical cumulative frequency of ordered series of random samples of 

x-variable from 1 to n 

𝑭(𝒙) or 𝑭𝒙  It is the cumulative distribution or distribution function of the population. 

𝑓(𝑥) or 𝑓𝑥:  probability density(or mass) function for random X 

𝑫𝒏:  is the test statistic for the Kolmogorov Smirnov (KS) 

𝑆(𝑥𝑖) =  
𝑛

𝑁
:  is the empirical cumulative distribution of the generated ordered random sample 

𝐴2:  Representing Anderson-Darling test statistic. 
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:  Supremum restricted to random sample 𝑥 

𝑎𝑖:  represents constants generated from the means, variances and covariance of the 

ordered statistics 

Z: Z-score:  

 

Standard normal variable (Normal variable with mean = 0 & SD = 1). 

∆:. differencing parameter in the Augmented Dickey Fuller model 

𝑊:  representing Shapiro-Wilk test statistic 

𝑠𝑟  Sample standard deviation for return distribution 
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(K̂𝑟 − 3)= 0  excess kurtosis 

μt: -  Conditional mean-return at time t 

𝑄∗(𝑚):  Box and Pierce test statistic for ACF 

W̃:  Doornik and Hansen test statistic for normality test 

 ℘1
2:  representing finite-sample squared skewness 

 ℘2
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ŝ2:  Estimated sample variance 

𝑉(𝑟𝑡):  Variance for the returns at time t 
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𝜗1:  is the 𝑗𝑡ℎ parameter of the moving average model in [4.35], for 𝑗 =  1, 2, … , 𝑞 

𝑆𝐸(�̂�):  

 
Standard error of the estimated parameter, �̂� of the random walk 

𝑧𝑁:  N-period standardized distribution of the sample variance ratio 

exp(𝑟𝑡):  Exponential/ continuously-compounded returns at time t 

휀𝑡: 

 

random error or shock or residual term 

𝑢𝑡:  Sub-error term 

𝑤𝑖:  Weight of an 𝑖𝑡ℎ asset in the portfolio of assets 
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2  Is the variance of residuals at time t 
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1 CHAPTER ONE: INTRODUCTION 

1.1 General Overview 

Financial time series is a fast-developing field of applied statistics, essentially because it deals 

with analysis of financial data such as stock prices, stock market index values, currency 

exchange rates, inflation rates, electricity prices, and interest rates. Understanding stock price 

behaviour would greatly help corporate and private investors, businessmen, international or 

transnational traders, brokers, bankers, and financial analysts to adopt the best possible 

strategies for optimising their investment returns and hedging likely risks associated with 

fluctuations in the returns. The market makers or regulators, and policy makers, could be guided 

by such knowledge to suggest appropriate policies and regulations aimed at further deepening 

the market and ensuring high level of sanity is maintained among relevant interacting market 

agents. In addition, the ability of the research community to access updated information and 

furnish same to the public is enhanced, such that the source of most risks, typically measured 

by variances of individual asset returns and/or portfolios of asset returns, is identified. 

Moreover, since asset prices and returns are time-varying, the approach to understanding their 

behaviour is to estimate the basic data generating processes (DGPs) which underpin them, fit 

appropriate statistical distributions to the observed data, and use the statistical properties to 

make related investment and risk management decisions. 

Even though in financial markets prices are being observed, most empirical studies deal mostly 

with price changes (known as returns) simply because returns measure the relative changes in 

stock prices, and hence the performances of the assets over time.  

Considering these facts, this study uses stochastic time series techniques to investigate the stock 

market characteristics of the banking sector in the Nigerian Stock Market (NSM) based on the 

stock returns from 1999-2014, a period which encompasses the 2007 global financial crisis, 

banking and financial reforms in Nigeria starting from 2004. The study will among other 

objectives examine the stylized facts of bank returns, investigate some key features of the 

banking sector such as efficiency, anomalies, bubbles and volatility. The implications of the 

research findings for investments in bank shares and the development of the Nigerian Stock 

Market (NSM) shall be examined. This is especially important given the fact that the banking 

sector is a key driver of economic development of a country. 
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1.2 Research Aim and Objectives 

1.2.1 Aim 

As noted in Subsection 1.1, the research is aimed at applying appropriate (financial) time series 

techniques to investigate if the markets for bank shares in the Nigerian Stock Exchange (NSE) 

are efficient and the implications of the results for stock market performance of different banks 

and development of the Nigerian Stock Market (NSM). For this, the research explores five key 

empirical finance issues which relate to and include market efficiency, namely stylized facts, 

anomalies, bubbles, market efficiency, and volatility of the banking sector in the NSM, using 

the stock returns from 1999-2014. The research extends the results obtained by Omar (2012) at 

the overall stock market level, by using bank returns instead of the All Shares Index of the 

NSM. The specific research objectives and questions are as follows. 

1.2.2 Research Objectives (ROs): 

1. To explore the empirical distributions and stylized facts of bank stock returns in the NSM, 

for different sub-periods of the study determined by the 2007 global financial crisis and 

financial/bank reforms in Nigeria; 

2. To investigate key stock market characteristics of the banking sector of the NSM across the 

study periods, notably efficiency, anomalies, bubbles and volatility; 

3. To, where appropriate, discuss the implications of the research results for investments in 

banking shares and development of the NSM. 

1.2.3 Research Questions (RQs): 

1. What are the stylized facts of bank returns in the NSM and how do they compare with 

known results in other financial markets? In other words, are the stylised facts of bank 

returns in the NSM similar or different from those of other countries such that analysis of 

investment risk and return in the banking sector could be handled differently? 

2. How efficient is the banking sector of the NSM in different study periods?  

3. Are the Nigerian banks' stock returns characterised by anomalies or bubbles for the study 

periods? 

4. How volatile are the bank returns and which volatility models are most suitable for 

describing the volatility behaviours of the returns in different study periods?  
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5. How do the research results compare across the study periods and what are the significance 

of the research findings for relative performance of Nigerian banks and development of the 

NSE in the different periods? 

Besides this, the main purpose of this research is to fill the gaps in Omar (2012)'s work requiring 

in-depth study of the Nigerian stock exchange through a sectoral approach of investigating the 

behaviour and the challenges that have characterised, particularly the Nigerian banks within 

the NSE from 1999 to 2014 using individual bank's stock returns as against the overall average 

index (e.g. All share index (ASI) used by Omar, 2012), that was used in other studies across 

different assets and markets. Moreover, our choice of the data periods (June, 1999-December, 

2014) was informed by the fact that these were the periods of: (i.) Transition from military to 

civilian government in Nigeria; (ii.) banks' recapitalisation and stock market reforms (2004-

2006); (iii.) the global financial crisis (2008-2009) and (iv.) banking reforms (June, 2009-

December, 2010). 

1.3 Rationale for the Research 

During the 2008-09 global financial crises, the Nigerian stock market (NSM) and banking 

sector witnessed near collapse manifested by near bank collapse that was stopped by timely 

interventions by the Central Bank of Nigeria (CBN) and a sudden decline (more than 60%) in 

the market capitalization1 of the NSM. This experience necessitates the study of risks and 

returns associated with fluctuations in stock prices, most importantly as they relate to 

systematic stock market characterisation (SSMC), which is meant to capture the market 

dynamics for informed investment, risk management (Yahaya, 2012), financial policy (Musa 

et al., 2013), economic and equity market growth, linked to the GDP growth, competitiveness, 

market microstructure, and macroeconomic, monetary and fiscal policies (Ezepue and Omar, 

2012; Omar, 2012; Ezepue and Solarin, 2009; African Development Bank [AFDB], 2007; 

Aliyu, 2012; Alade, 2012; Osinubi, 2004).  

Despite negative effects of the global financial meltdown in various financial markets, lessons 

learnt from the crisis are yet to be incorporated into a plan for stock market research, 

characterisation and development, which will guide policy makers in (developing) economies 

                                                
1Market Capitalization:  represents market value of a company's paid-up capital, obtained by multiplying the current quoted 

price by the total number of shares outstanding. The market capitalization of a securities exchange is the aggregate market 
capitalization of all its quoted securities. 
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to be knowledgeable about the systemic interdependencies among different sectors of the 

financial systems. For the NSM, the only attempts at systematic stock market characterisation 

were initiated by Ezepue and Solarin (2009) and only recently developed in Ezepue and Omar 

(2012). The latter proposes that a robust characterisation of financial markets should consider 

the six main issues in empirical finance which underpin market dynamics and performance – 

anomalies, bubbles, efficiency, volatility, predictability and valuation – as positioned within 

the macroeconomic situations (Cuthbertson and Nitsche, 2005).  

Ezepue and Omar (2012) also suggest the need to conduct such theoretical and empirical 

financial studies at overall and sub-market levels, to map vital linkages and effects which may 

manifest differently at these levels, and to provide micro- and macroeconomic market 

information to market participants (households, firms and governments), that is relevant for 

their investment and policy making objectives. 

As noted earlier, the need to characterise the banking sector within the NSM became evident 

from the outcomes of Omar (2012) and Ezepue and Omar (2012) at the overall market level of 

the NSM, they observed that in order to capture the behaviour of this market as it relates to the 

identified market characteristics, it is better to examine the market subsectors so that any 

characteristics, such as bubbles, which are not easy to unpick at the market level due to 

confounding effects of data agglomeration across market sectors, may be explored without such 

effects. With this approach, it is envisaged that well-informed interpretations of the effects of 

various characteristics of investment returns and risks, capital growth, and stock market 

performance against changing policy context would be better addressed. Hence, this study 

examines four market issues - anomalies, bubbles, efficiency and volatility for the banking 

sector of the NSM to extend the results obtained in Omar (2012) to such sector-specific levels. 

Using bank stock returns in the study period 1999-2014 will enable the study to explore the 

relative effects of the 2008-2009 global financial crises and different financial and banking 

reforms started in 2004 on the banking sector. 

1.4 Contributions to Knowledge and its Suitability for PhD Work 

This study presents in-depth analysis of share price behaviour in the banking sector of the NSM, 

which according to a report in July, 2017 (Olarinmoye, 2017), is among the five largest stock 

markets in Africa where foreign investors are often focused for investments. Moreover, it gives 

an exposition of how stochastic modelling techniques can be used to analyse emerging market 

characteristics.  
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Addressing Objectives 1 and 2 represents, for the first time, an in-depth study of the stylized 

facts of the NSM and four of the six key market characteristics typically studied in financial 

economics - market efficiency, anomalies, bubbles, volatility, predictability, and valuation will 

be investigated in a key sector of the NSM.  

Work on Objective 3 will provide useful new knowledge about relative performance of 

different bank stocks, hence their risk and return characteristics and stock market development 

in the Nigerian financial system. 

The results will strongly inform similar research in other sectors (e.g. the energy, 

telecommunications, agriculture, and manufacturing sectors) of the NSM as well as emerging 

(African) markets which have similar characteristics to NSM.  

Previous work such as: Ezepue and Omar (2012); Ezepue and Solarin (2009); Nnanwa et al., 

(2016); and Urama et al., (2017) indicate that western markets have statistically similar stylised 

facts like emerging markets but are deeper in the sense of having a greater number of financial 

assets traded. This feature makes the markets more liquid, structurally more robust in their 

trading and regulatory frameworks, and able to support a wider range of financial transactions 

across equity, bond, commodity, foreign exchange, financial derivatives (Urama et al., 2017), 

and real estate asset classes than is the case in emerging markets. This point suggests that the 

envisaged results from this research will provide additional contributions to knowledge 

compared to those explored in the literature review on developed markets, because (i) African 

emerging markets, particularly the Nigerian market, has not been researched in-depth regarding 

the key market issues examined in this thesis; (ii) the concentration on the banking sector has 

rarely been covered at most markets; and (iii) the use of the individual bank’s returns as against 

the market index used across different markets make this research to be unique.The theoretical, 

research, practical portfolio management (Nnanwa et al. 2016), and policy making implications 

of the results will therefore be explored in this light. 

1.4.1 Benefits of the Research to Stakeholders in the Nigerian Financial System 

As summarised in the above paragraph, knowledge of the underlying characteristics of the 

banking sector of the NSM across different periods determined by the global financial crisis 

and banking reforms will help the market makers and the investors as follows.  

1. This will encourage investors to enhance their investments and improve on their risk 

 management plans on the banking stocks. 
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2. It will help policy makers to overhaul the operations of the NSM, by initiating

 strategies that will make every key sector, including banking industry to be more 

 informationally efficient, less exposed to bubbles and volatility. 

1.5 Distinguishing Features of this Research 

This section distinguishes this research from related work such as Omar (2012) which it extends.  

1. While Omar (2012) focuses on the entire NSM, this study is targeted at the banking 

 sector. Our choice of the banking sector was based on the outcomes of both Ezepue 

 and Solarin (2009) and Omar (2012), which suggest that for better and in-depth 

 understanding of the dynamics of the NSM, there is a need to additionally analyse 

 data at firm-or sector-specific levels, to obtain a better understanding of the stock 

 market dynamics. Consequently, the returns of individual banks will be used in this 

 research instead of the All Share Index (ASI) used in Omar (2012), and other studies 

 [such as: Mecagni and Sourial (1999); Jefferis and Smith (2005); Appiah-Kusi and 

 Menyah (2003); Omran (2007); Alagidede and Panagiotidis (2009), etc.], where 

 stock  index  is used. Focusing on individual asset return series eliminates the 

 confounding effect of using the overall market index, whereby some market 

 characteristics may not be evidenced at this aggregate level because of the off-setting 

 effects of information from different sectors.  

Moreover, the banking sector predominantly drives the performance of modern 

capitalist economies, including the Nigerian economy. Hence, results in this sector 

combine with those at the overall market level to provide deeper insights into the stock 

price dynamics of the NSM, and their policy making implications for the management 

of the Nigerian Stock Exchange (NSE) and economy (Ezepue and Omar (2012)). 

2. This research fills some gaps in Omar (2012) by conducting a more detailed study of 

 the stylized facts of the bank returns, which strongly inform better choice of various 

 models and techniques used in the research. 

3. Also, while Omar (2012) used ten years of data, 2000 to 2010, this research examined 

 fifteen years data, ranging from June 1999 to December 2014. 

1.6 Thesis Structure 

The thesis will be comprised of 10 chapters as follows. 
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Chapter 1: Introduction. 

Chapter 2: General Background. 

Chapter 3: Literature Review. 

Chapters 4: Methodology. 

Chapter 5: Stylized Facts of Asset Returns in the NSM. 

Chapter 6: Stock Market Efficiency Models and Tests. 

Chapter 7: Market Anomalies. 

Chapter 8: Rational Speculative Bubbles. 

Chapter 9: Volatility Modelling. 

Chapter10: Main Results-Summary, Interpretation and Further Studies. 

In Chapter 2, general and historical background knowledge about the financial system, Nigerian 

Stock Market (NSM), and the Nigerian banking sector are discussed.  

Chapter 3 presents the overall literature review of different aspects of the study related to the 

objectives. This chapter surveys the stochastic and applied statistical models used in financial 

market analysis. Further literature on the models used to study specific characteristics of stock 

markets are given in the specific chapters which look at the issues. Also, a brief review on the 

banking reforms initiated by the Central Bank of Nigeria (CBN), and their impact on the 

Nigerian banks and their performance are given.  

Chapter4 presents the research methodology including the data coverage, choice of software 

and summary of methods used subsequently in Chapters 6-9.  

Chapter 5 presents the descriptive statistics and the general stylized facts of the returns as a 

prelude to identifying appropriate model(s) that would be most suitable for describing and 

evaluating the riskiness of stocks of these banks within the NSM.  

Chapters 6-9 apply appropriate statistical tests and models to the specific issues and 

characteristics of the NSM such as market efficiency, stochastic volatility, anomalies and 

speculative bubbles.  

Chapter 10 summarises the main results, their implications for the NSM and the Nigerian 

financial system and recommends future work.  
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1.7 Summary and Conclusion 

This chapter provided a general background to the significance of the research, justification for 

the focus of the research as well as motivation, aims and objectives for this research. It also 

summarised the expected contributions to knowledge by research objectives. These are 

followed up on in chapter 10. The chapter distinguished this research from related work by 

Omar (2012), and finally outlined the structure of the thesis.  
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2 CHAPTER TWO: GENERAL BACKGROUND 

2.1 Introduction 

This chapter briefly discusses essential issues touching on: the financial system, the financial 

market, Nigerian capital market creation, the Nigerian stock exchange and regulatory 

institutions, the Nigerian banking industry and the rationale for choosing the sector, the 2007-

2009 global financial crisis and its impacts on the Nigerian banks and economy, the listed 

Nigerian banks currently on the exchange market, and banking reforms.  

2.2 Financial System 

A financial system facilitates more efficient financial transactions by investors, financial 

analysts, enables economic policy makers to regulate and reform a country’s economic system. 

Without an effective financial system, a party to a transaction with superior information than 

the other party may cause what is termed the information asymmetry problem, which 

encourages inefficient allocation of financial resources. To overcome this problem, the 

financial system strikes a balance between those with funds to invest and those needing funds. 

Structurally, the financial system is made up of three components, namely financial markets, 

financial intermediaries and financial regulators (see Figure 2.1 below), with each component 

playing a certain role in the system. While the financial markets enable the flow of funds to 

finance investments by corporations, governments and individuals, financial institutions 

perform the role of intermediation, thus determining the flow of funds, and financial regulators 

function as the monitoring and regulatory body in the financial system.  

The Nigerian financial system is made up of banks and non-bank financial institutions such as 

insurance, pension, mortgage, capital market, and the regulatory bodies, namely: the CBN, 

National Deposit Insurance Corporation (NDIC), Security and Exchange Commission (SEC), 

National Insurance Commission (NAICOM) and the National Pension Commission 

(PENCOM) 

The diagram below presents the interrelationships among the three agents which play 

significant roles at promoting economic growth in the financial system. The three basic agents 

are: firms/companies, financial markets and intermediaries such as banks, and government 

departments. 
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2.2.1 Financial Markets 

A financial market is an environment where various types of financial instruments, such as 

equities, currencies and debt securities, are bought and sold, according to a set of rules: 

 Financial markets serve to transfer funds from lenders to borrowers. 

 For lenders, the markets provide a platform for their excess liquidity2 and a way to store 

wealth. 

 For borrowers, the markets provide credit to finance their consumption and investment. 

Figure 2.2 below (Financial System Architecture) highlights how funds are transferred in the 

financial system from the lenders or surplus channels to the borrowers or the spenders through 

financial intermediaries such as banks, financial market, and brokers. When money moves from 

a lender through the financial market to the borrowers/users, such movement is called "Direct 

financing". When such transfers occur through banks, finance houses, and brokers, this 

constitutes "Indirect financing".  

 

                                                
2Liquidity: is the extent to which a security or financial asset can swiftly be traded in an exchange market at a 

stable price; thus, in liquid markets investors become more active and can design different arbitrage strategies. 

 

Stock Market 

Banking sector 

Firms 
Bond Market 

Governments Short-term fixed 

securities Market 

Figure 2.1: The Financial System Structure 
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Figure 2.2: Financial System Architecture: Flow of Funds through the Financial System (Sakanor, 2015) 

Financial markets are classified into five categories based on:  

 The Nature of Claim:  

a) Debt Market: e.g. Bonds; 

b) Equity Market: e.g. Common stock. 

 The Period of Claim: 

a) Primary Market: markets for Initial Public Offer (IPO); i.e.  where 

new securities are issued and purchased by initial buyers; 

b) Secondary Market: markets where the existing securities are issued, 

bought and sold. 

 Market Structure: 

a) Exchange Market: markets where trading activities are conducted in central 

locations e.g. stock exchange; 

b) Over-the-Counter (OTC) Market: market where dealers at different 

locations buy and sell securities. 

 Period of Delivery:  

a) Cash or Spot Market: this is a market where quick delivery of traded 

assets(securities) is made, mostly within two trading days; 

b) Derivative Market: this is futures or forward market where contracts (claims) 

are made for future delivery of securities. 

 Period of Maturity: 

a) Money market: is the market where short-term assets of one year or less 

maturity is traded; 



12 

 

b) Capital Market: the market where long-term securities of more than one-year 

maturity are traded. 

Brief Account on the Creation of the Nigerian Capital Market 

Dougall and Gaumnitz (1980), Srinivasan (2010) and Okafor and Arowoshegbe (2011) define 

capital markets as mechanisms and institutions through which intermediate term funds such as 

loans of ten-year maturity, and long-term funds such as loans with longer-term maturity and 

corporate stocks are raised. It is also a market where the outstanding financial instruments are 

made available to business, governments, and individuals. A well-functioning capital market 

serves as a fulcrum for any financial system because it facilitates fundraising needed to finance 

both business, and other economic institutions and government programmes (Osaze and Anao, 

1999).  

2.2.2 Nigerian Capital Market 

In Nigeria, the decision to establish an indigenous capital market was made in the early 60s due 

to the lack of channel through which both long term and short-term funds could be raised locally.  

This was because at that time the only existing banks were owned by foreign investors. To 

manage the debt incurred by the federal government, the office of the Accountant General 

(A.G) of the federation then was given the responsibility to create the Central Bank of Nigeria 

(CBN) in 1959. The CBN was to manage the debts and generally take over management of 

Nigerian government finances.  

Despite the establishment and commencement of operation by the CBN, there was no 

institution to discharge the regulation and oversight functions of the capital market. This 

prompted the then government to establish the Lagos Stock Exchange with an Act enacted in 

1961 for full management and regulation of the Nigerian capital market. Even though the 

exchange market was incorporated on 5th September 1960, it did not begin full operation until 

5th June 1961. By 1977, the market changed its name from "Lagos Stock Exchange" to the 

"Nigerian Stock Exchange" – a decision that put a stop to attempts at establishing other regional 

based exchange markets named after a state of the federation, such as the Kaduna and Port 

Harcourt Stock Exchange. 
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Objectives for the Creation of the Nigerian Capital Market 

The intents behind the establishment of the Nigerian Capital Market according to Osinubi and 

Amaghionyeodiwe (2003), Osinubi (2004), and Okafor and Arowoshegbe (2011) include: 

 To ensure even distribution of wealth; 

 To decentralize the ownership of assets and create a healthy private sector; 

 To discourage excessive concentration of economic power in the hands of a few

 private individuals; 

 To mobilise savings for economic growth; 

 To promote co-operation between local and foreign investors leading to economic 

 enhancement; 

 To strengthen the banking industry and reduce government dependence on taxation 

 for economic development; 

 To diversify capital from less productive sectors like real estate to more productive 

 sectors such as industry. 

The Nigerian Stock Exchange 

The Nigerian Stock Exchange (NSE) was created in 1960 under a limited guarantee, licensed 

under the Investments and Securities Act (ISA), governed by a national council, known as 

Board of Directors and regulated by the Nigerian Securities and Exchange Commission (SEC). 

The exchange has 13 branches across Nigeria, with its head office in Lagos. It services the 

second largest financial centre in Sub-Saharan Africa, is a founding member and executive 

committee member of the African Securities Exchange Association (ASEA), and an affiliate 

member of the World Federation of Exchanges (WFE), which is also an affiliate member of the 

International Organization of Securities Commissions (IOSCO).  

The Nigerian Stock Exchange, as with other exchanges, represents a market place providing a 

fair, efficient and transparent securities market to investors. It currently has 191 companies 

listed, operating three major types of market, namely: The Equity market, the Bond market and 

the Exchange Traded Funds (ETFs) market. Its daily trading activities run as follows: 

(1.) A Pre-Opening Session, between 09h30 and 10h15 daily. (2.) Opening Auction Trading 

from 10h15 to 14h30. (3.) Market Closes by 14h30.The trading activity is either "Quote-

Driven" or "Order-Driven" in the NSE.  
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(a.) By Quote-Driven, we mean the phenomenon whereby the market makers are allowed to 

provide two-way quotes and licensed brokers (or dealers) of exchange are given the right to 

submit orders. 

(b.) Order-Driven makes it possible for all the orders made by the buyers and sellers to be 

displayed in the market, with such orders revealing the quantity and price a buyer or seller is 

willing to purchase or sell (respectively), his/her asset(s).  

With this form of trading (either "Quote-Driven" or "Order-Driven"), NSE is said to be 

operating as a “Hybrid Market". 

Its national council has fourteen (14) individual members charged with the responsibilities of: 

 Directing exchange business and financial affairs, strategy, structures and policies 

 Monitoring to ensure that delegated authority is exercised 

 Handing challenges and issues bordering on corporate governance, corporate social 

 responsibility and ethics. 

The council, given its roles, comprises of seven committees which include: 

1) Audit and Risk Management Committee: takes care of financial reporting, internal 

 controls, and risk management systems amidst other relevant roles. 

2) Demutualization Committee: handles issues relating to the exchange structure, legal, 

 regulatory and financial strategy relative to the demutualization of the exchange. 

3) Disciplinary Committee: in charge of hearing and adjudicating on disciplinary 

 matters in respect of dealing members, and sets rules governing dealing members. 

4) Governance and Remuneration Committee: ensures compliance with corporate 

 governance policies and practices and provides oversight functions of the  exchange's 

 human resources among other functions. 

5) Rules and Adjudication Committee: ensures continuous review of the exchange's 

 rules and regulations. 

6) Technical Committee: in charge of information systems management and technical 

 issues including associated risks. 

7) MEMART Committee is an ad-hoc committee to ensure that the exchange business 

 operation is in line with its Memorandum and Articles of Association ("MEMART") 

 and review of the articles. 
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2.2.2 Securities and Exchange Commission (SEC) 

SEC is the main regulatory body of the NSE under the supervision of the Federal Ministry of 

Finance. The commission is charged with the responsibility of maintaining surveillance over 

the NSE with a view to ensuring orderly and equitable dealings in securities and protecting the 

market against insider trading abuses. 

The commission was an ad hoc, non-statutory committee established in 1962 from the Central 

Bank of Nigeria (CBN), which later became the Security Exchange Commission in1973. 

In1979, the commission was chartered under Decree 71 and subsequently was chartered by the 

Investments and Securities Act No 45 of 1999, which is the current and major legal instrument 

empowering SEC to regulate the affairs of the NSE. 

2.2.3 The Nigerian Banks 

The three largest banks that could equally be categorised as first-generation banks due to their 

existence from the colonial period are: First Bank, which used to be British Bank for West 

Africa, and was incorporated in 1894; Union Bank, formerly known as Colonial Bank and later 

acquired by Barclays, which came to be in 1917; and United Bank for Africa (UBA), which 

used to be the British and French Bank, which was established in 1949. The three banks, which 

were originally foreign banks were acquired by the Nigerian government through shares in the 

mid '70s. During the colonial era, these banks faced serious competition from local investors 

before the enactment of the first banking legislation in 1952. 

The foremost bank to operate in Nigeria, named the African Banking Corporation (AfBC), was 

established in 1892 with the primary role of facilitating transfer of cash from the colony, later 

named Nigeria, to the then home country, United Kingdom. In 1894, Bank for British in West 

Africa, now called "The First Bank of Nigeria" was created and subsequently acquired the 

AfBC. Many other banks owned by foreign banking organisation were later established in the 

country (see Uzoaga, 1981, p. 66). 

The fourth largest bank, Afribank, a second-generation bank established at the time of 

independence, was also a foreign bank previously named Banque Internationale Pour L’Afrique 

Occidental (BIAO). Later, around mid '70s, many more commercial banks were established by 

the state governments in Nigeria; thereafter, merchant banks, which were joint ventures 

between foreign investors and the Nigerian government, were established. 
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A review of the present structure of the Nigerian banking sector by the Central Bank of Nigeria 

in September 2009 revealed that there are 1014 community and 24 commercial banks in Nigeria, 

which combined account for 93 percent of private asset values of the entire financial sector, 

indicating a large banking sector relative to the financial sector. According to the Central bank 

of Nigeria’s draft Annual Report for the year ended 31 December 2008 (Alzahrani, Gregoriou 

and Hudson, 2013), the Nigerian banking sector is dominated by four banks, which account for 

58 % of the value of assets and 65% of the total deposits held by the banking sector. Only two 

of Nigeria's banks have some measure of control by foreign banks with only a 4% stake of total 

assets.  

According to Sanusi (2010), the significant growth and expansion recorded within the Nigerian 

banking sector has been characterized by series of challenges, though there was a remarkable 

increase in the overall total of Nigerian banks from 41 banks before 1986 to 120 by 1994. 

However, stiff competition and other associated challenges facing the sector brought about a 

sharp drop in the number of these banks from 120 banks to 89 banks by 2004 and later to 24 

by 2009.While some of these changes were market instigated and due to the bank consolidation 

policy of the then CBN governor, Prof Chukwuma Soludo in 2004, others were outcomes of 

the federal government's earlier proposals to introduce an indigenisation policy in the sector, 

allowing Nigerian citizens to have total control of the sector.  

The financial sector boom, therefore, was, however, accompanied by financial 

disintermediation. "This tragic situation led to the continued foreclosure and technical 

insolvency of many banks and finance houses" (Eke 2003, p. 4) and "the latest assessment 

shows that while the overall health of the Nigerian banking system could be described as 

generally satisfactory, the state of some banks is less cheering” (Soludo 2004, p. 5). Access by 

the Nigerian banking sector to the stock market as a channel for raising long term capital to 

finance its activities has been and may continue to be a major catalyst for any future growth of 

the banking sector. 

2.3 Global Financial Crisis/Meltdown: The Nigerian Experience 

In this section, a brief account of what went wrong in the global market as well as the impacts 

on the Nigerian financial system are discussed. The focus will be on the 2007-2009 crisis, which 

according to some studies (Reinhart and Rogoff (2008) and Eigner and Umlauft (2015)), is the 
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worst financial meltdown in the twenty first century, and indeed since the Great Depression of 

1929, based on its impacts on the global economy. 

To start with we observe that, financial meltdown represents a situation when financial markets 

and financial networks become evidently strained or unstable to the point of near collapse 

(Sanusi, 2011a). Some of its characteristics include sudden changes in expectations, declining 

prices, recurrent bankruptcies and speculative bubbles (Sanusi, 2011a). The Global financial 

crisis served as a major restriction to development and growth in most nations, aggravated by 

the banking system crisis, currency crisis as well as a foreign debt crisis. Financial institutions 

such as banks, or assets, e.g. stocks, bonds and currencies instantly lose most of their value 

during such a crisis. 

2.3.1 How the Crisis Happened 

Right from 2002 to early 2007, there were decreases in volatility in the global economy and 

financial markets; this led to a significant reduction in investment risks, thereby encouraging 

most companies to become less risk-averse and invest more capital in the markets.  

In August 2007, there were reported cases of constrained liquidities, whereby financial 

institutions were confronted with challenges in raising funds in the United States of America 

(USA) (Sanusi, 2011a). Towards the end of 2007, several American and European banks 

declared massive losses in their end-of-year financial reports.  

Theearly signals of a crisis observed in January 2008, starting with a sharp drop in the profits 

of the Citigroup bank, leading to a sharp fall on the New York Stock Exchange. Thereafter, 

there were spectacular drops in share prices in all major world markets, leading to series of 

collapses. By March 2008, there was shocking and unusual credit shrinkage or crunch as the 

financial institutions tightened up credit in the U.S; the credit crunch rose to become a full-

blown crisis by mid-2008 such that by July 2008, the crisis found its way into other sectors of 

the economy. 

According to Reinhart and Rogoff (2008), the he crisis became pronounced because of the 

failures of multinationals such as Goldman Sachs, Barclays and Deutsche Bank, Merrill Lynch 

and Morgan Stanley in the US; the spill-over effects of which caused the failures of many 

European banks, thereby transforming into global crisis. Precisely by15th September 2008, the 

biggest bankruptcy in the world started when Lehman Brothers Bank failed with liabilities of 
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US $600 billion (Edey, 2009) and thereby filed for Chapter 11 of the bankruptcy protection 

(Schwarcz, S. L. (2008); Shah (2009); Miller and Stiglitz, (1999); Wiggins, Piontek and 

Metrick (2014)). According to Gokay (2009), "the last months of 2008 experienced what is 

called the worst financial crisis since the Great Depression of 1929-30”. 

Consequently, most commercial banks in the US suffered a great setback such that most 

financial institutions lost substantial part of their worth within a short time period due to sudden 

and panicked withdrawals by the depositors - a situation called a bank run, leading to recessions 

across the global economy. 

Meanwhile, Figure 2.3 below provides a summary of the origin of the 2007-09 financial/ 

economic crisis, which had its root in excessive leverage in financial institutions to housing and 

stock market bubbles, leading to a series of crashes that developed to a full-blown financial 

crisis, which eventually led to the global recession of 2008-09.  

 
Figure 2.3: Diagram Showing Origin of the 2007-2009 Financial/Economic Crisis (DeMichele, 2016) 

However, during those periods when the US and other industrialized economies were 

experiencing losses due to the crisis, the Nigerian market was immune from the crisis because 

of the strict financial controls imposed on the market by the CBN and SEC. 

2.3.2 Nigerian Experience 

The unprecedented effects of the 2007-2009 economic and financial crises on the world 

economy led to global recession and the collapse of many giant financial institutions such that 

many nations went bankrupt (Sanusi, 2012). The Nigerian economy was immune to the first-

round effects of the crises due to strong monetary and fiscal policies, but the second-round 
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effects hit the economy such that the stock market collapsed by 70% between 2008 and 2009, 

with many banks recording huge losses due to their exposure to the financial market and oil 

and gas industry.  

This prompted the CBN to rescue eight banks found to be deeply affected, by injecting capital 

and liquidity into the banks, sacking the banks’ executives and subsequently punishing those 

found culpable, with a view to restoring public confidence and sanity into the industry (Sanusi, 

2011a; 2012). 

2.3.3 Effects on the Nigerian Stock Market (NSM) 

According to Sanusi (2011a), the greatest impact was felt in the nation's capital market. There 

was: 

a) Extended recession in the market triggered by huge divestment by foreign  investors; 

b) Lingering liquidity tightness; 

c) Declining public confidence; and 

d) Panic selling by domestic investors, which led to significant losses being recorded by 

 investors. 

The stock market, which was bullish3 between December 2005 and early March 2008 to the 

tune of hitting equity market capitalization of N12.64 trillion by March 11, 2008, instantly 

became bearish4 in April 2008 and remained so with only minor recovery by 2010. The market 

which recorded about 14.45% increase in its All Share Index (ASI) between December 31, 

2007 and March 2008 (the peak of the bull-run), suddenly experienced a sharp decline of nearly 

45.8% in ASI and 32.4% in market capitalization by the end of 2008. The capital market 

recession had significant negative impact on banks’ balance sheets via rise in provision for bad 

debts and lower profitability. 

2.3.4 Impacts on the Banking Sector 

Between 2004 and 2008, excess liquidity was recorded in the NSM as reflected in the 

unprecedented rally in stock prices on the Nigerian Stock Exchange (NSE) from 2006 to March 

2008 (Sanusi, 2011b). This enabled banks to raise capital to the tune of N1.603 trillion. 

However, during the financial crisis, banks were grossly negatively impacted due to spill over 

                                                
3Stock or commodity market witnessing a general rise in prices 
4A security market where a general decline in prices of securities or commodities is being experienced 
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effects from the oil and gas sector as well as the stock exchange market where Nigerian banks 

were a principal actor. There was a collapse of confidence in the banking system, de-leveraging, 

and banks’ incapability to enhance capital adequacy, poor consumer demand and a drop in 

global output, which impacted the country through financial and real (trade and remittances) 

channels, Sanusi (2010). 

With this experience, many of the banks were distressed, which caused the CBN to initiate 

another round of rigorous reforms in the banking sector by June 2009 after the first one 

introduced in 2005. Due to the new reforms, 9 banks were found to be in a grave situation and 

were unable to meet minimum 10% capital adequacy ratio and 25% minimum liquidity ratio.  

The said banks were not only principally dependent on the stock market as well as oil and gas, 

but also engaged in unethical and unprofessional practices. 

However, the fact that the Nigerian banking system was partially integrated into the global 

market, coupled with strong macroeconomic policies implemented by the government, assisted 

the country to hedge the effect of the crisis. 

2.4 Nigerian Banking Reforms 

The Nigerian banking system has witnessed a series of reforms or restructuring in the last fifty-

eight years since independence. The sector was moved from the dominance in the 1960s by a 

small number of foreign-owned banks into public ownership from the1970s through to the 

1980s in which Nigerian private investors have become major stakeholders since the middle of 

1980s. 

Based on the initial intention behind the creation of banks as a major source of fundraising for 

government projects, government policies have significantly shaped the industry since its 

inception. Continuous intervention by the government in terms of financial sector policies right 

from the 1960s through to the 1970s with the aim of promoting indigenisation and influencing 

resource allocation has helped to galvanise liberalisation and prudential regulation and has 

saved the industry from avoidable collapse. 

According to Balogun (2007), banking industry reform in Nigeria has remained a focal point 

of economic reforms right from the ‘80's when it was first introduced through the popular 

structural adjustment programs initiated around 1986 by the then military government. Then, 

four phases of reforms aimed at strengthening the economy and the banks, were introduced. 

The first phase, targeted at restructuring the banks, was tagged "financial systems reforms", 
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and was initiated to deregulate the banking sector; it included credit rate, foreign exchange rate 

and interest rate policy adjustments. These, according to the CBN's report in 1993, brought 

about a deepening of the sector such that the number of banks in the country was raised from 

forty commercial and merchant banks with over 1,655 branches across the nation to 121 with 

about 2385 branches in 1992.  

In the second phase, when a series of regulations and controls were re-introduced, the sector 

was deeply hit such that the country witnessed near total collapsed of the sector between 1993 

and 1998 due to serious financial distress experienced by most of these banks and instability in 

the political space trailed by inconsistent policies of the then military government, which 

greatly affected the entire economy. Thus, another round of reforms was initiated with a view 

to salvaging the sector from total collapse, (Balogun, 2007). 

In 2004 the then CBN governor, Prof Charles Soludo, observed in the banking system several 

weaknesses that brought about a reduction in number of banks in the nation from 89 to 24 

through what were then referred to as re-capitalization (Soludo, 2004). Banks were requested 

to increase their minimum capital requirement from N5bn to N25bnanduniversal banking was 

introduced so that the banks could diversify their portfolio to cover all aspects of retail banking. 

However, on his assumption of office as the CBN governor in June 2009, Sanusi (2010) found 

the banks in a serious state of financial weakness despite the initial capitalization introduced 

by his predecessor. The problems found with the system were traced to: 

1) Weak corporate governance; 

2) Operational indiscipline and 

3) The effects of global financial crisis. 

These inadequacies in the system caused Nigerian banks to:  

a) Be disconnected from the rest of the economy and their core mandate as channels for 

 transmitting the monetary policies of the CBN; 

b) Be unable to commit themselves to transparent and responsible investments and 

c) Lack the ability to guarantee credit flow to the real sector (such as manufacturing, 

 agriculture, as well as small and medium enterprises that are critical to employment 

 and income generation). 

Consequently, the following measures were taken to salvage the system: 
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 A critical redefinition of banking architecture, corporate governance, bank operations 

 and system ethics; 

 The tackling of issues of excess risks with depositors' funds via the instigation of  a 

 specialized risk buffer system against "toxic assets" in the system. 

The aim of the reform according to Sanusi (2012) was to establish a reliable and efficient 

banking system for the nation's economy to achieve the objective of being one of the 20 largest 

world economies by 2020. He observed, however, that one of the challenges of the regulatory 

agencies is how often these kinds of reforms should be carried out in the financial system. 

2.4.1 The Need for the Reforms 

The recent global financial crisis has further emphasised the importance of regular banking 

reforms throughout the world. The banking industry is expected to be able to efficiently perform 

its function of intermediation in the financial system and achieve global competitiveness in the 

international financial markets. For these to be achieved, there is need for close monitoring. 

Moreover, given the fact that banks receive deposits from the public, it is imperative that 

periodic reforms are initiated to ensure that they gain public confidence and are financially 

stable. 

2.5 Rationale for Focussing on Banking Sector 

In this section, we briefly highlight the roles banks play in the financial system and the rationale 

behind focusing on the banking sector of the NSM. 

2.5.1 Functions of Banks in the Financial System 

In theoretical economics as well as finance, one of the issues of concern is the study and 

understanding of the functions of banks within the financial system.  

Allen and Carletti (2008) observe that banks are very important in the financial system given 

the significant functions they perform in a nation's economy. These functions, according to 

them, are as follows: 

 Amelioration of the information issues between borrowers and investors by tracking 

 the former closely to ensure the funds are utilised judiciously; 

 Provisions of inter-temporal smoothing of undiversified risk at a given point in time,

 these they achieve by ensuring depositors are protected against consumption shocks; 
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 They contribute to economic growth; 

 They help to overcome asymmetric information challenges by developing long-lived 

 connections with companies; 

 Performance of an important role in corporate governance; 

 Provision of financial assistance to companies, thereby strengthening the economy. 

Sanusi (2012) summarises the functions expected of banks in the economy as being: 

a) To mobilise savings for investment purposes; 

b) To provide credit for the real (productive) sector of the economy; 

c) To serve as a financial intermediary between the financial markets and investors; 

d) To serve as a medium of fund raising for government to finance its developmental 

 programs and strategic objectives. 

According to Allen and Gale (1997; 2000a, Chapter 6), banks are expected to make enough 

savings in times of high yields on their assets so that they can be sustained by this in times of 

fall in returns. They further maintained that for banks to play their critical role of risk sharing, 

they are expected not to be subject to serious competition from the financial markets. 

To further emphasise the significance of banks in the financial system, Allen and Carlleti (2008) 

note that banks are always at the centre of every financial crisis and thus can easily spread crises 

if there is contagion to such an extent that slight or small shocks on them can result in a huge 

impact on the financial system and the nation's economy in general.  

Further, Castren, Fitzpatrick and Sydow (2006) state that studying bank' stocks behaviour is 

important because: 

i. A bank's stock price may fully summarise all the public information available from the 

bank, including potential risks, in a single Figure. 

ii. Under the efficient-market hypothesis, banks' securities’ prices incorporate 

expectations of both positive and negative future earnings prospects. 

iii. Banks' stock price information is available at higher frequency compared to accounting 

information. 

iv. A financial crunch in one bank is easily spread through various channels, which may 

be reflected in stock markets. Thus, knowing the extent to which the variability in 
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individual banks' stock returns are driven by common versus bank specific components 

is imperative.  

Finally, considering the intertwined nature of the financial system, which is comprised of the 

financial market and banks (intermediaries), coupled with the series of challenges the system 

had been bedevilled with across the global economy, owing to the spill-over effects of the 

global financial crises, in-depth study of the entire financial system has become a common 

theme globally in recent years. These studies have yielded many research outcomes targeted at 

unravelling the genesis of the crises to prevent their re-occurrence and to strategize on how to 

shield the system from all forms of financial crisis in the future. 

However, despite significant efforts aimed at exploring the financial system, especially stock 

markets, globally through research in the developed markets, African emerging markets, 

particularly the Nigerian market, have not been researched in-depth with regards to the key 

market issues examined in this thesis. Moreover, given the significant roles played by banks in 

the stock market and the nation's economy in general, including the series of restructuring and 

reforms that Nigerian banks have undergone, this study will be the first time (in so far as we 

know) that this important sector will be methodically studied in detail across different periods 

determined by bank reforms and the global financial crisis. 

In summary, given the above reasons, understanding the share price dynamics of the Nigerian 

banks would help their management, investors and policy makers to address many issues that 

would make these banks function more effectively as financial intermediaries. Hence, the 

points outlined above form the basis for our choice of this sector as the subject of study. 

The remaining sections of this chapter summarise some characteristics of the Nigerian banks 

further and indicate typical stock market indicators used to assess their financial performance 

as well as that of other stocks traded in the NSM.  

2.5.2 The Nigerian Banks on the Exchange Market 

In this section, brief details on the banks listed on the Nigerian Stock Exchange are discussed. 

Information on the year of incorporation (Yr. Inc), merger and acquisition experience, years of 

listing (Yr. Lstd), ownership type, nature of business (NoB), security type (Sec. Typ) and 

security name (Sec. Name) are summarised below. There are eighteen banks currently on the 

NSE list altogether (see table 2.1). The banks’ characteristics will inform interpretations of 
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different results on them presented in subsequent chapters of the thesis. These details were 

extracted from the official page of the Nigerian Stock Exchange (http://www.nse.com.ng/) 

From the table below, we see that all the banks trade on ordinary shares, with more than 50% 

are owned by the public. Seven of the banks: Access, First, GTB, Sterling, Union, UBA and 

WEMA banks were listed before 1999, which is the start date for the data for this research. 

http://www.nse.com.ng/
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Table 2.1: Showing Relevant Details of the Listed Banks on the NSM 

Bank Name Previous Name Nature of 

Business 

Ownership Type Year of 

Incorporation 

Year 

Listed 

Security 

Type 

Security Name 

Access bank Nigeria 

Plc 

N/A Commercial  Private 1989 1998 Ordinary Access  

Afribank Nigeria plc International bank for West Africa (IBWA) Commercial 

 

Public 1969 IUS Ordinary Afribank  

Ecobank Transnational 

Incorporation 

N/A Wholesale and 

retail  

Banking and 

financial services 

1985 2006 Ordinary ETI 

Ecobank Nigeria Plc N/A Wholesale and 

retail  

Independent and 

Regional bank 

IUS IUS IUS ECOBANK 

Fidelity Bank plc FSB International Bank Plc Universal banking  2005 2005 Ordinary FIDELITYBK 

First Bank Nigeria Plc N/A Commercial Public 1894 1971 Ordinary FBNH 

FCMB First City Merchant Bank Commercial Private IUS 2004 Ordinary FCMB 

First Inland Bank Plc Inland Bank Plc 

First Atlantic Bank Plc 

IMB International Bank Plc 

NUB International Bank Ltd 

Commercial IUS 2006 2006 Ordinary FIRSTINLND   

Diamond Bank N/A Commercial  Public 1990 2005 Ordinary DIAMONDBNK 

Guaranty Trust Bank 

Plc 

N/A Commercial  Public 1990 1996 Ordinary GUARANTY 

SKYE Bank Plc Prudent Bank, EIB International Bank, 

Bond Bank, Reliance Bank and Cooperative 

Bank 

Commercial  Public 2006 2006 Ordinary SKYEBANK 

Spring bank Plc ACB International Bank Plc  

Citizens International Bank Plc  

Fountain Trust Bank Plc  

Guardian Express Bank Plc  

Commercial Public 2006 2006 Ordinary SPRINGBANK 
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Omega Bank Plc  

Trans International Bank Pl 

STANBIC IBTC Bank 

plc 

IBTC Chartered Bank plc 

STANBIC Bank Nigeria Limited 

Commercial Public IUS 2005 Ordinary STANBIC 

Sterling Bank Plc Nigeria Acceptances Limited (NAL) Bank 

Plc, 

Indo-Nigeria Merchant Bank (INMB) 

Ltd, 

Magnum Trust Bank Plc,  

Trust Bank of Africa Ltd and NBM Bank 

Ltd 

Retail/Commercial IUS IUS 1993 Ordinary STERLNBANK 

Union Bank of Nigeria 

plc 

N/A Commercial Public 1969 1970 Ordinary UBN 

United Bank for Africa 

plc 

N/A Commercial Public 1961 1971 Ordinary UBA 

Unity Bank plc N/A Commercial Public 1987 2005 Ordinary UNITYBNK 

WEMA Bank plc N/A Universal  Public 1987 1990 Ordinary WEMABANK 

Zenith Bank Plc N/A IUS IUS IUS5 2004 Ordinary ZENITHBANK6 

 

                                                
5IUS-Information Unavailable from Source (NSE website- http://www.nse.com.ng/): No available information as at the time of the research for cells with the coloured acronyms  
6Further details on the banks are presented in Appendix 2A 

http://www.nse.com.ng/
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2.6 Rationale for the Choice of the African Emerging Market 

This section highlights the reasons for restricting the focus of our study to the African emerging 

market, particularly the Nigerian market. The benefits of investing in these markets as well as 

the progression witnessed so far by some selected African markets are outlined.  

Several years ago, the investment community was in search of markets to divert their 

investment opportunities to, in order to earn high profits. This requires good knowledge of how 

stock prices behave at different potential markets of choice. The statistical measures obtained 

from stock returns such as the mean, kurtosis, skewness, variance, generating distribution, 

correlation coefficients, the presence of autocorrelation in returns and in squared returns (Panait 

and Constantinescu, 2012), are vital characteristics inherent in asset returns useful for investors 

or investment manager to understand how best to create optimal portfolios. 

Investigating the statistical behaviour of stock market returns within the developed markets has 

for some time now preoccupied researchers’ attention with little concentration on emerging 

markets. The emerging African markets are of interest to this research because results from the 

NSM will support ongoing efforts to systematically characterise and develop the NSM and 

apply similar insights to other developing African markets for example the SANE markets of 

South Africa, Algeria, Nigeria, and Egypt, alluded to in Ezepue & Omar (2012) as being 

important to the African Development Bank Group (Ezepue & Omar, 2012; AfDB, 2007).  

It is reiterated that this research is part of a line of work in Systematic Stock Market 

Characterisation and Development (SSMCD) started in the Statistics and Information 

Modelling Research Group at Sheffield Hallam University; the topics cover empirical finance 

modelling and applications in the NSM (Raheem & Ezepue, 2016, 2017, 2018; Ezepue & Omar, 

2015; Ezepue and Omar, 2012; Omar, 2012; Ezepue & Solarin, 2009), and related work in 

mathematical finance and investment theory (Urama, Ezepue & Nnanwa, 2017; Nnanwa, 

Urama & Ezepue, 2016).  

According to Alagidede and Panagiotidis (2009), with the rising level of globalisation as well 

as financial market integration, interest has been directed towards investment in emerging 

African stock markets because of their low correlations with developed markets, high 

correlations among themselves and their potential to enhance and encourage optimal portfolio 

diversification (Harvey, 1995). For example, in 1994, emerging markets recorded the highest 
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profits in U.S. dollars compared to their developed market counterparts, with Kenya (75%), 

Ghanaian stocks (70%), Zimbabwe (30%) and Egypt (67%) maintaining the lead. By 1995, 

African stock markets recorded gains of average returns of about 40%, with the stock values of 

the Nigerian Stock Markets and Côte d’Ivoire registering over a 100% rise in dollars (Alagidede 

and Panagiotidis, 2009). By 2004, emerging African markets’ average returns hit about a 44% 

increase from the periods before the 2004 Nigerian bank reforms. 

Again, most of the research has however been channelled towards underpinning the dynamics 

of advanced equity markets with little attention paid to the emerging African markets, except 

for few studies (see, Koutmos 1997). Thus, any investor hoping to maximize opportunities in 

emerging markets will have a better knowledge of how these markets behave if similar studies 

as investigated in this research are replicated in those markets, compared to when such research 

insights were not available (Koutmos, Pericli, and Trigeorgis, 2006). A good example of these 

markets, which has so far not been characterised in the SSMCD way with a core focus on the 

banking sector, is the NSM. The NSM with its position and potential in African and World 

markets has progressed tremendously in recent years, especially after surviving the 2007-2009 

financial crisis. Thus, a sound knowledge of its asset price dynamics should capture the 

attention of both local and foreign investors. It would be valuable to investigate to see if those 

stylized facts which characterise the behaviour of most of the advanced markets can also be 

linked to that of the NSM. 

More significantly, NSM returns have been discovered to be poorly correlated with the returns 

of most advanced markets, thereby yielding opportunities for foreign investors to diversify their 

investments and associated investment risks (Harvey, 1995). Therefore, exploring the dynamics 

of the NSM becomes imperative for both domestic and foreign investors, with a view to helping 

them to identify areas of differences and similarities between developed markets and the NSM. 

As noted earlier, scientific research that systematically investigates the characteristics of asset 

returns in the NSM is very scant even with the prospective significance of this market to 

shareholders (Koutmos, Pericli, and Trigeorgis, 2006).  
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2.7 Summary and Conclusion 

This chapter presented a general background for this research, including notes on financial 

systems, financial markets, the Nigerian capital markets, the NSM, NSE and SEC, the Nigerian 

banking system, the global financial crisis, the characteristics of the Nigerian banks listed in 

the NSM, and some justification for our choice to investigate African emerging markets. The 

notes will inform subsequent discussions of the research findings as relates to the different 

banks, especially considering the banking services they offer, namely commercial, wholesale, 

retail, or universal banking.  



31 

 

3 CHAPTER THREE: LITERATURE REVIEW 

3.1 Introduction 

Levine (1997) suggests that a financial system symbolises a group of institutions, marketplaces 

and rules facilitating timely allocation of resources through a generally acknowledged medium. 

Financial markets and financial institutions interact and merge in different forms to represent a 

nation's financial system. Financial intermediaries interrelate in the financial markets either 

between themselves or with other public agents, such as the government, regulatory bodies, 

consumers and non-commercial companies. Moreover, because the stock market connects 

producers (or firms) and consumers (or investors) together for economic benefits (Stiglitz, 

1981a); thus, the developments of financial markets and a stock market in a nation are, 

according to Chen, Roll and Ross (1986), most critical elements in inducing enhanced 

investment, which may also be strong contributory factors towards a nation's economic 

advancement. 

Moreover, stock markets are increasingly becoming a significant channel for generating long-

term capital (Khambata, 2000). Cho (1986) suggests that credit markets should be 

complemented by strong asset markets, given the fact that equity finance is in most cases 

insulated from hostile selection and ethical risks to a similar degree to which liability finance 

is exposed to in the presence of asymmetric information. Levine and Zervos (1995, 1998) 

maintain that the two key networks of financial intermediation (banks and the equity market), 

are expected to supplement each other (Alagidede and Panagiotidis, 2009).  Hence, the 

availability of stock markets would enable risk diversification and increased the capital 

allocation by the investors to favourable assets with higher returns on their investments.  

Further, the efficiency of stock markets is essential for the functioning of the exchange markets, 

especially when it comes to capital allocation and pricing as well as investment risk 

diversification. Hence, all available information should be fully incorporated into the prices of 

assets in an efficient market, (Fama, 1965; 1970). The liquidity that an exchanged market offers 

investors enables them to sell their assets easily and without delay (Ma, Anderson and Marshall, 

2016). Thus, one might argue that enhanced liquidity remains an impressive advantage of 

investing in equities relative to other investments, which are less liquid, with some firms even 

actively contributing towards arise in the liquidity by trading in their own share (Simkovic, 

2009).  
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Stock prices, as well as the prices of other assets, have overtime been an essential aspect of the 

dynamics of economic activity, which may either impact or indicate social mood. According to 

De Cesari, et al. (2012), an economy in which the equity market seems to be rising is considered 

as an up-and-coming economy; thereby making the stock market a vital indicator of a nation's 

economic development and strength. 

In financial markets, short-run price changes are influenced by the trading decisions of market 

participants; hence, shifts in their confidence and preferences generate a feedback effect from 

such beliefs to the real experience in the market. Research has shown that individual asset prices 

(such as stock prices) are prone to the influence of both economic news and various unexpected 

circumstances (Chen, Roll and Ross; 1986; Ezepue and Omar, 2012). Knowing the endogenous 

features of market dynamics requires a better appreciation of the inherent complex connections 

between the market participants' beliefs, their actions, and the effects they generate. 

Mapping systematic characteristics of stock markets across key market sectors, in a manner 

akin to meteorological weather maps, will facilitate the detection of early warning signals which 

relate observed shifts in the beliefs of the market participants to feedback effects from the 

beliefs and the actual market outcomes, as determined by macroeconomic variables in an 

economy. This indicates that understanding how bubbles (for example), arise and their negative 

impact on investment due to associated risk(s) involved when they burst could serve as early 

warning signals for investors and market participants to check any irrationality in their behaviours 

with respect to sudden and persistent rise in security prices. Thus, with the obtained results, 

identifying banks which have previously been exposed to bubble-prone assets would help relevant 

stakeholders in proper monitoring so that investments are protected from avoidable risks that could 

in turn impacts negatively on the economy. 

Empirical evidence on the stochastic behaviour of stock returns has produced an essential 

stylised fact - the distribution of stock returns appears to be leptokurtic (Mandelbrot, 1963, 

Fama, 1965 and Nelson, 1991). This enables us to determine a suitable probability distribution 

that best captures stock returns dynamics. Further, short-term stock returns exhibit volatility 

clustering. These processes that have been modelled successfully by autoregressive conditional 

heteroscedasticity (ARCH)-type models (Engle, 1982; Bollerslev, 1986; Ezepue and Omar, 

2012), which shall further be discussed in the subsequent section and implemented in chapter 

nine of this thesis. Moreover, changes in stock prices tend to be inversely related to changes in 

volatility (Black, 1976, Christie, 1982, and Bekaert and Wu, 2000). This study will examine to 
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what extent these facts characterise the banking sector of the NSM given that they generally 

obtain at the overall market level (Ezepue and Omar, 2012; Omar, 2012). 

Most of the empirical studies on stylised facts have focused primarily on developed economies 

and the emerging markets in Asia and Latin America. With regards to African markets, there 

are only a few studies on the behaviour of stock returns (Omran, 2007; Mecagni and Sourial, 

1999; Appiah-Kusi and Menyah, 2003; Smith and Jefferis, 2005; Ezepue and Omar, 2012). 

That said, related stock market characterisation at deepening these lines of investigation have 

only been outlined in the recent literature (Ezepue and Solarin, 2009; Ezepue and Omar, 2012).  

In this study, we intend to rigorously study the behaviour and performance of the banking stocks 

within the NSM in relation to the stylised facts of asset returns and four but interdependent 

financial econometric issues such as Anomalies, Bubbles, Efficiency and Volatility. 

Interestingly, these issues have been explored in the literature to describe the dynamics of a 

stock market and stock returns across the developed markets (Islam and Oh 2003; Mills 1999; 

Cuthbertson & Nitsche, 1996) and few emerging economies (Bhattacharya, Bhattacharya and 

Guhathakurta, 2018). However, no research had examined the Nigerian market and indeed the 

Nigerian banking sector, holistically in relation to the issues being investigated in this research 

before until that of Omar (2012), which was the foundational research for our research, which 

we seek to extend. 

Thus, this research, having identified this gap in knowledge, concentrates on the banking sector 

of the NSM as an extension of the pioneering study initiated by Omar (2012) at the overall 

market level. This we believe will not only provide leverage for would-be investors (domestic 

or foreign) in any sector of interest of the Nigerian market but will also help the market 

regulators and indeed the government to implement appropriate checks and controls (or reforms 

when necessary), that would shield the market from avoidable risks that could negatively impact 

the nation's economy. 

3.2 Application of Non-linear Stochastic Time series modelling to Financial Data 

This section presents our motivation for our choice of theoretical research domain and research 

direction. The reasons for the determination of the procedure towards achieving the overall aim 

and objectives of this study are also highlighted. Finally, drivers for choice of the model to be 

used in this study are elucidated. 
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In conventional time series, assumptions of linearity and homogeneity in the series is integral 

to building relevant models that could be used to describe the behaviour of the series and to 

make necessary forecasts. However, this is not the same with the returns obtained from 

speculative prices, as these are known to be uncorrelated and hence white noise.  

Modelling and statistical analysis of financial time series analysis and its applications in 

engineering, physical sciences as well as earth sciences has often been based on the second-

order properties of the data as described by their mean and covariance functions, with the 

assumption that the observations come from a normal distribution. Thus, from a second-order 

perspective, one might say there is no need for further modelling. On closer inspection however, 

one observes that the sample autocorrelations of both the absolute and the squares of returns do 

not seem to disappear no matter the lag size. The slow decay of the autocorrelations is 

sometimes termed long memory or long-range dependence coming from the volatility sequence 

of the data (Andersen, et al., 2009). The non-zero autocorrelation in absolute and squared log 

returns represents another vital stylized fact, which is an indicator of the existence of serial 

correlation beyond the level found in the log returns, Sewell (2011). This calls for the building 

of nonlinear models that will reproduce these facts. 

Another common feature of the returns has been that most of them are concentrated in a small 

neighbourhood of zero, giving rise to the leptokurtic shape of their marginal distributions, 

which is an indication that these distributions cannot be well described by a normal distribution. 

Mandelbrot (1963), Fama (1965) and Mandelbrot and Taylor (1967) focused on this stylised 

fact of the returns. Since in the 60s quite a few heavy-tailed distributions were identified, stable 

Paretian distributions were assigned to return data. Although this modelling technique 

generated divergent views, given the fact that the non-normal stable distributions are 

characterised by infinite variance, the consolation remains that there is a consensus on the fact 

that financial series possess unusual heavy tails, even though the degree of heaviness remains 

a subject of concern.  

The analyses conducted on heavy-tailed distributions include risk calculations and associated 

methods using tail indices (Hols & DeVries, 1991; Koedijk and Kool, 1992; and Loretan & 

Phillips, 1994). Raheem and Ezepue (2018) note that it is important to examine in future how 

all such stylized facts of bank returns are linked to the business models of different banks, and 

hence their relative financial performance in different sub-periods of the study.  
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This line of work belongs to comprehensive studies in bank financial management and 

empirical finance support for such management, which are outside the scope of this research. 

Indeed, Raheem & Ezepue (2018), which is derived from this research, further suggest the need 

for: 1) more detailed analysis of returns distributions of Nigerian banks, using suitable 

univariate and multivariate probability models and their mixtures, linked to tail behaviours of 

returns distributions and risk factors; 2) exploring the implications of these results for portfolio 

and risk management involving bank assets; and 3) linking the results to further empirical 

analyses of the banking sector (efficiency, volatility, bubbles, anomalies, valuation, and 

predictability), for different periods of bank and financial reforms and global financial crisis. 

Two other features commonly exhibited by stock prices are both time-variation and non-

stationarity (Fasen, 2013 and Andersen et al., 2009). By non-stationarity we mean inability of 

the returns to revert to a common and central value called the mean of the series, while time-

varying volatility represents a tendency for values of the same magnitude to follow one another. 

For ease of modelling, therefore, there is a need to seek a transformation that would enable 

modelling of the return series by a stationary process. Thus, the thought of representing 

speculative prices by return and log-return came up among the analysts. One could contend that 

the return series obtained from the corresponding prices are white noise, which is believed to 

be better in modelling; however, there remains the time-varying volatility issue to be addressed. 

Engle (1982) was the foremost researcher who published a paper to consider a parametric model 

for volatility to account for the time-varying component of the return series and named the 

model the Autoregressive Conditionally Heteroskedastic (ARCH) model. ARCH models are an 

improvement of linear time series models, used to model time-varying squared volatility as a 

moving average of past squared returns. This technique exploits the stationarity of returns, for 

which the volatility is taken as a conditionally time-varying (heteroskedastic) series based on 

the past observations. This innovation was welcomed by the financial time series community, 

given the wide acceptability of the conditional method to modelling volatility as the standard 

approach to solving the problem of the time-varying properties of the returns (or volatility). 

Given the emphasis of the research on stylised facts and stock market characteristics of bank 

returns in the NSM, the following sections of the general literature review in this chapter will 

be focused on the stylized facts characterising the behaviour of stock returns and other market 

issues, including anomalies, bubbles, efficiency and volatility; which help to determine the level 

of risks involved in stocks and in particular the Nigerian banks’ stocks. Additional references 
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are included for each market characteristic in the specific chapters of the thesis which 

investigates the characteristic.  

3.3 Stylised Facts of the Emerging Markets 

Some distinct features were identified with the stock returns behaviour of emerging markets. 

These characteristics amongst others include high volatility, little or no correlation with 

developed and between emerging markets, long-term high yields in returns, higher 

predictability potentials than could be recorded with the developed markets. This is because; 

emerging markets are prone to the influence of external shocks such as political instability, 

changing economic and fiscal policy or the exchange rate (Bekaert et al., 1998). Bekaert and 

Harvey (1997, 2017) examine the causes of varying volatility across emerging markets, 

especially as concerns the timing of reforms of the asset market. They observe that capital 

market liberalisation, which is always responsible for a high correlation between local market 

returns and the developed market, has been unable to trigger local market volatility. 

Meanwhile, Bekaert, et al., (1997a, b and 1998) observed the following fundamental features, 

which are peculiar to the emerging markets’ returns: 

 Lower Market Capitalisation increases the chance of positive skewness in the returns; 

 Skewness is positively correlated with the inflation rate, a book-to-price and beta, 

which is a coeffient of the Capital Asset Pricing Model (CAPM) and measures the 

relative sensitivity of an asset to market movements;  

 The negative correlation between skewness and GDP growth rate; 

 The negative correlation between Kurtosis, Market Capitalisation and GDP growth. 

3.4 Stylised Facts of Asset Returns 

In this section, the statistical properties of asset returns, otherwise known as stylised facts, and 

the literature on some selected works by other researchers across different disciplines, 

especially the ones found relevant to our study, are presented.  

Several studies have been directed towards investigating the dynamic nature of major stock 

markets (at both the developed and emerging levels), with the discovery of quite a significant 

number of stylised facts. A stylised fact is a statistical property that is expected to be found in 

any series of observed stock prices or returns across many financial assets and markets (Taylor, 

2011; Cont, 2001). These features, some of which have briefly been mentioned in previous 
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studies, to be discussed subsequently, include: lack of autocorrelations in returns, high 

probabilities for extreme events (or thick tails of the distribution: "heavy tails”), asymmetry, 

volatility clustering, positive autocorrelation in squared returns and variance, leverage, 

correlation dependence time (Panait and Constantinescu, 2012), aggregation Gaussianity and 

slow decay of autocorrelation in absolute returns, and volume/volatility correlation (Cont, 

2001). 

Studies suggest that one of the primary purposes for modelling stock market data lies in 

determining the nature of the unobservable data generating process (DGP) that determines 

observed stock prices. The process of examining how fit this DGP is to the data leads to 

identifying the “stylised facts” of stock returns (Thompson, 2011). Hence, if a model is to 

approximate the behaviour of asset returns, then it should capture these facts. In other words, 

the stylised facts underpin the choice of appropriate statistical models for later modelling of the 

market features such as volatility, for example use of normal- or non-normal-based error 

distributions. 

Below is the review of current literature on the presence and identification of some of these 

stylized facts. 

3.4.1 Distribution of Asset Returns Is Leptokurtic and Non-Normal 

Studies suggest that the empirical distribution of asset returns seems to be leptokurtic, thereby 

making them able to be described only via non-normal distributions; see Mandelbrot (1963), 

Fama (1965), Nelson (1991), and Booth et al., (1992, 2000), Koutmos, Pericli and Trigeorgis 

(2006).Mainly, the empirical distributions of most daily stock return series tend to be 

leptokurtic and more skewed than would be a normal distribution (Pagan, 1996; Taylor, 2011; 

R Cont, 2001). That is, daily returns series are known for having heavy tails and peaked 

centres. However, non-normality appears to be less pronounced in the distributions of 

monthly returns series. 

Fama (1965a) examined the daily returns data spanning from 1957 to 1962 on 30 stocks 

obtained from DJIA (Dow Jones Industrial Average) and found that the returns’ distribution for 

each stock is leptokurtic. He then concluded by saying that daily stock returns are undoubtedly 

leptokurtic, with the same view shared by Pagan (1996) and Cont (2001). The same findings 

were made by Ding, et al. (1993) and Ding and Granger (1996) using a more extended period 

data set (63 years and 22 years respectively). It is believed that the distributions of stock returns 
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are leptokurtic and skewed, yet there is no unanimity regarding the best stochastic return 

generating model to capture these empirical characteristics of asset returns (Corhay and Touran, 

1994).  

Other researchers who obtained similar conclusions about returns data having higher kurtoses 

compared to the normal distribution include Taylor (2011), Karoglou (2010), Andersen et al. 

(2001), and Yu (2002). The same observations were made by Aggarwal et al. (1999) and 

Youwei et al. (2010) in their works on daily index returns from emerging markets of Latin 

America, Asia and Africa, respectively. It was however found that the degree of leptokurtosis 

in monthly returns series is weaker than those of daily returns (Richardson and Smith, 1993; 

Cont, 2001; Taylor, 2007). 

Many studies have observed that the distribution of asset returns is non-normal. For example, 

Praetz (1972) examined weekly returns of 17 share-price index series of the Sydney Stock 

Exchange and arrived at the same conclusion as Officer (1972) that the stock returns distribution 

is non-normal. Laopodis (1997) finds with the weekly stock returns of the Athens Stock 

Exchange, an emerging capital market, a lack of independence and normal distribution. DE 

Santis and İmrohoroğlu (1997) observed weekly stock returns of some selected emerging 

markets to have higher kurtosis compared to the developed markets.  

The daily stock index of Nigerian stock market (NSM) was suspected to be highly skewed and 

non-normally distributed (Ayadi, Blenman and Obi, 1998). Bekaert, Erb, Harvey and Viskonto 

(1998) report that the monthly returns of most emerging markets are highly skewed and 

leptokurtic; and are far from being normally distributed. Ozer (2001) finds the daily and weekly 

returns of the ISE to be skewed and leptokurtic and thus non-normally distributed. (Taylor, 

2007) also suggested that a suitable probability distribution for daily returns should be 

leptokurtic and symmetric. 

According to Taylor (2007), the following distributions have been suggested suitable for 

describing behaviour of asset returns: (i.) mixture of normal distributions with the assumption 

of constant mean and variance by Praetz (1972), Clark (1973) and some other studies; (ii.) 

lognormal-normal distribution by Clark (1973); (iii.) Conditional t-distributions for the ARCH 

framework by Bollerslev (1987); (iv.) Normal Inverse Gamma (NIG) distribution by Madan 

and Seneta, 1990 and Barndorff-Nielsen and Shepard, 2001; and (v) Generalized error 

distribution (GED) by Nelson (1991) 
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Meanwhile, despite the general believe that the distributions of stock returns are leptokurtic and 

skewed, no unanimity regarding the best stochastic return generating model to capture the 

empirical characteristics of the asset returns (Corhay and Tourani, 1994). However, considering 

the above, we shall be exploring alternatives to the normal distribution, such as: Student-t and 

generalised error distributions (GED), which are frequently applied in the literature to describe 

the behaviour of asset returns across different markets. 

3.4.2 Absence of Autocorrelation in Daily Returns 

Lack of serial correlation or linear autocorrelation has remained a significant observed 

characteristic of asset returns across many markets in both developed and developing 

economies, except for a few markets where a certain degree of linear autocorrelations has been 

recorded with asset log returns. For example, it is often claimed that daily returns for liquid 

stocks exhibit non-significant (linear) autocorrelation at various lags (Pagan, 1996; Taylor, 

2005; Ding et al, 1993; Cont, 2001). Taylor (2011) and Cont. (2001) argued that intra-daily 

returns of liquid stocks for periods more than 20 minutes do not show signs of significant 

autocorrelation, whereas those of shorter periods reflected negative autocorrelation. Such a 

conclusion, according to them, might be attributed to market microstructure, which refers to a 

combination of management, regulation and macroeconomic influences that determine how a 

market generally performs, thus making it difficult to specify these effects, as market structure 

analysis is outside the scope of this thesis. 

However, Aggarwal et al. (1999) observed that daily returns of some selected markets of Latin 

America and Asia with illiquid stocks from 1985 to 1995 are significantly auto-correlated. Fama 

(1970) observed that out of 30 daily stocks of the Dow Jones Industrial Average (DJIA) 

examined, 22 were positively as well as serially correlated. Lo and MacKinlay (1988) noted 

that both the weekly and monthly stock indices exhibited significant positive serial correlation, 

with the weekly individual asset returns rather containing negative serial correlation. Ball and 

Kothari (1989) discovered negative serial correlation in 5-year asset returns. Lo and MacKinlay 

(1990) noticed that while the weekly returns of the individual stocks were negatively and 

serially correlated, the weekly portfolio returns were rather positively auto-correlated.  

According to Jegadeesh (1990), there was highly significant negative autocorrelation in the 

monthly returns of individual stock returns and strong positive autocorrelation in the twelve 

months returns of any of the market whose asset price make up the Center for Research in 
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Security Prices (CRSP)’s market index used in the study. Zhou (1996) observed that high 

frequency returns were strongly negatively correlated at lag 1. Longin (1996) found positive 

autocorrelation in the daily stock index. According to Campbell et al. (1999), while the 

autocorrelation of daily, weekly and monthly index returns is positive, the weekly stock returns 

are weakly negatively correlated.  

Ahn et al. (2002) observed that while daily indices contain positive autocorrelation, the futures 

could not provide any significant autocorrelation. In a year of portfolio stock returns, there was 

negative autocorrelation (Lewellen, 2002). Bianco and Reno (2006) observed negative 

autocorrelation in the returns of the Italian stock index futures in less than 20minutes periods. 

Lim et al. (2008) found that all the returns of the 10 emerging Asian stock markets exhibit no 

significant autocorrelation.  

The daily returns on 4 US stock market indices showed evidence of mean reversion, which 

implies a tendency for the indices to return to a generalised mean over time, considering absence 

of long-term upward or downward trends in the trajectory of the indices (Serletis and 

Rossenberg, 2009). From this, it could be inferred that weekly and monthly returns are weakly 

negatively correlated while daily, weekly and monthly index returns are positively correlated. 

Also, high-frequency market returns exhibit negative autocorrelation, while the absolute and 

squared returns are always positive, significant and slow-decaying, with absolute returns 

generally displaying a higher autocorrelation compared to the squared returns (Taylor's effect) 

(Sewell, 2011; Dosi and Staccioli; 2015). 

Fama (1965a) stated that when all publicly available information is immediately and completely 

incorporated into the stock prices, it is expected that insignificant autocorrelation in the daily 

returns would be observed. Slow response in prices to the information would lead to positive 

autocorrelation, whereas the quick response to the newly arrived information is responsible for 

negative autocorrelation. 

Meanwhile, a lack of significant autocorrelations in returns indicates some scientific support 

for ‘random walk’ models of prices wherein the returns are taken to be independent random 

variables. It is good to understand that failure of the returns to be auto correlated is not an 

indication for the series to be independent because independence means that any higher order 

form (absolute and squared returns) of returns will contain no autocorrelation, which obviously 

is not the case as far as the return’s series, is concerned (Taylor, 2007 and Thompson, 2011) 
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Thus, with respect to this property of lack of significant autocorrelations in returns as 

established in the existing literature, we shall be examining presence of significant 

autocorrelation in the daily return of the respective bank in NSM for us to have a clearer picture 

of the behaviour of the stock prices of the banking industry with the periods covered by this 

study. 

3.4.3 Presence of Autocorrelation in the Squared and Absolute Returns: Volatility Clustering 

and Long Memory 

Studies such as Cont (2001), Taylor (2005) and Thompson (2011) have shown that significant 

linear autocorrelation in the daily log returns does not make the returns independent; the reason 

for this is that both absolute and squared returns are significantly auto-correlated in most daily 

stock returns. Also, the presence of significant autocorrelation in the absolute and squared 

returns poses a challenge to the validity of random walk theory, which supposes statistical 

independence in the return series.  

Ding et al. (1993) found positive autocorrelation in the returns of both squared and absolute 

returns for lags running to thousands – a situation termed "Volatility clustering". Specifically, 

short-term stock returns (e.g. intra-daily, daily and weekly) exhibit volatility clustering, which, 

according to Mandelbrot (1963, p. 418), implies that "large changes tend to be followed by 

large changes, of either sign, and small changes tend to be followed by small changes". This 

feature of volatility clustering has successfully been modelled with ARCH-type models (see: 

Engle, 1982; Bollerslev et al., 1994; Koutmos and Knif, 2002; Moschini and Myers, 2002; 

Scruggs and Glabanidis, 2003; and Zhou, 2002).  

Apart from significant autocorrelations, also observed is the slow decay of autocorrelations in 

absolute and squared returns over time. Studies such as: those of Ding and Granger (1996), 

Taylor (2005), Cont (2001), Pagan (1996) and McMillan and Ruiz (2009) have also established 

that some stocks on NYSE, LSE and Nikkei exchange markets show evidence of significant 

and slow decay in autocorrelations of both absolute and squared returns. Aggarwal et al. (1999) 

also found the evidence of such persistence in the squared returns for index returns of some 

selected emerging markets.  

Though the level of decay of the autocorrelation of absolute and squared daily stock returns is 

well established (Thompson, 2011), the implications of this on the stock returns series create 

divergent views within the research community (see: Diebold and Inoue, 2001; Granger and 
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Hyung, 2004; Banerjee and Urga, 2005). While some believe that the slow decay of the 

autocorrelation of absolute returns could be consistent with stock returns following a stationary 

process that exhibits long memory, others think the non-stationarities in the process for stock 

returns could be responsible for a slowly decaying autocorrelation function of absolute returns. 

Thus, non-stationarities imply the presence of spikes and sustained upward and downward 

trends in a time series, with lack of mean reversion and volatility clustering. Hence, such 

fluctuations will inherently decay slowly. 

3.4.4 The Taylor Effect 

Another fact of interest as observed by Granger and Ding (1993) which has subsequently 

enjoyed wider acceptability and been classified as a stylised fact (Cont, 2001; Taylor, 2005) is 

the "Taylor effect" based on the findings made by Taylor (2007). The Taylor effect is a term 

used to represent the circumstance when the autocorrelation of the absolute returns tends to be 

higher than the autocorrelation of the squared returns, indicating there is higher tendency for 

predicting absolute returns compared to squared returns (Thompson, 2011). More generally, 

the Taylor effect comes into play when the 𝑘𝑡ℎ-order autocorrelation of absolute returns|𝑟𝑡|𝑘 is 

maximised at the point when the k-exponent is equal to 1.  

According to Granger and Ding (1993), the autocorrelation of |𝑟𝑡|𝑘reachesits maximum for 

values of k falling between 0.75 and 1.25. Ding, Granger, and Engle (1993) examined the 

returns of the S&P500 index and observed that the sample autocorrelations of |𝑟𝑡|𝑘 for various 

values of '𝑘' tend to be highest when𝑘 =  1. Ding and Granger (1996) also noticed the presence 

of this effect in several daily and intra-daily returns and found that it was more pronounced in 

the intra-daily series than either daily or higher frequency data. 

3.4.5 The Leverage Effect 

Black (1976) first identified the leverage effect, which is defined as the tendency for most 

measures of the volatility of returns such as the sample variance, absolute or squared returns 

tend to increase when asset price decreases (Cont, 2001), thereby implying that stock price 

changes are often negatively correlated with changes in volatility (see Black, 1976; Christie, 

1982; and Bekaert and Wu, 2000). More precisely, it means that negative returns (falls in price) 

are trailed by higher volatility compared to positive returns (increases in prices) of the same 

magnitude. In some contexts, this is referred to as the "Asymmetric effect".  
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First-order autocorrelation of stock index returns is also observed to be negatively correlated 

with high volatility (e.g. LeBaron, 1992; Campbell et al., 1993 and Sentana and Wadhwani, 

1992).  One might then conclude that both positive and negative returns impose an "Asymmetric 

effect" on most measures of volatility (Taylor, 2007). Negative returns, which indicate 

reductions in stock prices, tend to be correlated with an increase in volatility measures, whereas 

positive returns, which reveal a rise in stock prices, tend to be correlated with declines in 

volatility (Thompson, 2011). It is said that the lack of identification or investigation of the 

presence of asymmetry in volatility results in an underestimation of the Value-at-Risk, which 

is a vital tool in portfolio selection and risk management.  

It is also maintained that whenever there is a rise in the leverage effect, the riskiness of assets 

of a firm increase, thereby leading to higher volatility. Black (1976) and Christie (1982) note 

that there is a likelihood of a reduction in equity value, accompanied by a rise in debt-to-equity 

ratio whenever stock prices experience negative shock. Consequently, investors are thrown into 

undue panic over the future value of their securities. Many models for stock returns have been 

designed to handle the asymmetric effect in volatility (Taylor, 2005).  

Meanwhile, according to Oskooe, and Shamsavari, (2011), authors such as Rousan and Al-

Khouri (2005), Brooks (1996), Mun, Sundaram and Yin (2008), Bahadur (2008), Alagidede 

and Panagiotidis (2009), Jayasuriya et al. (2009) and Cheng et al. (2010) argue that there is no 

evidence to conclude that the asymmetric effect is more pronounced in the emerging stock 

markets than in the developed markets. Other notable works in this direction include: Bollerslev, 

Chou and Kroner (1992), Brock and Lima (1995), Campbell, Lo and McKinlay (1997), 

Gourieroux and Jasiak (2001), Maddala and Rao (1997), Pagan (1997) and Shephard (1996). 

3.4.6 Implications of the Stylized Facts for this study 

This research will, among other issues, examine whether the stylised facts found in the 

developed equity markets also characterise the behaviour of returns in the NSM, particularly 

the banking stock returns. 

Given the findings as established in the literature with respect to the observed concepts, we 

hope to examine the behaviour of Nigerian banks’ stock prices using daily, weekly and monthly 

returns for each bank to ascertain to what extent the returns reflect the listed stylized facts that 

have been noted to characterise stock behaviour across various markets. The outcome of this 

will be compared with the findings of other researchers and will also help to indicate appropriate 
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models to describe the risk associated with the returns across different periods of interest in this 

study. Understanding these features in this study data would be beneficial for the following reasons: 

(i.) To see how well the data behave as expected of financial data; (ii.) To be able to understand our 

data and identify appropriate model(s) that best fit for describing the data behaviour; (iii.) To see 

how many of the empirical finance issues such as: anomalies, bubbles, efficiency and volatility due 

to trading activities in the market, are reflected in the data. For instance, investigating efficiency 

helps us to understand the nature of the market and how well the trading information is reflected in 

the prices. Knowledge of these stylized facts will guide investors and investment managers on 

how best to optimize their investments or create optimal portfolios. It will also help the regulator 

to understand the behaviour of the markets at different periods and in different scenarios which 

may impact the nation's economy so that the right measures can be instituted to ensure market 

stability.  

3.5 The Vital Stock Market Characteristics 

This section briefly presents the six empirical financial issues influencing the behaviour of asset 

prices in the financial markets. The literature on each of these issues and findings from the 

relevant works to our study that are previously investigated across different markets of both 

developed and developing economies are examined. 

There is a dense literature on the four stock market characteristics studied in empirical finance, 

with most of the studies conducted in developed markets and a few in emerging markets.  These 

characteristics include Efficiency, Anomaly, Bubbles, and Volatility. We discuss them briefly 

below and indicate some selected literature relevant to the objectives of this research. Following 

this, we provide further details on the characteristics in subsequent chapters of this thesis. 

3.5.1 Market Efficiency 

In early 2000, a significant number of studies examined how efficient financial markets are 

with regards to the flow of relevant information into the markets. According to Taylor (2007), 

the efficient market hypothesis (EMH) is conceptualized in line with the theory of random 

walks first introduced by a French broker, Jules Regnault in 1863 and French mathematician 

Louis Bachelier in 1900. The concept was, however, abandoned because it was initially seen as 

being irrelevant to the theory of financial markets, since efforts at establishing random walks 

in financial data proved unsuccessful before the mid-20th century. In financial econometrics, 

efficient-market hypothesis (EMH) is a theory stating that asset prices are full reflection of all 
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available market information; indicating that it is impossible to beat the market by any 

participant using risk-adjusted method (Fama, 1965). This is because, according to Delcey 

(2018), changes in price not only that they are nearly random in the financial markets, prices 

are reflection of economic fundamentals. 

An efficient weak-form market as defined by Fama (1965) is a market where a good number of 

market makers (or participants) meet to trade in assets with one another, such that the market 

forces would be the determinant of the future market values7 of their assets, because the latest 

and most vital information is easily accessible to every participant at the same time. The act of 

competition is expected to enable the real price of each asset to reflect the impact of information 

from historic and current events as well as the anticipated happenings, which implies that an 

efficient market paves the way for the actual security prices to serve as a good estimate of the 

securities’ intrinsic value. According to Stglitz (1981b), "if markets were perfectly efficient in 

transmitting information from the informed to the uninformed, informed individuals would 

obtain no return on their investment in information; thus, the only information which can, in 

equilibrium, be efficiently transmitted is costless information". The implication of this 

statement is that for a market to be regarded as efficient, well conveyed information should 

instantly and fully be incorporated into the market prices of the securities. 

According to Fama (1965, 1970), a stock market is said to be efficient subject to how the market 

transmits information to the market participants. He refined and extended the EMH by 

classifying financial markets into three forms of market efficiency as presented below: 

a. Weak-form:  current stock prices reflect historical prices only, meaning that it is not 

possible to earn superior risk-adjusted profits which are based on past prices (Shleifer, 

2000). By this definition, it means that past data on stock prices are of no use in 

predicting either current or future stock returns. This leads to the random walk 

hypothesis (RWH) (Dupernex, 2007). 

b. Semi-strong form: current stock prices reflect historical prices and all publicly 

available information. Any price anomalies are quickly detected, and the stock market 

adjusts. Hence, only traders with additional inside information could earn excess profit.  

c. Strong form: current prices reflect all available information, be it private or public. 

                                                
7Market value is the value of an asset as currently priced in the marketplace 
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Further, when a market is efficient, the activities of the contending participants are expected to 

force real asset prices to vary arbitrarily about their fundamental values. Thus, prices often 

totally incorporate the available information with little or no room for anyone to take the market 

by surprise based on the information through trading (Lo and MacKinlay, 2000). According to 

Allen, Brealey and Myers (2011), an efficient market is a market where it is not possible to 

earn excess returns higher than the market returns. This results in a random walk, wherein the 

more efficient a stock market is, the return series becomes more random because the trading 

information not only is instantaneously reflected in the current prices and available to every 

participant, exploiting such information to earn abnormal gains by any market participant 

becomes almost impossible (Dupernex, 2007). 

A market where successive returns on every asset are independent is termed a random walk 

market (Kendal and Hill, 1953; Fama, 1965), meaning that the past movement or trend of a 

stock return or market cannot be used in predicting its future movement. This is an indication 

that series of changes in stock prices lack memory, meaning that the historic price level is not 

useful in predicting the current stock price. This assumption of independence of the random 

walk remains intact so long as information on the previous returns' behaviour could not in any 

way be exploited to earn excessive profit.  

The notion of stock prices following a random walk path could be linked to the EMH 

(Poshakwale, 1996); which according to Samuelson (1965; 1970) is the proposition that stock 

markets are efficient, with the prices of stocks reflecting their true economic value. Malkiel, 

(1992) also interprets the concept of EMH in finance to mean that asset prices are fair, that 

every relevant market information is available and is spontaneously incorporated into the 

prices; and that the traders are rational; indicating that, the price 𝑃𝑡incorporates all relevant 

market information historically, up to time t, and no trader has comparative privileges in 

acquiring information over the other. The phenomenon indicates that price change (or the 

return) is only subject to the news arrival from time, 𝑡 − 1 𝑡𝑜 𝑡,thereby, giving no room for 

arbitrage opportunities among the participants, particularly in earning investments with return 

higher than a fair payment for undertaking riskiness of the asset.  

Meanwhile, since Bachelier (1900) formulated the random walk hypothesis, research has been 

geared towards examining whether the theory can be used in describing stock price distribution 

and to see if the return series are serially correlated. Where stock prices have independent 

increments, a mathematical concept of prices was developed for this case and applied to the 
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French Bond Market, with the discovery that asset returns follow the random walk. Most of the 

developed equity markets, especially the New York stock exchange (NYSE) and the London 

stock exchange (LSE), have shown evidence of being efficient at least in the weak-form. US 

stock markets have widely been studied in the past.  

Cootner (1962) focused on the weekly returns of 40 stocks drawn from the New York Stock 

Exchange and found a small level of dependence. Fama (1970) examined the daily returns of 

30 common stocks drawn from the Dow Jones Industrial Average (DJIA) and applied both 

auto-correlation coefficients and run tests. He found evidence for presence of positive serial 

correlation in the returns. Solnik (1973) in his research to determine if the samples of 234 stock 

returns drawn from across the 8 prominent European stock markets - French, German, British, 

Italian, Dutch, Belgium, Swiss, and Swedish - follow a random walk theory, confirmed that the 

European stock returns deviate from random walk theory more than American stocks. Lo and 

Mackinlay (1988), however, rejected the random walk hypothesis using a variance-based test 

for weekly stock returns calculated from the Cyprus daily stock (CRSP) returns indices. 

In an efficient market the price instantly adjusts to its new equilibrium level. If the market is 

inefficient, the market may underreact or overreact to new information. If there is under- 

reaction, the price adjustment is gradual; whereas, if there is an overreaction, the market price 

overshoots the new equilibrium value (see Figure3.1 below). If the market is inefficient, then 

between the time of the news revelation and the adjustment to the new equilibrium value, 

informed investors would be able to profit at the expense of less sophisticated investors. 

 
Figure 3.1: Market Reaction to New Information. Source: Darškuvienė (2010) 
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From the Figure above, one could suggest that prices could adjust to the unexpected news in 

three possible ways as indicated below: 

a. An efficient Market Reaction, whereby the price instantaneously adjusts to the new 

information path; 

b. Under-reaction: in this context, the price partially adjusts to the new information; 

c. Over-reaction and Correction: in this circumstance, the price over-adjusts or reacts too 

fast to the new information, but eventually drops to the appropriate price level. 

Brown and Easton (1989) establish the presence of weak-form market efficiency in the London 

Stock Exchange market using 3 per cent consoles obtained from the daily closing prices of 

stocks running from1821 to 1860. Comparing their results with the same tests run on data 

obtained from the present-day markets, they found that the outcomes are the same. This shows 

that weak-form market efficiency is an enduring feature of markets, not limited to particular 

periods in the past. 

Sharma and Kennedy (1977) show that the developed equity markets are efficient, well 

organised and consistent with the random walk hypothesis (RWH). Poterba and Summers 

(1988) carried out studies on the transitory components of equal-weighted and value weighted 

NYSE returns, with data covering 59 years, and found that the stock returns exhibited positive 

serial correlation over a short horizon, and negative correlation over the longer time. 

Alparslan (1989) adopts two forms of weak-form efficiency tests such as the tests of 

independence versus autocorrelation and runs tests, and filter rules (trading rules) tests, to 

investigate weekly adjusted price data from the Istanbul Stock Market. Alparslan (1989) argues 

that both autocorrelation and runs tests jointly support weak-form efficiency, whereas the filter 

tests reject the efficiency of Istanbul Stock exchange (ISE), suggesting that some investors 

could take advantage of the market to earn an excess gain on some stocks. Findings of Unal 

(1992) from daily adjusted closing prices of 20 major securities also support that the ISE is not 

weakly efficient by adopting the same methods used by Alparslan (1989). Huang (1995) 

examined whether the Asian stock markets follow random walk theory with the use of weekly 

stock returns obtained from the Morgan Stanley Stock Index Database. The findings show that 

out of all examined markets, only in the Korean and Malaysian stock markets is the random 

walk hypothesis (RWH) is rejected at different holding periods.  
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Further, the RWH was equally not supported by the Hong Kong, Singapore and Thailand 

markets applying variance ratio estimator that is heteroscedasticity-consistent. Balaban (1995) 

uses both parametric and non-parametric tests (Mobarek, Mollah and Bhuyan, 2008) to examine 

the extent to which the Turkish Stock Market supports the random walk theory in daily, weekly 

and monthly returns data. It is found that while daily and weekly series reject random walk 

theory, monthly returns agree with the theory. Dockery and Vergari (1997) discovers that the 

Budapest Stock Exchange (BSE) is weakly efficient. Blasco et al. (1997) found Spanish stock 

market to be weakly inefficient but attributed this to the theory of time-varying volatilities. 

Karemera et al. (1999) present empirical evidence supporting the null hypothesis of weak- form 

market efficiency in the Turkish stock market. In Africa, Dickinson and Muragu (1994) find 

that the Nairobi market is weakly efficient. Olowe (1999) and Mikailu & Sanda (2007) report 

that Nigerian stock market is weakly efficient, but Omar (2012) and Ezepue and Omar (2012) 

found the Nigerian market to be weakly inefficient. 

Mobarek and Keasey (2000) discovered that the daily stock returns for every listed security on 

the Dhaka Stock Exchange (DSE) reject the random walk theory and that the presence of 

significant autocorrelations at various lags indicates the inadequacy of the weak-form market 

efficiency. Ozer (2001) confirms a lack of support for RWH in daily, weekly and monthly stock 

prices in the ISE, thereby concluding that the market cannot be taken to be efficient.  

Worthington and Higgs (2003) applied multivariate statistical tests to the daily returns of 16 

advanced and 4 emerging markets and found that only 5 out of 16 developed markets supported 

the RWH.  

Gu and Finnerty (2002) in their study of stocks from the Dow-Jones Industrial average (DJIA) 

for the period 1996 to 1998, reveal that market efficiency is better viewed as a dynamic issue 

rather than a fixed principle. A market can progressively be efficient with time subject to a few 

factors which include enhancing trading through a reduction of transaction costs; improvement 

in the economy due to information technology; the influx of more experienced investors; and 

general economic prosperity. These factors in turn increase trading volume and reduce volatility 

rate. With these findings, one could argue that market efficiency is positively correlated with 

market development. 

Ezepue and Omar (2012), using All share index data from 2000 to 2010 established that the 

Nigerian market is not weakly efficient - a finding which contradicts that of Mikailu and Sanda 

(2007), reported earlier. Other relevant studies on the concept of market efficiency are: Huang, 
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1995; Karemera et al., 1999; Olowe, 1999; Shleifer, 2000; and Omar, 2012. These studies 

portray different degrees of market inefficiency in emerging markets prior to the study 

conducted by Ezepue and Omar (2012) and Omar (2012). Meanwhile, Schleifer (2000) explores 

in detail the links between market inefficiency and behavioural finance, which will be useful 

for interpreting investor behaviours amid market movements in contexts of market inefficiency 

that suggest existence of valuable market signals. 

Given the preceding, it could be argued that majority, i.e. about 60%, of the reviewed studies, 

especially those dealing with the emerging markets, reject the random walk hypothesis and the 

weak-form market hypothesis. However, there is no consensus on the efficiency of the Nigerian 

exchange market; for example, while, Olowe (1999) and Mikailu and Sanda (2007) observe the 

presence of weak-form market efficiency, Omar (2012) and Omar and Ezepue (2012) have 

opposing views on the efficiency of the Nigerian market.  

Meanwhile, considering the conclusion by Gu and Finnerty (2002) that market efficiency is 

dynamic and not fixed, meaning that market efficiency varies with time depending on certain 

factors that could enhance liquidity and reduce risk in the market. Further, Ibikunle, et al. (2016), 

state that an asset market being efficient over a given period (e.g. daily, weekly, etc.), does not 

entirely means that such market becomes efficient at all times, even during such indicated 

period. With these two views, one could argue that efficiency of any market is not perpetuity; 

indicating that concept of market efficiency is dynamic and not static. Consequently, we believe 

that examining the efficiency of a sector such as the banking industry within periods which are 

slightly different from those of the previous studies may help us to further deepen existing 

findings on the concept of market efficiency. A more detailed account of this and the empirical 

findings on this concept will be discussed in chapter 6 of this thesis. 

In reference to the approaches common to the existing literature for investigating the level of 

market efficiency across various markets, we hope to test for the weak-form efficiency of the 

Nigerian banks across the indicated study periods of interest (see Section 4.3). Specifically, the 

relevant popular EMH tests we intend to apply in this study are: The Augmented Dickey fuller 

(ADF) test of RW or non-stationarity, the Ljung Box Q test for serial correlation, the runs test 

for randomness and the variance ratio (VR) test. Again, pertinent results of these tests are 

presented in Chapter 6 of this thesis. The key insight from these results is how efficient the 

banking sector is in different sub-periods of the research determined by bank reforms and the 

global financial crisis. 
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3.5.2 Anomalies 

Market anomalies are irregular behaviours or empirical findings characterising stock market 

trading, contrary to the EMH. They are features that cast doubts on a market’s efficiency, 

leading to mispricing of securities.  They are caused by the reactions of traders to the 

environmental changes or the quest to exploit favourable circumstances to earn an abnormal 

profit by investors at the expense of the market. Thus, the presence of anomalies indicates a 

breakdown of market equilibrium and the efficient allocation of resources in any economy 

(Watanapalachaikul and Islam, 2006) 

It is believed that some abnormal returns are noticeable within the stock market (Guo and Wang, 

2008). Some studies define anomalies under three main forms, which are: calendar anomalies, 

fundamental anomalies and technical anomalies (Srinivasan and Kalaivani, 2013).  

Calendar anomalies occur because of deviation of returns from normal movement over time. 

These are categorised into different forms such as: turn-of week/weekend, turn-of-the-month, 

turn-of-the-year and January effect. Some of the likely causes of this strange behaviour include 

cash flow adjustments, different tax treatments, the market’s failure to adjust to new 

information in a timely fashion, and restrictions due to investors' behaviours. Ritter (1988) 

established that the ratio of share purchases to sales of individual investors attains an annual 

low by December ending and a yearly high in early January (Guo and Wang, 2008). The day-

of-the-week effect reveals that Monday generally records the lowest stock returns, with the 

highest returns on Wednesdays and Fridays (Ross, Westerfield and Jaffe, 2002). The semi-

month effect reveals that returns are higher in the first half of the month compared to the second 

half (Guo and Wang, 2008). 

Fundamental anomalies occur when stock prices fail to fully reflect their intrinsic values. For 

example, the price-earnings ratio (P/E) 8  anomaly, dividend yield 9  anomaly, value versus 

growth anomaly, low price-sales anomaly and over-reaction anomaly. Value strategies 

outperform growth stock due to market overreaction, but growth stocks are more influenced by 

market down movement. A dividend yield anomaly occurs when high dividend yield equities 

                                                
8Price/earnings ratio (P/E ratio) is the ratio of the stock market price to the earnings per share. It is also called the earnings multiplier. It is a 

measure of the price being paid by investors for given earnings of a company and shows the time it would take an investor to recoup his or her 

investment in a company when profit and distributed income are fixed. 
9Dividend yield is the annual dividend per share as a percentage of the stock's actual price. 
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outperform the market. Stocks with low price to earnings ratio (P/E) outperform stocks with 

high P/E (Aronson, 2007).  

Technical anomalies deal with the historical prices and trends in the stocks. For example, the 

momentum effect wherein investors can beat the market by buying past winners and selling 

past losers. Technical analysis also involves trading strategies such as moving averages and 

trading breaks (see: Latif et al., 2012).  

 The Day-of-the-Week Effect 

The day-of-the week effect is related to patterns exhibited by the stock market on Friday and 

Monday trading days. For this, the mean returns on each day of the week vary, and particularly 

for Mondays, the average returns have been claimed to be negative and lower than any other 

week day, while being positive on the last trading day of the week before the weekend. This 

circumstance primarily occurs because firms prefer to release good news as it happens and 

going forward to the middle of the week so that such news can positively impact on the returns. 

However, bad news is released at the close of trading on Fridays so that investors will digest 

the news over the weekend (Holden, Thompson and Ruangrit, 2005). This behaviour is 

therefore responsible for negative returns on Mondays due to the impact of the bad news that 

was received over the weekend and whose effect is being adjusted to. 

Studies have shown that there is evidence of the presence of the day-of-the-week effect anomaly 

in stocks across different markets of both developed and developing economies. For example, 

according to Taylor (2005), there is a high likelihood for stock prices to increase on Fridays 

and drop on Mondays. It has been generally noted that the day of the week effect is no longer 

restricted to Mondays and Fridays in the global markets. Cross (1973) found that stock market 

returns tend to rise on Fridays and fall on Mondays. Gibbons and Hess (1981) and Smirlock 

and Starks (1986) observed that while the stock returns on Mondays tend to be lower; those on 

Fridays are most likely to be higher than any other days from the US stock market they studied 

from 1962 to 1978. Keim and Stambaugh (1984) reported that while Monday's stocks exhibit 

negative returns, Friday’s yield positive returns from US stock data examined for 55 years.  

Jaffe and Westerfield (1985) which studied the daily asset returns from Australia, Canada, 

Japan, UK and the US, indicates the presence of a weekend effect in each country and moreover 

observed that Tuesday average returns were lowest for both Japan and Australian markets. 

Tuesday's average return was also found to be lowest in the Paris market by Solnik and 
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Bousquet (1990) and Baron (1990). Harris (1986) examined intra-daily and weekly patterns in 

stock returns and discovered prices drop on Monday mornings, but rise on every other day's 

mornings. Lakonishok and Smidt (1988) examined daily stock data on the DJIA running for 90 

years and established that Mondays' rate of return was significantly negative (Sewell, 2011). 

Agrawal and Tandon (1994) examined returns from 18 countries and established that there exist 

large positive returns on Fridays and Wednesdays in most of the countries, while most countries 

revealed lower or negative returns on Mondays and Tuesdays (Guo and Wang, 2008). Berument 

and Kiymaz (2001) observed that the S&P 500 was characterised by day-of-the-week anomalies 

between 1973 and 1997, with Monday returns found to be the lowest while Wednesday 

witnessed the highest returns. Mitra and Khan (2014) also found that Monday an average return 

was lowest in the Indian market between 2001 and 2012.  

One might argue that the presence of the day-of-the-week effect in any market means that 

investors attempt to manipulate the market by purchasing assets on days when there are negative 

abnormal returns and then resell them on days with positive returns. The main explanation 

offered by Rahman (2009) for this behaviour is that most firms usually release positive news 

relating to trading activities as the week progresses; which in turn psychologically encourages 

investors to exploit such news to make favourable investment decisions. However, by the close 

of market on Friday, negative news is released for investors to digest over the weekends, 

thereby negatively impacting on the Monday returns. As for Tuesdays, the most reasonable 

explanation responsible for negative returns is that the negative shocks of the weekend 

characterising the US market on Mondays tend to persist and thus spill-over to Tuesday, simply 

because investors are yet to get over such shocks (Tachiwou, 2010). Thus, the consensus across 

most advanced markets is that while Mondays and probably Tuesday’s trading tend to end low 

on average, the other days and especially those of Fridays end high on average (Tachiwou, 

2010). 

Meanwhile, a few other works present dissenting results against this effect. Abraham and 

Ikenberry (1994) observed that Friday and Monday's returns were related in that for negative 

Friday returns, Monday returns were almost 80% of time negative and whenever Friday returns 

were positive, Monday returns were positive close to 56% of the time (Mittal and Jain, 2009). 

Connolly (1989) used some US indices from 1963 to 1983, and submitted that the weekend 

effect was smaller than earlier observed, thereby suggesting that the effect might have 

disappeared by the mid-1970s. Jaffe, Westerfield and Ma (1989) studied indices from US, UK, 

Japan, Canada and Australia, and they observed that the low or negative Monday effect has 

almost disappeared (Guo and Wang, 2008). 
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However, some of the findings arising from the Spanish markets show no sign of any day-of-

the-week effect (see: Santemases, 1986; Pena, 1995; Gardeazabal and Regulez, 2002). 

The Month of the Year Effect (or January effect) 

The month of the year effect is defined as the existence of patterns in stock returns in a given 

month of the year. The most mentioned effect is the January effect. The January effect is 

concerned with the higher average stock returns in January compared to any other months of 

the year (Guo and Wang, 2008). In a study of six Asian stock markets - Korea, Hong Kong, 

Taiwan, Philippines, Malaysia and Singapore - using daily stock returns from 1975 to 1987, Ho 

(1990) observed higher average returns for January and February than for any other months of 

the year.  It was noticed that a monthly effect is present in the US and some other developed 

countries, while December's returns were generally smaller; January's returns were higher 

compared to those of other months.  

Jaffe and Westerfield (1989) examined four markets of Japan, Canada, Australia and the UK, 

and found that returns for the 1st- half of the month were higher than returns for the 2nd-half for 

Canada, Australia and the UK. Ziemba (1991) presented evidence of a turn-of-the-month effect 

in Japan running through the last 5 and first 2 trading days of the month.  Kok (2001) in another 

study on the turn-of-the-month effect in the Asia-Pacific stock markets confirmed that this 

effect is most prevalent across those stock markets, with half-month effect noticed to be 

unstable as well as weak within the markets (Mittal and Jain, 2009). 

For the January effect, studies such as those of Henke (2001), Nassir and Mohammad (1987), 

Roll (1983), Chen and Singal (2001), and Cabello and Ortiz (2003) found that average monthly 

returns in January were higher than the average returns in any other month. This may be 

attributed to investors in small-cap stocks selling their stocks at the end of the year, in December, 

only to rebound in early January as they repurchase these stocks to sustain their investment 

positions (Schwert, 2003), but this is not applicable to the Australia market (Watanapalachaikul 

and Islam, 2006). If indeed the effect exists, it would suggest that the market lacks efficiency; 

otherwise, the effect should disappear. Essentially, the effect states that stocks, especially small 

firms’ stocks, tend to rise in the first five days in January (Reinganum, 1983).  

However, according to Keim (1983), it is possible that the effect may not have an economic 

basis, indicating that it may be subject to spurious causes such as the concentration of listings 

and delisting at year-end and the presence of outliers or errors in the data base. Further, as cited 
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in Rathinasamy and Mantripragada (1996), studies such as: Blume and Stambaugh (1983), Roll 

(1981), Reinganum (1981, 1983), Ritter (1988) and Stoll and Whaley (1983) believe that the 

following reasons could be responsible for the January effect: Tax loss selling 10 ; High 

transaction cost, especially with respect to the small firm; buying and selling behaviour of 

individual investors at the beginning of the year; upward biased estimates of average returns 

for small firms as a result of daily portfolio rebalancing; and downward biased estimates of beta 

for small firms. Keim (1983), however, observes that most prominent among these reasons are 

the tax-loss selling and the information hypotheses. Meanwhile, it is important to emphasise 

that all these studies and others that have investigated this effect assert that none of the 

highlighted reasons has any plausible impact or could empirically or theoretically be held 

responsible for the higher returns in January (see Rathinasamy and Mantripragada, 1996; Keim, 

1983; Thaler, 1987). 

According to Keim (1983) and Reinganum (1983), most of the abnormal returns earned, 

especially by small firms, often occur during the first two weeks in January, thereby making 

higher average returns within these periods in January possible compared to the rest of the days 

of the month. Such an anomaly is called a turn-of-the-year effect. Abnormal pre-holiday returns 

were first observed in the US stocks a long time ago. For example, Merrill (1966) found 

unexplained rises in the DJIA on the trading day preceding the holidays for the period from 

1897 to 1965. Also, Fosback (1976) observed high pre-holiday returns in the S&P 500 index. 

Considering the above, one could suggest that the January and weekend effects are more 

common in small-cap stocks, compared to big-cap stocks (Kim and Park, 1994) and that the 

mean returns are different on the day before a holiday and the day after; this is attributed to the 

fact that higher than average returns occur before a holiday, because of increased activity and 

lower returns after the holiday. Further evidence for this effect can be found in Pettengill (1989), 

Ariel (1990) and Vergin and McGinnis (1999). 

The Holiday Effect 

The holiday effect is the circumstance whereby the market performs well in terms of increase 

in sales and profitability on a day prior to a holiday. Fields (1934) discovered that the DJIA 

exhibited a substantial level of improvements just a day before a holiday start. Lakonishok and 

Smidt (1988) observed that the rate of returns before the holiday was 23 times higher than on 

                                                
10.

Sales of securities with declining values typically at the end of a calendar year in order to use the realised losses in reducing 

taxable incomes 
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any other day, with holiday returns accounting for nearly 50% of the total rise in price for the 

DJIA. Ariel (1990) established that the average rate of returns on days before holidays is often 

about 9 to 14 times higher than that realised on days far from holidays.  

Cadsby and Ratner (1992) discovered that while ahead-of-holiday effects were noticed in the 

US, Canada, Japan, Hong Kong and Australia's market, none were noticed in the UK, Italy, 

Switzerland, West Germany and France markets. Liano and Lindley (1995) investigated the 

behaviour of daily returns on the daily value-weighted and the equally-weighted return indices 

of over-the-counter (OTC) stocks for the period ranging from1973 to 1989 and found evidence 

of unprecedented high and low returns on pre-holiday and post-holiday trading days 

respectively.  

Further, according to Kim and Park (1994), there was evidence of holiday effects in three major 

stock of USA: NYSE, AMEX and NASDAQ, the UK and Japan. Arsad and Coutts (1997) 

confirmed the presence of a holiday effect in the FT 30 index. Brockman and Michayluk (1998) 

examined the holiday effect in securities traded on the NYSE, AMEX and NASDAQ exchanges 

for 1987–93, finding that pre-holiday returns are substantially higher than those of other days 

without a holiday. Vergin and McGinnis (1999) suggested that for ten years, i.e. between 1987 

and 1996, holiday effects disappeared for large companies, and diminished significantly for 

small firms.  

A study by Meneu and Pardo (2004) confirmed the presence of a pre-holiday effect in the 

frequently traded stocks of the Spanish exchange. Keef and Roush (2005) found that there was 

a substantial pre-holiday effect in the S& P 500 investigated until 1987, but that this vanished 

after1987. McGuinness (2005) observed a strong pre-holiday effect in Hong Kong returns. 

Chong et al. (2005) investigated the pre-holiday effect in the US, UK and Hong Kong markets. 

Their findings showed evidence of a decline in returns across the three markets, with only the 

US market where the pre-holiday effect anomaly was slightly high. Other studies where the 

preholiday effect was significant to include those of Sifeng (2008), Marrett and Worthington 

(2009) and Dzhabarov and Ziemba (2010) (see also Sewell, 2011). 

Turn-of the-Year effect 

This states that the returns, especially for small firms, are higher in the first two weeks of 

January than those of other days of the month. Meanwhile, for the month effects, where the 

average returns are believed to vary depending on the month, some of the following empirical 
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studies (Thaler, 1987; Mills and Coutts, 1995; Cheung and Coutts, 1999) have established that 

average return in January is often higher than in any other months. The justification for this is 

traced to the practice of payment of tax bills in the US every December, after which the left-

over funds are planned for investment in January (Holden, Thompson and Ruangrit, 2005). 

Further, according to Rozeff and Kinney (1976), in the US, ‘January marks the beginning and 

ending of several potentially important financial and informational events. It is the month 

marking the start of the tax year for investors, and the beginning of the tax and accounting years 

for most firms.’ Also, it is the period when the preliminary announcements of the previous 

calendar year’s accounting earnings are made, thereby making January the month of high 

expectations, full of uncertainties and anticipation as a result of the impending release of 

important information (Keim, 1983).  

Traditionally in Nigeria, the yearly national budget is read on the 1st of January, and this has a 

lot of implications for investment/trading activities, such that most investors hold their funds to 

observe relevant economic indices contained in the budget and how favourable the government 

policies for the New Year will be for their investment. Moreover, the first two weeks of January 

in Nigeria is when many investors try to purchase more assets for them to resell later when the 

market value of such assets will have risen. Thus, studying this effect would help determine if 

this behaviour of the Nigerian investors has significantly impacted on the average return for the 

month over the years. 

October-March Seasonality Effect: This states that the average returns from October to 

March of every year are always higher than those of April to September.  

Meanwhile, of the three forms of anomalies highlighted, we hope to concentrate more on the 

calendar anomalies in this research, which is why we present some of the findings from previous 

studies in this direction. Our choice of the type anomaly is informed by the nature of the data 

available at our disposal as well as the general understanding that the presence of calendar 

anomalies signals the presence or absence of the other two forms of anomalies, and that it is the 

most researched of the three, based on the existing studies on anomalies. Moreover, in the case 

of Nigeria, it is common that people rush to the market to buy (or sell or trade) their assets 

ahead of the weekends, most public holidays or the expectation of changes in the price of goods 

or change in the political structure of the country. Recall that the presence of anomalies in stock 

returns indicates the violation of market efficiency and reflects the current state of the entire 

market.  
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Thus, from most of the studies reviewed so far, the following observations are made: (1) for the 

day-of-the-week effect, Monday average returns are found not only to be the lowest, but also 

mostly negative, whereas Friday average returns are known to be highest and mostly positive; 

(2) for the month-of-the-year effect, January average returns are reported to be higher than any 

other month, and generally, the first half month’s average returns of any month are found to be 

higher some studies than those in the second half of the month; (3) as regards the holiday effect, 

the average rate of returns on a day (or a few days) preceding a holiday have been reported to 

be higher than the average returns of a day (or a few days) after the holiday across different 

markets. 

Further, most of the studies reported so far focus more on the developed markets, with few 

focusing on the emerging markets. Also, the literature on anomalies in emerging African market 

is very scant, particularly the Nigerian market, before Omar (2012) where a search light was 

shone on the NSM at the overall level. Hence, investigating anomalies in a key sector of the 

NSM like banks in this study extends the findings of Omar (2012). 

To complement the existing studies, therefore, this research investigates whether the returns of 

individual bank trading in the NSM are characterised by any possible calendar anomalies across 

the various study periods of interest (see Section 4.1), with further details to be provided in 

Chapter 7 of this thesis. 

3.5.3 Bubbles 

In the equity markets, the systematic deviation of the underlying price of an asset from its 

fundamental value11 is known as a speculative price bubble (Garber, 1990; Homm and Breitung, 

2012). It is an observed phenomenon whereby equity market prices continuously and 

significantly rise above the economically justifiable level (fundamental level) for quite a length 

of time (Anderson, Brooks and Katsaris, 2010). The circumstance often happens when the 

purpose for holding an asset by investors is to possibly sell it at a higher price to some other 

investors not minding if such an asset's price exceeds its rational valuation of the securities 

being traded. Shiller (1989a) suggested that during price bubbles, rises in price lead 

continuously to higher increases in asset prices such that a point of unsustainability in demand 

                                                
11 "The Fundamental value” of an asset is the present value of the stream of cash flows that its holder expects to 

receive. These cash flows include the series of dividends that the asset is expected to generate and the expected 

price of the asset when sold (http://www.econlib.org/library/Enc/Bubbles.html). Fundamental value of an asset 

may also be defined as the price at which investors could buy the asset given that they cannot resell it later. See 

Camerer (1989) and Brunnermeier (2008) for surveys on bubbles 

http://www.econlib.org/library/Enc/Bubbles.html
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is reached wherein no further rise is possible, then the bubble bursts and the price drops sharply 

(Harman and Zuehlke, 2004). 

The Figure below present a graphical look at asset bubbles. The peaks in each of the diagrams 

indicate the collapse (or "burst") of a bubble. 

 
Figure 3.2: Previous Financial Challenges across various Developed Markets 

 

 
Figure 3.3: Japan's Nikkei Stock Bubble 

A bubble (sometimes called a "speculative bubble") in another context is defined as a spike in 

asset values within a certain sector, asset class, or commodity. Bubbles are generated in 

economies, equities, stock markets or particular sectors due to changes in the way market 

participants trade their assets. The situation that is often triggered by exaggerated expectations 

of impending growth, price appreciation, or other scenarios capable of causing an increase in 
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asset values, thereby driving trading volumes higher. As more investors develop heightened 

expectations, buyers outnumber sellers, thus causing a shift in the asset price beyond its 

fundamental value. The fall in price back to its normalized levels makes the bubble complete 

in a sense. This usually involves a period of steep decline in price during which most investors 

resort to panic sales of their assets. This may also be referred to as a "price bubble" or "market 

bubble”. 

McQueen and Thorley (1994) note that rational speculative bubbles allow assets prices to 

diverge away from their fundamental value without assuming irrational investors.  In this case, 

investors, though aware that prices exceed fundamental values, nevertheless believe that there 

is a likelihood of the bubble expanding and yielding a high return, and furthermore that the 

probability of a high return cancels out the risk of a crash. However, there are divergent views 

as to the circumstances that can lead to such episodes. A bubble is destructive because many 

bad investments are made along the way as it grows over time but when bursts, this results in 

crisis. The fact that asset price significantly impacts the economy makes it useful to understand 

any possible phenomenon leading to deviation of asset price from its fundamental value. 

One of the circumstances likely to lead to a significant change in the financial system is as seen 

in the case of Japan in 1980 when a bubble was experienced in the entire economy, which led 

to the introduction of partial deregulation in banks, or a paradigm shift as experienced during 

dotcom in the late 90s and early 2000s. During the dotcom boom for instance, people rushed to 

buy tech stocks at high prices with the expectation of reselling the stocks at higher prices in the 

future until there was a loss of confidence such that an unexpected crash was witnessed in the 

market. 

Bubbles in stock markets and economies often cause resources to be diverted to areas of rapid 

growth, and upon the disappearance of such bubbles, resources are moved, thus, leading to price 

deflation. This indicates that bubbles can only result in a small long-term return on an asset. 

According to Blanchard and Watson (1982) and Campbell, Lo and MacKinlay (1997) the 

fundamental price of the asset is obtained from the present value of all expected pay-outs. 

Martin et al. (2004) provide evidence that increasing rises in an asset price pave the way for 

bubbles, which is then followed by a substantial fall in the asset price. Diba and Grossman 

(1988) found evidence against the existence of bubbles in the S&P 500 stocks. 

Meanwhile, many studies have attempted to detect bubbles in equity markets. A strand of the 

literature that regards equity bubbles as deviations of actual prices from their fundamentals 
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develops a variance bounds test to detect the bubbles, e.g. Shiller (1989a) and LeRoy and Porter 

(1981). However, the variance bounds test relies on a linearity assumption that relates all the 

observations to the value of prior observations. Gurkaynak (2008) suggests that bubbles 

demonstrate nonlinear patterns in returns, and one cannot necessarily attribute the violation of 

the variance bound in the data to the existence of a bubble. Roodposhti et al. (2012) used the 

variance ratio test and reliability cost-benefit test to explore the presence of informational 

efficiency and rational price bubbles in the Tehran Stock Exchange and found that the market 

is not only weakly inefficient but also shows signs of bubbles. 

Phillips et al. (2007) apply the Dickey-Fuller unit-root method to detect the date of the 

emergence of a bubble in the Nasdaq stock index by estimating the date of a regime switch 

from a time series behaviour which is integrated of order one (i.e.𝐼 (1))to an explosive state. 

Nunes and Da Silva (2007) used the conventional models of integration and co-integration to 

examine the presence of rational bubbles in the selected emerging stock markets of Chile, 

Indonesia, Korea, and the Philippines; finding evidence of explosive bubbles, and in the stock 

markets of China, Brazil, Venezuela, Colombia, Indonesia, Korea, and the Philippines, where 

collapsing bubbles were found. 

Kim (2000) and Busetti and Taylor (2004) proposed procedures seeking to test the hypothesis 

that time series is integrated of order zero, ( 𝐼(0)), across the entire sample against the 

alternative, which is atransition of the series from integration of order 0 to order 1, that 

is, 𝐼(0) 𝑡𝑜 𝐼(1), or vice-versa. Bhargava (1986), investigates whether a time series is integrated 

of order 1 (𝐼(1)) as against an explosive alternative hypothesis of it having an order above one. 

McQueen and Thorley (1994)’s theoretical models of rational speculative bubbles suggest that 

every bubble process results in explosive price change such that the bubble grows each period 

that it survives. As the bubble component grows, it begins to dominate the fundamental 

component, which is that aspect of the stock price determined by the discounted value of the 

future cash flows. 

In Nigeria, according to the former Central Bank of Nigeria (CBN)’s governor, Sanusi (2010b), 

market capitalization of the Nigerian stock market rose by 5.3 times between 2004 and 2007 

(when it reached its peak), with the market capitalization of bank stocks rising to 9 times its 

fundamental value within this period, leading to a financial asset bubble in bank stock prices. 

Also, of significant note is that the 2008 banking crisis witnessed in Nigeria was caused by 
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large and sudden capital inflows (amongst other interrelated macroeconomic factors), which 

led to the introduction of financial and banking reforms in the country (Sanusi, 2012). 

Consequently, in this research we intend to critically investigate the presence of bubbles in 

Nigerian bank stocks across the study period and within the crisis period, using several 

techniques which we have cited from the relevant literature. Moreover, Ezepue and Omar 

(2012) examined bubbles based on the overall market data and surprisingly could not find 

evidence of bubbles, even though there was significant volatility in bank stocks between 2009 

and 2010.  

Our study thus considers this absence of bubbles in the overall market to possibly be traceable 

to the compensating effect of bubbles in different sectors cancelling each other out. Therefore, 

the analysis of sectoral bank data in this research aims to probe the phenomenon of bubbles 

more deeply, compared to Ezepue and Omar (2012), and with relatively more approaches to 

detecting bubbles.  In other words, detecting bubbles at a sectoral level may be more promising 

than at the overall market level. 

This section has presented a brief account of what bubbles in returns mean, given some 

examples of bubbles and presented a few findings as contained in the literature on approaches 

to detecting bubbles. Further relevant details on this concept shall be discussed in Chapter 8 of 

this thesis. 

3.5.4 Volatility 

Volatility is a measure of price variability overtime, which in most cases is described as the 

standard deviation of returns. It serves as a signal for determining the extent to which prices 

fluctuate such that if prices fluctuate significantly, volatility is known to be high, but the degree 

of fluctuations cannot be ascertained precisely. The reason for this is that no one can determine 

whether a considerable shock to prices is permanent or transitory (Danielson, 2011, p.31); 

certainly, this confirms that market volatility is not directly observable. Typically, volatility is 

in practice estimated from the stock prices, or derivatives or both (Tsay, 2012, p.177). 

Volatility has become such an integral concept in trading that its importance to investment 

analysis, security valuation, risk management, and monetary policy making cannot be over-

emphasized. It is the most important concept in pricing derivative assets, whose trading volume, 

according to Poon and Granger (2003), is on the increase in recent years in most developed 

markets especially, and there is the intent to introduce it into most African markets, for example 
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the NSM (Urama et al., 2017). Before an option is priced, one needs to keep studying how 

volatile the underlying asset is until the option expires. 

Since the 2008 financial crisis, volatility has received further increased attention from many 

studies in financial econometrics. Crucial to the belief of relevant stakeholders is that 

understanding volatility in stock markets can help to determine the cost of trading, to assess 

investment strategies as well as performance, and to create awareness that high volatility may 

result in illiquid financial markets, which pave the way for poor economic performance as well 

as a weakened financial system (Yildirim, 2013). 

Essentially, it is to be noted that though volatility serves as a significant tool for evaluating the 

unavoidable risk of investing in financial assets, it is not the same as risk itself. It also measures 

likely size of errors while modelling returns and other financial variables such as interest rates, 

economic growth rates, and GDPs (Engle, Focardi and Fabozzi, 2008).  When viewed as 

uncertainty, it constitutes a vital input to many investment decisions and portfolio creations, 

thereby indicating that investors and portfolio managers are prone to certain levels of bearable 

risk (Poon and Granger, 2003).  

Thus, knowledge about risk generally helps to reshape and reposition the market, the 

participants and relevant stakeholders. According to Tsay (2005), volatility possesses a number 

of characteristics which include: (a) clustering, a phenomenon whereby at varying periods, low 

or high volatility values occur together; (b) that volatility evolves overtime in a continuous 

manner, indicating that volatility jumps are rare; (c) volatility does not diverge to infinity, 

meaning that it fluctuates within some fixed range; and (d) volatility reacts to big price increases 

and big price drop with the latter impacting volatility more than the former( the leverage effect).  

Volatility increases during crises and then decreases during tranquil periods. The stock market 

crash of October 1987 globally, which was because of the financial crisis at that time, led to 

previously un-imagined high levels of volatility (Schwert, 1990). The economic crisis generally 

referred to as the Great Depression gave rise to fear, panic and social instability (Voth, 2003). 

There was a high level of volatility before the terrorist attacks on September 11, 2001 and it 

was far higher after the reopening of the markets six days later in the US (Taylor, 2005). In 

Nigeria, the effect of the September 2008 financial meltdown led to a crash of the stock market 

due to high volatility (Sanusi, 2010). Consequently, in this work we hope to study how volatile 
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the banking sector stocks were during and after this period, and at various intervention periods 

initiated by the regulatory agency, the CBN, to rescue the banks. 

Volatility is said to be positively correlated with trading volume but does not imply that changes 

in volume cause changes in volatility, or vice versa (Karpoff, 1987; Gallant, Rossi, and Tauchen, 

1992; Longstaff and Wang, 2008). Meanwhile, the serial correlations found in daily return 

series are traceable to several market dynamics or idiosyncrasies, which include a possible 

common trading norm such as thin (nonsynchronous) trading in few assets, information 

incorporation and processing speed by market participants (Yildirim, 2013).  

Epps and Epps (1976) and Perry (1982) list changing volatility as being attributable to 

information arrival rates, level of trading activity, and corporate financial and operating 

leverage decisions, as a few of the factors responsible for the linear dependency in asset returns. 

Clark (1973), Oldfield, Rogalski and Jarrow (1977), and Kon (1984) model changing variance 

with returns distributions defined as either mixtures of distributions, or as distributions with 

stochastic moments (Akgiray, 1989). Also, for a vast class of models, the average volatility size 

keeps changing with time and is predictable (Engle, Focardi and Fabozzi, 2008). 

Meanwhile, volatility has been extensively studied in many contexts across various developed 

and emerging Asian markets, with little attention to emerging African markets, especially the 

NSM. According to Shiller (1990), most literature examines the volatility of equity returns from 

the developed exchange markets, especially those of industrialized nations (Green, Maggioni 

and Murinde, 2000). Despite most emerging markets still lacking some sophisticated financial 

instruments, the priority towards developing these markets lies in exploring the dynamics as 

well as the distribution of their asset prices (De Santis and Imrohoroglu, 1997; Hatgioannides and 

Mesomeris, 2007).   

Understanding volatility is integral to examining the dynamics of stock returns and, by 

extension, to the study of financial market data. For example, according to Engle (2003), while 

trying to hedge risk, Markowitz (1952) and Tobin (1958) succeeded in deriving optimizing 

portfolio and banking behaviour in their study on the associated risk with the variance in the 

value of a portfolio. 

Several studies have been carried out in financial econometrics with respect to volatility and its 

effects on the expected returns across various assets and markets. For example, Eun and Shim 
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(1989) examined daily stock market returns from Australia, Hong Kong, Japan, France, Canada, 

Switzerland, Germany, the US and the UK, wherein they find a considerable level of 

interdependency among the national exchange markets of the US to be the most prominent ones 

(see Bala and Premaratine, 2004). Whilst these findings are not technically focused on volatility, 

the phenomenon of interdependence in financial markets is subtly linked to underpinning 

market factors which affect different markets, including the six fundamental market features 

studied in empirical finance, namely: efficiency, volatility, bubbles, anomalies, valuation, and 

predictability (Ezepue and Solarin, 2009).  

Investigating daily and intra-day stock prices, Hamao, Masulis and Ng (1990) discovered that 

there was significant spill over effects from the UK and the US stock markets to the Japanese 

market, but not vice versa (Siddiqui, 2009). Park and Fatemi (1993) investigate the relationships 

between the equity markets of the Pacific-Basin countries and those of the US, UK and Japan. 

The US market is noticed to be dominant compared to those of the UK and Japan, with the 

Australian market found to be the most exposed to the US markets. The Hong Kong, New 

Zealand and Singapore markets are moderately linked with that of the US, whereas Korea, 

Taiwan and Thailand show little or no linkage with any of these markets (Bala and Premaratne, 

2004).  

Lin, Engle and Ito (1994) present findings on how foreign returns can considerably impact local 

returns as it is with the Japan and US markets (see: Bala and Premaratne, 2004). In this research 

however, within the NSM, since the banks are interconnected and interact among themselves, 

with other sectors and the entire stock market, we hope to see the level of co-movements and 

influences in the volatilities in their equity returns (or sectors) influence one another within the 

NSM.  

The ARCH model introduced by Engle (1982) was the foremost model used to capture the time-

varying second-order moment component of financial data, and has been extensively explored 

in financial economics, primarily for the modelling of stock returns, exchange rates, interest 

rates and inflation rates. Bollerslev, Chou and Kroner (1992) present a detailed appraisal of 

various studies applying ARCH models to different financial markets. Apart from this, the 

model, with its many other extensions based on the associated stylized facts of the stock returns, 

see Baillie, Bollerslev and Mikkelsen (1996), for example, has been adopted in different 

contexts to assess the term structure of interest rates, create optimal dynamic hedging strategies, 

price options (Yildirim, 2013), and describe in general the data generating processes which 
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engender financial market data. Their popularity stems from the fact that these models are 

sophisticated enough to capture many empirically observed stochastic behaviours such as the 

thick tail of finite dimensional marginal distributions and volatility clustering of the many 

economic and financial variables. 

Empirical evidence also shows that daily stock returns exhibit substantial levels of dependency 

and that conditional heteroscedastic procedures enable autocorrelation between the first and 

second moments of the return distribution to be captured over time (Yildirim, 2013). For 

instance, French, et al. (1987) use daily data from the S&P index for 1928 to 1994 and find 

evidence of conditional volatility in returns (see: Poshakwale and Murinde, 2001). Pindyck 

(1984), Chou (1988), and Baillie and DeGennaro (1990) report time-varying interdependency 

between expected returns and volatility in the US stocks (Li, 2002). In this research, within the 

NSM, since banks are interconnected and interact among themselves, with other sectors and the 

entire stock market, it will be of interest to explore the level of co-movements and influences 

in the volatilities among their equity returns. 

Bollerslev (1986), while extending the ARCH model to the generalised autoregressive 

conditional heteroscedasticity (GARCH) model, introduced lagged conditional variances as 

predictor variables in the conditional variance equation (Yildrim, 2013). The ARCH-GARCH 

models remain the most widely used econometric models to describe the unique features of 

financial market data, namely volatility clustering, leptokurtic and symmetric distributions of 

returns. 

Some of the later extensions of the ARCH model proposed and applied in the literature are 

based on some underlying stylized facts which the two baseline models would not be able to 

capture including: the exponential GARCH (EGARCH) model by Nelson (1991); the non-

linear ARCH (NARCH) model by Higgins and Bera (1992); the GJR-GARCH by Glosten, 

Jaganathan and Runkle (1993); the asymmetric power (APARCH) model by Ding, the Granger 

and Engle (1993); and the threshold ARCH (TARCH) model by Zakoian (1994); see Yildirim, 

2013 for details and Omar (2012) for applications of five of these core models to the All Share 

Index (ASI) returns data in the NSM – results which the banking sector research in this thesis 

extends.  

We reiterate that most of these extensions were proposed to correct the weaknesses of the 

ARCH/GARCH models due to their inability to capture some of the outlined characteristics. 
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For instance, the EGARCH and TGARCH models were proposed to capture the asymmetry in 

volatility, which surfaces due to leverage effects associated with large negative and positive 

returns. 

Indeed, plausible directions in ARCH-GARCH modelling of volatility and related empirical 

finance issues in specific markets, such as the NSM include: a need to constructively elicit 

particular models in the family which are best-fit data generating stochastic processes for key 

market data; an examination of the four market features in key sectors of the market; and using 

the combined insights from the research results to systematically characterise and develop the 

market (Ezepue and Omar, 2017, Urama et al., 2017 and Nnanwa et al., 2016). We mentioned 

earlier that this research contributes to the banking and financial sector aspects of the overall 

systematic stock market characterisation and development (SSMCD) of the NSM. 

Thus, in this research, candidate ARCH/GARCH models will be explored using the stock 

returns of Nigerian banks, with a view to fitting appropriate models that explain the volatility 

dynamics of the banking sector of the NSM. By doing this, suitable ARCH/GARCH models 

shall be fitted to the returns across the intended sub-periods of the study based on the inherent 

stylized facts identified with the return series of each of the banks. For example, in situation (s) 

where the returns are asymmetric, it has been found that EGARCH performs better than the 

ordinary GARCH model.  

Chapter 9, which is dedicated to discussing volatility, will present more detailed findings as 

contained in literature on volatility, as well as different candidate GARCH models that have 

previously been applied across exchange markets of developed and emerging economies. The 

details will highlight the models found relevant to this study based the identified stylized facts 

characterising the research data. 

3.6 Summary and Conclusion 

In this chapter, we have examined various issues, which form the core of our research. These 

include general background, factors responsible for the dynamic behaviour of stock returns, and 

stock markets in general. We also discussed: the rationale for the choice of NSM and emerging 

African markets as our research domains; our motivation for applying non-linear time series 

models for modelling the volatility; the stylized facts of both emerging markets and those of 

stock returns; and four of the six empirical finance issues - anomalies, bubbles, efficiency, and 

volatility. 
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It was noted that while the related studies are predominantly concentrated on developed markets, 

there are relatively fewer studies on emerging African markets, including the NSM. Hence, 

there is a need to conduct such studies for the key sectors of these stock markets, as we do in 

this research. 

Our discussion was focussed on the findings from various literature which were found to be 

relevant to our studies. We hope that, by this review, the direction of our research subject to our 

research topic, objectives and the gaps observed in current knowledge shall be filled as much 

as possible, and especially linked to the wider SSMCD goals reiterated above.  
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4 CHAPTER FOUR: METHODOLOGY 

4.1 Data Presentation and Coverage 

The proposed data for this research, which was obtained from the NSM, runs from 1stJune 1999 

to 31st December2014, encompassing the scenarios experienced by the Nigerian banks. The 

dataset is the daily closing stock prices of the sixteen banks being considered. From these, we 

shall obtain monthly closing prices and compute corresponding returns series for the daily and 

monthly data. The dataset is expected to cover the overall period, ranging from June 1999 to 

December 2014 and the sub-period of the financial crisis, ranging from July 2007- June 2009. 

Table 4.1 below presents the total number of observations per bank for the overall and financial 

crisis periods. 

Table 4.1: Data Size for the Respective Banks at the Overall and Financial Crisis Period 

Bank Period (years) T (Overall Trading days) T (Fin. Crisis) 

Access June,1999-Dec,.2014 (15.5years) 3869 517 

Diamond May 2005-Dec 2014(9.5years) 2368 517 

Ecobank Sept 2006-Dec 2014(9.25years) 2050 517 

First June 1999-Dec 2014(15.5years) 3869 517 

FCMB Dec 2004-Dec 2014(10years) 2474 517 

Fidelity May 2005-Dec 2014(9.5years) 2376 517 

STANBIC April 2005-Dec 2014(9.67years) 2391 517 

GTB June 1999-Dec. 2014(15.5years) 3869 517 

Skye Nov 2005-Dec.,2014 (9.083years) 2391 517 

Sterling June 1999-Dec. 2014(15.5years) 3869 517 

UBA June 1999-Dec. 2014(15.5years) 3869 517 

Union June 1999-Dec 2014(15.5years) 3869 517 

Unity Dec 2005-Dec 2014(9 years) 2223 517 

WEMA June 1999-Dec 2014(15.5years) 3869 517 

Zenith Oct 2004-Dec 2014(10.17years) 2516 517 

Detailed information on the return’s computation will be presented in chapter 5, which deals 

with the stylized facts of asset returns. 

4.1.1 Choice of Software Program (s) 

Many software programs are available for analysing quantitative data. Specifically, those that 

have statistical functions, either already written or requiring programming through coding 

include: VIEWS, STATA, SAS, R, Ox-metrics, RATS, SPSS, MATLAB, and EXCEL. 



70 

 

However, in this research, many packages are applied but R is the main one, complemented by 

EVIEWS, SPSS and EXCEL. 

Essentially, R to many analysts, is next to SAS. It is open source programming software with 

many batched programs. Its graphics are attractive and applicable to different fields of data 

analytics. It is employed to obtain about 70% of the results in this research. 

EVIEWS, called Econometric Views, as the name implies, is dedicated to time series and 

econometric analyses such as cross-sectional and panel data analyses, and with lower 

sophistication compared to R. Its contribution to the results is about 10%. 

SPSS- (Statistical Package for Social Sciences), as the name implies, is a statistical program 

predominantly used in the social sciences. Though applicable to several fundamental statistical 

analyses, its level of sophistication is incomparable to R. It contributes not more than 5% to the 

results of this research. 

Microsoft Excel is a spreadsheet program. It is employed as foundational tool to compute 

returns and their derivatives (such as: adjusted, absolute and squared returns) from the closing 

prices, as well as, for coding (with the dummy variables) and other basic data manipulation. It 

contributes about 15% to the analyses of this research. 

4.2 Investigating Stylised Facts of Asset Returns 

This section summarises the research methods, models and indicative data for the different RQs. 

For example, the approaches for RQ1 are stated below. The same returns data used for the 

question are analysed for other research questions. This section and the subsequent ones (4.3 

and 4.4) present specific approaches to adopt in addressing RQ1, essentially on stylized facts 

of asset returns obtained from banks share prices. The data set for this part are the bank returns 

from the NSM. 

4.2.1 Methods and Designs for Investigating Stylized Facts of Asset returns 

In this section, the following steps will be taken to explore RQ1, which deals with stylized 

facts of asset returns: 

 To present time plots of daily closing prices for each of the sixteen banks for the overall 

data and financial crisis periods; 

 To present time plots of the monthly closing prices for the sixteen banks; 
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 To present time plots for the daily log returns across the sixteen banks for the overall 

and financial crisis periods; 

 To present time plots for the monthly log returns across the sixteen banks; 

 To present time plots for the daily absolute log returns across the sixteen banks for the 

overall and financial crisis periods; 

 To present time plots for the monthly absolute log returns across the sixteen banks; 

 To present time plots for the daily squared log returns across the sixteen banks for the 

overall and financial crisis periods; 

 To present time plots for the monthly squared log returns across the sixteen banks; 

 To present Autocorrelation (ACF) and Partial Autocorrelation Function (PACF) plots 

for the log returns, absolute and squared returns for the daily and monthly data; 

 To produce histograms and Quantile-Quantile (Q-Q) plots for the log returns for the 

daily, monthly and financial crisis data; 

 To compute summary statistics for the daily overall, financial crisis and monthly data 

across the sixteen banks; 

 To conduct relevant normality tests for each of the data categories. Some of the tests of 

interest being proposed are- Kolmogorov-Smirnov (KS), Sharpiro-Wilk (SW), 

D’Augusto, (Dago) Anderson Darling (AD) and Jarque-Bera (JB); 

 To conduct diagnostic ACF tests for the log returns, absolute and squared returns for 

the overall data using the Box Ljung (Q) test; 

 To obtain diagnostic correlation tests between the squared and lag-1 returns to identify 

the presence or absence of a leverage effect. 

4.2.2 Normal Distribution (Definition) 

A random variable 𝑋 following the normal distribution with mean μ and variance, 𝜎2 is denoted 

as 𝑁(𝜇, 𝜎2) and given by: 

𝑓𝑋(𝑥) =
1

√2𝜋𝜎2
𝑒

−
1

2𝜎2(𝑥−𝜇)2

   − ∞ ≤ 𝑥 ≤ ∞,                                                                      (4.1) 

−∞ ≤ 𝜇 ≤ ∞; 𝜎2 > 0. 

A standardized normal random variable such that the mean and variance are respectively zero 

and one is defined as: 
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𝑓𝑍(𝑧) =
1

√2𝜋
𝑒−

𝑧2

2      − ∞ ≤ 𝑧 ≤ ∞.                                                                                      (4.2) 

Remarks 

i. The normal distribution is bell-shaped and symmetric about its mean, meaning the 

normal distribution shows no skewness. 

ii. The skewness and kurtosis coefficients for the normal distribution are respectively 0 

and 3. 

4.2.3 Student T- Distribution (Definition) 

It 𝑋~𝑁(0,1) and 𝑌~𝜒2(𝑚) are independent, then the random variable:  

𝑇𝑠𝑡 =
𝑋

√𝑌
𝑚⁄

; ~ (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑎𝑠) 𝑡(𝑚) 

And 𝑚 is the degree of freedom 

Then for, 𝑇𝑠𝑡~𝑡(𝑚), the probability density function (𝑝. 𝑑. 𝑓. ) is: 

𝑓(𝑡) =  
Γ((𝑚+1)/2)

√𝜋𝑚Γ(𝑚 2⁄ )
 

1

(1+𝑡2 𝑚⁄ )(𝑚+1) 2⁄ ,                                                                                       (4.3) 

𝑓𝑜𝑟 𝑎𝑙𝑙 − ∞ < 𝑡 < ∞.  

4.2.4 Moments of the Returns Distribution 

Let {𝑟𝑡: 𝑡 = 1,2, … , 𝑇}  be a time-series of log-returns that we assume to be the realizations of 

a random variable. 

1. Measures of Location: 

a. The sample mean (or average return) is the simplest estimate of location:  

�̅� =  
1

𝑇
∑ 𝑟𝑡

𝑇
𝑡=1 .                                                                                               (4.4) 

It is important to note that while the mean is generally sensitive to outliers, the median is robust 

to outliers and it is the middle most value of a distribution; the observation falling within the 

50thquartile (𝑄0.5) of the distribution, computed using the formula 

�̌� =  (
𝑇+1

2
)

𝑡ℎ

term.                                                                                                                  (4.5) 

Where T is the total number of observationsin an ordered odd-number series. 
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2. Measures of dispersion: 

b. Sample standard deviation (square root of variance) is the simplest measure of 

dispersion, obtained as: 

𝑠𝑟 = √
1

𝑇−1
∑ (𝑟

𝑡
− �̅�)2𝑇

𝑡=1 .                                                                               (4.6) 

Note that the standard deviation is very sensitive to outliers, whereas the median absolute 

deviation (MAD) is robust to outliers; the MAD is given by 

𝑀𝐴𝐷 = 𝑚𝑒𝑑(|𝑟𝑡 − �̌�|).                                                                                (4.7) 

where �̌� is the median and under a normality assumption, the standard deviation (𝑠𝑟) 

𝑠𝑟 = 1.4826 ×  𝑀𝐴𝐷 

The Inter-Quartile range (IQR) is robust to outlier and is defined as: 

𝐼𝑄𝑅 = 𝑄0.75 − 𝑄0.25,                                                                                    (4.8) 

where 𝑄0.75 is called 3rd or 75th quartile and 𝑄0.25 is the 1st or 25th quartile 

Under normality, we have 

𝑠𝑟 =
𝐼𝑄𝑅

1.34898
. 

3. Skewness:  

c. The sample coefficient of skewness is the simplest estimate of asymmetry and 

 is computed as: 

�̂�𝒌𝒓 =
𝟏

𝑻
∑ [

𝒓𝒕−�̅�

𝒔𝒓

]
𝟑

𝑻
𝒕=𝟏 .                                                                                                             (4.9) 

Remarks: 

i.If �̂�𝑘𝑟 < 0, the distribution is skewed to the left, meaning that the distribution has a long-

left tail. This implies that the left tail is long relative to the right tail. 

ii.If �̂�𝑘𝑟 > 0, the distribution is skewed to the right, indicating that the distribution has long 

right tail. The skewed right indicates that the right tail is long relative to the left tail. 

4. Kurtosis 

The sample kurtosis coefficient is the simplest estimate of tail thickness and it is 

estimated as: 

�̂�𝑟 =
1

𝑇
∑ [

𝑟𝑡−�̅�

𝑠𝑟
]4𝑇

𝑡=1 .                                                                                                 (4.10) 

Note that: 

If �̂�𝑟 < 3 the distribution has thinner tails than the standard normal distribution 
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If �̂�𝑟 > 3 the distribution has thicker tails than the standard normal distribution 

Three general forms of kurtosis are: Leptokurtic (Sharply peaked with fat tails, far above the 

Normal curve and less variable), Mesokurtic (Medium peaked, same level with Normal) and 

Platykurtic (Flattest peak, far below the Normal curve and highly dispersed). 

Under normality, the following results holds as 𝑇 ⟶ ∞, 

√𝑇(�̂� − 𝜇)~𝑁(0, 𝜎2);√𝑇(�̂�2 − 𝜎2)~𝑁(0, 2𝜎4); √𝑇(�̂�𝑘𝑟 − 0)~𝑁(0, 6) and  

√𝑇(�̂�𝑟 − 3)~𝑁(0, 24) (see Snedecor and Cochran (1980, p. 78); Hamilton (1994); Tsay 

(2005)). These asymptotic results for the sample moments can be used to perform statistical 

tests about the distributions of the returns. 

4.2.5 Normality Tests 

Various tests of normality have been developed based on a) moments of the return series; b) 

the density function of the distribution; or c) some properties of ranked series explained below. 

Tests based on Moments:  

Meanwhile, the most widely used in financial time series is that from Jarque and Bera (1980) 

and Bera and Jarque (1981), which relies on the fact that for a normal distribution both the 

skewness (𝑆𝑘𝑟) and excess kurtosis (K𝑟 − 3)should be equal to zero. It is important to note that 

test statistic is mostly applicable to financial/econometrics data 

To conduct the normality tests, two approaches are adopted in the literature, namely the use of 

statistical tests and graphical methods. We shall explore both methods in this study. 

Statistical Tests:  

These are tests based on the “Returns Moments" and the “Returns Density Function". 

Tests Based on Returns Moments 

Consider a series of asset returns {rt ∶ 1 ≤ t ≤ T}, where T is the maximal time point. 

To test whether the skewness is significant relative to the normal distribution levels in the 

return’s series, the following hypotheses are set: 

H0: 𝑆𝑘𝑟 = 0, versus H1: 𝑆𝑘𝑟 ≠ 0.                                                                                         (4.11) 

The Test Statistic to ascertain this claim is given as:  

𝑍𝑆𝑘𝑟
=  

Ŝ𝑘𝑟

√6
T⁄

~ N(0,1).                                                                                            (4.12) 
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The decision rule (DR) is to Reject H0 when the p-value is<𝛼 (which is commonly set to be 

either 5% or 1%). 

Note: Skewness is a measure of asymmetry of the probability distribution of a random variable. 

If a set of data is either normally or approximately normally distributed, its skewness is expected 

to be close to zero. 

To see if the return series has significantly different Kurtosis from that of a normal distribution 

which is 3, we set the hypotheses:  

H0: (K𝑟 − 3) = 0 versus H1: (K𝑟 − 3) ≠ 0.                                                                       (4.13) 

The Test Statistic required here is also expressed as: 

𝑍𝐾𝑟
=  

K̂𝑟−3

√24
T⁄

~ N(0,1).                                                                                                        (4.14) 

DR: Reject H0when the p-value is <𝛼. 

The Jarque-Bera (JB) test combines the above test statistics to test whether the series is 

normally distributed, i.e. the distribution of rt is such that 𝑆𝑟= 0 and (�̂�𝑟 − 3) (excess 

kurtosis) = 0, with the hypotheses: 

H0:Data come froma Normal distribution, versus 

H1: Data do not come from a Normal distribution.                                                             (4.15) 

The JB test statistic is given by 

JB = 
𝑇

6
(�̂�𝑘𝑟

2 +
(K̂𝑟−3)

2

4
)  (Asymptotically) ~ χ(2)

2 ,                                                             (4.16) 

where Ŝ𝑘𝑟 , K̂𝑟  and T are respectively the estimated sample skewness, the estimated sample 

kurtosis and the total number of observations 

Although this (JB) is most widely used in finance, it does have two limitations. First, it only 

holds for very large samples; to correct this bias, Doornik and Hansen (1994, 2008) provide an 

"Omnibus" test (i.e. test statistic that can detect deviations from normality due to either 

skewness or kurtosis), for normality. Second, the empirical skewness and kurtosis are computed 

for given values of the mean and variance, which are both subject to sampling errors. Doornik 

and Hansen (1994) first obtain approximations for the finite sample distributions of skewness 

and kurtosis under a normality assumption, coupled with the assumptions that the kurtosis 

follows a Gamma distribution and that k̂  > (1+ ŝ2 ). They show that with the normality 

assumption 

W̃ =   ℘1
2 +   ℘2

2 ~ χ(2)
2 .                                                                                                      (4.17) 
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where ℘1 and ℘2 are respectively denoted as the finite-sample skewness and kurtosis, and 

computed as: 

 ℘1= 
1

√log(ω)
log(g +  √1 + g2).                                                                                         (4.18) 

 ℘2 = [(
χ

2α
)

1
3⁄

− 1 +  
1

9α
] √9α.                                                                                           (4.19) 

where g = ŝ2√
ω2−1

2

(T+1)(T+3)

6(T−2)
;ω2 =  −1 +  √2(b0 − 1); χ = 2b1(k̂ − 1 − ŝ2) and 

α = b2 + b3ŝ2, while the correction factors for finite samples are defined as: 

b0 =  
3(T2+27T−70)(T+1)(T+3)

(T−2)(T+5)(T+7)(T+9)
;b1 =  

(T+5)(T+7)(T3+37T2+11T−313)

12τ
 

b2 =
(T−2)(T+5)(T+7)(T2+27T−70)

6τ
; b3 =  

(T−7)(T+5)(T+7)(T2+2T−5)

6τ
, and 

τ = (T − 3)(T + 1)(T2 + 15T − 4) 

Remarks: 

W ̃in (4.17) is very similar to D’Agostino and Pearson (1973), an "Omnibus" test, proposed to 

correct the limitations of the JB test. 

Tests based on the Density function 

Some of the relevant methods, which compared the empirical cumulative density function 

(𝐶𝐷𝐹 ), FR(. )of the returns with the 𝐶𝐷𝐹  of a normal distribution or any other assumed 

distribution, F∗(. ) are briefly discussed below. 

Kolmogorov-Smirnov (K-S) Test 

The K-S testis used in determining whether a sample comes from a population with a specific 

distribution. It is a test based on the empirical cumulative distribution function (ECDF). Given 

N ordered data points: 𝑌(1), 𝑌(2), 𝑌(3), … , 𝑌(𝑁), the ECDF is defined as: 

𝐸𝑁 =  
𝑛(𝑖)

𝑁⁄ , where 𝑛(𝑖) is the number of points less than or equal to 𝑌(𝑖)
′ 𝑠 ∀ 𝑖 = 1,2, … , 𝑁, 

which are ordered from smallest to largest value. The distribution of the K-S test statistic does 

not depend on the underlying cumulative distribution function being tested. It is an exact test, 

rather than a chi-squared goodness-of-fit test that depends on an adequate sample size for the 

approximations to be valid. The limitations of this test are that it is applicable only to continuous 
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distributions; it is more sensitive to near centre of the distribution than at the tails; and that the 

distribution must be fully specified.  

Definition 

Assume that 𝑥1, 𝑥2,𝑥3, … , 𝑥𝑛 is arrayed as ordered sample with 𝑥(1) ≤  𝑥(2) ≤  𝑥(3 ) ≤ ⋯ ≤

𝑥(𝑛) and define 𝑆𝑛(𝑥) as:  

𝑆𝑛(𝑥) =  {

0,
𝑘

𝑛⁄ ,   
1

𝑥 < 𝑥(1)

𝑥(𝑘) ≤ 𝑥 ≤ 𝑥(𝑘+1)

𝑥 ≥ 𝑥(𝑛)

.                                                                       (4.20) 

Consider the hypotheses: 

H0: The data follow a specified distribution, versus 

H1: The data do not follow a specified distribution. 

The K-S test statistic could be defined as: 𝐷𝑛 = max
𝑥

|𝐹(𝑥) − 𝑆𝑛(𝑥)| or 

𝐷𝑛 = max
1≤𝑖≤𝑁

[𝐹(𝑌𝑖) −
𝑖−1

𝑁
,

𝑖

𝑁
− 𝐹(𝑌𝑖)].                                                                                 (4.21) 

where   𝐹(𝑥) is the theoretical cumulative distribution of the population being investigated, 

which must be a continuous distribution. 

Practically, this test is implemented as follows:  

a. The dataset is sorted in ascending order as stated above, from which the empirical 

cumulative density function (𝐶𝐷𝐹), 𝑆(𝑥(𝑖)) =  
𝑛𝑖

𝑛
 is generated. 

b. We then generate the assumed 𝐶𝐷𝐹, 𝐹∗(𝑥(𝑖);  𝜗) for every value of 𝑥(𝑖). If the 

referenced distribution is normal, then we assume that the mean 𝜇 and standard 

deviation 𝜎 are known. 

c. Finally, the 𝐾𝑆 test statistic is computed as:  

KS = 𝑠𝑢𝑝⏟
{𝑥}

|𝐹∗(𝑥(𝑖);  𝜗) − (
𝑛𝑖

𝑛
)|                                                                                (4.22) 

The major limitation of the 𝐾𝑆 test, however, is that the mean and standard deviation 

are unknown, and must be estimated from the sample, thereby leading to sampling errors. 

To adjust for this, the modified Lilliefors 𝐾𝑆𝐿  test is applied (see: Adhikari (2014); 

Adhikari and Schaffer (2015)). 



78 

 

The Anderson-Darling Test 

There is also a test to examine if a sample comes from a specified distribution. It is a 

modification of the K-S test whereby more weights are given to the tails of the distribution than 

does the K-S test; thus, it is an alternative test to both Kolmogorov-Smirnov and chi-squared 

goodness-of-fit tests. It is a distribution free test because the critical values do not depend on 

the specific distribution being tested. It makes use of the fact that, when given a hypothesized 

underlying distribution and assuming the data come from this distribution, the cumulative 

distribution function (CDF) of the data can be assumed to follow a Uniform distribution. The 

data can then be tested for uniformity with a distance test (Shapiro, 1965). 

Definition: Suppose we define the hypotheses:  

H0: The data follow a specified distribution, versus 

H1: The data do not follow a specified distribution. 

The test statistic A to assess whether the ordered series {𝑌(1),𝑌(2), … , 𝑌(𝑛)} comes from a given 

CDF, F(x) is 

𝐴2 = (−𝑁 − 𝑆).                                                                                                                  (4.23) 

where: N is the total sample size, S = ∑
(2𝑖−1)

𝑁
[𝑙𝑛 F (𝑌𝑖) + ln(1 −  F (𝑌𝑁+1−𝑖))] and F is the 

cumulative distribution function of the specified distribution; which is an ordered random 

sample drawn from the specified population. 

Stephens (1974) found A2to be one of the best empirical distribution function statistics for 

detecting most departures from normality. Empirical testing has found that the Anderson–

Darling test is not quite as good as the Shapiro-Wilk test but is better than other tests (Razali 

and Wah, 2011). 

The Shapiro-Wilk (W) Test  

The Shapiro-Wilk test, proposed in 1965, calculates a W statistic that tests whether a random 

sample, 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  comes from a normal distribution. The W statistic is calculated as 

follows:  

𝑊 =  
(∑ 𝑎𝑖𝑥(𝑖)

𝑛
𝑖=1 )

2

∑ (𝑥𝑖−�̅�)2𝑛
𝑖

.                                                                                                                (4.24) 
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Where the 𝑥(𝑖)is the ordered sample values starting from 𝑥(1), the smallest observed value, and 

the 𝑎𝑖 are constants obtained from the means, variances and covariance of the ordered statistics 

of a sample of size n from a normal distribution (See: Shapiro and Wilk, 1965; Pearson and 

Hartley, 1972, Table 15) 

4.2.6 Autocorrelation Tests 

In this section, the autocorrelation function (ACF), partial autocorrelation function (PACF) and 

the Ljung-Box (Q) test statistic for testing autocorrelation functions are presented. 

 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

The Autocorrelation Function (ACF): Autocorrelation also called serial correlation is the 

linear dependence of a variable with itself at two points in time. For stationary processes, 

autocorrelation between any two observations only depends on the time lag, 𝑘 between them.  

Define 𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡−𝑘) = 𝛾𝑘 .Then the 𝑘𝑡ℎ lag autocorrelation is given by 

𝜌𝑘 = 𝐶𝑜𝑟𝑟(𝑟𝑡, 𝑟𝑡−𝑘) =
𝐶𝑜𝑣(𝑟𝑡,𝑟𝑡−𝑘)

𝑉(𝑟𝑡)
, 

𝜌𝑘  =  
𝛾𝑘

𝛾0
,                                                                                                                             (4.25) 

where the numerator, 𝛾𝑘  is the covariance between the return 𝑟𝑡 at time (𝑡) and return (𝑟𝑡−𝑘) at 

time (𝑡 − 𝑘) and the denominator, 𝛾0, is the variance of the autocorrelation for series,  

The autocorrelation function (ACF) (also known as the correlogram) is a standard graphical 

technique for exploring predictability in statistical data and is obtained by plotting the lag-k 

autocorrelations against the lags. It measures how returns on one day are correlated with the 

returns on previous days. If such correlations are significant, there is strong evidence for 

predictability (Danielson, 2011). ɤ 

The Theoretical ACF and PACF 

The autocorrelation function (ACF) for a time series, 𝑟𝑡, t =  1, … , T, is the sequence 𝜌𝑘; for 

k =  1, 2, . . . , T– 1. The partial autocorrelation function (PACF) is the sequence, 𝜙𝑘𝑘 , 

k =  1, 2, . . . , T– 1, where  𝜙𝑘𝑘  is defined below. 

The Sample ACF and PACF 
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The sample autocorrelation and sample partial autocorrelation are statistics that estimate the 

theoretical autocorrelation and partial autocorrelation. As a qualitative model selection tool, 

one can compare the sample ACF and PACF of the data against known theoretical 

autocorrelation functions. For the series, 𝑟1, 𝑟2, … , 𝑟𝑇 , suppose that the sample mean is denoted 

as �̅�. Then the sample lag-𝑘 autocorrelation is given  

�̂�𝑘,𝑟 =  
∑ (𝑟𝑡−�̅�)(𝑟𝑡−𝑘− �̅� )𝑇

𝑡=𝑘+1

∑ (𝑟𝑡−�̅� )𝑇
𝑡=1

2 ,           𝑘 > 0                                                                            (4.26) 

with �̅� representing the overall sample mean for all T observations and estimating the expected 

returns (𝐸[𝑟𝑡] ), which is assumed to be constant.  

The standard error for testing the significance of a single lag- 𝑘 autocorrelation �̂�𝑘,𝑟  is 

approximately normally distributed. It is important to note that, as opposed to prices, sample 

autocorrelations of returns are generally close to zero, irrespective of the time lag. 

 

The Standard Error (SE) for ACF 

According to Tsay (2014, p. 45-46), the standard error and the respective confidence interval 

for ACF are as presented below 

𝑆𝐸�̂� =  √(1 + 2 ∑ �̂�𝑖
2𝑘−1

𝑖=1 )/𝑇.                                                                                            (4.27) 

The 95% Confidence interval for ACF is: 

�̂�𝑘,𝑟 ± 1.96𝑆𝐸�̂�.                                                                                                                   (4.28) 

The Partial Autocorrelation Function (PACF) 

PACF is the correlation between 𝑟𝑡and 𝑟𝑡−𝑘  less the part explained by the intervening lags 

defined mathematically as 

𝜙𝑘𝑘= 𝐶𝑜𝑟𝑟 [𝑟𝑡 − 𝐸∗(𝑟𝑡\𝑟𝑡−1,𝑟𝑡−2, … , 𝑟𝑡−𝑘+1), 𝑟𝑡−𝑘].                                                          (4.29) 

where 𝐸∗(𝑟𝑡\𝑟𝑡−1,𝑟𝑡−2, … , 𝑟𝑡−𝑘+1) stands for the minimum mean least-squared predictor of 𝑟𝑡 

by 𝑟𝑡−1,𝑟𝑡−2, … , 𝑟𝑡−𝑘+1. 

The standard error for testing significance of a single lag partial autocorrelation is given as: 
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𝑆𝐸�̂�𝑘𝑘
=  

1

√𝑇−1
.                                                                                                                    (4.30) 

The 95% Confidence interval for the PACF is:  

�̂�𝑘𝑘 ±
1.96

√𝑇−1 
.                                                                                                                        (4.31) 

The autocorrelation function (Box and Jenkins, 1976; Box, et al, 2015) can be used for the 

following purposes. To determine stationarity and seasonality, to detect non-randomness in 

data and to identify an appropriate time series model if the data are not random. 

Note that, as a qualitative model selection tool, one can compare the sample ACF and PACF of 

the empirical data against known theoretical autocorrelation and partial autocorrelation 

functions. For example, Table 4.2 (see Choi, (2012)), below summarises the criteria used in 

identifying a suitable model using the ACF and PACF’s (Das, 1994; Box, et al. 2015). 

Test Statistics for ACF 

Recall that the sample ACF presented in equation (4.25) is used in linear time series 

modelling to specify a suitable model that can capture the dynamic dependence of the data 

(see Tsay, 2014, p. 47-48). Thus, in many areas of applied finance, the focus is on checking to 

determine if many autocorrelations of say, 𝑟𝑡 are jointly equal to zero. 

To achieve this, the following hypotheses are defined:  

𝐻0: 𝜌1 =  𝜌2 = ⋯ = 𝜌𝑚 = 0, ∀ 𝑖 = 1,2, … , 𝑚 

Versus 

𝐻1: At least one of the 𝜌𝑖′𝑠  is non-zero 

The proposed test statistic by Box and Pierce (1970) is given as: 

𝑄∗(𝑚) = 𝑇 ∑ �̂�𝑘
2𝑚

𝑘=1 .                                                                                                           (4.32) 

However, the modified form of the statistic commonly used to increase the power of the test 

in finite samples as proposed by Ljung and Box (1978) is given as:  

𝑄(𝑚) = 𝑇(𝑇 + 2) ∑
�̂�𝑘

2

𝑇−𝑘

𝑚
𝑘=1 .                                                                                              (4.33) 
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Table 4.2: Time Series Model Selection Criteria based on ACF and PACF's behaviour 

Models ACF PACF 

AR(𝑝) Tails off gradually as exponential 

decay or damped sine wave 

Cuts off after p lags 

MA(𝑞) Cuts off after q lags Tails off gradually as exponential 

decay or damped sine wave 

ARMA(𝑝, 𝑞) Tails off gradually after lag (𝑞 − 𝑝) Tails off gradually after lag (𝑝 − 𝑞) 

The autoregressive (AR), moving average (MA) and autoregressive moving average (ARMA) 

time series models stated above with indicated lags are specified as followed: 

ARIMA model provides one of the basic tools in time series 

Given that the autoregressive of order p, AR(𝒑):  

𝑥𝑡 =  φ1𝑥𝑡−1 +  φ2𝑥𝑡−2 + ⋯ +   φ𝑝𝑥𝑡−𝑝 +  휀𝑡.                                                                 (4.34) 

The moving average of order q MA(𝒒):  

𝑥𝑡 =  휀𝑡 + 𝜗1휀𝑡−1 +  𝜗2휀𝑡−2 + ⋯ +  𝜗𝑞휀𝑡−𝑞 .                                                                     (4.35) 

Combining the two equations to have a general ARMA(𝒑, 𝒒) model:  

𝑥𝑡 =  φ1𝑥𝑡−1 +  φ2𝑥𝑡−2 + ⋯ +   φ𝑝𝑥𝑡−𝑝 +  휀𝑡 +  𝜗1휀𝑡−1 +  𝜗2휀𝑡−2 + ⋯ +  𝜗𝑞휀𝑡−𝑞.       (4.36) 

4.3 Examination of Market Efficiency 

Several tests have been proposed to examine randomness, stationarity, independence and 

volatility, all of which serve as proxies for the efficiency of a stock market.  Specifically, auto-

correlation, runs, co-integration, unit root, and variance ratio tests as contained in Lo and 

Mackinlay (1988), Chow and Denning (1993), Ozer (2001), Taylor (2005, 2011) and Ezepue 

and Omar (2012), will be adopted in this research. 

Below are the various tests that are focused on achieving the research aim in Chapter 6 of 

investigating market efficiency. 
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Methods for Chapter 6 

1. To test for stationarity using the KPSS, Philips-Peron and ADF (level) tests; 

2. To test for Random Walks using 

i. the Variance Ratio test, and  

ii. the Unit Root test using ADF, both with and without drift and trend tests; 

3. To test for non-linear independence using the BDS (Brock, Dechert and Scheinkman) 

test; 

4. To test for Randomness using the Runs tests, including the parametric tests based on 

mean and median and the non-parametric form of the test; 

5. To obtain the ACF test on log returns at lags 1, 5, 10 and 20. 

It is important to emphasise that among the listed test statistics, the variance ratio test has gained 

prominence in empirical finance, given its wider acceptability, and is the most powerful in 

detecting the presence of random walk (RW) (see Taylor, 2005 & 2011). 

4.3.1 Tests for Unit Roots 

In financial time series, attention is primarily focused on series that are often non-stationary. 

Some of these include: foreign exchange rates, inflation rates, interests rate and security prices.  

For example, in stock price series, non-stationarity is strictly since there is no fixed level for 

the price, and in time series such a series is classified as a unit-root non-stationary time series. 

Meanwhile, the best-known example of unit-root non-stationary TS is the random walk model, 

discussed briefly in the previous chapter. 

Remarks 

According to Engle and Granger (1987): 

1. A series without deterministic component and has a stationary, invertible, ARMA 

representation after differencing d times, is said to be integrated of order d, denoted as 

𝑋𝑡~𝐼(𝑑). Thus, for d = 0, 𝑋𝑡 will be stationary and for d = 1 the change is stationary. 

2. If a time series, 𝑋𝑡 is distributed of order zero (i.e. 𝑋𝑡  ~I(0)) with zero mean, any of the 

following holds 

(i) The variance is finite 

(ii) an innovation (or the associated error) has only temporary effect on the series 
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(iii) the spectrum (or distribution) of the series, 𝑓(𝑋𝑡) has the property such that 0 <

 𝑓(𝑋𝑡) <  ∞ 

(iv) the expected length of times for the series to degenerate, that is for 𝑋𝑡 = 0 is finite 

(v) The autocorrelations of the series 𝜌𝑘  decreases steadily in magnitude for large 

enough k, such that it sum is finite. 

 

3. If a time series, 𝑋𝑡 is distributed of order one (i.e. 𝑋𝑡  ~I(1)) with zero mean, any of the 

following holds:  

(i) The variance of 𝑋𝑡 is infinite as t, time becomes large 

(ii)  an innovation (or the associated error) has a permanent effect on the series, as the 

series is the sum of all previous changes 

(iii) the spectrum (or distribution) of the series, 𝑓(𝑋𝑡) has approximate shape such that 

𝑓(𝑋𝑡) =  ∞ 

(iv) the expected length of times for the series to degenerate, that is for 𝑋𝑡 = 0 is infinite 

(v) The autocorrelations of the series 𝜌𝑘 → 1 for all k as time becomes large, that is, 

𝑡 → ∞ 

Additionally, according to Hendry (1995, p. 43), a finite (non-zero) variance stochastic series, 

𝑋𝑡 that does not accumulate past errors is said to be integrated of order zero (𝑋𝑡  ~I(0)) 

In summary,  

If a time series is characterised by unit roots, a series of successive differencing of such series, 

d, can transform series to a stationary series. These differences are represented as, 𝐼(𝑑), where 

d is the order of integration.  

Thus, a non-stationary time series that is transformable in such manner is called time series 

integrated of order k; and it is either of order 0 (𝐼(0), where the series is stationary in its original 

form and does not require differencing) or of order one (𝐼(1), where the series is non-stationary 

and does require differencing) 

Autoregressive (𝑨𝑹(𝒑)) Unit root Tests  

This is a test used to confirm whether a time series is consistent with Random Walk theory. It 

serves as proxy for stationarity or a random walk in time series data. The common approach 

used to achieve this was proposed by Dickey and Fuller (1979) and was later extended to the 

Augmented Dickey Fuller (ADF) test.  
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Dickey-Fuller (DF) Test 

Consider the time-varying AR (1) model 

rt = 𝜇 +  φrt−1 +  εt       for εt~ N(0, σ2).                                                                         (4.37) 

where rtis the return series at time 𝑡, φ is an autoregression coefficient between the two the 

series (rt  and rt−1),  𝜇 is the mean of the series, rt  and εt , is a series of independently and 

identically distributed random error terms, which behaves like white noise. A white noise is a 

stochastic process that is a set of independent normally distributed residuals when all systematic 

effects are removed from the process, for example trends and other factor effects in a time series. 

The test hypotheses here are 

H0: φ = 1 vs  H1: φ < 1.                                                                                                    (4.38) 

The three possible cases are:  

a. If |φ| = 1, then there is a possibility for the presence of a unit root in the series which 

 requires special treatment by differencing the series; 

b. If |φ| < 1, then the series is covariance stationary; 

c. If |φ| > 1, then the series is said to be boundless (or explosive), indicating the 

 likely presence of bubbles. 

Note that if φ=1 in (4.39), it means that rt is non-stationary. 

The test procedure here is as follows: 

1. Fit an AR (1) model by least squares 

𝑟𝑡 =  𝜑𝑟𝑡−1 +  휀𝑡 (RW without drift)                                                                                  (4.39) 

Or 

𝑟𝑡 = ℑ +  𝜑𝑟𝑡−1 +  휀𝑡 (RW with drift,ℑ)                                                                            (4.40) 

Or 

𝑟𝑡 = ℑ +  휁𝑡 + 𝜑𝑟𝑡−1 + 휀𝑡(RW with drift and trend),                                                        (4.41) 
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where the error term,휀𝑡~ 𝑊𝑁(0, 𝜎2), with WN denoting a white noise Wiener distribution12. 

2. Set the hypotheses (see 4.38) 

3. Define the test statistic proposed by Dickey-Fuller (1979): 

𝑡(𝜑=1) =  
�̂�−1

𝑆𝐸(�̂�)
.                                                                                                                    (4.42) 

where �̂� is the least squares' estimate of, 𝜑 =  
∑ 𝑟𝑡 ×𝑟𝑡−1

𝑇
𝑡=1

∑ 𝑟𝑡−1
2𝑇

𝑡=1
, 𝑆𝐸(�̂�) = 

∑ (𝑟𝑡
𝑇
𝑡=1 −�̂�1𝑟𝑡−1)2

𝑇−1
 is the least 

squares estimates of the standard error of �̂�, and T is the sample size. 

Remarks 

Related to the DF test is the Augmented Dickey-Fuller, ADF, test, which is based on ordinary 

least square (OLS) regression: 

∆𝑟𝑡 =  ℑ +  𝜏𝑟𝑡−1 + ∑ 𝜏𝑖
𝑚
𝑖=1 ∆𝑟𝑡−𝑖 + 휀𝑡.                                                                             (4.43) 

Where, the: 휀𝑡are independently and identically (𝑖𝑖𝑑) normally distributed, 𝑁𝐼𝐷(0, 𝜎2) 

Thus, the null hypothesis of non-stationarity is: 𝐻0 ∶  𝜏 = 0 versus 𝐻1 ∶  𝜏 < 0, while the test 

statistic is  

𝑡(𝜏=0) =  
�̂�

𝑆𝐸(�̂�)
.                                                                                                                     (4.44) 

Inability to reject null hypothesis of a unit root indicates that the series may wander off to plus 

or minus infinity, meaning that the series has unconditional variance proportional to time (see 

Cuthbertson and Nitzsche, 2005, pp. 37). This, indicates that, the effects of any shock to the 

series remains permanent or persists for a long time. Rejecting the null hypothesis, however, 

would mean that the series is covariance stationary and thus would not 'explode'. 

Unit Root Tests (𝐇𝟎: 𝐍𝐨𝐧 − 𝐬𝐭𝐚𝐭𝐢𝐨𝐧𝐚𝐫𝐲) 

The Phillips and Perron (1988) (PP) test is another test to be compared with the above ADF test 

discussed above 

                                                
12Wiener’s process, also called Brownian motion is a simple continuous stochastic process that is widely used 

in physics and finance for modelling random behaviour that evolves over time. Examples of such behaviour are 

the random movements of a molecule of gas or fluctuations in an asset's price 

(https://www.glynholton.com/notes/brownian_motion/) (see further: Billingsley (1986)) 

 

https://www.glynholton.com/notes/brownian_motion/
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Phillips - Perron (PP) Unit Root Tests 

The PP (Phillips and Perron (1988)) unit-root test investigates the null hypothesis that a TS is 

integrated of order 1 (i.e. 𝐼(1)). It builds on the Dickey–Fuller test which fits the regression 

model: 

∆𝑟𝑡 =  𝜑𝑟𝑡−1 + (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑡𝑖𝑚𝑒 𝑡𝑟𝑒𝑛𝑑) +  휀𝑡.                                                                 (4.45) 

With "∆" being the first difference operator  

However, in (4.45) serial correlation may pose a problem.  Considering this, the augmented 

Dickey-Fuller test's (ADF) regression includes lags of the first difference of 𝑟𝑡. 

The Phillips-Perron test involves fitting a slightly different model to (4.45), as presented below:  

𝑟𝑡 =  𝜑𝑟𝑡−1 + (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑡𝑖𝑚𝑒 𝑡𝑟𝑒𝑛𝑑) + 휀𝑡.                                                                   (4.46) 

Note that in (4.46), 휀𝑡 is integrated of order zero (𝐼(0)) and may be heteroscedastic. The PP test, 

however, corrects for any serial correlation and heteroscedasticity in the error term 휀𝑡  non-

parametrically through modification of the Dickey Fuller test statistic. This means that the 

Phillips-Perron (PP) unit root tests differ from the DF tests mainly in how they deal with serial 

correlation and heteroscedasticity in the errors, and for the PP test, one only needs to decide 

whether to include a constant and/or time trend. The modified statistics applied are denoted by  

𝑧1 and 𝑧2 are given as:  

𝑧1 =  √
�̂�2

𝜆2 𝑡�̂�0
−  

1

2
(

𝜆2−�̂�2

𝜆2 ) (
𝑇(𝑆𝐸(�̂�0))

�̂�2 ).                                                                               (4.47) 

𝑧2 = 𝑇�̂�0 −
1

2

𝑇2(𝑆𝐸(�̂�0))

�̂�2
(�̂�2 − �̂�2).                                                                                    (4.48) 

The terms �̂�2 and �̂�2 (https://www.bauer.uh.edu/rsusmel/phd/ec2-5.pdf) are consistent 

estimators of the variance parameters:  

𝜎2 =  lim
𝑇→∞

𝑇−1 ∑ 𝐸[휀𝑡
2]𝑇

𝑡=1 ,                                                                                                 (4.49) 

𝜆2 = lim
𝑇→∞

∑ 𝐸[𝑇−1 ∑ 휀𝑡
2𝑇

𝑡=1 ]𝑇
𝑡=1 .                                                                                          (4.50) 

where T is the total length of the series, 𝜑 is an autoregression coefficient between the two the 

series (rt and rt−1) and 𝑡�̂�0
is the test statistic for a unit root. 

https://www.bauer.uh.edu/rsusmel/phd/ec2-5.pdf
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Under the null hypothesis, 𝐻0: 𝜑0 = 0, the PP modified statistics 𝑧1 and 𝑧2 are asymptotically 

distributed as the DF t-statistic and normalized bias statistics. Note further that the PP tests tend 

to be more powerful than the ADF tests but are subject to severe size distortions especially 

when autocorrelations of 휀𝑡 are negative and they are more sensitive to model misspecification  

(That is, the order of the ARMA model; see https://www.bauer.uh.edu/rsusmel/phd/ec2-5.pdf).  

Advantages of the PP tests over the ADF tests: 

1. They are robust to general forms of heteroscedasticity in the error term 휀𝑡. 

2. There is no need to specify a lag length for the ADF test regression. 

Unit Root tests (𝑯𝟎: 𝒔𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒓𝒚) 

The Kwiatkowski, Phillips, Schmidt and Shin (1992) KPSS test is used and will be compared 

with the PP and ADF test statistics. 

KPSS Test 

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski, Phillips, Schmidt, and 

Shin, (1992); Kokoszka, and Young (2016)), is used to test whether a time series is stationary 

around a mean or linear trend, or is non-stationary due to a unit root. Note that, a stationary 

time series has constant mean and standard deviation overtime. The KPSS test is a regression-

based test with three components, namely a deterministic trend (𝜓𝑡), a random walk (𝑝𝑡), and 

a stationary error (휀𝑡), and is given by:  

𝑟𝑡 =  𝑝𝑡 + 𝜓𝑡 +  휀𝑡.                                                                                                             (4.51) 

Setting the hypothesis  

The null hypothesis for the test is that the data are stationary versus a non-stationary alternative 

hypothesis. 

Stationarity can be viewed in two senses, namely stationarity about a constant mean level or 

intercept (Wang, 2006; p.33) or about a linear trend. The least-squares results for the test differ 

slightly depending on whether level stationarity or trend stationarity is intended (Kocenda & 

Cerný, 2015).  When testing for level stationarity, the trend linear trend component is removed, 

and this simplifies the test. The data are normally log-transformed before running the KPSS 

test, to turn any exponential trends into linear ones. 

https://www.bauer.uh.edu/rsusmel/phd/ec2-5.pdf
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A disadvantage of the KPSS test is that it has a high rate of Type-I-error rate which means that 

it tends to reject the null hypothesis too often. Using smaller p-values to control the error 

reduces the power of the test. A good way to overcome this limitation is to combine the KPSS 

with an ADF test and then to check whether the two results suggests that the time series is 

stationary.  

4.3.2 The Variance Ratio (VR) Test 

The VR test was proposed by Lo and Mackinlay (1988). It is otherwise called the variance of 

multiple period returns test and is defined as the sum of the single-period variances when the 

random walk hypothesis (RWH) is true. 

The underlying assumption of this technique is that the variance of the increments in the random 

walk series is linear in the sample interval. In other words, if the logarithms of the stock prices 

are generated by a random walk, the variance of the returns should be proportional to the length 

of the sample interval. If a returns series follows a random walk process, the variance of its q-

differences would be q times the variance of its first differences (Abbas, 2015). Meanwhile, 

VR is widely used in finance, and has previously been applied in studies such as: Olfield and 

Rogalski (1980), French and Roll (1986), Jones, et al. (1994), Ronen (1997) and Lee and 

Mathur (1999). 

Derivation of the VR Test 

Suppose the stochastic process generating the returns is stationary, then with the variance of 

single period return being 𝑉(1), this is said to be equal to𝑉(𝑟𝑡); that is, V (1) =𝑉(𝑟𝑡). Thus, 

the variance of the two periods returns according to Taylor (2005, 2011)  

𝑉(2) = 𝑉(𝑟𝑡 + 𝑟𝑡+1) = 𝑉(𝑟𝑡) +  𝑉(𝑟𝑡+1) + 2𝐶𝑜𝑣(𝑟𝑡, 𝑟𝑡+1)                                              (4.52) 

= 𝑉(1) + 𝑉(1) + 2𝜌1𝑉(1)                                                                                                (4.53) 

= 2𝑉(1) + 2𝜌1𝑉(1)                                                                                                           (4.54) 

=2(1 + 𝜌1)𝑉(1),                                                                                                                 (4.55) 

where 𝜌1 is the first lag autocorrelation of one-period return. 

Thus, the two-period variance ratio is defined as: 
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𝑉𝑅(2) =  
𝑉(2)

2𝑉(1)
= 1 + 𝜌1.                                                                                                   (4.56) 

The autocorrelation term 𝜌1becomes zero when the RWH is true such that the variance ratio 

equals 1, but in circumstances when the RWH is false, then the variance ratio is not equal to 

one. 

Meanwhile, for higher period or N-period returns, that is for 𝑁 ≥ 2, and when the RWH is true, 

such that, 

𝑉(𝑁) = 𝑣𝑎𝑟(𝑟𝑡 + 𝑟𝑡+1 + ⋯ + 𝑟𝑡+𝑁−1).                                                                              (4.57) 

= 𝑁𝑉(1)                                                                                                                             (4.58) 

That is, N times variance of a one-period return Thus the N-period returns variance ratio is 

expressed as: 

𝑉𝑅(𝑁) =  
𝑉(𝑁)

𝑁𝑉(1)
= 1.                                                                                                           (4.59) 

For further details on this derivation see Taylor (2005, 2011) 

The VR Test Statistic 

According to Taylor (2005, 2011), the choice of N in (4.59) is arbitrary. Thus, assuming a set 

of N’s observed returns (𝑟𝑡1,𝑟𝑡2, … , 𝑟𝑡𝑁) with mean �̅� and variance 

�̂�(1) =  ∑
(𝑟𝑡−�̅�)2

𝑛−1

𝑛−1
𝑡=1 ,                                                                                                          (4.60) 

the corresponding estimate for V (N) is: 

�̂�(𝑁) =  
𝑛

(𝑛−𝑁)(𝑛−𝑁+1)
∑ (𝑟𝑡 + 𝑟𝑡+1 + ⋯ + 𝑟𝑡+𝑁−1 − 𝑁�̅�)2𝑛−𝑁+1

𝑡=1 .                                      (4.61) 

Then the sample variance ratio test statistic is: 

𝑉�̂�(𝑁) =
𝑉(𝑁)

𝑁𝑉(1)
.                                                                                                                   (4.62) 

The RWH should be rejected if the sample variance ratio is significantly greater than 1. 

Meanwhile, according to Taylor (2011), determination of what is significant is possible only 

when the distribution of 𝑉�̂�(𝑁) under the hypothesis that the RWH is true is known, and the 
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assumption that the returns process is stationary is not necessary. This is because the variance 

splits in the variance ratio tests can be around a constant mean or a trend. 

Considering the test hypotheses are: 

𝐻0: 𝑉𝑅 = 1 𝑣𝑠 𝐻1: 𝑉𝑅 ≠ 1. 

The standardized distribution of the sample variance ratio can be obtained as: 

𝑧𝑁 =
𝑉�̂�(𝑁)−1

√𝜐𝑁 𝑛⁄
𝑖𝑠 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑁(0, 1),                                                                         (4.63) 

where 𝜐𝑁 =  
4

𝑁2
∑ (𝑁 − 𝑘)2𝑏𝑘

𝑁−1
𝑘=1 ; 𝑏𝑘 =  

𝑛 ∑ 𝑠𝑡𝑠𝑡+𝑘
𝑛−𝑘
𝑡=1

(∑ 𝑠𝑡)𝑛
𝑡=1

2  and 𝑠𝑡 = (𝑟𝑡 − �̅�)2. 

4.3.3 RUNS Test 

A run is a sequence of observations of the same sign. Its associated test is nonparametric, 

applied to check for possible presence of randomness in the stock returns or data generating 

process of a series. That is, it is intended to explore if the observed sequence of a series is 

randomly generated, or in other words, if the process of obtaining any succeeding observation 

is independent of the preceding value.  The runs test, sometimes called the Geary test, is a test 

wherein the number of sequences of successive negative and positive returns are ordered and 

compared with its sampling distribution under the random walk hypothesis (Campbell et al. 

1998; Gujarati, 2003; Ananzeh, 2014).   

The test obtains the total number of times a run type (negative, positive or zero) occurs 

successively in the series and uses the runs data to test for randomness of the series. The logic 

of the test is that having two few or too many runs contradicts randomness.  

Assumptions  

It is assumed that the data consist of observations recorded in the order of occurrence that can 

be categorised into two mutually exclusive classes.  

Test Hypotheses 

The null hypothesis is that the series is random, and the alternative is that the series is non-

random. Suppose n is the total number of runs in a series. The test compares this observed 

number of runs with the expected number of runs under the null hypothesis. The usual two-

sided hypothesis in statistics applies if there is no knowledge about the direction of non-
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randomness in the series. The usual one-sided hypotheses of the left- and right-tail kinds apply 

if there is a reason to think that the series is non-random of these kinds. Hence, the test criteria 

are as follows.   

The Hypotheses: 

𝐻0:The returns are generated through a random process, versus 

𝐻1:The returns are not generated through a random process. 

Decision Rule: reject the null hypothesis when the p-value is less than 0.05, indicating that the 

return series is likely not generated by random process. 

It is known in nonparametric statistics with the null hypothesis that sequential outcomes are 

independent, that the total expected number of runs is approximately normally distributed with 

the following mean and standard deviation:  

𝜇 =  
2𝑘+𝑘−

𝑘
+ 1 and 𝜎 =  √

2𝑘+𝑘−(2𝑘+𝑘−−𝑘)

(𝑘−1)𝑘2 , 

where 𝑘+ and 𝑘− represent the total numbers of runs of positive returns (+) and total number of 

runs of negativities returns (-) regarding to a sample with k observations respectively, with k= 

(𝑘+ + 𝑘−) (Fisher and Van Belle, 1993, p. 333). 

Thus, the test statistic is given as: 

𝑧 =
𝑘−𝜇

𝜎
 ~𝑁(0, 1).                                                                                                                                                                      (4.64) 

4.3.4 The Brock, Dechert and Scheinkman (BDS) Test of Non-linear Independence 

The BDS test developed by Brock, Dechert and Scheinkman (1987) (and later published as 

Broock, Dechert, Scheinkman and LeBaron, 1996) is a powerful tool for testing for nonlinearity 

or serial correlation in time series. It was originally developed to test the null hypothesis of 

independence and identical distribution (𝑖𝑖𝑑) of a time series; that is, to investigate the presence 

of any non-random and dynamic behaviour in a series. Rejection of such a hypothesis indicates 

that there remains some non-linearity or non-stationarity structure in a (de-trended) series. 

According to several studies, the BDS test is robust against a spectrum of linear and nonlinear 

alternatives (see Brock, Hsieh and LeBaron, 1991 and Barnett et al., 1997). It is also used as a 
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portmanteau test or misspecification test when applied to the residuals from a fitted linear time 

series model; in this case, it could be used to identify the remaining dependence and the 

presence of any omitted nonlinear structure, such that rejecting the null hypothesis means that 

the fitted linear model is miss-specified and thus could be taken for a test of non-linearity. 

The BDS Test Statistic 

The BDS test uses the concept of a correlation integral, which measures the frequency with 

which temporal patterns are repeated in the data. 

Procedures for its Computation 

1. Suppose {𝑟𝑡} = {𝑟1, 𝑟2, … , 𝑟𝑁} is a returns series of a stock prices. 

2. Choose a value of m (the embedded dimension) and embed the time series into m-

dimensional vectors, by taking each m successive points within the series. By this, the 

series of scalars are converted into vector series with overlapping entries. That is: 

𝑟1
𝑚 = (𝑟1, 𝑟2, … , 𝑟𝑚) 

𝑟2
𝑚 = (𝑟2, 𝑟3, … , 𝑟𝑚+1) 

𝑟3
𝑚 = (𝑟3, 𝑟4, … , 𝑟𝑚+2) 

                                                    . 

                                                     . 

                                                     . 

𝑟𝑁−𝑚
𝑚 = (𝑟𝑁−𝑚 , 𝑟𝑁−𝑚+1, … , 𝑟𝑁). 

3. Compute the correlation integral, 𝐶 ,𝑚 , which measures the spatial correlation among 

the points, by adding the number of pairs of points (𝑖, 𝑗), ∀ 1 ≤ 𝑖 ≤ 𝑁; 1 ≤ 𝑗 ≤ 𝑁, in 

the m-dimensional space which are “near” because the points fall within a radius or 

tolerance 휀 of each other. This is given by: 

𝐶 ,𝑚 =
1

𝑁𝑚(𝑁𝑚−1)
∑ 𝐼𝑖,𝑗;𝑖≠𝑗 ,                                                                                     (4.65) 

where 

𝐼𝑖,𝑗; = {
1 𝑖𝑓 ‖𝑟𝑖

𝑚 − 𝑟𝑗
𝑚‖ ≤ 휀

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,
, 

with the standard Euclidean norm used in specifying the indicator function's value. 

4. Brock, Dechert and Scheinkman (1987) establish that if the series is independently 

and identically distributed (𝑖𝑖𝑑), then the relation below holds: 

𝐶 ,𝑚 ≈ [𝐶 ,1]
𝑚

                                                                                                         (4.66) 
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If the ratio 
𝑁

𝑚
> 200, then the value of 

𝜎
 ranges from 0.5 to 2 (Lin, 1997), while the 

values of 𝑚 fall between 2 and 5 (Brock et al, 1988); thus, the quantity [𝐶 ,𝑚 −

(𝐶 ,1)
𝑚

] is asymptotically normally distributed with mean zero (0) and variance,𝑉 ,𝑚 , 

which is defined as:  

𝑉 ,𝑚 = 4[𝐾𝑚 + 2 ∑ 𝐾𝑚−𝑗𝑚−1
𝑗=1 𝐶

2𝑗
+ (𝑚 − 1)2𝐶2𝑚 − 𝑚2𝐾𝐶2𝑚−2]                     (4.67) 

where 𝐾 = 𝐾 =
6

𝑁𝑚(𝑁𝑚−1)(𝑁𝑚−2)
∑ ℎ𝑖,𝑗,𝑁;𝑖<𝑗<𝑁 , and 

ℎ𝑖,𝑗,𝑁; =  
[𝐼𝑖,𝑗;𝜀𝐼𝑗,𝑁;𝜀+𝐼𝑖,𝑁;𝜀𝐼𝑁,𝑗;𝜀+𝐼𝑗,𝑖𝑗;𝜀𝐼𝑖,𝑁;𝜀]

3
. 

5. The BDS test statistic is thus stated as: 

𝐵𝐷𝑆 ,𝑚 =
√𝑁 [𝐶𝜀,𝑚−(𝐶𝜀,1)

𝑚
]

√𝑉𝜀,𝑚
                                                                                       (4.68) 

The test statistic is a two-tailed test, and the null hypothesis is rejected if the test statistic is 

greater or less than the usual standard normal critical values. 

In summary, the BDS test examines the spatial dependence in the observed series, and to 

achieve this, the series is embedded in m-space and the dependence of such a series is examined 

by counting what are called "near" points. That is, points for which the distance is less than 

epsilon are called "near". The test statistic is asymptotically Standard Normal. 

The Hypothesis commonly set: 

𝐻0: the returns are independent, versus 𝐻1: the returns are not independent. 

4.4 Testing for Anomalies in Returns 

Recall the research question RQ3 from chapter 1 of the thesis: is there any evidence of 

anomalies or speculative bubbles in the banking sector of the NSM for the study periods? 

This section provides relevant methods as adopted in other studies found suitable for this 

research and considers their application to RQ3. We hope to follow the approaches used in 

those studies to investigate anomalies and bubbles in the bank data obtained from the NSM 

across the study periods.  

Planned Methods for Anomalies in Returns in Chapter 7 

1. To fit regressions of log returns on the Day-of-the-week; 

2. Plotting of the Day-of-the-week effect; 

3. To fit regression of returns on Holiday and January days; 
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4. Plotting of holiday and January effects; 

5. To obtain October-March Seasonality effects; 

6. Plotting of the October-March seasonality effects; 

7. To obtain Turn-of-the-year effects and plot the corresponding series; 

8. To obtain Turn-of-the-month effects and plot the corresponding plot series; 

9. To obtain Turn-of-the-year effects and plot the corresponding plots series. 

The approaches discussed in Taylor (2008), Schewert (2003), and Archana, Safeer and Kevin 

(2014), have been found suitable to be followed in testing and identifying the presence of our 

choice of anomalies in stock returns. 

4.4.1 Testing for the Day of the Week Effect 

For any of the above anomalies, the regression equation stated as below is commonly applied 

in the literature: 

rt =  þ0 + ∑ þ𝑖𝐷(1)4
𝑖=1 +  εt  .                                                                                            (4.69) 

wherert represents daily stock returns and þi ∀ i = 1,2,3,4 are mean daily returns (or effects) 

for each trading day of the week and the εt   is the random error . For example, if the Tuesday 

effect anomaly is being investigated, 𝐷(1) is the dummy variable for Tuesday, thus 𝐷(1) = 1 

if Tuesday or 𝐷(1)=0 if any other day. The same goes for dummy variable for every other day, 

apart from Monday which without loss of generality is treated as the reference category and is 

represented by þ0. 

Alternatively, (4.69) can be set for Monday effect as: 

rt =  þ0 +  þ1T +   þ2W +  þ3Th +  þ4F + εt                                                                  (4.70) 

Where in this case, þ0 represents Monday effect in the model. 

Note: for the method to be consistent with weekend effect, þ1 in (4.69) or þ0 in (4.70) should 

be significantly lower (and is sometimes 'negative') than the associated parameter for any other 

day, while þ5 should be higher (and positive) (see Taylor, 2005, 2011; Sewell, 2011). 

4.4.2 Half of the Month Effect 

We have 
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rt = þ0 +  þ1D +  εt,                                                                                                          (4.71) 

where rt is the daily returns and D=1 represents the dummy variable for the first fifteen calendar 

days of the month and D = 0 otherwise withεtan error term. 

Note: for this to hold it is expected that þ1, representing mean returns for the first fifteen days, 

should be higher than that of the remaining days. 

4.4.3 Turn-of-the Month Effect 

We have  

rt =  þ0 +  þ1D1 +   þ2D2 +  þ3D3 +  þ4D4 + þ5D5 +   þ6D6 + þ7D7 +  εt,                  (4.72) 

where D1, D2, and D3respectively represent dummy variables for the first, second and third 

days preceding the last trading day of the month, 𝐃𝟒 for the last day of the month and D5, D6, 

D7 represent dummy variables for the first, second and third days succeeding the last day of the 

month respectively. 

It is also expected that the mean returns for the first three days before and after the last day of 

the month should be higher than those of the other days. 

4.4.4 Holiday Effect 

Given that  

rt =  þ0 +  þ1D1 +   þ2D2 +  εt,                                                                                        (4.73) 

where  D1 is the dummy variable for a day before a holiday; and D2is the dummy variable for 

a day after a holiday. Also, for this effect to hold it means that the returns on a day before a 

holiday should be higher. 

4.5 Determining the Presence of Bubbles in Returns 

Many tests have been proposed for detecting the presence of bubbles, these include: (i) Variance 

bounds or Volatility tests as proposed by Shiller (1981), and LeRoy and Porter (1981); (ii) Test 

for premium bubbles, introduced by Hasdouvelis (1988); (iii) Tests based on Cointegration 

analysis as proposed by Diba and Grossman (1988) and a host of other authors (iv) Tests based 

on Regime Switching Models as applied by Van Norden (1996); and (v) the duration 
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dependence method proposed by McQueen and Thorley (1994), which uses log-logistic 

regression. 

While the fifth of these has been observed to be a direct test for presence of bubbles, the other 

four are indirect tests applied to determining the distributional properties of prices and 

fundamental measures. 

However, in this research our focus will be on the fifth approach, considering the nature of the 

available data for this research. This is because the focus of this research is on the empirical 

analysis of observed data on bank stock returns, not the distributional historical prices of bank 

stocks. Moreover, Omar (2012) which this research extends uses the fifth approach for the same 

reason and it is easier to compare our results with that of Omar (2012). 

Methods for Determining Presence of Bubbles in returns 

1. For each bank, we shall obtain the summary statistics, particularly the length of the 

bubble (T), along with the mean, standard deviation, skewness and kurtosis, for the 

returns corresponding to any bubble episodes. 

2. We shall compare the mean, standard deviation, skewness and kurtosis credited to 

bubble episode(s) to the overall respective attributes for each bank. We shall further test 

for the presence of positive autocorrelation for each bank at lag one.  

3. We shall test for the hypothesis of a unit root as against the alternative of 

"explosiveness" for the corresponding price series for the bubble episodes within each 

bank. 

4. We shall then proceed to set up the return series for each respective bank for the adopted 

duration dependence tests. 

 Setting the objectives for Chapter 8, we have the following: 

1. To see if there is skewness, kurtosis and positive autocorrelation in the daily returns 

within the identified bubble regions; 

2. To test if rational speculative bubbles exist in the Nigerian banks’ stocks by applying a 

simple diagnostic test for the rational speculative bubble model; 

3. To apply the duration dependence test using the Cox-proportional hazards model to 

detect the presence of rational speculative bubbles in the Nigerian banks’ stocks. 
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In applying the unit root tests discussed so far, the following null and alternative hypotheses 

are often set. 

𝐻0 : The variable is stationary or there is no price bubble. 

𝐻1: The variable is explosive or there is a price bubble. 

Details of the Cox-proportional hazard model will be provided in Chapter 8 of the thesis.  

4.6 Fitting Appropriate Volatility Models to the Returns 

Recall that RQ4 states: How volatile are the bank returns and which volatility models are most 

suitable for describing the volatility behaviours of the returns in different study periods?  

Section 9.2provides the methods and models needed to address RQ4 and examine the presence 

of volatility in the banks’ returns of the NSM. We shall aim to appropriately model the returns 

across different study periods to describe the level of volatility in the banks’ data. The relevant 

data for this investigation is the system date obtained from the NSM and Cash Craft. 

In this research, various univariate GARCH modifications will be explored to model daily stock 

return volatility of Nigerian banks trading at the NSM, during both the overall and financial 

crisis periods. For example, we intend to explore models such as GARCH (p, q) , 

EGARCH (p, q) , GJR-GARCH (p, q) , TGARCH (p, q)  and PGARCH (p, q) ; with  p = q =

 1,2, … . The functional forms of these models are further explicated in chapter 9. 

4.6.1 Planned Procedures in Fitting and Selecting Volatility Models 

1. Having confirmed that the returns series for each of the banks is stationary in chapter six, 

we shall check for the presence of an ARCH effect/heteroscedasticity in the return series of 

each bank using the Lagrange Multiplier (LM) test statistic proposed by Engle (1982) or 

Breusch and Pagan (1979) (these shall be discussed below). 

2. We then fit different possible candidate GARCH family models -both symmetric and 

asymmetric forms. 

3. We group the fitted models based on two error distribution assumptions - Normal and 

Student-t distributions. 

4. Selection of the best models is done, first at the error distribution level, and then at the 

overall model level using AIC (or BIC). 
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5. The final model is then chosen by further examination of the extended family of the selected 

candidate model based on (I) the lag levels and/or (ii) the use of the skewed form of the 

error distribution for the model fitted in (4) above. This is done to see if a better fit could 

be achieved. 

6. Checking the goodness-of-fit of the fitted model by examining presence of: 

(𝑖)anasymmetric effect (𝑖𝑖) serial correlation in the standardized and squared standardized 

residuals (𝑖𝑖𝑖)  any ARCH effect in the standardized residuals and (𝑖𝑣)  stability of the 

estimated parameters using the Nyblom test. 

7. Computation of the persistence rates, unconditional variance and half-life for the fitted 

model for each bank. 

8. Finally obtaining the plots for the fitted series, the standardized and squared standardized 

residuals, and the News Impact Curve (NIC) for each of the banks. 

4.6.2 Test of Heteroscedasticity 

One major preliminary check prior to applying the Autoregressive Conditional 

Heteroscedasticity (ARCH)/Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) family of models is to look for the presence of an ARCH effect in the returns series 

using the residual series {ɛt }, also called innovations. The Langrange Multiplier (LM) test of 

Engle (1982) is found suitable. 

Detecting Heteroscedasticity 

There are two basic methods to detect heteroscedasticity in time series, including stock returns, 

namely the Graphical Method and econometric tests for heteroscedasticity, which may be either 

of the following: 

1. The Breusch-Pagan LM Test; 

2. Engle's ARCH Test. 

The Breusch-Pagan LM Test 

The Breusch-Pagan test is a formal way to test whether the error variance depends on the 

observed series 

Procedures 
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Step 1: Set the following hypotheses: 

𝐻0: 𝜐0 =  𝜐1 = 𝜐2 = ⋯ = 𝜐𝑝 = 0, versus 𝐻1: At least one of the parameters is not 0 

Step 2: Run a linear regression of the returns series of the form:  

𝑟𝑡 =  𝜙
0

+  𝜙
1

𝑟𝑡−1 +  𝜙
1
𝑟𝑡−1 + ⋯ + 𝜙

1
𝑟𝑡−𝑙 +  휀𝑡.                                                            (4.74) 

Estimate the model parameter using Ordinary Least Square OLS, and then obtain the 

residualsresiduals, 휀�̂� 

Step 3: To test if the error variance depends on the series, we regression the squared residuals 

on the lagged return series as follows: 

휀�̂�
2 = 𝜐0 +  𝜐1𝑟𝑡−1 +  𝜐2𝑟𝑡−2 + ⋯ +  𝜐𝑝𝑟𝑡−𝑝 +  𝑢𝑡.                                                 (4.75) 

where 𝑢𝑡 is the error term  

Step 4: Compute the Lagrange Multiplier statistic 

LM = T𝑅2~𝜒𝑝−1
2 .                                                                                                                (4.76) 

where T is the number of observations and 𝑅2(the coefficient of determination) is estimated 

from the regression (4.75). 

Step 5: If LM-stat > 𝜒𝑝−1
2 ,critical value corresponding to a specified significance α-level, reject 

the null hypothesis and conclude that there is significant evidence of heteroscedasticity, at the 

α-level of significance. 

Engle's ARCH Test 

In the case of Engle’s test, heteroscedasticity is supposed to characterise the error term's 

variance rather than the error term itself. The underlying concept is that the error term's variance 

is assumed to depend on the squared lagged error terms, that is:  

Procedures 

Steps 1 and 2 are the same as above 

Step 3: Square the residuals obtained from (4.75), and regress them on p own lags to test for 

ARCH of order p as follows: 

휀�̂�
2 =  𝜐1 +  𝜐2휀𝑡−1

2 + ⋯ +  𝜐𝑝휀𝑡−𝑝
2 +  𝑢𝑡.                                                                            (4.77) 
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Obtain 𝑅2 from (4.77) 

Step 4: The test statistic is the Lagrange Multiplier of Engle (1982), defined as T𝑅2 (the number 

of observations multiplied by the coefficient of multiple determination, 𝑅2), and is distributed 

as a 𝜒𝑝
2 ( Brooks (2019, p.390)). 

4.7 Summary and Conclusion 

This chapter has reviewed briefly the data intended to be used in this research and some selected 

methodologies to be adopted to address the research questions presented in chapter one of this 

thesis. Essentially the concepts discussed so far include tests of skewness, kurtosis, Normality, 

unit roots, autocorrelation and partial autocorrelation, calendar anomalies, and 

heteroscedasticity/ARCH effect tests. Further details of the choice of methodologies that will 

fully address the research objectives will be presented in detail within the respective chapters 

dedicated to each of the issues this study examines. 
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5 CHAPTER FIVE: Stylized Facts of Asset Returns in the NSM 

5.1 INTRODUCTION 

The underlying aim of investing in financial assets such as stocks, bonds, bank deposits, futures 

or derivatives is mainly to earn profits after holding them for a reasonable period with little or 

no risk. Positive income or returns are earned if the price of a holding asset at the end of the 

holding period is higher than it was at the time of acquisition.  The amount of income realized 

at the end strictly depends on three components, which are: (i) the initial capital, which 

translates to the volume of assets purchased, (ii) the length of the holding period, and (iii) the 

returns on the asset over the holding period. Thus, a return could simply be defined as the 

dividend (or interest) plus the change in current asset price. 

In financial time series, asset return has remained the variable of interest instead of price, for 

two simple reasons, which according to Campbell, Lo, and Mackinlay (1997), are: (1) to the 

investors, asset returns are completely a scale-free summary of any investment prospect; (2) 

asset returns are generally known to be stationary and easier to handle, due to having attractive 

statistical properties, unlike the asset price itself which, empirically, is non-stationary, and 

successive prices are highly correlated, with time-varying variances, thus obtaining meaningful 

statistical analyses becomes difficult. 

Definition (Asset Returns)13 

A. Single-period Simple Returns: this is divided into the Simple Gross return and the Simple 

Net Return, otherwise called the Simple Return. 

Holding an asset from time 𝑡 − 1 to 𝑡, is the price of the asset changes from 𝑃𝑡−1 to 𝑃𝑡 , such 

that we assume no payment of dividend, then: 

a. The Simple Gross Return is defined as the ratio of the new market value at the end of 

the holding period over the initial market value, which mathematically is defined as: 

1 + 𝑅𝑡,1 =
𝑃𝑡

𝑃𝑡−1
.                                                                                                         (5.1) 

b. The Simple Return is derived as: 

                                                
13( see Tsay, 2002; p. 2-5) 
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𝑅𝑡,1 =  
𝑃𝑡

𝑃𝑡−1
− 1 =  

𝑃𝑡−𝑃𝑡−1

𝑃𝑡−1
.                                                                                        (5.2) 

where 𝑅𝑡,1 is the profit rate of holding an asset from time 𝑡 − 1 𝑡𝑜 𝑡, which sometimes is written 

as 100𝑅𝑡,1%, the percentage rate of change in price within the holding price, representing the 

percentage gain in price relative to the initial capital, 𝑃𝑡−1. 

In terms of high frequency data, such as daily or hourly returns,  𝑅𝑡,1 is usually very small, with 

the returns of less risky assets such as bonds taking even smaller values over a short horizon. 

B. Multi-period Simple Return 

Suppose an asset is held for a single period between times𝑡 − 𝑘  𝑎𝑛𝑑 𝑡, then the 𝑘 −period 

Simple Gross Returns, also called Compound Return, is derived as: 

1 + 𝑅𝑡,𝑘 =  
𝑃𝑡

𝑃𝑡−𝑘
=  

𝑃𝑡

𝑃𝑡−1
×  

𝑃𝑡

𝑃𝑡−2
× … ×

𝑃𝑡−𝑘+1

𝑃𝑡−𝑘
= (1 + 𝑅𝑡,1) × (1 + 𝑅𝑡−1,1) × … × (1 + 𝑅𝑡−𝑘,1). 

The 𝑘 − period simple return therefore equals: 

𝑅𝑡,𝑘 =  
𝑃𝑡−𝑃𝑡−𝑘

𝑃𝑡−𝑘
.                                                                                                          (5.3) 

Annualized Returns- 

For the geometric mean, this is obtained as: 

Annualized {𝑅𝑡,𝑘} = [∏ (1 + 𝑅𝑡−𝑖)]𝑘−1
𝑖=0

1

𝑘.                                                                              (5.4) 

For the logarithmic mean 

Annualized {𝑅𝑡,𝑘}=exp [
1

𝑘
∑ 𝑙𝑛(1 + 𝑅𝑡−𝑖)] − 1𝑘−1

𝑖=0 .                                                             (5.5) 

 For the mean by one-period 

Annualized {𝑅𝑡,𝑘} ≈
1

𝑘
∑ 𝑙𝑛(1 + 𝑅𝑡−𝑖)𝑘−1

𝑖=0 .                                                                           (5.6) 

The Continuously Compounded Return, which is the natural logarithm of the gross return of 

a security, log return is obtained as: 

𝒓𝒕,𝟏 = 𝒍𝒏(𝟏 + 𝑹𝒕,𝟏) = 𝒍𝒏
𝑃𝑡

𝑃𝑡−1
= 𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝑡−1,                                                                  (5.7) 

where Pt is an asset’s closing price at a period t and Pt−1 is the price a prior period before, or 

on a particular period t − 1, noting that "t" may be "days," weeks," "months," or "years". 



104 

 

The concept of a continuously compounded return is closely related to the concept of 

compound rates or interest rates. For instance, for a bank deposit account, the interest rate is 

usually quoted as simple interest. 

C. Portfolio Return 

The simple net return of a portfolio is comprised of N assets and is a weighted average of the 

simple net returns of the assets involved, where the weight (𝑤) on each asset is the fraction of 

the portfolio’s value investment in that asset. That is: 

𝑅𝑝,𝑡 =  ∑ 𝑤𝑖𝑅𝑖𝑡 
𝑁
𝑖=1 .                                                                                                               (5.8) 

D. Dividend Payments 

Suppose that an asset pays dividends (𝐷𝑡) periodically, then the definition of asset returns needs 

to be adjusted. In this case, the return is defined as follows: 

For the simple returns 

𝑅𝑡 =  
𝑃𝑡+𝐷𝑡

𝑃𝑡−1
− 1.                                                                                                                     (5.9) 

For the compounded return 

𝑟𝑡 = ln(𝑃𝑡 + 𝐷𝑡) − 𝑙𝑛𝑃𝑡−1.                                                                                                 (5.10) 

E. Excess Return 

The excess return of an asset at a time 𝑡 is the difference between the asset's return and the 

return of a riskless asset such as a short-term U.S. Treasury bill return, bank interest rates and 

LIBOR (London Interbank Offered Rate) rates. That is, the Excess returns is 

𝐸𝑡 =  𝑅𝑡 − 𝑅0𝑡 , and the compounded excess return is 

𝑒𝑡 =  𝑟𝑡 − 𝑟0𝑡,                                                                                                                   (5.11) 

where 𝑅0𝑡 and 𝑟0𝑡 are respectively the simple and log returns of a riskless asset (Tsay, 2002; p. 

5) 

Excess return may be defined as the payoff on an arbitrage portfolio that goes long in an asset 

and short in the riskless asset with no net initial investment. 

For bonds, yield spread is an excess yield defined as the difference between the yield of a given 

bond and the yield of a reference bond such as a US treasury bill with a similar maturity 
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Remarks 

The financial econometrics literature generally employs the log-return formulation (also known 

as the log-price relative) for two key reasons: 

1. Log-returns can be interpreted as continuously-compounded returns. This is easily seen 

by exponentiation to yield: 

exp(𝑟𝑡) =  
𝑝𝑡

𝑝𝑡−1
≡ 𝑝𝑡 = 𝑝𝑡−1𝑒𝑟𝑡,                                                                             (5.12) 

which is easily recognised as the growth of the value of the Investment (𝑝𝑡−1), over the 

time interval (𝑡 − 1, 𝑡) when compounding continuously at the rate 𝑟𝑡. 

2. Continuously-compounded returns are time additive. To compute a weekly returns 

series from daily log returns, it is valid simply to add up the daily returns. 

5.1.1 Empirical Properties of Financial Returns 

a. Daily returns of the market indices and individual stocks tend to have higher excess 

kurtosis than do monthly returns. For monthly series, the returns of market indices have 

higher excess kurtosis than individual stocks. 

b. The mean of the monthly return series is slightly higher compared to that of the daily 

returns, which is always approximately zero. 

c. The standard deviations of daily returns are smaller compared to those of the monthly 

returns. 

d. The standard deviations of daily market indexes are smaller than those of the individual 

stocks. 

e. The empirical difference between simple and log returns is not significant. 

f. The empirical distribution of asset returns has a higher peak (leptokurtic) around its 

mean, but fatter tails than that of a normal distribution. This means that asset returns 

have a distribution that is taller, and with thinner tails but with a wider support, than that 

of a normal density (Taylor, 2005 & 2011). 

5.1.2 Empirical Peculiarities of Daily Financial data 

In this section, we summarise some of the findings on the empirical characteristics which have 

been established by the previous studies, to have characterised daily financial data across 

different exchange markets 



106 

 

a. Daily returns appear to have a much higher kurtosis than is consistent with the normal 

distribution (McNeil, Frey and Embrocates, 2015). 

b. The distribution of daily returns is said to be leptokurtic, meaning narrower in the centre, 

but longer with heavier tails compared to the normal distribution. The measure of 

thickness of tail of a distribution, called Kurtosis, measures the mass in the centre 

relative to the non-centre part of the distribution (Danielson, 2011). Skewness, on the 

other hand, is a measure of how symmetric the distribution of a variable is relative to 

the mean. Note that both skewness and kurtosis are sensitive to outliers such that when 

skewness is negative for instance, it implies the returns is more left-tailed than right-

tailed, meaning that extreme losses are more probable than the extreme gains and vice-

versa. 

c. The tails of daily or short time interval returns decay slowly according to the power law. 

d. The Leverage Effect is a negative correlation between past returns and future volatility 

of returns. It could be defined as the ratio of debt to equity of a company or firm such 

that the higher the leverage effect, the greater the risk or volatility of the firm. High 

leverage occurs due to negative returns, which translates to low equity prices, meaning, 

a higher debt-equity ratio of a firm (Black, 1976; Christie, 1982; Henry, 1998). Negative 

leverage means that a positive shock has less effect on the volatility compared to a 

negative shock/news. When there is a high volatility in returns, the risk of doing 

business goes up; thus, investors move their funds to a less risky investment 

e. A sudden rise in returns, identified by a positive value of the residual, 휀𝑡, indicates the 

arrival of good news, whereas a negative value of 휀𝑡 implies bad news.  

f. Daily asset returns mostly have negative or zero autocorrelation at lag 1 especially. A 

lack of autocorrelation corresponds with weak-form market efficiency, indicating that 

returns are non-predictable.  

g. The significant autocorrelation in absolute returns |𝑟𝑡| or their squares with a positive 

and slowly decaying autocorrelation function such that 𝑐𝑜𝑟𝑟(|𝑟𝑡|, |𝑟𝑡+𝑘|)  >  0 for 𝑘 

ranging from a few minutes to several days or weeks, indicates substantial volatility 

clustering in returns (Mandelbrot, 1963; Cont., 2005). Significant autocorrelation in 

squared returns implies that there is presence of Autoregressive Conditional 

Heteroscedasticity or ARCH in the returns. A lack of ARCH effects in the returns 

series however, is an indication that the series is dependent (Danielson, 2011). 
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In the meantime, considering previous studies, such as: Granger and Ding (1995), Campbell, 

Lo, and Mackinlay (1997), Granger, Spear and Ding (2000), and Cont (2011), the focus of this 

study will primarily be on the following properties of financial asset returns as they relate to 

Nigerian banks. 

Stationarity: That the prices of a financial asset traded over times are usually not stationary, 

likely due to the steady growth recorded in the economy, increased productivity levels due to 

technological advancement, and economic recessions or financial meltdown. On the other hand, 

the returns normally fluctuate around a constant level over a period. 

Heavy Tails: The probability distribution of the returns 𝑟𝑡 often exhibits heavier tails than those 

of a normal distribution. A frequently used tool for checking the tail-heaviness is the Quantile-

Quantile (Q-Q) plot, which will be discussed in further detail in the later sections of this chapter.  

Asymmetry: The distribution of the returns 𝑟𝑡 is usually negatively skewed, indicating that 

downturns in financial markets are often much steeper than recoveries. Investors' reaction to 

negative news compared to positive news appears to be stronger.  

Volatility Clustering: This concept indicates that returns of equal magnitude and sign occur in 

clusters. That is, large price changes are trailed by large price changes, and periods of calm are 

followed by small changes in price, thereby producing high volatility. 

Aggregational Gaussianity: In this case, a returns series over m number of days is simply the 

aggregation of m daily returns. This means that when the time horizon increases, the central 

limit theorem comes into play such that the distribution of the returns over a long time-horizon 

(such as a month) tends towards a normal distribution (Rogers and Zhang, 2011). 

Long Range Dependence: The returns themselves rarely exhibit any serial dependence, which 

does not imply that they are independent. Practically, however, both daily absolute and squared 

returns often show small and significant autocorrelations. The autocorrelations are more 

persistent for absolute returns than for squared returns, indicating that the signs of long-memory 

are stronger in the former than in the latter, but these autocorrelations gradually become weaker 

and less persistent when the sampling interval is increased from a day, to a week, to a 

month(Cont., 2001; Thompson, 2011). 

Leverage effect: according to this concept, asset returns tend to be negatively correlated with 

changes in volatility (Black 1976, Christie 1982), meaning that as asset prices drop, firms 

become more leveraged- their debt to equity ratios increase, hence it becomes riskier to trade 
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in such assets, because their stock prices become more volatile. However, when stock prices 

become more volatile, investors push for high returns, leading to a price drop. Also, volatilities 

due to price decline are usually higher compared to rises in price due to reduced volatilities. 

5.2 Graphical Presentation of Data 

In this section, we briefly discuss the various methods adopted to graphically summarise our 

data with a view to identifying various stylized facts characterising the returns of the banks 

under study. Specifically, we define a time plot, a histogram, a quantile-quantile plot and 

outliers. 

5.2.1 Time Plots 

A graphical depiction of time series data is called a time plot. This is simply a line plot with the 

time series data on the y-axis and the time index on the x-axis. Time plots are useful for a quick 

examination of the inherent features (such as trend and patterns), of time series data. 

5.2.2 Histograms 

A histogram of returns is a graphical summary used to describe the general shape of the 

unknown probability density function (pdf) of a return, 𝑓𝑅(𝑟). It is constructed by ordering the 

returns from smallest to the largest, dividing the data range into 𝑁 equally sized bins, and 

plotting the frequencies of the bins as areas of bars in the histogram. Histograms are useful in 

visually assessing the normality of a dataset and are distribution-free. 

Moreover, since histograms approximate the shape of the population distribution through the 

frequency polygon, all the empirical statistical measures such as sample means, standard 

deviation, skewness and kurtosis used to describe the stylized facts of returns apply to 

histograms of the returns.  

5.2.3 Quantile-Quantile (QQ) Plots 

In addition to visualising the shape of the histograms of the returns and error terms associated 

with different models explored in the thesis, we will use QQ plots to determine whether the 

returns are random samples from a specified probability distribution, typically a normal 

distribution, by comparing the empirical quartiles of the observed returns and error terms to 

those from a reference probability distribution. If the plots closely follow the 45-degree line, 

then this provides strong evidence that the reference distribution appropriately describes the 
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observed data. Technically, the QQ-plot is composed of the reference distribution quartiles on 

the x-axis and the empirical quartiles on the y-axis. If the quartiles do not match up, then the 

shape of the QQ-plot indicates which features of the data are not captured by the reference 

distribution. 

5.2.4 Outliers 

We will detect outliers in the bank stock returns using the standard approaches based on box 

plot limits implemented in mainstream statistical software. Any outliers that are due to data 

entry error will be removed from the data. Genuine outliers provide important information about 

the behaviour of bank returns in the different sub-periods of the study and should not be 

removed from data sample. For financial market data, outliers are generally extremely large or 

small values that could be attributed to data entry error (e.g. price entered as 10 instead of 100) 

or a valid outcome associated with some unexpected bad or good news.  

On the assumption that a series say, 𝑋~𝑁(𝜇, 𝜎2), Pr (𝜇 − 3𝜎 ≤ 𝑋 ≤ 𝜇 + 3𝜎) ≈ 0.99. 

However, since the mean 𝜇 and the standard deviation 𝜎 are not robust against outliers simply 

because they become larger in the presence of outliers, we then replace them with median and 

interquartile ranges (IQR), which are very robust to outliers. Thus, a moderate outlier in the 

right tail of the distribution may be determined by box plots to fall outside the limits 

(https://faculty.washington.edu/ezivot/econ424/descriptivestatistics.pdf) 

�̂�0.75 + 1.5 ∗ 𝐼𝑄𝑅 < 𝑥 < �̂�0.75 + 3 × 𝐼𝑄𝑅.                                                                        (5.13) 

If the data were normally distributed, then 

�̂�0.75 ≈ �̂� + 0.67�̂�, and 𝐼𝑄𝑅 = 1.349�̂� 

And (5.13) becomes: �̂� + 2.67𝜎 ̂ < 𝑥 < �̂� + 4.67𝜎 ̂. The same applies to a moderate outlier 

falling in the left tail of the distribution (below the median), and it is a data point falling in the 

range: 

�̂�0.25 − 3 ∗ 𝐼𝑄𝑅 < 𝑥 < �̂�0.25 − 1.5 ∗ 𝐼𝑄𝑅                                                                           (5.14) 

The extreme outliers are found outside of the tails of the distribution, defined as: 

𝑥 < �̂�0.25 − 3 ∗ 𝐼𝑄𝑅 and 𝑥 > �̂�0.75 + 3 ∗ 𝐼𝑄𝑅                                                                   (5.15) 

Note: The relatively large proportion of outliers in return series may be due to the presence of 

bubbles, anomalies and pronounced market volatility. 

https://faculty.washington.edu/ezivot/econ424/descriptivestatistics.pdf
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5.3 Results and Discussions 

In this section, the time series plots for the daily, monthly and financial crisis periods shall be 

presented and briefly discussed, including discussions on the distributions and the 

autocorrelations of the sixteen Nigerian banks (Access, Afribank, Eco bank, Diamond, First 

bank, First City Monumental bank (FCMB), Fidelity, STANBIC IBTC, Skye, Sterling, United 

Bank for Africa (UBA), Guaranty Trust bank (GTB), Union, Unity, WEMA and Zenith banks). 

Further discussions will focus on the summary statistics and relevant tests such as: skewness, 

kurtosis, normality and ACF tests, leverage diagnostic tests, and long memory tests. Essentially, 

by the end of our presentations and discussions, questions about the presence or absence of the 

highlighted stylized features of various banks’ stock data will have been addressed. We note 

that except for Afribank, the remaining fifteen banks are among the top active and top traded 

stocks in the financial services industry, as listed on the Nigerian Stock Exchange (NSE). 

5.3.1 Discussion of the Time Plots for the Daily Data 

Specifically, this subsection presents and discusses time plots of the closing stock prices, log 

returns, absolute (log) returns and squared (log) returns recorded daily across the sixteen (16) 

banks of the Nigerian stock markets (NSM) listed above. In each of the Figures to be presented 

across the 16 banks is a 2 x 2 matrix of time series plots. Starting from the upper left panel is 

the price, log returns, absolute returns and squared returns (the 4th on the bottom right) series, 

respectively. 

To start with, Figure 5.1 has the four series of the Access bank from June 1999 to December 

2014. From the price series we can see a gradual but slow increase in price from June 2002 up 

to the period of the bank consolidation program of the CBN between August 2004 and 

December 2005 till around August 2006 before a sudden boom that was sustained till January 

2008, when the series attained an unprecedented height before a sharp decline around April 

2008, and it then dropped to its lowest point around January 2009. From then onward, attempts 

at rising again were characterised by ups and down till the end of 2014. 

The returns series shows spikes and non-constant oscillation around a constant level close to 

zero as against the price which shows trend. Moreover, high oscillations not only persist but 

tend to cluster together, reflecting more volatile markets. The length of persistence in volatility 

close to the end of 2007 till the end of 2014 is much longer than those from June 1999-Sept. 

2001 and June 2002 to June 2004. The interplay of tranquil periods from Oct. 2001 to May 
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2002 and Sept. 2004-Sept. 2005, with the highly volatile (turbulent) periods, indicates evidence 

of volatility clustering. 

Unlike the log returns which oscillate around a constant level, both the absolute and squared 

returns series, which generally represent volatility, fluctuate positively. From the Figure, there 

are clear signs of sharp jumps in volatility (more pronounced in absolute than squared returns), 

at three major points of around September 2001, August 2004 and October 2006 respectively, 

with that of around October 2006, which coincides with a positive spike in log returns, being 

the longest. 

We can see that following the 2007 positive spike in returns, there was a decline in returns 

between 2008 and 2009, which may be associated with the effects of the 2007-09 global 

financial crisis. There was a negative spike in 2004 which suggests that the bank was negatively 

affected by the CBN bank reforms of 2004. These facts indicate how to generally relate 

fluctuations in bank returns presented in this subsection to different financial policy and crisis 

periods, albeit visually. The point of detailed modelling of the empirical financial features 

manifested by these returns in subsequent chapters of the thesis is to explore possible significant 

differences in the stochastic models that describe the fluctuations, for example the different 

types of ARCH-GARCH models that explain return volatilities. 

 
Figure 5.1: Access bank daily Closing Price, log Returns, Absolute Returns and Squared Returns (June 1999-Dec 

2014) 
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Note that the presentation and interpretations of the above plots for the remaining banks follows 

the same patterns and these are presented in Figure 5.2a to 5.16a (see Appendix 5A). However, 

to compare time plots for the daily closing prices and the return series among the 16 banks, 

Figure 5.2, 5.3, 5.4 and 5.5 are presented below.  

Comparative Price-Return Plots and Bank Characteristics 

Given the foregoing notes on the observed differences in banks’ returns profiles across different 

periods related to financial reforms and crisis, Table 5.1 below classifies the banks into two 

groups, namely: A:"those whose trading activities predate 2004 bank consolidation" and B: 

"those starting during and after the bank consolidation in 2004". 

Table 5.1: Classification of Nigerian Banks into Groups A and B (T is number of days) 

Grp A- Trading before 

2004 

Periods (T) B: Started Trading 

during and 2004 

Period (T) 

Access June, 1999 – Dec 2014 

(15.5 years) 3869 

Diamond May 2005-Dec 2014 

(9.58 years) 2368 

First June 1999 – Dec 2014 

(15.5 years) 3869 

Ecobank Sept 2006-Dec 2014 

(9.25 years) 2050 

GTB June 1999 – Dec 2014 

(15.5 years) 3869 

FCMB Dec 2004-Dec 2014 (10 

years) 2474 

Sterling June 1999-Dec. 2014 

(15.5 years) 3869 

Fidelity May 2005 – Dec 2014 

(9.5 years) 2376 

Union June 1999-Dec 2014 

(15.5 years) 3869 

Skye Nov. 2005-Dec. 2014 

(9.083 years) 2391 

UBA June 1999-Dec 2014 

(15.5 years) 3869 

STANBIC April 2005-Dec 2014 

(9.67 years) 2391 

WEMA June 1999-Dec 2014 

(15.5 years) 3869 

Unity Dec 2005-Dec 2014 (9 

years) 2223 

Afribank June 1999-Sept 2011 

(12.2 years) 3046 

Zenith Oct 2004-Dec 2014 

(10.17 years) 2516 

Now we present the following Figures 5.2, 5.3 5.4 and 5.5 to give clearer pictures of the 

comparative price and log returns behaviours of the sixteen banks. From Figures 5.2 and 5.3, 

a critical assessment of the price plots across the sixteen banks shows that the 2007-2009 global 

financial crises had significant impacts on Nigerian banks, given the fact that virtually all the 

banks price series experienced boom-bust periods from 2008 to 2009. Banks such as STANBIC, 

Union, Unity, WEMA and possibly GTB, however, recorded at least two episodes of boom-

bust behaviour that could be a bubble, which we will investigate in chapter 8 of this thesis.  
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A further in-depth look reveals that the price series of Diamond, FCMB and Fidelity banks 

behave almost the same way. Banks such as Diamond and Skye witnessed a slight increase in 

price for at least three years after the reforms. WEMA and Unity banks experienced a second 

rise in price mid-2014.GTB responded positively to the second reforms after the crisis in 2009 

showing sustained increase in stock prices till close to the end of 2014.Other banks such as 

ECO, Afribank, FCMB, Fidelity, First, Sterling, UBA, Union, and Zenith banks did not 

experience such significant rises in price of their stocks after the financial crisis and the initiated 

reforms, with Eco Bank being worst off due to the crisis. 

 
Figure 5.2: Time Plot series for Daily Closing Prices across the Nigerian Banks for the Overall Period 
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Figure 5.3: Time Plot series for Daily Closing Prices across the Nigerian Banks for the Overall Period 

Moreover, while the return series of Diamond, FCMB and Fidelity banks are highly volatile 

and persistent (see Figure 5.4), indicating that for the periods under investigation, investments 

in the three banks are associated with high levels of risk, while those of First GTB and Zenith 

banks are dominated by negative spikes and are fairly volatile. STANBIC, Union, WEMA 

and Unity banks, however, behave the same way with a low level of volatility (See Figure5.3 

below). 
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Figure 5.4: Time Plots for Daily Log Returns of the Nigerian Banks at Overall Periods 
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Figure 5.5: Time Plots for Daily Log Returns of the Nigerian Banks at Overall Periods 

Summary, the findings obtained up to now could generally be summarised as follows. 

1. The price series across the 16 banks exhibit random walk like behaviour. That is, there 

is no tendency to revert to a time-independent mean so that the series non-stationary. 

2. All the banks show one large, boom-bust behaviour in their prices during the run-up to 

the financial crisis. 

3. STANBIC, Unity, WEMA and GTB show second signs of boom-bust behaviour after 

the second bank reforms initiated by the CBN in the aftermath of the financial crisis. 
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4. Due to the oscillating movements of log returns around a constant mean, which is 

approximately equal to zero, there is evidence of mean-reversion behaviour through 

time across the 16 banks; thus, the return series appear to be stationary. The constant 

mean value of 0 is an indication that the common mean value assumption of covariance 

stationarity seems to be satisfied. This is a major stylized fact of asset returns as 

discussed earlier and to will be explored further through appropriate test statistics in the 

subsequent section.  

5. The fluctuations of the returns about the mean across the banks appear to change 

overtime confirms the time-variation or volatility of the asset returns. However, 

visually, with the nature of the return series we have, one cannot be sure if there is 

evidence of systematic time dependence (at least in a linear form), in the returns; this 

shall be investigated by examining if the autocorrelations of the log returns are 

approximately zero.  

6. The volatility level in absolute returns is more pronounced and persistent through time 

than the squared returns across all the banks, and this is visual evidence of long-range 

dependence or predictability in volatility - another major stylized fact of volatility across 

different markets, as noted in the literature (see, Danielson, 2011; Tsay, 2002). 

5.3.2 Discussions of the Monthly versus Daily Time Plots 

It is important that prior to discussing the respective bank’s time plots, the following are noted: 

1. To obtain the monthly closing price series, we concentrate only on the last trading day 

of the month’s closing price from the daily closing price of each bank.  

2. The monthly return series for each bank is obtained from the monthly price series 

generated in (1) above, after which we obtained both the absolute and squared returns 

from the monthly returns. 

As argued in Ezepue and Omar (2012), empirical finance typically explores differences in series 

behaviour across different time epochs, for example daily, monthly and yearly, since different 

short-, medium- and long-term investment decisions depend on such differences. Figure 5.6 

presents the time plots for the monthly stock prices, returns, absolute and squared returns for 

Access bank, while those for the remaining 15 banks are presented in Appendix 5B(ii). 

The following are the major observations made across the 16 banks’ series: 
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1. The monthly closing stock price series for the respective banks generally resemble their 

daily closing series, but those of the former are more revealing and well spread than 

those of the latter. 

2. The spikes in the monthly returns are not as clustered as those in the daily returns; their 

oscillations are rather smoother and better spread than those of the daily returns.  

3. The monthly returns series fluctuate more like Gaussian white noise compared to the 

daily returns, and the inherent heteroscedastic component of the monthly returns is 

easier to visualise compared to the daily return series. 

4. In effect, the volatility level in the monthly series is far more pronounced and spread 

out and not as clustered as those of the daily series. This can be confirmed from both 

the monthly absolute and squared returns across all the banks.  

5. The spikes in the monthly volatility are longer and better spread compared with those 

of the daily volatility (see Figure 5.6). 

Meanwhile, we shall further examine the distribution of the monthly series through histogram 

and QQ-plots in the relevant section to investigate the level of normality of the monthly series 

as against the daily series. 
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Figure 5.6: Access Bank-Daily versus Monthly Time Plots for Price, Log Returns, Absolute and Squared Returns 

(June 1999- Dec. 2014) 

5.3.3 Discussion of the Time Plots for the Banks during Financial Crisis 

Table 5.2 below presents the length of time taken by the 2007-2009 financial crisis across the 

sixteen Nigerian banks. From the table, Afribank and Zenith experienced the crisis for the 

longest periods of 18 and 17 months (see column 3) respectively. The banks with the shortest 

lengths of 4 and 3 months are respectively Union and WEMA banks. 
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Table 5.2: Length of Financial Crises across the Sixteen Banks 

Bank Downturn Periods Length in months 

Access April 2008-Feb., 2009 11 

Afribank August 2007-Feb., 2009 18 

Diamond Jan 2008-Jan, 2009 12 

ECO May 2008-Feb, 2009 10 

FCMB Jan 2008-March, 2009 15 

Fidelity Feb. 2008-April, 2009 14 

First Feb. 2008-April, 2009 14 

STANBIC March 2008-Jan, 2009 11 

Skye April 2008-Jan, 2009 10 

Sterling May 2008-May 2009 12 

UBA May 2008-Jan, 2009 9 

Union Oct 2008-Jan, 2009 4 

GTB March 2008-Jan, 2009 11 

Unity Feb. 2008-March, 2009 11 

WEMA Feb. 2009-April, 2009 3 

Zenith August 2007- Jan, 2009 17 

From Figure 5.7, we see that while some banks are faced with a gradual decline in their daily 

stock prices for the crisis period, the ECO and WEMA banks are characterised by sharp 

declines. Unlike other banks, which attempted to readjust after the downturn and the 

introduction of the second reforms in June 2009, ECO bank was unable to get out of the crisis 

despite the second reforms. 
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Figure 5.7: Price Series across Eight of the Nigerian Banks for the Periods of Financial Crisis 
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Figure 5.8: Price Series of the Nigerian Banks for the Periods of Financial Crisis (Contd) 

Visual assessment of the returns series as presented in Figures 5.9 and 5.10 reveal that Unity 

bank is most volatile, followed by FCMB and Fidelity banks (to nearly the same degree). Next 

are Access and STANBIC (to a similar degree), then Diamond and Skye. All the banks exhibit 

long-range volatility persistence. While WEMA Bank experienced along-range level of 

calmness in between two extreme volatile periods, ECO remained the least volatile during the 

crisis. 
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Figure 5.9: Time Plots for Daily log returns of the Nigerian Banks during the financial crisis 
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Figure 5.10: Time Plots for Daily log returns of the Nigerian Banks during the financial crisis (Contd) 

Table 5.3 provides a subjective assessment of the observed degrees of volatility in the log 

returns plots across the 16 banks for the overall and financial crisis periods, based on the above 

visual assessments, which will be explored in more detail in Chapter 9. 

Table 5.3: Summary of Visual Degrees of Volatility across the 16 Banks for the Overall and Financial Crisis Periods 

Degree of 

Volatility 

Bank: Overall Bank: Financial Crisis 

Low STANBIC, Unity, WEMA, ECO, Union ECO and Zenith 

High Access, First, Skye, Sterling, Afribank and 

UBA 

Sterling, Union, First WEMA, GTB 

and Afribank 

Higher GTB and Zenith Diamond and Skye 
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Highest Diamond, FCMB and Fidelity  Unity, STANBIC, Fidelity, FCMB 

and Access  

Notice that some banks have moved columns from different degrees of volatility across the 

overall or financial crisis periods. For instance, STANBIC Bank has overall a low volatility but 

has one of the highest volatilities during the financial crisis. These findings have subtle 

implications for investment decisions regarding the potential risks associated with investing in 

different banks’ stocks across different investment horizons. For long-term growth investment 

objectives, the lower-risk bank assets could be of interest while for short-term speculative 

trading, the higher volatilities in both periods may be of interest. Such investment decisions 

must consider the differential dynamics of the returns examined above, and financial analysis 

of the business models, management effectiveness, and fundamental valuations of the different 

banks which these imply. For portfolio construction and management involving Nigerian banks, 

a correlation matrix of the bank assets will enable investors to choose optimally diversified 

portfolios. These investment considerations which may be linked further to SSMCD within the 

banking sector of the NSM are outside the scope of this research. 

5.3.4 Discussion of Summary Statistics for the Daily and Monthly Data for the Overall and 

Financial Crisis Periods 

Table 5.4 presents summary statistics for daily overall data with indicated total daily 

observations (T). Seven banks, namely Access, First, Guaranty Trust, Sterling, UBA, Union 

and WEMA banks have the highest sample size (T) of 3869 observations, and ETI, also known 

as Ecobank, has the least data size of 2050 observations. 

With respect to their expected returns, the following banks: Afribank, Diamond, ETI, FCMB, 

Fidelity, First, and Union banks were found to have negative means, while the remaining nine 

are positive, and they are all approximately zero. However, the median return is zero for all 

banks. The standard deviation is far higher than the mean across the banks, thereby causing the 

coefficient of variation (CV) to be very high for each of the banks. For example, for Access 

bank, the standard deviation (0.029) is about 48 times higher than the mean (0.0006), a 

behaviour common to asset returns across most global markets (see Zivot, 2009). 

Regarding skewness, seven of the bank’s returns are negatively skewed, namely: Afribank (-

4.375), Diamond (-0.043), ETI (-23.2311), FCMB (-0.057), First (-5.0916), GTB (-2.216) and 

Zenith (-2.280). Hence, their returns have longer left tails, meaning that extreme losses are more 
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probable than gains, while the remaining nine banks’ returns, being positively skewed with long 

right tails indicate more probable gains than losses. Of all the banks however, ECO, with 

skewness -23.2311, is found to be the most negatively skewed, while WEMA, with a skewness 

of 36.1655, is the most positively skewed. The above implications of negative or positive 

skewness hold even more for these two banks. 

While the least excess kurtosis of 0.2706 is attributed to Diamond bank, the following banks 

have kurtosis above 500; WEMA (1882.011), with the highest kurtosis, Unity (1085.073), 

STANBIC ((1065.405), Union (744.061) and ETI (783.7068). From our results, however, few 

of the banks has excess kurtosis of nearly zero (0), which is expected of a normally distributed 

variable; only three have excess kurtosis close to 0 (Diamond, FCMB and Fidelity). Thus, most 

of the banks are leptokurtic with fat tails. This implies that for a large part of the time, the banks' 

returns fluctuate in a range smaller than a normal distribution and assuming normality in stock 

returns would underestimate the impact of shocks on the daily stock returns of these banks. 

Table 5.4: Summary Statistics on Daily Returns of the Banks (Overall Period) 

BANKS T Mean Median Min Max Std Dev Variance Skewness Kurtosis 

ACCESS 3869 
0.0006 0.0000 -0.3192 0.6898 0.0290 0.0008 2.9845 86.8983 

AFRIBANK 3045 
-0.0005 0.0000 -0.7036 0.0953 0.0305 0.0009 -4.3754 94.7174 

DIAMOND 2368 
-0.0001 0.0000 -0.1343 0.0953 0.0280 0.0008 -0.0430 0.2706 

ETI 2050 
-0.0014 0.0000 -1.6094 0.0976 0.0455 0.0021 -23.2311 783.7068 

FCMB 2474 
-0.0002 0.0000 -0.1400 0.0953 0.0252 0.0006 -0.0572 0.8811 

FIDELITY 2376 
-0.0003 0.0000 -0.1017 0.0946 0.0266 0.0007 0.0047 0.2950 

FIRST 3869 
-0.0001 0.0000 -0.7070 0.1643 0.0296 0.0009 -5.0916 97.7673 

GTB 3869 
0.0006 0.0000 -0.3309 0.0913 0.0269 0.0007 -2.2160 23.1739 

SKYE 2243 
0.0001 0.0000 -0.1004 0.8029 0.0330 0.0011 6.4348 155.7539 

STANBIC 2391 
0.0006 0.0000 -0.0413 0.8234 0.0206 0.0004 27.2745 1065.4050 

STERLING 3869 
0.0001 0.0000 -0.4478 0.6931 0.0324 0.0011 1.6371 63.1626 
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UBA 3869 
0.0001 0.0000 -0.5698 0.7340 0.0342 0.0012 0.1967 89.7707 

UNION 3869 
-0.0001 0.0000 -0.3394 1.6743 0.0407 0.0017 17.6137 744.0610 

UNITY 2223 
0.0004 0.0000 -0.1886 2.8439 0.0725 0.0052 28.6789 1085.0730 

WEMA 3869 
0.0003 0.0000 -0.3134 2.8439 0.0547 0.0030 36.1655 1882.0110 

ZENITH 2516 
0.0002 0.0000 -0.0580 0.0969 0.0254 0.0006 -2.2796 32.3184 

Table 5.5 presents summary statistics on the monthly data of the respective banks at overall 

period. The banks with the highest sample of 186 each are: Access, First, Guaranty Trust, 

Sterling, UBA, Union and WEMA banks, whereas ECO has the lowest sample size of 99.  

Nine (9) of the banks: Access, Afribank, Diamond, ETI, FCMB, Fidelity, First, Sterling 

and Union have a negative mean while the remaining seven are positive. Comparisons between 

the mean returns in the daily and monthly data shows that those of the monthly data are largely 

and relatively higher than those the daily data in general; this is in line with this established 

stylized fact of asset behaviour, (Zivot (2009)). 

Unlike the daily returns, five of the banks: ETI, First, GTB, UBA and Zenith have a median 

monthly return slightly different from zero. The standard deviations are also found to be much 

higher than the means for the monthly returns of each bank, as was found with the daily data.  

Both the degrees of skewness and kurtosis in the monthly data are drastically lower than for the 

daily data, due to the smoothing down of the noise in monthly returns compared with the daily 

returns. For example, WEMA bank with the highest skewness value of 36.1655 in the daily 

data reduced to 5.7294 in the monthly return. Also, the same bank with highest excess kurtosis 

of 1882.011 in the daily returns reduced to 59.6458 in the monthly returns, a behaviour which 

supports the stylized facts of asset returns that monthly financial data are closer to a normal 

distribution compared to daily data. Furthermore, six banks:  ETI (-5.1584), First (-0.3327), 

GTB (-0.3554), Skye (-0.7237), STANBIC (-1.666) and Zenith (-0.9269) are negatively 

skewed, while the remaining 10 are positively skewed. None of the banks was attained the 

excess kurtosis of zero expected of a normal variate indicating that our monthly returns series 

is still leptokurtic.  
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Table 5.5: Summary Statistics on Monthly Returns of the Banks (Overall Period) 

Banks T Mean Med Min Max Std Dev Var. Skew. Kurt. 

ACCESS 186 -0.0006 0.0000 -0.5738 0.9016 0.1931 0.0373 1.1358 4.4862 

AFRIBANK 147 -0.0118 0.0000 -0.6686 0.6783 0.1838 0.0338 0.2056 3.2612 

DIAMOND 115 -0.0023 0.0000 -0.5889 0.7186 0.1715 0.0294 0.5550 3.6408 

ETI 99 -0.0281 0.0039 -1.8331 0.3914 0.2332 0.0544 -5.1584 35.1432 

FCMB 120 -0.0061 0.0000 -0.3732 0.3930 0.1409 0.0199 0.0931 1.0079 

FIDELITY 116 -0.0059 0.0000 -0.3865 0.6510 0.1405 0.0197 1.0543 4.4468 

FIRST 186 -0.0027 0.0007 -0.4376 0.4376 0.1257 0.0158 -0.3327 3.0332 

GTB 185 0.0123 0.0031 -0.3985 0.2953 0.1135 0.0129 -0.3554 1.6129 

SKYE 109 0.0004 0.0000 -0.9151 0.6008 0.1727 0.0298 -0.7237 7.8071 

STANBIC 117 0.0047 0.0000 -2.2930 1.8718 0.3167 0.1003 -1.6660 31.8347 

STERLING 186 -0.0006 0.0000 -0.5737 0.9016 0.1931 0.0373 1.1358 4.4862 

UBA 186 0.0000 -0.0031 -0.6788 0.7100 0.1663 0.0277 0.2109 3.3004 

UNION 186 -0.0006 0.0000 -0.9052 1.6237 0.2035 0.0414 2.0168 22.7054 

UNITY 108 0.0126 0.0000 -0.4818 2.8198 0.3508 0.1231 4.9406 35.9688 

WEMA 186 0.0058 0.0000 -0.8104 2.8198 0.2723 0.0742 5.7294 59.6458 

ZENITH 122 0.0015 0.0082 -0.6140 0.6084 0.1440 0.0207 -0.9269 6.5598 

In Table 5.6, we present descriptive statistics on the stock data of the banks during the financial 

crisis, July 2007-June 2009. All the banks’ series are of equal length; none of them has a positive 

mean, and five banks: Diamond, First, GTB, UBA and Unity banks, have a median below zero. 

Also, the standard deviations are all higher than the mean returns. 

Only five of the banks: Access (0.0346), FCMB (0.0108), Skye (0.00425), STANBIC (0.00687) 

and Unity (0.03347), constituting 31.25% of the banks, are positively skewed but the values are 

close to zero (0), while the remaining 11 banks are negatively skewed. While seven banks, 
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constituting 43.75% of the banks, attain negative excess kurtosis and are thus, platykurtic (i.e. 

have thinner tailed than normal distribution), the remaining nine (with ETI having the highest 

excess kurtosis of 404.3597) are heavy or fat-tailed and leptokurtic compared to the normal 

distribution. Note that the returns distributions with thinner tails than the Normal distribution 

indicate lower chances of extremely small or large returns, and vice versa. The changes in the 

return’s profiles of banks during the financial crisis show that the crisis distorts the economic 

environment in which banks trade in the NSM. 

Table 5.6: Summary Statistics on Daily Returns of the Banks (Financial Crisis Period) 

Banks T Mean Median Min Max Std Dev Variance Skewness Kurtosis 

ACCESS 517 -0.0015 0.0000 -0.0513 0.0488 0.0299 0.0009 0.0346 -0.7279 

AFRIBANK 517 -0.0008 0.0000 -0.3040 0.0488 0.0338 0.0011 -1.6597 12.8694 

DIAMOND 517 -0.0007 -0.0011 -0.1343 0.0488 0.0336 0.0011 -0.0509 -0.7470 

ETI 517 -0.0047 0.0000 -1.6094 0.0488 0.0749 0.0056 -19.0046 404.3597 

FCMB 517 -0.0012 0.0000 -0.0513 0.0488 0.0272 0.0007 0.0108 -0.3752 

FIDELITY 517 -0.0019 0.0000 -0.0513 0.0488 0.0276 0.0008 0.1230 -0.3137 

FIRST 517 -0.0012 -0.0003 -0.2538 0.0488 0.0320 0.0010 -1.0765 7.8447 

GTB 517 -0.0016 -0.0020 -0.3066 0.0181 0.0334 0.0011 -1.4398 12.1239 

SKYE 517 -0.0010 0.0000 -0.0864 0.0488 0.0320 0.0010 0.0043 -0.8883 

STANBIC 517 -0.0004 0.0000 -0.0223 0.0212 0.0130 0.0002 0.0069 -0.6497 

STERLING 517 -0.0027 0.0000 -0.1683 0.0488 0.0306 0.0009 -0.2516 0.7709 

UBA 517 -0.0023 -0.0010 -0.4099 0.0488 0.0361 0.0013 -3.4967 35.5618 

UNION 517 -0.0016 0.0000 -0.2026 0.0488 0.0328 0.0011 -0.7720 3.7275 

UNITY 517 -0.0023 -0.0033 -0.0513 0.0488 0.0371 0.0014 0.0335 -1.4704 

WEMA 517 -0.0016 0.0000 -0.0513 0.0488 0.0241 0.0006 -0.1102 0.7930 

ZENITH 517 -0.0026 0.0000 -0.4058 0.0488 0.0333 0.0011 -4.0211 44.7612 
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5.3.5 Discussions of Tests of the Mean, Skewness and Kurtosis for Daily and Monthly Data, 

for the Overall and Financial Crisis Periods 

In this section, test results on the mean, skewness and kurtosis across the sixteen banks are 

discussed for daily, monthly and financial crisis periods respectively. This will help to confirm 

whether the banks' asset returns satisfy the stylized facts relating to asymmetry, leptokurtosis 

and indeed the distributional assumptions of each bank’s returns across the three periods of 

interest. Test Results on the Mean, Skewness and Kurtosis for Daily Data 

Table 5.7 displays the test results on the mean, skewness and excess kurtosis obtained with 

respect to daily stock returns in the overall period. In this case, student-T test statistic (for 

skewness) and Z-test statistic (for the mean and kurtosis) are employed for testing the following 

hypotheses: 

1. 𝐻0: 𝑚𝑒𝑎𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑠, 𝜇 = 0 𝑣𝑠 𝐻1: 𝑚𝑒𝑎𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑠, 𝜇 ≠ 0 

2. 𝐻0: 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠, 𝑆𝑘𝑟 = 0 𝑣𝑠 𝐻1: 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠, 𝑆𝑘𝑟 ≠ 0 

3. 𝐻0: 𝑒𝑥𝑐𝑒𝑠𝑠 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠, (𝐾 − 3) = 0 𝑣𝑠 𝐻1: 𝑒𝑥𝑐𝑒𝑠𝑠 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠, (𝐾 − 3) ≠ 0 

The test statistic values relating to the first hypotheses are contained in column 2 of the table, 

with the p-value in brackets. Considering the p-values, at any possible significance level (5%, 

1% or 10%), we cannot reject the null hypothesis, indicating that the mean daily return for any 

of the banks is not significantly different from zero. 

For the skewness test results in column 3, it is in the case of only three banks whose p-values: 

0.9317 (Diamond), 0.2444 (FCMB) and 0.9254 (Fidelity) are higher than 0.05 that we cannot 

reject our null hypothesis; indicating that their skewness is not significantly different from zero. 

At 5% level, the null hypothesis is rejected for excess kurtosis across all the banks, and at the 

1% level as well for all banks apart from Diamond bank. 

Table 5.7: Mean, Skewness and Kurtosis Tests for the Banks Daily Stock Returns (overall) 

Banks Mean Skewness Kurtosis 

Access 1.2851 (0.1988) 41.7742 (2.2e-16) 38.6144 (2.2e-16) 

Afribank -0.8651 (0.3871) -43.9973 (2.2e-16) 34.6632 (2.2e-16) 

Diamond -0.1614 (0.8718) -0.0857 (0.9317) 2.4831 (0.013) 

ETI -1.3838 (0.1666) -61.4830 (2.2e-16) 33.1810 (2.2e-16) 
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FCMB -0.2987 (0.7652) -1.1641 (0.2444) 6.4524 (1.1e-10) 

FIDELITY -0.4589 (0.6463) 0.0937 (0.9254) 2.6760 (0.007451) 

First -0.2856 (0.7752) -52.6550 (2.2e-16) 39.0966 (2.2e-16) 

GTB 1.3631 (0.1729) -35.8670 (2.2e-16) 31.8540 (2.2e-16) 

Skye 0.1515 (0.8796) 43.8922 (2.2e-16) 31.3150 (2.2e-16) 

STANBIC 1.3059 (0.1917) 68.6900 (2.2e-16) 36.2100 (2.2e-16) 

Sterling 0.1160 (0.9077) 30.0771 (2.2e-16) 37.2168 (2.2e-16) 

UBA 0.1268 (0.8991) 4.9592 (7.08e-07) 38.7493 (2.2e-16) 

Union -0.0952 (0.9242) 78.3902 (2.2e-16) 45.0762 (2.2e-16) 

Unity 0.2669 (0.7896) 67.3227 (2.2e-16) 34.9827 (2.2e-16) 

WEMA 0.3756 (0.7072) 93.3703 (2.2e-16) 46.7330 (2.2e-16) 

Zenith 0.3735 (0.7088) -29.4246 (2.2e-16) 27.4034 (2.2e-16) 

Test Results on the Mean, Skewness and Kurtosis for the Monthly Data 

Table 5.8 shows the mean, skewness and excess kurtosis tests for monthly data. It is obvious 

from the results below that only Afribank has a mean monthly return that is significantly 

different from zero. Afribank, FCMB, UBA and First banks are the four banks whose skewness 

is not significantly different from zero at the 5% level, given that their respective p-values: 

0.286, 0.6572, 0.2242 and 0.05865 are higher than 0.05, and thus their monthly returns are 

approximately symmetric. However, none of the banks has excess kurtosis that is 

approximately zero as expected of a normal random variate.  
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Table 5.8: Mean, Skewness and Kurtosis Tests for the Banks Monthly Stock Returns (overall) 

Banks Mean Skewness Kurtosis 

Access -0.0411 (0.9673) 5.4580 (4.82e-08) 5.1294 (2.907e-07) 

Afribank 9.1400 (4.884e-16) 1.0654 (0.2867) 4.1354 (3.544e-05) 

Diamond -0.0514 (0.718) 2.4558 (0.01406) 4.0195 (5.833e-05) 

ETI -1.1979 (0.2338) -9.6329 (2.2e-16) 7.2521 (4.103e-13) 

FCMB -0.4746 (0.636) 0.4438 (0.6572) 2.0984 (0.03587) 

FIDELITY -0.4560 (0.6493) 4.2061 (2.599e-09) 4.3767 (1.205e-05) 

First -0.2965 (0.7672) -1.8908 (0.05865) 4.3337 (1.466e-05) 

GTB 1.4710 (0.143) -2.0086 (0.04458) 3.1298 (0.00175) 

Skye 0.0256 (0.9796) -3.0263 (0.00248) 5.2514 (1.509e-07) 

STANBIC 0.1593 (0.8738) -5.8043 (6.465e-09) 7.4835 (7.239e-14) 

Sterling -0.0411 (0.9673) 5.4579 (4.817e-08) 5.1294 (2.907e-07) 

UBA 0.0000 (1.000) 1.2155 (0.2242) 4.5037 (6.678e-06) 

Union -0.0388 (0.9691) 7.9429 (1.998e-15) 8.1846 (2.22e-16) 

Unity 0.3720 (0.7106) 9.7894 (2.2e-16) 7.4602 (8.638e-14) 

WEMA 0.2898 (0.0703) 12.9745 (2.2e-16) 9.5550 (2.2e-16) 

Zenith 0.1159 (0.9079) -3.8896 (0.0001004) 5.1302 (2.894e-07) 

Test Results on the Mean, Skewness and Kurtosis for the Financial Crisis Period 

Table 5.9 displays the results on the mean, skewness and kurtosis tests during the financial 

crisis. From the table, only in the case of Sterling bank do we have evidence of the mean not 

being equal to zero at the 5% (but not at the 1%) level. As for skewness, the following 8 banks’ 

returns appear to be symmetric: Access, Diamond, FCMB, Fidelity, Skye, STANBIC, Unity 

and WEMA, whereas the remaining 8 banks are non-symmetric. For kurtosis, only FCMB and 

Fidelity appear to show no evidence of having a non-zero kurtosis.  
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Table 5.9: Mean, Skewness and Kurtosis Tests for the Banks Financial Crisis Stock Returns 

Banks Mean Skewness Kurtosis 

Access -1.1170 (0.2644) 0.3262 (0.7443) -5.2494 (1.526e-07) 

Afribank -0.5466 (0.5849) -11.3193 (2.2e-16) 10.8455 (2.2e-16) 

Diamond -0.4777 (0.6331) -0.4805 (0.6308) -5.4920 (3.97e-08) 

ETI -1.4286 (0.1537) -30.0144 (2.2e-16) 16.9705 (2.2e-16) 

FCMB -0.9644 (0.3353) 0.1024 (0.9185) -1.9495 (0.05124) 

FIDELITY -1.5398 (0.1242) 1.1571 (0.2473) -1.5289 (0.1263) 

First -0.8348(0.4042) -8.4402 (2.2e-16) 9.4280 (2.2e-16) 

GTB -1.0829 (0.2794) -10.3368 (2.2e-16) 10.6811 (2.2e-16) 

Skye -0.6762(0.4992) 0.0401 (0.968) -7.6412 (2.154e-14) 

STANBIC -0.6369 (0.5245) 0.0649 (0.9483) -4.3435 (1.402e-05) 

Sterling -2.0279 (0.04308) -2.3399 (0.01929) 2.8943 (0.0038) 

UBA -1.4332 (0.1524) -16.8270 (2.2e-16) 13.3220 (2.2e-16) 

Union -1.1287 (0.2595) -6.5146 (7.289e-11) 7.1425 (9.166e-13) 

Unity -1.3881 (0.1657) 0.3159 (0.7521) -6.8710 (2.2e-16) 

WEMA -1.4786 (0.1399) -1.0370 (0.2997) 2.9518 (0.00316) 

Zenith -1.7431 (0.08191) -17.8980 (2.2e-16) 13.7955 (2.2e-16) 

Meanwhile, using the values of skewness and kurtosis, across the two periods as contained in 

9th and 10th columns of Tables 5.4, 5.6 and 5.8 respectively, we ranked the banks to determine 

the degrees of skewness and kurtosis as displayed in Tables 5.10 and 5.11 below.  

In Table 5.10 below, the ranks for positively skewed banks appear in brackets ( ), in green 

while those with negative skewness appear in red. Those without any rank are those that are 

approximately symmetric. The squared brackets [ ] contain the standard errors for skewness in 

each cell (where the sizes, T, differ) and in the column heading (where the size is the same). 
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To determine the groupings into "Positively skewed", "Negatively skewed" and 

"Approximately symmetric", we use the following rules: 

a. If the test statistic values, t (see column 3 of Tables 5.10 and 5.11) < -2, the series is 

likely negatively skewed; 

b. If the test statistic values, t falls in the interval -2 < t < 2: the series is approximately 

symmetric; 

c. If the test statistic values, t > 2, the series is likely positively skewed (Cramer, 2003, 

p. 89) 

where the t- test statistic is given by t = skewness-0/SES (standard error of skewness). 

Subject to the above, for daily data, eight banks are positively skewed, with WEMA bank 

taking the lead and UBA being the least; five banks are negatively skewed, with ECO (or ETI) 

taking the lead and GTB being the least and only three (3) banks- Diamond, FCMB and 

Fidelity are approximately symmetric. 

For monthly data, six banks are positively skewed (with a tie- Access and Sterling), WEMA 

takes the lead again and Fidelity, the least; four banks are negatively skewed with ECO also 

leading and Skye being the least; and six banks- Afribank, Diamond, FCMB, First, GTB and 

UBA are approximately symmetric. 

For the financial crisis periods, while eight banks are negatively skewed with ECO taking the 

lead and Sterling being the least, eight banks are approximately symmetric, and none is 

positively skewed. 

Implications:  

For positively skewed banks, their returns have a longer right tail indicating that extreme gains 

are more probable than extreme losses. For the negatively skewed banks, their returns have a 

longer left tail, implying that large negative returns are more probable than large positive returns 

(see Danielson, 2011). These remarks may partly explain the different experiences of the banks 

in managing the effects of the financial crisis and related bank reforms. Thus, during the 

financial crisis, eight banks experienced negative returns. 
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Table 5.10: Degree of Skewness across the Banks for the three Periods 

Bank 
Daily Monthly Fin. Crisis 

Skewness Deg. Skew. Skew. Deg. Skew. Skewness  Deg. Skew. 

ACCESS 
2.9845 (6th) 

[0.039] 

Positively 

skewed 

1.1358 (4th) 

[0.178] 

Positively 

skewed 

0.0346 

[0.107] 

Approx. 

Symmetric 

AFRIBANK 
-4.3754 (3rd) 

[0.044] 

Negatively 

skewed 

0.2056 

[0.2] 

Approx. 

Symmetric 

-1.6597 (4th) 

[0.107] 

Negatively 

skewed 

DIAMOND 
-0.0430 

[0.05] 

Approx. 

Symmetric 

0.5550 

[0.226] 

Approx. 

Symmetric 

-0.0509 

[0.107] 

Approx. 

Symmetric 

ETI 
-23.2311 (1st) 

[0.054] 

Negatively 

skewed 

-5.1584 (1st) 

[0.243] 

Negatively 

skewed 

-19.0046 (1st) 

[0.107] 

Negatively 

skewed 

FCMB 
-0.0572 

[0.049] 

Approx. 

Symmetric 

0.0931 

[0.221] 

Approx. 

Symmetric 

0.0108 

[0.107] 

Approx. 

Symmetric 

FIDELITY 
0.0047 

[0.05] 

Approx. 

Symmetric 

1.0543(5th) 

[0.225] 

Positively 

skewed 

0.1230 

[0.107] 

Approx. 

Symmetric 

FIRST 
-5.0916 (2nd) 

[0.039] 

Negatively 

skewed 

-0.3327 

[0.178] 

Approx. 

Symmetric 

-1.0765 (6th) 

[0.107] 

Negatively 

skewed 

GTB 
-2.2160 (5th) 

[0.039] 

Negatively 

skewed 

-0.3554 

[0.179] 

Approx. 

Symmetric 

-1.4398 (5th) 

[0.107] 

Negatively 

skewed 

SKYE 
6.4348 (5th) 

[0.052] 

Positively 

skewed 

-0.7237 (4th) 

[0.231] 

Negatively 

skewed  

0.0043 

[0.107] 

Approx. 

Symmetric 

STANBIC 
27.2745 (3rd) 

[0.05] 

Positively 

skewed 

-1.666 (2nd) 

[0.224] 

Negatively 

skewed  

0.0069 

[0.107] 

Approx. 

Symmetric 

STERLING 
1.6371 (7th) 

[0.039] 

Positively 

skewed 

1.1358 (4th) 

[0.178] 

Positively 

skewed 

-0.2516 (8th) 

[0.107] 

Negatively 

Skewed 

UBA 
0.1967 (8th) 

[0.039] 

Positively 

skewed 

0.2109 

[0.178] 

Approx. 

Symmetric 

-3.4967 (3rd) 

[0.107] 

Negatively 

skewed 

UNION 
17.6137 (4th) 

[0.039] 

Positively 

skewed 

2.0168 (3rd) 

[0.178] 

Positively 

skewed 

-0.7720 (7th) 

[0.107] 

Negatively 

skewed 

UNITY 
28.6789 (2nd) 

[0.052] 

Positively 

skewed 

4.9406 (2nd) 

[0.233] 

Positively 

skewed 

0.0335 

[0.107] 

Approx. 

Symmetric 

WEMA 
36.1655 (1st) 

[0.039] 

Positively 

skewed 

5.7294 (1st) 

[0.178] 

Positively 

skewed 

-0.1102 

[0.107] 

Approx. 

Symmetric 

ZENITH 
-2.2796( 4th) 

[0.049] 

Negatively 

skewed 

-0.9269 (3rd) 

[0.219] 

Negatively 

Symmetric 

-4.0211 (2nd) 

[0.107] 

Negatively 

skewed 

Standard errors are in squared brackets 

Also in Tables 5.11 and 5.12 below, the degrees of kurtosis are ranked, with ranks displayed 

in brackets (), coloured red, and standard errors appear in square [ ] brackets as defined above. 
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The classifications according to Westfall (2014) and Ghasemi, and Zahediasl (2012), are based 

on: 

a. If excess kurtosis (kurtosis-3 as displayed) ≈ 0, the distribution is mesokurtic (at the 

same level as the Normal distribution); 

b. If excess kurtosis (kurtosis-3, as displayed) < 0, the distribution is platykurtic (lower or 

shorter than Normal distribution, hence thin tailed); 

c. If excess kurtosis (kurtosis-3, as displayed) > 0, the distribution is leptokurtic (higher 

than Normal distribution, hence fat tailed) ( see https://brownmath.com/stat/shape.htm 

and Wright and Herrington (2011): 

Furthermore, in Table 5.11 excess kurtosis, the standard errors and the confidence interval for 

the excess kurtosis of each bank returns, are provided. According to the rule, once the interval 

contains zero it means the kurtosis is not significantly different from zero; the distribution with 

such kurtosis is said to be mesokurtosis. However, when the confidence interval does not 

include zero, the returns with such distribution is either leptokurtic or platykurtic depending on 

the classifications b and c above.  

Consequently, all the banks are apparently leptokurtic for both daily and monthly data, with 

WEMA having the highest excess kurtosis in these two periods, while Diamond has the least 

kurtosis with respect to daily periods. Nine of the banks however are leptokurtic with ECO bank 

taking the lead; the remaining is platykurtic compared to a normal distribution. For financial 

crisis period, we found that the confidence intervals around FCMB and Fidelity banks, contains 

zero, making the excess kurtosis for the respective banks to be insignificantly different from 

zero; thus making them to be mesokurtic (see Figures 5.11 and 5.12). Since kurtosis and 

corresponding fat-tailed distributions are associated with outliers, this shows that higher 

kurtosis indicates that more of the variance is due to the infrequent extreme deviations, as 

opposed to frequent modestly sized deviations. Further, while higher values for kurtosis mean 

a higher and sharper peak, a lower value implies a lower and less distinctive peak (Cramer, 

2003).  

Furthermore, by implication, according to Danielson (2011), for fat-tailed series, it means that 

extreme values occur more often than implied by a normal distribution. It further shows that for 

a large part of the time, financial asset returns fluctuate in a smaller range than a normal 

distribution. 

https://brownmath.com/stat/shape.htm
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Table 5.11: Excess Kurtosis and Confidence Interval across the 16 banks for the Three Periods 

Bank 

Daily Monthly Fin. Crisis 

Excess 

Kurtosis 

Confidence 

Interval [LL, 

UL] 

Excess 

Kurtosis 

Confidence 

Interval [LL, UL] Excess 

Kurtosis  

Confidence 

 Interval [LL, UL14] 

ACCESS 

86.8983 

[0.079] 

[86.7403, 

87.0563] 

4.4862 

[0.355] 

[3.7904, 5.1820] 

-0.7279  

[0.214] 

[-1.1473, -0.3085] 

AFRIBANK 

94.7174 

[0.089] 

[94.5430, 

94.8918] 

3.2612 

[0.397] 

[2.4831, 4.0393] 

12.8694  

[0.214] 

[12.4500, 13.2888] 

DIAMOND 

0.2706 

[0.101] 

[0.0726, 

0.4686] 

3.6408 

[0.447] 

[2.7647, 4.5169] 

-0.7470  

[0.214] 

[-1.1664, -0.3276] 

ETI 

783.7070 

[0.108] 

[783.4953, 

783.9187] 

35.1432 

[0.481] 

[34.2004, 36.0860] 

404.3597  

[0.214] 

[403.9403, 404.7791] 

FCMB 

0.8811 

[0.098] 

[0.6890, 

1.0732] 

1.0079 

[0.438] 

[0.1494, 1.8664] 

-0.3752  

[0.214] 

[-0.7946, 0.0442] 

FIDELITY 

0.2950 

[0.1] 

[0.0990, 

0.4910] 

4.4468 

[0.446] 

[3.5726, 5.3210] 

-0.3137  

[0.214] 

[-0.7331, 0.1057] 

FIRST 

97.7673 

[0.079] 

[97.6125, 

97.9221] 

3.0332 

[0.355] 

[2.3374, 3.7290] 

7.8447  

[0.214] 

[7.4253, 8.2641] 

GTB 

23.1739 

[0.079] 

[23.0191, 

23.3287] 

1.6129 

[0.355] 

[0.9171, 2.3087] 

12.1239  

[0.214] 

[11.7045, 12.5433] 

SKYE 

155.7540 

[0.103] 

[155.5521, 

155.9559] 

7.8071 

[0.459] 

[6.9075, 8.7067] 

-0.8883  

[0.214] 

[-1.3077, -0.4689] 

STANBIC 

1065.4050 

[0.1] 

[1,065.2090, 

1,065.6010] 

31.8347 

[0.444] 

[30.9645, 32.7049] 

-0.6497  

[0.214] 

[-1.0691, -0.2303] 

                                                
14 LL: Lower Limit; UL:Upper Limit 
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STERLING 

63.1626 

[0.079] 

[63.0078, 

63.3174] 

4.4862 

[0.355] 

[3.7904, 5.1820] 

0.77085  

[0.214] 

[0.3514, 1.1903] 

UBA 

89.7707 

[0.079] 

[89.6159, 

89.9255] 

3.3004) 

[0.355] 

[2.6046, 3.9962] 

35.5618  

[0.214] 

[35.1424, 35.9812] 

UNION 

744.0610 

[0.079] 

[743.9062, 

744.2158] 

22.7054 

[0.355] 

[22.0096, 23.4012] 

3.7275  

[0.214] 

[3.3081, 4.1469] 

UNITY 

1085.0730 

[0.104] 

[1,084.8692, 

1,085.2768] 

35.9688 

[0.461] 

[35.0652, 36.8724] 

-1.4704  

[0.214] 

[-1.8898, -1.0510] 

WEMA 

1882.0110 

[0.079] 

[1,881.8562, 

1,882.1658] 

59.6458 

[0.355] 

[58.9500, 60.3416] 

0.7930  

[0.214] 

[0.3736, 1.2124] 

ZENITH 

32.3184 

[0.098] 

[32.1263, 

32.5105] 

6.5598 

[0.435] 

[5.7072, 7.4124] 

44.7612  

[0.214] 

[44.3418, 45.1806] 

 

Table 5.12: Degree of Kurtosis across the 16 Banks for the 3 Periods 

Bank 

Daily Monthly Fin. Crisis 

Excess Kurtosis Deg. Kurt. Kurtosis Deg. Kurt. Kurtosis  Deg. Kurt. 

ACCESS 

86.8983 (10th) 

[0.079] 

Leptokurtic 

4.4862 (8th) 

[0.355] 

Leptokurtic 

-0.7279 (4th) 

[0.214] 

Platykurtic 

AFRIBANK 

94.7174 (8th) 

[0.089] 

Leptokurtic 

3.2612 (12th) 

[0.397] 

Leptokurtic 

12.8694 (4th) 

[0.214] 

Leptokurtic 

DIAMOND 

0.2706 (16th) 

[0.101] 

Leptokurtic 

3.6408 (10th) 

[0.447] 

Leptokurtic 

-0.7470 (3rd) 

[0.214] 

Platykurtic 

ETI 

783.7070 (4th) 

[0.108] 

Leptokurtic 

35.1432 (3rd) 

[0.481] 

Leptokurtic 

404.3597 (1st) 

[0.214] 

Leptokurtic 

FCMB 0.8811 (14th) Leptokurtic 1.0079 (15th) Leptokurtic -0.3752 Mesokurtic 
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[0.098] [0.438] [0.214] 

FIDELITY 

0.2950 (15th) 

[0.1] 

Leptokurtic 

4.4468 (9th) 

[0.446] 

Leptokurtic 

-0.3137 

[0.214] 

Mesokurtic 

FIRST 

97.7673 (7th) 

[0.079] 

Leptokurtic 

3.0332 (13th) 

[0.355] 

Leptokurtic 

7.8447 (6th) 

[0.214] 

Leptokurtic 

GTB 

23.1739 (13th) 

[0.079] 

Leptokurtic 

1.6129 (14th) 

[0.355] 

Leptokurtic 

12.1239 (5th) 

[0.214] 

Leptokurtic 

SKYE 

155.7540(6th) 

[0.103] 

Leptokurtic 

7.8071(6th) 

[0.459] 

Leptokurtic 

-0.8883 (2nd) 

[0.214] 

Platykurtic 

STANBIC 

1065.4050 (3rd) 

[0.1] 

Leptokurtic 

31.8347(4th) 

[0.444] 

Leptokurtic 

-0.6497 (5th) 

[0.214] 

Platykurtic 

STERLING 

63.1626 (11th) 

[0.079] 

Leptokurtic 

4.4862(8th) 

[0.355] 

Leptokurtic 

0.77085 (9th)  

[0.214] 

Leptokurtic 

UBA 

89.7707 (9th) 

[0.079] 

Leptokurtic 

3.3004(11th) 

[0.355] 

Leptokurtic 

35.5618 (3rd) 

[0.214] 

Leptokurtic 

UNION 

744.0610 (5th) 

[0.079] 

Leptokurtic 

22.7054 (5th) 

[0.355] 

Leptokurtic 

3.7275 (7th) 

[0.214] 

Leptokurtic 

UNITY 

1085.0730(2nd) 

[0.104] 

Leptokurtic 

35.9688 (2nd) 

[0.461] 

Leptokurtic 

-1.4704 (1st) 

[0.214] 

Platykurtic 

WEMA 

1882.0110(1st) 

[0.079] 

Leptokurtic 

59.6458(1st) 

[0.355] 

Leptokurtic 

0.7930 (8th) 

[0.214] 

Leptokurtic 

ZENITH 

32.3184(12th) 

[0.098] 

Leptokurtic 

6.5598(7th) 

[0.435] 

Leptokurtic 

44.7612 (2nd) 

[0.214] 

Leptokurtic 

Standard errors are in square brackets. For the Fin. Crisis period, there is only one standard error since the sample sizes 

are the same across the banks 
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5.3.6 Discussions of Tests of Normality for Daily Data, Monthly and Financial Crisis Periods 

Having tested for the significance of the first, third and fourth moments (mean, skewness and 

kurtosis) for the various banks' returns across the three periods, we now proceed to testing to 

determine the conformity or otherwise of the banks' returns distributions to normality.  

Results of the Normality Tests for Daily Data 

Table 5.13 below presents test results of the normality tests carried out on all the banks’ daily 

stock returns for the overall period. Five different relevant tests were carried out with their 

results (and p-values in bracket) presented in the table. The tests are: Kolmogorov-Smirnov 

(KS), Shapiro-Wilk (SW), D'Agostino (Dago) and Jarque-Bera (JB) tests. However, the most 

widely used in financial time series, especially for series that are leptokurtic, is the JB test and 

for us to reject 𝐻0 the test statistic should be greater than 6 or the p-value should be less than 

0.05. Thus, using the JB test in column 6 of the table, given that none of the statistic is equal to 

6 or less and since none of the p-values (in parentheses) are greater than 0.05, we reject the null 

hypothesis in all cases. 

1. 𝐻0:The respective bank’s daily returns series follow a Normal distribution,  

versus 

𝐻1:The respective bank’s daily returns series do not follow a Normal distribution 

Finally, considering the other test statistics, none support a normal distribution for any of the 

banks’ daily returns. This behaviour is in line with established stylized facts of high frequency 

financial data in the literature, as discussed in Section 3.5 of the thesis. 

Table 5.13: Normality Tests for All the Banks Daily Stock Returns (Overall) 

Banks KS SW Dago JB15 

Access 0.1529 (2.2e-16) 0.8168 (2.2e-16) 3236.1550 (2.2e-16) 1224384 (2.2e-16) 

Afribank 0.2356 (2.2e-16) 0.7526 (2.2e-16) 3137.3064 (2.2e-16) 1149515.3946(2.2e-16) 

Diamond 0.1216 (2.2e-16) 0.9585 (2.2e-16) 6.1732 (0.04566) 7.3808(0.02496) 

ETI 0.1933 (2.2e-16) 0.3496 (2.2e-16) 4881.1075 (2.2e-16) 52750147.9442 (2.2e-16) 

FCMB 0.4753 (2.2e-16) 0.9395 (2.2e-16) 42.9885 (4.6e-10) 81.9560 (2.2e-16) 

                                                
15Kolmogorov-Smirnov (KS), Sharpiro-Wilk (SW), D’Augusto (Dago) and Jarque-Bera (JB). P-values in parentheses 
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FIDELITY 0.1537 (2.2e-16) 0.9546 (2.2e-16) 7.1696 (0.02774) 8.7887 (0.01235) 

First 0.1188 (2.2e-16) 0.7596 (2.2e-16) 4301.1250 (2.2e-16) 1559273.6415 (2.2e-16) 

GTB 0.1043 (2.2e-16) 0.85417 (2.2e-16) 2301.1179 (2.2e-16) 89844.1042 (2.2e-16) 

Skye 0.1241 (2.2e-16) 0.7693 (2.2e-16) 2907.1609 (2.2e-16) 2286858.5800 (2.2e-16) 

STANBIC 0.1965 (2.2e-16) 0.3351 (2.2e-16) 6066.6427(2.2e-16) 113569853.6270 (2.2e-16) 

Sterling 0.1877 (2.2e-16) 0.8233 (2.2e-16) 2289.7203 (2.2e-16) 645570.2481 (2.2e-16) 

UBA 0.0954 (2.2e-16) 0.7621 (2.2e-16) 1526.0984 (2.2e-16) 1300556.2606 (2.2e-16) 

Union 0.4741 (2.2e-16) 0.5383 (2.2e-16) 8176.8855 (2.2e-16) 89542173.2762 (2.2e-16) 

Unity 0.2307 (2.2e-16) 0.2731 (2.2e-16) 5756.1384 (2.2e-16) 109557197.8524 (2.2e-16) 

WEMA 0.1987 (2.2e-16) 0.3316 (2.2e-16) 10901.9795 (2.2e-16) 572429930.5313 (2.2e-16) 

Zenith 0.1082 (2.2e-16) 0.8592 (2.2e-16) 1616.7541 (2.2e-16) 111868.3710 (2.2e-16) 

Results of the Normality Tests for the Monthly Data 

Table 5.14 presents the normality test results for monthly returns, and by examining the p-

values under the JB test, only FCMB is approximately normally distributed at the 5% level, 

whereas the rest of the banks are non-normally distributed. Though this contradicts the general 

axiom that monthly data are approximately normal, comparing the resulting JB test statistic 

values for the daily and monthly data, however, we see that those of monthly are greatly lower 

than those of the daily data.  

Table 5.14: Normality Tests for All the Banks Monthly Stock Returns (Overall) 

Banks KS SW Dago JB 

Access 0.3394 (2.2e-16) 0.8724 (1.93e-11) 566.0990 (6.579e-13) 202.3080 (2.2e-16) 

Afribank 0.2060 (2.2e-16) 0.8703 (5.048e-10) 18.2360 (0.0001097) 69.6840 (7.77e-16) 

Diamond 0.3620 (1.7e-13) 0.9241 (6.38e-06) 22.1872 (1.521e-05) 73.7245 (2.2e-16) 

ETI 0.2690 (2.2e-16) 0.5210 (2.2e-16) 145.3860 (2.2e-16) 5776.5630 (2.2e-16) 

FCMB 0.1149 (0.00052) 0.9567 (0.00069) 4.6000 (0.1002) 5.9616 (0.05075) 
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FIDELITY 0.1750 (2.453e-09) 0.8934 (1.36e-07) 36.8500 (9.98e-09) 123.3031 (2.2e-16) 

First 0.1070 (2.115e-05) 0.9267 (4.71e-08) 22.3560 (1.398e-05) 77.8950 (2.2e-16) 

GTB 0.0840 (0.002775) 0.9603 (4.39e-05) 13.8301 (0.0009928) 25.2820 (3.24e-06) 

Skye 0.1336 (5.686e-05) 0.8610 (1.04e-08) 36.7360 (1.05e-08) 301.0376 (2.2e-16) 

STANBIC 0.2338 (2.2e-16) 0.5337 (2.2e-16) 89.6918 (2.2e-16) 5185.0989 (2.2e-16) 

Sterling 0.1923 (2.2e-16) 0.8724 (1.93e-11) 56.0990 (6.58e-13) 202.3080 (2.2e-16) 

UBA 0.1107 (8.39e-06) 0.9440 (1.27e-06) 21.7610 (1.88e-05) 89.3500 (2.2e-16) 

Union 0.1418 (9.43e-10) 0.7580 (3.35e-16) 130.0780 (2.2e-16) 4222.2148 (2.2e-16) 

Unity 0.2323 (9.212e-16) 0.6000 (1.079e-15) 151.4870 (2.2e-16) 6512.9853 (2.2e-16) 

WEMA 0.2028 (2.2e-16) 0.5740 (2.2e-16) 259.6360 (2.2e-16) 29237.1700 (2.2e-16) 

Zenith 0.1558 (1.072e-07) 0.8522 (1.08e-09) 41.4480 (9.992e-07) 247.3544 (2.2e-16) 

Note: p-values in parentheses 

Test Results of the Normality for the Financial Crisis Data 

The normality test results for daily stock returns during the financial crisis are presented in 

Table 5.15 below. Based on the p-values (in parentheses), and the test statistic values across 

the four normality tests presented, especially JB and Dago test statistics, which are mostly 

applied in financial time series and econometrics (see Ruppert (2011); Tsay, (2014)), only two 

banks’ returns, FCMB and Fidelity, are approximately normally distributed. However, for the 

remaining 2 test statistics, KS and SW, none of the banks’ series seems to follow a Normal 

distribution. 

Table 5.15: Normality Tests for All the Banks’ Daily Stock Returns during the Financial Crisis 

Banks KS SW Dago JB 

Access 0.1090 (4.156e-16) 0.9350 (3.02e-14) 27.6600 (9.844e-07) 11.2414 (0.003622) 

Afribank 0.4810 (2.2e-16) 0.8350 (2.2e-16) 245.7530 (2.2e-16) 3840.7500 (2.2e-16) 

Diamond 0.4805 (2.2e-16) 0.9307 (9.85e-15) 30.3944 (2.512e-07) 11.9646 (0.002523) 

ETI 0.2676 (2.2e-16) 0.1903 (2.2e-16) 1188.8617 (2.2e-16) 3581098.3309 (2.2e-16) 
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FCMB 0.1291 (2.2e-16) 0.9420 (2.171e-13) 3.8110 (0.1487) 2.8799 (0.2369) 

FIDELITY 0.4805 (2.2e-16) 0.9137 (2.2e-16) 3.6760 (0.1591) 3.2927 (0.1928) 

First 0.4805 (2.2e-16) 0.8887 (2.2e-16) 160.1150 (2.2e-16) 1440.3296 (2.2e-16) 

GTB 0.4805 (2.2e-16) 0.8854 (2.2e-16) 220.9351 (2.2e-16) 3376.7667 (2.2e-16) 

Skye 0.4805 (2.2e-16) 0.9287 (5.691e-15) 58.3893 (2.094e-13) 16.6881 (0.0002378) 

STANBIC 0.4915 (2.2e-16) 0.9250 (2.164e-15) 18.8700 (7.988e-05) 8.8425 (0.01202) 

Sterling 0.4805 (2.2e-16) 0.8977 (2.2e-16) 13.8524 (0.0009817) 18.7751 (8.376e-05) 

UBA 0.0898 (1.022e-10) 0.7770 (2.2e-16) 460.6193 (2.2e-16) 28531.7949 (2.2e-16) 

Union 0.4805 (2.2e-16) 0.9055 (2.2e-16) 93.4551 (2.2e-16) 355.1623 (2.2e-16) 

Unity 0.4805 (2.2e-16) 0.8815 (2.2e-16) 12.3860 (2.2e-16) 46.2966 (8.848e-11) 

WEMA 0.4805 (2.2e-16) 0.7771 (2.2e-16) 9.7885 (0.00749) 15.1041 (0.000525) 

Zenith 0.1544 (2.2e-16) 0.7370 (2.2e-16) 510.6568 (2.2e-16) 44919.5254 (2.2e-16) 

Note: p-values in parentheses 

Fundamentally, the distributions of the Nigerian banks’ daily returns are non-normal, as 

established in other markets; therefore, they satisfy the stylized fact for daily data across most 

global markets. Non-normality indicates the presence of non-random influences in the 

dynamics of financial markets. These influences support the belief that markets are not usually 

efficient, so that opportunities for predicting the direction of returns and possibly making money 

exist in such inefficient markets. This is, however, a simple way of describing the effects of 

non-normality. It is known that further examination of the influences on market dynamics are 

needed as investment analysts explore those opportunities through stylised facts and related 

market features, namely efficiency, bubbles, anomalies, volatility, predictability and valuation 

(Ezepue and Omar, 2012). 

As for the monthly data, though the asset returns are largely non-normal, the degrees of non-

normality are far lower than those of the daily returns across the banks. During the financial 

crisis, FCMB and Fidelity are approximately normally distributed at the 5% level. The 

difference in degrees of normality between daily and monthly returns suggests the presence of 

agglomeration effects whereby financial data behave differently over different granularities of 
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the datasets -namely daily, monthly, yearly or even seconds used for algorithmic trading 

(Ezepue and Omar, 2012). The implications of these differences in distribution are such that 

investment decisions across the short-, medium- and long-term horizons are treated differently 

(Raheem and Ezepue, 2018). 

To further visualise the distributions of these returns, we present histogram and Q-Q plots in 

the next section to further establish our findings. 

5.3.7 Discussions of the Histograms and Quantile-Quantile (Q-Q) Plots 

In this section, we present both histograms and Q-Q plots for the 16 banks for their daily, 

monthly and financial crisis data, to visually strengthen the results presented in the previous 

section and to further identify the nature of the distributions of the various banks’ returns.  

Discussions of the Overall Daily Returns Distribution using Histogram and Q-Q plots 

Figure 5.11 and 5.12 respectively display normalized histograms (with superimposed kernel 

densities) and Q-Q plots for the daily stock returns for the sixteen banks for the overall data.  

Visually, it can be confirmed that eight banks, namely: WEMA (1st), Unity (2nd), STANBIC 

(3rd) , Union (4th), Skye (5th), Access (6th), Sterling (7th) and UBA (8th) are respectively 

rightly skewed with longer positive tails than would be accommodated by a normal distribution; 

five banks-ECO (1st), First (2nd), Afribank (3rd), Zenith (4th) and GTB (5th) are 

respectively negatively skewed with longer negative tails than would be a normal distribution; 

and only three banks-Diamond, Fidelity and FCMB are approximately symmetric (see Figure 

5.13).This fact further confirms our previous findings as presented in Table 5.16. 
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Figure 5.11: Daily Normalized Histogram Plots for the Nigerian Banks' Returns (for the overall period) 
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Figure 5.12: Daily Normalized Histogram Plots for the Nigerian Banks' Returns for the overall period (Contd) 

Further examination of Figures 5.13 and 5.14 below helps us to visualise the tails of each 

distribution as compared to a normal distribution with the same mean and variance. The black 

points represent the empirical distribution for each series, whereas the superimposed straight 

line in red is for the normal distribution. Our observation reveals that all the eight banks that 

are positively skewed are above the red lines, whereas those that are negatively are the red lines. 

For all the cases where the empirical data deviated from a normal distribution, we observe that 

the deviation of one or more points away from the other points was responsible for the increased 

kurtosis such that the farther away a data point is from the straight line, the higher the kurtosis. 

For example, WEMA bank which is the most leptokurtic has just one point (an outlier) farther 
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away from the rest of the points, which are almost perfectly aligned with the normal; this fact 

confirms the earlier submission that kurtosis is sensitive to outliers. 

To conclude, with these plots we have been able to graphically establish that the Nigerian banks 

are largely non-normally distributed with very high kurtosis, especially for daily data. However, 

with the positively skewed bank returns outnumbering the negatively skewed ones, the views 

expressed by Zivot (2009) about the general behaviours of daily returns that "the distribution 

of daily returns is clearly non-normal with negative skewness and pronounced excess kurtosis", 

is partly demonstrated by our findings. 

 
Figure 5.13: Q-Q Plots for the Daily Returns for Nigerian Banks for the Overall period 
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Figure 5.14: Q-Q Plots for the Daily Returns for Nigerian Banks for the Overall period (Contd) 

Discussions of Histograms and Q-Q plots for Daily and Monthly Returns 

In this section, both histograms and Q-Q plots for the 16 banks are presented and discussed. 

However, only plots for Access are only displayed in Figure 5.15 below, while those for the 

rest of the banks can be found in Appendix 5C. 

Figure 5.15 below presents the histograms and Q-Q plots for Access Bank’s daily and monthly 

data for comparison. It is apparent that the histograms for daily returns (in red) and monthly 

returns (in green), are both skewed to the right. However, that of the monthly data is less skewed 

than that of the daily data. The same goes for their Q-Q plots; for the daily data, it vividly shows 

that while one of the points is farther away from other points at the upper right part of the normal 

line, two points are however away from the rest of the points at a relatively smaller distance, 
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but with more points tailing off at upper right part of the normal line (in red).This goes to 

confirm the degree of skewness and kurtosis presented in the previous sections.  

 
Figure 5.15: Histograms and Q-Q Plots for Daily (above) and Monthly (below) Returns for Access Bank 

Generally, the degrees of skewness and leptokurtosis in the daily series for each bank are largely 

reduced in the monthly plots. However, the distributions are still mostly non-normal across the 

sixteen banks examined. 

Discussions of Histogram and Q-Q Plots for the Financial Crisis Periods 

Below in Figure 5.16 and 5.17 are the histograms and Q-Q plots respectively, across the sixteen 

banks for the financial crisis period. In Figure 5.16, we have the histograms with superimposed 

kernel densities; from the plots, while eight (8) of the banks: ECO (1st), Zenith (2nd), UBA 

(3rd), Afribank (4th), GTB (5th), First (6th), Union (7th) and Sterling (8th) are negatively 

skewed, the remaining eight are, however, approximately symmetric. 
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Figure 5.16: Histograms for Daily returns of the Nigerian Banks during Financial Crisis 
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Figure 5.17: Histograms for Daily returns of the Nigerian Banks during Financial Crisis (Continued) 

In Figures 5.18 and 5.19 below, we observe nine banks having long tails, with eight of them 

having some points below the normal line, with ECO bank having the longest negative tail. 

Five banks-Unity, Skye, Diamond, Access, and STAMBIC banks are thin-tailed, while the 

remaining two- FCMB and Fidelity are approximately normal (see Tables 5.11 and 5.12). 
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Figure 5.18: Q-Q Plots for Daily returns of the Nigerian banks during the Financial Crisis Period 
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Figure 5.19: Q-Q Plots for Daily returns of the Nigerian banks during the Financial Crisis Period (Continued) 

Generally, the returns of the sixteen banks are significantly non-normal - behaviour which 

agrees with the established stylized facts of asset returns across global financial markets. 

Meanwhile, the summary of the banks' situations with respect to symmetry and normality of 

the distributions of their returns series, during the financial crisis is presented in Table 5.16 

below. From the table, it is seen that ten banks- Afribank, Diamond, Eco, First, GTB, Skye, 

UBA, Union, Sterling and Zenith - are negatively skewed, whereas the remaining six banks are 

symmetric. This shows that the banks' investments were characterised by negative shocks 
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during the crisis, with only very few of them managing to surmount the pressure posed by the 

crisis in the market. This reveals the extent of loss recorded in the Nigerian market during the 

financial crisis by investors in the banking sector. This experience is also a confirmation of the 

observation of the CBN as referenced in Section 2.3. Generally, the Nigerian experience 

revealed by this result shows the negative impacts of the financial crisis on the global economy, 

particularly, the Nigerian economy, because more than half (10) of the 16 banks were negatively 

impacted.  

Table 5.16: Showing Banks Symmetry and Normality Status 

Bank SKEWNESS STATUS NORMALITY STATUS 

Access Positively (or Right) Skewed Non-normal 

Afribank Negatively (or left) Skewed Non-normal 

Diamond Fairly symmetry Non-normal 

Eco (ETI) Negatively (or left) Skewed Non-normal 

FCMB Negatively (or left) Skewed Non-normal 

Fidelity Negatively (or left) Skewed Non-normal 

First Negatively (or left) Skewed Non-normal 

GTB Negatively (or left) Skewed Non-normal 

Skye Positively (or Right) Skewed Non-normal 

STANBIC Positively (or Right) Skewed Non-normal 

UBA Fairly Symmetric Non-normal 

Union Positively (or Right) Skewed Non-normal 

Sterling Fairly Symmetric Non-normal 

Unity Positively (or Right) Skewed Non-normal 

WEMA Positively (or Right) Skewed Non-normal 
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Zenith Negatively (or left) Skewed Non-normal 

5.3.8 Results and Discussion of the Auto-correlation functions (ACFs) and Tests 

In this section, brief interpretations of the estimated autocorrelation functions (ACFs), �̂�𝑘  

plotted against the time lag 𝑘 for the compounded (log) returns, absolute and squared returns 

for each of the banks are rendered. It is to be noted that the two dashed horizontal lines in each 

plot are ±1.96/√𝑇, the bounds representing the 95% confidence limits for ACF (𝜌𝑘) if its true 

value, 𝜌𝑘 = 0; 𝜌𝑘  is adjudged to be non-significant if the estimator, �̂�𝑘  is between the two 

dashed lines. 

 Discussion of ACF for Daily Log Returns, Absolute and Squared returns  

Figure 5.20 presents the ACF plots for Access Bank. It is seen that the log return 

autocorrelation is significant at lag 1 since the autocorrelation function at this lag falls outside 

the 95% confidence limit lines but dies off quickly after the lag. This negates the random walk 

theory and contradicts this common stylized fact of daily returns. Meanwhile, the ACF plots of 

the absolute returns are significant even at long lags and die off slowly at long lags - a behaviour 

which confirms the fact that the daily returns are non-linearly correlated. This level of 

persistence is also an indication of long memory in the series of the bank. However, none of the 

ACFs of the squared returns is significant even at lag 1. Although this behaviour appears to be 

at variance with the stylized facts of squared returns as established in the literature, it may be 

attributed to the fact that individual banks’ returns series are being studied as against the market 

index examined in other global markets. 
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Figure 5.20: Autocorrelation Plots for Log, Absolute and Squared Returns of Access Bank (For Overall period) 

The results for all the banks are summarised in Table 5.17 below. For the details on these 

banks see, Appendix 5C. 

Table 5.17: Summary Table of the ACF/PACF Plots on Log, Absolute and Squared Returns for the 16 Banks 

Banks Log returns Absolute Returns Squared Return 

Access  

(Figure 5.27) 

Significant at lag 

1, then dies off 

Significant at several lags and 

exponentially decay slowly; an 

indication of long memory 

None is significant 

Afribank (Figure 

5.30) 

Significant till 

lag 2, then dies 

off 

Significant at many lags and dies 

off at slower rate than Access; an 

indication of long memory 

None is significant 

Diamond (Figure 

5.31) 

Significant at lag 

1, then dies off 

Significant at several lags and dies 

off slowly; an indication of long 

memory 

Significant at some lags but 

with slower decay rate 

compared to Absolute plot 
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Ecobank (Figure 

5.32) 

None is 

significant 

Significant at few lags with faster 

decay rate 

None is significant 

First bank 

(Figure 5.33) 

Significant at lag 

1, then dies off 

Significant at several lags and dies 

off a bit slowly 

Significant at No lag 

FCMB (Figure 

5.34) 

Significant at lag 

1, then dies off 

Significant at several lags and dies 

off slowly; an indication of long 

memory 

Significant at some lags but 

with slower decay rate 

compared to Absolute plot 

Fidelity (Figure 

5.35) 

 Same as above Significant at several lags and dies 

off slowly; an indication of long 

memory 

Significant at some lags but 

with slower decay rate 

compared to Absolute plot 

GTB (Figure 

5.36) 

Same as above Same as above None is significant 

Skye (Figure 

5.37) 

Same as above Same as above None is significant 

STANBIC 

(Figure 5.38) 

Same as above Significant at few lags with faster 

decay rate 

None is significant 

Sterling(Figure 

5.39) 

Significant till 

lag 2, then dies 

off 

Significant at several lags and dies 

off slowly; an indication of long 

memory 

None is significant 

UBA(Figure 

5.40) 

Significant at lag 

1, then dies off 

Significant at few lags and dies off 

faster 

None is significant 

Union (Figure 

5.41) 

Same as above Significant at several lags and dies 

off slowly 

None is significant 

Unity (Figure 

5.42) 

None is 

significant 

Significant till lag 2, then dies of f None is significant 

WEMA (Figure 

5.43) 

Significant at lag 

1, then dies off 

Significant at many lags and dies 

off slowly 

None is significant 

Zenith(Figure 

5.44) 

Same as above Significant at many lags and dies 

off slowly 

None is significant 
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Table 5.18 below gives summary of our observations with regards to the ACF plots for all the 

banks considered in this research. Columns 2, 3 & 4 summarise the level of significance 

observed in the log returns, absolute returns and squared returns for the daily data for the overall 

period. Apparently, it is only with Eco (ETI) and Unity banks that the daily log returns are 

linearly independent, while the remaining banks are linearly dependent, in contrast to the 

established popular stylized fact that daily returns are expected to have negative or non-

significant ACF at lag 1 to be linearly independent. By this finding, the conclusion could be 

drawn that only two banks conform with the random walk hypothesis, while the rest contradict 

it. Again, the implication of these stylised facts for investment decision making linked to the 

different types of distributions that describe observed bank returns are discussed in Raheem and 

Ezepue (2018). The gist of the paper is that stylised facts of asset returns generally underpin the 

way investments are structured over different investment horizons (short, medium and long-

term) and the underlying distributions determine the nature of the financial risk calculations 

involved. 

Furthermore, we also observe that all the absolute returns are significant and persistent at long 

lags with slower decay rate, except for a few banks (such as: ETI, STANBIC, UBA and Unity), 

which die off faster. This is an indication of non-linear dependence/volatility clustering and 

long memory in the returns of the banks. However, except in the case of three banks (Diamond, 

Fidelity and FCMB) where the squared returns ACF was significant at some lags with faster 

decay and slower persistent rates compared to that of absolute returns, the remaining 13 banks 

did not show any sign of significance of their ACF in their squared log returns. 

Table 5.18: The Results of the ACFs of Log Returns, Absolute and Squared Returns across the Banks 

Banks Log Returns Absolute returns Squared Returns 

Access Significant at lag 1 Significant at several lags None appears significant 

Afribank Significant at lag 1 Significant at several lags None appears significant 

Diamond Significant at lag 1 Significant at several lags Significant at many lags 

ETI Not significant at lag 1 Significant at some lags None appears significant 

FCMB Significant at lag 1 Significant at several lags Significant at many lags 

Fidelity Significant at lag 1 Significant at several lags Significant at many lags 
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First Significant at lag 1 Significant at several lags None appears significant 

GTB Significant at lag 1 Significant at several lags None appears significant 

Skye Significant at lag 1 Significant at several lags None appears significant 

STANBIC Significant at lag 1 Significant at some lags None appears significant 

Sterling Significant at lag 1 Significant at several lags None appears significant 

UBA Significant at lag 1 Significant at some lags None appears significant 

Union Significant at lag 1 Significant at several lags None appears significant 

Unity Not significant at lag 1 Significant at few lags None appears significant 

WEMA Significant at lag 1 Significant at few lags None appears significant 

Zenith Significant at lag 1 Significant at several lags None appears significant 

Presentation and Discussions of Test Results of ACFs for the Daily Returns 

To further strengthen the observations made through the correlograms (ACF plots) presented 

above, Table 5.19 presents the respective ACF values for the returns at lag 1 across the banks, 

and the results of the test statistics for the series. The ACFs for Eco bank (0.02) and Unity bank 

(0.038) in column 2, could be said to be approximately equal to zero, which is one of the criteria 

to conclude that the returns of the two banks are linearly uncorrelated, which conforms with the 

random walk theory, so that they can satisfy one of the stylized facts of stock returns. 

Also, comparing the values obtained for absolute and squared returns, it is obvious that those 

of the absolute returns are higher than those of the squared returns; this is expected according 

to Taylor effect theory, discussed in the literature, that the values of the former should be 

higher than those of the latter. Thus, from these results we see that the returns of these banks 

satisfy another stylized fact of assets result. Meanwhile, the significance of the ACFs for 

absolute returns is a confirmation of the presence of volatility clustering in the returns of all 

the banks, and the slow rate in the decay of this series (absolute returns) is an indication for the 

presence of long memory in the banks returns.  
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The table further contains the Box Ljung (Q) test statistic results for the returns and its multiples 

at lag 1, with the p-values in parenthesis. The results of the tests show except for ECO bank, all 

the banks are significantly auto correlated at lag 1 a sign of predictability, which sometimes 

implies that those stocks were bearish (Danielson, 2011) for the periods of the research.  

From the table further, it could be confirmed that for squared returns, the six banks (uncoloured 

ones), - Access, Diamond, FCMB, Fidelity, First and Skye are the only ones significant only 

at the 5% level, while the rest are not; but for the absolute returns, all are significant (see 

columns 3 and 4). 

Table 5.19: ACFs of Log Returns, Absolute and Squared Returns at lag 1 

Banks Log Returns Absolute Returns Squared Returns 

Access 

𝛾1 =0.1640; 𝑄(1) =104.1600 

(2.2e-16) 

𝛾1 =0.3030; 𝑄(1) =356.1900 

(2.2e-16) 

𝛾1 =0.0080; 𝑄(1) =104.1600 

(2.2e-16) 

Afribank 

𝛾1 =0.2320; 𝑄(1) =163.9100 

(2.2e-16) 

𝛾1 =0.3030; 𝑄(1) =356.1900 

(2.2e-16) 

𝛾1 = 0.0110; 𝑄(1) = 0.3660 

(0.5451) 

Diamon

d 

𝛾1 =0.2840; 𝑄(1) =190.5800 

(2.2e-16) 

𝛾1 =0.4830; 𝑄(1) =552.6600 

(2.2e-16) 

𝛾1 =0.4230; 𝑄(1) = 425.0100 

(2.2e-16) 

ETI 

𝛾1 =0.0200; 𝑄(1)= 0.8549 

(0.3552) 

𝛾1 =0.0780; 𝑄(1) = 12.3760 

(0.00043) 

𝛾1 =0.0000; 𝑄(1) = 1.099e-05 

(0.9974) 

FCMB 

𝛾1 =0.1800; 𝑄(1) =80.5700 (2.2e-

16) 

𝛾1 = 0.4440; 𝑄(1) = 1421.1000 

(2.2e-16) 

𝛾1 =0.3660; 𝑄(1) =332.3900 

(2.2e-16) 

FIDELI

TY 

𝛾1 =0.2340; 𝑄(1) =130.3800 

(2.2e-16) 

𝛾1 = 0.4570; 𝑄(1) = 1613.8000 

(2.2e-16) 

𝛾1 =0.3710; 𝑄(1) =327.9100 

(2.2e-16) 

First 

𝛾1 =0.1280; 𝑄(1) =63.8980 

(1.332e-15) 

𝛾1 = 0.2970; 𝑄(1) =341.5800 

(2.2e-16) 

𝛾1 =0.0160; 𝑄(1) =341.5800 

(2.2e-16) 

GTB 

𝛾1 =0.1460; 𝑄(1) =82.6460 (2.2e-

16) 

𝛾1 = 0.2970; 𝑄(1) =340.6300 

(2.2e-16) 

𝛾1 =0.0300; 𝑄(1) =3.4441 

(0.0635) 

Skye 

𝛾1 =0.1800; 𝑄(1) =72.5760 (2.2e-

16) 

𝛾1 = 0.2710; 𝑄(1) =494.1800 

(2.2e-16) 

𝛾1 =0.0040; 𝑄(1) = 494.1800 

(2.2e-16) 
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STANBI

C 

𝛾1 = 0.0740; 𝑄(1) =13.249 

(0.000273) 

𝛾1 = 0.1080; 𝑄(1) = 28.0880 

(1.169e-07) 

𝛾1 =0.0000; 𝑄(1) =0.0003 

(0.9853) 

Sterling 

𝛾1 =0.1980; 𝑄(1) =151.7455 

(2.2e-16) 

𝛾1 = 0.3800; 𝑄(1) =3648.4090 

(2.2e-16) 

𝛾1 = 0.0060; 𝑄(1) = 0.15397 

(0.9665) 

UBA 

𝛾1 =0.1620; 𝑄(1) =101.3200 

(2.2e-16) 

𝛾1 =0.2250; 𝑄(1) =449.3400 

(2.2e-16) 

𝛾1 = 0.0090; 𝑄(1) = 0.3075 

(0.5792) 

Union 

𝛾1 = 0.1120; 𝑄(1) =48.7590 

(2.895e-12) 

𝛾1 =0.1730; 𝑄(1) =115.6000 

(2.2e-16) 

𝛾1 =0.0000; 𝑄(1) =0.0005 

(0.9821) 

Unity 

𝛾1 =0.0380; 𝑄(1) =3.2053 

(0.0734) 

𝛾1 = 0.0600; 𝑄(1) = 8.1251 

(0.004366) 

𝛾1 =-0.0010; 𝑄(1) =0.0006 

(0.9798) 

WEMA 

𝛾1 = 0.0610; 𝑄(1) = 14.5360 

(0.0001375) 

𝛾1 = 0.1220; 𝑄(1) = 56.0070 

(7.216e-14) 

𝛾1 = 0.0000; 𝑄(1) = 4.5240e-05 

(0.9946) 

Zenith 

𝛾1 = 0.2410; 𝑄(1) = 146.4600 

(2.2e-16) 

𝛾1 = 0.2740; 𝑄(1) = 313.9800 

(2.2e-16) 

𝛾1 = 0.0370; 𝑄(1) = 3.4527 

(0.06315) 

p-values in parenthesis. 

Comparisons between ACFs of Daily and Monthly Returns  

This section is intended to briefly compare autocorrelations between daily and monthly log, 

absolute and squared returns; it is expected that while the autocorrelation functions (ACFs) 

for monthly data will die off faster, decay rates for daily data will be slower and more 

prolonged, especially those of absolute returns 

Figure 5.21 displays ACF plots for the log, absolute and squared returns for Access bank, and 

from the Figure, it appears that (1) while ACF for daily log returns is significant at lag 1, that 

of the monthly log returns is non-significant at the same subsequent lags; (2) while absolute 

returns for daily returns persist (for several lags) and die off slowly, those of the monthly are 

non-persistent and die off faster; and (3) the ACFs for the squared returns of both daily and 

monthly data are insignificant.  
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Figure 5.21: Daily versus Monthly ACFs for Log returns, Absolute and Squared Returns for Access Bank 

For further emphasis, we hereby present only monthly absolute returns across the sixteen banks 

in Figure 5.22 below to visually observe the decay rates for monthly returns. From the plots it 

can be seen that they all die off faster compared to those of the daily absolute returns discussed 

at the beginning of Section 5.3.8 above; this behaviour is common to monthly ACFs across 

different markets (See Taylor, 2011). 
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Figure 5.22: ACFs for Monthly Absolute Returns across the Sixteen Banks 

5.3.9 Discussion of Tests of Leverage or Asymmetric Effects 

We have in the tables below correlation test results between the respective banks’ squared 

returns, as a proxy for volatility (see: Taylor, 2011; Zivot, 2008; Tsay, 2005), and a one-day 

lagged continuously compounded returns series; this serves as a preliminary or diagnostic test 

to identify if there is possibility of leverage or an asymmetric effect on an asset return (Zivot, 

2009). While Table 5.20 contains the results and remarks on the daily and financial crisis stock 
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returns of the sixteen banks at the overall level. Apparently, five banks: ETI (for Ecobank), 

Guaranty Trust, UBA, WEMA and Zenith banks are negatively correlated; indicating the 

possibility of negative uncertainty or bad news dominating the returns of the banks. 

During the financial crisis, the number of leveraged banks increased to 8 (see columns 4 and 

5); namely: Access, Ecobank, FCMB, Fidelity, Sterling, UBA WEMA and Zenith banks. They 

are all negatively correlated with their respective volatility, which indicates that negative 

uncertainty or bad news impacted greatly on the returns of the concerned banks, compared to 

good news or positive returns.  

Meanwhile, when the stock of a firm is leveraged it shows that their debt equity ratio rises, 

leading to more losses by the investors trading in such stocks. Thus, to adequately describe the 

volatility behaviour of stocks with potential signs of leverage via GARCH family models, those 

with the capacity to incorporate a leverage component would be preferred. 

Further to our findings, four banks, namely: Ecobank, UBA, WEMA and Zenith have negative 

correlations both at the overall level and during the financial crisis; Guaranty Trust with 

negative correlation overall fails to show any sign of leverage during the crisis. 

Table 5.20: Correlation between Squared and Lagged Log Returns for Daily (Overall) and Financial. Crisis Data 

 Overall Period Financial Crisis Period 

Bank Corr. (𝒓𝒕
𝟐, 𝒓𝒕−𝟏) Remarks Corr. (𝒓𝒕

𝟐, 𝒓𝒕−𝟏) Remarks 

Access 0.0087(0.587) NSLE -0.0149(0.7349) SLE 

Afribank 0.0267(0.1415) NSLE 0.0079(0.8577) NSLE 

Diamond 0.0261(0.2049) NSLE 0.1177(0.0074) NSLE 

ETI  -0.0127(0.5655) SLE -0.0134(0.7618) SLE 

First 0.0181 (0.2593) NSLE 0.0058(0.8958) NSLE 

FCMB 0.0522(0.0094) NSLE -0.0291(0.5093) SLE 

Fidelity 0.0614(0.0027) NSLE -0.0113(0.7983) SLE 

GTB -0.0159(0.324) SLE 0.0110 (0.8034) NSLE 

Skye 0.0034(0.874) NSLE 0.0280(0.05956) NSLE 

Sterling 0.0111(0.49) NSLE -0.0830 (0.5259) SLE 

STANBIC 0.0192(0.232) NSLE 0.0344(0.4351) NSLE 

UBA -0.0048(0.764) SLE -0.0610 (0.1666) SLE 

Union 0.0017(0.914) NSLE 0.0533 (0.2272) NSLE 

Unity 0.0002(0.992) NSLE 0.0336(0.4461) NSLE 

WEMA -0.0123(0.444) SLE -0.0866(0.04923) SLE 

Zenith -0.0392(0.049) SLE -0.0764(0.0828) SLE 

Note: p-value in parenthesis; NSLE: No Sign of Leverage effect; SLE: Sign of Leverage Effect 
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5.3.10 Discussions of Long-Range Dependencies/ Long Memory in Returns 

Table 5.21 below presents results of Ljung-Box tests on both the absolute and squared returns 

for Access bank for the other fifteen banks see Appendix 5C (ii). The tests are intended to show 

the existence of long-range dependence or long memory in the daily returns of the banks. 

To begin with, it is noted that the test values of absolute returns are persistently higher than 

those of the squared returns across the banks, and the tests show that while the absolute returns 

continue to be significant across all the lags considered, the squared returns are non-significant. 

This implies that the decay rates of the return are very slow; this is indeed a sign of long memory 

in the returns, and it also implies that the series for each bank is neither independently nor 

identically distributed. Long memory in returns, indicates that predictability is possible and that 

any shock to the returns persists for a reasonably long time. This behaviour also points to the 

presence of a high level of volatility in the returns. 

Table 5.21: Ljung Box Tests for Access Bank Daily Absolute and Squared Returns (Overall) 

 Returns\ Lags 5 10 20 30 50 

Absolute 1121.1000 (2.2e-16) 1735 (2.2e-16) 2568 (2.2e-16) 3140 (2.2e-16) 4169 (2.2e-16) 

Squared 0.7190 (0.982) 0.8060 (0.9999) 0.8174 (1) 0.89344 ( 1) 1.7172 (1) 

Note: p-value in parentheses  

5.4 Summary, Conclusion and General Interpretation of the Results 

This section provides a synopsis of all the concepts and findings obtained so far by applying 

appropriate test statistics as discussed earlier. Finally, conclusions shall be drawn based on 

those findings. 

5.4.1 Summary 

In this Chapter we have: (1.) briefly introduced FTS, its objectives, its common and 

distinguishing features compared to conventional TS (see Section 5.0); (2) introduced Asset 

returns, their various types such as- single and multi-periods simple returns, portfolio and 

excess returns in Section 5.1; (3) provided further details on stylized facts as they relate to 

financial returns generally, and their peculiarities to daily and monthly data in Sub-sections 

5.1.1 and 5.1.2; (4) the graphical data presentations, where time plots, histograms and Q-Q plots 

are briefly discussed in Sections 5.2 and 5.3; (5) presented results on the four moments of 
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returns distribution in Section 5.3; (6) discussed distributional properties of financial asset 

returns in Section 5.3 and (7) presented results on both normality and autocorrelation tests, 

where for normal test, both single tests based on moments and joint tests were focused on, and 

for the autocorrelation test, discussion centred on the both ACF and PACF for log returns, 

absolute and squared returns in Section 5.3. 

Meanwhile, while presenting results, time plots for price, log returns, absolute and squared 

returns are presented in a 2 by 2 matrix across the 16 banks (see Figure 5.1 and Appendix 5A). 

From the plots, the following observations were made regarding the distributions of the four 

series:  

1. The prices exhibit random walk like behaviour and appear to be non-stationary across 

the sixteen banks a behaviour common to asset prices at various time frequencies (either 

daily, weekly or monthly) and across various markets of both developed and developing 

economies. Log returns unlike price series show clear mean-reverting behaviour by 

oscillating around a common mean value, which is approximately zero. The near 

common mean values across the banks conform to the assumption of covariance 

stationarity expected of asset returns across markets of different economies.  

2. All the banks show one large boom-bust period in their prices during the run-up to the 

financial crisis (see Figures 5.2 above; and 5.17 in Appendix 5b (i)). 

3. Four banks STANBIC, Unity, WEMA and GTB had two episodes of boom-bust periods 

the run-up to financial crisis and after the second reform initiated by the CBN aftermath 

of the financial crisis (see Figures 5.2; 5.18 in appendix 5b (i)). 

4. The Fluctuation of the returns about the mean across the banks appear to change 

overtime and this is a confirmation of time-variable behaviour in the volatility of asset 

returns. However, visually, with the nature of the returns series we have, one cannot be 

sure if there is evidence of systematic time dependence (at least in linear form), in the 

returns. This will be investigated by examining if the autocorrelations due to log returns 

are approximately zero. 

5. The volatility level in absolute returns is more pronounced and persistent through time 

than it is in the squared returns across all the banks. Visually, this is an evidence of long-

range dependence or predictability in volatility-another major stylized fact of volatility 

across different markets, as contained in the literature. 
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6. The Fluctuation of the returns about the mean, otherwise known as the volatility, tends 

to change over time. This is an indication of possible non-stationarity in volatility. 

Clustering of periods of high and low volatility is more pronounced in the daily returns 

than in the monthly returns (see Figure 5.6). 

Further, visually, fourteen banks were highly volatile during the financial crisis as against the 

eleven that were observed to be highly volatile in the overall daily returns. 

Skewness-For the daily overall data: while eight banks are positively skewed, five are 

negatively skewed; for the monthly data: the same number of banks (five each), are positively 

and negatively skewed; and for the financial crisis data: while eight banks are negatively 

skewed, the remaining eight are approximately symmetric. 

Kurtosis-Virtually all the banks are positive and highly leptokurtic for daily data, with WEMA 

bank being the most leptokurtic. The degree of leptokurtosis is much lower for the monthly data 

than it is for the daily data, though WEMA still leads here. However, only nine banks, with 

ECO bank leading (with the highest value in the degrees of kurtosis presented in Table 5.12), 

are positively leptokurtic, five are platykurtic, while two are mesokurtic for financial crisis data, 

indicating that the Nigerian banks are highly leptokurtic and that the financial crisis negatively 

impacted on the Nigerian banks. 

The histograms also reveal visually that for the daily data, eight banks are positively skewed 

with a longer right tail, five are negatively skewed with longer left tails while the remaining 

two-FCMB and Fidelity are approximately symmetric (see Figures 5.11 and 5.12). For the 

financial crisis data, while eight banks are visually negatively skewed with a longer left tail, the 

remaining eight are approximately symmetric (see Figures 5.13 and 5.14). 

The Q-Q plots which determine the heaviness or length of the tails clearly reveal how kurtosis 

is prone to outliers such that the farther away a point is (or some points are), from the straight 

lines (or other points), the heavier or longer the tails. Thus, by this, the closeness of data points 

to the straight line representing the referenced distribution, which in this case is the normal 

distribution, is a determinant of the tails thickness. For example, for the overall data, the 

following banks with at least one point farther away from the rest of the points in Figures 5.13 

and 5.14-WEMA (1882.011), Unity (1085.073), STANBIC (1065.405), ETI (783.707) and 

Union (744.061) are the first five with thickest and longest tails and are thus, the most 

leptokurtic respectively (see their kurtosis values in parenthesis).  
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On the normality tests presented in Tables 5.13, 5.14 and 5.15, considering the Jarque-Bera 

test results in the sixth column of the tables, for the overall daily data, all the banks’ returns 

series are non-normally distributed (see Table 5.16); for the monthly returns, except FCMB that 

is approximately normal, the rest are non-normally distributed (Table 5.17); and for the 

financial crisis returns data, all the banks are non-normal except for FCMB and Fidelity banks 

(see Table 5.16). 

Regarding dependence in returns, none of the banks except for ECO and Unity banks is linearly 

independent as shown in Table 5.17 (Figures 5.32 and 5.42 in Appendix 5B). The sixteen banks 

are however non-linearly dependent as observed in their absolute autocorrelation functions 

(ACFs), especially for overall daily data. Additionally, it was found that in accordance with the 

“Taylor effect”, absolute returns always produce the highest ACFs across the 16 banks 

compared to other “degrees” of the log returns for daily overall data (see Table 5.18).  

Diagnostic tests to examine possible presence of a “Leverage effect”, as proposed by Zivot 

(2009) reveal that (1) for the overall data, 5 banks- ECO, GTB, UBA, WEMA and Zenith show 

signs of a leverage effect; and (2) for the financial crisis data, 8 banks-Access, FCMB, Fidelity, 

ECO, Sterling, UBA, WEMA and Zenith show signs of a leverage effect (see Table 5.20).  

Finally, it can be confirmed from Table 5.21 (and Tables 23 to 36 in Appendix 5C (ii)) that all 

the banks could be said to show signs of long-range dependence (or long memory) because 

the ACFs of the absolute returns are significantly different from zero at long lags (5, 10, 20, 30 

and 50). 

5.4.2 Conclusion 

In light of the above, the following conclusions are hereby drawn: 

1. As expected, while the price series across the sixteen banks appear to be random walk 

non-stationary, the log returns series appear to show signs of stationarity since they 

oscillate around the common constant mean zero.  

2. The changes of returns volatility overtime are an indication of time variation in the 

returns and the persistent alternation in varying levels of the returns is a confirmation of 

volatility clustering across the 16 banks; that is, “a volatile period tends to be followed 

by another volatile period of equal magnitude” (Mandelbrot, 1963). 

3. The daily returns are more (positively) skewed and highly leptokurtic with longer tails 

compared to the monthly returns, and the rejection of the normality of the returns for 
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virtually all the banks indicates that a normal distribution does not generally match the 

empirical distributions of the banks’ returns.  

4. During the financial crisis, more than half of the banks (10) were negatively skewed. 

This means that, investors in ten of the sixteen banks experienced losses due to the 2008 

global financial crisis that characterised the Nigerian economy. This is a confirmation 

of the impacts of the global financial crisis on the Nigerian economy as highlighted in 

Section 2.3. 

5. No evidence of linear dependence in the returns, at least at lag 1, was noted behaviour 

that Danielson (2011, pp.12-13) interpreted as evidence of predictability of volatility, 

which is a possible violation of market efficiency. 

6. There is evidence for presence of a “Taylor effect” across the banks; and a “Leverage 

effect” in some banks’ returns.  

7. Finally, virtually all the stylized facts outlined in Section 5.3 are found in the Nigerian 

banks’ returns. 

5.4.3 General Interpretation of the Results 

It could be deduced that the behaviour of the data used in this study is a confirmation of how 

financial series behave across different markets. The possible lack of market efficiencies 

identified is also a reflection of lack of discipline leading to arbitrageur opportunities, which 

were found to have characterised the NSM both before and during the financial crises. The 

results also identified the possible reasons for the level of losses recorded in the market by the 

investors, culminating in near collapse of the Nigerian banks in 2008-2009 - an event which 

then prompted the CBN to initiate the second banking reforms in July 2009. These findings 

could significantly help the market regulators to ensure that a minimum level of discipline and 

control are maintained among the market participants. The findings could also suggest that 

periodic checks should be undertaken to track market movements and behaviour overtime by 

relevant stakeholders such as market makers and investors, with a view to making riskless 

investment decisions.  
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6 CHAPTER SIX: Market Efficiency Models and Tests 

6.1 Introduction 

This chapter discusses some stock returns properties, such as stationarity, random walks, and 

the Efficient Market Hypothesis (EMH), along with market efficiency and relevant test statistics 

found appropriate to investigate if the Nigerian banking industry could be said to be at least 

weak-form efficient, a result found not to hold at the overall market level (Ezepue and Omar, 

2012). The results of our analyses will be presented, discussed, summarised and conclusions 

will be drawn. 

6.2 Stationarity in Stochastic Processes 

A stochastic process is a time-dependent sequence of random variables, and it is sometimes 

referred to as either a data generating process or a model. Various types of stochastic processes 

include the strictly stationary process, the stationary process, the uncorrelated process, the auto-

correlated process, White noise, strict white noise, the Martingale process, the Martingale 

difference, the Gaussian process, and the linear process.  

Meanwhile, the basis for time series (TS) analysis is stationarity. A TS is said to be stationary 

when there is absence of a systematic trend, no systematic change in variance, and neither is 

there a presence of periodic (cyclic) variation nor seasonality.  There are essentially two forms 

of stationarity, namely strict stationarity and weak stationarity. A time series, say,𝑟𝑡  is 

strictly stationary only if the joint distribution of any sub-series, say 𝑟𝑡1, 𝑟𝑡2
,…, 𝑟𝑡𝑛, is exactly 

or approximately the same as that of any other sub-series of the same order, say 𝑟𝑡1+𝑘
, 

𝑟𝑡2+𝑘
,…, 𝑟𝑡𝑛+𝑘

, for any time lag (𝑘), where 𝑛 and 𝑘  are arbitrary positive integers, and 

𝑡1, 𝑡2, … , 𝑡𝑛 ,  is the series of 𝑛 positive integers. Thus, a strictly stationary TS is the one where 

the joint distribution of (𝑟𝑡1
,𝑟𝑡2

,…,𝑟𝑡𝑛
) is time-invariant. A time series is said to be weakly 

stationary if both the mean 𝜇 of the series, 𝑟𝑡 and the covariance of (𝑟𝑡, 𝑟𝑡−𝑘), 𝛾𝑘 , say, are time-

invariant. 

Thus, for a weakly stationary series: 

 (1) 𝐸(𝑟𝑡) =  �̅�, a constant and 

 (2) 𝐶𝑜𝑣 (𝑟𝑡, 𝑟𝑡−𝑘) =  𝛾𝑘 , a function depending on 𝑘 (which is the lag) only.  



171 

 

A weakly stationary series tends to fluctuate with a constant variation around a constant level, 

whereas a strictly stationary series is difficult to verify using empirical data.  In financial time 

series, therefore, the assumption of weak stationarity is commonly made about stock returns, 

and this can be confirmed given enough historical data. 

6.3 The Efficient Market Hypothesis and Statistical Models for Returns 

Assumptions of an Efficient Market 

The following reasons account for why a market should be efficient (see Malkiel (1989; 1992)). 

1. Price-takers: in an efficient market, one participant alone cannot influence the price of 

an investment, meaning that there is no room for arbitrageur opportunities. 

2. Information is costless and widely available to all market participants at approximately 

the same time. 

3. Information is generated in a random fashion such that announcements are independent 

of each other. 

4. Investors react quickly and fully to the new information, with asset prices adjusting 

accordingly. 

Implications of Market Efficiency  

1. Diversification: when a market is efficient, the true value of investments and that of the 

market is obvious to every participant, thereby encouraging investors to take well 

informed decisions on how to spread their investments such that they do not put all their 

eggs in one basket. 

2. Portfolio Risk: efficiency enables minimization risks by spreading wealth in various 

efficient market forms. 

3. Fees and Costs: to hedge the asymmetric effects of shocks on investment, investors pay 

higher fees for more reliable and relevant market or trading information. 

4. Only unexpected information impacts security prices. 

5. Security selection becomes less useful simply because prices of assets are fairly 

determined. 

6. The professional money managers have little or no role to play in determining security 

prices. 

7. Timing the market or deciding when to trade to make abnormal gains is almost 

impossible. 
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8. Available Information is already incorporated into stock prices. 

Reasons for Studying Market Efficiency 

Degutis and Novickytė (2014) listed the first four of the following five reasons for studying 

market efficiency. 

1. Inefficient markets accommodate higher risk-weighted returns. This is important for 

investors of both private and public firms. 

2. Market efficiency helps corporate executives to determine the perceived value of 

companies. 

3. The EMH helps market operators or planners to monitor or model stock market 

development. 

4. The EMH serves as an underlying assumption in multiple financial models. 

5. Market efficiency helps to determine the level to which market prices reflect the 

information of informed traders (Stiglitz, 1981a) 

Meanwhile, there are some conditions according to Stiglitz (1981b) that an asset market needs 

to meet for it to be information efficient, these include:  

i. Firms are expected to transmit information efficiently regarding their prospects to 

prospective investors. 

ii. The market should provide the right incentives for gathering accurate and relevant 

information  

iii. The market prices should reflect the available information to every market participants 

6.3.1 Tests Related to Efficient Market Hypothesis 

In financial econometric research (such as explored in Cuthbertson and Nitzsche, 2005), the 

objective is to determine if the efficient market hypothesis is consistent with the empirical 

market data. As noted earlier, to achieve this requires investigating if asset returns are 

predictable. We now discuss the two popular statistical tests applied to do this. 
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Tests for white noise 

It is well established that if the returns are unpredictable, they should be white noise and may 

not necessarily be entirely independent. A process is white noise if it is stationary, uncorrelated 

and has zero mean (That is, if the returns at time 𝑡{𝑟𝑡} is a white noise process, it is expected 

that autocorrelation at lag, 𝑘,𝜌𝑘 = 0, ∀ 𝑘 ≠ 0). To test for white noise simply indicates that the 

returns are linearly independent (especially at lag 1) but may depend on each other at higher 

magnitudes (other levels). Though there exists a range of test statistics in the literature used in 

testing for white noise, the simplest and most often applied is the omnibus test called 

the𝑄(𝑚)Ljung-Box 16portmanteau test presented in (4.32). 

Tests for RWH 

ARW is a special case of a unit root process, used in identifying the forms of shocks driving 

stock prices to make successive independent price changes (Lam, Wong and Wong, 2006). 

To test for a RW, we investigate the presence of serial correlation and the common test statistic 

for this is the unit root test developed by Dickey and Fuller (1979, 1981). According to Lo and 

Mackinlay (1988), this test, though necessary, is not a sufficient condition for showing that a 

RW is a unit root process; this is because while a RW indicates that the returns must be 

uncorrelated, the unit root test allows for predictability. Thus, the test statistics for a RW are: 

(1) the Box-Ljung test and (2) the Dickey-Fuller unit root test. Taylor (2011) however states 

that variance ratio (VR) test is a better alternative to these tests and is more often used to test 

the hypothesis of RW processes for stock prices. If the VR test is accepted, it means that the 

market is efficient. The power of the available tests of the RWH depends on the test statistic 

and the alternative hypothesis.  

Statistical Tests for Weak-Form Market Efficiency 

Statistical tests such as the runs test, unit root test, serial correlation tests, and spectral analysis 

are some of the popular techniques used for testing for weak form efficiency. Most studies on 

the weak form of the EMH in emerging stock markets have applied the runs test and/or the unit 

root test as a principal method for detecting a random walk, which is a necessary and sufficient 

condition for market efficiency in the weak form.  

                                                
16“m” is the maximum number of lags of autocorrelations 
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The runs test has found favour in the hands of authors such as: Barnes (1986), Dickinson and 

Muragu (1994), Sharma and Kennedy (1977), Karemera et al. (1999), Wheeler et al. (2002), 

Abraham et al. (2002), while the unit root test has received the attention of authors such as: 

Groenewold et al. (2003), and Seddighi and Nian (2004). Authors such as Fawson et al. (1996), 

Mookerjee and Yu (1999), and Abeysekera (2001) applied both methods to investigate the 

presence of weak-form efficiency in their work. 

Other statistical methods adopted previously by researchers include the serial correlation test, 

including the correlation coefficient test, the Q-test, and variance ratio tests. Researchers such 

as: Dickinson and Muragu (1994), Fawson et al. (1996), Dockery and Vergari (1997), Alam, 

Hassan and Kadapakkam. (1999), Karemera et al. (1999), Mookerjee and Yu (1999), 

Abeysekera (2001), and Groenewold et al. (2003) applied both the correlation coefficient test 

and the Q-test to investigate efficiency in various markets.  

The Variance Ratio test was applied by: Chang and Ting (2000), Cheung and Coutts (2001), 

Abraham et al. (2002), and Lima and Tabak (2004) to examine weak-form market efficiency in 

their studies.  

Some researchers applied other techniques, such as spectral analysis (Sharma and Kennedy, 

1977 and Fawson et al., (1996), the fractional integration test (Buguk and Brorsen, 2003), and 

the autoregressive conditionally heteroscedasticity (ARCH) test (Seddighi and Nian, 2004) to 

investigate evidence for market efficiency, especially at its weak-form level. 

Given the foregoing and the nature of the available data for this study, the following methods 

(discussed in Chapter 4), are to be applied in this research: parametric tests (the variance ratio 

test and the autocorrelation test) and non-parametric tests (the runs test and the BDS test). The 

choice of the variance test in this study is informed by the fact that it is regarded as the most 

powerful parametric test statistics for market efficiency compared to any other (see Taylor 

(2005; 2011) and Campbell, Lo, and MacKinlay (1997)). Lo & MacKinlay (1989) and  Faust, 

(1992) note that using the VR statistic has optimum power against alternatives to the random 

walk model can be advantageous when testing against several interesting alternatives such as 

those hypotheses associated with mean reversion. Also, given the fact that the distribution of 

the financial assets is non-normal, using distribution free statistics such as the runs and BDS 

test to investigate randomness is most appropriate. 
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6.4 Results and Discussions 

This section presents the results and brief discussions of the outcomes of the various analyses 

carried out in this chapter. Following the procedures outlined in Section 4.3, we shall be 

presenting results and discussions on the following tests considered so far, namely: stationarity 

tests using three different statistics; the variance ratio test; the unit root/ random walk test; BDS 

tests of non-linear dependency; the runs test of randomness; and the Ljung-Box tests of linear 

independence. 

6.4.1 Discussions on Stationarity Tests on Daily Data at Overall level 

To be able to check if the returns series for each of the banks is stationary or not, three different 

testing methods were adopted, namely: the Phillips-Perron (PP) Unit root tests (of Non-

stationarity) by Phillips and Perron (1988), the Augmented Dickey-Fuller (ADF) test (of non-

stationarity) by Said and Dickey (1984) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 

test (for stationarity) by Kwiatkowski, Phillips, Schmidt and Shin (1992), the results of which 

are presented in Table 6.1 below. It is obvious that the outcomes of the three different tests 

confirm that the series for each of the banks is stationary at the 5% level and thus could be used 

for further time series analysis without a need to transform (by way of differencing) the original 

series.  

It is important to note that while for the KPSS test, a null hypothesis of stationarity is set; 

whereas for the PP and ADF tests, a null hypothesis of non-stationarity is set. On this note, it is 

expected that for each case, the null is rejected only if the p-value (in parenthesis) is less than 

0.05, the level of significance selected. Thus, looking at the table, it is only with Afribank where 

the p-value is 0.0237 under KPSS that hypothesis of stationarity seems to be rejected; whereas 

in the remaining cases, the stationarity of the series is confirmed. 

Table 6.1: Stationarity Tests on Daily Stock Returns across the Bank 

Bank KPSS Phillips-Perron ADF (Level) 

Access 0.1918 (0.1) -3237.9000 (0.01) -52.7150 (0.01) 

Afribank 0.5888(0.0237) -2696.9000 (0.01) -13.1260 (0.01) 

Diamond  0.0900 (0.1) -1627.5000 (0.01) -36.3380 (0.01) 

Ecobank 0.3474 (0.0998) -2067.8700 (0.01) -31.3901(0.01) 
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FCMB 0.3028 (0.1) -2056.4400 (0.01) -12.0090 (0.01) 

Fidelity 0.1691(0.1) -1744.4000 (0.01) -12.4740 (0.01) 

First 0.1640(0.1) -2958.9000 (0.01) -54.6450 (0.01) 

GTB 0.1217 (0.1) -2944.7000 (0.01) -53.6550 (0.01) 

Skye 0.3432 (0.1) -1783.7000 (0.01) -13.0810 (0.01) 

STANBIC 0.1372 (0.1) -2247.4000 (0.01) -13.5540 (0.01) 

Sterling 0.0414(0.1) -3277.6660 (0.01) -15.1424(0.01) 

UBA 0.1102 (0.1) -3050.6000 (0.01) -52.8120 (0.01) 

Union 0.0951 (0.1) -3360.2000 (0.01) -15.3520 (0.01) 

Unity 0.1307 (0.1) -2166.2000 (0.01) -12.7880 (0.01) 

WEMA 0.1049(0.1) -3757.2000 (0.01) -15.0470 (0.01) 

Zenith 0.1511(0.1) -1783.7000 (0.01) -14.0420 (0.01) 

Notes: p-values are in parentheses. Note  

6.4.2 Discussions on the Variance Ratio Tests across the Banks 

Table 6.2 below displays the results of the variance ratio tests which as previously stated, is a 

parametric test that is used in checking for the conformity of the financial series to the Random 

walk Hypothesis and thus weak-form market efficiency. From the results, it is noted that only 

in five banks: Ecobank, STANBIC, Union, Unity and WEMA, the hypothesis of Random Walk 

(RW) cannot be rejected, whereas the remaining twelve reject the RW hypothesis, which 

implies weak-form inefficiency subject to the hypotheses 

𝐻0: 𝑉𝑅 = 1 𝑣𝑠 𝐻1: 𝑉𝑅 ≠ 1 

Campbell, Lo and MacKinlay (1997, p.69) interpret that increasing variance ratios with lag 

values (especially for equally weighted returns/index) suggest a positive serial correlation in 

multi-period returns. 
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We apply variance ratios to test the Random Walk 3 model (or RW3) in Campbell, Lo and 

MacKinlay (1997, p.33). In RW3, the null hypothesis of constant mean returns and 

uncorrelated residuals is given as: 

𝐻0: 𝑟𝑡 = 𝜇 + 휀𝑡, versus an alternative hypothesis with trend component, with the residuals 휀𝑡 

satisfying the constraint: 𝐶𝑜𝑣[휀𝑡, 휀𝑡−𝑘] = 0  ∀ 𝑘 ≠ 0 𝑎𝑛𝑑 𝐶𝑜𝑣[휀𝑡
2, 휀𝑡−𝑘

2 ] ≠ 0 ∀ 𝑘 = 0, which 

are at least approximately satisfied by the stationarity of the returns series. 

Table6.2: Summary Results of the Variance Ratio Tests 

Possible 

 Lags 

2 4 8 16 

Banks Variance 

Ratio (VR) 

z-statistic Variance 

Ratio 

z-statistic Variance 

Ratio 

z-statistic Variance 

Ratio 

z-statistic 

Access 0.5677 -4.9200 

(0.000) 

0.3013 -5.2500 

(0.000) 

0.1518 -5.3700 

(0.000) 

0.0757 -5.2600 

(0.000) 

Diamond 0.6321 -13.3100 

(0.00) 

0.3603 -12.7900 

(0.00) 

0.1771 -10.9800 

(0.000) 

0.0835 -8.5980 

(0.00) 

Ecobank 0.5065 -1.5400 

(0.125) 

0.2505 -1.5530 

(0.112) 

0.1303 -1.5400 

(0.123) 

0.0636 -1.5500 

(0.122) 

FCMB 0.5564 -14.2940 

(0.00) 

0.3103 -12.8600 

(0.00) 

0.1476 -10.7470 

(0.00) 

0.0760 -8.3020 

(0.00) 

Fidelity 0.6086 -14.3280 

(0.00) 

0.3396 -13.7100 

(0.00) 

0.1671 -11.4517 

(0.00) 

0.0809 -8.7710 

(0.00) 

First 0.5797 -3.9820 

(0.0001) 

0.3067 -4.3504 

(0.00) 

0.1440 -4.5350 

(0.000) 

0.0712 -4.4500 

(0.00) 

GTB 0.572 -8.3739 

(0.00) 

0.3139 -8.6924 

(0.00) 

0.1497 -8.6971 

(0.000) 

0.0738 -7.9330 

(0.00) 

Skye 0.587 -2.3920 

(0.017) 

0.3154 -2.6330 

(0.009) 

0.1532 -2.7745 

(0.006) 

0.0796 -2.7820 

(0.005) 

Stanbic 0.5407 -1.7940 

(0.073) 

0.2934 -1.8370 

(0.066) 

0.1446 -1.8996 

(0.058) 

0.0738 -1.9090 

(0.06) 

Sterling 0.5621 -5.1287 

(0.00) 

0.3075 -5.3526 

(0.00) 

0.1563 -5.4670 

(0.000) 

0.0783 -5.3500 

(0.00) 
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UBA 0.5656 -4.7029 

(0.00) 

0.3124 -4.9140 

(0.00) 

0.1552 -5.0880 

(0.000) 

0.0733 -5.0600 

(0.00) 

Union 0.5424 -1.7930 

(0.073) 

0.2894 -1.8550 

(0.064) 

0.1396 -1.9238 

(0.054) 

0.0716 -1.9340 

(0.053) 

Unity 0.5128 -1.3160 

(0.1881) 

0.2601 -1.3320 

(0.183) 

0.1329 -1.3381 

(0.1809) 

0.0652 -1.3460 

(0.178) 

WEMA 0.5167 -1.2580 

(0.208) 

0.2658 -1.2740 

(0.203) 

0.1316 -1.2912 

(0.197) 

0.0670 -1.2940 

(0.196) 

Zenith 0.6227 -5.4425 

(0.000) 

0.3376 -6.1313 

(0.00) 

0.1639 -6.2051 

(0.000) 

0.0847 -5.7010 

(0.00) 

Notes: p-values are in parentheses  

6.4.3 Discussions on the Unit Root (Random Walk) Tests across the Banks 

Table 6.3 below presents the results of the Unit root non-stationary test via the Augmented 

Dickey Fuller test of random walk without drift subject to the hypothesis 𝐻0: 𝜑 = 1 𝑣𝑠 𝐻1: 𝜑 <

1 (hypothesis of covariance stationarity, see (4.38)) 

The results show that each bank's series has no unit root since the 𝜑 value linked to each bank 

is less than 1. This means that there is significant evidence that their returns series are stationary, 

and thus rejects the random walk hypothesis or possibility of a unit root. Alternatively, we say 

that all the banks’ returns are (covariance) stationary, implying that the series can be used in 

further analysis without any need for differencing. 

Table 6.3: Unit Root Tests on Daily Returns across the Banks 

Bank ADF (Without Drift Parameter) Test statistics (p-values in parentheses) 

Access 𝜑 = −0.8146 𝑡 = −39.1730 (2𝑒 − 16) 

Afribank 𝜑 = −0.6758 𝑡 = −30.2980 (2𝑒 − 16) 

Diamond  𝜑 = −0.7299 𝑡 = −25.5600 (2𝑒 − 16) 

Ecobank 𝜑 = −0.9697 𝑡 = −31.3540 (2𝑒 − 16) 
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FCMB 𝜑 = −0.7730 𝑡 = −30.0210 (2𝑒 − 16) 

Fidelity 𝜑 = −0.75602 𝑡 = −29.7730 (2𝑒 − 16 

First 𝜑 = −0.8950 𝑡 = −42.1850 (2𝑒 − 16) 

GTB 𝜑 = −0.8946 𝑡 = −35.6990 (2𝑒 − 16) 

Skye 𝜑 = −0.8158 𝑡 = −30.1270 (2𝑒 − 16) 

STANBIC 𝜑 = −0.9059 𝑡 = −32.5560 (2𝑒 − 16) 

Sterling 𝜑 = −0.7522 𝑡 = −36.9710 (2𝑒 − 16) 

UBA 𝜑 = −0.8158 𝑡 = −39.1820 (2𝑒 − 16) 

Union 𝜑 = −0.8655 𝑡 = −40.3920 (2𝑒 − 16) 

Unity 𝜑 = −0.9497 𝑡 = −32.2560 (2𝑒 − 16) 

WEMA 𝜑 = −0.9136 𝑡 = −41.4700 ( 2𝑒 − 16) 

Zenith 𝜑 = −0.7600 𝑡 = −31.0180 (2𝑒 − 16) 

Note: 𝜑 is the unit root parameter 

6.4.4 Discussions on the Non-linear Independence (BDS) Tests across the Banks 

In this test, both the dimension and the epsilon tolerance (are arbitrary values), for close points 

were chosen for the respective banks automatically by the R-software used to analyse the data. 

From the results, the significance of the p-value across the banks is an indication for rejection 

of the null hypothesis of linear independence and leads us to conclude that the returns for each 

bank are non-linearly dependent, which is a good indication of non-random walk behaviour. 

This means that there is an element of predictability, which contradicts weak-form market 

efficiency (see Table 6.4 and Appendix 6A). 

Table 6.4: BDS Test Results for Access Bank 

Dimension\Epsilon for close points 0.0145 0.029 0.0435 0.058 

2 34.8877 (0.00) 30.4356 (0.00) 28.6468 (0.00) 29.0610 (0.00) 

3 51.3960 (0.00) 36.9197 (0.00) 32.3018 (0.00) 32.7991 (0.00) 

Notes: p-values are in parentheses 
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6.4.5 Discussion of the RUNS Test 

Table 6.5 below presents the results of the tests of randomness in the data generating process 

for the daily returns of the banks using the non-parametric test called the runs test. In a bid to 

achieve this, we chose the mean and median returns and whether the returns are randomly 

assigned below and above zero point as our target for the runs test. Table 6.5 shows the results 

where the runs were classified based on the mean. For those based on the median see Appendix 

6b. Thus, Table 6.5 tests if the returns are randomly assigned below and above the mean. From 

the p-values (in the 8th column of Table 6.5), the null hypothesis of randomness (or linear 

independence) is rejected in favour of the alternative of non-randomness - an indication of 

violation of the random walk hypothesis and thus a sign of rejection of weak-form market 

efficiency across the sixteen banks. 

Table 6.5: Summary Results of The Run Tests based on Mean 

Bank Test Value 

(Mean) 

Cases < 

Test 

Value 

Cases 

>=Test 

Value 

Total 

Cases 

No of 

Runs 

Z statistic p-value 

Access 0.0060 2499 1370 3869 1351 -14.7560 0.000 

Afribank -0.0005 823 2222 3045 737 -21.3740 0.000 

FCMB -0.0002 896 1578 2474 948 -8.5310 0.000 

Fidelity -0.0003 923 1453 2376 900 -9.9290 0.000 

First -0.0001 1662 2207 3869 1544 -11.5850 0.000 

GTB 0.0006 2256 1613 3869 1585 -9.8250 0.000 

Diamond -0.0001 974 1394 2368 881 -11.3220 0.000 

Eco bank -0.0014 706 1344 2050 847 -3.9000 0.000 

Skye 0.0001 1397 846 2243 794 -11.7250 0.000 

STANBIC 0.0001 2400 1469 3869 1444 -12.9540 0.000 

Sterling 0.0001 2658 1211 3869 1138 -19.7010 0.000 

UBA 0.0001 2228 1641 3869 1604 -9.4460 0.000 

Union -0.0001 1494 2375 3869 1404 -14.6250 0.000 

Unity 0.0004 1558 665 2223 618 -15.9450 0.000 

WEMA 0.0003 2694 1175 3869 1082 -21.1130 0.000 

Zenith 0.0002 1446 1070 2516 1062 -6.8900 0.000 

6.4.6 Discussions on ACF Tests of the Log Returns across the Banks 

Table 6.6 below displays the Autocorrelation test for linear independence of the return series at 

different lags of orders 1, 5, 10 and 20.  

Table 6.6: Log Returns ACF Tests across the Banks 
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Bank\ Lags 1 5 10 20 

Access 104.1600 (2.2e-16) 114.6900 (2.2e-16) 123.8100 (2.2e-16) 125.6500 (2.2e-16) 

Diamond 190.5008(2.2e-16) 219.1000 (2.2e-16) 222.7600 (2.2e-16) 233.3200 (2.2e-16) 

Ecobank 0.8549(0.3552) 2.9914 (0.7013) 7.0563 (0.8539) 19.0244 (0.5202) 

Afribank 163.9100 (2.2e-16) 287.4800 (2.2e-16) 310.9200 (2.2e-16) 330.2500 (2.2e-16) 

FCMB 80.5700 (2.2e-16) 106.1300 (2.2e-16) 117.0300 (2.2e-16) 134.6500 (2.2e-16) 

First 63.8980 (1.332e-15) 112.8000 (2.2e-16) 113.4000 (2.2e-16) 117.2400 (2.2e-16) 

UBA 101.3200 (2.2e-16) 128.1500 (2.2e-16) 139.6500 (2.2e-16) 148.2100 (2.2e-16) 

Unity 3.2053(0.0734) 3.7771 (0.5819) 5.0360 (0.8888) 5.4417(0.9995) 

GTB 82.6460 (2.2e-16) 114.4600 (2.2e-16) 136.2500 (2.2e-16) 144.8200 (2.2e-16) 

Skye 72.5760 (2.2e-16) 78.8850 (1.443e-15) 82.1780 (1.876e-13) 96.2050 (5.98e-12) 

STANBIC 13.2490 (0.000273) 16.4470 (0.005677) 18.3980 (0.0486) 24.3050 (0.2293) 

Sterling 151.7455(2.2e-16) 194.7000 (2.2e-16) 195.7000 (2.2e-16) 203.8000 (2.2e-16) 

Union 48.7590 (2.895e-12) 60.5200 (9.492e-12) 66.3990 (2.186e-10) 70.5900 (1.457e-7) 

Fidelity 130.3800 (2.2e-16) 145.1600 (2.2e-16) 151.6000 (2.2e-16) 163.6600 (2.2e-16) 

WEMA 14.5360 (0.0001.375) 19.2130 (0.00175) 20.2020 (0.0274) 23.0980 (0.284) 

Zenith 146.4600 (2.2e-16) 159.2100 (2.2e-16) 167.5800 (2.2e-16) 180.2400 (2.2e-16) 

Notes: p-values are in parentheses 

The results show that all the banks except for two - Eco and Unity banks - where the correlations 

are not significant at any of the indicated lags, whereas STANBIC and WEMA banks became 

insignificant at lag 20. Meanwhile, the significance of the fourteen other banks shows that these 

banks’ returns are not Random Walks, indicating that the bank returns are do not have unit root. 

6.5 Summary and Conclusion 

In this chapter, the following three concepts of stock return properties bordering on market 

efficiency of the banking sector of the NSM were discussed: stationarity; random walks (RW); 

and the efficient market hypothesis (EMH). Under these concepts, we briefly examined strict 

and weak stationarity and unit-root non-stationarity, an example of which is the random walk 

hypothesis. Further discussion was therefore focused on random walk theory 'without drift'.    

The efficient market hypothesis (EMH) and different categories of innovations in a mean 

equation, namely martingale differences, white noise, and independently and identically 

distributed (𝑖𝑖𝑑) innovations, were discussed. Tests Related to the EMH were also discussed. 

Various forms of market efficiency –the perfect, strong, semi-strong, and weak forms were also 

discussed. The relevant test statistics used in examining weak-form market efficiency found in 
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the literature were surveyed.  Finally, test statistics such as the variance ratio, BDS, runs, ADF, 

KPSS and PP tests found relevant to our research objectives were discussed and applied.  

Having applied the various methods, the following findings were made. From the KPSS, PP 

and ADF tests on the stationarity of the banks’ return series, it was found that only with 

Afribank was the null-hypothesis of stationarity rejected in favour of the non-stationarity 

alternative, while for the remaining 15 banks the null hypothesis of stationarity was not rejected 

using the KPSS test. However, for the PP and ADF tests, we rejected the null-hypothesis of 

non-stationarity (or unit root) across all 16 banks in favour of the stationarity alternative (that 

is, no unit root; see Table 6.1). Hence, the banks’ returns were overall stationary and do not 

require differencing for further empirical financial analysis using appropriate time series 

techniques. The random walk and weak-form market efficiency tests using variance ratio tests 

showed that while the hypothesis of a random walk and related market efficiency was not 

rejected only in four banks' returns, namely Eco, STANBIC, Union and WEMA banks. The 

rest rejected the RW hypothesis, meaning that these banks’ returns are not-weakly efficient (see 

Table 6.2).The results on the random walk without drift using the ADF test show that the series 

are stationary, and not random walks, which indicates that the returns are not-weakly efficient 

(see Table 6.3). 

From Table 6.4, it is apparent that the null hypothesis of no non-linear independence is rejected, 

which indicates that the banks’ returns are non-linearly dependent, and this again contradicts 

weak-form market efficiency. 

The runs tests displayed in Table 6.5, where the hypothesis of randomness was set, however, 

rejected randomness across the 16 banks, which is a violation of the random walk and linear 

independence properties of the returns. 

Complementary ACF tests for the log returns for lags (1-10), intended to determine linear 

independence in the returns, were conducted, and the results revealed that the hypothesis of 

independence is rejected for all the banks except for ECO and Unity banks.  

In light of the above findings, we can conclude that the Nigerian banks could not be said to be 

weak-form efficient – findings which are in line with those of Omar (2012) and Ezepue and 

Omar (2012) on the All Share Index (ASI) of the NSM at the overall market level. As noted in 

Chapters 1 and 2 of the thesis, these initial studies on systematic stock market characterisation 

(SSMC) of the NSM suggested complementary sector-level studies of the six main empirical 
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market features (anomalies, bubbles, efficiency, predictability, valuation and volatility). What 

this chapter contributes additionally to the overall market knowledge of the dynamics of the 

NSM, as elucidated in Chapter 1 of the thesis, is a demonstration that the weak-form market 

inefficiency in the NSM found in these studies applies to the banking sector.  

The Chapter also expanded on the different tests of market efficiency-related characteristics of 

the NSM, beyond the extent achieved in Ezepue and Omar (2012) and Omar (2012). The 

implications of these results together with the stylised facts of banks’ returns in the sector which 

were explored in Chapter 5 of the thesis were also foreshadowed in Chapter 1 in relation to 

systematic stock market characterisation and development (SSMCD) (Raheem and Ezepue, 

2018). These references further indicated ways in which the stylised facts of the kinds obtained 

in Chapter 5 and the six empirical market features noted above could inform investors’ 

strategies, NSM policy directions and market development moves, as well as wider economic 

management of the Nigerian economy by the CBN and other financial agencies in the country. 

We also noted that the banks’ returns stylised facts reinforce these ideas for such a dominant 

part of the Nigerian economy. It was mentioned in Chapter 1 that this is the first time known to 

the researcher that this in-depth a characterisation of the empirical financial features of Nigerian 

banks has been examined (using individual returns series for the sixteen banks considered). 

Particularly regarding the efficiency-related tests in this chapter, the lack of weak-form 

efficiency of the banking sector of the NSM was found to be associated with evidence of 

nonlinearity and predictability in returns. This implies the possibility of making money 

(arbitrageur opportunities) in the sector a quest that requires not only knowledge of SSMCD 

and related algorithmic investment but also portfolio management of the kind explored in Dalio 

(2017). The next chapter explores market anomalies in the banking sector of the NSM. 
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7 CHAPTER SEVEN: MARKET ANOMALIES 

7.1 Introduction 

In this chapter, the attributes of, reasons for studying, and implications of stock anomalies, 

together with the specific objectives of our study and the descriptive statistics on the yearly 

average bank returns will briefly be introduced. Following that, we apply the various 

methodologies relevant to our objectives (as presented in Section 4.4). The results of these will 

be presented and discussed in the subsequent sections of this chapter. 

7.2 Attributes of Market Anomalies 

1. They occur outside of the relevant market information; 

2. They are expected to be consistent over long time periods; 

3. They are well researched and are not due to data related error(s) such as missing data, 

data imputation errors or small sample sizes. 

4. According to Schwert (2003), anomalies are strange and difficult to predict because they 

are bound to fade and resurface (see Ullah, Ullah and Ali, 2016). 

7.3 The reasons for studying Stock Market anomalies 

Stock market anomalies are studied for several reasons which include: 

1. It helps investors to understand how a market reacts to the variations caused by changing 

patterns in investments related to days, weekdays, months, seasons, years, government 

policies and general activities in the economy, both at local and international levels. 

Knowing these enables them to design favourable trading strategies that factor such 

predictable dynamics into their investment decisions. 

2. Market makers and regulators also require knowledge of such regular shifts to be able 

to ensure continuous liquidity in the market and to maintain balanced checks that permit 

little or no room for arbitrage opportunities by any participant. 

7.4 Implications of Stock Anomalies for Investment Strategies 

There are implications of the anomalies for relevant stakeholders and the market; these include: 

1. It is difficult in most cases to benefit from the anomalies because they tend to disappear 

with time such that prices adjust back to the rational level. 
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2. The fact that some anomalies are not violations of the efficient market hypothesis, but 

rather they are due sometimes to the statistical methods applied in detecting the 

anomalies and the data available. 

Thus, an investor who wants to earn abnormal profit using the anomalies may over time be 

disappointed, especially in a well-regulated market with little or no room for arbitrage 

opportunities. 

Specific objectives of this chapter 

1. To determine the yearly averages to see the differential patterns across the years for all 

the banks; 

2. To investigate the presence of Day-of-the-week Effect Anomalies in the Nigerian Banks’ 

stock returns; 

3. To determine if there exist January/Holiday Effect Anomalies in the Nigerian banks’ 

stock returns; 

4. To see if Nigerian banks’ stocks are characterised by an October-March Seasonality 

Effect Anomaly; 

5. To investigate the presence of a Turn-of-the-year Effect Anomaly in the Nigerian banks’ 

stock returns. 

Descriptive Statistics on the Yearly Average Banks’ Returns 

In this section, the yearly average returns across the sixteen banks are presented in an abridged 

Table 7.1 below, where only the years with the highest and lowest average returns are shown, 

followed by their respective bar plots in Figures 7.55g-7.68g (see Appendix 7G). 

Table7.1: Yearly Average Returns across the Banks 

Bank Period (years) Highest Lowest 

Access June1999-Dec.2014 (15.5years) 2007 (0.28%) 2008(-0.45 17%) 

Afribank June 1999-Sept 2011(13.25years) 2000(0.49%) 2011(-0.66%) 

Diamond May 2005-Dec 2014(9.58years) 2005(0.63%) 2011(-0.53%) 

Ecobank Sept 2006-Dec, 2014(9.25years) 2013(0.15%) 2008(-0.66%) 

First June 1999-Dec 2014(15.5years) 2000(0.31%) 2008(-0.30%) 

FCMB Dec2004-Dec2014(10years) 2004(4.48%) 2008(-0.46%) 

Fidelity May 2005-Dec 2014(9.5years) 2007(0.74%) 2008(-0.37%) 

                                                
17 The red color in the Table 7.1 is used to identify 2008 as the year with the highest frequency in terms of drop 

in the average returns of 11 out of 16 banks.  
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STANBIC April 2005-Dec 2014(9.67%) 2014(0.53%) 2008(-0.65%) 

GTB June1999-Dec.2014(15.5years) 2003(0.31%) 2008(-0.39%) 

Skye Nov. 2005-Dec.2014 (9.083years) 2005(2.84%) 2011(-0.33%) 

Sterling June 1999-Dec., 2014(15.5years) 2007(0.28%) 2008(-0.45%) 

UBA June 1999-Dec. 2014(15.5years) 2007(0.28%) 2008(-0.53%) 

Union June 1999- Dec 2014(15.5years) 2011(0.38%) 2008(-0.43%) 

Unity Dec 2005 -Dec 2014(15.5years) 2005(3.44%) 2009(-0.76%) 

WEMA June 1999 - Dec 2014(15.5years) 2014(0.78%) 2009(-1.08%) 

Zenith Oct 2004- Dec 2014(10.17years) 2004(1.66%) 2008(-0.29%) 

Notes: Number of years in parentheses in column 2; Yearly averages (in %) in parentheses for columns 3 and 4 

Meanwhile, for further understanding, Figure 7.1 below presents the bar plot for Access Bank, 

wherein the bank was mostly bullish in 2007 with average returns of 0.28% but became most 

bearish in 2008 as shown in Table 7.1 above. 

 
Figure 7.1: Yearly Average for Access Bank 

From Table 7.1, apparently 2008 (in red) is the year when 11 out of 16 banks, representing 

approximately 69% of all the banks examined, experienced the lowest average stock returns. 

Combined with the bearish nature of Access Bank’s stock from 2008-2009, the results 

demonstrate the negative effect of the 2007-09 global financial crunch on Nigerian banks. For 

example, three banks- Afribank, Diamond and Skye became bearish in 2011, while two banks, 

Unity and WEMA were bearish in 2009. Again, these findings show that 2008-2009 largely 

impacted negatively on the Nigerian banks such that 13 out of 16 became bearish, representing 

about 82% of all the banks investigated. 

Given the nature of the data available for this research and the nature of the Nigerian financial 

market, which is still nascent, this study will be focused on few of the calendar anomalies that 
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we believe are likely to characterise the Nigerian market, and have empirically been studied 

across different markets, especially developing markets. Some of these calendar anomalies 

include, but are not limited to, the following: Day-of-the week and Monday effect anomalies; 

a January effect; a Holiday effect; a Turn-of-the-year effect, and the October-March seasonality 

effect. Thus, the effects listed above will be explored in the context of recent banking and 

financial reforms in Nigeria and the 2008-2009 global financial crises. 

7.5 Methodologies 

This section discusses the statistics analysing anomalies. As mentioned earlier, the analysis will 

be focused on Day-of-the-Week / Monday Effect, Holiday effect, Turn-of-the-year Effects and 

October-March Seasonal Effects. The approaches and dummy regression models (equations 

4.69 to 4.73) for the analyses are presented in Section 4.4 of Chapter 4 of this thesis. Note that 

other anomaly effects models than those presented in that section follow the same dummy 

variable regression technique aimed at isolating the effects of the days, months, holidays, or 

other factors like financial reforms and crises. 

7.6 Results and Discussions 

It is important to note that while presenting the results, both tables and bar graphs shall be used; 

given the small magnitude of the values, percentages shall be used. The results are now 

presented below for all the banks. 

7.6.1 Day-of-the-week/Monday effect Results 

Table 7.1 presents the results for this anomaly. Generally, seven banks-Access, Afribank, 

Ecobank, First, FCMB, Union and Sterling banks - are found to have negative average returns 

on Monday, while the remaining nine bear positive average returns on Monday. Similarly, 

except for Union Bank where the lowest average returns were recorded on Tuesday, the 

remaining six banks with negative Monday returns produced the least average returns on 

Monday. Further, Ecobank and Fidelity recorded negative average returns on Fridays as against 

what is contained in the literature that Friday average returns are mostly positive and the highest. 

Also, while every other bank has its highest average returns on Friday, Ecobank, and Fidelity, 

with negative Friday average returns, have their highest average returns on Wednesday. It is 

important however to note that based on the p-value, there is no significant difference in the 

average returns except for only four banks, namely: Diamond, Skye, UBA and Union banks. 
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For a more visual understanding, Figure 7.1 (below) and 7.2a-7.16a (in Appendix 7A) provide 

a better assessment of Access bank and others, with respect to this type of anomaly. From the 

results, Access, Afribank, First, and Sterling banks could be said to reflect both a Monday and 

Day-of-the-week effect. Ecobank and FCMB reflect a Monday effect, and Union shows a Day-

of-the-week effect, at least to an extent. Diamond and Union have the lowest average returns 

on Tuesday, as was found in Smirlock and Starks (1986) and Barone (1990). 

Table: 7.2: Day-of-the-Week/Monday Effect Table across the Banks
18 

BANK WEEKDAY DAILY Remarks 

Access Monday -0.07%(0.568) Lowe19st (Negative) 

Tuesday -0.05%(0.6715)  

Wednesday -0.04%(0.685)  

Thursday 0.04%(0.874)  

Friday 0.16%(0.370) Highest  

Afribank MONDAY -0.08%(0.637) Lowest(Negative) 

TUESDAY -0.01%(0.5635)  

WEDNESDAY -0.02%(0.575)  

THURSDAY -0.14%(0.5445)  

FRIDAY 0.02%(0.422) Highest 

Diamond MONDAY 0.10%(0.3881) (Highest) 

TUESDAY -0.27%(0.02335) Lowest 

WEDNESDAY -0.03%(0.8616)  

THURSDAY 0.08%(0.4537)  

FRIDAY 0.09%(0.4057)  

Eco MONDAY -0.34%(0.3379) Lowest 

TUESDAY -0.19%(0.8079)  

WEDNESDAY 0.05%(0.3365) Highest 

THURSDAY -0.08%(0.756)  

FRIDAY -0.16%(0.9277)  

First MONDAY -0.19%(0.0693) Lowest 

TUESDAY -0.06%(0.6306)  

WEDNESDAY 0.03%(0.6315)  

THURSDAY 0.01%(0.8182)  

FRIDAY 0.14%(0.1189) Highest 

FCMB MONDAY -0.21%(0.0649) Lowest 

TUESDAY -0.01%(0.9661)  

                                                
18p-values in parentheses for test based on equation 4.69 in Chapter 4  
19 Colour green is used to identify when Monday’s effect is lowest and negative; whereas colour yellow is 

applied whenever Friday’s effect is the highest par bank in Table 7.2.  
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WEDNESDAY 0.09%(0.3107) Highest 

THURSDAY 0.02%(0.7491)  

FRIDAY 0.03%(0.664)  

Fidelity MONDAY 0.17%(0.9142)  

TUESDAY -0.19%(0.2309) Lowest 

WEDNESDAY 0.68%(0.5741) Highest 

THURSDAY 0.42%(0.6221)  

FRIDAY -0.40%(0.2466) Lowest 

GTB MONDAY 0.09%(0.7571)  

TUESDAY 0.05%(0.9102)  

WEDNESDAY -0.09%(0.0907) Lowest 

THURSDAY 0.17%(0.2149) Highest 

FRIDAY 0.08%(0.7919)  

Skye MONDAY 0.38%(0.01009) Highest 

TUESDAY -0.11%(0.4015)  

WEDNESDAY -0.15%(0.2347) Lowest 

THURSDAY -0.13%(0.2929)  

FRIDAY 0.09%(0.5829)  

STANBIC MONDAY 0.23%(0.624) Highest 

TUESDAY 0.05%(0.4575)  

WEDNESDAY -0.25%(0.5359) Lowest 

THURSDAY 0.00%(0.9524)  

FRIDAY 0.08%(0.3469)  

Sterling MONDAY -0.07%(0.4662) Lowest 

TUESDAY -0.05%(0.6051)  

WEDNESDAY -0.04%(0.6244)  

THURSDAY 0.04%(0.7702)  

FRIDAY 0.16%(0.1503) Highest 

UBA MONDAY 0.21%(0.06349) Highest 

TUESDAY -0.06%(0.5149)  

WEDNESDAY 0.01%(0.9532)  

THURSDAY -0.21%(0.0441) Lowest 

FRIDAY 0.09%(0.4371))  

Union MONDAY -0.07%(0.656)  

TUESDAY -0.31%(0.0215) Lowest 

WEDNESDAY -0.08%(0.5543)  

THURSDAY 0.14%(0.2613)  

FRIDAY 0.28%(0.02721) Highest 

Unity MONDAY 0.31%(0.6385) Highest 
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TUESDAY -0.33%(0.06883) Lowest 

WEDNESDAY 0.12%(0.3313)  

THURSDAY -0.04%(0.3785)  

FRIDAY 0.14%(0.1492)  

WEMA MONDAY 0.26%(0.1972) Highest 

TUESDAY -0.11%(0.4249)  

WEDNESDAY -0.14%(0.3144) Lowest 

THURSDAY 0.03%(0.9995)  

FRIDAY 0.13%(0.5926)  

Zenith MONDAY 0.03%(0.9211)  

TUESDAY -0.08%(0.3277) Lowest 

WEDNESDAY 0.02%(0.9826)  

THURSDAY 0.07%(0.6347) Highest 

FRIDAY 0.06%(0.7033)  

 
Figure 7.2: Day-of-the Week/Monday Effect Plots for Access 

7.6.2 Holiday/January Effect Results 

For these effects, it is expected that a day preceding a holiday will give the highest average 

returns, for which the second to fifth day of January should give high returns put together for a 

January effect to hold in the case of Nigeria, as the general and regular holiday days include 1st 

May, 1st October, 27th May, 25th and 26th December and 1st January. 

For Access Bank 

There is an indication of a holiday effect with the returns on the 31st December producing higher 
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does not show a significant difference from 2nd to 5th January (see Table 7.2 below). For other 

banks, only four - First, Union, Unity and WEMA have no evidence of either of the two effects; 

two banks- FCMB and GTB exhibit significant presence of the two effects, while the remaining 

9 exhibit either a holiday or a January effects (see Appendix 7B for the details). 

Table 7.3: Holiday and January Effects for Access Bank 

DAY Month þ(effect) t-statistic P-value 

24 December 0.003 0.324 0.747 

27 December 0.000 -0.045 0.964 

28 December 0.010 1.032 0.303 

29 December -0.006 -0.678 0.498 

30 December 0.008 0.904 0.367 

31 December 0.022 2.576 0.010 

2 January 200.010 0.857 0.392 

3 January 0.001 0.065 0.948 

4 January 0.014 1.365 0.173 

5 January 0.000 -0.040 0.968 

Figure 7.2 below displays the Access bank plots for holiday or January effects. It can be 

confirmed that 31st December, a day prior to 1stJanuary, a public holiday, has the highest bar, 

showing that there is an evidence of a holiday effect (see 31st December in Table 7.3). As noted 

above, for other banks’ plots, see Appendix 7C. 

 

 
Figure 7.3: Holiday and January Effect Plot for Access Bank 

                                                
20 Green colour is used to identify the effects of the first five working days of January. 
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7.6.3 October-March Seasonality Effect Results 

The condition for this effect is that the average returns from October to March should be higher 

than those of April to September of every year. Table 7.3 below presents the empirical results 

for this effect for all the banks. From the table, we see that none of the test statistics was 

significant, meaning that average returns between the two periods was not significantly 

different from each other for any of the 16 banks. Thus, this implies that there is largely a lack 

of October-March seasonality effect across the 16 banks for the periods investigated. Figure 

7.8d to 7.23d (in the Appendix 7D) present the plots for this effect across the sixteen banks, 

while Figure 7.3 and 7.4 below display those of Union and Zenith banks. Note that columns 2 

and 3 contain daily average returns across the banks as percentages. 

Table 7.4: Results of October-March Seasonal Effects Anomalies across the Banks
21 

Banks Mean effects Test Statistic P-value 

Access 0.06% (M1) -0.05%(M2) 1.001 0.317 

Afribank -0.04% (M1) -0.06%(M2) 0.133 0.894 

ECO -0.08%(M1) -0.20%(M2) 0.618 0.536 

Diamond 0.01%(M1) -0.03%(M2) 0.288 0.774 

First 0.08%(M1) -0.10%(M2) 1.867 0.062 

FCMB 0.01%(M1) -0.04%(M2) 0.491 0.623 

Fidelity 0.02%(M1) -0.07%(M2) 0.829 0.407 

GTB 0.13%(M1) -0.01%(M2) 1.569 0.117 

Skye 0.10%(M1) -0.08%(M2) 1.329 0.184 

STANBIC 0.06%(M1) -0.02%(M2) 0.471 0.638 

Sterling 0.06%(M1) -0.05%(M2) 1.001 0.317 

UBA 0.02%(M1) 0.00%(M2) 0.159 0.874 

Union -0.03%(M1) 0.01%(M2) -0.282 0.778 

Unity 0.17%(M1) -0.10%(M2) 1.109 0.267 

WEMA 0.11%(M1) -0.04%(M2) 0.892 0.372 

Zenith 0.02%(M1) 0.02%(M2) -0.073 0.942 

                                                
21

M1: October-March Average returns; M2: April-September Average returns 
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Figure 7.4: Seasonality Effects Plot for Union Bank 

 

 
Figure 7.5: Seasonality Effects Anomalies Plot for Zenith Bank 

7.6.4 Turn-of-the-year Effects 

The approach for this anomaly is descriptive comparison and visualisation of average returns 

in the first and second halves of January. Table 7.4 displays the empirical results for this effect. 

According to this effect, it is expected that average returns from 2nd to 15th January of every 

year should be higher than those of the remaining days of the year. Since there are generally 

higher January returns than the rest of the year by the January effect, comparing the two halves 

of the year more directly explores the turn-of-the year effect as the year goes from December 

of a previous year to January of the following year. From Table 7.4, only Afribank is significant 

while the rest of the banks are not, indicating there is largely a lack of turn-of-the year effect 

within the Nigerian banking industry. 
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However, for further visual assessment, while Figure 7.5 below presents the plot of turn-of-the-

year effect for Access Bank, Figures 7.24e-7.38e (in Appendix 7E) are shown for the rest of the 

banks. From the plot, the average abnormal returns of the first two weeks of the year seem to 

be higher than the rest of the trading days in January. 

Table7.5: Results of Turn-of the-year/January Effects across the Bank 

Banks Test Statistic P-value 

Access 0.004 0.626 

Afribank 2.570 0.011 

ECO 0.783 0.435 

Diamond 1.474 0.142 

First 1.242 0.215 

FCMB 0.518 0.605 

Fidelity 1.096 0.275 

GTB 1.826 0.069 

Skye 1.101 0.272 

STANBIC 1.267 0.206 

Sterling 0.488 0.626 

UBA 0.923 0.367 

Union 1.779 0.086 

Unity 0.980 0.328 

WEMA 0.486 0.627 

Zenith 1.873 0.062 

 
Figure 7.6: Turn-of-the-year Plot for Access Bank 

 

7.6.5 Turn-of-the-Month Effect Results 
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August, September, November and December) whose effects are significantly different; 

however, in the remaining 8 banks, there is no significant difference in the monthly effects. 

While we present analysis results for Access banks in Table 7.7, the results for the remaining 

banks are in Appendix 7F of the thesis. Apparently, there no evidence to support the general 

belief that January's average return is usually higher than that of any other month of the year as 

found with the US markets, especially for small-cap stocks (see: Cabello and Ortiz 2002; 

Schwert, 2003). 

Further, Figures7.39f to 7.53f (see Appendix 7F) show graphically the differential patterns in 

the average returns per month across the remaining fifteen banks. For example, Union Bank’s 

results are visually presented in Figure 7.6, revealing that the month of October witnesses the 

highest average returns, while December has the lowest average returns.  

These results have implications for investment strategies on the part of speculative or long-term 

investors. For speculative investors the monthly swings in returns will help them with more 

effective market timing of portfolios that include bank stocks. Long-term investors will 

concentrate rather on the overall trend of bank returns and the underpinning fundamental 

analysis, including management quality and track records of different banks’ performance.  

Our conclusion is that there is evidence of a Turn-of-the-month effect in only half of the 

Nigerian banks.  

Table7.6: Summary Results on the Turn-of-the-Month Effects across the Banks 

Banks Number Month 

Access 0 None 

Afribank 0 None 

ECO 0 None 

Diamond 2  March and August 

First 2 July and August 

FCMB 2 August and October 

Fidelity 0 None 

GTB 1 May 

Skye 1 August 

STANBIC 0 None 

Sterling 2 July and November 

UBA 0 None 

Union 6 March, July, August, September, November and December 

Unity 0 None 

WEMA 0 None 

Zenith 1 August 
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Table 7.7: Results on the Turn-of-the-Month Effect for Union Bank 

 

 

 
Figure 7.7: Month-of-the-year Effects Plot for Union Bank 

7.7 Summary and Conclusion 

In this chapter, we explored different types of market anomalies. We briefly discussed their 

attributes, with more emphasis on the Time series / calendar anomalies as the major focus of 

the chapter. Comparative studies related to the calendar anomalies in different countries in the 
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examined in the introduction section. The chapter then recalled the techniques for analysing 
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anomalies that were stated in Chapter 4 of the thesis and applied some of these techniques to 

the banks’ returns. 

The yearly averages reveal that in the year 2008, 69% of the banks were bearish, and between 

2008 and 2009, approximately 82% of the banks were bearish, indicating that more banks were 

negatively impacted as the crisis persisted.   

Meanwhile, we looked at the following anomalies: The Day-of-the-week/Monday effect, the 

Holiday/January effect, the Seasonality effect, with a focus on the October-March effect, the 

Turn-of-the-year effect and the Month-of-the-year effect. 

While presenting results on each of the effects, we observed that only four banks: Diamond, 

Skye, UBA and Union, show some signs of a Day-of-the-week effect; with seven-Access, 

Afribank, Ecobank, First, FCMB, Union and Sterling –showing evidence of negative(and the 

least average) returns on a Monday. All the banks had their positive and highest effects on 

Fridays, except for Eco and Fidelity banks, as noted in Table 7.1 above. However, largely, 

based on the test results, one could not conclude that any Day-of-week effect could be exploited 

to earn abnormal profit in the market.  

Table 7.2also displays results on the holiday/January effect for Access bank, while those of the 

remaining banks are presented in Appendix 7B. The findings reveal the following: for Access 

and other 6 (Afribank, ECO, Skye, STANBIC, Sterling and UBA), there is evidence of a 

holiday effect.  For the other banks, only four - First, Union, Unity and WEMA show no 

significant evidence of either of the two effects; two banks- FCMB and GTB exhibit significant 

presence of the two effects, while the remaining three (Diamond, Fidelity and Zenith), only 

exhibit signs of a January effect. Thus, it could be concluded that there is, for the most part, 

evidence of both effects characterising the Nigerian banking industry.  

For the October-March effect, we found that none of the banks show significant evidence of 

this effect even though there seem to be marked difference in the average returns between the 

two periods (see Table7.3, Figures 7.3 & 7.4). 

With respect to the turn-of-the year effect, whereby we expect that the average returns in the 

first two weeks of January of every year should be higher than the average returns of the 

remaining days of the month, it is evident from our findings that only one bank (Afribank) 

conforms to this effect. 
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As expected for the turn-of-the-Month effect, the effect for each month should be different from 

the rest of the months in the year. Our key findings show that none of the banks has its highest 

average return in January, while 8 banks (Diamond, First, FCMB, GTB, Skye, Sterling, 

Union and Zenith) have at least one of the months significantly different from the others, but 

for the remaining 8 banks there is no evidence of significant difference in the monthly effect 

even though there are graphical signs of difference in average returns across the months for all 

the banks (See for example Figure 7.6). 

In summary, a Day-of-the week effect was largely not found in the banks. The holiday effect 

was found in some and but was absent in others, but only in five of the banks there is some 

evidence of the January effect. The October-March effect does not impact on any of the 16 

banks and neither does, the turn-of-the year effect except for Afribank bank. The month of 

August was when majority of the banks witnessed their lowest returns, but only 8 of the banks 

reveal some evidence of the presence of a turn-of-the-month effect. 

With these findings, we have succeeded in identifying how the market and investors (in the 

Nigerian banking industry) react to environmental changes or turn-of-events in the Nigerian 

society. Investors (either local or foreign), with a good understanding of the reactions of the 

Nigerian banks to the anomalies discussed so far would be properly guided on favourable 

investment decisions based on their disposition to risks.  

However, it is important to note that since each country has its own environmental/turn-of-the 

event peculiarities, investors aiming at diversification would require a better understanding of 

the reactions of the respective market/sector of the market to the established anomalies within 

such contexts. For example, the findings made in this research regarding market anomalies are 

unique to the Nigerian banking industry and do not apply to any other sector or market/economy. 

It is in this sense that systematic stock market characterisation and development (SSMCD) 

research, of which this thesis is a part, requires researchers to replicate the methodology in this 

thesis in other sectors of the NSM and emerging African markets. 
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8 CHAPTER EIGHT: Rational Speculative Bubbles 

8.1 Introduction 

Speculative excesses, also called speculative bubbles, play a significant role in economic 

history. They are attributed to periods (episodes leading to persistent overvaluation of an asset 

price) when financial asset prices peak unsustainably beyond their real face values subject to 

the prevailing economic realities. A bubble is a long run-up in price (or a long run of positive 

abnormal returns) followed by a crash or market collapse. The cause of unusual rises and falls 

in prices, whether there were bubbles, and whether the bubbles were behavioural or rational, 

have been issues of concern in finance and macroeconomics in recent years. Essentially, 

bubbles occur when assets consistently sell at prices in excess of their fundamental values22. 

This distorts efficient allocation of capital to investments in a way that maximises the overall 

well-being of households, firms and governments (Roubini and Setser, 2004). 

It is noted in Ezepue and Solarin (2009) that the genesis of the 2007-2009 global financial crisis 

was a bubble that built up in the US subprime market due to banks’ securitisation of house loans 

and the selling of these to borrowers who could not continue to afford the payments. In other 

words, the buyers of the loans were accumulating repayment debts that exceeded their incomes. 

The original ideas in Ezepue and Solarin (2009) were developed in a three-part paper (Ezepue 

and Solarin, 2012 a-c) that addresses more fully the lessons from the credit squeeze for 

modelling emerging financial markets (Ezepue and Solarin, 2012a), applications of the ideas to 

some topics in investment and financial risk management (Ezepue and Solarin, 2012b), and a 

rejoinder to the then Central Bank of Nigeria (CBN) Governor, Professor Soludo, inaugural 

lecture of the Professor of Economics, which linked the financial crisis to financial globalisation 

and financial engineering research (Urama and Ezepue, 2018) that would best prepare emerging 

markets for such crises in the future (Ezepue and Solarin, 2012c). The Ezepue and Solarin 

(2012a-c) papers inform this research in the banking sector of the NSM and prior to that Omar’s 

(2012) thesis at the overall NSM level. 

 

                                                
22 “The Fundamental value” of an asset is the present value of the stream of cash flows that its holder expects to 

receive. These cash flows include the series of dividends that the asset is expected to generate and the expected 

price of the asset when sold see (Steimetz (2008); http://www.econlib.org/library/Enc/Bubbles.html). The 

Fundamental value of an asset may also be defined as the price at which investors could buy the asset given that 

they cannot resell it later”. See Camerer (1989) and Brunnermeier (2008) for surveys on bubbles. 

http://www.econlib.org/library/Enc/Bubbles.html


200 

 

Characteristics of bubbles 

Some of the common features with which bubbles may be identified include: 

1. Self-Reinforcement: meaning that the higher prices become, the more there is a 

justification for even higher prices and higher demand beyond available supply; 

2. They collapse or burst suddenly and swiftly (see Figures 3.1 and 3.2); 

3. They are roughly symmetrical in both time and price. This implies that however long it 

takes to create the bubble, it will take roughly the same amount of time to unwind the 

bubble, though it tends to deflate faster than it is formed, and prices often tend to fully 

adjust. 

Though outside the scope of this research, the above features of bubbles suggest that a 

mathematical approach to modelling bubbles could involve the notions of dynamical systems 

(Kreyszig, Kreyszig and Norminton, 2011; Brannan and Boyce, 2011 and Beltrami, 2014) that 

are subject to chaos effects, avalanches and crashes, such as explored in the literature of 

statistical physics, complexity science and critical mass ideas (Mandelbrot and Hudson, 2004; 

Ball, 2004).  

Ezepue and Solarin (2012c) discuss further links between bubbles, financial crises, and 

monetary policy, and advanced empirical finance and risk management research - ideas that are 

further explored in (Raheem and Ezepue, 2018; Sollis, 2012; Alexander, 2008 (Volumes I-IV); 

Cuthbertson and Nitzsche, 2005; McNeil, Frey and Embrechts, 2015; and Ezepue, 2017).  

Related global economics constructs are explored in (Miles, Scott and Brendon, 2012; Griffiths 

and Stuart, 1999 eds.; Greenspan, 2008; Roubini and Setser, 2004; Sharma, 2016; Acharya and 

Richardson, 2009; Dalio, 2017; and Ezepue, 2017). These references will inform the lines of 

future work in SSMCD research outlined in Ezepue (2017), some of which are currently 

discussed in Ezepue and Ekahguere (2016) eds., Nnanwa, et al. (2016), Urama et al. (2017). 

The above references show the multidisciplinary character of SSMCD research which this 

chapter and thesis contribute to, primarily from an empirical finance perspective.  

Future work on bubbles, anomalies and volatility following this research will explore some of 

these lines of work, with a view to mapping the DNA of the NSM and using the results to 

enhance investment management strategies within the NSM (Ezepue, 2017). We note that this 

chapter takes a more in-depth look at bubbles than is provided in Omar (2012) – the first PhD 

thesis in the SSMCD line of research. The reason for this is to provide stronger guidelines for 
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replicating such results in other market sectors. The above references, as highlighted, will help 

to ground such research in meaningful applications to investment theory and their global 

economic ramifications. Such extensions of current knowledge are suggested in Dalio (2017), 

Raheem and Ezepue (2018), and Ezepue (2017).  

Indeed, Raheem and Ezepue (2017) show how the stylized facts of banks’ returns explored in 

this thesis can be used to enhance technical trading strategies related to portfolios that include 

such returns. The paper develops a three-state Markov chain model for this.  

The promise of the additional work on bubbles discussed in this chapter is that, when combined 

with ideas revealed in the anomalies chapter (see Chapter 7 of this thesis), we have more results 

that characterise the dynamics of bank returns in the NSM. It is envisaged that these results 

when pooled across all six empirical market features including volatility modelling (Chapter 9 

of this thesis), and anomalies (Chapter 7), market efficiency (Chapter 6), and the fundamental 

stylised facts results in (Chapter 5) will arguably provide the deepest empirical finance-based 

characterisation of the banking sector of the NSM available in the literature.  

Fuller details of the SSMCD remits involved in these characterisations are presented in Ezpue 

(2017) generally and Urama and Ezepue (2018) with respect to the development of novel 

derivative products in the NSM. The latter paper articulates how such stylized facts researched 

in this thesis aid the intended derivatives pricing models and provides support for the 

contributions of knowledge made by the results in this thesis, including this chapter on bubbles. 

Also, Dalio (2017) as argued in Ezepue (2017) shows how all the results can be used in 

computational schemes to better manage complex investment portfolios, including the 

differential impacts of unforeseen economic events such as that of the 2007-2009 global 

financial crisis. 

Impacts of Bubbles 

1. They have significant negative impacts on the real and financial sectors; 

2. They can be destructive to the wider economy especially if it is a major market, such 

as the stock or housing market; 

3. A stock market crash can cause a loss of confidence and lower spending. 

A few examples of historical circumstances where bubbles were experienced in the past 

include: The Tulip Mania (Holland, 1630s), and the South Sea Bubble (London, 1720). In the 
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twentieth century, the most famous bubbles are the Wall Street Crash (the US, 1929), the 

Japanese bubble (1980s), the Asian Tigers bubble (mid-1990s), and the technology mania (late 

1990s). 

Causes of Bubbles 

Generally, bubbles start for some good economic reasons. For example, in the early 2000s, low 

interest rates and economic growth encouraged people to buy a house in the US. In the 1990s 

internet stocks did offer good potential growth for this new business. However, increasing 

prices and rising demand can create a dynamic where good news inspires people to take more 

risks, thereby leading to an increase in prices beyond what they should reach. Some factors that 

can cause bubbles as found in the following literature such as: Shiller (2000), Brunnermeier 

(2008), Stiglitz (1990), Thornton (2009) and McQueen and Thorley (1994), include: 

1. Irrational exuberance: In certain situations, investors buy assets due to strong 

psychological pressures, which encourage them to ignore the fundamental value of the 

asset by believing that prices will keep rising. 

2. Herd behaviour: People usually presume that the majority can’t go wrong. If banks 

and well-established financial leaders are buying an asset, they assume it must be a good 

investment (the economics of herding and irrationality). 

3. Short termism: The situation where people’s decisions are largely focussed on the short 

term rather than the long-term. 

4. Adaptive expectations: People usually see or judge the state of a market and economy 

subject to the recent past happenings. 

5. Hope they can beat the market: This is a situation where people believe that they can 

beat the market and get out before the bubble bursts. 

6. Cognitive dissonance: The act of filtering out bad news and looking for views which 

strengthen their beliefs in the market. 

7. Financial instability hypothesis: The theory that a period of economic boom makes 

investors increasingly reckless in trading, thereby generating financial instability. 

8. Monetary policy: Sometimes bubbles occur as an indirect consequence of monetary 

policy. For example, the FED’s decision to keep interest rates in the US low encouraged 

the credit bubble of the 2000s. Excess liquidity may easily generate bubbles because 

people are simply desperate to invest their money. 
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9. Global imbalances: Instability experienced in a particular market has the potential to 

cause panic in another market, thereby leading to systemic risk across different markets. 

For example, there are strong arguments that the US financial bubble of the 2000s was 

caused by an inflow of currency from abroad, simply because the US ran a trade deficit 

and attracted hot money inflows, leading to a higher demand for US securities. This 

kept interest rates low and values of US financial assets higher than they otherwise 

would have been. 

8.2 The Rational Speculative Bubble Models 

Various models have previously been proposed by a few authors with closed objectives relevant 

to our study. The models, which range from simple to general models for investigating rational 

speculative bubbles in equity returns across the exchange markets of both developed and 

emerging economies, and their implications, are to be examined alongside the relevant test 

statistics, such as the Augmented Dickey-Fuller (ADF), Phillip-Peron (PP) and Duration 

dependence test with various extensions, as contained in the literature. 

Brooks and Katsaris (2003) group the various methods for investigating rational bubbles into 

three major groups such as: tests for the co-integration of dividends and prices, tests for bubble 

premiums and tests for excess volatility in returns. They also state that tests of stationarity and 

co-integration are the best analytical tools available to identify the presence of a long-term 

relationship between actual prices and fundamental variables. The presence of a long-term 

relationship between dividends and prices can indicate the absence of bubbles, but the tests 

greatly depend on the method employed to construct the fundamental values (Brooks and 

Katsaris, 2003: 331). Gurkaynak (2008), however, classifies the econometric tests of rational 

bubbles as “variance bounds tests”, “West’s two-step tests”, and “integration/co-integration-

based tests”.  

The co-integration method is criticized as it is based on the joint test of a null hypothesis of no 

bubble and no model misspecification. Gurkaynak (2008: 182)points out that the econometric 

bubble detection tests impose very little structure on the bubble process, simply because those 

tests do not produce a time series of the bubble component, so it is difficult to evaluate whether 

the implied properties of the bubble are reasonable or not. 
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Many other studies developed a new approach, which has become popular over the last decade. 

These investigate the presence of speculative bubbles23 in asset prices. The method is the one 

applied by McQueen and Thorley (1994), derived from the statistical theory of duration 

dependence. The technique ideally assumes that if an asset price series is characterised by 

bubbles, then runs of positive abnormal returns will exhibit negative duration dependence, 

which is indicated by a decreasing hazard rate. This implies that the conditional probability of 

a run terminating, given its duration, is a decreasing function of the duration of the run. The 

findings of the study established evidence for the presence of negative duration dependence in 

the runs of positive abnormal monthly returns for both equal-weighted and value-weighted 

portfolios of the New York Stock Exchange (NYSE) traded securities. 

McQueen and Thorley (1994) classify bubble tests into two basic categories. One category of 

bubbles tests compares actual prices to fundamentals, which are believed to determine price. 

A second category of bubble tests examines returns for empirical attributes of bubbles such as 

autocorrelation, skewness, and kurtosis, which result from the two characteristics of bubbles-

namely, extended runs of positive abnormal returns and crashes; that is, a long-run up in 

positive abnormal returns representing a bubble, followed by a collapse in prices (a crash) 

(Martin et al., 2004 and Dou, 2010). This indicates that a speculative bubble occurs with a 

gradual upsurge in prices but ends with sharp and rapid declines, which results in an asymmetric 

pattern in the asset returns (Jirasakuldech and Zorn, 2002; Dou, 2010). 

The above points are such that diagnostic tests for bubbles could potentially be based on these 

stylised facts, but in fact such tests are inconclusive, even if the stylised facts are significant, 

because fundamental price movements and other stylised facts of equity returns can also be 

associated with bubbles (Chan, McQueen and Thorley, 1998). For example; time-varying risk 

premiums (Fama and French, 1988), fads (Poterba and Summers, 1988) and non-synchronous 

trading (Lo and MacKinlay, 1990), could all induce autocorrelation; Skewness could result 

from asymmetric fundamental news, while leptokurtosis could be a consequence of the batched 

arrival of information (Tauchen and Pitts, 1983). Hence, the duration dependence tests 

discussed below are more appropriate for detecting bubbles compared to the stylised facts-

based tests (Chan, McQueen and Thorley (1998)). 

                                                
23A speculative bubble is a spike in asset values within a particular industry, commodity, or asset class, which is 

often caused by exaggerated expectations of future growth, price appreciation, or other events that could trigger 

an increase in asset values. http://www.investopedia.com/terms/s/speculativebubble.asp 

 

http://www.investopedia.com/terms/s/speculativebubble.asp
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Implications of the Bubble Model 

If prices contain bubbles, then runs of observed positive abnormal returns will exhibit duration 

dependence with an inverse relation between the probability of a run ending and the length of 

the run (McQueen and Thorley 1994). The fact that this can be investigated without the need to 

observe fundamental values directly makes it easier to use duration dependence tests, compared 

to tests that estimate fundamental values). 

Duration Dependence Tests 

Duration dependence tests deal with the fact that the probabilities of ending a run - a sequence 

of abnormal returns of the same sign - vary subject to: (1) the length of the run and, (2) whether 

the run is of either negative or positive abnormal returns. Thus, returns are converted into series 

of run lengths of positive and negative observed abnormal returns. Negative abnormal returns 

then become less likely and are only generated when the bubble bursts. 

As noted above, the test is different from other methods because it is flexible and has no 

requirement for identifying fundamental factors and no requirement that the time series must 

be normally distributed (Haque, Wang and Oyand, 2008; Jaradat, 2009; Jirasakuldech, 

Emekter and Rao, 2008). It is a joint test for the presence of bubbles where misspecification 

of the problem and model does not matter (Blanchard and Watson, 1982; Shiller, 1981; West, 

1987). McQueen and Thorley (1994), proposed a duration dependence model, based on the 

log transformation of logistic regression, and called it the log-logistic function, to investigate 

the presence of rational speculative bubbles. Their model predicts that the hazard function for 

a run of positive abnormal returns is a decreasing function of the length of the run. 

Alternative Tests 

a. To compare actual prices to fundamentals: Shiller (1981) used variance bounds, 

whereas West (1987) used regressions. 

b. To examine returns for empirical attributes of bubbles, such as skewness, which result 

from the two characteristics of bubbles - extended runs of positive abnormal returns and 

crashes, Evans (1986) applies the “median test” of (skewness). 

c. Taylor and Peel (1998) applied non-cointegration tests of stock prices and dividends. 

d. Markov-switching methods are a useful tool for modelling stock-market fluctuations 

and bubbles that switch between two or more states- Homm and Breitung (2012) 

proposed several tests in this regard. 
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As stated by Gurkaynak (2008), many existing econometric bubble tests have one thing in 

common: they are not very good at detecting bubbles. However, the duration dependence test 

can overcome most of the criticisms laid against traditional bubble tests. Its advantages are that 

it is unique to bubbles, it addresses nonlinearity and it does not require correct identification of 

the observable fundamental variables. It works based on the principle that if the price is 

characterised by bubbles, then the trend of its positive (and not negative) abnormal returns will 

exhibit negative duration dependence. This means that the probability of bubble burst is 

expected to fall with the length of the time the bubble lasts, given that the duration time is finite. 

This follows the assumption that if the investors are rational, then they do not sell assets whose 

prices are far above their intrinsic values because the returns of holding such assets can 

adequately compensate for the risk of the bubble bursting. Part of the stylized facts of rational 

speculative bubbles is that of a long run-up in price, followed by a crash.  

However, one disadvantage of using the duration dependence test is that it is sensitive to the 

data set used for example weekly versus monthly returns. Harman and Zuehlke (2004) found 

inconsistencies in their results by using weekly and monthly data, which shows the sensitivity 

of the duration dependence test results to the data set. 

Table 8.1: Summary of few Studies on Bubble and their Findings across different Markets 

Author Year Data Methods Findings 

Chan et al. 1998 Monthly and Weekly data 

(1975-1994) 

Duration Dependence 

Test 

Evidence of 

bubbles found 

Ahmed et al. 1999 Daily-1986-1996 Markov-Switching 

Model 

Evidence of 

bubbles found 

Watanapalachaikul 

and Islam 

2007 Daily and Monthly-1992-

2001 

Duration dependence 

test based on Weibull 

hazard model 

Evidence of 

bubbles present 

Jirasakuldech 

Emekter and Rao 

2008 Daily and Monthly-1975-

2006 

Multivariate Co-

integration Test with 

duration dependence 

test 

Evidence of 

bubbles found 

Haque, Wang and 

Oyang  

2008 Weekly real returns-1991-

2207 

Log-logistic and 

Weibull Hazard 

Rational 

speculative bubbles 

found 

Mokhtar, 

Nassir and 

Hassan  

2006 Monthly real returns: 

1994-2003 

Log-logistic and 

Weibull hazard 

Presence of 

bubbles 
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pre-crisis (1994-

1996) and 

post-crisis (1999-

2003) periods 

Zhang  2008 Weekly and monthly 

excess returns 

Log-logistic Speculative 

bubbles found 

 

8.3 Methodology Adopted in this Study 

In Section 4.5, we presented the procedures to be adopted in determining the presence of 

bubbles in the respective banks’ stock returns. 

8.3.1 Tests of Hypothesis for Explosiveness 

In applying the unit root test discussed so far, the following null and alternative hypotheses are 

often set: H0: φ = 1  vs  H1: φ > 1, whereφ, is the unit root parameter in both the ADF and 

PP tests. Recall that:  

a. If |φ| = 1then there is the possibility for the presence of a unit root in the series, 

which requires special treatment by differencing the series; 

b. If |φ| > 1, then the series is said to be boundless (or explosive), indicating the 

likelihood of the presence of bubbles. 

For the duration dependence test, this study tests the presence of rational speculative bubbles 

in the Nigerian banks’ stocks for the sample period ranging from June 1999 to December 2014.  

8.3.2 Benefits of Studying Asset Bubbles 

Understanding how bubbles are generated over time and their early warning signs will enable 

investors to be cautious of the negative impacts their behaviour and trading activities of some 

of their mischievous members may have on their asset returns, thereby enabling them to avoid 

actions (such as herding, exuberance, etc.) that could expose their assets to avoidable or “self-

inflicted” risk. With such knowledge, the market regulators would be able to initiate rules that 

would serve as check and balances to avoid bubble circumstances and subsequent spread. 

Knowledge about bubbles would help investors to conduct due diligence with respect to the 

sustainability of their future investments and how accurate the valuation of the intended 

company of interest for investment is. For instance, in the case of prospective investors into the 
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Nigerian banking industry, understanding the historic behaviour of each bank’s prospects and 

bubble history would help them to be cautious about investment decisions in the respective 

banks, rather than merely following the hype.  

8.3.3 Justifications for the Choice of Duration Dependence Model 

Note that the inspiration for the methods used in the study was largely drawn from McQueen 

and Thorley (1994) who invented the dependence model.  However, for the choice model, the 

following reasons are the motivating factors: 

1. Recall that duration dependence is different from other methods because it is flexible 

and does not require identifying fundamental factors and there is no need for the series 

to be normally distributed (Haque, Wang and Oyand, 2008; Jirasakuldech, Emekter and 

Rao, 2008; Jaradat, 2009). Analogously, the cox-proportional hazards model shares the 

same characteristics of robustness with other duration dependence models given that it 

does not require information on the underlying distribution of the data set.  

2. The Cox model is semi-parametric, unlike other duration dependence models, such as 

log-logistic and Weibull hazard models that are parametric. 

3. The estimated abnormal returns (representing the independent variable) could either be 

positive or negative and this shows that it is time independent. This is an important 

assumption for the explanatory variable in the Cox-model. 

4. The estimated hazards are non-negative. 

5. The Cox-model is preferred to a logistic model because it provides information about 

survival time and censoring information unlike the logistic model.  

6. The model has been applied in many studies, especially in health to determine time to 

developing a hazard or survival rate of a subject. In financial research, studies such as: 

He, et al (2019); Anderson and Brooks (2014), Menezes and Bentes, (2016); Hossain 

(2004), Shumway (2001) and Ni (2009) are good inspiration for this study. 

Cox-Proportional Hazard Model 

Cox’s regression compares the hazards (as ratios) of the two treatment groups (positive and 

negative returns) and allows several variables to be considered. The hazard is the risk of 

reaching the endpoint (e.g. death), at time point, 𝑖 given that the individual has not reached it 

up to that point. 
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Hazard rate (HR) is the probability that the event will occur at time t, given that the individual 

is at risk at time, 𝑡 and usually varies over time. The dependent variable is the duration (time to 

event or time to being censored, see notes below); it is a combination of time and the 

event/censoring. 

Survival, Hazard and Cumulative hazard functions  

In medical statistics, survival data relate to the time taken for an individual to witness or 

experience a certain event or scenario. This event is not necessarily death, and neither would 

all subjects in a study have witnessed the event by the end of the study. A circumstance when 

an individual has not experienced or did not pass through the event by the end of the study is 

called censoring, which might be due to his/her withdrawal from the study or death. In this 

research, a bubble is the event of interest, while censored observations are likened to those 

returns falling outside the "bubble region" as described earlier.  

The dependent variable, duration, is assumed to have continuous distribution, 𝑓(𝑡) with the 

cumulative distribution function and defined as: 

F(t) = P(T≤ 𝑡) =  ∫ 𝑓(𝑠)𝑑𝑠
𝑡

0
.                                                                                                (8.1) 

The survivor function, which is the probability that the duration will be at least 𝑡, is defined 

mathematically as: 

𝑆(𝑡) = 1 − 𝐹(𝑡) = 𝑃(𝑇 ≥ 𝑡)                                                                                               (8.2) 

As earlier, the hazard rate (HR), which is the rate that the duration will end at time, 𝑡 given 

that it has lasted until time 𝑡 is 

ℎ(𝑡) =  
𝑓(𝑡)

𝑆(𝑡)
.                                                                                                                           (8.3) 

The HR in this research is the relative risk of the bubble associated with positive returns ending 

at a given time, t, given that the bubble had lasted up to that time.  

The Cox-proportional hazards model is 

ℎ(𝑡, 𝑥) =  ℎ0(𝑡)exp [∑ ξ𝑖𝑥𝑖]
𝑝
𝑖=1 .                                                                                           (8.4) 
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Where x = (𝑥1, 𝑥2, … , 𝑥𝑝) are the explanatory/predictor variables, and ℎ0(𝑡) is the baseline 

hazard - that is, the hazard function when all the explanatory variables are set to 0. The ξ′𝑠, are 

regression coefficients. 

Characteristics of the Cox Proportional Hazard Model 

1. The baseline hazard ℎ0(𝑡) is independent of x but depends on t, 

2. The x's are time independent, 

3. The distribution of the survival time is unknown, 

4. The hazard function is unspecified. 

Reasons for the Method’s Popularity  

1. Robustness: estimated hazards are always non-negative. 

2. It is possible to estimate the ξ′𝑠 and the hazard rate function is unspecified. 

3. ℎ(𝑡, 𝑋) and 𝑆(𝑡, 𝑋) can be estimated for a Cox model with minimal assumptions. 

Relative Hazard Rates (Hazard Ratio) 

𝐻𝑅 =  
ℎ̂(𝑡,𝑥)

ℎ̂(𝑡,𝑦)
 = 

𝑒ξ𝑥

𝑒ξ𝑦 = 𝑒(𝑥−𝑦)ξ,                                                                                                 (8.5) 

Where: x = (𝑥1, 𝑥2, … , 𝑥𝑝) and y = (𝑦1, 𝑦2, … , 𝑦𝑝). Thus, the HR is the hazard rate for (bubble) 

in returns series x divided by hazard for a returns series y. Again, in our study, the (abnormal) 

returns series for each bank is grouped into "negative" (coded as "1" when returns are too high) 

and "positive" (coded as "2" when returns are not excessive) during the analysis, with the 

reference group being the "negative" returns. For interpretation, the HR should be equal or 

greater than 1; that is, ℎ̂(𝑡, 𝑥) ≥ ℎ̂(𝑡, 𝑦). It can however be interpreted as a percentage change 

in the risk of negative returns. 

The Model Decision Rules 

Table8.2: Summary of Possible Outcomes of the Hazard Function Coefficient, Hazard rate and Conclusion 

Coefficient Hazard rate (HR) Conclusion 

Positive HR>1 Higher duration of positive returns; higher hazard rates. That is, it is 

more likely for bubbles to occur. 

Negative 0<HR<1 Higher Duration of negative returns, lower hazard rates. That is, it is 

less likely for bubbles to occur. 
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Independence Assumptions of the Cox Model  

1 The ratio of the hazards between positive and negative returns (i.e. hazard rates) is constant over 

time; meaning, hazard rates are proportional across the banks 

2. The length of the series is large enough to achieve convergence.  

To structure our data to fit into the methods used, the following procedures were used: 

1. The periods suspected to be bubbles in the price series are coded as "1" and “2” which 

represent "events", whereas other periods which do not fall within the bubble region, 

representing "censored", are coded "0". All these periods are visualised from the plots 

of price series and vary for each bank. 

2. From the returns series, we generate the runs of "negative" and "positive" returns, which 

are based on the realizations ("-" or "+") of the returns series for each of the bank's 

stocks. The negative series are those returns that are less than zero, and are coded "1", 

whereas, the positive series are those returns that are greater than or equal to zero and 

are coded “2”. 

3. In line with McQueen and Thorley (1994), in considering rational speculative bubbles by 

applying duration dependent methods, we generate "abnormal returns". However, given the 

lack of relevant data to obtain inflation rates, dividend yield, and term spread included in 

the regression model from which the abnormal returns by McQueen and Thorley (1994) 

were generated, we decide to follow Chan et al. (1998) and use a fourth-order autoregressive 

model of daily returns to determine abnormal returns24. Abnormal returns, then which are 

taken to be the residuals from the autoregressive model of order 4, AR (4), which are fitted 

to the returns for each bank as follows 

𝑟𝑡 =  𝜈0 + 𝜈1𝑟𝑡−1 + 𝜈2𝑟𝑡−2 + 𝜈3𝑟𝑡−3 + 𝜈4𝑟𝑡−4 + 휀𝑡.                                                                 (8.6) 

Where 𝑟𝑡 is the returns series, 𝜈𝑖  ∀ 𝑖 = 0, 1, 2,3, 4 is the AR’s coefficients (parameters) and 휀𝑡 

is the error term. Generally, an estimate of 𝜈 that is negative and significantly different from 

zero for positive runs, in conjunction with a non-significant estimate of the parameter,𝜈 for 

negative runs, is considered evidence of speculative bubbles (Harman and Zuehlke, 2004). 

                                                
24According to Chan et al. (1998), an AR (4) model is favourable to impose a common mean, asdoing so would 

help to control for short-term sources of autocorrelation; e.g. non-synchronous trading. 
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Motivation 

Although the duration dependence test is unique to bubbles, due to its sensitivity, the fact 

remains that our results could be impacted by the choice of sample period, the choice of model, 

and the type of data used, for example by choosing daily or monthly data. We therefore 

distinguish between our approach and techniques adopted in earlier studies as follows. 

The previous investigation on the reference of bubbles in the NSM by Omar (2012) and Omar 

and Ezepue (2016) used the All-Share Index (ASI) at the overall market level and found no 

evidence of bubbles in the NSM. This result was considered counterintuitive since it was felt 

that the banking and financial services industry witnessed periods of boom after the 2004 

financial reforms, followed by bank failures and later near bank failures that forced the CBN to 

recapitalise some of the banks. For example, Bank PHB plc, Oceanic Bank plc and 

Intercontinental Bank plc all collapsed, which could be attributed to the presence of bubbles in 

the sector's asset returns and mismanagement. The referenced researchers noted that using ASI 

data might have masked the existence of bubbles in a sector by mutually offsetting bubbles in 

different sectors. This study, therefore, implements their suggestion to perform sector-specific 

analyses in sectors such as banking, telecommunications, oil and gas. Hence, we use the banks’ 

returns which better reflect the stylised facts of stock prices in the banking sector, creating an 

additional contribution to knowledge compared to the above overall market level study. 

In addition, the data period for the previous study by Omar (2012) the bubble-related aspects 

of which were published in Omar and Ezepue (2016) was between 2000 and 2010 (10 years), 

whereas this study extends the data period from 1999 to 2014 (15 years). While the above 

authors used the basic stylised facts tests – series dependence using autocorrelations along with 

skewness and kurtosis – and a version of the duration dependence tests based on positive and 

negative counts and the discrete log-logistic model, this study uses the Cox Proportional 

Hazards model, which is robust against distributional assumptions and has a number of 

desirable properties as mentioned earlier. This model has rarely been applied to financial data, 

particularly to detect rational speculative bubbles in the NSM and its banking sector. 

Moreover, our use of daily data provides a large amount of observations to increase the statistical 

power of the procedures we use. More importantly, compared to the weekly and monthly data used 

by Omar (2012) and Omar and Ezepue (2016), daily data track the more volatile nature of emerging 

markets, given that daily changes in stock prices are higher compared to developed markets. Hence, 

our results replicate and extend the approach in Omar and Ezepue (2016).  
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8.4 Presentation of the Results and Discussions 

In this section, the results on the summary statistics and results of the unit root and duration 

dependent tests are presented (in Tables 8.3-8.10) and discussed. 

8.4.1 Summary Statistics 

Sixteen banks are examined, out of which five: STANBIC, Sterling, Unity, GTB, and WEMA, 

have two suspected episodes of bubbles unlike the remaining eleven, with one episode each, as 

reflected in their price series (see Table 8.3 and Figure 8.1). In Table 8.3, we have the mean 

returns, bubble length (T), standard deviation, skewness, kurtosis and autocorrelation function 

(ACF) for each bank’s returns for the identified bubbles’ periods.  

From the table, the following banks have positive skewness: Access (9.9349), GTB_1 (0.2657) 

GTB_2 (0.1644), STANBIC_125 (8.2388), Sterling_2 (8.2388), Unity_1 (12.0994, Unity 2 

(12.9654,) and WEMA_2 (13.5745). With the bubble's attributes described above, these six 

banks do not show evidence of a bubble in terms of skewness.  

Also, in terms of kurtosis, the following banks are not leptokurtic as could be expected during 

a bubble: Diamond, GTB_ (1, 2), FCMB, Fidelity, Skye, STANBIC_2 and WEMA_1. Finally, 

Eco bank, GTB_2, STANBIC_2 and Unity_2 are characterised with a non-significant ACF - a 

behaviour that does not conform to the presence of a bubble. From the listed banks, while only 

GTB_2 fails to possess the three attributes expected of a bubble, the following seven banks: 

Afribank, *Sterling26, UBA, Union, *WEMA, Zenith and First banks appear to possess all 

3 attributes expected of a bubble: "negative skewness", "high kurtosis" and "significant ACF at 

lag one". 

Figure 8.1 below presents a combined plot of the price series for seven banks with the same 

length, indicating plausible bubble periods around 2006 to 2009, with some possibly having 

more than one episode, for example Sterling and GTB. 

                                                
25Note that the number with underscores (1 or 2) in front of some banks indicate the number of episodes of bubble 

experienced by the respective bank within the referenced periods. We use the number with banks that have more 

than one episode. And where the number of episode is just one, we do not use any number with underscore. For 

example, GTB with two episodes, we present each episode as GTB_1 for the first episode and GTB_2 for the 

second episode. 
26The asterisks on Sterling and WEMA banks indicate that just one of their two episodes were found to possess 

all the indicated three attributes 
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Figure 8.1: Combined Series of some Nigerian banks with Suspected Bubble Episodes 

Table 8.3: Summary Statistics of the Returns for Periods Identified as Bubble for Each Bank 

Banks Period(T) Mean Std. 

Dev 

Skewness Kurtosis ACF 

Access Oct ‘06 – Jan ‘09 (553) 0.0008 0.0390 9.9349 173.8108 18.0690 (2.13e-05) 

Afribank May ‘07–Sep ‘09(572) -0.0016 0.0338 -1.4900 11.4475 69.9850 (2.2e-16) 

Diamond Oct '06-Apr'09 (621) -0.0003 0.0305 -0.0755 -0.3291 85.0240 (2.2e-16) 

ECO Oct'07-June'08 (149) -0.0089 0.1341 -11.3998 133.1542 0.0296 (0.8633) 

GTB-1 June'05-Jan'09 (892) 22.0284 9.1950 0.2657 -1.4644 47.5400 (5.39e-12) 

GTB-2 Sep '09-Dec '14 (810) 0.0009 0.0190 0.1644 1.9943 0.0020 (0.9642) 

FCMB Dec'06-Jan'09 (522) 13.5328 5.0734 -0.5590 -1.1027 38.1800 (6.45e-10) 

Fidelity  Nov'06-Feb'09 (551) 8.3665 3.3669 -0.4489 -1.2811 59.1150 (1.49e-14) 

Skye Dec'06-Jan'09 (514) -0.0001 0.0342 -0.0342 -0.8254 70.0200 (2.2e-16) 

Stanbic-1 June'06-Jan'09 (637) -0.0007 0.0397 8.2388 144.9833 23.1410 (1.51e-06) 

Stanbic-2 Dec '12-Dec '14 (562)  15.3655 4.3267 -0.1868 -0.8198 0.0438 (0.8342) 

Sterling-1 May '01-May '02 (243) 0.0005 0.0371 -0.8873 3.6482 5.5825 (0.0181) 

Sterling-2 June'06-Jan'09 (637) -0.0007 0.0397 8.2388 144.9833 23.1410 (1.51e-06) 

UBA Dec'05-Jan'09 (748) -0.0002 0.0324 -3.7691 41.7315 38.2260 (6.30e-10) 

Union Feb'00-March'09(2237) 0.0001 0.0285 -3.1097 33.6428 74.9680 (2.2e-16) 

Zenith Feb'05-Jan'09 (976) -0.0001 0.0218 -1.3012 15.0893 117.1500 (2.2e-16) 

Unity-1 Nov '06-Mar'09 (571) -0.0008 0.0577 12.0994 228.4125 7.1657 (0.00743) 

Unity-2 Apr'14-Dec'14 (180) 0.0125 0.2134 12.9654 169.0254 0.0483 (0.826) 

WEMA-1 Aug'06-Oct'09 (781) -0.0008 0.0290 -0.0220 -0.4730 227.6600 (2.2e-16) 

WEMA-2 Mar'14-Dec'14 (200) 0.0105 0.2031 13.5745 186.4299 0.1885 (0.6642) 

First Jan'05-Feb'09 (1009) -0.0003 0.0356 -8.6118 158.8920 979.7100 (2.2e-16) 
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Further, Tables 8.4 and 8.5 display the comparisons of mean and standard deviation, skewness 

and kurtosis of the suspected bubble episodes with the overall mean, standard deviation 

skewness and kurtosis, for the whole study period respectively. From the results in Table 8.4, 

it is apparent that the mean and standard deviation for the suspected bubble periods across the 

banks are generally far higher compared to the overall-period a reflection that the periods of 

bubbles are characterised by many abnormalities in stock prices.  

Further, seven banks (Access, Diamond, Fidelity, First, FCMB, Sterling_2 and UBA), have a 

skewness during the suspected bubble periods that is far above 100% of their respective overall 

period skewness, with six of these banks (Access, Diamond, Fidelity, First, FCMB, Sterling_ 

(1, 2) also experiencing more than a 100% rise in kurtosis during suspected bubble episodes, 

compared with their respective overall kurtosis (see Table 8.5). 

Table 8.4: Comparisons Overall Mean Returns with Standard deviation of the Bubble Period across the 16 Banks 

Banks Overall 

Mean 

Mean %Mean of the 

Overall 

Overall Std. 

Dev. 

Std. Dev %Std. Dev of the 

Overall 

Access 0.0006 0.0008 139.83% 0.0290 0.0390 134.45% 

Afribank -0.0005 -0.0016 324.17% 0.0305 0.0338 110.79% 

Diamond -0.0001 -0.0003 311.11% 0.0280 0.0305 108.96% 

ECO -0.0014 -0.0089 635.71% 0.0455 0.1341 294.73% 

GTB-1 0.0006 22.0284 3733627.12% 0.0269 9.1950 34182.16% 

GTB-2 0.0006 0.0009 152.54% 0.0269 0.0190 70.63% 

FCMB -0.0002 13.5328 -9021866.67% 0.0252 5.0734 20132.54% 

Fidelity -0.0003 8.3665 -3346600.00% 0.0266 3.3669 12657.52% 

Skye 0.0001 -0.0001 -49.52% 0.0330 0.0342 103.58% 

Stanbic-1 0.0006 -0.0007 -117.00% 0.0206 0.0397 192.72% 

Stanbic-2 0.0006 15.3655 2560916.67% 0.0206 4.3267 21003.40% 

Sterling-1 0.0001 0.0005 463.00% 0.0324 0.0371 114.35% 

Sterling-2 0.0001 -0.0007 -700.00% 0.0324 0.0397 122.53% 

UBA 0.0001 -0.0002 -210.00% 0.0342 0.0324 94.65% 

Union -0.0001 0.0001 -60.00% 0.0407 0.0285 69.93% 

Zenith 0.0002 -0.0001 -64.74% 0.0254 0.0218 85.83% 

Unity-1 0.0004 -0.0008 -190.00% 0.0725 0.0577 79.59% 

Unity-2 0.0004 0.0125 3125.00% 0.0725 0.2134 294.34% 

WEMA-1 0.0003 -0.0008 -246.06% 0.0547 0.0290 52.93% 

WEMA-2 0.0003 0.0105 3181.82% 0.0547 0.2031 371.30% 

First -0.0001 -0.0003 222.14% 0.0296 0.0356 120.17% 
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Table 8.5: Comparisons between overall Skewness and Kurtosis with those of the Bubble Period across the Banks 

Banks Overall 

Skewness 

Skewness %Skewness of 

the Overall 

Overall 

Kurtosis 

Kurtosis %Kurtosis of 

the Overall 

Access 2.9845 9.9349 332.88% 86.8983 173.8108 200.02% 

Afribank -4.3754 -1.4900 34.05% 94.7174 11.4475 12.09% 

Diamond -0.0430 -0.0755 175.58% 0.2706 -0.3291 -121.62% 

ECO -23.2311 -11.3998 49.07% 783.7068 133.1542 16.99% 

GTB_1 -2.2160 0.2657 -11.99% 23.1739 -1.4644 -6.32% 

GTB_2 -2.2169 0.1644 -7.42% 23.1739 1.9943 8.61% 

FCMB -0.0572 -0.5590 977.27% 0.8811 -1.1027 -125.15% 

Fidelity 0.0047 -0.4489 -9551.06% 0.2950 -1.2811 -434.27% 

Skye 6.4348 -0.0342 -0.53% 155.7539 -0.8254 -0.53% 

Stanbic_1 27.2745 8.2388 30.21% 1065.4050 144.9833 13.61% 

Stanbic_2 27.2745 -0.1868 -0.68% 1065.4050 -0.8198 -0.08% 

Sterling_1 1.6371 -0.8873 -54.20% 1.6371 3.6482 222.85% 

Sterling_2 1.6371 8.2388 503.26% 1.6371 144.9833 8856.11% 

UBA 0.1967 -3.7691 -1916.17% 89.7707 41.7315 46.49% 

Union 17.6137 -3.1097 -17.66% 744.0610 33.6428 4.52% 

Zenith -2.2796 -1.3012 57.08% 32.3184 15.0893 46.69% 

Unity_1 28.6789 12.0994 42.19% 1085.0730 228.4125 21.05% 

Unity_2 28.6789 12.9654 45.21% 1085.0730 169.0254 15.58% 

WEMA_1 36.1655 -0.0220 -0.06% 1882.0110 -0.4730 -0.03% 

WEMA_2 36.1655 13.5745 37.53% 1882.0110 186.4299 9.91% 

First -5.0916 -8.6118 169.14% 97.7673 158.8920 162.52% 

8.4.2 Unit Root Tests Null versus Explosive Alternative 

Table 8.6 below presents Augmented Dickey-Fuller (ADF) and Phillip-Peron (PP) test results 

to confirm the presence or otherwise of bubbles in the stock prices of the banks’ stocks. The 

ADF test was applied and complimented by the PP test, which is non-parametric and more 

flexible, and the results show that in most cases the two statistics agree, except in one (Fidelity), 

where there is a discordant outcome. However, we have in nine banks: Access, Ecobank, 

Fidelity (PP), Skye, UBA, WEMA_1, Zenith, GTB_1, and FCMB that the "explosive" 

alternative hypothesis takes precedence, (see the null and alternative hypotheses in Section 

8.3.1 above), indicating that there is likely to be a presence of bubbles in those banks’ stocks.  

Another critical test or signal for the presence of a bubble is to see if there is an element of trend 

in the price series. Our results reveal that there is evidence of a trend in ten banks: Access, 
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Diamond, Eco, Fidelity, Skye, Sterling-1, Unity-1, WEMA-1, Afribank and FCMB. 

Interestingly, it is evident that six (shown in green) of the nine banks that are shown to be prone 

to explosiveness show a trend under the ADF and PP, confirming that the identified banks are 

likely be characterised by a bubble. 

Table 8.6: Unit Root Tests for Stationarity versus Explosiveness 

Banks Price: Unit Root 

Access DF = -0.0811 (0.01) PP = -1.8160 (0.026) 

Diamond DF = -1.3535 (0.148) PP = -5.7130 (0.813) 

Ecobank DF = 1.3196 (0.01) PP = -1.2410 (0.003) 

First DF = -1.7667 (0.323) PP = -10.4800 (0.4748) 

Fidelity DF = -1.0165 (0.064) PP = -1.5480 (0.021) 

Skye DF = 0.0216 (0.01) PP = -0.4465 (0.01) 

Stanbic_1 DF = -0.3348 (0.01067) PP = -0.3681 (0.01) 

Stanbic_2 DF = -0.9598 (0.055) PP = -3.4440 (0.086) 

Sterling_1 DF = -4.1370 (0.99) PP = -8.7320 (0.380) 

Sterling_2 DF = -1.1860 (0.091) PP = -2.9730 (0.065) 

UBA DF = -0.0079 (0.01) PP = -0.8058 (0.01) 

Union DF = -2.2570 (0.531) PP = -12.4500 (0.585) 

Unity_1 DF = -2.0770 (0.4543) PP = -7.9620 (0.334) 

Unity_2 DF = -1.7390 (0.315) PP = -4.8400 (0.1625) 

WEMA_1 DF = -0.5143 (0.01883) PP = -0.1266 (0.01) 

WEMA_2 DF = -1.3301 (0.143) PP = -3.8960 (0.1433) 

Zenith DF = 0.7195 (0.01) PP = 1.3357 (0.01) 

Afribank DF = -3.0420 (0.863) PP = -8.0671 (0.3403) 

GTB_1 DF = -0.0394 (0.01) PP = -0.6218 (0.01) 

GTB_2 DF = -1.7440 (0.3135) PP = -8.9980 (0.3922) 

FCMB DF = -0.4280 (0.015) PP = -0.7295 (0.01) 

Null=Unit root (or Non-stationary); Alternative=Explosive; DF: Dickey-Fuller; PP=Phillip- and p-values in parentheses 

8.4.3 Duration Dependent Test Results 

In this section, we present the outcomes of fitting a Cox-Model based on the cases we 

considered as follows: 

Case 1: Fitting Runs of positive (coded 2) and negative (coded 1) returns on the event with zero 

returns (and coded 0) as censored observations, and time as trading days of the month. 
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Our emphasis here is that instead of using "Abnormal" returns as in previous studies, we use 

"Returns" series and the results are presented in Table 8.7 below. 

Also, to note is that the model concerns "positive returns", simply because "negative returns" 

was set as the reference category; the runs of the returns serve as the explanatory variable, while 

"event", coded as 1 is "bubble" and "censored" data are coded as 0. 

The Relevant Hypotheses are: 𝐻0: ξ = 0 versus 𝐻1: ξ < 0. 

Decision Rule:  for the runs of positive returns to end, ξ should be negative and the probability 

that positive runs end with time ((𝑒𝑥𝑝(ξ)) should be greater than 0.5 (see McQueen and Thorley, 

1994). 

From Table 8.7, we found eight banks (in green) - Afribank, FCMB, Skye, STANBIC, UBA, 

Union WEMA and Zenith banks that show significant, ξ at the 5% level. We also found that all 

the parameter values are negative and that none of the hazard rate levels are less than 0.5, 

indicating the presence of bubbles in the stock prices of those banks. Also, the effect parameter 

for Union bank is positive with the HR > 1, which shows that the hazard rate of positive runs 

increases with time; indicating likelihood for bubbles’ presence in the series (see Table 8.2). 

Table 8.7: Summary Results on Cox-Model on the Runs of the Returns with Time as the Trading Days of the Month 

Bank Coefficient/ effect parameter (ξ) Hazard Rate/Ratio (𝒆𝒙𝒑(ξ)) 

Access -0.115 (0.188) 0.751 

Afribank -0.380 (0.000) 0.684 

Diamond -0.037 (0.650) 0.823 

Ecobank -0.130 (0.444) 0.631 

FCMB -0.182 (0.039) 0.833 

Fidelity 0.018 (0.830) 0.830 

First 0.093 (0.142) 1.098 

GTB 0.114 (0.091) 1.120 

Skye -0.196 (0.013) 0.822 

STANBIC -0.192 (0.001) 0.734 

Sterling -0.016 (0.819) 0.984 

UBA -0.172 (0.020) 0.842 

Union 0.191 (0.000) 1.210 

Unity 0.065 (0.321) 1.067 

WEMA -0.392 (0.000) 0.675 

Zenith -0.348 (0.000) 0.706 

p-values in parentheses 
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Case 2: Fitting Runs of positive (coded 2) and negative (coded 1) “abnormal returns” on the 

event with zero returns (and coded 0) as censored observations, and time as trading days of the 

month. 

From our results, we see that there are only five banks whose effect parameters (Eco, FCMB, 

GTB, STANBIC and Unity) were found not to be significant at the 5% level, meaning that 

their prices series do not contain a bubble (see Table 8.8). Also, while the hazard coefficients 

(ξ) of Afribank, Diamond, First, Fidelity, and Union banks are positive, indicating that their 

hazard increases with time (this contradicts McQueen and Thorley, 1994), those of the 

remaining six banks -Access, Skye, Sterling, UBA, WEMA and Zenith - are negative, which 

is in conformity with McQueen and Thorley (1994)'s proposition. Hence, these banks do not 

seem to show evidence of a bubble in their returns. 

Table 8.8: Summary Results on Cox-Proportional Hazard Model with Days as Time across the Overall Periods 

Bank Hazard coefficient (ξ) Hazard Rate (𝒆𝒙𝒑(ξ)) 

Access -0.336 (0.000) 0.715 

African bank 0.086(0.000) 1.569 

Diamond 0.213(0.008) 1.238 

Eco bank -0.152(0.091) 0.859 

First 0.230(0.000) 1.259 

FCMB 0.121(0.168) 1.128 

FIDELITY 0.290(0.001) 1.337 

GTB -0.011(0.871) 0.989 

SKYE -0.263(0.003) 0.769 

STANBIC IBTC -0.098(0.101) 0.907 

STERLING -0.339(0.000) 0.713 

UBA -0.192(0.009) 0.825 

UNION 0.272(0.000) 1.313 

UNITY 0.110(0.145) 1.116 

WEMA -0.553(0.000) 0.575 

ZENITH -0.367(0.000)27 0.693 

P-values in parentheses 

Case 3: Fitting Runs of positive (coded: 2)/negative (coded: 1) "Abnormal Returns" on the 

event (1)/censoring (0) observation and Time (as trading days of the month) 

                                                
27 Colour green is used for banks with negative hazard coefficient  
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Table 8.9 below displays the results from which we see that only six banks: Afribank, GTB, 

UBA, Union, WEMA and Zenith banks are significant, with GTB and Union banks having 

significantly negative hazard coefficient, indicating the absence of a bubble in their stock 

returns. 

Table8.9: Summary Results on Cox-Proportional Hazard Model with Monthly Trading Days as Time for each Bank 

Bank Hazard coefficient (ξ) Hazard Rate 

Access -0.115 (0.188) 0.751 

African bank -0.380 (0.000) 0.684 

Diamond -0.037 (0.650) 0.964 

Eco bank 0.130 (0.444) 1.139 

First 0.058(0.362) 1.060 

FCMB -0.156 (0.076) 0.855 

FIDELITY -0.035 (0.686) 0.966 

GTB 0.160 (0.018) 1.029 

SKYE -0.087 (0.330) 0.917 

STANBIC IBTC 0.003 (0.962) 1.003 

STERLING -0.070 (0.321) 0.933 

UBA -0.192 (0.009) 0.825 

UNION 0.177 (0.000) 1.193 

UNITY 0.110 (0.145) 1.116 

WEMA -0.345 (0.000) 0.708 

ZENITH -0.227 (0.000) 0.797 

Case 4: Fitting Runs of positive (coded: 2)/negative (coded: 1) "Abnormal Returns" on the 

event (1)/censoring (0) observation and Time (as the months across the periods)  

From Table 8.10, seven banks: Afribank, FCMB, UBA, Union, Unity, WEMA and Zenith 

have significant negative hazard coefficients, except for Union and Unity banks which have 

significant positive coefficients. Hence, five of the banks do not show evidence of a bubble 

while the rest do so, particularly Union and Unity banks. 

Table 8.10: Summary Results on Cox-Proportional Hazard Model with Months as Time for each Bank 

Bank Hazard Coefficient (ξ) Hazard Rate (𝒆𝒙𝒑(ξ)) 

Access 0.006 (0.944) 1.006 

African bank -0.443 (0.000) 0.642 

Diamond -0.002 (0.981) 0.981 

Eco bank -0.169 (0.319) 0.844 

First 0.093 (0.142) 1.098 
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FCMB -0.182 (0.039) 0.833 

FIDELITY -0.007 (0.935) 0.993 

GTB 0.114 (0.091) 1.120 

SKYE -0.027 (0.761) 0.973 

STANBIC IBTC -0.021 (0.729) 0.979 

STERLING -0.016 (0.819) 0.984 

UBA -0.172 (0.020) 0.842 

Union 0.191 (0.000) 1.210 

Unity 0.266 (0.000) 1.305 

WEMA -0.392 (0.000) 0.675 

Zenith -0.204 (0.000) 0.816 

P-values in parentheses 

8.5 Summary and Conclusion 

In this chapter, we explained the meaning of bubbles, as well as their characteristics, 

consequences, impacts and causes. We proceeded to review some relevant literature in this 

regard, both in the context of what has been reported concerning bubbles and the findings from 

various studies using the different methods we intended to adopt and we outlined our proposed 

methods. Then, we discussed models of rational speculative bubbles, both at the "simple" and 

"general" levels, which use stylised facts of returns, through to the duration dependent models 

which are directly relevant for our objectives.  

We also presented a summary of some related work that has used these models in different 

contexts. We then stated the specific objectives of this bubbles chapter, our choice of models, 

and our motivations for adopting duration dependent models and unit root tests.  

While presenting our results, we first obtained the summary statistics (on the mean, standard 

deviation, skewness, and kurtosis, including the results of the ACF tests), for the price series of 

the respective banks particularly for the suspected "bubble periods" for each bank. With this 

basic exploratory approach, we observed that five banks - Sterling, STANBIC, Unity, GTB and 

WEMA - have two suspected episodes of bubbles based on the bubble characteristics 

highlighted (see Table8.3). For the specific summary statistics, we compared each of them to 

their respective overall period values as presented in Chapter 5 of the thesis and obtained 

percentages showing how they compare to the overall values (see Tables8.4 and 8.5).  
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With these preliminary results, we suspect the presence of bubbles, based on the bubble 

attributes that have been discussed in previous studies, some of which were discussed earlier. 

However, since some of these attributes can also be a signal for other stylized facts of stock 

returns, we conducted unit root tests using the ADF and PP test statistics, which are the popular 

tests for identifying presence of a unit root against the explosive alternative (which indicates 

the presence of a bubble). The results of these tests are presented in Table 8.6. From our results, 

nine banks - Access, Ecobank, Fidelity, Skye, UBA, WEMA-1, Zenith, GTB-1, and FCMB - 

were found to conform to the explosive alternative hypothesis of non-stationarity, meaning that 

they are likely to be characterised by bubbles. 

For further investigation, we applied Cox-proportional hazards regression - a duration 

dependent model not previously used this way to analyse the NSM (Omar, 2012; Omar and 

Ezepue, 2016) - and considered four different cases subject to: (1) "Time" or data set durations 

(day or month) and the use of original returns and (2) Using "Abnormal" returns, which is the 

residual series derived from fitting an autoregressive model of order 4, as used in other studies. 

These two types of tests led to four specific tests and altogether there were six tests of bubbles 

used in the chapter. 

Under case 1, we obtained runs of "positive" and “negative” returns from the original returns 

series and "days of the month" served as the Time variable. The results revealed that in seven 

banks- Afribank, FCMB, UBA, Union, Unity, WEMA and Zenith - the hazard coefficients 

were significant.  

For case 2, where we obtained the runs of both positive and negative returns from the estimated 

"Abnormal returns" from (8.6), and "days" across the data period served as the Time variable, the 

results showed that while in six banks - Access, Skye, Sterling, UBA, WEMA and Zenith – had 

significant and negative hazard coefficients (ξ) (as observed by McQueen and Thorley, 1994), 

the remaining five banks - Afribank, Diamond, First, Fidelity, and Union banks produced 

significant but positiveξ, indicating that the hazards of runs of positive returns increased rather 

than decreased. Thus, the latter set of banks show evidence of bubbles and the former set of 

banks show no evidence of bubbles. 

In case 3, where Abnormal returns were considered and days of the month served as Time 

variable were used, the results show that while ξ for Afribank, UBA, WEMA and Zenith 

banks are significantly negative; for GTB and Union banks, the coefficient ξ  was also 

significant, but positive. 
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Finally, for the fourth case where "Abnormal" returns were again used, but "months" were the 

Time variable, the results indicate that Afribank, FCMB, UBA, WEMA and Zenith have 

significant negative coefficients, while Union and Unity banks have significant positive 

coefficients.  

Table 8.11 below has the details on the number of banks in which a bubble was detected using 

the six different methods. Please see a summary of bubble characteristics which informs this 

table in the footnotes. 

Table 8.11: Summary of Bubble Results from the Six Methods 

Bank Bubble 

Characteristics1(7) 

Unit Root 

Explosiveness (9) 

Case1(7) Case 2 

(6) 

Case 3 

(4) 

Case 4 

(5) 

Access  YES (trended)  YES   

Afribank YES  YES  YES YES 

Diamond       

Eco bank  YES (trended)     

First YES      

FCMB  YES (trended) YES   YES 

FIDELITY  YES (trended)     

GTB  YES     

SKYE  YES (trended) YES YES   

STANBIC 

IBTC 

  YES    

STERLING YES   YES   

UBA YES YES YES YES YES YES 

Union YES      

Unity       

WEMA YES YES (trended) YES YES YES YES 

Zenith YES YES YES YES YES YES28 

Generally, from our findings we have been able to establish that: (1) a bubble is present in some 

of the Nigerian banks, though this is not shown through all the methods; (2) virtually all the 

banks which were found to be characterised with explosiveness under unit root tests were also 

                                                
28Bubble Characteristics-Negative. Skewness, positive kurtosis and Significant ACF; Case 1: Fitting Runs of positive (coded: 

2)/negative (coded: 1) Returns on the event (1)/censoring (0) observation and Time (as trading days of the month). Case 2: 
Fitting Runs of positive (coded: 2)/negative (coded: 1) "Abnormal Returns" on the event (1)/censoring (0) observation and 
Time (as days across the fifteen years). Case 3: Fitting Runs of positive (coded: 2)/negative (coded: 1) "Abnormal Returns" on 

the event (1)/censoring (0) observation and Time (as trading days of the month). Case 4: Fitting Runs of positive (coded: 
2)/negative (coded: 1) "Abnormal Returns" on the event (1)/censoring (0) observation and Time (as the months across the 
periods) 
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identified under the Cox proportional hazards model, which confirms the power of the model 

in such empirical finance work and increases the evidence in favour of bubble’ presence in the 

returns series; and (3) the duration dependent methods are sensitive to data periods, be it days, 

weeks or months, given that the results from different cases of duration dependence models do 

not identify the presence of a bubble in the same banks.  

We note that detecting bubbles is somewhat tricky as most bubble characteristics are embodied 

in traditional stylised facts of asset returns, as explored in Chapter 5 and recalled in this chapter 

as appropriate. Hence, this chapter adds to existing knowledge of bubbles in the literature by 

demonstrating how to use a triangulated approach involving six methods to build a stronger 

evidence base for concluding whether a bubble exists in asset data (namely returns series). This 

extends the approach in the related studies of bubbles at the overall NSM market level (see: 

Ezepue and Omar, 2012; Omar and Ezepue, 2016). The fact that the methods provide stronger 

evidence of bubbles in the banking sector of the NSM supports the suggestion by these authors 

that bubbles are best studied within sectors of a market using asset returns, to avoid the masking 

effect of using the ASI at an overall market level.  

Additionally, the triangulated bubbles tests indicate a consensus approach to finally deciding 

on which banks show bubbles in their returns. This is done by checking how many of the 

approaches are positive for bubbles. For example, seven banks –First, Fidelity, Eco, GTB, 

Union, STANBIC and Sterling banks 29have only one or two methods indicating presence of 

bubbles, compared to, say, WEMA, UBA and Zenith banks that were identified by all six 

methods applied to be positive for bubbles. We can therefore state that perhaps the first seven 

banks are not severely susceptible to bubbles, while WEMA, Zenith and UBA clearly are.  

The implications of these results for investment decisions by potential investors in the different 

banks’ stocks is that the banks’ stocks should be treated differently in portfolios containing such 

stocks. Investors with this knowledge of the variations in bank asset dynamics and stylised facts, 

including bubbles, will be prompted to ask more questions of possible causes of such 

differences, including quality of management and other fundamental measures of bank financial 

performance. Indeed, these results reinforce the need for deeper empirical analysis and 

characterisations of key sectors of a financial market, as suggested by Omar and Ezepue (2012) 

and Ezepue (2017). 

                                                
29Five of which, namely: First, Fidelity, Eco, GTB and Union were identified by only one method; the remaining 

two- STANBIC and Sterling, were detected by two methods  to be positive for bubbles 
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In conclusion, this chapter extended substantially the approach to modelling bubbles presented 

in previous work by using six approaches to build a stronger evidence base for confirming the 

existence of bubbles in Nigerian banks’ returns. The implications of this consensus approach 

for investment purposes and stock market analyses have been noted. 
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9 CHAPTER NINE: VOLATILITY MODELLING 

9.1 INTRODUCTION 

Volatility measurement and modelling is the basis for financial econometrics, and time-varying 

volatility is a common feature of financial time series, such that most asset returns series are 

characterised by it. A major challenge in modelling volatility is that, market volatility being a 

latent variable, it is not directly observable. Thus, volatility is obtained by making inferences 

on the movement of prices in the market. For instance, when there is an increase in market 

prices, volatility rises, but to what extent remains a subject of investigation. This is simply 

because whether a shock to prices is permanent or transitory is unknown.  

The latent nature of volatility implies that it must be forecast by building a statistical model 

subject to making relevant assumptions. Thus, modelling volatility is highly demanding due to 

the challenges posed by certain factors, such as non-normality, structural breaks and volatility 

clusters, which characterise financial volatility. The presence of volatility clusters especially 

indicates that the best option to predict volatility is to consider either the most recent 

observations or to assign a higher weight to the most recent observations. 

9.1.1 Importance of Volatility in Financial Markets 

According to Engle and Patton (2007), predicting asset volatility is useful in risk management, 

derivative pricing and hedging, market making, market timing, portfolio selection and many 

other financial activities. A risk manager needs to know today whether his or her portfolio will 

decline (or rise) in the future. The same applies to an option trader who will be seeking to 

understand the level of volatility likely to characterise the future life of the contract, and to 

hedge such contract, he or she will also want to know how volatile the projected volatility is. A 

portfolio manager may want to sell a stock or a portfolio before it becomes too volatile. 

Understanding volatility helps to assess riskiness of investment and the level of risk 

characterising the stock market (Foucault et al., 2011). It helps to determine how the overall 

economy is impacted, especially during financial crisis; if there is any change in volatility, it 

immediately impacts the economy as well as the investors. 

Further, according to Daly (2008), the following six fundamental reasons make studying 

volatility rewarding: 
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1. Sharp fluctuations (or high volatility) in asset prices over a short horizon, say intraday 

or daily, due to fundamental economic factors may lead to lack of confidence in stock 

markets by investors and a drop in capital flow into the market. 

2. For small firms, volatility is an important measure of the chance of bankruptcy; thus, 

the higher the volatility of a capital structure, the higher the likelihood of default. 

3. Volatility is a major determinant of bid-ask spread, such that the spread becomes wider 

during high volatility, thus indicating that a market’s liquidity is impacted by its 

volatility  

4. Hedging techniques such as portfolio insurance are affected by the volatility level. Price 

of insurance therefore rises when there is high volatility.  

5. For risk-averse investors, increasing volatility due to trading activity reduces trading 

volume, which adversely affects further investment in the stock market. 

6. During periods of high volatility, the regulatory agencies may force financial 

intermediaries such as banks to reallocate capital to cash-equivalent investments, 

thereby reducing the allocation efficiency and value of the assets of such banks. 

9.1.2 Some Stylized Facts about Volatility 

Miron and Tudor (2010) note the following stylised facts about volatilities. 

1. Volatility clustering; meaning that a slight increase (decrease) in today's asset returns may 

be followed by a slightly increase (decrease) in such returns tomorrow. That is, a volatile 

period tends to be followed by another volatile period, or volatile periods are usually 

clustered, which is an indication of persistence in past shocks. 

2. Volatility spikes up during crises but falls back to approximately the same level it was at 

before the crisis as soon as the crisis disappears, such that the price movements are 

negatively correlated with volatility, with negative returns generating higher volatilities 

than positive returns (Leverage effects). 

3. The empirical distribution of financial time series (or returns) exhibit excess kurtosis (or 

fatter tails) relative to a normal distribution. 

4. Long memory-This property means that volatility is highly persistent and that there is 

evidence of near unit root behaviour of the conditional variance process.  

5. Co-movements in volatility- a circumstance when time series from different markets move 

together such that large movements in one financial time series are matched by large 

movements in another time series from a different market. 
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Why Statistical Models? 

We fit models in statistics for reasons including the following: 

1. To control a physical process; 

2. To understand a data-generating process; 

3. To predict a future outcome of a data-generating process. 

In this chapter, we describe different models for measuring different types of volatility and 

explore particularly the ARCH-GARCH family of volatility models of stock returns, which are 

then applied to the Nigerian bank returns. 

9.2 Modelling Volatility 

From among the six most commonly applied models for volatility forecasting listed below, 

emphasis in this chapter shall be placed on the ARCH/GARCH family models. As argued in 

Omar (2012, Chapter 9) and section 3.3 of this thesis, ARCH/GARCH are known to be suitable 

for many financial time series studied in empirical finance because the data exhibit 

conditionally heteroscedastic errors. Hence, since the research objectives in this study are 

similar to and extend those in Omar (2012) to the banking sector of the NSM we also make use 

of these models. The six volatility models alluded to above are: 

1. Moving Average (MA) models; 

2. Exponentially weighted moving average (EWMA) sometimes called Risk Metrics models;  

3. Implied volatility models; 

4. Realized volatility models; 

5. Stochastic volatility models; 

6. GARCH family models. 

We shall briefly discuss each of these but with more emphasis placed on the different types of 

ARCH/GARCH models that we will use to try to explain and forecast Nigerian banks’ returns 

data and their time-varying conditional volatilities 

9.2.1 Volatility Models 

The easiest way to forecast volatility is simply to obtain the sample standard error from a sample 

of returns, and then to keep the sample size constant and overtime add the newest returns and 

drop the oldest; this method is known as the moving average (MA) approach. This method is, 
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however, known to perform badly, but can be improved by exponentially weighting returns 

such that the most recent returns are assigned the highest weight in forecasting volatility; 

thereby making Exponentially Weighted Moving Average (EWMA) a better model. 

Moving Average Models 

According to Danielson (2011), the simplest volatility forecast model is defined as 

�̂�𝑡
2 =  

1

𝑊𝐸
∑ 𝑟𝑡−𝑗

2𝑊𝐸
𝑗=1 .                                                                                                               (9.1) 

Where𝑟𝑡is the observed return on day t, �̂�𝑡 is the volatility forecast for day t, and 𝑊𝐸  is the 

length of the estimation window, that is, the number of observations used in the calculation, 

usually chosen arbitrarily. It is important to state that in forecasting volatility, lagged 

observations are used in the MA model. 

Its major limitation is that observations are equally weighted, which is a substantial issue in the 

face of volatility clusters, given the fact that the most recent observations are more indicative 

of whether we are in a high or low volatility cluster. The method is also sensitive to the length 

of the estimation window and has the possibility of generating volatility forecasts that jump 

around and are generally systematically too high or too low. 

The Exponentially Weighted Moving Average (EWMA) Model 

The moving average can be improved by assigning higher weights to the more recent 

observations, and one of such way to achieve this is the use of the EWMA model. Thus, EWMA 

is a modification of MA so that weights decline exponentially historically: 

 

�̂�𝑡
2 =  

1−𝜆

𝜆(1−𝜆𝑊𝐸)
∑ 𝜆𝑗𝑟𝑡−𝑗

2𝑊𝐸
𝑗=1 .                                                                                                  (9.2) 

 

Here 0 <𝜆< 1 is a parameter whose successive powers generate the exponential weights in the 

model. The first part of the equation automatically ensures that the sum of the weights is equal 

to 1. 

Rewriting the model as the weighted sum of the previous period's volatility forecast and squared 

returns gives conditional volatility of the model as: 

�̂�𝑡
2 = (1 − 𝜆)𝑟𝑡−1

2 +  𝜆�̂�𝑡−1
2 ,0 < 𝜆 < 1.                                                                                (9.3) 
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This model was proposed by J. P. Morgan (1993), with𝜆estimated to be equal to 0.94 for daily 

returns, and because the exponential weights decline to zero very quickly, the model is 

inappropriate in calculating value at risk (VaR).  

The main limitation of the EWMA model is that 𝜆 is a constant and identical for all assets; this 

establishes the fact that the model is not optimal for any asset, unlike GARCH models which 

are explained above to be typically suitable for analysing time-varying and heteroscedastic 

volatilities. Consequently, volatility forecasts based on EWMA are inferior and unreliable 

compared to GARCH models (Danielson, 2011; p.).  

The major strength of the model lies in its ease of implementation as against most of its 

counterparts, and that its multivariate forms can easily be applied without any modification. 

Note that EWMA is a special case of a GARCH model that is covariance non-stationary. Thus, 

its unconditional variance cannot be calculated because it is undefined, meaning that if allowed 

to run for a while, the model will explode. 

The Implied volatility (IV): is the model used in the Black-scholes (BS) model to predict 

option prices traded on the exchange market based on the current prices (rather than historical 

prices) of the option. For example, the Black Scholes pricing model relates the price of a 

European call option to the current price of the underlying, the strike, the risk-free rate, the 

time-to-maturity and the volatility 𝐵𝑆(𝑆𝑡, 𝐾, 𝑟, 𝑡, 𝜎𝑡) = 𝐶𝑡, where 𝐶𝑡 is the price of the call. The 

challenges with this model are that it accuracy depends on that of the BS equation, and with the 

assumption of constant conditional volatility and normal error distribution, the IV model is thus 

unsuitable for time-varying volatility.  

The Realized Volatility (RV) model: is a volatility model used in predicting future volatility 

from historical data based on the intraday data, obtained at regular intervals of time.  It is data 

driven and does not rely on parametric models. Implementation of the RV model is challenging 

due to the availability of data, simply because intraday data are hard to obtain, usually not very 

clean and costly.   

Stochastic Volatility (SV) Model: in this case, the volatility model is a function of an 

exogenous shock and past volatility, thereby making the conditional volatility random with 

unknown innovation term at time t. In the SV model, there are two innovation terms - one for 

the returns and one for the conditional variance itself. This additional innovation makes 

estimation of the model parameters to be more difficult compared to GARCH family models. 

This is simply because the volatility equation follows a separate distribution which cannot be 
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estimated by the historical returns data.  Though the model is more advantageous than GARCH 

models, it is not as common as the latter in forecasting and there is no evidence that SV produce 

better forecast than GARCH models. 

GARCH FAMILY MODELS 

The GARCH family models are members of the conditional volatility family of models, which 

define return volatilities at given times t as functions of previous errors and volatilities up to 

time t-1. 

The first of this family is the autoregressive conditional heteroscedasticity (ARCH) model 

proposed by Engle (1982), while its generalized form, GARCH, proposed by Bollerslev (1986) 

extends the ARCH model to accommodate different volatility behaviours. The GARCH models 

are therefore more commonly used to analyse volatilities because they are more suitable in 

capturing time-variation and most of the stylized facts of the financial data better than their 

contemporary models (see: Tsay (2005, 2014) and Taylor (2005; 2011) and Danielson (2011)).  

9.2.1.1.1 ARCH Models 

ARCH models were introduced to accommodate the possibility or likelihood of time 

dependence in volatility. ARCH models are specified relative to the discrete-time process for 

the price of a security/portfolio: { 𝑃(𝑡), 𝑡 =  1,2, … }. Engle (1982) models the discrete returns 

of the process as 

𝑟𝑡 =  𝜇𝑡 + 휀𝑡 .                                                                                                            (9.4) 

In the mean equation (9.4), 𝜇𝑡 , is the mean return at time 𝑡,conditional on ℱ𝑡−1, the information 

available up to time  (𝑡 − 1) , and 휀𝑡 =  𝑍𝑡𝜎𝑡  where 𝑍𝑡 𝑖𝑠 𝑖. 𝑖. 𝑑  normally distributed, with 

𝐸[𝑍𝑡] = 0, 𝑣𝑎𝑟 [𝑍𝑡] = 1. The model assumes that the processes 𝜎𝑡 and 𝑍𝑡 are stochastically 

independent. 

In this model, the residuals do not have constant variance but are multiples of white noise (𝑍𝑡) 

(with mean zero and unit variance), and, 𝜎𝑡 defined as: 

𝜎𝑡
2 =  𝛼0 + 𝛼1휀𝑡−1

2 +  𝛼2휀𝑡−2
2 + ⋯ + 𝛼𝑝휀𝑡−𝑝

2 .                                                                      (9.5) 

with the constraints: 𝛼𝑗 > 0, 𝑗 = 0,1, … , 𝑝;  where 𝜎𝑡
2 = 𝑣𝑎𝑟(𝑟𝑡|ℱ𝑡−1) is the conditional 

variance of returns at time t given previous return errors and available information up to time 

(t – 1), which is denoted by ℱ𝑡−1. The key feature of this model is that the variance of the shock, 

휀𝑡, is time-varying and depends on the past p shocks, 휀𝑡−1 , 휀𝑡−2, 휀𝑡−2, … , 휀𝑡−𝑝through their 

squares.  
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The volatility model states that the volatility is a weighted average of the squared residuals over 

the last p lags. Thus, if there is a large residual, then that could persist such that the next 

observation has a large variance, indicating that there is an element of time dependence. The 

constraints ensure that the alphas are positive so that the volatility will be positive, otherwise 

the latter will be negative, which is not possible.  

Alternatively, the model can be defined as:  

𝜎𝑡
2 =  𝜔 +  𝛼1휀𝑡−1

2 +  𝛼2휀𝑡−2
2 + ⋯ +  𝛼𝑝휀𝑡−𝑝

2  

휀𝑡 = 𝑟𝑡 −  𝜇𝑡 ; ∀ 𝑟𝑡|ℱ𝑡−1~ 𝑁(𝜇𝑡 , 𝜎𝑡
2).                                                                                   (9.6) 

Which reads as: “𝑟𝑡given the information set at time t − 1 is conditionally normal with mean 

𝜇𝑡and variance𝜎𝑡
2”. 

To estimate the model's parameters, recall that: 

𝜎𝑡
2 =  𝛼0 + 𝛼1휀𝑡−1

2 +  𝛼2휀𝑡−2
2 + ⋯ + 𝛼𝑝휀𝑡−𝑝

2 ,                                                                      (9.7) 

which is simply an autoregressive (AR) model in squared residuals (휀𝑡
2) as shown below. 

Suppose 𝜏𝑡 = (휀𝑡
2 − 𝜎𝑡

2) is added to both sides of the model (9.7), we have: 

휀𝑡
2 =  𝛼0 + 𝛼1휀𝑡−1

2 +  𝛼2휀𝑡−2
2 + ⋯ + 𝛼𝑝휀𝑡−𝑝

2 + 𝜏𝑡,                                                              (9.8) 

so that 휀𝑡
2 =  𝛼0 + 𝛼1휀𝑡−1

2 +  𝛼2휀𝑡−2
2 + ⋯ + 𝛼𝑝휀𝑡−𝑝

2 +  휀𝑡
2 − 𝜎𝑡

2,                                        (9.9) 

where 𝐸[𝑟𝑡|ℱ𝑡−1] = E[(휀𝑡
2 − 𝜎𝑡

2)|ℱ𝑡−1] = 0 and 𝑣𝑎𝑟[𝑟𝑡|ℱ𝑡−1] = var [휀𝑡
2] = 2𝜎𝑡

4.  

Here, 𝜏𝑡 is almost white noise as it has mean zero but is not a standard white noise because its 

variance may change with time, thus making it a conditionally independent function (but with 

some variability). This implies that the model is an autoregressive model with time-varying 

variances in the process. Based on this, one may then need to check if there is an ARCH 

structure in the data and this is achieved using Engle's method, utilizing Lagrange multipliers 

(see Tsay, 2005; 2014). 

Deriving the Unconditional Variance of the ARCH (p) model 

Given that:  

𝜎𝑡
2 =  𝜔 +  𝛼1휀𝑡−1

2 +  𝛼2휀𝑡−2
2 + ⋯ +  𝛼𝑝휀𝑡−𝑝,

2                                                                     (9.10) 

Taking the expectation of both sides of (𝟗. 𝟏𝟎), we have 

𝐸[𝜎𝑡
2] =  𝜔 + 𝛼1𝐸[휀𝑡−1

2 ] + 𝛼2𝐸[휀𝑡−2
2 ] + ⋯ +  𝛼𝑝𝐸[휀𝑡−𝑝

2 ].                                              (9.11) 
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Recall that 

휀𝑡 =  𝜎𝑡,                                                                                                                               (9.12) 

and thus substituting (9.12) into (9.11), we have  

𝐸[𝜎𝑡
2] =  𝜔 + 𝛼1𝐸[𝜎𝑡−1

2 𝑧𝑡−1
2 ] +  𝛼2𝐸[𝜎𝑡−2

2 𝑧𝑡−2
2 ] + ⋯ +  𝛼𝑝𝐸[𝜎𝑡−𝑝

2 𝑧𝑡−𝑝
2 ], 

which under our assumption of the independence of 𝜎𝑡and 𝑧𝑡 gives: 

𝐸[𝜎𝑡
2] =  𝜔 + 𝛼1𝐸[𝜎𝑡−1

2 ]𝐸[𝑧𝑡−1
2 ] + 𝛼2𝐸[𝜎𝑡−2

2 ]𝐸[𝑧𝑡−2
2 ] + ⋯ +  𝛼𝑝𝐸[𝜎𝑡−𝑝

2 ]𝐸[𝑧𝑡−𝑝
2 ].       (9.13) 

since 𝐸[𝑧𝑡
2] = 1, (9.13) becomes: 

𝐸[𝜎𝑡
2] =  𝜔 + 𝛼1𝐸[𝜎𝑡−1

2 ] + 𝛼2𝐸[𝜎𝑡−2
2 ] + ⋯ +  𝛼𝑝𝐸[𝜎𝑡−𝑝

2 ].                                              (9.14) 

Collecting like terms in (9.14), we have 

𝐸[𝜎𝑡
2] −  𝛼1𝐸[𝜎𝑡−1

2 ] − 𝛼2𝐸[𝜎𝑡−2
2 ] − ⋯ −  𝛼𝑝𝐸[𝜎𝑡−𝑝

2 ] =  𝜔  

The ARCH model assumes that the conditional volatilities are covariance stationary with a 

common unconditional variance, so that  

𝐸[𝜎𝑡
2] = 𝐸[𝜎𝑡−𝑝

2 ]   =  𝜎2. 

Thus,  

𝜎2(1 −  𝛼1 − 𝛼2 − ⋯ −  𝛼𝑝) =   𝜔, and                                                                            (9.15) 

𝐸[𝜎𝑡
2] = 𝜎2 =  

𝜔

(1 −  𝛼1 − 𝛼2 − ⋯ −  𝛼𝑝)
 

The condition needed to ensure that the unconditional variance is finite is: 

1 −  𝛼1 − 𝛼2 − ⋯ − 𝛼𝑝 > 0. 

The properties of the ARCH family models applied in the derivation include: 

 

1. The definition of the shock 𝜖𝑡
2 ≡  𝑧𝑡

2𝜎𝑡
2 is used in separating the independently and 

identically distributed (𝑖. 𝑖. 𝑑) normal innovation (𝑧𝑡) from the conditional variance 

(𝜎𝑡
2). 
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2. 𝑧𝑡 and 𝜎𝑡
2 are independent since 𝜎𝑡

2 depends on  

𝜖𝑡−1, 𝜖𝑡−2, … , 𝜖𝑡−𝑝 (and 𝑧𝑡−1, 𝑧𝑡−2, … , 𝑧𝑡−𝑝), and, 𝑧𝑡is an 𝑖. 𝑖. 𝑑innovation at time t. 

One limitation of ARCH models is that they require higher lags, say 5-8 lags of the squared 

shock to adequately model conditional variance. Tsay (2005) discusses the following further 

weaknesses of ARCH models. 

Weaknesses of ARCH models 

1. The model assumes that positive and negative shocks have the same effects on volatility 

because it depends on the square of the previous shocks. Practically, however, the price of 

a financial asset responds differently to positive and negative shocks. This asymmetric or 

leverage effect is therefore not adequately explored by ARCH models hence the importance 

of GARCH models, which generalise the ARCH models. 

2. The ARCH model is rather restrictive, and this gets more complicated as the order of the 

model increases, thereby limiting the ability of ARCH models to capture excess kurtosis, 

especially when innovations with non-normal distributions are assumed. 

3. ARCH models are likely to over predict the volatility because they respond slowly to large 

isolated shocks to the returns series. 

4. ARCH models often requires many parameters and a high order 𝑝 to capture the volatility 

process (Alberg, Shalit and Yosef, 2008). 

9.2.1.1.2 GARCH Models 

The Generalized ARCH (GARCH) process, introduced by Bollerslev (1986), improves the 

ARCH specification by including lagged conditional variances in the present conditional 

variance at time t. GARCH models typically fit as well as a high order ARCH model and yet 

remain parsimonious, in the sense that lower-order GARCH models have been shown to 

successfully model returns volatilities which may rather require higher-order ARCH models 

(see Danielson, 2014). 

Definition 

A GARCH (𝑝, 𝑞) process is defined as: 

𝑟𝑡 =  𝜇𝑡 + 휀𝑡 

Such that  
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σt
2 =   𝜔 +  ∑ αi

p
i=1 휀t−i

2 + ∑ β𝑗
q
j=1 σt−j

2 ,                                                                             (9.16) 

where and each 휀𝑡 =  𝜎𝑡𝑧𝑡 where 𝑧𝑡~𝑁(0,1). 

The GARCH(𝑝, 𝑞) model builds on the ARCH(𝑝) model by including q-lags of the conditional 

variance: 𝜎𝑡−1
2 , 𝜎𝑡−2

2 , … , 𝜎𝑡−𝑞
2 . 

 

Now, consider the simplest form model, the GARCH(1, 1)  model, where the conditional mean 

is assumed to be zero. This is given by: 𝑟𝑡 = 휀𝑡, 

σt
2 =   𝜔 +  𝛼1휀t−1

2 +  𝛽1σt−1
2 .                                                                                             (9.17) 

The model states that the future variance will be an average of the current shock, 휀t−1
2  and the 

current variance, σt−1
2  plus a constant, with constraints on the parameters that ensure positive 

variance and stationarity as follows: 𝜔 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0 and𝛼1 + 𝛽1 < 1. 

 

In the simple GARCH (𝑝, 𝑞) model, the impacts to conditional variance of positive and negative 

shocks are symmetric. Thus, a GARCH model is unable to express the Leverage Effects, a 

limitation that is overcome by some asymmetric GARCH models discussed later in this chapter. 

Remark  

In a complete GARCH(𝑝, 𝑞)  model the parameter restrictions are difficult to satisfy. For 

example, in a GARCH(2, 2), one of the two 𝛽′𝑠  (say,𝛽2 ) may be slightly negative while 

ensuring that all conditional variances are positive (see Nelson & Cao, 1992). 

Now, consider the Unconditional Variance for GARCH (1, 1) 

In the GARCH (1, 1) model there exists a finite unconditional variance 

𝐸[𝜎𝑡
2] =  𝜎2 = 

𝜔

1−𝛼1− 𝛽1
,                                                                                                       (9.18) 

if and only if (𝛼1 +  𝛽1) < 1. 

Rewriting𝜎𝑡
2= 𝜔 + 𝛼1휀t−1

2  + 𝛽1𝜎𝑡−1
2  using the unconditional variance equation, we have 

𝜎𝑡
2 = (1 − 𝛼1 −  𝛽1)𝐸[𝜎𝑡

2] +  𝛼1휀t−1
2  + 𝛽1𝜎𝑡−1

2 .                                                                 (9.19) 

where the coefficient of the lagged conditional volatility term is, 𝛽1, α1 is the parameter for the 

ARCH effect while the sum (𝛼1 + 𝛽1) is a measure of volatility persistence, which is the rate 
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at which the volatility reverts towards the unconditional variance. This indicates that the next 

period's conditional variance is a weighted combination of the unconditional variance of returns, 

𝐸[𝜎𝑡
2], the last period’s squared residuals 휀t−1

2  and the last period's conditional variance, 𝜎𝑡−1
2   

with weights (1 − 𝛼1 −  𝛽1), 𝛼1 and 𝛽1 which sum to one. 

When (𝛼1 +  𝛽1) = 1, there is a unit root in the GARCH process, thereby resulting in a new 

process called the Integrated Generalized Autoregressive Conditional Heteroscedastic 

(IGARCH(1,1)) model, wherein the GARCH (1, 1) automatically becomes:  

σt
2 =  α0 + (1 − 𝛽1)휀t−1

2 + 𝛽1𝜎𝑡−1
2 . In this case, squared shocks are persistent such that the 

variance follows a random walk with drift, μ (see 4.36). 

Limitations of GARCH Models  

The correlation between stock returns and changes in returns’ volatility is negative; that is, 

volatility tends to increase due to "bad news"- a situation where there are negative returns and 

decreases during "good news", when returns are positive. The simple GARCH (𝑝, 𝑞) models, 

however, assume that only the magnitude and not the sign (either positivity or negativity) of 

unanticipated excess returns determine the level of 𝜎𝑡
2. If the distribution of 𝑧𝑡 is symmetric, 

the change in variance tomorrow is conditionally uncorrelated with excess returns today 

(Nelson, 1991). Suppose 𝜎𝑡
2 is written as a function of its lags and that of 𝑧𝑡, noting that 

휀𝑡
2 =  𝑧𝑡

2𝜎𝑡
2:  𝜎𝑡

2 = 𝜔 +  ∑ 𝛼𝑖𝑧𝑡−𝑖
2 𝜎𝑡−𝑖

2𝑝
𝑖=1  + ∑ 𝛽𝑗

𝑞
𝑗=1 𝜎𝑡−𝑗

2  

Obviously, the conditional variance is invariant to changes in the sign of the, 𝑧𝑡′𝑠and the 

innovations are 𝑖. 𝑖. 𝑑 (Rossi, 2004). 

In GARCH models, the non-negativity constraints are imposed to ensure that  𝜎𝑡
2 remains 

positive at any time 𝑡 with probability one. These constraints imply that increasing 𝑧𝑡
2 in any 

period increases  𝜎𝑡+𝑘
2   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 1, cancelling out any possibility of random oscillatory 

behaviour in the 𝜎𝑡
2process. 

 

The GARCH model is not capable of explaining the observed covariance between, 휀𝑡
2and, 

휀𝑡−𝑖. This is possible only if the conditional variance is expressed as an asymmetric function 

of 휀𝑡−𝑖. 

In the GARCH (1, 1) model, shocks may persist in one period and die out in another, and the 

conditional moments of GARCH (1, 1) may explode even when the process is stationary. 
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9.2.1.1.3 EGARCH MODEL 

The Exponential GARCH (EGARCH) model of Nelson (1991) is a major shift from the ARCH 

and GARCH models previously discussed, whereby rather than modelling the variance directly, 

the natural logarithm of the variance is modelled, and thus there is no need for parameter 

restrictions to ensure that the conditional variance is positive.  

Definition  

An Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) 

process is mathematically defined as 

𝑟𝑡 = 𝜇𝑡 + 휀𝑡, and 

ln(𝜎𝑡
2) =  𝜔 +  ∑ 𝑔(휀𝑡−𝑖) 

𝑝
𝑖=1  +  ∑ 𝛽𝑗

𝑞
𝑗=1 ln(𝜎𝑡−𝑗

2 ).                                                           (9.20) 

where 

𝑔(휀𝑡−𝑖) =  𝛼𝑖 ( 𝑡−𝑖

√𝜎𝑡−𝑖
2

) +  𝛾𝑖 [| 𝑡−𝑖

√𝜎𝑡−𝑖
2

| − 𝐸 [| 𝑡−𝑖

√𝜎𝑡−𝑖
2

|]].                                                           (9.21) 

with 휀𝑡 =  𝜎𝑡𝑧𝑡 ,   𝑤ℎ𝑒𝑟𝑒 𝜎𝑡 > 0    and 𝑧𝑡  ~ 𝑁(0,1) (see Tsay, 2014, Danielson, 2014 and 

Taylor, 2005; 2011). 

Here, 𝛾𝑘  is the leverage parameter to be computed along with the, 𝛼𝑖′𝑠 and 𝛽𝑗′s. 

Consider now a simpler form EGARCH (1, 1), with a constant mean: 

𝒓𝒕 = 𝝁 + 𝜺𝒕, withln(𝜎𝑡
2) =  𝜔 +  𝑔(휀𝑡−1)  + 𝛽1 ln(𝜎𝑡−1

2 ), 

soln(𝜎𝑡
2) =  𝜔 +  𝛼1 ( 𝑡−1

√𝜎𝑡−1
2

) +  𝛾1 [| 𝑡−1

𝜎𝑡−1
| − 𝐸 [| 𝑡−1

𝜎𝑡−1
|]]   + 𝛽1 ln(𝜎𝑡−1

2 ). 

This can be rewritten more simply, using standardised innovation termsas: 

ln(𝜎𝑡
2) =  𝜔 + 𝛼1(𝑧𝑡−1) +  𝛾1[|𝑧𝑡−1| − 𝐸 [|𝑧𝑡−1|]]   + 𝛽1 ln(𝜎𝑡−1

2 )                                  (9.22) 

휀𝑡 =  𝜎𝑡𝑧𝑡 ,   𝑤ℎ𝑒𝑟𝑒      𝑧𝑡~𝑁(0,1). 



238 

 

As noted in Malmsten and Teräsvirta, (2004), 𝐸[|𝑧𝑡−1|] = √
2

𝜋
 , which is equal to 0 iff 

𝑧𝑡  ~ 𝑁(0,1). 

𝐸[|𝑧𝑡−1|] = 
2√ɐ−2Γ(

ɐ+1

2
)

√𝜋(ɐ−1)Γ(
ɐ

2
)

, where 𝑧𝑡~𝑡(𝜈), and𝐸[|𝑧𝑡−1|]=Γ(2휂−1) {Γ(휂−1)Γ(3휂−1)}
1

2⁄⁄  

where 𝑧𝑡~𝐺𝐸𝐷(휂), is the Generalised Error Distribution with parameter 휂 and ɐ is the degree 

of freedom. The term 𝛼1(𝑧𝑡−1) produces a symmetric increase in the log variance, while the 

term: 𝛾1[|𝑧𝑡−1| − 𝐸|𝑧𝑡−1|] gives an asymmetric effect in the volatility. Thus, 𝛾1  is the 

asymmetric parameter, and isexpected to be less than zero to indicate that the volatility rises 

more in response to anegative shock than toa positive shock.  

In the usual case where 𝛾1<0, the magnitude of the shock can be divided into two based on the 

sign of 𝑧𝑡−1. Let the shock coefficient be ℑ. Then 

ℑ =  {
𝛼1 − 𝛾1      𝑤ℎ𝑒𝑛      𝑧𝑡−1 < 0,
𝛼1 + 𝛾1       𝑤ℎ𝑒𝑛    𝑧𝑡−1 > 0.

                                                                                  (9.23) 

Since both shocks have mean zero and the current log variance is linearly related to the past log 

variance through 𝛽1, the EGARCH (1, 1) model is an AR model (Taylor, 2005) 

Properties of EGARCH Models 

1. The function 𝑔(휀𝑡−𝑖) is linear in 휀𝑡−𝑖 with the coefficient (𝛼𝑖 + 1) if 휀𝑡−𝑖 is positive, but it 

is linear with the coefficient(𝛼𝑖 − 1) if휀𝑡−𝑖 is negative. 

2. If 𝛼  = 0, large innovations increase the conditional variance if and only if (|𝑧𝑡| −

𝐸 [|𝑧𝑡|]) > 0 and decrease the conditional variance if (|𝑧𝑡| − 𝐸 [|𝑧𝑡|]) < 0. 

3. Suppose that 𝛼 < 1 ; the function 𝑔(휀𝑡)  is positive if the innovations 휀𝑡  are less than 

√2 𝜋⁄ /(𝛼𝑖 − 1) thus, negative innovations 휀𝑡  in returns cause the innovation to the 

conditional variance to be positive if 𝛼 < 1 (see Taylor, 2005 and Tsay, 2014). 

EGARCH models usually provide superior fits over the standard GARCH models. The 

presence of the asymmetric term is substantially responsible for the superior fit since many 

assets’ returns series have been confirmed to exhibit a “leverage” effect and the use of 

standardized shocks (𝑧𝑡−1) in the log-variance tends to reduce the effect of large shocks. 



239 

 

9.2.1.1.4 GJR-GARCH Model 

This model was named after its proponents - Glosten, Jagannathan and Runkle (1993). It 

extends the standard GARCH (𝑝, 𝑞) model by including asymmetric terms that capture the 

leverage (or asymmetric) effects, which are the tendency for the volatility to rise more in 

response to large negative shocks than to large positive shocks. 

Definition 

A GJR-GARCH (𝑝, 𝑘, 𝑞) process is defined as:  

𝑟𝑡 = 𝜇𝑡 + 휀𝑡, 

𝜎𝑡
2 = 𝜔 +  ∑ 𝛼𝑖휀𝑡−𝑖

2 +  ∑ 𝛾𝑖
𝑘
𝑖=1 휀𝑡−𝑖

2 𝐼[ 𝑡−𝑖<0] + ∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑞

𝑗=1
𝑝
𝑖=1 .                                          (9.24) 

휀𝑡 =  𝜎𝑡 𝑧𝑡,   𝑤ℎ𝑒𝑟𝑒      𝑧𝑡  ~ 𝑁(0, 1), 

where 𝐼[ 𝑡−𝑖<0] is an indicator function taking value 1 if 휀𝑡−𝑖 < 0 and 0 otherwise. 

The parameters of the GJR-GARCH model like the standard GARCH model, must be restricted 

to ensure that the volatility is always positive. This seems difficult to describe for a full GJR-

GARCH (𝑝, 𝑘, 𝑞) model, but for the simple GJR-GARCH (1, 1, 1), we have that:  

𝜎𝑡
2 =  𝜔 + 𝛼1휀𝑡−1

2 +  𝛾1휀𝑡−1
2 𝐼[ 𝑡−1<0] +  𝛽1𝜎𝑡−1

2 ,                                                                (9.25) 

where 𝜔 > 0, 0 ≤ 𝛼1, 𝛽1 < 1, (𝛼1 + 𝛽1 ) < 1 and (𝛼1 + 𝛾1)  ≥ 0 . If the innovations are 

conditionally normal, a GJR-GARCH model will be covariance stationary and strictly 

stationary once the constraints are satisfied and the persistence rate(𝛼1 +  𝛽1 +
𝛾1

2
) < 1. 

The model explores the impact of 휀𝑡−1
2 on the conditional variance, 𝜎𝑡

2.It also confirms that bad 

news (휀𝑡 < 0) and good news (휀𝑡 > 0) impact the conditional variance differently. If the 

leverage effect exists, 𝛾1  is expected to be positive. The leverage effect is observed as the 

impulse (𝛼1 +  𝛾1) of negative shocks, which is higher than the impulse (𝛼1) of positive shocks 

(Taylor, 2011).  

Unconditional Variance of the GJR-GARCH (1, 1, 1) model is given by 

𝐸[𝜎𝑡
2] =  𝜎2 =  

𝜔

1−(𝛼1+ 𝛽1+
𝛾1
2

)
.                                                                                             (9.26) 
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9.2.1.1.5 TARCH/AVGARCH/ZARCH 

The Threshold ARCH (TARCH) model (also called AVGARCH and ZARCH) is slightly 

different from the GJR-GARCH model in the volatility equation, whereby rather than 

modelling the conditional variance directly using squared innovations, the conditional standard 

deviation is modelled as a function of the lagged absolute value of the innovations. It also 

captures asymmetries using an asymmetric term in the same manner as the GJR-GARCH model 

(see: Taylor, 2008 and Zakoian, 1994). 

Definition 

A Threshold Autoregressive Conditional Heteroscedasticity (TARCH) process is defined 

mathematically as:  

𝑟𝑡 = 𝜇𝑡 + 휀𝑡, 

𝜎𝑡 = 𝜔 +  ∑ 𝛼𝑖|휀𝑡−𝑖| + ∑ 𝛾𝑖
𝑘
𝑖=1 |휀𝑡−𝑖|𝐼[ 𝑡−𝑖<0] + ∑ 𝛽𝑗𝜎𝑡−𝑗

𝑞
𝑗=1

𝑝
𝑖=1 ,                                      (9.27) 

휀𝑡 =  𝜎𝑡 𝑧𝑡,   𝑤ℎ𝑒𝑟𝑒      𝑧𝑡~𝑁(0,1). 

TARCH models are also known as ZARCH due to Zakoian (1994) or AVGARCH when no 

asymmetric terms are included (i.e. 𝛾𝑖 = 0, Taylor, 2008). 

The TARCH (𝟏, 𝟏, 𝟏) Model is given by 

𝜎𝑡 = 𝜔 +  𝛼1|휀𝑡−1| +  𝛾1|휀𝑡−1|𝐼[ 𝑡−𝑖<0] +  𝛽1𝜎𝑡−1, 𝑤𝑖𝑡ℎ (𝛼1 + 𝛾1) ≥ 0,                          (9.28) 

where 𝐼[ 𝑡−𝑖<0], is an indicator variable that takes the value 1 if 휀𝑡−1 < 0 and zero otherwise. 

Note that models of the conditional standard deviation often out-perform models that consider 

the conditional variance directly, and this is because absolute shocks are less responsive than 

squared shocks to volatility. 

9.2.1.1.6 APARCH Model 

This is another asymmetric model that seeks to extend the TARCH and GJR-GARCH models 

by directly introducing different orders of nonlinearity in the conditional variance. For example, 

where the GJR-GARCH model uses 2 and the TARCH model uses 1 for the non-linearity in 

the conditional variance, the Asymmetric Power ARCH (APARCH) of Ding, Engle & Granger 

(1993) parameterizes this value directly using the parameter 𝛿, providing greater flexibility in 

modelling long-memory volatility while still maintaining model parsimony. 
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Definition  

An Asymmetric Power Autoregressive Conditional Heteroscedasticity, APARCH (𝑝, 𝑘, 𝑞 ), 

process is defined byDing, Granger and Engle. (1993), as:  

𝑟𝑡 = 𝜇𝑡 + 휀𝑡, 

𝜎𝑡
𝛿 =  𝜔 +  ∑ 𝛼𝑖

𝑚𝑎𝑥(𝑝,𝑘)
𝑖=1

(|휀𝑡−𝑖| + 𝛾𝑖 휀𝑡−𝑖)𝜹 +  ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿𝑞

𝑗=1 ,                                              (9.29) 

휀𝑡 =  𝜎𝑡𝑧𝑡 ,   𝑤ℎ𝑒𝑟𝑒      𝑧𝑡~𝑁(0,1), 

where "𝑝 ≥ 𝑘", and when,𝑝 > 𝑘, 𝛾𝑖 = 0 only  if 𝑖 >  𝑘. For the conditional variance to be 

non-negative, we must have 𝜔 > 0, 𝛼𝑘 ≥ 0 and − 1 ≤ 𝛾𝑖 ≤ 1. 

Consider the APARCH (1, 1, 1) model. 

𝜎𝑡
𝛿 =  𝜔 + 𝛼1(|휀𝑡−1| + 𝛾1휀𝑡−1)𝜹 +  𝛽1𝜎𝑡−1

𝛿 ,                                                                      (9.30) 

where 𝛿 ≥ 0,     𝜔 > 0,     𝛼1 ≥ 0,      𝛽1 ≥ 0     0 ≤ 𝛼1 + 𝛽1  ≤ 1 and  − 1 <  𝛾 < 1. 

A positive 𝛾 indicates that a negative shock has a stronger impact on the stock’s volatility 

than a positive shock. 

This model nests some of the other volatility models including those discussed so far in different 

and special ways. For example, we derive from the model: 

ARCH (of Engle), when: 𝛿 = 2;  𝛾 = 0 𝑎𝑛𝑑 𝛽 = 0;  

GARCH (of Bollerslev), when: 𝛿 = 2;  𝛾 = 0;  

GJR-GARCH (of Glosten, Jagannathan, and Runkle), when: 𝛿 = 2; 

TGARCH (of Zakoian), when: 𝛿 = 1;  

NARCH (of Higgens and Bera) when: 𝛽 = 𝛾 = 0; and  

Log-ARCH (of Geweke and Pentula), when: 𝛿 = ∞.  

See: Ding, Granger and Engle (1993); Wurtz, Chalabi and Luksan (2006); Ding (2011) and 

Danielson (2011)), for further details. 

 

The APARCH model exhibits several stylized properties of financial time series. For example, 

its unconditional volatility has large kurtosis. It also captures asymmetry in returns like the 

GJR-GARCH model, and at the same time it captures the long-memory property of the returns. 

 

The Unconditional Variance for the APARCH (1, 1, 1) model is 
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𝜎𝑡
𝛿 =  

𝝎

1−𝜶𝟏(𝟏−𝛾1)𝜹−𝜷𝟏
.                                                                                                          (9.31) 

Error Distributional Assumptions 

The probability distribution of asset returns often exhibits fatter tails than the standard normal 

distribution. The presence of heavy-tailedness is largely due to volatility clustering 

characterizing stock data- especially daily data. A further reason for this heavy-tailedness could 

be sudden changes in stock returns, which are typically negatively skewed and leptokurtic. Thus, 

for us to capture this phenomenon of heavy-tailedness, the student-t-distribution is also 

explored in our analysis. 

Error Distributions 

The two error distributions to be adopted in this research are the Gaussian and student-t error 

distributions and are defined as follow: 

Normal Error distribution  

𝑓(휀𝑡) =  
1

√2𝜋𝜎𝑡
2

 𝑒𝑥𝑝 −
1

2
( 𝑡

𝜎
)

2

                                                                                             (9.32) 

Student-t- distribution by Bollerslev (1987) 

𝑓(휀𝑡) =
Γ((𝑟+1) 2⁄ )

√𝜋𝑟Γ(𝑟 2⁄ )
∗

1

(1+ 𝑡
2

2
⁄ )

(𝑟+1) 2⁄      ∀ − ∞ < 휀𝑡 < ∞                                                     (9.33) 

Mean- 𝐸(휀𝑡) = 0; Variance- 𝑉𝑎𝑟(휀𝑡) =   
𝑟

𝑟−2
  ∀ 𝑟 > 2; Skewness- 𝑆𝑘 = 0 𝑓𝑜𝑟 𝑟 > 3 and 

kurtosis- 

𝑘𝑢𝑟𝑡 =
6

𝑟−4
 ∀ 𝑟 > 4; 𝑓𝑜𝑟 2 < 𝑟 ≤ 4 =  ∞ 𝑎𝑛𝑑 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

Where 𝑟 and 휀𝑡 are the degree of freedom and error term respectively. 

Note that the two (error) distributions, (9.32) and (9.33) are premised on equations (4.2) and 

(4.3) respectively.  

The News Impact Curve (NIC) 

In the asymmetric volatility models, good news and bad news have different impacts on future 

volatility. The news impact curve characterizes the impact of past returns shocks on the returns 

volatility, which is implicit in a volatility model. 
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Holding constant the information dated,𝑡 − 2, 𝑡 − 3, 𝑡 − 4,…, according to Engle and Ng 

(1993), we can estimate the implied relation between information available in the next period 

(𝑡 − 1) , summarised by 휀𝑡−1 , and the conditional variance 𝜎𝑡
2 , with 𝜎𝑡−𝑖

2 = 𝜎2 𝑓𝑜𝑟 𝑖 =

1, 2, 3, … , 𝑝. The curve thus generated, with all lagged conditional variances evaluated at the 

level of the unconditional variance of the stock returns is called the news impact curve (NIC), 

because it relates past returns shocks (news) to current volatility. The curve measures how new 

information is incorporated into volatility estimates. 

The NIC is therefore a graphical representation of how investors tend to forecast the market 

and how they react to positive and negative shocks characterising their investments such that 

when there is good news, volatility does not rise because there is some level of confidence 

among the investors in the market.   

For the symmetric GARCH model, the News Impact Curve (NIC) is both centred at and 

symmetric about the point where 휀𝑡−1 = 0, whereas in the case of EGARCH, the curve is 

centred at the point 휀𝑡−1 = 0 and for GJR-GARCH it is centred at 휀𝑡−1 = −𝛾1. However, while 

the NIC for the EGARCH (1, 1) model which is exponentially increasing in both directions but 

with different slopes, has a steeper slope for points where 휀𝑡−1 < 0, the GJR-GARCH model’s 

NIC has different slopes for both its positive and negative parts (Henry, 1998).  

For the GARCH (1, 1) model, we have 

σt
2 =   𝜔 +  𝛼1휀t−1

2 +  𝛽1σt−1
2 , and the news impact curve is presented as follows: 

σt
2 =   𝐴 + 𝛼1휀t−1

2 ,                                                                                                              (9.34) 

where: 𝐴 =  𝜔 +  𝛽1σt−1
2 . 

For the EGARCH (1, 1) model with 

ln(𝜎𝑡
2) =  𝜔 +  𝛼1(𝑧𝑡−1) +  𝛾1[|𝑧𝑡−1| − 𝐸|𝑧𝑡−1|]   + 𝛽1 ln(𝜎𝑡−1

2 ), where𝑧𝑡 =  
휀𝑡

𝜎𝑡
⁄ , the NIC 

is  

𝜎𝑡
2 = {

𝐴𝑒𝑥𝑝 (
𝛼1+ 𝛾1

𝜎
휀𝑡−1) , for 휀𝑡−1 > 0,

𝐴𝑒𝑥𝑝 (
𝛼1− 𝛾1

𝜎
휀𝑡−1) , for휀𝑡−1 < 0,

                                                                         (9.35) 

where 𝐴 ≡ 𝜎2𝛽1 exp [𝜔 −  𝛾1√2 𝜋⁄ ] with 𝛼1 < 0 and𝛼1 + 𝛾1 > 0. 
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Remarks 

1. The EGARCH model allows good news and bad news to have different impacts on volatility, 

while the standard GARCH model does not. 

2. The EGARCH model allows important news to have a greater impact on volatility than 

GARCH model.  

3. EGARCH imposes no constraints on the model parameters to ensure the non-negativity of 

the conditional variance, unlike the symmetric GARCH model. 

NIC for TARCH (1, 1, 1) Model: 

𝜎𝑡
2 = (𝛼1 + 𝛾1𝐼[ 𝑡<0])

2휀t
2 + (2𝜔 + 2𝛽1𝜎)(𝛼1 + 𝛾1𝐼[ 𝑡<0])|휀𝑡−1|.                                     (9.36) 

NIC FOR GJR-GARCH (1, 1, 1) Model 

𝜎𝑡
2   = 𝐴 + α1휀t−1

2 ,  ∀ 휀𝑡−1 > 0, 

𝜎𝑡
2 = 𝐴 + (𝛼1 +  𝛾1)휀t−1

2  , ∀ 휀𝑡−1 < 0.                                                                               (9.37) 

where, 𝐴 =  ω +  𝛽1𝜎2 

Testing for (G) ARCH Effects 

Although conditional heteroscedasticity can often be identified by graphical inspection, a 

quantifying test of conditional homoscedasticity is rather more reliable. The popular standard 

method to test for ARCH effect is the Lagrange multiplier (LM) test, called the ARCH-LM test 

of Engle (1982), which is implemented as a regression of squared residuals 휀�̂�
2 = (𝑟𝑡 − 𝜇)2 on 

lagged squared residuals 휀�̂�−𝑖
2  and it directly exploits the autoregressive (AR) representation of 

an ARCH process. The test is computed by estimating: 

휀𝑡
2 =  𝜐1 +  𝜐2휀𝑡−1

2 + ⋯ +  𝜐𝑝휀𝑡−𝑝
2 +  𝑢𝑡.                                                                            (9.38) 

We then compute a test statistic as 𝑇times the 𝑅2 of the regression: 𝐿𝑀 =  𝑇 × 𝑅2, which is 

asymptotically distributed 𝜒𝑝
2 where 휀𝑡 is the residual in a conditional mean model and T is the 

total number of observations, with the hypotheses:  

𝐻0: 𝜐1 = 𝜐2 = ⋯ = 𝜐𝑝 = 0,                                                                                                (9.39) 

Versus 

𝐻1: At least one of the parameters is different from zero, 

where (9.39) corresponds to no persistence/ARCH effect in the conditional variance. 



245 

 

9.2.2 Model selection 

Statistical model selection criteria are used to select the orders (𝑝, 𝑞) of a GARCH process. 

Procedures 

1. Fit GARCH(𝑝, 𝑞) models with 0 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥 and  0 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥 for the chosen 

value of maximal orders. 

2. Let �̂�2 (𝑝, 𝑞) be the MLE of 𝜎2 = 𝑉𝑎𝑟(휀𝑡), the variance of GARCH innovations 

under the Gaussian or Normal assumption for the innovations. 

3. Choose (𝑝, 𝑞) to maximise one of the following: 

 Akaike Information Criterion, AIC (𝑝, 𝑞) = log �̃�𝑝,𝑞
2 + 2 (

𝑝+𝑞

𝑇
).                           (9.40) 

 Bayesian Information Criterion, BIC(𝑛) = log �̃�𝑝,𝑞
2 + log  𝑇 (

𝑝+𝑞

𝑇
).                     (9.41) 

 Hannan-Quinn Criterion, HQ (𝑝, 𝑞) = log �̃�𝑝,𝑞
2 + 2 log 𝑇 (

𝑝+𝑞

𝑇
).                           (9.42) 

where T is the total number of observations (or the sample size) and �̃�𝑝,𝑞
2  is the maximum 

likelihood estimate of𝜎2, the residual variance. The first term in the equations (9.40), (9.41) 

and (9.42) is a measure of the goodness-of-fit of the GARCH (𝑝, 𝑞) model to the data, while 

the second term is the penalty function of the criterion, because each penalizes a candidate 

model by the number of parameters (e.g. 𝑝 + 𝑞) used in the model.  

Meanwhile, according to Malmsten and Teräsvirta (2004), a general approach to comparing 

volatility model is to estimate several models by maximum likelihood and choose the one with 

the highest log-likelihood (𝐿𝐿) value (see further: Shephard, 1996). However, if the models to 

be compared have unequal numbers of parameters, one might be willing to favour parsimony 

by applying a suitable model selection criterion, such as AIC or BIC, for such a purpose. Note 

that both AIC and BIC are penalized-likelihood criteria, and their only difference in practice is 

the size of the penalty, but BIC penalizes model complexity more heavily, thereby making it 

more stringent than AIC. Another method of comparing models is to submit estimated models 

to misspecification tests (this is beyond the scope of this study) and to see how well they pass 

the tests. 

In this research however, we select the appropriate model by considering the information 

criterion (IC) with the least value(Zou, 2004) and (Akaike, 1973) especially between (9.40) and 

(9.41) having considered other stationarity conditions associated with the respective models.It 
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is important to note that in financial time series, both the AIC and BIC are mostly applied model 

selection criteria, and in most cases, AIC usually gives the least value, just as it is in the case of 

this study. For example, going through the results for different models compared using the three 

criteria, we found that even though the three in each case favoured the same model but the 

value(s) for AIC was always the least (see Figure 9.2). However, for the purpose of presentation 

of the models results summary in Table 9.2, we only display AIC. 

Tests for Asymmetric Effects 

The notes on the news impact curve show that the standard GARCH model has a news impact 

curve, which is symmetric and centred at 휀𝑡−1= 0, indicating that positive and negative returns 

shocks of the same magnitude generate the same level of volatility. There is a need to explore 

the presence of asymmetric effects associated with different NICs since the standard GARCH 

model will not detect such effects of negative (bad) news and positive (good) news on volatility.  

Engle and Ng (1993) proposed three diagnostic tests for volatility models: The Sign Bias Test, 

the Negative Size Bias Test, and the Positive Size Bias Test. The "Sign Bias Test" examines 

the impact of positive and negative returns shocks on volatility not predicted by the model under 

consideration. While the negative size bias test focuses on the different effects that large and 

small negative returns shocks have on volatility, which are not predicted by the volatility model, 

the positive size bias test deals with the different impacts that large and small positive return 

shocks may have on volatility that are not explained by the volatility model. In summary, the 

test is applied to identify possible misspecification of conditional volatility models. This is done 

by testing whether or not the standardized squared residuals could be predicted using indicator 

variables. 

The joint test statistic for these tests is the Lagrange Multiplier (LM) test statistic, 𝑇𝑅2 ~𝜒3
2 

(where T is the total length of the series, 𝑅2 is the coefficient of determination, obtained by 

estimating the parameters of the regression equation in 9.43 below), under the null hypothesis 

of no asymmetric effects (Brooks, 2008), which is derived from the multiple regression 

equation (squared residuals): 

�̂�𝑡
2 =  ℓ0 + ℓ1𝑆𝑡−1

− +  ℓ2𝑆𝑡−1
− 휀𝑡−1 +   ℓ3𝑆𝑡−1

+ 휀𝑡−1 +  𝑢𝑡,                                                     (9.43) 

where 𝑧𝑡 is regressed on the constants, ℓ𝑖 , 𝑓𝑜𝑟 𝑖 = 0,1,2,3, a dummy variable 𝑆𝑡−1
− , and 

an i. i. d error term, 𝑢𝑡, such that: 
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𝑆𝑡−1
− = {

1    𝑖𝑓   휀�̂�−1 <  0,
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

and 𝑠𝑡−1
+ = 1 − 𝑠𝑡−1

− . 

The sign bias represented by the dummy variable 𝑆𝑡−1
−  is 1 when 휀�̂�−1 <  0, determines the 

impact of both negative and positive shocks on volatility not predicted by the model such that 

when its effect (sign bias size), ℓ1 is present, the following regression is statistically significant:  

�̂�𝑡
2 =  ℓ0 + ℓ1𝑆𝑡−1

− +  𝑢𝑡.                                                                                                     (9.44) 

Meanwhile, in circumstances when the magnitude or size of the shock impacts on whether the 

volatility response to shocks is symmetric or not, a negative size bias test is then conducted. A 

negative size bias represented by the term, 𝑆𝑡−1
− 휀𝑡−1 focuses on the effect of large and small 

negative shocks and it is said to be present if ℓ2 is statistically significant in the regression:  

�̂�𝑡
2 =  ℓ0 +  ℓ2𝑆𝑡−1

− 휀𝑡−1 +  𝑢𝑡.                                                                                             (9.45) 

Similarly, the positive sign bias represented by the dummy, 𝑠𝑡−1
+ = 1 − 𝑠𝑡−1

− , determines the 

effect of large and small positive shocks and it is said to be present if its effect, ℓ3is statistically 

significant in the equation: 

�̂�𝑡
2 =  ℓ0 + ℓ3 𝑆𝑡−1

+ 휀𝑡−1 +  𝑢𝑡.                                                                                            (9.46) 

Goodness-of-fit Test for the Fitted Residuals 

Having fitted and chosen the appropriate GARCH candidate model, one of the relevant tests 

used in assessing the adequacy (or goodness-of-fit) of such a model is to see if the standardized 

residuals, �̂�𝑡, obtained from the GARCH model, are identically and independently Normally 

distributed (𝑖. 𝑖. 𝑑), and if there is any presence of clustering in the residuals. The common test 

used for this is a Portmanteau test that examines if several autocorrelations of squared 

standardized residuals are equal to zero, and the relevant test statistic used is either the Ljung 

& Box (1978), 𝑄(𝑝) statistic in equation 4.33 or the Box & Pierce (1970) 𝑄∗(𝑚) statistic in 

equation 4.32. 

The underlying assumption is that �̂�𝑡
2 are 𝑖. 𝑖. 𝑑. The test statistic is compared with 𝜒(𝑝−𝑙)

2 (with 

𝑙 as the number of parameters estimated in the model) or the p-value. If the model fits well, 
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then neither the standardized nor squared standardized residuals should exhibit serial 

correlation. 

The Nyblom Test 

According to Hansen (1992a, b), the possible challenge with time series models is that the 

estimated parameters are subject to change over time. When this is left undetected, it may lead 

to a form of model misspecification, and consequently to false inferences from the model. 

To test the stability or constancy of the parameter estimates, we use the Nyblom (1989) test. 

This test assesses the variance of the errors in the estimated parameters. If the parameter is 

constant (i.e. there are no errors), then variance of the error term is zero. If it is not constant 

(and it is related to the past values of the parameter), then the error term has non-zero variance. 

The test statistic which is derived in Nyblom (1989) and Zivot (2003) as follows: 

Consider the linear regression model with 𝑘 variables 

𝑦𝑡 =  𝑥𝑡
′ 휃 +  휂𝑡 , 𝑡 = 1, 2, … , 𝑛. 

The time varying parameter (TVP) alternative model assumes that:  

휃 =  휃𝑡 + ℇ𝑡 , ℇ𝑖𝑡  ~ 𝑁(0, 𝜎ℇ𝑖

2 ), 𝑖 = 1, 2, … , 𝑘 

The hypotheses of interest are:  

𝐻0: Ψ is constant ≡ 𝜎ℇ𝑡

2 = 0, for all 𝑖 

𝐻1: 𝜎ℇ𝑡

2 > 0, for some 𝑖 

Nyblom (1989) derives the locally best invariant test as the Lagrange multiplier test. The 

score assuming Gaussian errors is: 

∑ 𝑥𝑡휂̂𝑡
𝑛
𝑡=1 =  0, where 휂̂𝑡 =  𝑦𝑡 − 𝑥𝑡

′ 휃̂, and 휃̂ = (𝑋′𝑋)−1𝑋′𝑌 

Suppose 

𝑓𝑡 =  𝑥𝑡휂̂𝑡 

𝑆𝑡 =  ∑ 𝑓𝑡

𝑡

𝑗=1

= 𝑐𝑢𝑚𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑢𝑚𝑠 
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Λ =  𝑛−1(𝑋′𝑋) 

Note that  

∑ 𝑓𝑡

𝑛

𝑗=1

= 0 

Nyblom derives the Lagrange Multiplier, LM test statistic as:  

𝐿 =  
1

𝑛�̂�2
∑ 𝑆𝑡Λ

−1𝑆𝑡
𝑛
𝑡=1 , 

=  
1

𝑛�̂�2 𝑡𝑟[Λ−1 ∑ 𝑆𝑡𝑆𝑡
′𝑛

𝑡=1 ].                                                                                            (9.47) 

Under mild assumptions regarding the behaviour of the covariates, the limiting distribution of 

L under the null hypothesis follows a Camer-von Mises distribution (Zivot, 2003): 

𝐿 =  ∫ 𝚮𝑘
𝑢

1

0

(Ψ)𝚮𝑘
𝑢(Ψ)′𝑑Ψ 

𝚮𝑘
𝑢(Ψ) =  𝐖𝑘(Ψ) − Ψ𝐖𝑘(1) 

𝐖𝑘(Ψ) =   𝑘 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑚𝑜𝑡𝑖𝑜𝑛 

Decision: Reject 𝐻0  at 5% if  

𝐿 > 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑣𝑎𝑙𝑢𝑒 (or p − value <  0.05) 

Remarks: • 

 Distribution of L is non-standard and depends on k. 

Critical values are computed by simulation and are given in Nyblom, Hansen (1992) and 

Hansen (1997)  

Test is for constancy of all parameters  

Test is not informative about the date or type of structural change  

Test is applicable for models estimated by methods other than OLS  

Distribution of L is different if 𝑥𝑡 is non-stationary (unit root, deterministic trend). See 

Hansen (1992). 
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The null hypotheses of stability: 

For Individual coefficient tests are set as: 

𝐻0: 휃𝑖  𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑖 = 1,2, … , 𝑘, 

𝐻0: 𝜎ℇ𝑡

2  𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and  

For Joint coefficient tests 

𝐻0: 휃 𝑎𝑛𝑑 𝜎2 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, is accepted if the test statistic does not fall in the rejection region 

(or p − value ≥  0.05). 

The Half-life of a (Shock) Volatility Model 

The half-life of a shock, according to Danielson (2011; pp.39-40), is the length of time (𝑛∗) it 

takes for the conditional variance to revert halfway towards the unconditional variance. It is a 

measure to determine how long the impact of a shock on the volatility takes to subside. 

The general formula for this is: 

𝜎𝑡+𝑛∗
2 − 𝜎2 =  

1

2
(𝜎𝑡+1

2 − 𝜎2).                                                                                              (9.48) 

For the GARCH (1, 1) process, the half-life is: 

(𝛼 + 𝛽)𝑛∗−1(𝜎𝑡+1
2 − 𝜎2)= 

1

2
(𝜎𝑡+1

2 − 𝜎2),  

and thus  

𝑛∗ = 1 +
ln (

1

2
)

𝑙𝑛(𝛼+𝛽)
,                                                                                                                (9.49) 

where 𝜎𝑡+𝑛∗
2  is the 𝑛∗  steps ahead conditional volatility,𝜎𝑡+1

2  is the 1-step ahead conditional 

volatility, 𝜎2 is the unconditional volatility and (𝛼 + 𝛽) is the measure of persistence in the 

GARCH (1, 1) model. 

9.3 Presentation of Results and Discussions 

In this section, the results of the fitted GARCH family models and the relevant tests of model 

adequacies for the overall and financial crisis periods are presented and discussed. 
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9.3.1 ARCH Effect Test Results 

Table 9.1 below presents the results of the Engle and Breusch-Pagan (B-P) tests across the 

fifteen banks. From the table, the ARCH effects were significant only in three banks (Diamond, 

FCMB and Fidelity), using Engle; whereas the effects were significant in eleven banks using 

Pagan test statistic. Only one bank, UBA, had no detected ARCH effect using either of the test 

statistics. 

Table 9.1: ARCH Effect Test Results 

Bank Engle LM Breusch-Pagan (B-P) LM 

Access 0.8019(1) 20.7536 (0.000) 

Diamond 524.7500 (2.2e-16) -0.1388 (0.8897) 

Eco bank 0.0074 (1) -67.0785 (0.000) 

FCMB 438.4700 (2.2e-16) -1.6755 (0.094) 

Fidelity 443.9500 (2.2e-16) 0.1508 (0.8801) 

First 1.8625 (0.9996) -36.8520 (0.000) 

GTB 9.6556 (0.6461) -30.6169 (0.000) 

Skye 0.1261 (1) 28.2494 (0.0000) 

STANBIC 0.0140 (1) -34.4902 (0.000) 

Sterling  1.8086 (0.6948) 12.8809 (0.000) 

UBA 0.4662 (1) 1.2770 (0.2016) 

Union 0.0228 (1) 52.4786 (0.0000) 

Unity 0.0178 (1) 83.1671 (0.000) 

WEMA 0.0056 (1) 93.7410 (0.000) 

Zenith 14.9990 (0.2415) -21.1845 (0.000) 

9. 3.2 Summary of Results for the FITTED Models  

In this case two periods were examined- (i) the Overall Period and (ii) the 2007-2009 Financial 

Crisis Period across the fifteen banks with the sample sizes as presented in Table 4.1. Here, 

column 2 of the table contains the range of periods covered by each bank, while columns 3 and 

4 have the sample sizes for the respective bank for the overall and financial crisis periods 

respectively. The detailed summary statistics tables for the two periods can be found in Tables 

5.1 and 5.5 of Chapter five of this thesis.  

Summarised Fitted Model Results for the Overall Periods 

While fitting the models, all candidate models right from ARCH (1) through to APARCH (2, 

2) were with a Normal random error distribution and the student-t error distribution, taking into 

consideration the skewed forms of the distributions where necessary. Table 9.2 presents the 
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results of the fitted models with a normal error distribution was considered and Table 9.3 

contains the summary of the final fitted models with a t-error distribution. We see from the 

three information criteria values that fitting GARCH family models with the assumption of a 

non-normal error distribution for the Nigerian bank’s volatility description for the periods under 

consideration is more appropriate. This is the general behaviour of the volatility of financial 

data across different markets (see Tsay, 2012, Taylor, 2011, Danielson, 2011 and Zivot, 2009). 
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Table 9.2: ARCH/GARCH Models with Student-T-Error Distribution for all the Banks 

Bank  Model\Parameters mu (𝝁) omega (𝝎) Alpha (𝜶𝒊) Beta (𝜷𝒊) 𝜸𝒊 ; 𝜹 Shape 

parameter 

AIC BIC HQ 

Access APARCH (1,1) -0.0000 

(0.9976) 

0.0000 

(0.43222) 

𝛼1=0.1862(0.00) 𝛽1=0.8473(0.00) 𝛾1= -0.0998(0.9592) 

𝛿=0.3630 (0.00) 

3.9261 (0.00) -8.1900 -8.1787 -8.1860 

Diamond TGARCH (1,1) -

0.0000(0.9867) 

0.0000 

(0.9734) 

𝛼1= 0.5826(0.00) 𝛽1=0.5672(0.00) 𝛾1=0.2097(0.000) 3.6845 (0.00) -7.3100 -7.2954 -7.3047 

Eco APARCH (1,1) -0.0000 

(0.9995) 

0.0000 

(0.0542) 

𝛼1= 0.2530 (0.00) 𝛽1=0.7861(0.00) 𝛾1=0.1499(0.00); 

𝜹=0.4564(0.000) 

2.6921 (0.00) -7.7411 -7.7219 -7.7341 

FCMB APARCH (1,1,1) 0.0000 

(0.9999) 

0.0000 

(0.5438) 

𝛼1=0.1440 (0.00) 𝛽1=0.8616(0.00) 𝛾1= 0.0672(0.0018) 

𝛿=0.3438(0.00) 

3.9696 (0.00) -8.5594 -8.5429 -8.5534 

Fidelity TGARCH(1,1) 0.0000 (0.976) 0.0000 (0.978) 𝛼1=0.4354(0.00) 𝛽1=0.6248(0.00) 𝛾1 =0.0990 (0.0007) 3.8707 (0.00) -8.1600 -8.1454 -8.1547 

GTB APARCH(1, 1)-

skew 

0.0000 (1.00) 0.0000 

(0.2075) 

𝛼1=0.1729(0.00) 𝛽1=0.8635(0.00) 𝛾1 = -0.3440 (0.0); 

𝜹=0.4632 

3.6922 

Skew=0.9295 

-6.5470 -6.5340 -6.5424 

First APARCH(1,1)-

skew 

0.0000 (0.999) 0.0000 

(0.4176) 

𝛼1= 0.2391(0.00) 𝛽1=0.7906(0.00) 𝛾1 =-0.0895(0.0); 

𝜹=0.5288 (0.00) 

4.1718 

(0.00);Skew 

= 0.9325 

(0.00) 

-6.4190 -6.4060 -6.4144 

Skye APARCH(2,2, 2) 0.0000 (1.00) 0.0000 

(0.07538) 

𝛼1=0.0975(0.0); 

𝛼2= 0.0798(0.0) 

𝛽1=0.5259(0.00); 

𝛽2=0.3309(0.00) 

𝛾1 =0.2429 (0.0009); 

𝛾2 =0.2774 (0.0018) 

𝜹=0.4149 (0.0) 

5.3454(0.00) 

 

-8.2640 -8.2385 -8.2547 

STANBIC APARCH (1,2) 0.0000 

(0.9998) 

0.0000 

(0.5323) 

𝛼1=0.1744(0.0) 𝛽1=0.51805(0.0); 

𝛽2=0.3499(0.0) 

𝛾1 =-0.1874 (0.0009); 

𝜹=0.5109 (0.0) 

3.7918(0.00) -9.6410 -9.6217 -9.6340 

STERLING TGARCH(1,1) 0.00000 

(0.946) 

0.0000 

(0.9449) 

𝛼1=0.7150 (0.0) 𝛽1=0.4253(0.0) 𝛾1 =0.0652(0.0007) 3.0317(0.00); 

skew=0.8631 

(0.00) 

-11.059 -

11.0470 

-

11.0550 
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UBA APARCH(1,1) 0.0000 (1.00) 0.0000 

(0.9929) 

𝛼1=0.1697(0.0) 𝛽1=0.8557(0.0) 𝛾1 =-0.1596(0.00); 

𝜹 = 0.3515(0.00) 

4.0555 (0.00) -5.5093 -5.4980 -5.5053 

UNION TGARCH (1,1) 0.0000 (0.999) 0.0(0.9883) 𝛼1=0.6101(0.0) 𝛽1=0.5402(0.0) 𝛾1 =-0.1423 (0.00) 2.9917 (0.00) -7.5056 -7.4958 -7.5021 

UNITY APARCH(1,2) 0.0000 (1.00) 0.0000 (0.0) 𝛼1=0.2239(0.0); 𝛽1=0.4846(0.0); 

𝛽2=0.3142(0.0) 

𝛾1 =-0.1101(0.0001); 

𝜹=0.2955(0.00) 

4.0890 (0.00) -

12.7820 

-

12.7620 

-

12.7750 

WEMA APARCH(1,2) 0.0000 (0.999) 0.0000 (0.0) 𝛼1=0.3211(0.0) 𝛽1=0.6332(0.0); 

𝛽2=0.0872(0.0153) 

𝛾1 =-0.1131(0.0001); 

𝜹=0.4043(0.00) 

3.9827 (0.00) -

13.3180 

-

13.3050 

-

12.3130 

ZENITH APARCH(1,2) 0.0000 

(0.9988) 

0.0000 (0.564) 𝛼1=0.6493(0.0) 𝛽1=0.3794(0.0); 

𝛽2=0.1438(0.0037) 

𝛾1 =-0.2713 (0.0420); 

𝜹=0.6908 (0.00) 

2.9003 (0.00) -6.4477 -6.4292 -6.4410 
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Table 9.3 gives the summaries of the final fitted models, wherein it can be confirmed that only 

APARCH and TGARCH models are best models, with the former dominating with eleven 

banks as against the latter, which is favoured for only four banks. For APARCH, six of them 

(Access, Eco, FCMB, GTB, First and UBA) are fitted at (1, 1) lag levels; four (STANBIC, 

Unity, WEMA and Zenith) are fitted at (1, 2) lag levels; and one (Skye bank) is fitted at (2, 2).  

Generally, it is not surprising that APARCH, which allows for long-memory, is mostly 

favoured, because the results on the ACF tests for the absolute returns tests and the plots for 

most of these banks, obtained in chapter five, had already indicated such behaviour. This 

implies that the persistence rates of shocks to the future volatilities of the 11 banks with 

APARCH are longer compared to the other 4 with TGARCH.  

Moreover, the suitability of the student-t distribution error model is linked to very high kurtosis 

observed with the banks’ stock returns in chapter five. Another interesting point to note is that 

while the asymmetric effects of negative shocks only affect seven banks volatility, namely Eco, 

Skye, Diamond, Fidelity, FCMB, Sterling and Unity banks, the remaining eight with negative 

values of the leverage parameters are influenced by positive shocks. Further, the effects 

attributed to all possible sources are different for eleven banks, with Skye bank impacted the 

most.  

Finally, the reasonably high values of the shape parameters across the banks, ranging from 

approximately 3 to 5 (see column 8 of Table 9.2), but with Skye bank having the highest value, 

indicates that their standardized residuals are fat tailed. And for the three banks, GTB, First and 

Sterling banks, with the skewed form of the models, the estimated skew parameters are positive 

and significant. 

Table 9.3: Summarised Results on the Fitted Model at Overall level 

Bank APARCH TGARCH Skewed Form 

Lag levels Leverage Signs Lag levels Signs 

Access (1, 1) Negative N/A N/A No 

Diamond N/A N/A (1,1) Positive No 

Ecobank (1, 1) Positive N/A N/A No 

First (1, 1) Negative N/A N/A Yes 

FCMB (1, 1) Positive N/A N/A No 

Fidelity N/A N/A (1,1) Positive No 

STANBIC (1, 2) Negative N/A N/A No 

GTB (1, 1) Negative N/A N/A Yes 

Skye (2, 2) Positive N/A N/A No 
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Sterling N/A N/A (1,1) Positive Yes 

UBA (1, 1) Negative N/A N/A No 

Union N/A N/A (1,1) Negative No 

Unity (1, 2) Positive N/A N/A No 

WEMA (1, 2) Negative N/A N/A No 

Zenith (1, 2) Negative N/A N/A No 

Figure 9.1below presents the full fitted model for the Access bank at the overall level, but the 

negative and un-significant valueof the leverage parameter (𝛾1=-0.09984), at 5% indicates that 

the bank's volatility responds more to positive shocks than negative shocks overall. 

 

Figure 9.1: APARCH (1, 1, 1) Model for Access Bank at Overall level 

Summarised Fitted Model Results for the Financial Crises Periods 

Table 9.4 below displays the final fitted model for the fifteen banks during the financial crisis 

period, which in this research we identified as the period ranging from 2ndJuly 2007 to 30thJune 

2009. 
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Table 9.4: Final Fitted Model Summary for Financial Crisis Periods (2nd July 2007-30th June 2009) 

Bank  Model\Parameters mu (𝝁) Omega 

(𝝎) 

Alpha (𝜶𝒊) Beta (𝜷𝒊) 𝜸𝒊 ; 𝜹 Shape parameter AIC BIC HQ 

Access GJR-GARCH 

(1,1)-st 

-0.0000 

(0.992) 

0.0000 

(1.000) 

𝛼1= 0.5227 

(0.000) 

𝛽1= 0.3648 

(0.000) 

𝛾1= 0.1971 (0.0429) 

 

4.2693 (0.000) 

Skew = 1.0136 

(0.000) 

-6.8359 -6.7784 -6.8134 

Diamond GARCH(1,1)-sn -0.0027 

(0.0248) 

6.7e-05 

(0.0497) 

𝛼1= 0.2708 

(0.0003) 

𝛽1=0.6804(0.000) N/A Skew = 1.076 

(0.000) 

-4.0876 -4.0465 -4.0715 

Eco APARCH (1,1)- 

skew st 

-0.0000 

(0.9998) 

0.3424 

(0.000) 

𝛼1= 0.3424 

(0.000) 

𝛽1= 0.6690 

(0.000) 

𝛾1 = 0.1360 (0.00063) 

𝜹 = 0.5089 (0.00) 

2.6921 (0.000) 

Skew = 1.2376 

(0.000) 

-18.1440 -

18.0780 

-18.1180 

FCMB APARCH (1,1,1) 0.0000 

(0.9996) 

0.0000 

(0.9147) 

𝛼1= 0.2474 

(0.000) 

𝛽1= 0.7955 

(0.000) 

𝛾1 = 0.2156 

(0.00); 𝜹 = 0.3178 

(0.000) 

3.548 (0.000) 

Skew =1.0131 

(0.000) 

-7.2478 -7.1821 -7.2210 

Fidelity APARCH(1,1) 0.0000 

(0.999) 

0.0000 

(0.9497) 

𝛼1 = 0.2263 

(0.000) 

𝛽1 = 0.7904 

(0.000) 

𝛾1  = 0.2733 

(0.0007); 𝜹 = 0.2179 

(0.000) 

3.6925 (0.000) -9.4046 -9.3470 -9.3820 

GTB GARCH(1, 1)-st -0.0038 

(0.00694) 

6.8E-05 

(0.0783) 

𝛼1 = 0.3597 

(0.000159) 

𝛽1 = 0.6393 

(0.000) 

N/A 7.3552 (0.000) 

Skew = 0.9502 

(0.000) 

-4.1981 -4.1488 -4.1787 

First TGARCH(1,1) 0.0000 

(0.995) 

0.0000 

(0.991) 

𝛼1= 0.8805 

(0.000) 

𝛽1 = 0.3695 

(0.000) 

𝛾1  = 0.1270 (0.0053) 3.4048 (0.000) -5.5757 -5.5264 -5.5564 

Skye APARCH(1,1) 0.0000 

(0.99999) 

0.0000 

(0.46304) 

𝛼1 = 0.3202 

(0.000) 

𝛽1= 0.7516 

(0.000) 

𝛾1  = -0.3548 

(0.0036); 𝜹 = 0.3532 

(0.000) 

2.9376 (0.000) 

 

-7.4215 -7.3639 -7.3989 

STANBIC TGARCH (1,1) 0.0000 

(0.9896) 

0.0000 

(0.9976) 

𝛼1= 0.9024 

(0.000) 

𝛽1= 0.3407 

(0.000) 

𝛾1 = -0.1661 (0.000) 3.0248 (0.000) -9.1136 -9.0643 -9.0943 
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STERLING TGARCH(1,1)-st 0.0000 

(0.978) 

0.0000 

(0.9816) 

𝛼1=0.7950 

(0.000) 

𝛽1 = 0.3090 

(0.000) 

𝛾1  = 0.1647 (0.000) 3.0072 (0.00) 

Skew = 0.8187 

-11.5240 -

11.4670 

-11.5020 

UBA GARCH(1,1) -0.0022 

(0.0268) 

8.8E-05 

(0.0121) 

𝛼1= 0.5110 

(0.000) 

𝛽1=0.4880 

(0.000) 

N/A 6.6580 (0.000) -4.3120 -4.2709 -4.2959 

UNION EGARCH (1, 2) -0.0002 

(0.000) 

-0.1819 

(0.018) 

𝛼1 = 0.1894 

(0.0004) 

𝛽1 = 0.99999 

(0.000); 

𝛽2 = -0.0244 

(0.0019)  

𝛾1  = 0.7403 (0.000) 3.6892 (0.000); 

Skew = 0.8951 

(0.000) 

-4.7409 -4.6751 -4.7151 

UNITY GARCH(1,1)-N -0.0036 

(0.021) 

0.0001 

(0.08399) 

𝛼1 = 0.2529 

(0.0034) 

 

𝛽1 = 0.6760 

(0.000) 

N/A N/A -3.8150 -3.7821 -3.8021 

WEMA APARCH(2,1) 0.0000 

(1.000) 

0.0000 

(0.3218) 

𝛼1 = 0.0492 

(0.000); 𝛼2 = 

0.0462 (0.000) 

𝛽1 = 0.8838 

(0.000)  

𝛾1  = 0.1715 (0.0208); 

𝛾2  = 0.1587 (0.000) 𝜹 

= 0.291 (0.000) 

3.7695 (0.000) -28.6940 -

28.6200 

-28.6650 

ZENITH APARCH(1,1) 0.0000 

(0.99998) 

0.0000 

(0.917) 

𝛼1=0.1825(0.000) 𝛽1=0.8312(0.000) 𝛾1 =0.1749(0.000462); 

𝜹=0.2826(0.000) 

3.8812 (0.000) -7.3935 -7.3359 -7.3709 
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Apparently, five candidate models- GARCH, EGARCH, GJR-GARCH, TGARCH and 

APARCH are favoured by the banks' volatilities as presented in the summary Tables 9.6 and 

9.7 below. While four of the banks, namely- Diamond, Unity, GTB and UBA are fitted with a 

standard GARCH model, the remaining eleven are fitted with an asymmetric GARCH 

model. Specifically, six -Eco, FCMB, Fidelity, Skye, WEMA and Zenith are fitted by 

APARCH; three (3) - First, STANBIC and Sterling use TGARCH; Union and Access are 

respectively fitted with EGARCH and GJR-GARCH (see Table 9.5).  

Table 9.5: Fitted Models with their lags and Error Distribution across the Banks during Crisis 

GARCH  EGARCH  GJR-GARCH  TGARCH APARCH 

Diamond (1,1)-skew-

Normal 

Union (1, 2)- skew-

T 

Access (1,1)-skew-T First (1, 1)-T Eco (1, 1)-skew-T 

Unity (1,1)-Normal   STANBIC (1, 1)-T FCMB (1, 1)-skew-T 

GTB (1, 1)-skew-T   Sterling (1, 1)-skew-T Fidelity (1, 1)-T 

UBA (1, 1)-Normal    WEMA (2, 1)-T 

    Skye (1, 1)-T 

    Zenith (1, 1)-T 

4 1 1 3 (6) 

Further, while three of the banks- Diamond, UBA, and Unity are fitted with Normal error 

distribution, the remaining twelve follow a student-t- error distribution. For the leverage 

parameter, out of the eleven that are fitted with asymmetric GARCH model, it is only in eight 

(Access, Eco, First, FCMB, Fidelity, Sterling, WEMA and Zenith) that the negative shocks 

have a higher impact on their volatilities than positive shocks of the same magnitude, whereas 

in the remaining three (STANBIC, Skye and Union), the impacts of positive shocks on 

volatility are more than those of negative shocks of equal magnitude. Meanwhile, seven of the 

models, namely: Access (1.0136), Diamond (1.076), ECO (1.2376), FCMB (1.0131), GTB 

(0.9502), Union (0.8955) and Sterling (0.8187)30 accommodate skewness, which reflects the 

fact that their returns diverge away from a normal distribution (see Tables 9.4 and 9.6). 

 

                                                
30Note that the figures written in front of each of these banks represent the skewness values for the fitted 

GARCH family models for their respective volatility ( see 8th column of Table 9.4 for details) 
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Table 9.6: Summary of the Fitted Model with Error Distribution, Leverage and Skewness Status 

Banks Models with Levels Error Distribution Leverage Signs Skewed Form 

Access GJR-GARCH (1, 1) Student-T Positive Yes 

Diamond GARCH (1, 1) Normal N/A Yes 

Ecobank APARCH (1, 1) Student-T Positive Yes 

First TGARCH (1, 1) Student-T Positive No 

FCMB APARCH (1, 1) Student-T Positive Yes 

Fidelity APARCH (1, 1) Student-T Positive No 

STANBIC TGARCH (1, 1) Student-T Negative No 

GTB GARCH (1, 1) Student-T N/A Yes 

Skye APARCH (1,1) Student-T Negative No 

Sterling TGARCH (1, 1) Student-T Positive Yes 

UBA GARCH (1, 1) Normal N/A No 

Union EGARCH (1, 2) Student-T Positive Yes 

Unity GARCH (1, 1) Normal N/A No 

WEMA APARCH (2, 1) Student-T Positive No 

Zenith APARCH (1, 1) Student-T Positive No 

Figure 9.2 below is the full fitted model of GJR-GARCH (1, 1), for Access bank during the 

financial crisis period, with the positive value of the leverage parameter, gamma (=0.1971) 

revealing that the model responds to negative shocks more than positive shocks and that it has 

some degree of skewness. 
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Figure 9.2: Fitted GJR-GARCH Model for Access Bank Returns during the Financial Crisis 

Testing the Adequacy of the Models 

In this section, tests for: examining the presence of serial correlations, (G)ARCH effects, 

presence of "Sign bias" in the residuals of the fitted models and the stability of the estimated 

parameters are presented and briefly discussed for the overall and financial crisis periods 

considered in this research. This is done to confirm the suitability of the favoured models at 

both the overall and financial crisis periods. 

Testing for the Presence of Serial Correlation Using (Squared) Standardized Residuals 

In this case, the results of tests for any left-over serial correlations in the series of each bank 

after fitting the best models are hereby presented for both the overall and financial crisis periods. 

The relevant hypotheses here are: 
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𝐻0:No serial correlation in the series in the residuals after the fitting the model  

Versus 

𝐻1: There is serial correlation in the residuals after fitting the model. 

Having fitted the model, we obtain the residuals as: 휀𝑡 =  𝑟𝑡 − 𝜇𝑡. 

The standardized residuals are: �̂�𝑡 =  
휀̂𝑡

�̂�𝑡
 

where �̂�𝑡is the estimated volatility, while �̂�𝑡is the standardized residual. 

Test statistic: Lung-Box Tests (in 4.33) on the Standardized and Squared Standardized 

Residuals. 

Decision Rule: Reject 𝐻0 if p-value < 5% 

For Access bank at the Overall Level 

Figure 9.3 below presents the output of the tests for Access bank at the overall level, 

covering periods from 2nd June 1999-31stDecember2014, and the fitted model as presented in 

Table 9.2 is APARCH (1, 1). 

 
Figure 9.3: Standardized Residuals Test Results 

Decision: Since none of the p-values at either level of residuals is less than 0.05, we do not 

reject, 𝐻0; and conclude that there is no further presence of any serial correlation in the series 

after fitting the model, meaning that the residual is identically and independently distributed. 

This points to the fact that fitted model is adequate.  
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For further confirmation, plot c of Figure 9.4 below displays the ACF plot for the squared 

standardized residuals, wherein none of the points fall outside the 95% confidence limits 

indicated in red. 

 
Figure 9.4: Density, ACF's for the Standardized Residuals and NIC for the fitted Model for Access bank 

Access bank: Financial Crisis Period 

Figure9.5 below displays the adequacy test results for Access bank during the 2007-2009 

financial crisis covered in this study, wherein theGJR-GARCH model is favored. 
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Figure 9.5: Standardized and Standardized Squared Residuals Test Results during the  

Financial Crisis period for Access bank 

The decision in this case is that, since none of the p-values is less than 0.05, we do not reject 

the null hypothesis; thus we conclude that the model is adequatein this sense at least. 

Further, the c portion in Figure 9.6 below presents the ACF plots for the squared standardized 

residuals for the model; it can be seen that all the points fall within the 95% confidence limits 

displayed in red. However, the plot b of both Figures 9.4 and 9.6reveals that theresiduals of 

the fitted models are still fat tailedin the QQ plots. Additionaly, the more points observed on 

the upper parts of the two plots (Q-Q plots), are further reflection of the fact that the deviation 

from the conditional normality of the standardized residuals are stronger on the upper parts, 

this confirms the significance of both the Student-t and the Student-t skew error distribution 

based models applied. Based on these findings, it suggests that the tail thickness is asymetric, 

with upper tail thicker than the lower tial for the two cases (see Danielsson, 2011, p. 48-49). 

Thus, the two plots are consitent with the established fact that the distributions of many high 

frequency financial time series (such as daily returns) are usually characterised with fatter tails 

than a normal distribution; meaning, extreme values ( or outliers) occur more often than implied 

by a normal distribution (Zivot, 2009).  
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Figure 9.6: Density, ACFs for the Standardized Residuals and NIC for the fitted GJR-GARCH Model during the 

Crisis for Access bank 

Testing for the Presence of Remaining (G) ARCH/ Effects and the Constancy of the 

Model Parameters 

We check to see whether after fitting the model, any (G)ARCH effects are still present.This is 

achieved using the Engle LM test.Again, the results will be discussed for the two periods 

examined. 

Relevant Hypotheses: 

1. For the ARCH test: 

𝐻0:There is No ARCH Effect in the series after the fitting the model, 

Versus 

𝐻1: There is an ARCH Effect remaining after fittingthe model 

Decision Rule: Reject the null hypothesis if p-value < 0.05 

Test statistic: Engle-LM. 

2. For the Stability of the Estimated Parameters: 
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𝐻0:The parameters are constant (jointly and individually) 

Versus 

𝐻1: At least one of the parameters is not constant after fitting the model 

Decision Rule: Reject the null hypothesis if p-value < 0.05 

Test statistic:Nyblom stability statistic. 

Access bank's Results at the Overall Level 

Figure 9.7 displays the results for Access bank at the overall level, and it can be confirmed that 

at lags 3, 5 and 7 31as presented, none of the p-values (0.9725, 0.9999, 1.000, respectively) is 

less than 5%. Thus, there is therefore no evidence for the presence of an ARCH effect in the 

remaining series, indicating that all forms of volatility clustering /heteroscedasticity in the 

series have been accounted for by the fitted model. 

Also for the stability test, as all the p-values are higher than 5% significance level, we do not 

reject the null hypothesis of constancy of the fitted model parameters either jointly or 

individually. Implications of not rejecting null hypothesis according to Hansen (1992), Lin and 

Teräsvirta (1994) and Zivot (2003) means that (1) inference drawn based on the model 

parameters is relatively accurate and that any decision made based on the model becomes 

reliable; (2) the out-of-sample predictions should be unbiased, thereby making the forecast 

errors having approximately zero mean. 

                                                
31Note that the lags: 3, 5 and 7 are arbitrarily and automatically chosen by the R statistical software used for the 

analysis. These lags are chosen based on the point of convergence of the model. 
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Figure 9.7: ARCH and Stability Test Results for Access Bank at Overall Level 

The Financial Crisis Period 

In Figure 9.8, since none of the p-values (0.9526, 0.9996, and 1.000) for ARCH effect test at 

lags 3, 5 & 7 is less than 0.05, we do not reject null hypothesis. We conclude that all the ARCH 

effect in the initial series has been captured by the fitted model. 

On the parameters stability, all the p-values, at joint and individual levels are higher than 5% 

significant level; thus, we reject the null hypothesis of parameter stability, meaning that the 

model needs to be recalibrated for use in future forecasting of returns. 
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Figure 9.8: ARCH and Stability Test Results for Access Bank during the Financial Crisis 

Testing for the Presence of Sign Bias  

In this test, we shall be checking to confirm whether the effects of positive and negative shocks 

are properly captured by the model, such that there is no trace of any difference in the effects 

due to these two sources of shocks in the remaining series after the model. As we did previously, 

our presentation shall be based on the two periods of interest in this study across the fifteen 

banks. Recall that the test procedure as discussed in previous section and presented below was 

proposed by Engel and Nag (1993). 

Relevant Hypothesis: 

𝐻0: There is no Sign Bias Effect (at the Negative, Positive or Joint level), 

Versus 

𝐻1: There is evidence of Sign Bias Effect (at the Negative, Positive or Joint level) 

Test statistic: Lagrange Multiplier (LM): 𝑇𝑅2 ~ 𝜒3
2, 

where 𝑅2 is obtained from fitting the regression in 

�̂�𝑡
2 =  ℓ0 + ℓ1𝑆𝑡−1

− +  ℓ2𝑆𝑡−1
− 휀𝑡−1 +   ℓ3𝑆𝑡−1

+ 휀𝑡−1 +  𝑢𝑡 and T is the series length. 

Decision Rule: Reject the null hypothesis if p-value < 0.05. 
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The Overall Period 

Figure 9.9 below presents the output of the fitted model for Access bank at the overall level.  

 
Figure 9.9: Sign Bias Tests for Access Bank on the fitted APARCH (1, 1) Model at  

Overall Level 

Decision: With the p-values: 0.3155, 1.000, 0.2595 and 0.4955 being all higher than 0.05, we 

do not reject null hypothesis at the levels of individual or joint tests, indicating that the model 

has likely accounted for all possible bias effects such that the residuals of the fitted model are 

identically and independently distributed. This is a sign of a good fit. 

Financial Crisis Period 

Figure 9.10, which displays the results of the sign bias test for the fitted GJR-GARCH model 

during the financial crisis period, shows the model is adequate in controlling sign, and indeed 

negative-positive, effects. 
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Figure 9.10: Sign Bias Tests for Access Bank for the fitted  

GJR-GARCH (1, 1) Model during the Financial Crisis Period 

Distribution of Standardized Residuals 

In Figure 9.4, we present empirical distribution and Q-Q plots of the standardized residuals 

(see panels ‘a’ and ‘b’ of Figure 9.4 respectively) for APARCH (1, 1) model fitted for Access 

bank at the overall level. The number of points on the straight line reflects that the model's 

standardized residuals are approximately non-normally distributed (with ‘4 points’ as outliers). 

This further justifies suitability of a student-t error distribution (which is a non-normal 

distribution); meaning, it is good for predicting the conditional volatility. 

For the periods of the financial crisis, the plots are displayed in panels "a"& "b" of Figure 

9.6, which also indicates that the standardized residuals from the fitted model are approximately 

non-normally distributed (with "2 points" as outliers). This also confirms application of a 

student-t error distribution (which is a non-normal distribution), to capture the clustering in the 

conditional volatility. It means that the model is good and can likely predict the volatility within 

the period well. 

Discussion on the News Impact Curves 

Going by the NIC plot from the APARCH (1, 1) model fitted to the Access bank series at the 

overall level in panel "d" of Figure 9.4, it is obvious that the response to the effects of positive 

shock on the original series is longer than that of negative shocks. However, in the panel "d" 

of Figure 9.6 (that is, the NIC curve), we can see that the response to the effect of negative 
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shocks dominates that of the positive shocks as indicated by the fitted model (GJR-

GARCH(1, 1)) during the financial crisis. 

Remarks 

It is important to note that our discussions so far, as an example, has been centred on the 

fitted results for Access bank; for the remaining banks, we see their results in Appendix 9a 

and 9b. 

Computation of Persistence Rate, Unconditional Variance and Half-life by Periods  

Table 9.7 below presents the computed volatility persistence rates for the fitted models across 

the 15 banks at both the overall level and during the financial crisis. As the markets experience 

volatility from time to time, it is expected that the volatility will eventually approach a long run 

level when the conditional volatility reverts to the unconditional variance. When this happens, 

the conditional volatility is said to be mean reverted or to have approached stability, and the 

measure used in controlling the speed of such mean reversion is called persistence. 

Table 9.7: Summary Results on the Persistence Rates at the Overall and Financial Crisis Periods 

Bank OVERALL Level Financial Crisis 

Model and the residual 

distributions 

Persistence  Persistence Model and the residual 

distributions 

Access APARCH(1, 1)-T 0.9950 0.9867 GJR-GARCH(1,1) skew-T 

Diamond TGARCH(1,1)-T 0.9705 0.9512 GARCH(1, 1)- skew-Normal 

Ecobank APARCH(1, 1)-T 0.9748 0.9238 APARCH (1, 1)-skew-T 

First APARCH(1, 1)-skew T 0.9708 0.9634 APARCH(1, 1)-T 

FCMB APARCH(1, 1)-T 0.9771 0.9928 APARCH(1, 1)-skew T 

Fidelity TGARCH(1, 1)-T 0.9303 0.9818 APARCH(1, 1)-T 

STANBIC APARCH (1, 2)-T 0.9976 0.9179 TGARCH(1, 1)-T 

GTB APARCH(1, 1)- skew T 0.9928 0.9953 GARCH(1, 1)-T 

Skye APARCH (2, 2)-T 0.9975 0.9902 APARCH(1, 1)-T 

Sterling TGARCH(1, 1)-skew T 0.8824 0.8142 TGARCH(1, 1)-skew T 
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UBA APARCH(1, 1)- T 0.9913 0.9990 GARCH(1, 1)-T 

Union TGARCH(1, 1)- T 0.9280 0.9755 GARCH(1, 2)-skew-T 

Unity APARCH(1, 2)- T 0.9829 0.9291 APARCH(1, 1)-Normal 

WEMA APARCH(1, 2)- T 0.9710 0.9616 APARCH(2, 1)-T 

Zenith APARCH(1, 2)- T 0.9428  0.981232 APARCH(1, 1)-T 

From Table 9.7, we see that six banks (FCMB, Fidelity, GTB, UBA, Union and Zenith) 

banks’ persistent rates have risen higher in the financial crisis compared to what was 

experienced during the overall period (see 4thcolumnumn of Table 9.7). This shows that 

investment risks were higher for the banks because of the crisis. 

Table 9.8 below displays the unconditional variance for the respective banks at the overall level 

and during the financial crisis. Out of the fifteen banks, ten (Access, Diamond, Eco, First, 

FCMB, GTB, Sterling, UBA, Union and Unity bank), had a higher unconditional variance 

during the crisis as against the overall period (see column 4 of Table 9.8). This is a reflection 

of the fact that the risks of investments in those banks were higher during the financial crisis. 

Table 9.8: Summary Results on the Unconditional Variance at the Overall and Financial Crisis Periods 

Bank OVERALL Level Financial Crisis 

Model Unconditional Var.  Unconditional Var. Model 

Access APARCH(1, 1)-T 6.868854e-22 1.663828e-14 GJR-GARCH(1,1) skew-T 

Diamond TGARCH(1,1)-T 1.142604e-13 1.368184e-03  GARCH(1, 1)- skew-Normal 

Ecobank APARCH(1, 1)-T 3.427144e-19 5.852198e-17 APARCH (1, 1)-skew-T 

First APARCH(1, 1)-skew 

T 

3.445528e-18  7.984797e-14  APARCH(1, 1)-T 

FCMB APARCH(1, 1) 1.028624e-27 4.066019e-22 APARCH(1, 1)-skew T 

Fidelity TGARCH(1, 1) 1.036975e-14 2.982903e-41 APARCH(1, 1)-T 

STANBIC APARCH (1, 2) 1.298849e-15  4.418176e-16 TGARCH(1, 1)-T 

                                                
32 The bold face values or estimates (in green colour) indicate the banks where the persistence or where the 

values increased during financial crisis.  
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GTB APARCH(1, 1)- 

skew T 

7.694360e-18 1.466858e-02 GARCH(1, 1)-T 

Skye APARCH (2, 2) 2.471256e-17 2.367351e-23 APARCH(1, 1)-T 

Sterling TGARCH(1, 1)-skew 

T 

8.012671e-15  2.526921e-15 TGARCH(1, 1)-skew T 

UBA APARCH(1, 1) 3.072200e-23   8.751997e-02   GARCH(1, 1)-T 

Union TGARCH(1, 1) 6.093461e-14 5.934530e-04 GARCH(1, 2)-skew-T 

Unity APARCH(1, 2) 6.186835e-25 1.442478e-03 APARCH(1, 1)-Normal 

WEMA APARCH(1, 2) 6.711079e-20 3.962952e-34 APARCH(2, 1)-T 

Zenith APARCH(1, 2) 1.481989e-15   4.899409e-31 APARCH(1, 1)-T 

Table 9.9 below presents half-lives of the fitted volatility models. Recall that the half-life of a 

volatility shock, which is defined as: 𝑛∗ =
ln (0.5)

ln (𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒)
, and it helps us to measure the average 

time it takes for the absolute deviation between squared residuals and the long run variance-

|휀𝑡
2 − 𝜎2| to decrease to half (Zivot, 2009). Then by definition, the closer the persistence to one, 

the longer the half-life of a volatility shock is. 

Table 9.9: Summary Results on the Half-lives at the Overall and Financial Crisis Periods 

Bank 

OVERALL Level Financial Crisis 

Model Half life  Half life33 Model 

Access APARCH(1, 1)-T 137.2320 51.5917 GJR-GARCH(1,1) skew-T 

Diamond TGARCH(1,1)-T 23.1757 13.8505 GARCH(1, 1)- skew-Normal 

Ecobank APARCH(1, 1)-T 27.1517 8.7428 APARCH (1, 1)-skew-T 

First APARCH(1, 1)-skew T 23.3998 18.5989 APARCH(1, 1)-T 

FCMB APARCH(1, 1) 29.8671 96.4138 APARCH(1, 1)-skew T 

Fidelity TGARCH(1, 1) 9.5930 37.7559 APARCH(1, 1)-T 

                                                
33 Cell with yellow color indicates banks where the half-life was the highest during the overall period, green 

colored cell point to bank was highest half life during the financial crise and red colored cell point to bank with 

the lowest half lives at both periods.  



274 

 

STANBIC APARCH (1, 2) 284.9964 8.0942 TGARCH(1, 1)-T 

GTB APARCH(1, 1)- skew T 96.4786 148.0095 GARCH(1, 1)-T 

Skye APARCH (2, 2) 273.4625 70.7205 APARCH(1, 1)-T 

Sterling TGARCH(1, 1)-skew T 5.5420 3.3731 TGARCH(1, 1)-skew T 

UBA APARCH(1, 1) 79.3245 692.7969 GARCH(1, 1)-T 

Union TGARCH(1, 1) 9.2715 27.9615 GARCH(1, 2)-skew-T 

Unity APARCH(1, 2) 40.2274 9.4248 APARCH(1, 1)-Normal 

WEMA APARCH(1, 2) 23.5201 17.7170 APARCH(2, 1)-T 

Zenith APARCH(1, 2) 11.7729 36.5677 APARCH(1, 1)-T 

Apparently, Sterling bank which accommodates the same candidate model at both levels has 

the shortest half-lives of approximately six days and three days respectively, both in the overall 

and financial crisis periods, while STANBIC has the highest half-life of about 285 days at the 

overall level, and UBA has the highest half-life of about 693 days during the financial crisis. 

9.4 Summary and Conclusion 

9.4.1 Summary 

Recall that this chapter focuses on univariate volatility, and so far, we have succeeded in 

discussing the need for statistical models, possible causes of time variation in volatility, various 

types of univariate models and how they are applied and justified our choice for the 

ARCH/GARCH families adopted in modelling stock volatility of the fifteen Nigerian banks 

examined. Details on the various GARCH candidate models such as ARCH, GARCH, 

EGARCH, GJR-GARCH, TGARCH and APARCH, applied in this research were explored. 

Other important concepts touched on include- ARCH effect tests (pre-and-post model fitting), 

tests of Asymmetry using the sign bias test proposed by Engle and Ng (1993), goodness-of-fit 

tests by checking for ACFs of the standardized residuals, the Nyblom stability test, News 

impact curve and possible error distributions. 

While presenting the results, we highlighted the procedures that were followed and 

implemented to generate results on the various tests and models fitted. For the pre-model fitting 

ARCH effect test, Engle (1982)-LM and Breusch-Pagan LM test statistics were applied. Our 
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results revealed that only three banks’ stock returns (Diamond, FCMB and Fidelity) were found 

significant by, Engle-LM, while eleven were identified by the BP statistic and one bank’s stock 

returns (UBA) could not be found to be heteroscedastic by either of the test statistics (see Table 

9.1).  

While fitting the models, two periods, namely the overall and financial periods were focused 

on, and details on the size of the data for the two periods are presented in Table 9.2. For the 

overall periods, seven banks data run from 2nd June 1999 to 31st December 2014, whereas the 

remaining eight ran at different periods after the 2004 bank consolidation in Nigeria until 31st 

December 2014. However, for the financial crisis data across the banks, they all run from 2nd 

July 2007 to 30th June 2009. Tables 9.3 and 9.4 provide summary details on the fitted models 

at the overall level, while Tables 9.5-9.7 contain detailed summaries on the fitted model for the 

financial crisis period. 

The two GARCH candidate models favoured lags ranging from (1, 1) to (2, 2) at the overall 

levels are APARCH (11 banks) and TGARCH (4 banks), whereas for the financial crisis 

periods, five candidate models GARCH (4 banks), EGARCH (1 bank), GJR-GARCH (1 

bank), TGARCH (3 banks) and APARCH (6 banks), were favoured; see Tables 9.4 and 9.6 

for details. At the overall level, it was found that the fitted models favoured a student-t error 

distribution and asymmetric models across the board, with only five banks (Diamond, Eco, 

Fidelity, Skye and Sterling) having models which responded to negative shocks more than 

positive shocks (the so-called Leverage Effect). During the financial crisis, however, twelve of 

the banks were fitted with models favouring a student-t-error distribution, with only three 

favouring the Gaussian error distribution; 11 of them were fitted with an asymmetric GARCH 

model and 4 had symmetric GARCH models.  

Further, for the financial crisis periods, out of the eleven banks with asymmetric models, eight 

of them, Access, Eco, FCMB, Sterling, Union, Fidelity, WEMA and Zenith, responded more 

to negative shocks than to positive shocks. More specifically, Access bank's volatility, which 

responded more to positive shocks at the overall level, responded to negative shocks more than 

the positive shocks during the financial crisis. Also, during the financial crisis, the number of 

banks whose volatility accommodated skewness increased to seven (Access, Diamond, Eco, 

FCMB, GTB, Sterling and Union) from three (First, GTB and Sterling), during the overall 

period (see Table 9.7).  
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All the validation tests conducted show that the fitted models are adequate for both the overall 

and the financial crisis periods. Persistence rates for the following six banks: FCMB, Fidelity, 

GTB, UBA, Union and Zenith, were slightly higher during the financial crisis than they were 

during the overall period (see column 4 of Table 9.8). Also, ten banks had their unconditional 

variances increased during crisis higher than they were at during the overall period (see Table 

9.9 for details).  

Lastly, Sterling bank has the least half-life of approximately 6 days and 3 days during the 

overall and financial crisis periods, respectively, but STANBIC and UBA have the highest half-

lives of approximately 285 days and 693 days during the overall and financial crisis periods 

respectively (see Table 9.10). 

9.4.2 Conclusion 

Given the results and summary made so far, we hereby conclude as follows: 

1. Models with a Gaussian error distribution are not appropriate to describe the volatility of 

the Nigerian banks’ stock returns; doing so would certainly lead to underestimating the 

investment risk in the sector. 

2. Asymmetric GARCH family models are largely the appropriate models for modelling 

Nigerian banks’ volatility, at least during the overall period for the periods under 

investigation. 

3. About 67% of the banks responded more to positive shocks than to negative shocks at the 

overall level. However, during the financial crisis, while about 53% of the banks responded 

more to negative shocks than positive shocks of equal magnitude, about 20%   responded 

more to positive shocks more than to negative shocks, while about 27% did not respond to 

either type of the shocks. 

4. Five of the banks (Access, Union, FCMB, WEMA and Zenith) that responded to positive 

shocks during the overall period became exposed to the influence of negative shocks more 

than positive shocks during the financial crisis.  

5. High rates of persistence across the banks indicate predictability, meaning that shocks to 

any of the banks persist for a reasonably long time.  

6. FCMB, Union, Zenith, GTB, Fidelity and STANBIC banks experienced a higher level of 

shock persistence during the crisis than the overall period.  

7. Considering the half-life of each bank in Table 9.10, one could conclude that Sterling is 

the healthiest bank in terms of adjustment to the risk exposure during both periods, whereas 
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the three riskiest banks at the overall period are respectively: Access, Skye and STANBIC. 

During the crisis, however, UBA became the most unstable in adjusting to the risk due to 

the financial crisis. 

In summary, the above results show the extent to which the banking sector of the NSM was 

characterized by the volatility, with implications of the results for comparing the returns and 

risk profiles of different banks as they are affected differently by shocks in the Nigerian 

economy during the overall and financial crisis periods. Further, the observation that the crisis 

in one bank, occasioned by high volatility can easily spread through different means to other 

banks within the industry, can due to the spill over effects, engulf the NSM and the Nigerian 

economy, makes the findings in this chapter the core of this research. Our findings reveal how 

much the 2008 global financial crisis negatively impacted on the stock volatility of the 

respective Nigerian banks; this we believe is an important observation, especially for risk 

managers to be able to devise robust trading strategies that would help to either reduce or hedge 

such likely risks in the future. This is the first study to implement such analysis, which can be 

extended to other sectors of the NSM in future work. The results also extend those obtained by 

Omar (2012) at the overall market level. Since volatility is an important parameter in pricing 

financial derivatives, we believe that the findings of this study could further strengthen the 

efforts of the management of the NSM to introduce suitable derivative products, aimed at 

enhancing liquidity in the banking industry, other sectors and entire the stock market. By 

enhancing liquidity through introductions of other products such as derivatives, options and 

futures, which are less riskier compared to stocks, (the risk-averse) investors, would have more 

choices of assets to diversify their investments; enhance they are better able to manage the risks 

involved in investing in a single and highly risky security asset such as stocks. Further, with 

the knowledge of how much volatility involved, the impact of news (either negative or positive), 

the level of volatility persistence and the length of time it takes for the shocks to die off, the 

investors would be able to make a well-informed investment decisions by timing when to invest, 

proportion of their funds to invest in an asset and to which product, sector, firm or bank to 

diversify their investments.  
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10 CHAPTER TEN: Main Results-Summary, Interpretation 

and Further Studies 

10.1 Introduction 

This chapter summarises the main results of the thesis, concludes the thesis and makes 

suggestions for further work. As stated in chapter one, this study aimed to analyse the behaviour 

of Nigerian banks’ stock returns and related market characteristics in the Nigerian Stock Market 

(NSM). To achieve this, five concepts were investigated, namely: stylized facts of asset returns, 

stock market efficiency, anomalies, bubbles and volatility. 

The research is an extension of Omar (2012), which focused on the overall market using the 

All Share Index (ASI), while here we concentrate on the banking sector of the NSM. 

Specifically, out of about twenty-five banks operating in Nigeria, sixteen were studied, these 

being among the top leading banks in the NSM. The data used were individual banks’ stock 

returns, generated from the daily closing price of each of the banks within the periods of June 

1999 to December 2014 and encompassing various periods of banking consolidation (April 

2004-December 2005), global financial crisis (June 2007-June 2009) and post financial crisis 

banking reform (July 2009-December 2014). 

Understanding the key empirical characteristics of these banks, especially considering the 

impacts of banking reforms and the global financial crisis will be useful for investment 

decisions by investment managers, market makers and investors; and for enhanced growth of 

the exchange market and financial policy decisions by the regulatory agencies. We further 

believe that the research approach could inform the examination of other sectors of the NSM. 

As this is the first time such investigation was undertaken in the NSM, which is among the 

leading markets amongst the African emerging markets, it is hoped that our findings will help 

to deepen our understanding of NSM and at the same time provide useful insights for 

development of the NSM and other emerging African markets.  

10.2 Stylized Facts of Asset Returns 

The analyses of stylised facts of the banks’ stock prices and returns in Chapter 5 (Section 5.3) 

indicate the presence of stylised facts of asset prices commonly found in financial markets 

across the sixteen banks, though in a few cases some of these characteristics are absent.   
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In chapter 5, the stylized (or statistical) facts on the empirical behaviour of asset returns of the 

Nigerian banks, which are common to a large set of assets and different markets, are presented. 

Amongst the investigated properties are included: the kurtosis and skewness of the empirical 

distribution of daily returns, the lack of linear autocorrelation of returns, the presence of 

significant and slowly decaying autocorrelations of absolute and squared returns, and the 

leverage and Taylor effects. These are some of the fundamental facts or characteristics a true 

model describing the behaviour of stock prices should possess because they are consistent with 

the efficient market hypothesis (Thompson, 2011). The lack of autocorrelation between daily 

returns is in fact what is expected if all publicly available information is fully and 

instantaneously incorporated into stock prices (Fama, 1965). When this fails through slow 

response of the prices, then positive autocorrelation of returns is expected or an over-reaction 

to the information, negative autocorrelation occurs (Thompson, 2011).  

The significant autocorrelation of absolute and squared returns indicates violation of the 

Random Walk hypothesis and the presence of volatility clustering, which according to 

Mandelbrot (1963), indicates that large (small) absolute returns may tend to follow large (small) 

absolute returns. Measures of central tendency (arithmetic mean and median) are very close to 

zero. Thus, corresponding to the standard assumption of the Random Walk model that the 

expected value of daily returns equals zero is met (see: Taylor, 2005; Miljkovic & Radovic, 

2006 and Raheem and Ezepue, 2018).  

On the distribution of asset returns, this study only considered the four moments - the mean, 

variance, skewness and kurtosis, - commonly used to determine the distribution of most series. 

In doing this, however, we only compare these metrics with that of a normal distribution to 

conclude that the distribution of the respective banks’ returns is non-normal distribution. The 

limitation is not examining the exact functional form of distribution suitable for describing the 

returns; this is an area of future study.  Empirical distribution functions of most of the banks' 

returns have a higher peak and longer tails than normal density; the results obtained using both 

the theoretical tests and appropriate plots. This behaviour commonly characterises daily stock 

returns of assets across different markets of both the emerging and developed economy (see 

Tsay, 2014, page 27).  

For the leptokurtic behaviour of asset returns, recall that for this to happen, the excess kurtosis 

(kurtosis-3) of the empirical distribution of an asset return should be higher than that of the 

normal distribution, which is 0, indicating the distribution is more peaked at the centre than a 
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normal around the mean. Also, such a distribution should have fatter tails than predicted by the 

normal law. According to Cont (2001), positive values of excess kurtosis indicates a fat tail, 

meaning, a slow asymptotic decay of the distribution with a sharp peak and heavy tails; this 

behaviour is known to characterise high frequency financial data such as intraday and daily 

data.  In this study, we confirmed that the majority of the banks possess these characteristics at 

the overall level and during the financial crisis. This empirical fact was long identified by 

Mandelbrot (1963). Thereafter, wide ranges of non-normal distributions were suggested but 

without consensus on actual distribution of the tails for asset returns across different markets 

(Chakraborti et al., 2011a). 

We observe that our findings are in line with those of Tsay (2005, pp. 51-93), regarding the 

three stylized facts of the daily asset returns: (1.) that the distribution of returns is approximately 

symmetric with higher kurtosis, fatter tails and more peakedness at the centre than the normal 

distribution; (2.) That the autocorrelation of the returns is close to zero and (3.) that the 

autocorrelations of both the absolute and squared returns are positive for many lags except in 

the case of the skewness where we identified 8 and 5 banks to be positively and negatively 

skewed respectively for the overall period.  

An important observation to be noted is that according to Thompson (2011), techniques used 

in investigating the stylised facts of stock return series by several studies are apparently quite 

unsophisticated. Sample autocorrelation and kurtosis estimates in most cases appear to have 

been satisfactory. Finally, unlike this study where individual returns series of the banks were 

used, most studies on the developed markets of the US, UK, Japan and many emerging markets 

utilized market indices to examine the presence of these facts.  Studies utilising returns series 

to investigate these stylised facts that for individual stocks, especially illiquid stocks, listed on 

such smaller markets are apparently, scant (Thompson, 2011). 

In summary, virtually all the stylized facts discussed in Section 3.5 are found in the Nigerian 

banks’ returns. The financial crisis impacted negatively on at least 50% of the banks, and this 

is confirmed by the negative skewness for 8 out of the 16 banks. There is evidence for presence 

of a “Taylor effect” across the banks; and a “Leverage effect” in some banks’ returns.  

10.3 Market Efficiency 

In Chapter 6, three concepts of stock returns’ properties, focusing on investigating the market 

efficiency of the banking sector in the NSM, were discussed. The concepts are stationarity, 
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random walks (RW) and the efficient market hypothesis (EMH). Under these concepts, we 

briefly examined strict and weak stationarity and unit root non-stationarity. Further discussion 

was focused on random walk theory. 

We discussed the Efficient market hypothesis (EMH) and different categories of innovations 

in a mean returns equation, namely Martingale differences, White noise and independently and 

identically distributed (𝑖𝑖𝑑) innovations. Tests related to the EMH were also discussed. Various 

forms of market efficiency- strong, semi-strong and weak - were also discussed. Thereafter the 

relevant test statistics used in examining weak-form market efficiency as found in the literature 

were surveyed.  Finally, tests such as: the variance ratio, BDS, runs, ADF, KPSS and PP tests 

that were found to be relevant to our objectives were discussed and applied.  

From our findings, all the banks are unit root stationary, except for Afribank; and virtually all 

the banks contradict the RWH based on the test statistics applied. Apparently, there is evidence 

against randomness and linear dependence across the 16 banks. This behaviour has been found 

to be common to daily returns (see Tsay, 2005). It is important to state that examining if a 

market is information efficient especially focusing on weak-form efficiency requires mainly 

empirical analysis (Muragu, 1990). This test is important because (1.) there is a need to 

investigate the axiom that emerging markets are generally weak-form inefficient; (2.) there is 

currently no substantial evidence to support the presence of the weak-form hypothesis across 

different markets.   

Comparing the findings of this study to others cited in chapter 3, we found that our results on 

the random walk hypothesis are consistent with those of Sharma and Kennedy (1977), Lo and 

McKinley (1988), across some developed markets and Mobarek and Keasey (2000) for daily 

data in the Dhaka market. Further, our results on the serial correlation are not significantly 

different from the results of study by Solnik (1973) on European 277 Stock Exchanges. While 

Mikailu and Sanda (2007) and Olowe (1999) agree on weak form efficiency of the Nigerian 

market, Omar (2012), Omar and Ezepue (2012) and this study's findings contradict weak-form 

market efficiency.  

Thus, finding that the Nigerian banks are weak-form inefficient conforms to the findings of 

Omar (2012) which used the All Share Index (ASI) at the overall market level. This confirms 

that the observed weak-form market inefficiency at the overall NSM market level applies to the 

banking sector, using the individual return series for the sixteen banks adopted in this research. 
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It is important to state that of all the studies investigated so far, those that are sectoral as ours 

is very scant, similar to the fact that virtually all of these studies used a returns index as against 

the individual returns considered in this study.  

10.4 Anomalies 

In chapter 7, we defined market anomalies, briefly discussed their attributes and types, with 

more emphasis on the time series/calendar anomalies as the focus of our research. Implications 

of the anomalies for stock investment strategies were highlighted. We stated the anomalies 

considered in this research considered to be important for the NSM and reviewed related 

literature and methodologies for investigating these anomalies. 

Specifically, we looked at the following anomalies: Day-of-the-week/Monday effect, 

Holiday/January effect, Seasonality effect, with a focus on the Oct-March effect, Turn-of-the-

year effect, Month-of-the-year effect and the Yearly average returns obtained. 

Our findings reveal that, 56% of the Nigerian banks were characterised with negative average 

returns on Monday; holiday and January effects are found in some and absent in others. The 

October-March effect does not impact on any of the banks returns; while a turn-of-the year 

effect was present in only one of the banks examined, the turn of the month effects impacts 

only 50% of the banks. The month of August was when majority of the banks witnessed the 

lowest average returns. 

With these findings, we have identified the key anomalies exhibited by Nigerian banks in the 

NSM. Investors (either local or foreign), with a good understanding of these anomalies would 

properly be guided on favourable investment decisions based on their dispositions to risks. 

However, it is important to note that since each country has its own anomalies, investors aiming 

at diversification would require better understanding of the anomalies in different markets and 

market sectors. For example, the above anomalies are exclusive to the Nigerian banking 

industry and are applicable neither to any other sector nor to any other market/economy. 

10.5 Speculative Bubbles 

In Chapter 8, the definition of a bubble, its characteristics, and consequences were provided.  

Reviews of some relevant literature on models for analysing rational speculative bubbles and 

were presented. We discussed our objectives and motivations for adopting the duration 

dependent model and unit root tests in this research. 
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While presenting our results, we first obtained the summary statistics (on the mean, standard 

deviation, skewness, and kurtosis, including the results of the ACF tests), for the price series of 

the respective banks, particularly for the suspected "bubble regions" for each bank. We 

observed that five banks experienced two suspected episodes of bubbles based on the bubble 

characteristics highlighted (see Table 8.3). For the specific summary statistics, we compared 

their values in the bubble periods to their respective overall values presented in Chapter 5 and 

obtained percentages of how they compare to the overall values (see Tables 8.4 and 8.5).  

With the results found, we suspected the presence of bubbles based on the bubble attributes 

that have been discussed in previous studies. However, since some of these attributes can also 

be a signal for other stylized facts of stock returns, we performed unit root tests using the ADF 

and PP test statistics as the popular tests for identifying presence of unit root against the 

explosive alternative (which is an indication for bubble presence). The results of the tests are 

presented in Table 8.6.  

The results revealed the following: 

a. Bubbles are present in some of the Nigerian banks.  

b. Virtually all the banks found to be characterised with explosiveness under unit root 

tests were also identified under the Cox proportional hazards model. 

c. Duration dependent methods are sensitive to data periods - be it days, weeks or months 

given that the results from different cases of duration dependence models produced 

varying results, such that a different number of banks were identified as having bubbles 

in their returns.  

The outcomes of investigating the presence of a bubble is currently and largely dependent on 

the method being adopted in the data analysis and for the duration dependent models, the units 

of the "Time" variable largely determines the result.  

 

Finally, it is important to state that, depending on the method used, the number of banks 

identified in having bubble varies, but largely less than 50% of the investigated banks could be 

said to be characterised by bubbles considering all the methods.  

 

Also, the use of the Cox proportional hazards model as against the use of the famous log-

logistic method proposed by McQueen and Thorley (1994) is premised on the length of the data 

set (i.e. daily data), we have (as against the weekly, monthly and yearly data used in previous 
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studies) and on the suggestion to use a slightly different method from Omar (2012), because of 

his inability to identify bubbles using the log-logistic method by McQueen and Thorley (1994).  

 

The presence of bubbles in some of the banks could largely be said to be consistent with some 

of the results obtained in other emerging markets listed in Table 8.1. Also, the lack of bubbles 

in other banks is consistent with some of the results obtained from some African markets such 

as: Olowe (1999), Okpara (2010) and Omar (2012). 

10.6 Volatility 

Chapter 9 focused on univariate volatility, and we briefly discussed the following: 

The need for statistical models; the importance of Volatility in Financial Markets; the various 

types of univariate volatility models and how they are applied; the motivation for the choice of 

the ARCH/GARCH families applied in modelling stock volatility of the Nigerian banks 

examined; and the details of the various GARCH candidate models such as ARCH, GARCH, 

EGARCH, GJR-GARCH, TGARCH and APARCH applied in this research.  

Other important concepts reviewed include ARCH effect tests (pre-and-post model fitting), 

tests of asymmetry using the sign bias tests proposed by Engle and Ng (1993), goodness-of-fit 

tests that check the ACFs of the standardized residuals, the Nyblom stability test, the News 

impact curve, and possible error distributions. 

The outcomes of this study show that different ARCH/GARCH models were fitted to the 

volatility of each of the 16 banks for the overall and financial crisis periods.  

 

The events in the global financial market had significant impacts on the stock returns of these 

banks; thereby leading to a significant increase in the asymmetric effect of negative news on 

the models. Fitting of asymmetric GARCH models is consistent with previous research by Poon 

and Granger (2003), where it was observed that asymmetric models outperform their symmetric 

counterparts. This simply indicates that the banks' reaction to negative news is apparently 

different from their reaction to positive news, and that negative shocks tend to hit the banks 

harder, thereby creating more uncertainty and stronger fluctuations in their returns’ volatility. 

The use of (skewed) Student-t error distribution-based models generally provided an improved 

fit compared to the Normal error distribution across the 16 banks and the two periods. This 

could be attributed to excess kurtosis and skewness which are known to characterise financial 
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time series data, which allow for more observations in the tails of their distributions.  The high 

values of persistence (close to 1), and half-lives reveal that the shocks to the volatilities across 

the banks die off slowly, and show the length of time it took for such shocks to persist with the 

banks. Table 10.1 below presents a general summary of the findings made with respect to all 

the issues investigated.  

Table 10.1: General Summary of the Results 

OVERALL Period 

Daily Data 

Price: 

Stationarity 

Returns: 

Stationar

ity 

Leptokur

tosis 

Skewness Non-

Normali

ty 

No 

Autocorrelati

on at Lag 1 

Leverag

e 

Effect's 

sign 

Long-

range 

Dependen

ce 

None All YES-All 8 - "+"; 5 - 

"-"; 3 - 

symmetric 

All 2-Yes; 14-No 5-Yes; 

11-No 

All 

Monthly Data 

None N/A YES-All 6 -"+"; 4: "-

"; 6: 

"symmetric" 

15-Yes; 

1:No 

N/A N/A N/A 

Financial Crisis Period Data 

None N/A 9-

leptokurti

c; 5-

platykurti

c; 2-

mesokurti

c 

8:"-"; 

8:"symmetri

c" 

14-Yes; 

2:No 

N/A 8:Yes; 

8:No 

N/A 

        

Efficiency/ Random Walk (RW)Tests 

RUNS Test ADF Test BDS Test Variance ratio Test ACF Test of 

Independence 

None is 

Random 

None is a 

RW 

All rejected RW 12: No to RW; 4: Yes, to 

RW (Eco, STANBIC, 

Union and WEMA) 

14-No; 2: Yes (Eco 

and Unity banks) 

        

Anomalies 
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Day-of-the-Week Effect Turn-of-

the-Year 

Effects 

Oct-March 

Seasonality 

Effect 

January 

Effect 

Holiday 

Effect 

Month-of-the-year 

Effects 

Monday was lowest and 

negative for 7; Friday was 

highest in 5 

Yes in 15 

banks; No 

in 1 (Eco) 

"No" across 

the banks 

Yes in 8 

banks  

Yes in 9 

banks 

7 banks were lowest in 

August;7 banks were 

Highest in May 

Yearly Average 

11 banks average returns were lowest in 2008; 3 (Afibank, Diamond and Skye) lowest in 2011 and 2 (Unity 

and WEMA) lowest in 2009 

        

Stock Bubbles 

Bubble 

Characterist

ics 

Unit Root 

Explosiveness  

Case 1  Case 2  Case 3  Case 4  

7: Afribank, 

First, 

Sterling, 

UBA, Union, 

WEMA and 

Zenith 

9-Access, Eco bank, 

FCMB, Fidelity, GTB, 

Skye, UBA, WEMA 

and Zenith 

7-Afribank, FCMB, 

Skye, STANBIC, UBA, 

WEMA and Zenith  

6-Access, 

Skye, 

Sterling, 

UBA, WEMA 

and Zenith 

4: 

Afribank

, UBA, 

WEMA 

and 

Zenith 

5-

Afribank, 

FCMB, 

UBA, 

WEMA 

and Zenith 

        

Stock Volatility 

Fitted Models: Overall Period 

APARCH TGARCH 

11 banks: Access, Ecobank, First, FCMB, STANBIC, 

GTB, Skye, UBA, Unity, WEMA and Zenith 

4 Banks: Diamond, Fidelity, Sterling and Union 

Fitted Models: Financial Crisis Period 

GARCH  EGARC

H 

GJR-

GARCH 

TGARCH APARCH 

4 Banks: Diamond, Unity, 

GTB and UBA 

1: Union 1: Access 3: First, STANBIC and 

Sterling  

6: Eco, FCMB, 

Fidelity, WEMA, Skye 

and Zenith 

Leverage Effects 

Overall Financial Crisis 

Positive Effect Negative Effect Positive Negative 

8 banks: Access, First, 

STANBIC, GTB, UBA, 

Unity, Union, WEMA and 

Zenith 

7: ECO, Skye, Diamond, 

Sterling, Fidelity, FCMB 

and Unity 

3: banks: STANBIC 

Union and Skye 

 

8 Banks: Access, 

ECO, First, FCMB, 

Fidelity, Sterling, , 

WEMA and Zenith 
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    No Leverage-4 banks: Diamond, Unity, GTB and 

UBA 

News Impact Curve-NIC 

Overall Financial crisis 

Positive Domination Negative Domination Positive Domination Negative. Domination 

8: Access, GTB, First, 

STANBIC, UBA, Union, 

WEMA and Zenith 

7: Diamond, Eco, FCMB, 

Fidelity, Skye, Sterling, 

Unity 

3: Skye, STANBIC, 

Union 

8: Access, ECO, 

FCMB, Fidelity, First, 

Sterling, WEMA and 

Zenith 

Half life 

Overall Financial Crisis 

Highest: STANBIC 

(Approximately 285 days) 

Lowest: Sterling 

(Approximately 6 days) 

Highest: UBA 

(Approximately 693 days) 

Lowest: Sterling 

(Approximately 4 

days) 

Error Distribution 

Overall Financial Crisis 

Normal: None Student-T: All Normal: 2- UBA and 

Unity  

Student-T: 13 banks 

Skewed Model 

Overall: 3- First, GTB and Sterling Fin. Crisis:7- Access, Diamond, ECO, FCMB, 

GTB, Sterling and Union 

10.7 Interpretations and Implications of the Research results on the Nigerian Financial 

System 

Many issues related to the systematic characterization of the Nigerian banks’ stock prices and 

returns behaviour are briefly discussed in this section. Specifically, the connections between 

the fundamental results of the various analyses and the Nigerian financial system are 

highlighted. 

Non-stationarity in price is a general characteristic of financial security prices, and the observed 

stationarity around a common level in the log returns across the banks is a fundamental stylized 

fact of asset returns in different global markets. Hence, the bank returns exhibit typical stylised 

facts of returns in global financial markets.  

The observed leptokurtosis across the banks at the overall level for daily returns is in line with 

the stylized fact of an asset return in different markets. This behaviour implies that small 

changes occur less frequently because the returns are clustered around the mean, with fat tails 

showing that large fluctuations in returns are more probable than returns whose distributions 



288 

 

have lower kurtosis. Thus, such assets having high kurtosis with fat tails are more prone to 

crashes than those that are either mesokurtic or platykurtic (thin tailed).  

That thirteen of the banks (see Table 5.14) are highly leptokurtic with fat tails in the overall 

period indicates the vulnerability or fragility of the banks returns in the event of market 

instability.  Although the fragility was reflected to some degree in the financial crisis, with nine 

banks remaining leptokurtic and seven being platykurtic, other factors might have also been 

responsible for the level of vulnerability of the banks within the periods of our investigation. 

Also, having eight banks that have positively skewed returns shows that extreme gains are more 

probable than losses in their returns; whereas with the five banks that are negatively skewed, 

extreme losses are more likely to characterise their returns than are gains in the overall period. 

However, during the financial crisis, half (8) of the banks showed negative skewness, thus, 

revealing that the crisis negatively impacted on the banks. This might be due to the asymmetric 

effects of the negative shocks of the financial crisis on the banks’ returns.   

The fact that 14 of the banks’ returns, constituting about 88% of the investigated banks, are 

auto correlated at lag 1 is a violation of the common stylized fact of no autocorrelation in asset 

returns, and points to a lack of efficiency in the industry/market. Also, according to Danielson 

(2001), the presence of serial correlation at lag 1 indicates that the banks were bearish within 

the periods of investigation.  

The presence of the long-range property due to a high rate of persistence observed in the 

autocorrelation functions of absolute returns of most of the banks is an indication of a prolonged 

effect of any type of shock on the asset returns of the banks. This behaviour was reflected by 

the selection of APARCH as the most favoured fitted GARCH volatility model, both for the 

overall period and during the crisis. 

Lack of market efficiency across the banks reflects many challenges, which include: a lack of 

liquidity, arbitrageurs, and information asymmetry pervading the NSE within the periods of the 

research (Oteh, 2010; Sanusi, 2011; Omar, 2012; Ezepue and Omar, 2012). These challenges 

necessitated the introduction of a series of financial and economic reforms into the Nigerian 

financial system, which were aimed at repositioning both the capital market and the banking 

industry, both prior to and post the 2008-2009 financial crisis. It is important to state that these 

kinds challenges are typical of most emerging markets, especially African emerging markets 

(see Bekaert, Erb, Harvey and Vyskanta (1998); Alagidede and Panagiotidis (2009)), as 
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opposed to developed markets, which are more stable and populated by matured and rational 

investors. 

The presence of Turn-of-the-year, January and Holiday effect anomalies in more than half of 

the banks could be attributed to the priority that Nigerian banks and Nigerians in general attach 

to investment in Januarys and days preceding any holiday in the country. Indeed, the choice of 

January for higher investment could be linked to the fact that, until recently, the month has over 

the years been the month when Nigeria’s yearly budget is read by the federal government. Also, 

a day preceding any general holiday in the country is often a day with higher volume of trading 

activities in Nigeria. 

Further, that 13 banks (constituting about 82% of the investigated banks) have their lowest 

average returns between 2008 and 2009 is a confirmation of the negative effects of the 2008-

2009 financial crisis, which were made worse by the inadequacies identified with the banks 

and the NSE outlined in Chapter 2. It is also a justification for the reforms introduced into the 

Nigerian financial system by both the CBN and SEC post the financial crisis between 2009 and 

2011 (see Oteh, 2010 and Sanusi, 2011).  

Additionally, the identification of bubbles in the stocks of the banks, especially UBA, WEMA 

and Zenith may possibly be due to over-subscriptions (or over-valuation) in them, as they are 

among the most popular banks, with more capital and a wider customer base than other banks 

in the country. They are among the choice banks by the "top notch" investors and among the 

leading banks on the gainers table in the NSM. There are few banks with large market 

capitalization (see the Appendix 2.1 for additional information on the banks). Detection of 

rational speculative bubbles in the Nigerian banking industry could be attributed to the lack of 

adequate market information and the information asymmetry charactering the Nigerian market. 

Thus, relevant regulatory institutions, particularly the SEC should ensure full disclosure of 

relevant information relating to the value of the proposed traded assets and financial 

performance of the respective banks to investors, in accordance to the international financial 

reporting standards (IFRS) procedures. Adherence to capital adequacy regulations and 

enhanced cooperate governance should be mandated in the NSM. 

On the level of volatility, the fact that 11 banks, constituting about 74% of the 15 banks that 

were modelled, were fitted with a long-memory GARCH model (APARCH), during the overall 

period reveals persistence in the risks incurred by the investors on their investment within the 

periods of the research, which further exposed the depth of losses experienced in the NSM 
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within those periods. Clearly, from Table 10.1 above, all the banks were fitted with asymmetric 

GARCH models for the overall period, with 8 and 7 banks characterised by positive and 

negative shocks respectively. During the financial crisis, 11 were fitted with asymmetric 

GARCH models, while only four banks accommodated standard (symmetric) GARCH models, 

with 8 and 3 banks characterised by negative and positive shocks respectively. Knowledge of 

the different volatility characteristics of the banks is useful for investors’ understanding of the 

investment risks facing the banks. 

In light of the above, control measures and effective reforms aimed at addressing various 

challenges such as: lack of depth and sophistication, sharp practices, insider trading, inadequate 

information, lack of disclosure, and weak regulations oversight (as highlighted in Oteh, 2010 

and Sanusi, 2011), that exposed the Nigerian market to different risks investigated in this 

research should be initiated by the CBN, SEC and NSE management. There is a need for both 

financial and regulatory policies that will promote the efficient transmission of useful market 

information within the Nigerian financial system so that development and stability of the 

economy are maintained. 

10.8 Suggestions for Future Studies: 

Since this research only concentrates on establishing that the distribution of asset returns is 

non-normal, the exact non-normal probability distribution for each of the banks' asset returns 

remains a subject for future research. Further areas of future investigation could be in the 

determination of the tail index of each of the returns distributions using Hill's method as 

proposed by Hill (1975) and further applied by Cont. (2010); Hsing, (1991); Resnick and 

Stărică (1998) given the fact that this research only concentrated on determining if each bank's 

returns series is either long tailed or not.  

Further, trading rules such as: the moving average rule, the channel rule, filter rule and 

statistical rule proposed by Taylor (2005) could also be explored to identify trends in stock 

prices of the respective banks to see if these could be exploited by investors to make profitable 

investment decisions. Further work could also focus on determining the impacts of the calendar 

anomalies as discussed in this research on the volatility by including the effects of the various 

anomalies in the volatility equation. Other duration dependent bubble models such as: Log-

logistic regression of McQueen and Thorley (1994) with the Weibull distribution could be 

applied, the results of which could be compared with the Cox-model which is applied in this 

study. 
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Further future work may be to apply FIGUREARCH (Fractionalised Integrated Generalized 

Autoregressive Conditional Heteroscedasticity) models and the Generalized Autoregressive 

Score (GAS) could be explored to model volatility for the banks and the results compared with 

the standard GARCH models, since the more than 80% of the banks exhibited long-memory. 

Replicating this same research in other key sectors could also be of interest.  
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