
Mathematical Analysis in Investment Theory: Applications 
to the Nigerian Stock Market

NNANWA, Chimezie Peters

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/25369/

This document is the author deposited version.  You are advised to consult the 
publisher's version if you wish to cite from it.

Published version

NNANWA, Chimezie Peters (2018). Mathematical Analysis in Investment Theory: 
Applications to the Nigerian Stock Market. Doctoral, Sheffield Hallam University. 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


 

1 
 

 
 

Mathematical Analysis in Investment Theory: 

Applications to the Nigerian Stock Market 
 

 

 

 

 

 

By 
 

 

 

 

 

 

 

NNANWA Chimezie Peters 
 

 

 

 
 

 

 

 

 

 

 

 

Sheffield Hallam University, Sheffield 

United Kingdom 



 

2 
 

  
 
Faculty of Art, Computing, 
Engineering and Sciences 
Material and Engineering Research Institute 
Department of Mathematics and Engineering 
 
 

Mathematical Analysis in Investment Theory: Applications to the 
Nigerian Stock Market 

 
 
 
A Dissertation Submitted in Partial Fulfilment of the requirements for the 

award of PhD 
 
 
 

Sheffield Hallam University 
 

 
 

By 
 

NNANWA Chimezie Peters 
 
Supervisors: 

 
Dr Alboul Lyuba (DOS) 

 
Prof Jacques Penders 

 
 
 

October 2018 
 

 



 

3 
 

DECLARATION   

I certify that the substance of this thesis has not been already submitted for any 

degree and is not currently considering for any other degree.  I also certify that to the 

best of my knowledge any assistance received in preparing this thesis, and all 

sources used, have been acknowledged and referenced in this thesis. 



 

4 
 

  Abstract  
 

This thesis intends to optimise a portfolio of assets from the Nigerian Stock 

Exchange (NSE) using mathematical analysis in the investment theory to model the 

Nigerian financial market data better. In this work, we analysed the 82 stocks which 

were consistently traded in the NSE throughout 4years from August 2009 to August 

2013. We attempt to maximise the expected return and minimise the variance of the 

portfolio by using Markowitz's portfolio selection model and a three-objective linear 

programming model allocating different percentages of weight to different assets to 

obtain an optimal/feasible portfolio of the financial sector of the NSM. The mean and 

the standard deviation served as constraints in the three-objective model used, and 

we constructed portfolios with the aims of maximising the returns and the Sharpe 

ratio and minimising the Standard Deviation (Variance) respectively.   In another 

development, we use Random   Matrix   Theory   (RMT)   to analyse the Eigen-

structure of the empirical correlations, apply the Marchenko-Pastur distribution of 

eigenvalues of a purely random matrix to investigate the presence of investment-

pertinent information contained in the empirical correlation matrix of the selected 

stocks. We use a hypothesised standard normal distribution of eigenvector 

components from RMT to assess deviations of the empirical eigenvectors to this 

distribution for different eigenvalues. We also use the Inverse Participation Ratio to 

measure the deviation of eigenvectors of the empirical correlation matrix from RMT 

results. These preliminary results on the dynamics of asset price correlations in the 

NSE are essential for improving risk-return trade-offs associated with Markowitz's 

portfolio optimisation in the stock exchange, which we achieve by cleaning up the 

correlation matrix. Since the variance-covariance method underestimates risk, we 

employ Monte-Carlo simulations to estimate Value-at-Risk (VaR) and copula for a 

portfolio of 9 stocks of NSE.   The result compared with historical simulation and 

variance-covariance data. Finally, with the outcome of our simulation and analysis, 

we were able to select the assets that form the optimal portfolio and the weights 

allocation to each stock. We were able to provide advice to the investors and market 

practitioners on how best to invest in the sector of NSE. We propose to measure the 

extent of closeness or otherwise in selected sectors of the NSE and the 

Johannesburg Stock Exchange (JSE) in our future work.  
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Chapter 1      Introduction 

1.1 Introduction to emerging market. 
An Emerging market is one which is not fully developed but progressing towards 

becoming a well-developed market. Its market does not have a reasonable level of 

efficiency, standard rules of operation like what is obtainable in America, Europe, 

and Japan, where you have a well-developed economy/ market. Although the 

emerging market is not developed as that of America, Europe, and Japan, as we 

mentioned earlier, it must process those characters of the developed ones. These 

include a regulatory body that oversees the activities of the market, stipulated rules 

for the market operations, the existence of some form of market exchange, liquidity 

in local debts and equity. The emerging market also has some physical, financial 

infrastructures such as stock exchange, a unified currency, and banks.  

There are still controversies around the countries that belong to the list of emerging 

markets. However, one looks at it, countries that exhibit those characteristics we 

mentioned above belong to the group of an emerging market. Some Asian countries 

like China, Malesia, Indonesia, Thailand, South Korea, Philippine, Taiwan , UAE etc., 

South American countries like Peru, Mexico, Colombia, Argentina, Venezuela, and 

some eastern European countries like Ukraine, Poland, Romania, Bulgaria, Greece 

and Czech Republic are among the group of emerging markets. Others are some 

African countries like South Africa, Nigeria, Morocco, Ghana, Kenya, etc. Though 

these markets mentioned above are not well developed, the investors like to invest in 

the market because of its high prospective return rate. The high rate of return 

guaranteed, due to what is obtainable in the economy of those countries where the 

market is situated. Secondly, the emerging markets experience faster economic 

growth like what in the case of China and Nigeria. Investment in these markets is 

exciting due to its higher returns, but it comes with huge problems. The level of risk 

of the investments in the emerging market is so high due to the political instability is 

such countries. Also, problems associated with national infrastructures and high 

volatility rate in its currency exchange rate. In this work, our interest is to work on 

some of the shortcomings in the emerging market and improve the investment, with 

applications to the Nigerian Stock Market. 

This PhD work is titled 'Mathematical Analysis in Investment: Applications to Nigerian 

Stock Market'. It aims to develop models that will fit the peculiarities of the Nigerian 
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financial market data much better than current models. The research contributes to 

an understanding of the necessary foundations and dynamics of the Nigerian 

financial system.  

It is relevant to current efforts by economic policymakers such as the Securities and 

Exchange Commission (SEC) to improve the performance of the Nigerian financial 

markets and key market sectors. The theoretical model building will drive the 

research while the applications in view will be used to test the validity and stability of 

the models in different market contexts.  

1.2 Rationale for the Research 

The study is on the current results in the topic themes of mathematical analysis and 

mathematical finance to develop new results in investment systems and trading, and 

portfolio theory and optimisation, with illustrative examples from the Nigerian Stock 

Market (NSM). 

1.3 Background notes on the Nigerian Stock Exchange 

The Nigerian Stock Exchange (NSE) was founded in 1960 as the Lagos Stock 

Exchange and started operation in Lagos in 1961 with 19 securities listed for trading. 

It later became the Nigerian Stock Exchange in 1977 with branches in some 

commercial cities in Nigeria. It has about two hundred (200) listed companies, whose 

data from their performances are published daily, weekly, monthly, quarterly and 

annually. The Exchange maintained an All-share index, formulated in 1984; its index 

is value-weighted and is computed daily with the highest value #66,371.20, which 

was on March 3rd, 2008. The Securities and Exchange Commission regulates the 

Nigerian Stock Exchange; they make sure that there are no unfair manipulations of 

trading practices and the bridge of market rules. 

1.4 Research aims and objective 
Like we said earlier, this PhD work aims to develop models that will fit the 

idiosyncrasies of the Nigerian financial market data much better than current models, 

and to apply the models to investment prospects in the Nigerian stock market (NSM). 
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1.4.1 Objectives 

Objectives 1: To review the mathematical foundations of portfolio theory and 

optimisation based on the Markowitz (1956) model, to determine the strengths and 

weaknesses of the model 

Objectives 2: To examine the mathematical properties of different risk measures 

which underpin investment and portfolio theory, and hence explore how the 

Markowitz and related frameworks can be extended to accommodate such risk 

measures  

Objectives 3: To more generally examine the mathematical analysis of investment 

systems to determine how the interactions between securities in the portfolio of the 

investment will help to optimise the portfolio.  

Objectives 4: To apply the results where possible to investment portfolios and 

investment schemes which are relevant to the stylised facts of the NSM 

1.5 Research Questions 

Research Question 1: What are the mathematical underpinnings of Markowitz’s 

model, including such constructs as utility functions, non-linear analysis? e.g. convex 

and coherent risk measures, and constrained optimisation theory? What are the 

weaknesses and strengths of the model under different investment scenarios, like 

multi-objective portfolio optimisation with constraints?  

Research Question 2: What are the mathematical properties of different risk 

measures used in investment and portfolio theory? How do these properties inform 

the extension of Markowitz’s and related theories under such risk measures, for 

example, to dynamically optimal portfolios relevant to medium-to-long term 

investment decisions with time-varying risk measures? What are the necessary and 

sufficient conditions for the existence of unique and tractable optimal portfolios in 

such situations? 

Research Question 3: Which key concepts and frameworks underpin the 

mathematical analysis of investment systems? What conditions make such systems 

valid or invalid? In other words, what is the character of the investment systems 

under different assumptions about investment strategies and scenarios? What are 

the impacts of extenuating factors such as the Correlation matrix; the Inverse 
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participation ratio; Eigenvalue and eigenvector; Portfolio optimisation through 

Random matrix theory? 

Research Question 4: How can some of the results from 1-3 above demonstrated 

empirically using suitable examples, including those from the NSM? 

For RQ1, we did an extensive review of the existing literature on the key concepts 

underpinning the objective, for example, The Mathematical analysis underpins utility 

functions, convex, concave and coherent risk measures, and its link to investment 

theory. 

Markowitz portfolio optimisation, its weaknesses, the attempts made by other 

researchers to correct the deficiency of Markowitz portfolio theory (MPT) and finally, 

we looked at a set of solutions that will give the best trade-off among the objective of 

the problem, using the multi-objective approach with different constraints. 

For RQ2, we considered medium-to-long term investment decisions with time-

varying risk measures. Dynamically, optimal portfolios linked to investment theory 

(for example, we looked at risk management, using different measures of financial 

risk). 

For RQ3, an extensive review of the existing literature and was focused on the key 

concepts underpinning the RQ3, for example, Random matrix theory (RMT), 

Correlation matrix, cleaning up technic, etc. We used a hypothesised standard 

normal distribution of eigenvector components from RMT to assess deviations of the 

empirical eigenvectors to this distribution for different eigenvalues. 

 

For RQ4, we applied some of the results got from RQ 1 to 3 to the NSM. We 

achieved this by obtaining and use of relevant data from NSM, including interviews 

of key market participants and policymakers such as stockbrokers, investment 

banks, CBN, NSE and SEC, and analysis of the financial product. 

1.6 Technical note 

Markowitz's modern portfolio theory is all about a strategy in investment that helps 

the market practitioners to construct an optimal portfolio, by looking at the 
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relationship between the return and the risk. The theory implies that the optimal 

portfolio does not only depend on the return it gives, also on the risk taken while 

investing. Therefore, portfolio selection imposes a more significant challenge to 

optimisation problem since the risk of every portfolio influences the interactions or 

correlations of different stocks in that portfolio. The correlation matrix obtained from 

the historical empirical data from the market will help in the risk management and 

portfolio optimisation. The RMT will give the spectrum of the eigenvalue, which 

contains essential information about the market. This information can be used to 

remove the noise through the filtering process. 

1.7 Definitions of some key concepts and terms 

In this section, we give the definitions of some terminologies we will be using in the 

course of this research, as in Chidume (2014). Some of these include the spaces we 

are expected to work. Examples are normed linear spaces, inner product, and Hilbert 

spaces, Banach spaces, etc., and the operators like convex and concave functions. 

This became so important since we cannot adequately handle risk measures and its 

management in our chosen area and direction of the research, without bringing in 

the consequences of Hahm - Banach theorem. 

 

Definition 1.7.1 Vector space 
Let 𝑋 be a nonempty set, 𝐾 a scalar field. Suppose the functions • , + and defined 

on  𝑋; that is, 𝑋 × X → X, such that:    

 

𝑋 is an abelian group.  

𝑘 • (𝑥 + 𝑦) = 𝑘 • 𝑥 +  𝑘 • 𝑦  for all values 𝑥, 𝑦 ∈  𝑋, 𝑘 ∈  𝐾.    

(𝛼 +  𝛽) • 𝑥 =  𝛼 • 𝑥 + 𝛽 • 𝑥 for each 𝑥 𝜖 𝑋 and 𝛼, 𝛽 ∈  𝐾.   

(𝛼 𝛽) • 𝑥 =  𝛼(𝛽 𝑥) for all 𝛼, 𝛽 ∈  𝐾 and  𝑥 ∈ 𝑋.  

Then 𝑋 is called a linear space or a Vector space over 𝐾. If 𝐾 is a set of real 

numbers or complex numbers, then 𝑋 is called real linear space or complex linear 

space respectively. 
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Definition 1.7.2 Normed linear space 

Let 𝑋  be a linear space over 𝐾. A norm is a real - valued function ‖∙‖, that is 

‖∙‖ ∶ 𝑋 → [ 0 ,∞) such that for arbitrary 𝑥, 𝑦 ∈  𝑋, 𝑘 ∈  𝐾 and the following conditions 

are satisfied, 

‖𝑥‖  ≥ 0 𝑎𝑛𝑑  ‖𝑥‖ = 0 if and only if  𝑥 = 0. 

‖𝑘 𝑥‖ = |𝑘| ‖𝑥‖ for all 𝑘 𝜖 𝐾 and 𝑥 ∈  𝑋 

‖𝑥 + 𝑦‖  ≤  ‖𝑥‖ + ‖𝑦‖ for arbitrary 𝑥, 𝑦 ∈  𝑋. 

Then a Linear space with a norm define on it is called a normed Linear space. 

 

Hint: if 𝑋 is normed Linear space, the norm ‖∙‖, always induce a metric 𝜌 on 𝑋 given 

that 𝜌 ( 𝑥, 𝑦) =  ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝑋. Remember that a sequence { 𝑥𝑛} in a metric 

space is said to be complete if every Cauchy sequence in 𝑋 converges to a point 

(element) in 𝑋. 

 

Definition 1.7.3 Banach space  
A Banach space is a complete normed space. In other words, a normed space 𝑋 is a 

Banach space if every Cauchy sequence in 𝑋 converges. 

 

Definition 1.7.4 Inner product space 
Let 𝐸 be a linear space. An inner product on E is a function 〈, 〉 ∶ 𝐸 × 𝐸 → ℂ  defined 

on 𝐸 × 𝐸  with values in ℂ (where ℂ  is the set of complex numbers) such that the 

following three conditions are satisfied  

 

〈𝑥, 𝑥〉  ≥ 0 and 〈𝑥, 𝑥〉 = 0 if and only if 𝑥 = 0 

〈𝑥, 𝑦〉 =  〈𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅, (where the bar indicates complex conjugation) 

〈𝜆𝑥 + 𝜇𝑦, 𝑧〉 =  𝜆〈𝑥, 𝑧〉 +  𝜇〈𝑦, 𝑧〉. 

Then (𝐸, 〈𝑥, 𝑥〉) is called an inner product space. 

Hint: Concerning the norm defined in 1.7.2, we say that a sequence {𝑥𝑛}𝑛=1
∞  is a 

Cauchy sequence in inner product E if and only if 〈𝑥𝑛 − 𝑥𝑚, 𝑥𝑛 − 𝑥𝑚〉
1

2 = ‖𝑥𝑛− 𝑥𝑚‖  →

0  as  𝑛,𝑚 →  ∞. An inner product space E is complete if every Cauchy sequence in 

E converges to a point of E. 
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Definition 1.7.5 Hilbert space  
A complete inner product space is called Hilbert space, and it is a complex Hilbert 

space or a real Hilbert space if its linear space is complex linear space or real linear 

space respectively. 

 

Definition 1.7.6 Convex sets 
A subset ℂ of a linear space 𝑋 is said to be convex if for each  𝑥, 𝑦 ∈ ℂ, the line 

segment (𝜆 + (1 − 𝜆)𝑦 ) for each 𝜆 ∈  (0, 1) belongs to ℂ. Therefore, a convex set 

contains all the lines joining any two points of the set. The intersection of a finite or 

infinite number of convex sets is convex. And finally, the convex hull of a set ℂ is the 

intersection of all convex sets which contains the set ℂ. 

 

Definition 1.7.7 convex function  

Let ℂ be a nonempty convex set in ℝ𝑛. The function 𝑓: ℂ → ℝ1 is said to be convex 

on ℂ if 𝑓(𝜆 + (1 − 𝜆)𝑦 ) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) 

For each 𝑥, 𝑦 ∈ ℂ and  𝜆 ∈ (0, 1). The function 𝑓 is said to be strictly convex if the 

above inequality holds as a strict inequality for each 𝑥, 𝑦 ∈ ℂ and  𝜆 ∈ (0, 1). There 

are two basic properties of convex function that made it very useful in applied 

Mathematics, that is; (1) its maximum is attained on the boundary of its domain of 

definition. (2) if it is a strictly convex function, it admits at most one minimum. 

Definition 1.7.8 Concave function 

Let ℂ be a nonempty convex set in ℝ𝑛. The function 𝑓: ℂ → ℝ1 is said to be Concave 

on ℂ if 𝑓(𝜆 + (1 − 𝜆)𝑦 ) ≥ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)  

For each 𝑥, 𝑦 ∈ ℂ and  𝜆 ∈ (0, 1). The function 𝑓 is said to be strictly Concave if the 

above inequality holds as a strict inequality for each 𝑥, 𝑦 ∈ ℂ and  𝜆 ∈ (0, 1). 

Definition 1.7.9 Monotone functions 

Let 𝐹 be a function such that 𝑓: ℝ → ℝ, is said to be  

An increasing function if for all values of 𝑥, 𝑦 ∈  ℝ with 𝑥 <  𝑦 implies that 𝑓(𝑥)  <

 𝑓(𝑦). 

A decreasing function if for all values of 𝑥, 𝑦 ∈  ℝ with 𝑥 >  𝑦 implies that 𝑓(𝑥)  <

 𝑓(𝑦). 

A non-increasing function if for all values of x 𝑥, 𝑦 ∈  ℝ with 𝑥 ≥  𝑦 implies that 

𝑓(𝑥)  ≤  𝑓(𝑦). 
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A non-decreasing function if for all values of 𝑥, 𝑦 ∈  ℝ with 𝑥 ≤  𝑦 implies that 

𝑓(𝑥)  ≤ 𝑓(𝑦). 

1.8 Organisation of the thesis 

This thesis is organised into seven chapters to address the objectives and the 

research questions.  It is as follows: Chapter 1 deals with the introduction and the 

fundamental concepts of the research, the objectives and the research questions, 

background of the study and the definitions of the terms used in work.  

Chapter 2 reviews the related literature, showing how portfolio optimisation 

originated, its challenges, and effort made by researchers to improve on the existing 

results. We also looked at what the literature holds in terms of risk of a portfolio, 

different types of risk, mathematical properties of risk and its evolution, different 

ways researchers developed to manage the risk of a portfolio.  

In Chapter 3, we gave the outline of the thesis, our data collection, and our research 

methodology.   

Chapter 4 deals with the Mathematical Foundations of Markowitz’s Portfolio 

Optimization Theory.   We explore the indicated construction of the optimal portfolio, 

portfolio selection and weight allocation (allocations of the weights on different 

assets in the portfolio to give a better yield) convex analysis used in the Markowitz’s 

portfolio theory. The focus was on the strengths and weaknesses of the model under 

different investment scenarios, like multi-objective constrained optimisation, and the 

methods used to overcome the shortcomings. The approach is primarily a critical 

literature review that informs work in this chapter of the thesis.  

In Chapter 5, we worked on Random Matrix Theory and Applications.  We reviewed 

different theories, strategies, scenarios, assumptions, and concepts, underpinning 

Random matrix theory on investment systems, with a focus on the use of 

hypothesised standard normal distribution of eigenvector components from RMT to 

assess deviations of the empirical eigenvectors to this distribution for different 

eigenvalues. We also use the Inverse Participation Ratio to measure the deviation of 

eigenvectors of the empirical correlation matrix from RMT results. These preliminary 

results on the dynamics of asset price correlations in the NSE are essential for 
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improving risk-return trade-offs associated with Markowitz’s portfolio optimisation in 

the stock exchange; we achieved by cleaning up the correlation matrix.  

Chapter 6 deals with risk management, portfolio optimisation under different risk 

measures. We studied some risk measures and the kinds of investment and portfolio 

optimisation schemes in which they are used. The emphasis was on how to build on 

the existing results under different risk measures and the conditions for the existence 

of unique solutions. We investigated both the theoretical results and their empirical 

applications. For example, using copula functions to examine the skewness, thus the 

joint occurrence within an n-dimensional random vector 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑛) with 

copula 𝐶 is completely controlled by the copula function.  C assigns probabilities to 

the joint occurrence of the individual stocks which we saw as random vector X where 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), and 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑛) = 𝐶(𝐹1 (𝑋1), 𝐹2 (𝑋2), … , 𝐹𝑛 (𝑋𝑛)) where 

𝐹𝑖  denotes the respective cumulative distribution function of the stocks, that is, the 

random vector 𝑋 and 𝑖 =  (1,2, … , 𝑛) for all 𝑛 𝜖 𝑁 

Finally, Chapter 7 deals with empirical applications of the Research Results in the 

Nigerian Stock Market, we considered the types of assets that exist in the NSM, the 

nature of investment returns and risks associated with them, and features of the 

NSM that may require unique investment approaches. We then used insights from 

these ideas to produce empirical applications of the research results with the assets 

from NSM as inputs. We concluded, made our recommendations and made hints on 

our future research. 

1.9 Contributions to knowledge. 

In this section, we share the outcome of our work and some of the deliverables 

made. In our work, we focused on the optimisation portfolio which includes; 

maximisation of the returns, minimisation of the associated risk, proper selection of 

the assets that make up the portfolio and effective weight distribution among the 

assets to form an optimal portfolio.  

From the literature, it shows that we are the first to apply Random matrix theory to 

Nigerian stock market and we were able to deliver the following; 1) T.C Urama, C.P 

Nnanwa, and P.O. Ezepue,   Application of Random Matrix Theory In Estimating 

Realistic Implied Correlation Matrix (2018) submitted to Physica A. 2) C. P. Nnanwa, 
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T. C. Urama, P. O. Ezepue, Random matrix approach to cross-correlation in an 

emerging African market. (2018) Submitted to Journal of Financial Markets. 3) C. P. 

Nnanwa, T. C. Urama, P. O. Ezepue, Portfolio optimisation of financial services 

stocks in the Nigerian Stock Exchange. American Review of Mathematics and 

Statistics. December 2016, Vol. 4, No. 2, pp. 1-9. 4) Urama, T.C., Ezepue, P.O. and 

Nnanwa, C.P. (2017) Analysis of Cross-Correlations in Emerging Markets Using 

Random Matrix Theory. Journal of Mathematical Finance, 7, 291-307. 

https://doi.org/10.4236/jmf.2017.72015. 5) C. P. Nnanwa, T. C. Urama, P. O. 

Ezepue,  Random matrix theory analysis of cross-correlation in the Nigerian Stock 

Exchange, Proceedings ISF (2017) accepted to appear and finally, with two 

conference presentations done in Australia and the UK. 

1.10 Summary and Conclusion 

In this chapter, we tried to bring out the critical aspects of the research, these 

include; the introduction and the background of the study, others are, the aims and 

objectives, definitions of some key concepts we will be using most often than not in 

the course of the work and also the plan for the study. Finally, we gave the indicative 

structure of our intended thesis and even some of the contributions to the knowledge 

we hope to achieve.  
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Chapter 2    The General Literature review 

2.1 Introduction 
In this section, we aim at discussing in detail what the literature holds in investment 

and portfolio optimisation. Also, we will look at the views of different researchers 

about Markowitz's portfolio theory, its benefits, weaknesses, limitations and 

assumptions, and the attempts made by the researchers to improve on the 

weaknesses and removal of the limitations and assumptions.  

Furthermore, we had a literature review in all the technical chapters that are peculiar 

to the topic treated in the chapter. 

2.2 Literature review 
In the early 1950s, Harry Markowitz, a PhD research student, designed a financial 

model otherwise called mean-variance (MV) portfolio optimisation. This method was 

developed to help the investors know which asset that will be selected in a portfolio, 

how the selection will be done and the weight of each asset in the collection.    

2.2.1 Mathematical foundations of portfolio theory  

In the paper titled Portfolio selection (1952), Markowitz's outlines the importance of 

diversification of portfolios. He pointed out that there is a rule to invest in a portfolio 

which implies that the investors should diversify and at the same time should 

maximise expected return. However, he said that the portfolio with the maximum 

expected yield is not necessarily the one with minimum variance, he went further to 

explain that there is a rate at which the investors can gain expected return by taking 

on variation or reduce variance by giving up the expected return. The mean-variance 

portfolio optimisation helped the investors to quantify the risk of the portfolio 

compared with the specific risk of the assets in the collection. It tried to solve the 

problem of portfolio selection for a risk-averse investor; in this respect, it chooses the 

portfolio with the minimum risk with the same return or the portfolio with the 

maximum profit with the same risk.  

Some researchers had shown that Markowitz's diversification of portfolio has 

significant benefits for investment; a reduction in loses and also in the portfolio 

volatility. Though the report did not make it explicit that diversification of portfolio will 
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guarantee a profit or prevent against loses, but it will at least protect some of the 

profits the investment has accumulated.  

Michaud (1989b) outlined some of the benefits of Markowitz's portfolio model (mean-

variance optimisation MV). He listed the benefits as the satisfaction of client 

objectives and constraints; control of portfolio risk exposure; implementation of style 

objectives and market outlook; efficient use of investment information; and 

appropriate portfolio changes.   

Jorion (1992) in his work reported that studies over a while suggested that the 

international diversification into foreign bonds has some benefits which are 

measured by comparing the performance of a passive world index with that of a US 

index. Jorion (1992) describes the mean-variance optimisation as the cornerstone of 

the modern finance theory; he believes that it is a powerful tool for efficiently 

allocating wealth to different investment alternatives.  He further said that the method 

takes care of the investor's preferences and expectations of return and also it 

considers the risk for all assets, and the overall portfolio risk reduced through 

diversification.  

Generally, research has shown that Modern portfolio theory when holding various 

uncorrelated assets combined in a portfolio, the return is improved, and the risk 

reduced to a bearable minimum level. Also, the risk level of the individual security in 

a portfolio does not matter as long as its return varies from the other securities in that 

portfolio.  

Rotblut (2010), shows that MV produces the ideal amount of return for a given level 

of risk. This line is known as an efficient market frontier; It determines if a portfolio is 

taking on too much risk in respect to a given level of return and also can reveal if a 

portfolio is achieving a level of performance for the amount of risk it is taking.   

Finally, if an investor is risk-averse, MV allows him to allocate the majority of the 

portfolio to bonds and bond maturity funds; and will allocate the smaller portion of the 

portfolio to other classes of assets while investors with a higher risk tolerance may 

choose to allocate the majority of their portfolios to stocks.  
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b) Weaknesses, limitations and assumptions of Markowitz mean-variance 

However, research has shown that the Markowitz mean-variance has some 

weaknesses and several constraints.  These limitations have taken centre stage of 

research. Researchers like: Fuerst (2008), Norton (2009), Ceria and Stubbs (2006), 

Goldfarb and Iyengar (2003), Jorion (1992), Konno and Suzuki (1995), Michaud 

(1989a) (1989b), Bowen (1984), Ravipti (2012) etc. discussed the weaknesses, 

limitations and assumptions in their works. Markowitz himself in Markowitz (1952) 

says that they tried to avoid mathematical proofs and could only get a geometrical 

presentation for 3 or 4 security cases. Therefore, these two are the main limitations 

of MV; the model did not allow n-security in a portfolio. Michaud (1989b), shows that 

the fundamental flaws of the mean-variance optimiser are its estimation error. It 

tends to overweigh those securities with a high estimate of return, negative 

correlations, and small variances or underweight those securities with a low rating of 

return, positive correlations, and large deviations.  He pointed out that the statement; 

'Optimizer, in general, produce a unique optimal portfolio for a given level of risk' is 

highly misleading. The ill-conditioning of the covariance matrix is yet another 

problem of MV; it makes the optimisation to be highly unstable by making a small 

change in the input assumption to lead to a significant difference in the solution.  

Konno and Suzuki (1995) in their research show that based on the assumption that 

investor is risk-averse; MV believes that the distribution of the return is multivariate 

normal, or the utility of the investor is a quadratic function of the rate of return. But 

unfortunately, they noticed that neither of the two holds in practice. Haung et al. 

(2008) in their words say that when probability distributions of security returns are 

asymmetric, variance becomes a deficient measure of investment risk because the 

selected portfolio based on variation may have a potential danger to sacrifice too 

much-expected return in eliminating both low and high return extremes. 

 

c) Some of the improvement of the Markowitz mean-variance 

Since the discovering of the Markowitz's MV limitations and weaknesses, a lot of 

researchers have been working on the model to improve and develop it in different 

directions.  Authors like Jobson, Korkie and Ratti (1979), Jobson and Korkie (1980), 
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Frost and Savarino (1988), Jorion (1992), Michaud (1998), (1989b), Polson and Tew 

(2000), etc. worked on the estimation error. Others like Britten-Jones (2002), Kandel 

and Stambaugh (1996), Zellner and Chetty (1965), Klein and Bawa (1976) and 

Brown (1978) worked on the Markowitz's model by using Bayesian approach and 

predictive probability to improve and develop the model in various ways. Huang et al. 

(2008) and Markowitz (1993) tried to develop the model to Mean-semi variance while 

other like; Konno and Suzuki (1995), Liu, Wang and Qiu (2003), and Pornchai et al. 

(1997) further developed the model by adding skewness in the mean-semi variance 

model.  Authors like: Vercher et al. (2007), Leon et al. (2002) and Carlsson et al. 

(2002) in their works tried to replace the uncertain returns of the securities with fuzzy 

numbers. 

2.2.2 Mathematical properties of risk measures  
There are two basic rules about winning in trading as well as in life; 1). If you don't 

bet, you can't win and 2). If you lose all your chips, you can't bet'.  

Larry Hite.  Schwager (1998) 

Therefore, life is all about taking the risk. In this section, we aim at discussing in 

detail what is in the literature about the properties of different risk measures as 

regards investment and portfolio theory.  

The measurement of risk in the investment management cuts across the wide 

disciples like; economic theory, statistics of actuarial sciences and the probability 

theory Lleo (2009).  

a) Definition of Risk measure in portfolio management. 

In financial mathematics, a risk measure is used to determine the amount of an asset 

or set of assets (traditionally currency) to be kept in reserve. The purpose of this 

reserve is to make the risks taken by financial institutions, such as banks and 

insurance companies, acceptable to the regulator (Wikipedia). A risk measure is 

defined as a mapping from a set of random variables to the real numbers, where this 

set 𝑋; of random variables represents portfolio returns. Then, the risk measure 𝜌(𝑋) 

is a function  𝜌  such that 𝜌 ∶ 𝑋 → ℝ (set of real number), if it is  

Monotonous: 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ≥ 𝑦 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜌(𝑦)  ≥ 𝜌(𝑥), 

Sub-additive:  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝑦, 𝑥 + 𝑦 ∈ 𝑋  𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜌(𝑥 + 𝑦) ≤  𝜌(𝑥) +  𝜌(𝑦), 

Positively homogeneous: 𝑓𝑜𝑟 𝑥 ∈ 𝑋, ℎ > 0, ℎ𝑥 ∈ 𝑋 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜌(ℎ𝑥) = ℎ𝜌(𝑥), 

The translation is invariant: 𝑓𝑜𝑟 𝑥 ∈ 𝑋 , 𝑎 ∈ ℝ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜌(𝑥 + 𝑎) = 𝜌(𝑥) − 𝑎, 
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Before now, most investors and market practitioners were making use of the risk 

measures like; Variance and standard deviation risk measure, Value at risk, Measure 

of downside risk, conditional value at risk, and Extreme theory, until the evolution of 

the current and more sophisticated risk measures.  

Note that the axioms of risk measure in the portfolio analysis is as thus; the set 𝑋 is 

the random collections of returns of portfolios. That is  𝑥, 𝑦 ∈ 𝑋, while 𝜌(𝑋) is risks 

associated with 𝑋 and 𝜌(𝑦), 𝜌(𝑥) ∈ 𝜌(𝑋). Then, the monotonicity means that if the 

return of portfolio 𝑥 is greater than the returns of 𝑦 then, the risk of portfolio 𝑦;  𝜌(𝑦) is 

greater than 𝜌(𝑥) which the risk of 𝑥. The second one which is subadditivity, means 

that the sum of the individual risks of portfolios x and y; (𝜌(𝑦) + 𝜌(𝑥)) is always less 

than or equal to the risk of the both 𝜌(𝑥 + 𝑦). The axiom of positively homogenous 

implies that the risk of a portfolio increases with the same rate when there is a 

positive increase in the portfolio. And finally, the transitivity shows that addition of 

cash into a portfolio decreases the risk by the same amount added.  

 

b) Markowitz's Risk measure.  

The Standard deviation is seen as the oldest risk measure, having been introduced 

by Markowitz (1952).  Standard deviation  𝜎  (SD) as a symmetric risk measure gives 

the accurate total risk of the return, because it includes both the upside deviation and 

downside deviation in its computation of the risk of a return at the same time, this 

characteristic of SD becomes one of its shortcoming. Due to the symmetric nature of 

SD, when the return distribution becomes skewed, it affects the accuracy of the risk 

measure.  

To correct this shortcoming of the SD, Capital asset pricing model (CAPM) was 

introduced. It describes the relationship between risk and expected return, which is 

used in the pricing risky securities. 

𝑟�̅� = 𝑟𝑓 + 𝛽𝑎 (�̅�𝑚 − 𝑟𝑓), 

where  �̅�𝑚 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑎𝑟𝑘𝑒𝑡 𝑟𝑒𝑡𝑢𝑟𝑛, 𝑟𝑓 = 𝑅𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒  

and 𝛽𝑎 = 𝐵𝑒𝑡𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦  

CAPM splits the total risk into systematic risk, thereby provides a more excellent 

decomposition of risk.  
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c) Value at Risk (VaR) as a risk measure.  

Value at Risk (VaR) is a type of risk measure which is widely used by market 

practitioners; it represents the maximum loss within the confidence level 1 - α that a 

portfolio could incur over a specified period, Lleo (2009). VaR of a portfolio can be 

computed using three main methods called; delta-normal, historical simulation and 

Monte Carlo simulation. Beder (1995) said that VaR is seductive but dangerous 

because it is often non-convex and non-smooth as a function of investment position; 

therefore, difficult to optimise using scenarios. 

 

Delta-normal is an analytic method that provides a mathematical formula for the 

VaR, and it assumes that the risk factors are log-normally distributed, and the 

securities return is linear in the risk factors. The method involves going back in time 

to compute the variances and correlations for all the risk factors and portfolio risk 

generated. It is generated by the combination of linear to many factors that are 

assumed to be normally distributed and by the forecast of the covariance matrix 

which required: 1) for each risk factor, estimates of volatility and correlations and 2) 

positions on risk factors.   The normality and the linearity assumption for the risk 

factors is the major shortcoming of the method, Jorion (1996).  

 

When we compute VaR from the historical assets returns of a portfolio by applying 

the current portfolio allocation to derive the portfolio's return distribution, it is called 

Historical simulation method.  Although, this method is suitable for fat-tailed and 

skewed distribution, and it does not assume any particular form for the return 

distribution which is a good advantage, but the fact that it assumes that the past 

return distribution is an accurate predictor for the future return patterns is a 

significant shortcoming.  If the asset returns are normally distributed, the result 

obtained is the same with the delta-normal, and it required: 1) for each risk factor, a 

time-series of actual movements, and 2) position on risk factors, Jorion (1996). 

 

Monte Carlos simulation is a probabilistic method that obtains the VaR of a portfolio 

numerically by generating the returns using many random simulations. It has 

advantages over the two mentioned earlier because it allows the assets to be non-

linear and the risk factors do not follow a specific type of distribution.  It has two 
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steps: 1) the choice of the distributions and parameters like risk and correlations are 

derived from historical data, and a stochastic process is specified. And 2) fictitious 

price paths are simulated for all variables of interest.  

 

VaR is generally known for its blind spot as a shortcoming; therefore, this gave rise 

to the development of Expected shortfall (ES) which Acerbi and Tasche (2002) 

defines it as 

𝐸𝑆(𝛼)(𝑋) =
−1

𝛼
 ∫ 𝐹�⃖�(𝑝)

𝛼

0

𝑑𝑝 

And Conditional Value at Risk (CVaR) is defined by Rockafellar and Uryasev 

(2002a) as  

𝐶𝑉𝑎𝑅(𝛼)(𝑋) =  −𝐸[𝑋| 𝑋 ≤ 𝐹�⃖� (𝛼)] 

Where 𝛼 𝜖 (0, 1] is known as the confidence level. These refinements of VaR are 

closely related risk measures but they are not the same. They try to solve the 

problem of the blind spot in the tail of VaR 

 

Later in the development of research, new risk measures were developed.  These 

risk measures include monetary risk measure, Coherent risk measure; convex risk 

measure and Spectral risk measure.  

 

d) Monetary risk measure 

Let 𝑋 be a linear space of bounded functions containing the constants. A mapping 

  𝜌 ∶ 𝑋 → ℝ is called a monetary measure of risk if it satisfies the following condition 

for all 𝑥, 𝑦 ∈ 𝑋; 

Monotonous: 𝑖𝑓 𝑥 ≥ 𝑦, 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜌(𝑦)  ≥ 𝜌(𝑥), 

The translation is invariant: 𝑖𝑓 𝑎 ∈ 𝑅 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝜌(𝑥 + 𝑎) = 𝜌(𝑥) − 𝑎, 

 Monetary risk measure is a class of risk measure equates the risk of an investment 

with the minimum amount of cash, or capital, that one needs to add to a specific 

risky investment to make its risk acceptable to the investor or regulator. Artzner 

introduced it, et al. (1999), they saw it as a function of the absolute loss that an 

investor could potentially incur on a position.  In other words, Monetary risk measure 

is a distance between an investment's potential loss and acceptable level of loss; 
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and also risk is expressed as a monetary amount in Nigerian Naira, U.S. dollars, 

British pounds, Euro, etc.  

Any monetary risk measure  𝜌 is Lipschitz continuous with respect to the supremum 

norm.          |𝜌(𝑋) −  𝜌(𝑌)|  ≤ ‖𝑋 − 𝑌‖. 

Let  𝜌 be a monetary risk measure with acceptance set 𝒜𝜌 = {𝑋 ∈  𝒳| 𝜌(𝑋) ≤ 0}. 

Then, 𝒜𝜌 is non-empty, and satisfies the following two conditions:  𝑖𝑛𝑓{𝑚 ∈ ℝ | 𝑚 ∈

 𝒜𝜌}  > −∞, 𝑋 ∈ 𝒜𝜌, 𝑌 ∈ 𝒳, 𝑌 ≥ 𝑋 ⟹ 𝑌 ∈  𝒜𝜌. Moreover, 𝒜𝜌 has the following 

closure property: for 𝑋 ∈ 𝒜𝜌 𝑎𝑛𝑑 𝑌 ∈ 𝒳, {𝜆 ∈ [0, 1]|𝜆𝑋 + (1 −  𝜆)𝑌 ∈ 𝒜𝜌} is closed in 

[0, 1]. 𝜌  can be recovered from 𝒜𝜌: 𝜌(𝑋) = 𝑖𝑛𝑓{𝑚 ∈ ℝ | 𝑚 ∈  𝒜𝜌}. 

𝜌 is convex risk measure if and only if 𝒜𝜌  is convex 𝜌 is positive homogeneous if 

and only if 𝒜𝜌 is a cone. In particular, 𝜌 is coherent if and only if 𝒜𝜌 is a convex 

cone. If we assume that  𝒜 is a non-empty subset of 𝒳 which satisfies  

𝑖𝑛𝑓{𝑚 ∈ ℝ | 𝑚 ∈  𝒜} > −∞, 𝑋 ∈ 𝒜, 𝑌 ∈ 𝒳, 𝑌 ≥ 𝑋 ⟹ 𝑌 ∈  𝒜. Then the functional 𝜌𝒜 

has the following properties: 𝜌𝒜 is a monetary risk measure. If 𝒜 is a convex set, 

then 𝜌𝒜 is a convex risk measure. If 𝒜 is a cone, then 𝜌𝒜 is positively 

homogeneous. 𝒜 is a subset of 𝒜𝜌𝒜. If 𝜌𝒜 satisfies  {𝜆 ∈ [0, 1]|𝜆𝑋 + (1 −  𝜆)𝑌 ∈

𝒜𝜌} then 𝒜 ≡ 𝒜𝜌𝒜. Note: the proof of the Hints will be given in the subsequent and 

relevant chapters of the thesis. 

 

e) Coherent risk measure 

Eventually, Coherent risk measure was developed, and Artner et al. (1999) defined it 

as a Subclass of Monetary risk measure, which satisfies the coherent properties. It 

includes; monotonicity, subadditivity, homogeneity and translation invariance.  Lleo 

(2009) has shown that standard deviation calculated using a distribution of asset 

returns is not a monetary risk measure, and consequently will not be a coherent risk 

measure since coherent is a subclass of monetary risk measure.  Also, Artzner et al. 

(1999) have shown that VaR lacks the property of subadditivity and therefore, cannot 

be coherent.  Acerbi and Tasche (2002) show that Expected shortfall (ES) is a 

coherent risk measure and if CVaR and ES coincide when P&L distribution is 

continuous, and they are coherent, but when it is not continuous, CVaR is not 

coherent. Rockafellar and Uryasev (2000a) tried to solve the problem by introducing 

a standardised α-tail cumulative density function, which ensures that CVaR is 
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coherent for discontinuous distribution functions.  Later, some researchers extended 

the coherent risk measure by redefining the measure in different ways, Bielecki and 

Pliska (2003) introduced a set of log-coherence properties which can be applied to 

measure risks based on the distribution of instantaneous (log) returns, and this was 

called log-coherence. Cherny and Madan (2006) introduced and defined a utility 

function P(.) out of coherent and called it a coherent utility risk measure.  Csoka et 

al. (2007) and Artzner et al. (2007) introduce a general equilibrium perspective and a 

multi-period measurement process for coherent risk measure respectively, and they 

are called coherence and general equilibrium and multi-period coherent risk 

measure.  

 

f) Convex Risk measure 

Follmer and Schied (2002a) argued that the risk of some instruments might not 

increase linearly with the size of the position, and this contradicts the Artzner et al. 

(1999) homogeneity properties, they thereby proposed the relaxation of the 

homogeneity and sub-additive properties by replacing them with convexity. This 

gave rise to loosening the original property of coherence. Therefore, all coherent risk 

measure is necessarily convex, but the converse is not necessarily true. In 2002, 

Szego showed that VaR is neither coherent nor convex since it lacks the property of 

subadditivity. Eventually, more people worked on the class of risk measure; some of 

them were: Ben-Tal and Teboulle (2007), Kloppel and Schweizer (2007), and Jobert 

and Rogers (2008). Owing to the translation invariance axiom required incoherent 

and convex risk measures, the practitioners did not widely accept them, because the 

practical work done these days on capital allocation assumes incoherent risk 

measure. Consequently, Rockafeller et al. (2006) came up with deviation risk 

measures, an alternative class of risk functional which do not require the translation 

invariance axiom. Farinelli et al. (2008) introduced a promising practical, effective 

one-sided risk measure used in new-type performance ratio, which does not require 

translation invariance also.  

Furthermore, Power CVaR (PCVaR) was developed. Chan and Yang (2009) 

developed a new class of risk measures which is convexity and monotonicity, 

through a nonlinear weight function, can flexibly reflect the investor's degree of risk 

aversion and can control the fat-tail phenomenon of the loss distribution.  
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In another development, Kountazakis (2011) studied coherent and convex risk 

measure on non-reflexive Banach spaces. They extend the results of Konstantinides 

and Kountzakis (2011) in a case where the space of the positions E is a non-

reflexive Banach space. In that paper, the author showed that the asset is some 

interior point e ϵ 𝑖𝑛𝑡(𝑝𝑜) namely an interior point of the wedge under which E is 

partially ordered, e is either a reference “cash stream” as in Stoica (2006) or a 

“relatively secure cash stream” as in Jaschke and Kuchler (2001). They prove the 

dual representation of the (Po , e)-coherent and the (Po , e)-convex risk measures 

defined on E, which make it different from the theorems of representation of Artzner 

et al (1999), Delbean (2002) and Follmer et al (2000a). 

 

g) Spectral Risk measure 

Two researchers; Kusuoka (2001) and Acerbi (2002), while working independently, 

tried to parameterise coherent risk measure using a risk-aversion function, this 

introduced the class of risk measure called spectral risk measure. It is a risk 

measure given as a weighted average of outcomes where adverse outcomes are, 

typically, included with larger weights. Spectral risk measure is a function of portfolio 

returns and outputs the amount of the numeraire (usually a currency) to be kept in 

reserve. It is always a coherent risk measure, but the converse does not always 

hold. An advantage of spectral measures is how they can be related to risk aversion, 

and particularly to a utility function, through the weights given to the possible portfolio 

returns.  

 

Definition, consider a portfolio 𝑋, and then a spectral risk measure  𝑀𝜙 ∶  ℒ → ℝ, 

where 𝜙 is non-negative, non-increasing, right-continuous, an integrable function 

defined  

∫𝜙(𝑝)𝑑𝑝

1

0

= 1 

on [0,1] such that is defined by 

𝑀𝜙(𝑋) = −∫𝜙(𝑝)𝐹𝑋
−1(𝑝)𝑑𝑝,

1

0
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where 𝐹𝑋  is the cumulative distribution function for 𝑋.  If there are 𝑆  equi-probable 

outcomes with the corresponding payoffs given by the order statistics 𝑋1:𝑆, . . . , 𝑋𝑆:𝑆.  

Let 𝜙 ∈ ℝ𝑆, the measure defined by is a spectral measure of risk if satisfies the 

conditions: Non-negativity: 𝜙𝑆 ≥ 0 for all 𝑆 = 1, . . . , 𝑆. Normalization: ∑ 𝜙𝑆 = 1𝑆
𝑆=0  

Monotonicity: 𝜙𝑆 is non-increasing, that is 𝜙𝑆1 ≥ 𝜙𝑆2 if 𝑆1 < 𝑆2 and 𝑆1, 𝑆2 ∈ {1,… , 𝑆}. 

These are properties of spectral risk measure, every spectral risk measure 𝜌 ∶ ℒ → ℝ  

satisfies: 

Positive Homogeneity: for every portfolio 𝑋 and positive value ⋋> 0, 𝜌(⋋ 𝑋) = ⋋

𝜌(𝑋). 

Translation-Invariance: for every portfolio 𝑋 and 𝛼 ∈ ℝ, 𝜌(𝑋 +  𝛼) =  𝜌(𝑋) − 𝛼 

Monotonicity: for all portfolios 𝑋 and 𝑌 such that 𝑋 ≥ 𝑌, 𝜌(𝑋) ≤  𝜌(𝑌) 

Sub-additivity: for all portfolios 𝑋 and 𝑌, 𝜌(𝑋 + 𝑌) ≤ 𝜌(𝑋) +  𝜌(𝑌) 

Law-Invariance: for all portfolios X and Y with cumulative distribution functions 

𝐹𝑋 𝑎𝑛𝑑 𝐹𝑌 respectively, if 𝐹𝑋 = 𝐹𝑌then 𝜌(𝑋) =  𝜌(𝑌) 

Comonotonic Additivity: for every comonotonic random variables 𝑋 and 𝑌, 𝜌(𝑋 +

𝑌) ≤ 𝜌(𝑋) +  𝜌(𝑌). 

Note that 𝑋 and 𝑌 are comonotonic if for every𝜔1, 𝜔2 ∈ 𝛺: (𝑋(𝜔2) − 𝑋(𝜔2)) (𝑌(𝜔2) −

𝑌(𝜔2)) ≥ 0. It was noticed that this class of risk measure contains expected shortfall 

and CVaR (when the returns of distribution of CVaR is continuous), in which risk 

aversion function is constant within the interval (0, 𝛼). Tasche (2002) show that 

spectral risk measure not only satisfying the four properties of coherent risk measure 

(making it a subclass of coherent risk measure) but also added two more properties 

which is the law of invariance and commonotonic additivity. Pflug (2000) and 

Rockafeller and Uryasev (2000a) introduced an optimization method for CVaR, while 

Acerbi and Simonetti (2002) extended the optimization method for CVaR by applying 

spectral risk measure to portfolio selection.  

In another development, a two-parameter beta-VaR measure which shows the role 

played by the beta probability distribution in its definition and, also a one parameter 

alpha-VaR measure, is the restriction of the two-parameter beta-VaR measure were 

the two new spectral risk measures introduced by Cherny and Madan (2006). 

https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Comonotonicity
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2.2.3 Mathematical analysis of investment systems. 

In this section, we aim at reviewing the mathematics of the investment systems, 

some key concepts of mathematical analysis and stochastic (calculus) processes as 

relate to investment systems and draw their relevance as regards to emerging 

markets.  

The primary purpose for taking up any investment or indulging in the mathematics of 

investment is to increase the value of the money or any valuable thing invested 

(otherwise called capital) in a business.  Therefore if the amount someone invests in 

business is, (𝑃) over a period of time, (𝑡) to increase to the value  𝑆, one can now 

talk about the interest on (𝑃) (or the discounted valve on (𝑆)) is (𝑆 − 𝑃). So, we can 

see the rate of the interest or discount value over a period of time is determined by, 

𝑟 =
𝑆−𝑃

𝑃
 ,   and 𝑢 =  

𝑆−𝑃

𝑆
 respectively.  

 

a) Investment system 

Zhu (2007), saw an investment system as a set of rules of buying and selling of 

investment properties such as stocks, bonds, real estate, commodities and their 

derivatives for capital appreciation.  Zhu also presents the investment system as a 

practice of evaluating and comparing the effectiveness of investment systems using 

their actual or simulated history of its performances. On the other hands, they argued 

that these historical performances do not always reflect the true potential of the 

investment system because investment sizes often skew the results.  

In this work, Zhu considered the process of testing an investment system over a set 

of historical data, they denoted {𝑔𝑛: 𝑛 = 1, . . . , 𝑁} with 𝑔1 < 𝑔2 <. . . 𝑔𝑁 (where 𝑔𝑛 <

0  represents a loss), as the outcomes of the trades generated by the system in 

terms of percentage gain. It was their intention to use the test to identify the 

frequencies 𝑝𝑛 associated with each gain outcome 𝑔𝑛 . Again, they denoted 𝑠 as the 

denote the size of each trade as the percentage of the available capital and M as the 

total number of trades in the test, having in mind that the frequencies {𝑝𝑛}, the return 

depends on the size of each trade. Therefore, the number of trades with gains 𝑔𝑛 is 

𝑀𝑝𝑛. If G(𝑠) is the average exponential rate of growth of the investment capital per 

trade with a trading size 𝑠 percent of the available capital, they had that; 
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𝐺(𝑠)𝑀 = ∏(1 + 𝑠𝑔𝑛)
𝑀𝑝𝑛

𝑁

𝑛=1

 

and  

𝐺(𝑠) =  ∏(1 + 𝑠𝑔𝑛)
𝑀𝑝𝑛

𝑁

𝑛=1

 

where a maximum of 𝐺(𝑠) gives a good indication of the potential profitability 

of the investment system. They used its natural log for analysis since the 

natural log is an increasing function, the maximum of 𝑓 (𝑠) will give an 

equivalent indication of the effectiveness of the investment system. Therefore, 

the log of 𝐺(𝑠) is; 

𝑙𝑛𝐺(𝑠) = 𝑓(𝑠) = ∑𝑝𝑛𝑙𝑛(1 + 𝑠𝑔𝑛)

𝑁

𝑛=1

 

the range of 𝑠 is [0, 1] however, to explore the full potential of the investment system, 

they allowed 𝑠 to take all the values in  (−1/𝑔𝑁, −1/𝑔1),  the domain of 𝑓 , with the 

interpretation that 𝑠 > 1 represents trade on margins and 𝑠 < 0 represents shorts 

 

b) Utility distribution 

If we consider a sequence of assets; 𝑥𝑖 , and a unit of 𝑃 is invested in the 𝑖𝑡ℎ asset 

which gives a random return expectation of 𝑥𝑖 as 𝐸(𝑥𝑖) = 𝜇𝑖 where there is a riskless 

asset with a return 𝜌, the implication of the capital asset pricing model of Sharpe 

(1964) and Linetner (1965) is that 

𝜇𝑖 =  𝜌 +  𝜏𝛽𝑖 

 

where 𝛽𝑖 is the covariance between 𝑥𝑖 and the return on the market portfolio.  

Chamberlain (1983) pointed out that there must be sharp restrictions on either the 

quadratic utility or the distribution of return (eg., multivariate normality). 

Consequently, the theory which underlines the result above is highly criticised.  They 

went further to say that, even if the restriction conditions are satisfied that observing 

the return on the market portfolio will be difficult.  Since  𝜇𝑖 =  𝜌 +  𝜏𝛽𝑖 is derived from 

mutual fund separation where investors divide their wealth between the riskless 

asset and single fund, Chamberlain (1983) said that the consequence of this is that 
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all investors should have perfectly correlated returns on their portfolios which seems 

likely not to be true. 

Ross (1976) and (1977) on Sharpe (1964) and Linetner (1965), proposed an 

alternative basis for  𝜇𝑖 =  𝜌 +  𝜏𝛽𝑖, which rests on the distributional restrictions 

implied by a factor structure; 

𝑥𝑖 = 𝜇𝑖 + 𝛽𝑖1𝑓1+ . . . + 𝛽𝑖𝑘𝑓𝑘 + 𝜗𝑖   

for (𝑖 = 1, 2, 3, . . . ), where 𝜗 is the idiosyncratic disturbances which are uncorrelated 

with each other and with the factors 𝑓.  

Chamberlain (1983) said the factor structure implies that the variance of the 

portfolio's return can be decomposed into two components which are: a market 

component generated by the 𝑓′𝑠 and an idiosyncratic component generated by the 

𝜗′𝑠. They saw 𝑓′𝑠 as the representative of the economy wide shocks that affect all 

asset returns while 𝜗𝑖; is the uncertainty that is specific to the 𝑖𝑡ℎ asset.  

Ross showed that  𝜇𝑖 =  𝜌 +  𝜏𝛽𝑖 or its 𝐾-factor generalization is approximately true if 

there exist numbers 𝜏1, . . . , 𝜏𝑘 such that 

𝛾 ≡∑(𝜇𝑖 − 𝜌 − 𝜏1𝛽𝑖1−. . . −𝜏𝑘𝛽𝑖𝑘)
2

∞

i=1

< ∞ 

is the implication of the absence of arbitrage opportunity equilibrium. 

Chamberlain and Rothschild (1983) tried to define and put the asset on the market in 

a sequence, where one unit of money invested in the 𝑖𝑡ℎ asset gives a random of 𝑥𝑖, 

and the portfolio formed by investing 𝛼𝑖 in the 𝑖𝑡ℎ asset has a random return as  

∑𝛼𝑖𝑥𝑖

𝑁

𝑖=1

 

the vector represents the portfolio (𝛼1, . . ., 𝛼𝑁).  

𝐿2(𝑃) is the underlying probability space which denotes all random variables with 

finite variances defined on that space and 𝑥𝑖 are assumed to have finite variances, 

therefore the sequence {𝑥𝑖}𝑖=1
∞ is in 𝐿2(𝑃). With this, we can easily see that the mean 

of the 𝑥𝑖 is 𝜇𝑖 = 𝐸(𝑥𝑖), variance is 𝜎𝑖𝑖 = 𝑉(𝑥𝑖) and the covariance is 𝜎𝑖𝑗 = 𝐶𝑜𝑣(𝑥𝑖 , 𝑥𝑗). 

If the span of 𝑥1, . . ., 𝑥𝑁 which is the linear subspace that consists of all the linear 

combination of 𝑥1, . . ., 𝑥𝑁 be denoted by 𝓕𝑁 = [𝑥1, . . ., 𝑥𝑁], but 𝓕 is the infinite union 

of 𝓕𝑁, that is, 
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⋃𝓕𝑁 =

∞

𝑁=1

𝓕, 

 

such that 𝒑 which is a random return on a portfolio formed from some finite subset of 

the assets is a member of 𝓕, that is 𝒑 𝝐 𝑭. 

Remember, if we look at 𝐿2(𝑃) under the mean-square inner product; 

 

(𝑝, 𝑞) = 𝐸(𝑝, 𝑞) = 𝐶𝑜𝑣 (𝑝, 𝑞) + 𝐸(𝑝, 𝑞)𝐸(𝑝, 𝑞), 

 

 It is easy to see that it has the Hilbert space framework, with the norm as; 

‖𝑝‖ =  (𝐸(𝑝2))
1
2 = (𝑉(𝑝) + (𝐸(𝑝))

2
)
1
2
, 

 

for all 𝑝, 𝑞 ∈  𝐿2(𝑝). Remember that �̅�, which is the closure of 𝑭 is a Hilbert space 

since it is a linear subspace of 𝐿2(𝑝). For   𝒑 𝝐 �̅� , there is a sequence {𝑝𝑁} ∈  𝑭  with 

the norm 𝐸((𝑝𝑁 − 𝑝)
2) that tends to zero as 𝑁 tends to infinity; 

 

𝐸((𝑝𝑁 − 𝑝)
2)  → 0  𝑎𝑠 𝑁 → ∞. 

 

This implies that there is a finite number of portfolios whose random returns are good 

approximations of 𝑝. If we have (𝑥1, . . ., 𝑥𝑁) then, ∑𝑁  becomes the covariance 

matrix of  (𝑥1, . . ., 𝑥𝑁) and ∑ 𝛼𝑖
𝑁
𝑖=1  is the cost of the portfolio, then 𝑝 =   ∑ 𝛼𝑖𝑥𝑖

𝑁
𝑖=1  with 

norm as  

‖𝑝‖2 = (∑𝛼𝑖

𝑁

𝑖=1

 )

1
2

 

and also  𝑞 =   ∑ 𝛽𝑖𝑥𝑖
𝑁
𝑖=1 , with norm as  

‖𝑞‖2 = (∑𝛽𝑖

𝑁

𝑖=1

 )

1
2

. 

Looking at the equality in the probability space; 𝐿2(𝑃) which is Hilbert space, is 

𝐸((𝑝 − 𝑞)2) = 0, therefore it implies that 𝑝 − 𝑞 = 0, showing that 𝑝 = 𝑞. If 𝑝 = 𝑞, 

therefore 𝑉(𝑝 − 𝑞) = 0 and this gives that 𝛼𝑖 = 𝛽𝑖.  
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Remember that Riesz representation theorem stated thus; If 𝐿 is a continuous linear 

functional on a Hilbert space ℋ, then there is a unique 𝑞 ∈ ℋ such that 𝐿(𝑝) =

 (𝑞, 𝑝) for every 𝑝 ∈ ℋ. And the Projection theorem stated thus; If  𝒢 is a closed 

linear subspace of a Hilbert space ℋ, the every 𝑝 ∈ ℋ has a unique decomposition 

as 𝑝 =  𝑝1 + 𝑝2, where  𝑝1 ∈   𝒢 and 𝑝2 ∈  𝒢
┴ (i.e., 𝒢┴ = {𝑝2 ∈ ℋ ; (𝑝2, 𝑞) =

0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑞 ∈   𝒢  } ).  

Chamberlain and Rothschild (1983) came up with the result; If 𝑝𝑁  =   ∑ 𝛼𝑖𝑁𝑥𝑖
𝑁
𝑖=1  

converges to 𝑝 (in mean-square), then 𝑝 is referred to as a limit portfolio. They 

further stated that if it is not possible to obtain a riskless, positive, return at zero cost, 

then the linear functional that gives the cost of a portfolio is continuous. From Riesz's 

theorem, it follows that this linear functional can be represented by a limit portfolio 

and this limit portfolio generates the mean-variance frontier.   

 

Zhu (2012) worked on a discrete model for the financial market, they used a finite set 

𝛺 to represent all possible economic states and assume that the natural probability 

of each state is described by a probability measure 𝑃 on the power set of 𝛺, and the 

they assume that 𝑃(𝑤)  > 0 for all 𝑤 ∈ 𝛺. If 𝑅𝑉 (𝛺) is the finite dimensional Hilbert 

Space of all random variables defined on 𝛺, with inner product 

〈𝜉, 𝜂〉 = 𝐸𝑃(ξη) =  ∫ 𝜉𝜂𝑑𝑃

𝛺

= ∑ 𝜉(𝑤) 𝜂(𝑤)𝑃(𝑤).

𝑤∈𝛺

 

For ξ ∈ RV (Ω) they used ξ> 0 to signal 𝜉(𝑤) ≥ 0 for all 𝑤 ∈ Ω and at least one of the 

inequalities is strict. We consider a discrete model in which trading action can only 

take place at t = 0, 1, 2, . . . 

 

Chamberlain (1987) developed bonds on asymptotic efficiency for a particular class 

of non-parametric models; they assume that {(𝑥𝑖1, 𝑥𝑖2, 𝑦𝑖)}𝑖=1
∞  is independent and 

identically distributed according to some unknown distribution 𝐹0, and that 𝐸(𝑥𝑖1𝑢𝑖) =

𝐸(𝑥𝑖2𝑢𝑖) = 0, where the residual 𝑢𝑖   is defined by 𝑢𝑖 = 𝑦𝑖 − 𝛽01𝑥𝑖1 − 𝛽02𝑥𝑖2. They want 

to impose the restriction that 𝛽02 = 0.  Suppose that they first obtain (�̂�1𝑛, �̂�2𝑛) from 

the unrestricted least squares regression of  𝑦  on  𝑥1, 𝑥2, and then obtain a restricted 

estimator of 𝜃0 = 𝛽01  by choosing 𝜃𝑛 to 
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min
𝜃
((
�̂�1𝑛
�̂�2𝑛

) − (
𝜃

0
))

′

𝐴𝑛 ((
�̂�1𝑛
�̂�2𝑛

) − (
𝜃

0
)), 

where 𝐴𝑛 converges with probability one to 𝐴, a positive-definite matrix and the 

optimal choice for 𝐴 is the inverse of the asymptotic covariance matrix of (�̂�1𝑛, �̂�2𝑛). 

In the homoskedastic case with 𝐸(𝑢𝑖
2|𝑥𝑖1, 𝑥𝑖2) =  𝜎

2 we set  

𝐴𝑛 = 𝑛
−1∑𝑥𝑖𝑥𝑖

′

𝑛

𝑖=1

 

 where 𝑥𝑖
′ = 𝑥𝑖1, 𝑥𝑖2 and 𝜃𝑛 = 𝛽𝑦𝑥1  which is the least square coefficient in the 

regression of 𝑦 on 𝑥1. But more generally, in the heteroskedasticity, 

𝐴𝑛 = [(
1

𝑛
∑𝑥𝑖𝑥𝑖

′

𝑛

𝑖=1

)

−1

(
1

𝑛
∑�̂�𝑖𝑛

2 𝑥𝑖𝑥𝑖
′

𝑛

𝑖=1

)(
1

𝑛
∑𝑥𝑖𝑥𝑖

′

𝑛

𝑖=1

)

−1

]

−1

, 

where �̂�𝑖𝑛
2 = 𝑦𝑖 − �̂�1𝑛𝑥𝑖1 − �̂�2𝑛𝑥𝑖2  

from the theory of minimum-𝜒2 or minimum-distance estimation that the limiting 

distribution of √𝑛(𝜃𝑛 − 𝜃0) depends upon 𝐴 and not upon the sequence of estimators 

{𝐴𝑛}. If 𝐸(𝑢𝑖
2𝑥𝑖 , 𝑥𝑖) = 𝐸(𝑢𝑖

2)𝐸(𝑥𝑖, 𝑥𝑖), then 𝜃𝑛 has the same asymptotic variance as 

𝛽𝑦𝑥1; but in general, it is strictly more efficient. 

 

Chamberlain (2000) worked on choosing a two assets portfolio at a date  T, with the 

returns at  t  per unit invested at 𝑡 − 1 is regarded as 𝑦1𝑡 𝑎𝑛𝑑 𝑦2𝑡. His portfolio choice 

is  

𝑍 ≡ {(𝑦1𝑡 , . . . , 𝑦𝐾𝑡)}𝑡=0
𝑇  

having observed the value of the variables 𝑦3𝑡, . . . , 𝑦𝐾𝑡 as the future forecasting 

values of the returns. If the portfolio with two assets is held on until  𝐻, with one unit 

of the amount invested on it;  a and 1 − a respectively. 

If 𝑤 = {(𝑦1𝑡 , 𝑦2𝑡)}𝑡=𝑇+1
𝐻  and ℎ(𝑤, 𝑎) denote the value of the portfolio at  𝑡 = 𝐻: 

ℎ(𝑤, 𝑎) = 𝑎 ∏ 𝑦1𝑡

𝐻

𝑡=𝑇+1

+ (1 − 𝑎) ∏ 𝑦2𝑡

𝐻

𝑡=𝑇+1

, 

The problem posed here is how an investor is going to choose 𝑎. If the investor 

regards (𝑧, 𝑤)as the outcome of the random variable  (𝑍,𝑊) with distribution 𝑄 and 𝑢 

as his utility function, then choose a decision rule 𝑑 that will maps observations 𝑧 into 

actions 𝑎: 
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max
𝑑
𝐸𝑄 [𝑢 (ℎ(𝑊, 𝑑(𝑍)))]. 

 

c) Ito Calculus  

Ito (1944) and (1951) invented stochastic calculus and stochastic differential 

equation respectively since then many researchers have been working on the area 

extensively.  It is assumed that the stochastic finance theory presumes that the stock 

price, currency exchange rate and interest rate follow Ito’s stochastic differential 

equation. Liu (2013) questioned and argued the rationality of the above presumption. 

Their line of argument follows thus: 

If they assume that the stock price 𝑋𝑡 follows the stochastic differential equation  

𝑑𝑋𝑡  =  𝑒𝑋𝑡𝑑𝑡 +  𝜎𝑋𝑡𝑑𝑊𝑡 

where 𝑒 is the log-drift, 𝜎 is the log-diffusion, and 𝑊𝑡 is a Wiener process, they tried 

to describe what will happen with such an assumption. It follows from the stochastic 

differential equation;  𝑑𝑋𝑡  =  𝑒𝑋𝑡𝑑𝑡 +  𝜎𝑋𝑡𝑑𝑊𝑡 that 𝑋𝑡 is is a geometric Wiener 

process, i.e., 

𝑋𝑡  =  𝑋0 exp((𝑒 − 𝜎
2/2)𝑡 +  𝜎𝑊𝑡 

from which they derive  

𝑊𝑡 =
ln𝑋𝑡 − ln𝑋0 − (𝑒 − 𝜎

2/2)𝑡

𝜎
 

whose increment is  

𝛥 𝑊𝑡 =
ln𝑋𝑡+𝛥𝑡 − ln𝑋0 − (𝑒 − 𝜎

2/2)𝛥𝑡

𝜎
 

and they got  

𝐴 =
− (𝑒 − 𝜎2/2)𝛥𝑡

𝜎
 

Their line of argument continued, that the real stock price 𝑋𝑡 is a step function of time 

with a finite number of jumps, despite the fact that it looks like a curve. Without loss 

of generality, they assume that 𝑋𝑡 is observed to have 100 jumps during a fixed 

period. Then, they divided the period into 10,000 equal intervals and, they observed 

10,000 samples of  𝑋𝑡, which follows from 𝛥 𝑊𝑡 =
ln𝑋𝑡+𝛥𝑡−ln𝑋0− (𝑒 − 𝜎

2/2)𝛥𝑡

𝜎
; that 

𝛥 𝑊𝑡 has 10,000 samples that consist of 9,900 𝐴’s and 100 other numbers: 
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9,900 {
𝐴,
𝐴,… ,
𝐴

 𝑎𝑛𝑑 100 {
𝐵,

𝐶, . . . ,
𝑍

. They stated that nobody can believe that those 10,000 

samples follow a normal probability distribution with expected value 0 and 

variance 𝛥𝑡, (Figure illustrating that to be shown later). They claimed that this fact 

contradicts the property of Wiener process, which the increment 𝛥 𝑊𝑡 is a normal 

random variable with expected value 0 and variance 𝛥𝑡. Thus, they conclude that the 

stock price 𝑋𝑡 does not follow the stochastic differential equation. 

They went further to presume that some think that the stock price does behave like a 

geometric Wiener process (or Ornstein-Uhlenbeck process) in macroscopy although 

people recognise the paradox in microscopy. However, as the very core of stochastic 

finance theory, Ito’s calculus is just built on the microscopic structure, of Wiener 

process (that is the differential 𝑑𝑊𝑡), rather than macroscopic structure. They 

claimed that Ito’s calculus is precisely, dependent on the presumption that 𝑑𝑊𝑡 is a 

normal random variable with expected value 0 and variance 𝑑𝑡. 

This, they saw as an unreasonable presumption which causes the second order term 

in Ito’s formula, 

𝑑𝑋𝑡 =
𝜕ℎ

𝜕𝑡
(𝑡,𝑊𝑡)𝑑𝑡 +

𝜕ℎ

𝜕𝑤
(𝑡,𝑊𝑡)𝑑𝑊𝑡 + 

1

2

𝜕2ℎ

𝜕𝑤
(𝑡,𝑊𝑡)𝑑𝑡 

They concluded by saying that the increment of the stock price is impossible to 

follow any continuous probability distribution, and due to the basis of the above 

paradox, they do not think that Ito’s calculus can play the essential tool of finance 

theory because Ito’s stochastic differential equation is impossible to model real stock 

price. 

 

d) Uncertainty Distribution 

Black and Scholes (1973) constructed a theory for determining the stock option 

price, otherwise known as the Black-Scholes formula. Since then, stochastic 

financial mathematics was founded based on probability theory. Sometimes in 

practice, one may notice that there are small numbers of samples or no samples at 

all that are available to estimate a probability distribution. To solve this problem, Liu 

(2007) developed Uncertainty theory, which is a branch of axiomatic mathematics for 

modelling human uncertainty based on normality, duality, subadditivity, and product 
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axioms. The theory has been applied to many fields such as uncertain programming, 

uncertain inference control, and uncertain optimal control. 

 

Let 𝛤 be a nonempty set, and ℒ a 𝜎-algebra over 𝛤. Each element 𝛬 in ℒ is called an 

event. A set function ℳ from ℒ to [0; 1] is called an uncertain measure if it satisfies 

the following axioms; Liu (2007): 𝛺𝑀 

Axiom 1. (Normality Axiom) ℳ{ 𝛤} = 1 for the universal set 𝛤; 

Axiom 2. (Duality Axiom) ℳ{ 𝛬} +  ℳ{𝛬𝑐} = 1  for any event 𝛬; 

Axiom 3. (Subadditivity Axiom) For every countable sequence of events 𝛬1, 𝛬2, . . ., 

we have 

ℳ = {⋃𝛬𝑖

∞

𝑖=1

} ≤  ∑ℳ{𝛬𝑖}

∞

𝑖=1

. 

Where (𝛤, ℒ, ℳ) is called an uncertainty space. To obtain an uncertain measure of 

the compound event; Liu (2009a), defined a product uncertain measure there by 

producing the fourth axiom of uncertainty theory: 

Axiom 4. (Product Axiom) Let(𝛤𝑘, ℒ𝑘, ℳ𝑘) be uncertainty spaces for 𝑘 =  1, 2, … , 𝑛, 

then the product uncertain measure ℳ is an uncertain measure on the product  𝜎-

algebra ℒ1𝑥 ℒ2 𝑥, . . ., 𝑥ℒ𝑛 satisfying  

ℳ = {∏𝛬𝑘

𝑛

𝑖=1

} = min
1≤𝑘≤𝑛

ℳ𝑘{𝛬𝑘} =  ⋀ℳ𝑘{𝛬𝑘}

∞

𝑘=1

. 

where 𝛬𝑘 are arbitrarily chosen events from ℒ𝑘for 𝑘 = 1, 2, 3, . ..  

Therefore Liu (2007) gave the following definitions: 

Definition: An uncertain variable is a measurable function 𝜉 from an uncertainty 

space (𝛤, ℒ, ℳ) to the set of real numbers, for any Borel set B of real numbers, the 

set. 

{𝜉 ∈  𝐵}  =  {𝛾 ∈ 𝛤|𝜉 (𝛾 )  ∈  𝐵} 

Is an event. To describe an uncertain variable in practice, Liu (2007) defined the 

concept of uncertainty distribution. 

Definition: An uncertainty distribution Φ(𝑥) is said to be regular if it is a continuous 

and strictly increasing function with respect to 𝑥 at which 0 <  Φ(𝑥)  <  1, and  

lim
𝑥→−∞

Φ(𝑥) = 0,        lim
𝑥→+∞

Φ(𝑥) = 1 
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Thus, this shows that the uncertainty distribution Φ:ℝ → [0, 1] of an uncertain 

variable, 𝜉 is defined as Φ(𝑥) = ℳ{𝜉 ≤ 𝑥} and the expected value of its variable is 

the definition given above. 

2.2.4 Practical applications of these ideas in different contexts,  

In this section, we aim at reviewing the empirical applications of some of the ideas 

we have talked about to some emerging markets, with emphasis on the stylised facts 

of asset returns and their implications for volatility estimation as applied to 

investments, trading, and risk management. 

  

Cervelló-Royo et al. (2015) present empirical evidence which confronts the classical 

Efficient Market Hypothesis, which states that it is not possible to beat the market by 

developing a strategy based on a historical price series. They propose a risk-

adjusted profitable trading rule based on technical analysis and the use of a new 

definition of the flag pattern, which defines when to buy or sell, the profit pursued in 

each operation, and the maximum bearable loss. Empirically, they used a database 

comprised of 91,307 intra-day observations from the US Dow Jones index and 

parameterised the trading rule by generating 96 different configurations and reported 

the results of the whole sample over three sub-periods. They also replicated the 

analysis on two leading European indexes: the German DAX and the British FTSE, 

and the returns provided by the proposed trading rule are higher for the European 

than for the US index. This highlights the more significant inefficiency of the 

European markets. 

 

a) Random matrix theory (RMT) 

El Alaoui (2015) studied cross-correlation of the structure of a portfolio of equities 

among stocks of Casablanca Stock Exchange by using random matrix theory (RMT) 

to analyse eigenvalues and see if there is a presence of pertinent information using 

Marčenko–Pastur distribution. They inferred that Marčenko–Pastur distribution 

presented the theoretical interval of RMT predictions to observe which eigenvalues 

are deviating by plotting their empirical distribution. And also, the deviating 

eigenvalues might contain important information about the market which represents 

about 11% of the studied eigenvalues of Casablanca Stock Exchange stocks. They 

advised the Portfolio managers to consider that there is a sharp asymmetry in the 
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left, which means that the market reacts more to the adverse events than good 

events when they construct their portfolios. To help the practitioners reduce their 

errors of predictions, they prescribed the cleaning procedure of the correlation 

matrix, which reduces the gap between predicted and slightly realised risks. 

Furthermore, they claimed that the analysis of eigenvectors components distributions 

of eigenvalues showed that normal distribution fitting is not very suitable for elements 

that are outside of the range of RMT predictions, which shows that they are not noisy 

elements. Finally, they confirm that the inverse participation ratio gives more 

precision about the deviation degree of eigenvalues elements to understand better 

the correlation structure of the portfolio. 

 

b) Book-to-market (BM) ratios 

Ko et al. (2014) studied Taiwan stock market; they argue that a sophisticated 

investor can do better (i.e. obtain higher returns) than a simple buy-and-hold strategy 

by timing the market with the help of some technical analysis. They show that an 

application of a moving average timing strategy to portfolios sorted by book-to-

market (BM) ratios could generate higher returns than the buy-and-hold strategy and 

confirm that the moving average timing strategy does substantially out-perform the 

buy-and-hold strategy. Based on trading signals issued by the moving average rule, 

they prescribe to the practitioners to go for a zero-cost portfolio constructed by 

buying the highest BM portfolio, and short-selling the lowest BM portfolio and the 

application of their result demonstrates that such a new investment strategy can 

produce significantly positive returns.  They further verified their results by extending 

the empirical study with a different currency, alternative lag lengths, transaction cost, 

sub-period analysis, business cycles and market timing. 

 

c) GARCH (p,q) model 

Bollerslev (1986) proposed a GARCH (p,q) model for measuring and forecasting 

financial market volatility. Ezepue and Omar (2013b) discussed the possibility of 

developing a dynamic portfolio optimisation schema which incorporates know, for a 

GARCH (1,1)– based, volatility measures of risk. Ezepue and Omar (2013c), look at 

multidisciplinary stochastic – time series and control engineering research in stock 

market characterisation and development (SMCD). In that paper, they illustrate the 
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fundamental ideas of all shares index in the Nigerian stock market (NSM) for the 

period 2000–2010, using ARCH–GARCH volatility modelling. Here, the researcher 

will look at GARCH (1,1) model which in the literature on volatility models is 

considered to be a versatile risk model that applies to many situations in which 

financial quantities vary over time Omar (2012). 

Ezepue and Omar (2013a) review the recent publications on the global financial 

crisis policy papers on stock and capital market development as relating to volatility 

modelling of the Nigerian stock market. In their work, they apply what they called five 

candidate GARCH volatility models to the All shares index and returns of the NSM 

for 2000 – 2010 so that they can identify volatility driver and select a suitable best – 

fit – model for the pre and post-crisis periods. Though some authors like Aliyu 

(2009a),(2009b), (2012); Adamu (2008); Adebiyi et al (2009) ; AFDB (2007); 

Chinzara (2008); Ezepue and Omar (2012); Musa et al (2013); Okpara (2010); 

Omotosho and Daguwa (2012); Umar and Abdulhakeem (2010) and Yahaya (2012), 

have worked in this area of Nigerian financial system but Ezepue and Omar (2013a) 

did not stop at the exploration of the ideas with singular focus on the topics like the 

authors mentioned above. Instead, they went further to develop the concept to a 

comprehensive – Economy stock market characterisation. 

2.3 Summary and conclusion  

In this chapter, we try to bring out what is in the literature as regards the work we 

want to do. We also discussed risk and its type, risk management and evaluations, 

and return of an investment. Furthermore, we looked at the portfolio, the value of a 

portfolio at any given time, the interactions of different assets in a portfolio. Finally, 

we analysed the effect of portfolio diversification.  
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Chapter 3     Overview of the study and the methodology 

3.1 Introduction 

In this chapter, we are going to discuss our research methodology; a brief outline of 

the methods which we used while carrying out the research work. We gave a brief 

insight on how we obtained our data and, will enumerate the models we proposed 

using in the course of the research. Furthermore, a brief background study of the 

work shown in the following sections in this chapter.  

3.2 Data to be used 

We collected the data which we are working with from the Nigerian Stock Exchange 

(NSE) and some relevant institutions like Central bank of Nigeria and some 

stockbroker firms. Other datasets were obtained from the Johannesburg stock 

exchange (JSE). 

3.3 Research Methodology 

To justify the research objectives and questions, we adopted some methods and 

strategies. These strategies and techniques help to bring out the insight we have in 

work, and some this was discussed in subsequent sections. 

3.4 Risks obtainable in the investment system. 

Every investment one makes, one is expected to have some returns. But these 

returns are not guaranteed. Therefore, the possibility of variation of the return that 

comes in from the expected return is known as Risk. Consequently, we can see risk 

as to the potential for variability in Returns. 

Some investments are considered as a Low - Risk investment, while others are as 

a High - Risk investment. The Investment with Fairly stable returns is said to a low 

- risk investment, examples are government securities, while the one that has a 

fluctuating return is considered as a high - risk investment and examples are Equity 

shares.  
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This variation in returns (in holding securities, such as shares and Debentures, etc.), 

otherwise called risk is caused by several factors which are grouped into two major 

groups namely; Systematic -Risk and Unsystematic - Risk.  

3.4.1 Systematic - Risk  

Systematic - Risk comprises of factors that are external to the company, and it 

affects many securities simultaneously, and they are mostly not controllable. Take, 

for instance, factors like economic, political and social changes will affect the 

variability in the securities returns. If the economy moves into recession, the profits 

made by the companies will experience a downward shift, thereby bringing a decline 

in the stock price of most companies. Few factors made up this systematic risk, and 

they include; Interest rate, Market risk and Purchasing power risk.   

 

3.4.2 Unsystematic - Risks 

Unsystematic - Risks are those risks which the company can control the factors that 

induce the risks. Since the risk is controllable by the company, it is, therefore, unique 

and peculiar to the company due to the company's practises. Examples of such 

factors are a scarcity of raw materials, management inefficiency and labour strikes. 

This unsystematic risk factors can be further grouped into two ways; the operating an 

environment of the company which is called Business Risk and the financial pattern 

or policies adopted by the company which is called Financial Risk. 

 

Having gone through this, we can now see that the total risk components of security 

are the systematic risk and the unsystematic risk. 

3.5 Risk Measurement and Evaluation 

We have seen that the risk in investment is associated with the returns; the expected 

return of an investment is the probability-weighted average of all possible returns. 

Therefore, the risk of an investment cannot be evaluated or measured adequately 

without referring to the return. 

Let us denote the possible returns as 𝑥𝑖 , the probabilities of the possible returns 

as 𝑝(𝑥𝑖), while 𝐸(𝑋) which is the sum of the products of the possible returns with 

their respective probabilities. Therefore, the expected returns is calculated thus, 
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𝐸(𝑋) =  ∑ 𝑥𝑖  𝑝(𝑥𝑖)
𝑛
𝑖=1    where 𝑖 = 1, 2, 3, . . . , 𝑛. 

 

 

For instance, if an investor has a share which he is expecting    30%, 40%, 50%, 60%, 

and 70% as the case may be when viewed in a different perspective, and also 

0.10, 0.30, 0.40, 0.10, and 0.10 are respective probabilities of the possible returns. 

Then, the expected which is  𝐸(𝑋) =  ∑ 𝑥𝑖  𝑝(𝑥𝑖)
𝑛
𝑖=1    will be evaluated is this way;  

 

 

  

 Therefore,  𝐸(𝑋) =  ∑ 𝑥𝑖 𝑝(𝑥𝑖)
𝑛
𝑖=1  = 48% 

 𝐸(𝑋) = 48% 

 

Now we have seen the expected return; we can now talk about the risk calculation 

since the expected returns are not sufficient to determine the risk of an investment. 

In doing this, one may use several measures to do so, but the Mean-Variance 

approach is the widely accepted procedure for assessment of risk. 

Therefore, we compute the Variance using the expected return �̅� above. Let's 

denote variance as 𝜎2, thus, 

 

𝜎2 = ∑ [(𝑥𝑖 − �̅�)
2 𝑝(𝑥𝑖)]

𝑛
𝑖=1 ,  𝑖 = 1, 2, 3, … , 𝑛. 

The above equation is the summation of the products of the squares of the deviation 

with their respective probabilities. 
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Therefore, 𝜎2 = ∑ [(𝑥𝑖 − �̅�)
2 𝑝(𝑥𝑖)]

𝑛
𝑖=1 = 116.0. 

 

Finally, the square root of the variance 𝜎2 is the Standard deviation. 

Remember, we said earlier that the risk associated with securities is made up of two 

components; systematic risk and unsystematic risk.  Since the unsystematic risk is a 

type of risk that is peculiar to a company’s security, it can be reduced by 

diversification of the investment, while systematic risk cannot be diversifiable, 

hence, needs to be looked into by the investor. 

3.6 The Returns of an Investment 

When we talk about Portfolio theory, we are talking about the theory that deals with 

the problems of constructing a collection of assets in an investment with the sole aim 

of making a profit. 

While selecting a portfolio, we will also have the financial objectives and the risk 

tolerance of the investor in mind. The implication of the statement above shows that 

there are two basic features of the asset we will consider before selecting them. We 

must look at the average returns over some time and also, how risky it would be to 

stake on such asset over the proposed investment period. 
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Let 𝐴 be our notation for an asset such that 𝐴(0) and 𝐴(𝑡) be the values of the asset 

at the time equal to zero (t = 0 ie at the time of investing) and t respectively. 

Therefore, the rate of return (𝜌) the asset is defined as  

 

𝐴(𝑡) =  (1 + 𝜌)𝐴(0)                                                                                       (3.1)        

                                                         

This rate of return can be seen in a layman's as an effective interest rate. Therefore 

the rate of the return is; 

 

𝜌 =  
𝐴(𝑡) − 𝐴(0)

𝐴(0)
                                                                                 (3.2) 

 

Remember that the actual value of 𝐴(𝑡) is uncertain at the point 𝐴(0) ie, at the point 

of investing, because of this uncertainty nature of the 𝐴(𝑡), we should consider it as a 

random variable in other to model it. 

Therefore, the average return is 

 

𝜇 = 𝐸(𝜌)                                                                                              (3.3) 

 

where 𝐸(𝜌) is the expectation of a random variable which we called expected rate of 

return. This expected rate of return on its own can only show us how the return will 

be but will not bring out the riskiness of the assets. 

Therefore, we make use of the variance to bring out the riskiness of the asset, 

 

𝜎2 = 𝑣𝑎𝑟(𝜌) = 𝐸(|𝜌 −  𝜇|2)                                                                  (3.4) 

 

Due to the risky nature of the assets, it is vital to consider the coupling effect of the 

assets (which we are going to throw more light on it). If we have 𝑛𝑡ℎ collection of 

assets(𝐴1,𝐴2,...,𝐴𝑛) , let us denote the rate of return and variance of any 𝑖𝑡ℎ asset by 

𝜌𝑖  and 𝜎𝑖
2 respectively. Here we look at the coupling effect among the assets to be; 

𝜎𝑖𝑗 = 𝐸[(𝜌𝑖 − 𝜇𝑖)(𝜌𝑗 − 𝜇𝑗)]                                                                             (3.5) 
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This coupling leads to the definition of covariance matrix V, knowing that𝜎𝑖𝑗 = 𝜎𝑗𝑖, 

also when  𝑖 = 𝑗, we have that 𝜎𝑖𝑖 = 𝜎𝑖
2 or 𝜎𝑗𝑗 = 𝜎𝑗

2 

𝑉 = [

𝜎11 … 𝜎1𝑛
… … …
𝜎𝑛1 … 𝜎𝑛𝑛

]                                                                                   (3.6) 

 

Note that 𝑉 is a symmetric matrix and positive definite. 

3.7 The principal of portfolios 

We have seen that a Portfolio is an investment made in several assets using a 

certain amount of money 𝑀 . If we have 𝑛 number of assets to invest on and we 

allocate a certain amount of money to each 𝑖𝑡ℎ asset, we can now denote the 

amount as 𝑀𝑖 (which is otherwise called the weight). Remember that the total 

amount invested is 𝑀. Therefore,  

∑𝑀𝑖 = 𝑀

𝑛

𝑖=1

                                                                                        (3. 7) 

without much ambiguity, one can easily see that the fraction of the money invested 

on the 𝑖𝑡ℎ asset is 𝑤𝑖  =
𝑀𝑖

𝑀
.  

Therefore, we can see that, 

∑𝑀𝑖 = 𝑀

𝑛

𝑖=1

                                                               

but 

𝑤𝑖  =
𝑀𝑖

𝑀
                                                                                      (3. 8) 

therefore,  

∑𝑤𝑖 

𝑛

𝑖=1

= ∑
𝑀𝑖

𝑀

𝑛

𝑖=1

                                                                                                                  

this implies that, 

∑𝑤𝑖 

𝑛

𝑖=1

= 
∑ 𝑀𝑖
𝑛
𝑖=1

𝑀
                                                                                                     

but remember that ∑ 𝑀𝑖 = 𝑀
𝑛
𝑖=1 , therefore, 
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∑𝑤𝑖 

𝑛

𝑖=1

= 
∑ 𝑀𝑖
𝑛
𝑖=1

𝑀
= 
𝑀

𝑀
= 1                                                                                               

therefore, 

∑𝑤𝑖 

𝑛

𝑖=1

= 1                                                                                         (3.9) 

 

3.8 The Value of a Portfolio at any Time 

The value of the Portfolio at any time (t) can be verified as in Kevin S. (2013); 

let the value of the portfolio be denoted as  𝑄𝑝 and expressed as; 

 

𝑄𝑝(𝑡) =  ∑
𝑀𝑖

𝐴𝑖(0)

𝑛

𝑖=1

 𝐴𝑖(𝑡)                                                                               (3.10) 

 

Remember that at the point of investing in the portfolio, the value of the 

portfolio 𝑄𝑝 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑄𝑝(0), then, 

𝑄𝑝(0) = 𝑀 = ∑𝑀𝑖   

𝑛

𝑖=1

                                                                                             

from equ. (3. 2) 

Recall that   𝜌 =  
𝐴(𝑡)−𝐴(0)

𝐴(0)
 , therefore in that respect, we will have that 𝜌𝑝(𝑡) ( which is 

the expected return of the portfolio) will be; 

𝜌𝑝(𝑡) =  
𝑄𝑝(𝑡) − 𝑄𝑝(0)

𝑄𝑝(0)
                                                                                (3. 11) 

 

this implies that, 

𝜌𝑝(𝑡) =
∑

𝑀𝑖

𝐴𝑖(0)
𝑛
𝑖=1  𝐴𝑖(𝑡) − 𝑀

𝑀
                                                                                              

where 𝑄𝑝(𝑡) =  ∑
𝑀𝑖

𝐴𝑖(0)

𝑛
𝑖=1  𝐴𝑖(𝑡) 𝑎𝑛𝑑 𝑄𝑝(0) = 𝑀 = ∑ 𝑀𝑖

𝑛
𝑖=1  

 

therefore, 



 

51 
 

𝜌𝑝(𝑡) =
∑

𝑀𝑖

𝐴𝑖(0)
𝑛
𝑖=1  𝐴𝑖(𝑡) − ∑ 𝑀𝑖

𝑛
𝑖=1

𝑀
                                                                 

= ∑
𝑀𝑖

𝑀

𝐴𝑖(𝑡)

𝐴𝑖(0)

𝑛

𝑖=1

− ∑
𝑀𝑖

𝑀

𝑛

𝑖=1

                                                               

= ∑(
𝑀𝑖

𝑀

𝐴𝑖(𝑡)

𝐴𝑖(0)
−
𝑀𝑖

𝑀
 )

𝑛

𝑖=1

                                                                

= ∑
𝑀𝑖

𝑀

𝑛

𝑖=1

(
𝐴𝑖(𝑡)

𝐴𝑖(0)
− 1)                                                                    

we have seen that 𝑚𝑖 =
𝑀𝑖

𝑀
 and 

𝐴𝑖(𝑡)

𝐴𝑖(0)
− 1 =  

𝐴𝑖(𝑡)−𝐴𝑖(0)

𝐴𝑖(0)
  therefore, 

𝜌𝑝(𝑡) =  ∑𝑚𝑖 (
𝐴𝑖(𝑡) − 𝐴𝑖(0)

𝐴𝑖(0)
)

𝑛

𝑖=1

                                                                          

but earlier we have seen that 𝜌𝑖 =
𝐴𝑖(𝑡)−𝐴𝑖(0)

𝐴𝑖(0)
 , therefore,  

 

𝜌𝑝(𝑡) =  ∑𝑤𝑖  𝜌𝑖

𝑛

𝑖=1

                                                                                    (3. 12) 

 

With this, we have seen that the rate of return of a portfolio is the weighted average 

of the rates of return of the assets.  We should note that these weights are 

determined by 𝑤𝑖  (ie the fraction of the money invested in each of the 𝑖𝑡ℎ asset). 

3.9 Expected rate of return and Variance of the Portfolio 

The expected rate of return of the portfolio will now be; 

𝜇𝑝 = 𝐸 (∑𝑤𝑖 𝜌𝑖

𝑛

𝑖=1

)                                                                                 (3. 13) 

 

but we have seen that 𝜇𝑖 = 𝐸(𝜌𝑖), therefore, 

𝜇𝑝 = ∑𝑤𝑖 𝐸(𝜌𝑖)

𝑛

𝑖=1

                                                                                 

 



 

52 
 

        =  ∑𝑤𝑖 𝜇𝑖

𝑛

𝑖=1

                                                                                          (3.14) 

 

The variance of the rate of return of the portfolio is given by,  

 

𝜎2 = 𝐸 (|𝜌𝑝 − 𝜇𝑝|
2
)                                                                                    (3.15) 

 

but we have shown that 𝜌𝑝 = ∑ 𝑚𝑖 𝜌𝑖
𝑛
𝑖=1  and 𝜇𝑝 = ∑ 𝑚𝑖 𝜇𝑖

𝑛
𝑖=1  therefore, 

𝜎2 = 𝐸(|∑𝑤𝑖 𝜌𝑖

𝑛

𝑖=1

− ∑𝑤𝑖 𝜇𝑖

𝑛

𝑖=1

|

2

)                                                                                    

= 𝐸(|∑𝑤𝑖 (𝜌𝑖

𝑛

𝑖=1

− 𝜇𝑖)|

2

)                                                                                       

= 𝐸([∑𝑤𝑖 (𝜌𝑖

𝑛

𝑖=1

− 𝜇𝑖)] [∑𝑤𝑗(𝜌𝑗

𝑛

𝑗=1

− 𝜇𝑗)])                                                           

= ∑∑𝑤𝑖 𝑤𝑗𝐸([𝜌𝑖 − 𝜇𝑖][𝜌𝑗 − 𝜇𝑗])

𝑛

𝑗=1

𝑛

𝑖=1 

                                                                       

= ∑ 𝑤𝑖 𝑤𝑗𝜎𝑖 𝑗

𝑛

𝑖 𝑗=1

                                                                                                                  

where 𝐸([𝜌𝑖 − 𝜇𝑖][𝜌𝑗 − 𝜇𝑗]) = 𝜎𝑖 𝑗  𝑎𝑛𝑑 ∑ 𝜎𝑖 𝑗 = 𝑉 𝑛
𝑖 𝑗 which is the Covariance Matrix. 

Therefore, 

𝜎2 = ∑ 𝑤𝑖 𝑤𝑗𝜎𝑖 𝑗

𝑛

𝑖 𝑗=1

= 𝑀𝑇𝑉𝑀                                                                        (3. 16) 

 

If we have two portfolios say 𝑥 and 𝑦 that contains various assets, we can 

quantitatively describe the coupling between the portfolios 𝑥 and 𝑦 by using the 

covariance of random rates of returns of the portfolios  𝜌𝑝
(𝑥)
 𝑎𝑛𝑑 𝜌𝑝

(𝑦)
, it gives thus; 

 

𝜎(𝑥,𝑦) = 𝐸[(𝜌𝑝
𝑥 − 𝜇𝑝

𝑥)(𝜌𝑝
𝑦
− 𝜇𝑝

𝑦
)]                                                                (3.17) 
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= 𝐸 [(∑𝑀𝑖
(𝑥)(𝜌𝑖 − 𝜇𝑖)

𝑛

𝑖=1

)(∑𝑀𝑗
(𝑦)
(𝜌𝑗 − 𝜇𝑗)

𝑛

𝑗=1

)]                                     

= ∑ 𝑀𝑖
(𝑥)
𝑀𝑗
(𝑦)
𝐸([𝜌𝑖 − 𝜇𝑖][𝜌𝑗 − 𝜇𝑗])

𝑛

𝑖 𝑗=1

                                                        

= ∑ 𝑀𝑖
(𝑥)
𝑀𝑗
(𝑦)
𝜎𝑖 𝑗

𝑛

𝑖 𝑗=1

                                                                                               

= (𝑀𝑝
(𝑥)
)
𝑇

𝑉𝑀𝑝
(𝑦)
                                                                                                    

 

3.10 Covariance and Correlation 

Covariance is a statistical measure of how much two random variables interact. In 

our case, it is the measure of interaction of the returns of the assets in the portfolio. 

Though the magnitude of this covariance is not easy to interpret, the sign spans from 

negative to positive, the sign of the covariance shows the tendency in the linear 

relationship between the assets in the portfolio. In other words, we can say that 

covariance is an absolute measure of the interaction of the risk between assets.  

When the returns of two securities move in the same direction consistently, then the 

covariance is said to be positive, but when they move in the opposite direction 

consistently, it is said to be negative. It is zero if their movement is independent of 

each other.  Therefore, if we have two securities 𝑥 and 𝑦, their covariance is 

 

𝐶𝑜𝑣(𝑥, 𝑦) =  ∑
[(𝜌𝑥 − 𝜇𝑥)(𝜌

𝑦 − 𝜇𝑦)]

𝑁

𝑛

𝑖=1

                                                            (3.18) 

 

where N is the number of observations. 

On the other hand, the coefficient of correlation is related to the covariance thus,  

 

𝐶𝑜𝑣(𝑥, 𝑦) =  𝛾𝑥,𝑦 𝜎𝑥𝜎𝑦                                                                                        

 

which implies that, 
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𝛾𝑥,𝑦 = 
𝐶𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
                                                                            (3. 19) 

 

where 𝜎𝑥 , 𝜎𝑦 are the standard deviation of 𝑥 and 𝑦 respectively, while 𝛾𝑥,𝑦 is the 

coefficient of correlation of 𝑥 and 𝑦. 

3.11 The Case with two Risky assets. 

In this case, we will consider the case of two Risky assets in a portfolio and see the 

effect of the interaction of the assets in terms of risk reduction. Remember that this 

interaction produces a coefficient which is called the coefficient of correlation (𝛾𝑥,𝑦) 

and it takes its value from +1 to -1. 

Let 𝑀𝑥 𝑎𝑛𝑑 𝑀𝑦 be the weight (ie the amount of money) invested in x and y assets 

respectively, 𝛾𝑥,𝑦 is the coefficient of correlation between x and y, while 𝜎𝑥 𝑎𝑛𝑑 𝜎𝑦 are 

the standard deviations of x and y. Then, 

(𝜎(𝑥,𝑦))
2
= 𝑀𝑇𝑉𝑀 

= [𝑀𝑥 𝑀𝑦]  [
𝜎𝑥 0
0 𝜎𝑦 

] [
1 𝛾𝑥,𝑦
𝛾𝑥,𝑦 1

] [
𝜎𝑥 0
0 𝜎𝑦 

] [
𝑀𝑥

𝑀𝑦
] 

this implies that 

[𝑀𝑥 𝑀𝑦] [
𝜎𝑥 0
0 𝜎𝑦 

] =  [𝑀𝑥𝜎𝑥 + 0 0 +𝑀𝑦𝜎𝑦  ] =  [𝑀𝑥𝜎𝑥 𝑀𝑦𝜎𝑦 ]  

also  

[𝑀𝑥𝜎𝑥 𝑀𝑦𝜎𝑦 ] [
1 𝛾𝑥,𝑦
𝛾𝑥,𝑦 1

] =  [𝑀𝑥𝜎𝑥 + 𝛾𝑥,𝑦𝑀𝑦𝜎𝑦 𝛾𝑥,𝑦𝑀𝑥𝜎𝑥 +𝑀𝑦𝜎𝑦 ] 

then  

  [𝑀𝑥𝜎𝑥 + 𝛾𝑥,𝑦𝑀𝑦𝜎𝑦 𝛾𝑥,𝑦𝑀𝑥𝜎𝑥 +𝑀𝑦𝜎𝑦 ] [
𝜎𝑥 0
0 𝜎𝑦 

] =      

[𝑀𝑥𝜎𝑥
2 + 𝛾𝑥,𝑦𝑀𝑦𝜎𝑥 𝜎𝑦 + 0 0 + 𝛾𝑥,𝑦𝑀𝑥𝜎𝑥 𝜎𝑦 +𝑀𝑦𝜎𝑦

2] =        

[𝑀𝑥𝜎𝑥
2 + 𝛾𝑥,𝑦𝑀𝑦𝜎𝑥 𝜎𝑦 𝛾𝑥,𝑦𝑀𝑥𝜎𝑥 𝜎𝑦 +𝑀𝑦𝜎𝑦

2]  

Then finally, 

[𝑀𝑥𝜎𝑥
2 + 𝛾𝑥,𝑦𝑀𝑦𝜎𝑥 𝜎𝑦 𝛾𝑥,𝑦𝑀𝑥𝜎𝑥 𝜎𝑦 +𝑀𝑦𝜎𝑦

2] [
𝑀𝑥

𝑀𝑦
] =   

[𝑀𝑥
2𝜎𝑥

2 + 𝛾𝑥,𝑦𝑀𝑦𝜎𝑥 𝜎𝑦 + 𝛾𝑥,𝑦𝑀𝑥𝜎𝑥 𝜎𝑦 +𝑀𝑦
2𝜎𝑦

2] =  

𝑀𝑥
2𝜎𝑥

2 + 2𝛾𝑥,𝑦𝑀𝑥𝑀𝑦𝜎𝑥 𝜎𝑦 +𝑀𝑦
2𝜎𝑦

2  
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Therefore, 

 

(𝜎(𝑥,𝑦))
2
= 𝑀𝑥

2                                                                                          (3.20) 

 

 

Let us consider the special cases when 𝛾𝑥,𝑦 is +1, 0, and -1. 

 

If 𝛾𝑥,𝑦 = +1, then the equation of the variance; 

(𝜎(𝑥,𝑦))
2
= 𝑀𝑥

2𝜎𝑥
2  + 𝑀𝑦

2𝜎𝑦
2 + 2𝛾𝑥,𝑦𝑀𝑥𝑀𝑦𝜎𝑥 𝜎𝑦  

 

will become: 

 

(𝜎(𝑥,𝑦))
2
= 𝑀𝑥

2𝜎𝑥
2  + 𝑀𝑦

2𝜎𝑦
2 + 2𝑀𝑥𝑀𝑦𝜎𝑥 𝜎𝑦  

 

This implies that, 

 

(𝜎(𝑥,𝑦))
2
= (𝑀𝑥𝜎𝑥 + 𝑀𝑦𝜎𝑦 )

2 

Therefore, 

 

 𝜎(𝑥,𝑦)  = 𝑀𝑥𝜎𝑥 + 𝑀𝑦𝜎𝑦                                                             (3.21) 

 

𝑀𝑥𝜎𝑥 𝑎𝑛𝑑  𝑀𝑦𝜎𝑦  are both positive and we will have a straight line in the risk/return 

space 

If 𝛾𝑥,𝑦 = 0, then the equation of the variance; 

(𝜎(𝑥,𝑦))
2
= 𝑀𝑥

2𝜎𝑥
2  + 𝑀𝑦

2𝜎𝑦
2 + 2𝛾𝑥,𝑦𝑀𝑥𝑀𝑦𝜎𝑥 𝜎𝑦  

will become; 

(𝜎(𝑥,𝑦))
2
= 𝑀𝑥

2𝜎𝑥
2  + 𝑀𝑦

2𝜎𝑦
2 

This implies that, 

𝜎(𝑥,𝑦) = √𝑀𝑥
2𝜎𝑥2  + 𝑀𝑦

2𝜎𝑦2                                                           (3. 22) 
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again, the standard deviation shrinks a bite, and we will have part of a hyperbola in 

the risk/return space. 

 

If 𝛾𝑥,𝑦 = −1, then the equation of the variance; 

(𝜎(𝑥,𝑦))
2
= 𝑀𝑥

2𝜎𝑥
2  + 𝑀𝑦

2𝜎𝑦
2 + 2𝛾𝑥,𝑦𝑀𝑥𝑀𝑦𝜎𝑥 𝜎𝑦  

 

will become: 

 

(𝜎(𝑥,𝑦))
2
= 𝑀𝑥

2𝜎𝑥
2  + 𝑀𝑦

2𝜎𝑦
2 −  2𝑀𝑥𝑀𝑦𝜎𝑥 𝜎𝑦  

 

This implies that, 

 

(𝜎(𝑥,𝑦))
2
= (𝑀𝑥𝜎𝑥 − 𝑀𝑦𝜎𝑦 )

2 

Therefore, 

 

 𝜎(𝑥,𝑦)  = 𝑀𝑥𝜎𝑥 − 𝑀𝑦𝜎𝑦                                                             (3.23) 

 

here, we have two positive entities 𝑀𝑥𝜎𝑥 𝑎𝑛𝑑 𝑀𝑦𝜎𝑦 , the difference will further bring 

down the valve of standard deviation; also, we will have a hooked line in risk/return 

space.  

 

3.12. Analysis of coefficient correlation in portfolio diversification. 

The coefficient of correlation plays a significant role in portfolio diversification. From 

the above computation, we can see that if well managed, the coefficient of 

correlation will reduce the risk to a bearable level. 

 

When 𝛾𝑥,𝑦 is +1, you will see that the standard deviation  𝜎(𝑥,𝑦)  = 𝑀𝑥𝜎𝑥 + 𝑀𝑦𝜎𝑦  has 

two positive numbers 𝑀𝑥𝜎𝑥 𝑎𝑛𝑑  𝑀𝑦𝜎𝑦 . Therefore, when computed, the standard 

deviation blows up (which shows that the risk becomes bigger than the individual 

risks). Thus, shows that if we have assets that the interactions of their returns are 

perfectly positively correlated, the risk reduction will not be achieved because the 
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portfolio risk will not be reduced below the individual asset risk. Therefore, Portfolio 

diversification does little or nothing to risk averting. 

 

When 𝛾𝑥,𝑦 is 0 (zero), we will see that (𝜎(𝑥,𝑦))
2
= 𝑀𝑥

2𝜎𝑥
2  + 𝑀𝑦

2𝜎𝑦
2  implies that; 

𝜎(𝑥,𝑦) = √𝑀𝑥
2𝜎𝑥2  + 𝑀𝑦

2𝜎𝑦2 . 

Though the entities are positive numbers, the portfolio standard deviation will be less 

than the standard deviation of the individual assets. Therefore, portfolio 

diversification can reduce risk when the assets returns are uncorrelated.  

When 𝛾𝑥,𝑦 is -1, again, you will see that the standard deviation  𝜎(𝑥,𝑦)  = 𝑀𝑥𝜎𝑥 −

 𝑀𝑦𝜎𝑦  has two positive numbers 𝑀𝑥𝜎𝑥 𝑎𝑛𝑑  𝑀𝑦𝜎𝑦 . But after the subtraction, we will 

notice that the difference will so reduce. Therefore, when the coefficient of 

correlation is - 1, so that the asset returns are perfectly negatively correlated, 

portfolio diversification reduces the risk of the portfolio to bearable minimum. Though 

this level of risk reduction might not be achieved in real life, we can reduce the risk 

by changing the weight of the investment (ie 𝑀𝑥𝑎𝑛𝑑  𝑀𝑦 ) . In other words, the risk of 

a portfolio decreases as the coefficient of correlation of the assets moves from 

positive to negative. 

3.13 Summary and conclusion 

We have shown our research methodology, where we obtained the data used for the 

research and the detailed work plan together with our outputs and the deliverables. 

The remaining part of the thesis is presented as Chapters four, five, six and seven. 
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Chapter 4      Portfolio Optimization 

4.0 Introduction 
 

Portfolio optimisation is a vital part of the portfolio management, all the study around 

portfolio management geared towards building an optimal portfolio. This means the 

ability of the market practitioners, players or investors to take significant and 

essential decisions on the allocation of the available funds to different stocks, bonds 

and derivatives in other to get a maximum output (profit). 

In 1952, Markowitz introduced the mean-variance (MV) portfolio model which has 

two intentions, first is to maximise the portfolio return which is measured by the 

mean of the expected return and secondly, to minimise the risks on the return which 

is measured the standard deviation (variance) of the portfolio return. 

Now, we have seen that the objective of every investor, whether it is a simple 

portfolio hold by an individual or a big portfolio which is managed by a professional 

investment manager, is to arrange a set of assets. Also, assign a weight to each of 

the assets that will yield a maximum return with a risk of the minimum bearable level. 

In this chapter, we will look at the evolution of portfolio optimisation in the literature, 

different techniques and method some authors used in their work. Finally, we will 

present our work where we optimised portfolio from the Nigerian stock exchange 

(NSE). 

 4.1 Literature review for portfolio optimisation and evolution.  
The decision on which asset that will make the portfolio of investment is a practise 

done by the market players whether an individual investor or a big professional 

portfolio managing company. This is not an easy task since every investor hopes to 

make a profit in all his/her investment irrespective of the risks involved in that 

investment.  

The nature of this investment problem has attracted a lot of researchers 

brainstorming to resolve the puzzle. This area of research was pioneered by 

Markowitz (1952) where he proposed and formulated a portfolio optimisation model 
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MV, which sees an investor as one who will invest in a portfolio that will guarantee a 

level of tolerance amount of risk (minimised risk) and with the best profit (maximised 

return). Therefore, having this in mind while formulating his MV, Markowitz defines 

his portfolio as a real-valued vector which contains weights of the available assets 

(which the weighted sum must be maximised and at the same time minimises the 

variance of the return). In the beginning, the model seems to work, but when 

compared with the realities of what is obtainable from the market, it shows that MV 

lacks some merits in its assumptions. This made so many researchers to seek ways 

to improve the model in different aspects which includes; increasing the robustness 

of the model to address the complexities associated with portfolio selection 

problems, the introduction of the use of classical techniques which provides for 

additional constraints and improved risk handling techniques. 

An evolutional algorithm (EAs) published first in the late '80s where it is used to solve 

dynamic game (game theory) problems, as Chen (2002) indicates. Researchers 

have used EAs to solve problems associated with different areas like biology, 

ecology, engineering and social sciences see Sivanandam & Deepa (2008), Ahn 

(2006), Goldberg (1989), and Fogel (1999). In mathematical finance, EAs is not 

capable of delivering the desired result due to its complexity. This limitation only 

allows EAs to deal with optimisation problem that has only single objective functions. 

Some Economic and Mathematical finance problems have multiple conflicting 

objectives which no longer demand an optimal solution but a set of solutions that will 

guarantee the best trade-offs among the objectives of the problem Ponsich et al. 

(2013). Due to this task mentioned above, multi-objective evolutional algorithm 

(MOEAs) was formed to solve those problems which single-objective evolutional 

algorithm (SOEAs) and other techniques cannot solve.   

Arnone et al. (1993) first proposed the use of MOEAs in solving the optimisation 

problems in the investment portfolios.  This was meant to modify the initial Markowitz 

model so that it can adapt to the real-world requirements which are obtainable from 

the market. Ponsich et al. (2013) show that the modification on the initial MV 

concerning MOEAs was mainly in three ways and they are; bringing in of realistic 

constraints, the addition of new objectives that form the risk indicators, and the use 

of Sharpe ratio.  
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In the real-life market practises, floor-ceiling and cardinality constraints are 

obtainable, but the initial Markowitz considered only the sum of the weights on each 

asset to be exactly the available fund (ie ∑ 𝑤𝑖 = 1
𝑛
𝑖=1 ) as its constraints.  We should 

note that the quadratic programme in Markowitz (1987) will no longer be useful if a 

new constraint added which transforms the optimisation problem into a nonconvex 

space.  

Floor - ceiling constraints were first introduced by Streichert et al. (2004) as buy-in 

thresholds; this tends to impose bounds on each asset's weight. As the name 

implies, it imposes the minimum and maximum percentage of the invested capital to 

each asset. This ensures that the higher portion of the fund is not lumped in one 

asset (vice versa), so that risk can be minimised. The mathematical expression of 

floor-ceiling constraints is 

𝑙𝑖 ≤ 𝑤𝑖 ≤ 𝜇𝑖, ∀ 𝑖 = 1, 2, … , 𝑛                                                           (𝑖) 

Many researchers like Chiam et al. (2008), Krink and Paterlini (2008) and Chang et 

al. (2009) were among those who subsequently worked on floor - ceiling constraints, 

though some of them appear to do something slightly different from Streichert et al. 

(2004), but the basis and methodologies are the same.  

Another interesting constraint is the total weight assigned to the asset class. This 

was introduced by Krink and Paterlini (2008) and Pai and Michel (2009), and it lays 

down bounds on the total capital which is allocated to a sector or class of assets in 

the portfolio. For an instant in section (5.4.1), NSE has 11 sectors; oil and gas, 

Conglomerates etc. Bounds are, therefore, assigned to the sectors meaning that the 

sum of the weight of the assets in the sector will have a limit. This type of constraint 

is similar to the floor - ceiling above, but the difference is that floor-ceiling has its 

bounds on the assets while this has its bounds on each sector. This allocation is 

done using the values of the market capitalisation of each sector. The sector with a 

higher value of market capitalisation gets a bigger weight compared to the sector 

with lower capitalisation.  

Chang et al. (2000) are believed to have introduced the cardinality constraints. This 

will force the assets selected in a portfolio to obey some restrictions. One of the two 

cases they proposed in their work imposes a value 𝐾 which is the desired number 
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the selected assets must be equal to, while the other case provides lower and upper 

bounds on this value K. The first case is known as the exact version while the other 

is known as the soft version. It is observed that if no cardinality constraint is 

imposed, quadratic programming (QP) can be used to solve the problem but if it is 

imposed, QP will no longer be valid. In the above mentioned work, Chang et al 

(2000) introduce 휀𝑖 and  𝛿𝑖 which is the mini-buy and the limit exposure of the 

portfolio to asset 𝑖, and 𝑧𝑖 ∈ [0,1], 𝑖 = 1, 2, … , 𝑛 . This gives 

휀𝑖𝑧𝑖 ≤ 𝑧𝑖 ≤ 𝛿𝑖𝑧𝑖 , 𝑖 = 1, 2, … , 𝑛                                                   (𝑖𝑖) 

If asset 𝑖 is held, 𝑧𝑖 = 1 and 𝑤𝑖 will lie between 휀𝑖 and 𝛿𝑖, and if none is held, 𝑧𝑖 = 0 

and this will force 𝑤𝑖 = 0. 

So the number of assets in the portfolio lies between 𝐾𝑙 and 𝐾𝑢 for 𝐾𝑙 ≠ 𝐾𝑢 this 

implies that the mathematical expression is; 

𝐾𝑙 ≤∑𝑧𝑖

𝑛

𝑖

≤ 𝐾𝑢, ∀ 𝐾 = 𝐾𝑙, 𝐾𝑙+1. … , 𝐾𝑢                                      (𝑖𝑖𝑖)  

Pia et al. (2009) 

In application, the amount of money used to buy security runs in the multiple of the 

smallest transaction lot, which is the minimum volume of the asset that can be 

acquired. In this case, the weight of any asset 𝑖 is computed through a lot of 

purchase Dastkhan et al (2011). This type of constraint is known as a round-lot 

constraint with purchasing price 𝑐𝑖 and 𝑥𝑖, an integer, which is regarded as the 

number of purchase lot, thus; 

𝑤𝑖 =
𝑥𝑖𝑐𝑖

∑ 𝑥𝑖𝑐𝑖
𝑛
𝑖=1

, ∀ 𝑖 = 1, 2, … , 𝑛                                                     (𝑖𝑣) 

Krink and Paterlini (2008) considered that if there is a change in the asset's weight, 

the change in the current weight and the previous one must be greater than a 

particular mark. This restriction on the change in the asset's weight is known as a 

Turnover constraint. This is mostly considered in a multi-period investment. If the 

current weight is 𝑤 and the previous weight is 𝑤′, thus, the mathematical expression 

is  
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|𝑤𝑖 − 𝑤𝑖
′| ≥ ∆𝑖 𝑜𝑟 |𝑤𝑖 − 𝑤𝑖

′| = 0, 𝑖 = 1, 2, … , 𝑛                              (𝑣) 

Also, the summation of the absolute value of the change in the weights of the 

previous and current value must be less than the maximum turnover ratio (TR), 

∑|𝑤𝑖 − 𝑤𝑖
′|

𝑛

𝑖=1

≤ 𝑇𝑅                                                                       (𝑣𝑖) 

 

Gomez et al. (2006) proposed a similar constraint which they called purchase or sale 

constraint. With �̅�𝑖and 𝐵𝑖 as the maximum and minimum purchasing thresholds 

respectively, when the current weight is greater than the previous weight, that is 

𝑤𝑖 > 𝑤𝑖
′ and 𝑆�̅�and 𝑆𝑖 as the maximum and minimum sale thresholds respectively, 

when the current weight is less than the previous weight, that is 𝑤𝑖 < 𝑤𝑖
′. 

𝑀𝑎𝑥(𝑤𝑖 − 𝑤𝑖
′, 0) ≤ �̅�𝑖 𝑎𝑛𝑑 𝑀𝑎𝑥(𝑤𝑖

′ − 𝑤𝑖, 0) ≤ 𝑆�̅�                          (𝑣𝑖𝑖) 

for all values of 𝑖 = 1, 2, … , 𝑛, as well as trading constraints 

𝑤𝑖 = 𝑤𝑖
′ 𝑜𝑟 𝑤𝑖 ≥ 𝑤𝑖

′ + 𝐵𝑖 𝑜𝑟 𝑤𝑖 ≥ 𝑤𝑖
′ − 𝑆𝑖                                  (𝑣𝑖𝑖𝑖)  

4.2 Definitions of some concepts 
Here we are going to give definitions of some of the standard concepts in 

mathematics used in this chapter.  

Definition 4.2.1 
The multi-objective optimisation problem is said to be linear if all the objective 

functions and constraint functions are linear, but nonlinear multi-objective 

optimisation problem if there exist any of the objective functions or constraint 

functions are nonlinear. 

 

Definition 4.2.2 

A function 𝑓𝑖 ∶  ℝ
𝑛  →  ℝ is convex if for all 𝑤1, 𝑤2 ∈ ℝ𝑛 is valid that 𝑓𝑖(𝛽(𝑤

1)  +  (1 −

 𝛽)𝑤2 ) ≤  𝛽𝑓𝑖(𝑤
1)  +  (1 −  𝛽)𝑓𝑖(𝑤

2)  for all values of  𝛽 ∈ [0, 1]. If all the conditions 

hold, with the inequality ′′ ≤ ′′ change to ′′ ≥ ′′, the function is said to be concave. 
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Definition 4.2.3 

A function 𝑓𝑖 ∶  ℝ
𝑛  →  ℝ is differentiable at   𝑤∗ if  𝑓𝑖(𝑤

∗  +  𝑑)  −  𝑓𝑖(𝑤
∗)  =

 𝛻𝑓𝑖(𝑤
∗)𝑇𝑑 + ||𝑑||휀(𝑤∗, 𝑑), where 𝛻𝑓𝑖(𝑤

∗) is the gradient of 𝑓𝑖 at the point  𝑤∗, 𝑑 ∈ ℝ𝑛 

is a feasible direction emanating from 𝑤 ∈  𝒞, and 휀(𝑤∗, 𝑑)  →  0 as ||𝑑||  →  0. 

Furthermore, If all partial derivatives, that is 
𝜕𝑓𝑖(𝑤

∗)

𝜕𝑤𝑗
 for 𝑗 = 1,2, … , 𝑛, are continuous at 

the point  𝑤∗ , then  𝑓𝑖  is continuously differentiable at that point  𝑤∗  

Definition 4.2.4 

A function 𝑓𝑖 ∶  ℝ
𝑛  →  ℝ is twice differentiable at   𝑤∗ if  𝑓𝑖(𝑤

∗  +  𝑑) − 𝑓𝑖(𝑤
∗) =

 𝛻𝑓𝑖(𝑤
∗)𝑇𝑑 +

1

2
𝑑𝑇∇2𝑓𝑖(𝑤

∗)𝑑 + ||𝑑||휀(𝑤∗, 𝑑), where 𝛻𝑓𝑖(𝑤
∗) is the gradient, the 

symmetric 𝑛 × 𝑛 matrix  ∇2𝑓𝑖(𝑤
∗)  is a Hessian matrix of 𝑓𝑖 at the point  𝑤∗ and  

휀(𝑤∗, 𝑑)  →  0 as ||𝑑||  →  0. The Hessian matrix is a twice - differentiable function 

which consists of second order partial derivatives, that is  
𝜕2𝑓𝑖(𝑤

∗)

𝜕𝑤𝑖𝜕𝑤𝑗
 for 𝑗 =  1, 2, … , 𝑛. If 

all second-order partial derivatives are continuous at   𝑤∗ , then 𝑓𝑖  is twice 

differentiable at  𝑤∗. 

Definition 4.2.5 

A function 𝑓𝑖 ∶  ℝ
𝑛  →  ℝ is an increasing function if for all value  𝑤1, 𝑤2 ∈ ℝ𝑛 such 

that 𝑤𝑗
1  < 𝑤𝑗

2 → 𝑓𝑖(𝑤
1) < 𝑓𝑖(𝑤

2) for all 𝑗 =  1, 2, … , 𝑛. If all other conditions hold 

with 𝑤𝑗
1  < 𝑤𝑗

2 → 𝑓𝑖(𝑤
1) > 𝑓𝑖(𝑤

2), 𝑓𝑖 is said to be decreasing function. It is important 

to note that if the inequality is weaken, that is if < is replaced with ≤ or > with ≥, 

then the increasing function is known to be non-decreasing function while the 

decreasing function will be non-increasing function. 

4.3 Portfolio models 
1. 𝑤 is a vector of continuous decision variables from the feasible set 𝒞 ∈ ℝ𝑛 

defined by linear or non-linear (sometimes linear and non-linear combined) 

constraints, while 𝐹(𝑤) = [𝑓1(𝑤), 𝑓2(𝑤),… , 𝑓𝑛(𝑤)]
′ forms the objective vector.  

 

2. A multi-objective optimisation problem is said to be convex if all the objective 

functions and the feasible region are convex. 
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3. A multi-objective optimisation problem is said to be non-differentiable if at 

least one of the objective functions or the constraint functions forming the 

region is non-differentiable. 

 

4. Finally, a function is said to be monotone if the function is either decreasing or 

increasing function (non-decreasing or non-increasing).  

4.3.1 Markowitz's portfolio basic model   

Markowitz in 1952 developed a portfolio optimisation model known as mean-

variance MV which is governed by four axioms which are,  

1. Mean, and variance of different stocks form the basis from which decision is made 

for the returns and risks of every investment made.  

2.  All the market players are more concern with the dividend which they get at the 

end, and the end time for every investment is same to all involved.  

3. The investors are homogenous, meaning that information on the decision-making 

process which includes meaning; variance and correlation (see equation 5.18) of 

different stocks are freely and equally available to all the market players or 

participants.  

4. Finally, assets are fungible, by fungibility, we mean that they (assets) are capable 

of being substituted in place of one another (note that this is not bartering).  

Since a standard Markowitz deals with mean and standard deviation as returns and 

risk. Therefore we will look at Markowitz's MV. 

𝜇 = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 [𝑅]                                                                         (4.1) 

If 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 [𝑅] = 𝐸[∑ 𝑤𝑖
𝑛
𝑖=1 𝑅𝑖] and 𝑤𝑖 is the weight of asset  𝑖. This shows that the 

expected return is 

𝜇 =∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

             𝑖 = 1,2, … , 𝑛  (𝑛 ∈ ℕ)                                   (4.2) 
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For the risk, it is measured as the combined standard deviation or variance of the 

expected return of the assets in the portfolio. This implies that  

𝜎2(𝑅) =∑∑𝑤𝑖𝑤𝑗𝜎𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

                                                                    (4.3) 

4.3.2 Markowitz's portfolio MV with Objective model. 
We have seen earlier that the MV model has some shortcomings; these 

shortcomings made a lot of researchers to be working on them (shortcomings) to 

improve the results gotten from the model. To provide an analytical solution for the 

market players who may want to maximise their returns or minimise the risks. As it 

was pointed out earlier that the risk is measured as the standard deviation and the 

gain or return is measured as the mean. Therefore, to optimise the portfolio, it is 

either minimise the risk or maximise the return depending on the available statistics 

and parameters. The quadratic objective function can be formulated using real-

valued variables with linear constraints to optimise the Markowitz's MV as follows: 

1. If we are interested in getting a better return over a particular risk, thus we 

maximise our return 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 ∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

                                                                      (4.4) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑∑𝑤𝑖𝑤𝑗𝜎𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

= 𝜎2 

∑𝑤𝑖

𝑛

𝑖=1

= 1, 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑤𝑖 ≤ 1, 𝑎𝑛𝑑 𝑖 = 1, 2, 3, … , 𝑛 

2. If one is comfortable with the return but is concerned about the risk, the overall 

risk can be minimised by formulating the optimisation function as; 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑∑𝑤𝑖𝑤𝑗𝜎𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

                                                             (4.5) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

= 𝜇                             

∑𝑤𝑖

𝑛

𝑖=1

= 1,                   

 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑤𝑖 ≤ 1, 𝑎𝑛𝑑 𝑖 = 1, 2, 3, … , 𝑛 

where 𝜎2 and 𝜇 are standard deviation and expected return of the portfolio 

respectively, while 𝜇𝑖 and 𝜎𝑖,𝑗 are expected return of the asset 𝑖 and the covariance 

of any two assets 𝑖 and 𝑗 for 𝑖, 𝑗 = 1, 2, 3, … , 𝑛 where 𝑛 is the number of the assets in 

the portfolio. 𝑤𝑖 is the weight invested on the asset 𝑖 while the condition 0 ≤ 𝑤𝑖 ≤ 1, 

show that short selling is not allowed in the treading of the assets. 

4.3.3 Markowitz's portfolio MV with a single objective model 

The equations (4.4) and (4.5) can be merged to form a single objective by 

introducing a risk parameter which will combine the equations. Risk is a convex set 

see (1.7.6), therefore is we choose 𝜆 ∈ [0,1] as the risk parameter, the objective 

function will be  

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒  (1 − 𝜆) [∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

] + 𝜆 [−∑∑𝑤𝑖𝑤𝑗𝜎𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

]                             (4.6) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   ∑𝑤𝑖

𝑛

𝑖=1

= 1 

0 ≤ 𝑤𝑖 ≤ 1, 𝑎𝑛𝑑 𝑖 = 1, 2, 3, … , 𝑛 

𝜎2, 𝑛, 𝜇𝑖 , 𝜎𝑖,𝑗, 0 ≤ 𝑤𝑖 ≤ 1, and 𝑤𝑖 are as defined above and 𝑖, 𝑗 = 1, 2, 3, … , 𝑛. The 

parameter 𝜆 takes it values from 0 to 1 irrespective of the value of the standard 

deviation (risk) of the portfolio. The parameter 𝜆 shows the degree of risk averseness 

of an investor, as the parameter increases from 0 to 1 the risk aversion increases 

while the interest on the return decreases. If more emphasis is on return, it takes 

from 1 to 0 which will in return, reduce the risk, averseness. Since  𝜆 ∈ [0,1], 

therefore, it can assume a value 1 or 0. If 𝜆 = 1 or  0, equation (4.6) will automatically 

become equation (4.4) or (4.5) respectively. 
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4.3.4 Markowitz's portfolio MV with multi-objective model 

Most people like the single objective optimisation model because the solutions are 

easy and well known, most often than not, only concepts from calculus are involved 

in getting the solution of the optimisation problem. The major aim of creating an 

investment portfolio is to maximise return and minimise risk simultaneously. At this 

instant, the equations (4.4) to (4.6) fail to provide the investors with their desired aim.  

Single objective model literally, cannot offer an optimal solution which will balance 

the inherent risk-return trade-off. To address this need, the multi-objective 

optimisation model is needed. Thus, the multi-objective optimisation model can be 

stated as;  

min 𝑓1 =∑∑𝑤𝑖𝑤𝑗𝜎𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

  ≤ 𝜎𝑝                                                (4.7) 

  

max𝑓2 =∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

 ≥ 𝜇𝑝 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑤𝑖

𝑛

𝑖=1

= 1, 

 0 ≤ 𝑤𝑖 ≤ 1, 𝑖 = 1,… , 𝑛 , where 𝜎𝑝 and 𝜇𝑝 are the risk and return of the portfolio 

respectively.  

The solution to equation (4.7) is feasible if it falls within the set of the feasible region 

and the image of that feasible region under 𝐹, for 𝐹 = [𝑓1 , 𝑓2, … , 𝑓𝑛]
′  forms the 

objective space.  

4.3.5 Standard Multi-objective Optimisation problem 

Since Markowitz's work, a lot of researchers have been doing a great job in studying 

and improving the model. Researchers like; Fonseca and Fleming (1995), Diosan 

(2005), Coello (2006), Castillo and Coello (2007), Ponsich et al. (2013) has worked 

on the various aspect of the multi-objective optimisation problem.  
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Our interest in this section is to present the standard general multi-objective 

optimisation problem. Mathematically, Miettinen (1999) defines a multi-objective 

optimisation problem which reflects some of the definitions above. 

Let 𝑤 be a vector of continuous decision variables from the feasible set 𝓒, which is a 

subset of ℝ𝑛 (whereℝ is the set of real numbers), defined by linear or nonlinear 

constraints.  Let  𝐹(𝑤) = [𝑓1(𝑤), 𝑓2(𝑤),… , 𝑓𝑗(𝑤)]
′
 be the set of objective vector, then  

min
𝑤∈𝒞

𝐹(𝑤) =  [

𝑓1(𝑤)
⋮

𝑓𝑗(𝑤)
]                                                                   (4.8) 

                                              Subject to 𝓒 

where 𝒞 = {𝑤: 𝑔(𝑤) = 0 , ℎ(𝑤) ≤ 0} and 𝑗 ≥ 2, is called multi-objective constrained 

optimisation problem. 𝐹:ℝ𝑛  →  ℝ𝐽  is required to be twice continuously differentiable 

where is the number of the variables and 𝐽 is the number of the objectives. A solution 

𝑤 of the above equation; multi-objective optimisation problem will be feasible if 𝑤 

belongs to  𝒞, the set of all such elements in ℝ𝑛 which forms the feasible region. The 

image of the function F of the feasible region forms the objective space which is the 

subset of ℝ𝑗. 

4.4 Portfolio selection. 
We considered building a portfolio that will contain only 24 risky assets of financial 

stocks from NSE that is, banks and the insurance company. Therefore, our portfolio 

will consist of assets that consistently traded in the market (NSM) within the time 

interval of the study.  

The data used is the daily closing price of the market mention above running from 

3rd of August 2009 to 4th August 2015 (Note that this excludes weekends and public 

holidays in Nigeria nationwide).   

We assume that the total fund (capital) invested is equal to 1, and the allocation of 

the fund to different assets is a percentage of the fund (capital).  We maximise the 

expected return and minimise the variance of the portfolio by using Markowitz's 

portfolio selection model and a three-objective linear programming model to allocate 
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a different percentage of weight to different assets to obtain an optimal/feasible 

portfolio of the financial sector of the Nigerian stock exchange (NSE). 

Finally, we assume that the entire fund is distributed among the 24 assets. The 

allocation vector of the fund, (that is the weight) is  𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛) where 

𝑤𝑖 denotes the allocation of the capital invested in the asset 𝑖 for 𝑖 = 1, 2, … , 𝑛 

where  𝑛 = 24. It will be observed that the constraints is equation (2.9) that 

is,  ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 since we have allocated the entire available fund to the assets. We 

denote 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑛)  where 𝜇𝑖 is the mean of the asset 𝑖 over the period of time.  

An equally weighted portfolio was constructed using the daily closing prices from the 

financial services sector of NSE, the mean and the standard deviation of the data 

from the sector of the market served as our constraints in the three-objective model 

used. Additionally, three portfolios were constructed with the aims of maximising the 

returns and the Sharpe ratio and minimising the standard deviation (variance), 

respectively. With the result of our simulation and analysis, we were able to select 

the assets that are considered to form the optimal portfolio and the weight allocation 

to each stock. An investor wishes to build a feasible portfolio  𝑤∗ ; this feasible 

portfolio becomes the efficient one if it satisfies the following condition with at least 

one strict inequality; 

1. (𝑤) ≤ (𝑤∗)𝜇,  

2. 𝜎(𝑤) ≥ 𝜎(𝑤∗) and  

3. 𝑆𝑅(𝑤) ≤ 𝑆𝑅(𝑤∗) 

where 𝜇(𝑤), 𝜎(𝑤) 𝑎𝑛𝑑 𝑆𝑅(𝑤)  are the expected return, risk and the sharpe ratio of 

the portfolio respectively, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛).  

Finally, we were able to provide advice to the investors and market practitioners on 

how best to invest in the sector of NSE.    

4.4.1 Portfolio1: Equally weighted Portfolio 

We first constructed a portfolio that is equally weighted using the daily closing prices 

of the market, we got a portfolio which the return is 0.00162%, and the standard 

deviation is 1.28% (see Table 4.3). Though the standard deviation of the portfolio 

seems to be better than what we have from the market (see Table 4.1), but the 

return is very poor. We can see that the single asset with the least risk is 
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CORNERST, which is 1.84% but unfortunately, with a very poor return (see Table 

4.2). Now our objective is to maximise the portfolio's return with a portfolio standard 

deviation which should be less than or equal to the least risk, (in other words we 

want to construct a portfolio that the standard deviation will be less than or equal to 

that of CORNERST, but the return will be above its return).  

 

Table 4.1. Table showing the mean, variance and standard deviation of the assets. 

4.4.2 Portfolio2: Maximum return with risk less than or equal to 1.84% 

In this case, we constructed the second portfolio (Portfolio2), where we want to 

maximise our return at risk less than or equal to 1.84%. Therefore, we set the 

objective function as thus, 

                         𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑤1, 𝑤2, … , 𝑤𝑛) = ∑ 𝑤𝑖𝜇𝑖 − 𝜇𝑝
𝑛
𝑖=1                               (4.9)                                     

                                                              subject: 

𝑔1(𝑤1, 𝑤2, … , 𝑤𝑛) =  
1

𝑛 − 1
∑𝑤𝑖𝑤𝑗𝜎𝑖,𝑗

𝑛

𝑖=1

≤ 1.84% 

𝑔2(𝑤1, 𝑤2, … , 𝑤𝑛)  = ∑𝑤𝑖 − 1

𝑛

𝑖=1

= 0 

where 𝑤𝑖 is the weight of individual assets, n is the number of the observations. After 

the simulation, the weights were distributed among the assets but assets like UBA, 

UBN, Diamond bank, ACCESS, FBNH, Fidelity bank, FCMB etc. were allocated with 

0% of the weight while assets like Transcorp, Guaranty trust bank and Custody were 

given more percentage of the weight (see Table 4.4).   

 

 

Stocks ACCESS AIICO CONTINSURECORNERST CUSTODYINS DIAMONDBNK FBNH FCMB FIDELITYBK GUARANTYMANSARD NEM

SD 2.62% 3.22% 2.96% 1.84% 3.12% 2.80% 2.34% 2.63% 2.79% 2.40% 2.93% 17.88%

Average -0.02% -0.02% -0.03% -0.03% 0.03% -0.05% -0.06% -0.06% -0.04% 0.03% -0.01% 0.45%

Variance 0.069% 0.100% 0.088% 0.034% 0.097% 0.079% 0.055% 0.069% 0.078% 0.058% 0.086% 3.200%

Stocks NIGERINS PRESTIGE ROYALEX SKYEBANK STERLNBANK TRANSCORP UAC-PROP UBA UBN WAPIC WEMABANK ZENITHBANK

SD 2.04% 2.87% 2.60% 10.50% 3.10% 3.35% 2.89% 4.50% 7.16% 5.10% 4.63% 2.46%

Average -0.07% -0.16% -0.04% 0.18% 0.02% 0.10% -0.02% 0.01% -0.17% 0.00% 0.02% 0.01%

Variance 0.042% 0.082% 0.068% 1.100% 0.096% 0.110% 0.084% 0.200% 0.510% 0.260% 0.210% 0.061%
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Individual  Assets    

 Average Variance Standard D µ/σ 

ACCESS -0.022% 0.069% 2.620% -0.830% 

AIICO -0.023% 0.100% 3.220% -0.710% 

CONTINSURE -0.028% 0.088% 2.960% -0.960% 

CORNERST -0.033% 0.034% 1.840% -1.810% 

CUSTODYINS 0.025% 0.097% 3.120% 0.810% 

DIAMONDBNK -0.051% 0.079% 2.800% -1.820% 

FBNH -0.061% 0.055% 2.340% -2.590% 

FCMB -0.064% 0.069% 2.630% -2.430% 

FIDELITYBK -0.041% 0.078% 2.790% -1.460% 

GUARANTY 0.033% 0.058% 2.400% 1.390% 

MANSARD -0.014% 0.086% 2.930% -0.480% 

NEM 0.450% 3.200% 17.880% 2.520% 

NIGERINS -0.074% 0.042% 2.040% -3.610% 

PRESTIGE -0.160% 0.082% 2.870% -5.570% 

ROYALEX -0.045% 0.068% 2.600% -1.720% 

SKYEBANK 0.180% 1.100% 10.500% 1.710% 

STERLNBANK 0.024% 0.096% 3.100% 0.760% 

TRANSCORP 0.099% 0.110% 3.350% 2.950% 

UAC-PROP -0.023% 0.084% 2.890% -0.810% 

UBA 0.008% 0.200% 4.500% 0.180% 

UBN -0.170% 0.510% 7.160% -2.370% 

WAPIC 0.005% 0.260% 5.100% 0.092% 

WEMABANK 0.018% 0.210% 4.630% 0.390% 
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ZENITHBANK 0.006% 0.061% 2.460% 0.240% 

Table 4.2 Table showing the asset return, variance, standard deviation and sharp ratio 

Though in this new portfolio, we got a standard deviation that is greater than that of 

the portfolio with equal weighted assets, the return is very encouraging. The return is 

about 52 times the return of the said portfolio (see Table 4.4). Again, if we look at the 

return of the asset with the least standard deviation (CORNERST with σ = 1.84%, 

see Table 4.2), you will notice that it cannot be compared to our new return.  Finally, 

if we look at the Sharpe ration (SR) of the portfolios, SR of the equal-weighted 

portfolio and our new portfolio are 0.12% and 4.56% respectively (see Table 4.4), 

and the stock with the least standard deviation has its SR to be 1.81% (Table4. 2), 

this shows that 4.56% is best among all. 

4.4.3 Portfolio 3: Minimization of Standard Deviation 

In this case, we want to minimise the standard deviation of the single asset with 

Courville, T., & Thompson, B. (2001). Use of structure coefficients in published multiple 

regression articles: ß is not enough. Educational and Psychological Measurement, 61, 229-

248. maximum SD (NEM) which is 17.88% (Table 4.2), to see if we will get a lower 

SD and an improved return (which may not necessarily be equal to the return of the 

said asset).  Therefore, we apply  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑤1, 𝑤2, … , 𝑤𝑛) =   
1

𝑛 − 1
∑𝑤𝑖𝑤𝑗𝜎𝑖,𝑗

𝑛

𝑖=1

                                                   (4.10) 

                               Subject to  

𝑔1(𝑤1, 𝑤2, … , 𝑤𝑛) =∑𝑤𝑖𝜇𝑖 − 𝜇𝑝

𝑛

𝑖=1

 ≥ 0.450% 

𝑔2(𝑤1, 𝑤2, … , 𝑤𝑛)  =∑𝑤𝑖 − 1

𝑛

𝑖=1

= 0 

After the simulation, we got a funny result where 100% of our weight is allocated to 

NEM, with return and SD equal to what we had abinitio and therefore this portfolio is 

not acceptable.  

4.4.4 Portfolio 4: Maximization of Sharpe ratio 

Finally, we maximise the Sharpe ratio SR. Here we have the equation as follows 
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𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑤1, 𝑤2, … , 𝑤𝑛) = 𝑆𝑅                                                                 (4.11) 

𝑔(𝑤1, 𝑤2, … , 𝑤𝑛)  = ∑𝑤𝑖 − 1

𝑛

𝑖=1

= 0 

Again, we have the return to be 0.095%, the SD to be 2.06% and SR 4.6%. The 

weights were loaded in Transcorp, Guaranty trust bank and Custody assets with very 

few distributed among Skye, Sterling and Wema Banks, others are Wapic and NEM.   

Comparison of the results that are an equally weighted portfolio, Max. Return, Min. 

Standard deviation and Max SR as shown in Table 4.3 

 

Table 4.3 A table showing the return, risk and Sharpe ratio of the four portfolios constructed. 

If we take the equally weighted portfolio as our pivotal portfolio, with the return, 

standard deviation and Sharpe ratio as 0.00162%, 1.28% and 0.13% respectively, 

we notice that it returns was below expectations. Though the risk is very minimal, the 

return and the Sharpe ratio shows that it is not a good idea to invest in the sector 

with an equally weighted portfolio. The portfolio that minimises standard deviation 

has the highest return, but the risk is too much, and the Sharpe ratio is not 

encouraging. Also, the simulation allocated 100% of the weight to one stock (NEM), 

which does not encourage the diversification of funds. Therefore, these make it not 

healthy for investment. We are now left with two options which are, Max Return and 

Max SR which have their returns as multiples of 52 and 59 of the return of the 

equally weighted portfolio respectively. Though the risk value of both is higher than 

the value of the equally weighted portfolio, the Sharpe ratios are better, which again 

are multiples of 46 on approximate of the equally weighted portfolio. 

Portfolios

Equal Wt Max Return Min St Dev Max SR

0.00162% 0.084% 0.45% 0.095%

1.28% 1.84% 17.89% 2.06%

µ/σ 0.13% 4.56% 2.52% 4.60%
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  Portfolios  

     

 Equal 

Wt 

Max 

Retur

n 

Min St 

Dev 

Max 

SR 

 None at σ ≤ at µ = None 

Value of Constr N/a 0.018

4 

0.004

5 

N/a 

     

ACCESS 0.041

7 

0 3.66E

-09 

0 

AIICO 0.041

7 

0 3.67E

-09 

0 

CONTINSURE 0.041 0 3.67E 0 

Portfolios

Equal Wt Max Return Min St Dev Max SR

None at σ ≤ at µ = None

Value of Constr N/a 1.840% 0.450% N/a

ACCESS 4.1666% 0.0000% 0.0000% 0.0000%

AIICO 4.1666% 0.0000% 0.0000% 0.0000%

CONTINSURE 4.1666% 0.0000% 0.0000% 0.0000%

CORNERST 4.1666% 0.0000% 0.0000% 0.0000%

CUSTODYINS 4.1666% 11.9229% 0.0000% 10.3272%

DIAMONDBNK 4.1666% 0.0000% 0.0000% 0.0000%

FBNH 4.1666% 0.0000% 0.0000% 0.0000%

FCMB 4.1666% 0.0000% 0.0000% 0.0000%

FIDELITYBK 4.1666% 0.0000% 0.0000% 0.0000%

GUARANTY 4.1666% 27.2599% 0.0000% 26.4968%

MANSARD 4.1666% 0.0000% 0.0000% 0.0000%

NEM 4.1666% 5.1779% 100.0000% 6.3839%

NIGERINS 4.1666% 0.0000% 0.0000% 0.0000%

PRESTIGE 4.1666% 0.0000% 0.0000% 0.0000%

ROYALEX 4.1666% 0.0000% 0.0000% 0.0000%

SKYEBANK 4.1666% 5.6436% 0.0000% 6.7855%

STERLNBANK 4.1666% 8.5136% 0.0000% 6.7090%

TRANSCORP 4.1666% 36.2113% 0.0000% 40.8552%

UAC-PROP 4.1666% 0.0000% 0.0000% 0.0000%

UBA 4.1666% 0.0000% 0.0000% 0.0000%

UBN 4.1666% 0.0000% 0.0000% 0.0000%

WAPIC 4.1666% 2.0102% 0.0000% 0.7009%

WEMABANK 4.1666% 2.9119% 0.0000% 1.7415%

ZENITHBANK 4.1666% 0.3488% 0.0000% 0.0000%

Σ w 100.00% 100.00% 100.00% 100.00%

0.00162465% 0.0839671% 0.45000000% 0.09465438%

1.2807793% 1.8400012% 17.8885438% 2.0596265%

µ/σ 0.1268485% 4.56342% 2.51557648% 4.59571%
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7 -09 

CORNERST 0.041

7 

0 -

3.80E

-08 

0 

CUSTODYINS 0.041

7 

0.119

2 

3.67E

-09 

0.103

3 

DIAMONDBNK 0.041

7 

0 3.67E

-09 

0 

FBNH 0.041

7 

0 3.67E

-09 

0 

FCMB 0.041

7 

0 3.67E

-09 

0 

FIDELITYBK 0.041

7 

0 3.67E

-09 

0 

GUARANTY 0.041

7 

0.272

6 

3.67E

-09 

0.265 

MANSARD 0.041

7 

0 -

3.80E

-08 

0 

NEM 0.041

7 

0.051

8 

1 0.063

8 

NIGERINS 0.041

7 

0 3.67E

-09 

0 

PRESTIGE 0.041

7 

0 3.67E

-09 

0 

ROYALEX 0.041

7 

0 3.67E

-09 

0 
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SKYEBANK 0.041

7 

0.056

4 

3.66E

-09 

0.067

9 

STERLNBANK 0.041

7 

0.085

1 

3.67E

-09 

0.067

1 

TRANSCORP 0.041

7 

0.362

1 

3.68E

-09 

0.408

6 

UAC-PROP 0.041

7 

0 3.68E

-09 

0 

UBA 0.041

7 

0 3.64E

-09 

0 

UBN 0.041

7 

0 3.67E

-09 

0 

WAPIC 0.041

7 

0.020

1 

3.67E

-09 

0.007 

WEMABANK 0.041

7 

0.029

1 

3.66E

-09 

0.017

4 

ZENITHBANK 0.041

7 

0.003

5 

3.67E

-09 

0 

Σ w 1 1 1 1 

µp 1.62E

-05 

8.40E

-04 

0.004

5 

9.47E

-04 

σp 0.012

8 

0.018

4 

0.178

9 

0.020

6 

µ/σ 0.001

3 

0.045

6 

0.025

2 

0.046 

Table 4.4 Table of the four different portfolios constructed. 
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Fig 4.1 Histogram showing the return, risk and Sharpe ratio of the constructed portfolios. 

Figure 4.1 above shows the histogram representation of the return, risk and Sharpe ratio of 

the portfolio we constructed. This has the four portfolios; the equally weighted portfolio, the 

maximised return portfolio, the minimised risk portfolio and the Sharpe ratio. While figure 4.2 

below shows the interaction among different stocks in the portfolio. This is otherwise the 

cross-correlation matrix of the assets. 

 

Fig 4.2 the correlation matrix of the assets in the financial sector of NSE 

4. 5 Efficient frontiers of our portfolio. 
In this section, we wish to use the portfolio we formed to generate different 

allocations of weight to different stocks (see appendix).  We have nine stocks from 

the financial sector of the market in the portfolio. We wish to get an efficient frontier. 

Efficient frontier contains the efficient portfolio, that is, those portfolios that earn the 

highest return at a given level of risk. Sometimes this is done by locating those 

ACCESS AIICO CONTINSURECORNERSTCUSTODYINSDIAMONDBNKFBNH FCMB FIDELITYBKGUARANTYMANSARDNEM NIGERINS PRESTIGE ROYALEX SKYEBANKSTERLNBANKTRANSCORPUACPRO UBA UBN WAPIC WEMABANKZENITHBANK

ACCESS 1 0.15076 0.056041 -0.01129 0.054676 0.239825 0.195369 0.127066 0.187493 0.165777 0.024933 0.022425 0.017909 0.013768 0.062961 -0.00181 0.12783 -0.02529 0.030219 0.067869 0.002778 0.053063 0.016861 0.223521

AIICO 0.15076 1 0.031982 0.009987 0.024212 0.067551 0.110694 0.061034 0.043642 0.132721 -0.02568 0.006563 0.015028 0.000717 0.006873 -0.00154 0.082536 -0.01036 0.002989 0.022636 -0.04742 0.018642 0.045983 0.120533

CONTINSURE0.056041 0.031982 1 0.061441 -0.07555 0.013918 0.044602 -0.00133 0.07853 0.016289 0.020515 0.010001 0.017147 -0.04602 -0.02966 0.011193 0.003815 0.050338 -0.00212 0.036778 0.007538 0.010738 -0.01125 0.031048

CORNERST -0.01129 0.009987 0.061441 1 0.01274 0.005558 0.008376 0.057548 0.01488 -0.02078 -0.02035 0.006918 0.015995 -0.02565 -0.02834 0.013671 0.032636 0.006602 0.058526 -0.01141 0.001812 0.038141 0.024661 -0.02996

CUSTODYINS0.054676 0.024212 -0.07555 0.01274 1 0.049431 0.040057 0.045621 0.037637 0.046467 -0.04119 -0.00237 0.014387 0.007517 -0.00912 0.007332 0.072169 -0.00514 0.0397 0.029588 0.01162 -0.0102 0.018732 0.053487

DIAMONDBNK0.239825 0.067551 0.013918 0.005558 0.049431 1 0.174686 0.097734 0.290397 0.146793 -0.02485 0.000141 -0.0202 0.061032 0.031771 0.065686 0.142097 0.001916 0.01464 0.15934 -0.00886 0.102077 0.059745 0.145028

FBNH 0.195369 0.110694 0.044602 0.008376 0.040057 0.174686 1 0.117732 0.142378 0.372794 0.028788 0.005897 0.001805 -0.07033 0.013712 -0.01355 0.118883 -0.03332 0.080751 0.091059 -0.0229 0.020163 0.039201 0.385486

FCMB 0.127066 0.061034 -0.00133 0.057548 0.045621 0.097734 0.117732 1 0.106594 0.112151 0.029501 0.009275 -0.00342 -0.02713 0.006427 0.035481 0.164312 0.059917 0.072263 0.075343 -0.04152 0.0034 -0.00382 0.118524

FIDELITYBK 0.187493 0.043642 0.07853 0.01488 0.037637 0.290397 0.142378 0.106594 1 0.140685 0.021668 -0.00039 0.013386 0.045131 0.088691 0.055757 0.117026 0.006328 0.015783 0.097524 0.013021 0.080512 0.073797 0.222817

GUARANTY 0.165777 0.132721 0.016289 -0.02078 0.046467 0.146793 0.372794 0.112151 0.140685 1 0.008122 0.000976 -0.02638 -0.00331 0.01757 0.005144 0.108429 -0.04327 0.068898 0.075798 0.005193 0.053239 0.028267 0.357704

MANSARD 0.024933 -0.02568 0.020515 -0.02035 -0.04119 -0.02485 0.028788 0.029501 0.021668 0.008122 1 0.007896 0.042376 0.002973 0.051473 0.000686 -0.00373 0.016646 -0.02154 0.027622 0.043367 0.007491 0.042028 0.06349

NEM 0.022425 0.006563 0.010001 0.006918 -0.00237 0.000141 0.005897 0.009275 -0.00039 0.000976 0.007896 1 0.010726 -0.00539 0.008879 0.00444 0.004899 -0.01398 -0.00852 0.034025 -0.00015 -0.00128 0.007008 -0.00711

NIGERINS 0.017909 0.015028 0.017147 0.015995 0.014387 -0.0202 0.001805 -0.00342 0.013386 -0.02638 0.042376 0.010726 1 0.044131 -0.02136 0.001065 -0.00182 -0.01568 0.014461 0.015311 0.019744 0.049056 0.043319 0.018145

PRESTIGE 0.013768 0.000717 -0.04602 -0.02565 0.007517 0.061032 -0.07033 -0.02713 0.045131 -0.00331 0.002973 -0.00539 0.044131 1 0.021425 0.002879 -0.00308 -0.01809 -0.03582 -0.02624 -0.02189 0.014432 -0.01486 0.015711

ROYALEX 0.062961 0.006873 -0.02966 -0.02834 -0.00912 0.031771 0.013712 0.006427 0.088691 0.01757 0.051473 0.008879 -0.02136 0.021425 1 0.012932 0.067454 0.018112 -0.01278 0.002731 0.002697 0.011582 0.000495 0.038326

SKYEBANK -0.00181 -0.00154 0.011193 0.013671 0.007332 0.065686 -0.01355 0.035481 0.055757 0.005144 0.000686 0.00444 0.001065 0.002879 0.012932 1 0.025861 0.029057 0.024996 0.753359 -0.01009 -0.0022 0.019219 0.019501

STERLNBANK0.12783 0.082536 0.003815 0.032636 0.072169 0.142097 0.118883 0.164312 0.117026 0.108429 -0.00373 0.004899 -0.00182 -0.00308 0.067454 0.025861 1 0.006659 0.070407 0.03845 0.008223 0.006269 0.074596 0.128894

TRANSCORP-0.02529 -0.01036 0.050338 0.006602 -0.00514 0.001916 -0.03332 0.059917 0.006328 -0.04327 0.016646 -0.01398 -0.01568 -0.01809 0.018112 0.029057 0.006659 1 0.022529 0.104056 0.000208 -0.01773 0.02563 -0.05526

UACPRO 0.030219 0.002989 -0.00212 0.058526 0.0397 0.01464 0.080751 0.072263 0.015783 0.068898 -0.02154 -0.00852 0.014461 -0.03582 -0.01278 0.024996 0.070407 0.022529 1 0.03557 -0.02204 0.057531 0.02092 0.02097

UBA 0.067869 0.022636 0.036778 -0.01141 0.029588 0.15934 0.091059 0.075343 0.097524 0.075798 0.027622 0.034025 0.015311 -0.02624 0.002731 0.753359 0.03845 0.104056 0.03557 1 -0.02388 0.059057 0.034955 0.09979

UBN 0.002778 -0.04742 0.007538 0.001812 0.01162 -0.00886 -0.0229 -0.04152 0.013021 0.005193 0.043367 -0.00015 0.019744 -0.02189 0.002697 -0.01009 0.008223 0.000208 -0.02204 -0.02388 1 0.004097 -0.00339 -0.00381

WAPIC 0.053063 0.018642 0.010738 0.038141 -0.0102 0.102077 0.020163 0.0034 0.080512 0.053239 0.007491 -0.00128 0.049056 0.014432 0.011582 -0.0022 0.006269 -0.01773 0.057531 0.059057 0.004097 1 0.012808 0.069573

WEMABANK0.016861 0.045983 -0.01125 0.024661 0.018732 0.059745 0.039201 -0.00382 0.073797 0.028267 0.042028 0.007008 0.043319 -0.01486 0.000495 0.019219 0.074596 0.02563 0.02092 0.034955 -0.00339 0.012808 1 0.073013

ZENITHBANK0.223521 0.120533 0.031048 -0.02996 0.053487 0.145028 0.385486 0.118524 0.222817 0.357704 0.06349 -0.00711 0.018145 0.015711 0.038326 0.019501 0.128894 -0.05526 0.02097 0.09979 -0.00381 0.069573 0.073013 1
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portfolios that have maximum Sharpe ratio These data are daily closing prices from 

the Nigerian Stock Exchange.  From the return, we calculated the mean, variance 

and standard deviation of each asset in the portfolio. This is shown on the table 

below. 

 

Table 4.5 the average return, variance and standard deviation of the selected assets 

Now we try to get the expected return of the portfolio, having in mind that our weight 

allocation to different stocks is as follows;  

 

Table 4.6 weights of the assets in the portfolio. 

With this, we computed the return of the portfolio for each using equation (2.14) 

𝜇𝑝 =∑𝑤𝑖𝜇𝑖

𝑛

𝑖=1

 

Where 𝑤𝑖 and 𝜇𝑖 are the weights and daily return of the assets in appendix 1 

respectively. After that, we need to compute the standard deviation of the portfolio. In 

order to that, we then use equation (2.16)  

𝜎2 = ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑛

𝑖,𝑗=1

 

where ∑ 𝜎𝑖𝑗
𝑛
𝑖,𝑗=1  is the covariance matrix. And it is obtain using equation (2.6). Thus, 

recall that the covariance between asset 𝑥𝑖  and 𝑦𝑖 is 𝐶𝑜𝑣(𝑥, 𝑦) =

 ∑
[(𝜌𝑥− 𝜇𝑥)(𝜌

𝑦− 𝜇𝑦)]

𝑁

𝑛
𝑖=1 , where N is the number of the observations (see equation 3.18).  

Before then, we need to find the excess return which is  𝑥𝑖 − �̅� which is the 

difference between the return and the average, and multiple it by its transpose. We 

denoted that as 𝑋𝑇𝑋, remember that takes care of ∑ [(𝜌𝑥 − 𝜇𝑥)(𝜌
𝑦 − 𝜇𝑦)]

𝑛
𝑖=1  in the 

𝐶𝑜𝑣(𝑥, 𝑦) equation.  

Normal Dist VARCUSTODYINS GUARANTY NEM SKYEBANK STERLNBANK TRANSCORP WAPIC WEMABANK ZENITHBANK

Average 0.025% 0.033% 0.452% 0.184% 0.024% 0.099% 0.005% 0.018% 0.006%

Variance 0.097% 0.058% 3.196% 1.103% 0.096% 0.112% 0.260% 0.215% 0.061%

Standard D 3.116% 2.402% 17.878% 10.502% 3.098% 3.352% 5.100% 4.635% 2.461%

CUSTODYINS GUARANTY NEM SKYEBANK STERLNBANK TRANSCORP WAPIC WEMABANK ZENITHBANK

11.92% 27.26% 5.18% 5.64% 8.51% 36.21% 2.01% 2.91% 0.36%
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Table 4.7 Matrix of excess return.  

Finally, we have the covariance matrix by dividing each of the matrices above by n.   

 

Table 4.8 Variance-Covariance Matrix.  

X'X CUSTODYINS GUARANTY NEM SKYEBANK STERLNBANK TRANSCORP WAPIC WEMABANK ZENITHBANK

CUSTODYINS 1.440 0.052 -0.018 0.036 0.103 -0.008 -0.024 0.040 0.061

GUARANTY 0.052 0.856 0.008 0.020 0.120 -0.051 0.097 0.047 0.314

NEM -0.018 0.008 47.431 0.136 0.042 -0.118 -0.017 0.087 -0.046

SKYEBANK 0.036 0.020 0.136 16.361 0.125 0.154 -0.017 0.139 0.075

STERLNBANK 0.103 0.120 0.042 0.125 1.423 0.011 0.015 0.159 0.146

TRANSCORP -0.008 -0.051 -0.118 0.154 0.011 1.668 -0.045 0.059 -0.068

WAPIC -0.024 0.097 -0.017 -0.017 0.015 -0.045 3.857 0.045 0.129

WEMABANK 0.040 0.047 0.087 0.139 0.159 0.059 0.045 3.186 0.123

ZENITHBANK 0.061 0.314 -0.046 0.075 0.146 -0.068 0.129 0.123 0.898

n= 1483

Var-Cov Matrix (1/n)X'X

CUSTODYINS GUARANTY NEM SKYEBANK STERLNBANK TRANSCORP WAPIC WEMABANK ZENITHBANK

CUSTODYINS 9.71E-04 3.49E-05 -1.21E-05 2.45E-05 6.97E-05 -5.116E-06 -1.62E-05 2.71E-05 4.10E-05

GUARANTY 3.49E-05 5.77E-04 5.70E-06 1.36E-05 8.08E-05 -3.452E-05 6.52E-05 3.15E-05 2.11E-04

NEM -1.21E-05 5.70E-06 3.20E-02 9.17E-05 2.82E-05 -7.934E-05 -1.15E-05 5.89E-05 -3.10E-05

SKYEBANK 2.45E-05 1.36E-05 9.17E-05 1.10E-02 8.46E-05 1.041E-04 -1.17E-05 9.39E-05 5.05E-05

STERLNBANK 6.97E-05 8.08E-05 2.82E-05 8.46E-05 9.60E-04 7.146E-06 9.91E-06 1.07E-04 9.83E-05

TRANSCORP -5.12E-06 -3.45E-05 -7.93E-05 1.04E-04 7.15E-06 1.125E-03 -3.03E-05 4.00E-05 -4.55E-05

WAPIC -1.62E-05 6.52E-05 -1.15E-05 -1.17E-05 9.91E-06 -3.026E-05 2.60E-03 3.03E-05 8.73E-05

WEMABANK 2.71E-05 3.15E-05 5.89E-05 9.39E-05 1.07E-04 4.000E-05 3.03E-05 2.15E-03 8.33E-05

ZENITHBANK 4.10E-05 2.11E-04 -3.10E-05 5.05E-05 9.83E-05 -4.552E-05 8.73E-05 8.33E-05 6.05E-04
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Fig 4.3 The portfolio efficient frontier. 

 
 

4.6 Conclusion 
We were able to construct four portfolios as we can see the summary in Table 4.3.  

The first portfolio is an equal-weighted portfolio, and the return is so small. Though 

the risk is low, the difference between the risk and the risks of the third and fourth 

portfolio is negligible. Therefore, an investor who is more interested in the number of 

returns (more significant return) to make will not be advised to invest in such a 

portfolio. Although Malladi, R. and Fabozzi, F.J. (2017), claimed that equal-weighted 

portfolio outperformed the value-weighted one, their theory was based on the data 

sample that ran from 1926 to 2014 which is a serious assumption that can only work in 

a developed market. Some emerging markets like NSE are so volatile that the 

turbulence in the market is nearly unpredictable.  Banking sector of NSE was over 

one hundred stocks enlisted in the market before 2009 but was reduced to just 24 
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banks after 2009. When we completed our research, almost three or more banks 

couldn’t survive, so they went off the market. 

The second portfolio, which was formed with equation (4.9), gave the highest return 

with a very high risk. This is not encouraging; any risk-averse investor will never 

consider this portfolio as an option. Besides, the idea of diversification was not 

encouraged at all because the whole fund was allocated to one stock, which is NEM. 

Therefore we strongly advise the investors to disregard this portfolio.   

Finally, the equations (4.8) and (4.10) gave us something closer to what we want, an 

appreciated return and a risk that can be tolerated and above all, their Sharpe ratios 

are quite commendable when compared with the former two.  Investors who want to 

invest in this sector are advised to invest in the portfolio of equation (4.10), which we 

consider to be the optimal portfolio. Though the risk is slightly above the other, the 

return and the Sharpe ratio are very encouraging. Furthermore, we can see from the 

interaction of the stocks in the correlation matrix (fig 2), that the assets selected in 

the portfolio move in such a direction that will reduce risk. Investors are highly 

advised to invest in this portfolio.    
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Chapter 5   Random Matrix Theory and Applications 

5.0 Introduction 
In this Chapter, we discuss in detail the review of some standard and more recent 

techniques on Random Matrix Theory (RMT). These techniques can reduce the 

empirical noise and improve the standard Markowitz model's predictions. The 

analysis of eigenvalues using RMT helps to check if there is a presence of pertinent 

information by using Marcenko-Pastur distribution. And we look at cross-correlation 

among stocks of Nigerian Stock Exchange.  We also examine the statistical 

properties of cross-correlation coefficients, the distribution of eigenvalues, the 

distribution of eigenvector components, and the inverse participation ratio. Finally, 

we present our results.  

A random matrix is a matrix of a given type and size whose entries consist of random 

numbers from some specified distribution. The origin of RMT is a bit dicey, some 

school of taught claimed that it could be traced as far back as 1928 to the works of 

John Wishart, where he gave generalised distribution, and to calculate its moments 

up to the fourth order, Wishart (1928). They considered the case of three varieties, 

and after that a proved the general n-fold system. 

5.1 Literature Review  
Most literature gave the credit to Eugene Wigner, believing that he was the first to 

propose Random matrix theory (RMT) in Wigner (1951). However, RMT has become 

a popular technical tool for solving some more complicated problems in the areas of; 

number theory, quantum mechanics, condensed matter physics, Statistics, 

Mathematics, wireless communication etc. most importantly it is used for 

investigating the cross-correlation in financial markets.  

At first, Wigner (1951) wished to describe the general properties of the energy levels 

of highly excited states of heavy nuclei as measured in the nuclear reactions 

Izenman (2008). He assumed that the interactions between the constituents 

comprising the nucleus are so complex and they should be modelled as random. He 

represented it by Hermitian operator H (called Hamiltonian), which behave like a 

large random matrix. The energy level of the system was approximated by the 

eigenvalues of a large random matrix and the spacing's between the energy levels of 
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the nuclei could be modelled by the spacing of the eigenvalues of a random matrix. 

Dyson (1962a), (1962b) and (1962c) introduce and substantiate the works of Winger 

by giving the important symmetry classification of Hamiltonians which implies the 

existence of three major symmetry classes of random matrices - Orthogonal, Unitary 

and Symplectic, which cover the most relevant classical ensembles. They also 

develop a theory of their spectra and suggest a model of Brownian motion in random 

matrices ensembles. These types of random matrix ensemble are based upon the 

property of time-reversal invariance and have elements that are complex, real and 

self-dual quaternion. As the year's pass, RMT was receiving attention by a lot of 

researchers, Brody et al. (1981) brought it into the Nuclear Physics, Bohigas et al. 

(1984) introduced it to quantum chaos, while Beenaker (2007) brought in quantum 

transport. 

The development of the financial market in recent years has provided a large amount 

of financial market data which needs more sophisticated tools and techniques to 

handle. RMT has shown that it can address these problems of the researchers, 

especially in the study of the cross-correlations among stocks of the market; 

removal/ elimination of the noisy eigenvalues from the correlation matrix. This has 

helped in the reduction and improved the forecast of the realised risk.  

Laloux et al. (1999) and Plerou et al. (1999) introduced RMT to financial market 

research where it has been used in studying the statistical properties of cross-

correlations in financial markets. They based their studies on noise filtering of 

particularly large dimensional systems like the stock market in the financial time 

serials.  

Laloux et al. (1999) (2000) compared the statistics of the eigenvalues and 

eigenvectors of the S&P 500 data set, involving daily data over the period 1991 to 

1996 market correlations, to those of a corresponding random matrix. They were 

able to cover 406 stocks in the entire time interval. In work mentioned above, they 

found out that the highest eigenvalue of the empirical correlation matrix was 25 times 

larger than the maximum eigenvalue predicted by RMT. Also, there is a good 

agreement between the distributions when compared the remaining eigenvalues with 

RMT. They determined that 94% of the eigenvalues were within the noise band 

predicted by RMT, while the highest 6% of eigenvalues were above the maximum 
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random eigenvalue. This largest 6 % of eigenvalues were found to contain 26% of 

the total system volatility. They revealed that eigenvectors corresponding to the 

eigenvalues which were within the noise band, had components which were 

consistent with randomness, and the eigenvector for the largest eigenvalue was 

shown to have non-random elements. In conclusion, they said that this eigenvector 

represented the market, in the sense that it assigned a roughly equal weighting and 

the non-noisy eigenvectors were found to be more stable in time to each stock. 

Laloux et al. (2000) try to obtain the optimised portfolio by using a cleaned 

correlation matrix, which is more reliable.  They divided the total data set over some 

time into two equal sub-periods, and they cleaned up the correlation matrix, which 

was determined using the first sub-period. Again, the other data set was used to 

determine another correlation matrix, and the two were used to optimise portfolio 

using Markowitz optimisation to construct efficient frontiers. They observed that there 

is a better-realised risk of the filtered portfolio than the other. The difference in the 

risk of the two was seen to be reasonably constant, and the filtered one is always 

below the unfiltered one in every point the efficient frontier. 

Plerou et al. (1999) and Laloux et al. (2000), analyse the cross-correlation matrix of 

returns of a database containing the price of the stock of 1000 publicly-traded 

companies of US stocks for a period of 2-year, from 1994 to 1995. They found that 

20 of the largest eigenvalues (2%) show deviations from the predictions of RMT 

while (98%) of the eigenvalues were found within the RMT bonds. Though the two 

groups were working independently, there are points of agreement in the outcome of 

their research. They agree at these points; the eigenvalues of the correlation matrix 

of the returns were consistent with the ones obtained from random returns. They 

also agree that the higher percentage of the eigenvalues which are not consistent 

with random returns had eigenvectors that are more stable over time and both 

groups agree that filtering reduces the realised risk of the optimised portfolio and 

also improves the forecasting of the realised risk. 

 

Sharifi et al. (2004) applied RMT to an empirically measured financial correlation 

matrix and showed that the matrix contains a large amount of noise. Finally, they 

attempted to separate the noisy part from the non-noisy part of the matrix. Rak et al. 
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(2006) (2008) applied RMT in the Warsaw stock market, and they used the 

correlation matrix formation to study the temporal aspects of the Warsaw stock 

market evolution as represented by the WIG20 index in 2006. In 2006, they studied 

the inter-stock correlation for the largest component listed on the Warsaw Stock 

Exchange and WIG20 index. Their result inferred that a one-factor model could well 

describe the Warsaw stock market; this inference was due to their correlation matrix 

analysis. 

Others like; Wilcox and Gebbie (2007) worked on the South African stock market, 

where they constructed correlation matrix from ten (10) years daily data from 

Johannesburg Stock Exchange and applied RMT to compare correlation matrix 

estimator obtained from the date from the market.  

Kwlkarni and Deo (2007) and Pan and Sinha (2007) worked on the Indian stock, 

while Curkura et al. 2007) worked on the Istanbul stock market. Wang et al. (2013) 

found some new results of the cross-correlation in the US stock market. They 

examined the statistical properties of cross-correlation in the US market and found 

out that the detrended cross-correlation analysis (DCCA) coefficient method has 

similar results and properties with Pearson's correlation coefficient (PCC).   

El Alaoui (2015) studied cross-correlation among stocks of Casablanca Stock 

Exchange using RMT. He tries to observe if the difference between predicted risk 

and realised risk will be reduced by cleaning the noisy element of the correlation 

matrix.    

In this work, we studied Nigerian market and used Random Matrix Theory (RMT) to 

analyse the eigen structure of the empirical correlations of 82 stocks which are 

consistently traded in the Nigerian Stock Exchange (NSE) over a 4-year study period 

3 August 2009 to 26 August 2013. We applied the Marcenko-Pastur distribution of 

eigenvalues of a purely random matrix to investigate the presence of investment-

pertinent information contained in the empirical correlation matrix of the selected 

stocks. We used hypothesised standard normal distribution of eigenvector 

components from RMT to assess deviations of the empirical eigenvectors to this 

distribution for different eigenvalues. We also use the Inverse Participation Ratio 

(IPR) to measure the deviation of eigenvectors of the empirical correlation matrix 

from RMT results. These preliminary results on the dynamics of asset price 
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correlations in the NSE are essential for improving risk-return trade-offs associated 

with Markowitz’s portfolio optimisation in the stock exchange, which we achieve by 

cleaning up the correlation matrix. In this work, we propose to measure the extent of 

closeness or otherwise in selected sectors of the NSE and the Johannesburg Stock 

Exchange (JSE) in subsequent work. 

5.2 Definitions of some concepts 
In this section, we gave the definitions of the common terms we frequently used in 

Random matrix theory.  

Definition 5.2.1 

Let 𝐶 be any square matrix, 𝜇𝑐 is the probability distribution. If 𝜇𝑐 puts equal the 

mass of each eigenvalue of 𝐶, then 𝜇𝑐 is called the empirical spectral distribution 

(ESD) of 𝐶. 

This implies that if 𝜆𝑖, 𝑖 = 1,2, … , 𝑛 are eigenvalues of the matrix 𝐶 (where 𝐶 is 𝑛 𝑥 𝑛 

matrix), then  

𝜇𝑐 =
1

𝑛
(𝛿𝜆1 + 𝛿𝜆2+,… , +𝛿𝜆𝑛)                                               (5.1) 

Where 𝛿 is the Kronecker delta. Note that if 𝐶 is 𝑛 𝑥 𝑛 matrix of multiplicity 𝑚 and 𝜆 is 

it's eigenvalues, then ESD 𝜇𝑐 puts mass 𝑚 𝑛⁄  at 𝜆. 

Equation (5.1) above can be put into a general form thus, 

𝜇𝑐 =
1

𝑛
∑𝛿𝜆𝑖

𝑛

1

                                                                      (5.2) 

 
 
 
Definition 5.2.2   
Let 𝑋𝑖𝑗, 1 ≤ 𝑖 < 𝑗 < ∞ be independent identically distributed (i.i.d) (real) random 

variables with mean 0 and variance 1 and set 𝑋𝑗𝑖 = 𝑋𝑖𝑖. Let 𝑋𝑖𝑖 be i.i.d (real) random 

variables (with possibility of a different distribution) with mean 0 and variance 1, then, 

𝐶𝑛 = [𝑋𝑖𝑗]𝑖𝑗=1
𝑛

 will be a random 𝑛 𝑥 𝑛  symmetric matrix. This is called the (real) 

Wigner matrix.  
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In general, let {𝑋𝑖𝑗}𝑖𝑗=1
𝑛

 be a sequence of independent random variables with the 

same distribution with all first moments 0 and all second moments 1. Let  {𝑋𝑖𝑖}𝑖=1
𝑛  be 

a sequence of independent random variables with the same distribution with all first 

moments 0. Assume all {𝑋𝑖𝑗}𝑖𝑗=1
𝑛

and {𝑋𝑖𝑖}𝑖=1
𝑛  are independent of each other. And, 

assume all moments of both sets of random variables are finite. A Wigner matrix is a 

symmetric matrix 𝐶𝑛 of size 𝑛 such that 

 

{𝑋𝑖𝑗}𝑖𝑗=1
𝑛

= {𝑋𝑗𝑖}𝑗𝑖=1
𝑛

=

{
 
 

 
  
𝑋𝑖𝑗

√𝑛
⁄  𝑖𝑓 𝑖 < 𝑗

𝑋𝑖𝑖
√𝑛
⁄  𝑖𝑓 𝑖 = 𝑗

                                   (5.3) 

Note: If  𝑋𝑖𝑗 ∈ ℂ, that is the set of the complex number and  𝑋𝑖𝑗 = �̅�𝑗𝑖, {𝑋𝑖𝑗}𝑖𝑗=1
𝑛

 is 

called a random 𝑛 𝑥 𝑛  Hermitian matrix. But in this work, our interest is in the Real 

case.  

Definition 5.2.3   
A matrix 𝑅 is called a Wishart matrix if  𝑥𝑖𝑗  ∈ 𝑋,  𝑖 = 1, 2, … , 𝑛  and 𝑗 = 1, 2, … , 𝐿,  is a 

double array of independent identically distributed real random variables with mean 

zero and variance one, if   such that 𝑅 =  
1

𝐿
𝑋′𝑋 where 𝕩𝑗 = (𝑥1,𝑗 , 𝑥2,𝑗, … , 𝑥𝑛,𝑗)

′
 and 

𝑋𝑡 = [𝕩1, 𝕩2, … , 𝕩𝐿].  

5.3 The background and Methodology.  
 

5.3.1 Equally weighted covariance and RMT 

 
Let 𝑋 be a 𝐿 𝑥 𝑁 matrix that contains the return of the market (hourly, daily, weekly, 

monthly, quarterly, whichever be the case), where 𝑛 is the number of assets we are 

considering. Therefore, the price entering of the returns of these assets will be 𝑛, this 

gives us the 𝑛 number of columns while 𝐿 is rows that indicate the time series of our 

observations. Thus,  
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𝑋 = [

𝑟11 ⋯ 𝑟1𝑛
⋮ 𝑟𝑖𝑗 ⋮
𝑟𝐿1 ⋯ 𝑟𝐿𝑛

]                                                         (5.4) 

where 𝑖 = 1, 2, 3, … , 𝑛 and 𝑗 = 1, 2, 3, … , 𝐿.  (J.P. Morgan 1996) when the standard 

deviation and covariance around a zero mean is computed and weigh each 

observation with a probability of 
1

𝐿
 , we will have our covariance matrix to be  

∑= 
𝑋′𝑋

𝐿
                                                                      (5.5) 

where 𝑋′ is the transpose of 𝑋 and this can be presented in a general as; 

𝑋′𝑋

𝐿
=

[
 
 
 
 
 
 1

𝐿
∑𝑟𝑖1

2

𝐿

𝑖=1

⋯
1

𝐿
∑𝑟𝑖1𝑟𝑖𝑛

𝐿

𝑖=1

⋮ ⋱ ⋮

1

𝐿
∑𝑟𝑖1𝑟𝑖𝑛

𝐿

𝑖=1

⋯
1

𝐿
∑𝑟𝑖𝑛

2

𝐿

𝑖=1 ]
 
 
 
 
 
 

=  [
𝜎1
2 ⋯ 𝜎1𝑛

2

⋮ ⋱ ⋮
𝜎𝐿1
2 ⋯ 𝜎𝑛

2
]                         (5.6) 

If we divide each entering of 𝑋 with a corresponding standard deviation which will 

help us generate a correlation matrix. This means normalisation of 𝑋. 

𝐴 =

[
 
 
 
 
𝑟11
𝜎1

⋯
𝑟1𝑛
𝜎𝑛

⋮ ⋱ ⋮
𝑟𝐿1
𝜎1

⋯
𝑟𝐿𝑛
𝜎𝑛 ]
 
 
 
 

                                                          (5.7) 

remember that  

𝜎𝑖𝑗 =
1

𝐿
√∑𝑟𝑖𝑗

2

𝐿

𝑖=1

       𝑗 = 1,2,3, … , 𝑛                                       (5.8) 

5.3.2 Exponentially weighted covariance and RMT 

Pafka et al. (2004) introduced a covariance matrix estimator that uses exponentially 

weighted moving average to account for the heteroscedasticity of financial returns, 

and reduce the effect of noise through a technique browed from RMT 

if 𝐶 = {𝑐𝑖𝑗}𝑖𝑗=1
𝑁

 with  
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𝑐𝑖𝑗 =∑(1 − 𝛼)𝛼𝑘𝑥𝑖𝑘𝑥𝑗𝑘

∞

𝑘=0

                                                 (5.9) 

where {𝑥𝑖𝑗}𝑘=0,…,∞
𝑖=1,…,𝑁

 are assume to be normally distributed with mean 0 and standard 

deviation 𝜎2  (that is, N.I.D. (𝜇, 𝜎2) ) and 𝛼 is called a decay factor. 

According to Pafka et al. 2004, in a situation when 𝑁 → ∞ and 𝛼 → 1  with 𝑄 ≡

1

(𝑁(1−𝛼))
 fixed, 𝜌(𝜆) which is the probability density of the eigenvalue of 𝐶 is given by 

𝜌(𝜆) =
𝑄𝑣

𝜋
                                                                           (5.10) 

where 𝑣 is the root of the equation  

𝐹(𝑣) =  
𝜆

𝜎2
−

𝑣𝜆

tan(𝑣𝜆)
+ ln(𝑣𝜎2) − ln(sin(𝑣𝜆)) − 

1

𝑄
                                    (5.11) 

Daly et al. (2008) shows that 𝐹(𝑣) is a function that is well define on the interval 

(0,
𝜋

𝜆
). For any given value of 𝜆 whose root does not exist within the open interval 

(0,
𝜋

𝜆
),  the probability density of that 𝜆 is equal to zero, thus, 𝜌(𝜆) = 0. Then the 

exponentially weighted covariance matrix 𝑉∗ = {𝜎𝑖𝑗
∗ }
𝑖𝑗=1

𝑛
 is defined as 

𝜎𝑖,𝑗
∗ =

1 − 𝛼

1 − 𝛼𝐿
∑𝛼𝑙(𝑋𝑖,𝐿−𝑡 − �̅�𝑖𝑙)(𝑋𝑗,𝐿−1 − �̅�𝑗𝑙)

𝐿−1

𝑙=0

                                   (5.12) 

where the corresponding exponentially weighted correlation matrix is 𝐶∗ = {𝜌𝑖𝑗
∗ }

𝑖𝑗=1

𝑛
is  

𝜌𝑖𝑗
∗ =

𝜎𝑖𝑗
∗

√𝜎𝑖𝑖
∗𝜎𝑗𝑗

∗

                                                                        (5.13) 

where 𝛼  is the decay factor. 
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Definition 5.5.1  
Let 𝑃𝑖(𝑡) be the closing price of the index on the day (𝑡) of stock 𝑖 and we define the 

natural logarithmic returns of the index (i.e. the log-difference of 𝑃𝑖(𝑡 + 1) 𝑎𝑛𝑑 𝑃𝑖(𝑡)) 

is  

𝑟𝑖(𝑡) =  ln 𝑃𝑖(𝑡 + 1) − ln 𝑃𝑖(𝑡)                                                    (5.14) 

𝑟𝑖(𝑡) has 𝐿 number of observations. 

Before establishing the portfolio selection process, we will compute the mean return 

and standard deviation of each 𝑖 

We first calculate the price change ('return') of the stocks to quantify correlations, 

see Plerou et al. (2001) and Sharifi et al. (2004). Therefore, the price change of 

stock 𝑖 = 1, . . . , 𝑁, over a time scale 𝛥𝑡.  

Definition 5.5.2  

Let's denote the price of 𝑖𝑡ℎ asset at time 𝑡 as 𝑆𝑖(𝑡), therefore, we define its price 

change as  

𝐺𝑖(𝑡) = ln 𝑆𝑖(𝑡 + ∆𝑡) − ln 𝑆𝑖 (𝑡)                                                       (5.15)
 

Since there is variation in the levels of volatility (standard deviation) of different 

stocks, we, therefore, define a normalised return concerning its standard deviation 𝜎𝑖 

as follows:  

𝑔𝑖(𝑡) =
𝐺𝑖(𝑡) − 〈𝐺𝑖〉

𝜎𝑖
                                                               (5.16) 

where 𝜎𝑖 = √〈𝐺𝑖
2〉 − 〈𝐺𝑖〉2 is the standard deviation of 𝐺𝑖 for the assets 𝑖 = 1, . . . , 𝑁 

and 〈𝐺𝑖〉 is denoted as the time average of 𝐺𝑖 over the period studied which can be 

computed as follows, 〈𝐺𝑖〉 =
1

𝐿
 ∑ 𝐺𝑖

𝐿−1
𝑙=0 .   

Note 5.5.3 

(5.14) and (5.15) may seem to be the same but in the real sense, they are not.  

𝑃𝑖(𝑡) is the daily closing price of the market, 𝑟𝑖(𝑡) gives us the log difference (natural 

log) of the closing price of one day compared with the previous day in (5.14). 
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𝑆𝑖(𝑡) is the price of the stock at a time therefore, 𝐺𝑖(𝑡) gives us the change in price 

within the time interval of the sampling. 𝐺𝑖(𝑡) in (5.15) is a more general formula 

because some studies are done within the interval of 30 minutes (see Plerou et al. 

(1999) equation 1), in some cases the intervals may be one day, weekly, fortnight, 

monthly, quarterly etc. see Wilcox & Gebbie (2007). Therefore, if the interval of 

sampling is one day equations (5.14) and (5.15) coincide.  

 

𝐶𝑖𝑗 ≡ 〈𝑔𝑖(𝑡), 𝑔𝑗(𝑡)〉                                                          (5.17) 

Being correlation coefficients, the elements of 𝐶𝑖𝑗 are restricted to the domain 

𝐶𝑖𝑗 ∈ [−1,1] i.e. −1 ≤ 𝐶𝑖𝑗 ≤ 1 during the construction of the 𝐶𝑖𝑗, where 𝐶𝑖𝑗 = 1 

corresponds to perfect positive correlation, 𝐶𝑖𝑗 = 0 corresponds to uncorrelated pairs 

of stocks and 𝐶𝑖𝑗 = −1 corresponds to anti-correlation , that is a perfect negative 

correlation .  

There are difficulties in the analysis of the correlation between any two stocks  𝑖, 𝑗 , 

Plerou et al. (2001), (2000) and El Alaoui (2015) note that two main difficulties arise 

in the analysis of the correlations between any two stocks or more generally, the 

correlation structure of a portfolio of assets in a financial market. Firstly, market 

conditions change with time. Hence, the correlation 𝐶𝑖𝑗 between any two pairs 𝑖, 𝑗 of 

the stocks may not be stationary. Secondly, time averaging over a finite time series 

introduces ‘measurement noise’. These facts have implications for portfolio selection 

and optimisation, given the centrality of cross-correlations among assets to 

Markowitz portfolio optimization. Recall that the basic tenets of Markowitz’s theory of 

optimal portfolios are a) to determine the optimal weights of assets with given 

average returns and risks which maximizes the overall returns for a fixed level of 

risk, or b) minimises the risk for a given level of overall return. For this purpose, if 

}{ iR  are expected returns of the portfolio assets, }{ ip are the relative amounts of 

capital invested in the assets, and 𝐶 = )( ijC  is the matrix of covariances of asset 

returns, then Markowitz’s optimization uses Langrangian multiplier approach to 

minimize the overall portfolio variance  


N

ji ijjiP Cpp
1,

2 for a given value of overall 

return .
1 


N

i iiP Rpr The results of this scheme are summarised graphically in mean-
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variance Efficient Frontiers which shows the range of optimal risk-return 

combinations possible.  

The point, therefore, of Random Matrix Theory (RMT) is to compare the structure of 

the empirical cross-correlations (in effect covariance) among portfolio assets with the 

behaviour of a purely random matrix in which the assets are independent. For this, 

both Eigen-structure and time dependence (or stability) of the matrix 𝐶 are of interest 

and constitute what is known in RMT as dynamics of the correlation matrix. The 

following notes summarise what is known about these dynamics. For a portfolio of 𝑁 

assets, the matrix 𝐶 has 𝑁(𝑁 − 1)/2 entries to be determined from 𝑁  time series of 

length 𝐿. Here 𝑁 and 𝐿 correspond to the numbers of the stocks listed and the days 

studied respectively. In one of our results,  𝑁 = 82 and 𝐿 = 1018 correspond 

respectively to the numbers of the stocks listed in NSE and the days studied.  

Although NSE has about 188 stocks listed within the period of the time series, so 

many stocks were not consistently traded over the period studied. Hence, we choose 

82 stocks that were consistent in the market during the sample period. We then 

compute the equal-time cross-correlation matrix 𝐶 with elements: 

 

If 𝐿 is not very large relative to 𝑁, we are basically estimating too many model 

parameters from sparse information, which introduces the above-mentioned 

‘measurement noise’ in empirical correlation matrices. This makes the use of such 

matrices in applications less accurate in portfolio optimization than alternative 

matrices filtered for pertinent information using key results of RMT summarised 

below. Indeed, in RMT this information is cleaned from the behaviour of eigenvalues 

and eigenvectors of 𝐶, compared to a ‘null hypothesis’ purely random matrix such as 

represented by a finite time series of strictly independent and uncorrelated assets. 

5.3.3 Eigenvalue distribution of correlation matrix.  

In matrix notation, the correlation matrix can be expressed as  

𝐶 =
1

𝐿
 𝐺𝐺′                                                                       (5.18) 

where 𝐺 is an 𝑁 ×  𝐿 matrix with elements {𝑔𝑖𝑚 ≡ 𝑔𝑖(𝑚∆𝑡): 𝑖 = 1, . . . , 𝑁;𝑚 =

0, . . . , 𝐿 − 1}, and 𝐺′is the transpose of 𝐺. 
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The RMT method used here is to compare the empirical cross-correlation matrix 𝐶 

against the null hypothesis of a random matrix of the same type which is 𝑅 (see 

Laloux et al. 1999). 

So, we consider a random correlation matrix  

𝑅 =
1

𝐿
 𝐴𝐴′                                                                           (5.19) 

where 𝐴 is an 𝑁 ×  𝐿 matrix containing 𝑁 time series of 𝐿 random element 𝑎𝑖𝑚, with 

zero mean and unit variance that are mutually uncorrelated and 𝐴′ is the transpose of 

𝐴.  

By construction, Muirhead (1982) referred to 𝑅 as Wishart matrices in multivariate 

statistics. Kim et al. (2010) shows that if the eigenvalues from the empirical matrix 𝐶 

is like the result of the random matrix 𝑅 from the component analysis, this shows that 

the empirical data of the market is noisy. But when it is larger than the random matrix 

𝑅, then the empirical data is meaningful and, it contains useful information about the 

market. 

By diagonalisation of matrix 𝐶, we obtain  

𝐶𝑢𝑘 = 𝜆𝑘𝑢𝑘                                                                       (5.20) 

where 𝜆𝑘 are the eigenvalues and 𝑢𝑘 are the eigenvectors, and 𝑘 = 1, . . . , 𝑁 are 

arranged in order of increasing eigenvalues. Statistical properties of random 

matrices such as 𝑅 are known in the limit of large dimensions, In particularly, the limit 

𝑁 →  ∞, 𝐿 →  ∞ such that 𝑄 ≡
𝐿

𝑁
 (> 1) is fixed, Sengupta & Mitra (1999) shown 

analytically that the probability density function 𝑃𝑟𝑚(𝜆) of eigenvalues 𝜆 of the 

random correlation matrix, 𝑅 is given by 

𝑃𝑟𝑚(𝜆) =
𝑄

2𝜋𝜎2
 
√(𝜆+ − 𝜆)(𝜆 − 𝜆−)

𝜆
                                        (5.21) 

For 𝜆 within the bounds 𝜆−  ≤  𝜆𝑖 ≤ 𝜆+, where 𝜆− and 𝜆+are the minimum and 

maximum eigenvalues of 𝑅, respectively, given by 
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𝜆± = 𝜎
2 (1 +

1

𝑄
 ± 2√

1

𝑄
)                                              (5.22) 

where 𝜎2 is equal to the variance of the elements 𝑅, Sengupta & Mitra (1999). The 

eigenvalues of 𝑅 falls within the range [𝜆−, 𝜆+] as predicted by Random matrix 

theory, Rosenow et al. (2003). 𝜎2 is equal to unity in the case of a normalised matrix 

𝐴. Also, the maximum and minimum (theoretical) eigenvalues determine the 

(theoretical) bounds of the eigenvalue’s distribution and if, the eigenvalues of the 

matrix 𝐶 are beyond the bounds, they are said to deviate from the random bound 

which suggests that they contain pertinent investment information. Being able to 

detect assets with such real information as opposed to random market noise will 

enable investors to include them in portfolio constructions for more optimal risk 

control. 

It is also known that the first three eigenvalues represent the overall market 

information based on the random behaviour of investment returns (random walk 

hypothesis), which the random matrix represents. Hence, deviations between 

realised values of the first three eigenvalues (especially the first one) and the 

predicted maximum eigenvalue indicate the extent to which a stock market is 

consistent with the RMT assumptions.  

In line with the assumption of pure randomness and independence, the distribution 

of the components {𝒖𝒌(𝑙)|𝑙 =  1, 2, . . . , 𝑁} of an eigenvector 𝒖𝒌 of a random 

correlation matrix, 𝑅 should obey the standard normal distribution with zero mean 

and unit variance given by  

 

𝑃𝑅(𝑢) =  
1

√2𝜋
 𝑒𝑥𝑝 (−

𝑢2

2
)                                                      (5.23) 

5.4 Data Analysed. 
We analyse the sample data from two emerging markets, namely the Nigerian Stock 

Exchange (NSE) and the Johannesburg Stock Exchange (JSE). 

5.4.1 Nigerian Stock Exchange Data 

The Nigerian Stock Exchange (NSE) has 188 stocks listed under eleven (11) 

sectors, namely: Agriculture with 5 stocks, Conglomerates with 6 stocks, 
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Construction/Real estate with 9 stocks, Consumer goods with 28 stocks, Financial 

services with 57 stocks, ICT with 9 stocks, Health care with 11, Industrial goods with 

21, Natural resources, Oil and Gas, and Services with 5, 14 and 23 stocks, 

respectively. 

The data set used was the daily closing price of 4 years of stock data listed in the 

NSE. We have 1019 every day closing prices running from 3rd August 2009 to 26th 

August 2013, excluding weekends and public holidays in Nigeria (Nationwide). 

These stock price data were converted into 1018 logarithmic returns see equ (5.14). 

These data were screened to remove stocks that were delisted, infrequently traded 

or not traded at all during the sample period. This reduced the data to 82 securities 

only. 

5.4.2 Johannesburg Stock Exchange Data 

Johannesburg Stock Exchange (JSE) is claimed to be the biggest stock exchange in 

Africa; in 2003, the JSE had an estimated 472 listed companies. These companies 

are listed under three categories called issuers, namely Equity, Structural product, 

and Hybrids issuers.  

In the course of this work, we analyse a total of 35 selected securities from various 

sectors which cut across Banking, Insurance, Health care, Telecommunications, oil 

and gas, food and drugs, Tobacco, Pharmaceuticals and Beverages, etc.  The data 

set used the daily closing price of the stock data listed above of JSE. We have 1485 

every day closing prices running from 2nd January 2009 to 1st August 2013, 

excluding weekends and public holidays in South Africa. These stock price data 

were converted into 1484 logarithmic returns and was used in our analysis.   

5.4.3 Eigenvalue analysis 

In one of our Analysis with the Nigerian market Nnanwa et al. (2017), we analysed 

𝑁 =  82 stocks from NSE which a total of 𝐿 =  1019 daily closing prices. We found 

out that the theoretical (Random) eigenvalue bounds of the correlation matrix form 

equ. (5.22) , are 𝜆𝑚𝑎𝑥 = 1.6484 and 𝜆𝑚𝑖𝑛 =  0.5128 as maximum and minimum 

eigenvalues respectively. The value of our 𝑄 is 12.4146 (Note that 𝑄 = 𝐿 𝑁⁄ ).  
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We compute the eigenvalues 𝜆𝑖 of the empirical correlation matrix and ranked them 

in an ordered form that is, 𝜆𝑖+1 > 𝜆𝑖, and the compare the probability distribution 

𝑃(𝜆) with that of the random matrix 𝑃𝑟𝑚(𝜆) from equ. (5.21) for  =  12.4146.   

𝜆± = 𝜎
2 (1 +

1

𝑄
 ± 2√

1

𝑄
) 

where 
1

𝑄
= 0.08055, √

1

𝑄
= 0.2839,2√

1

𝑄
= 0.5678 and 𝜎2 = 1, we have that equ. (5.22) 

is  

𝜆± = (1 + 0.0806 ± 2√0.0806) 

and we have 𝜆𝑚𝑎𝑥 = (1 + 0.0806 + 0.5678) and 𝜆𝑚𝑖𝑛 = (1 + 0.0806 − 0.5678), 

therefore  𝜆𝑚𝑎𝑥 = 1.6484 and  𝜆𝑚𝑖𝑛 = 0.05128, this gives our eigenvalue bound to be 

[ 𝜆𝑚𝑖𝑛,  𝜆𝑚𝑎𝑥] = [0.05128, 1.6484]. 

 

We observe from the results that the bulk of the eigenvalues fall within the bounds of 

the random spectrum [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] for 𝑃𝑟𝑚(𝜆), it is also observed that the largest 

eigenvalue = 4.87 which is 2.95 (approximately 3) times bigger than the predicted 

RMT value above. Also, 6 of out our eigenvalues deviated from the above RMT 

eigenvalue spectrum, which accounts for 10.98% of the total eigenvalues (see fig. 

5a). Therefore, this suggests the presence of true information about the stock market 

is in about 11% of the selected stocks and purely random information in the 

remaining 89% associated with the purely random matrix, (Laloux et al. 1999) and 

(Plerou et al. 1999).    
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Fig 5a: Empirical distr. of eigenvalues 

 

Fig 5b: Theoretical (Marcenko-Pastur), empirical and Cleaned up distr. of eigenvalues 

In the other development, Urama et al., (2017) try to compare the results of Nnanwa 

et al. (2017) on NSE and JSE. They analysed 1149 daily closing price of 35 stocks 



 

98 
 

for Joburg exchange, therefore have 𝑁 and 𝐿 as 35 and 1148 respectively.  From the 

analysis, we have that the theoretical bounds of the correlation matrix are 

[0.21, 2.37], having 𝜆𝑚𝑎𝑥=2.37 and 𝜆𝑚𝑖𝑛= 0.21 as maximum and minimum 

eigenvalues respectively. The value of 𝑄 is 32.77 while the largest eigenvalue is 

11.86 which 5 times the value of the largest eigenvalue from the predicted RMT that 

is 𝜆𝑚𝑎𝑥=2.37. In this case, 8.57% of the total eigenvalue lies outside the theoretical 

bounds of the eigenvalue thus have the penitent information about the market.  

The corresponding eigenvector is the ‘market’ itself, which has approximately equal 

components on all the 82 stocks. The pure noise RMT hypothesis may, therefore, 

not be consistent with the NSE stocks. 

5.4.4 Distribution of eigenvectors component analysis 

Using Figures Fig 5c, Fig 5d, Fig 5e, Fig 5f and Fig 5g below we analyse the 

distribution of the eigenvectors by comparing the distribution of the eigenvector 

components that are inside the boundaries of the RMT prediction (i.e. [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]) 

with those outside the bound. The normal distribution of the eigenvectors 𝑢1 of the 

first eigenvalue (which represents the market on the selected stocks) is clearly right-

tail asymmetric with a positive mean. The data are also non-normal and therefore 

inconsistent with RMT predictions. Fig 5d shows a similar non-normal asymmetric 

distribution of eigenvectors associated with the second eigenvalue, as with the first, 

but with a reversed left-tailed skew. Normality begins to occur with much higher 

eigenvalue values such as the eigenvectors associated with the twentieth eigenvalue 

(see Fig 5e). Thus, potentially portfolio-enhancing stocks lay outside but not too far 

away from predicted RMT the bands. Particularly for the first eigenvalue which 

represents the market, we can say that the Nigerian Stock Market, as revealed by 

the 82 stocks, reacts more to positive variations than negative variations. 
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Fig 5c  

 

Fig 5d  
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Fig 5e 

 

Fig 5f  
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Fig 5g 

5.4.5 Inverse Participation Ratio (IPR) 

The Inverse participation ratio (IPR) is used to analyse the structure of the 

eigenvectors whose eigenvalues are lying outside the noisy band of RMT predicted 

eigenvalues (see Plerou et al. 1999, 2000). It measures the number of components 

that participate significantly in each eigenvector (see Gurh et al. 1998). It also 

indicates the degree to which the distribution of eigenvectors of the empirical 

correlation matrix deviate from RMT results, particularly distinguishing an 

eigenvector with roughly equal components and another with a small number of 

large components.  

Definition 5.4.5 

Let 𝑢𝑙
𝑘 denote the 

thl component of the eigenvector 𝑢𝑘 .  The IPR is defined as  

 

𝐼𝑘 = ∑ (𝑢𝑙
𝑘)
4𝑁

𝑙=1  , 𝑙 = 1, 2, 3, … ,𝑁                                                (5.24)                                                                

 

where 𝑁 =  82 is the number of assets.  

The IPR is the reciprocal of the number of eigenvector components significantly 

different from zero El Alaoui, (2015). This can be illustrated by two limiting cases: (i) 

if the components of the eigenvector are identical  𝑢1
𝑘 ≡  1/ N  has 𝐼𝑘 = 1/𝑁, and (ii) 

a vector with one component 𝑢𝑖
𝑘 ≡ 1 and the remainder zero has 𝐼𝑘 = 1. Practically, 

inverting an observed IPR estimates the number of active elements in the time series 



 

102 
 

of a financial asset, that is, the number of eigenvector components that contribute 

more than random noise to the portfolio risk-return characteristics.  

5.4.6 Analysis of Inverse participation ratio  

The theoretical mean IPR is approximately equal to 3/𝑁 =  3/82 =  0.0366. A look 

at Fig.5h shows that the IPR values are close to a mean level of noise (0.04) 

indicating that a few stocks do not dominate the dynamics and most stocks 

participate in the correlation dynamics of asset returns. However, the deviations in 

IPR values are strong for a few initial elements (17 times more for the highest score 

of 0.17 compared with the lowest non-zero score of about 0.01 between elements 1-

6). Overall, there does not appear to be a localisation effect in the spread of IPR 

values, with very large values for a few elements and very small values for the rest 

El Alaoui, (2015). It would be interesting to compare this overall market behaviour 

against sectorial results as mentioned in the introduction to this chapter. 

 

Fig 5h: Inverse participation ratio and their rank 

 

5.5 Noise reduction 
The covariance matrix 𝐶 of the returns of the assets in a portfolio is estimated. If a 

portfolio of 𝑁 assets, the matrix 𝐶 has 𝑁(𝑁 − 1)/2 entries to be determined from 𝑁  

time series of length 𝐿, the entries will be 𝑁𝐿 data.  To realise a reasonable result the 

length of 𝐿 needs to be large, but in the real-life experiment, one is not expected to 

use data that is more than four years. It is believed that four years is a lot of time; 

therefore, a lot of policies which might affect the data may have changed (example 

economic policies see Kondor et al. (2005). Due to these reasons, the covariance 
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matrix 𝐶 determined from the empirical financial data where 𝐿 is approximately 1000 

appear to contain a lot of noise. 

5.5.1 The Clean-up Technique.  

Several scholars have studied noise in financial analysis, authors like Lalour et al. 

(1999) (2000), Plerou et al. (1999) (2000) and Sharifi et al. (2004) have shown that 

the correlation matrix contains a lot of noise. They argue that using the empirical 

correlation matrix to optimise a portfolio will result in the new portfolio containing a lot 

of underestimated risk. Since the risk and return of this portfolio is not well controlled 

and estimated, there is a need for the system to be denoised.    

Lalour et al. (2000) and Plerou et al. (2002) introduced the cleaning up (otherwise 

called filtering technique) of the correlation matrix to improve the estimated risk of 

the optimal portfolio by separating errors from the right and real correlations to the 

matrix, in order to extract the useful (real) information from the market. This is done 

by replacing the noisy eigenvalues of the correlation matrix by at the identity matrix 

with a coefficient such that the trace of the matrix is conserved. After cleaning the 

correlation matrix, the cleaned up one is used to compute the corresponding 

covariance matrix and then the optimal portfolio is constructed.  

Some of the authors mentioned above have their peculiar way or method of filtering 

the noisy eigenvalues; Lalour et al. (2000) did their filtering by replacing the noisy 

eigenvalues by their average, while Plerou et al. (2002) did theirs by replacing the 

noisy eigenvalue with zeros after which the original main diagonal is restored. Sharifi 

et al. (2004) did theirs by replacing them with ones that are maximally and equally 

spaced and ensures that the sum of the eigenvalues is maintained.   

5.5.2 Cleaning empirical correlation matrices 
 
We noted earlier in the introduction to this chapter that estimating empirical 

correlation matrices introduces measure noise because of the large number of 

correlation parameters required. Using such matrices further in portfolio optimisation 

as depicted by Markowitz’s mean-variance Efficient Frontiers is therefore subject to 

inaccuracies in predicting portfolio risks. We examine this in more detail when 

constructing suitable investment portfolios from overall and sector based RMT 

results. For this, we explain briefly how the process works. The first step is to divide 
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the observed series of stock prices and returns into two equal sub-periods. The first 

period analyses predicted risk and the second realised risk. The second step filters 

RMT eigenvalues into noisy and non-noisy elements, with the later situated outside 

the RMT eigenvalue spectrum. These eigenvalues are maintained, and those in 

RMT bound [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]  are cleaned by replacing them with their average values 

while maintaining the same matrix trace. The third step uses known methods to 

construct the cleaned correlation matrix from the noisy elements El Alaoui, (2015); 

Laloux et al. (1999), (2000). After cleaning up the correlation matrix, the return 

increases and the risk is reduced by 13.7% (see Fig 4 below). 

 

Fig 5i  

 

5.6 Conclusion 
RMT enabled us to analyse in some detail the correlation structure of stock returns in 

the Nigerian Stock Exchange. Marcenko-Pastur distribution predicted a theoretical 

eigenvalue range of between 0.52 and 1.65 approximately. About 6 out of 82 

eigenvalues of the selected stocks were outside this eigenvalue spectrum, indicating 

that about 11% of the stocks have important information that can be used in 

constructing portfolios with more stable returns and risk characteristics than a null 

hypothesis purely random market allows in the remaining 89% cases.  



 

105 
 

The eigenvectors associated with the essential eigenvalues[𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]are non-

normal and highly asymmetric which is inconsistent with RMT. This fact suggests the 

presence of market signals such as depicted also in the information-carrying stocks. 

Given that the first eigenvalue represents the market, it also suggests that the 

Nigerian Stock Market (NSM) is inefficient, a fact that is consistent with known 

results in Ezepue and Omar (2012), for example. Importantly, this positive 

asymmetry in the distribution of eigenvectors of 1  shows that the NSM reacts more 

strongly to positive variations (and news) than negative variations.  

While the RMT bounds imply that most stocks analysed (89%) will suitably follow a 

zero-mean normal distribution in their returns, the normal distribution is not a good 

enough fit for the materially informative stocks outside the RMT eigenvalue bounds. 

Finally, the inverse participation ratio gives additional insights about the spread or 

localisation of eigenvectors by their ranks. It shows an even spread which suggest 

that there are no dominant stocks in among the 82 stocks.  

These insights are useful for constructing more optimal portfolios. For example, RMT 

Eigen-structure results are used to clean the empirical correlation matrices and 

thereby improve the realised and predicted risks associated with Markowitz mean-

variance Efficient Frontier. Also, detailed risk analysis of individual stock and portfolio 

returns outside RMT bounds should use suitable non-normal distributions.  

Future lines of work along these lines also include the development of financial 

derivatives in the NSM using the information on NSM-JSE market affinities  

 

 

 

 



 

106 
 

Chapter 6      Risk Management 

6.1 Introduction 
Risk is a word that is pervasive to all that come across it, but the truth is that one 

cannot do without risk. Life on its own is risky; it is unimaginable to think about the 

world without risk. Risk if appropriately managed, turns out to be a force that induces 

the growth of an establishment by making good returns from the uncertain profit.  

 Over the years, the financial market has grown tremendously and become more 

robust. The market has developed to the level where the practitioners can combine 

assets from different exchanges in a portfolio. With this development, the market is 

becoming more complex as the day goes by, thereby becoming riskier to invest in 

the market.  

Due to this expansion of the market and the risk involved, the market practitioners 

and the investors became more sceptical about their investment. This gave rise to 

the study of risks associated with the financial markets and portfolios. Since 

researchers began to study the risks associated with the financial market and 

portfolio management, so many people have developed a lot of models to help and 

manage the risk of the market.  

This risk can be calculated using three methods; therefore, people who try to 

develop models that will manage risk try to adopt any of the three methods or 

combination of them. These include;  

1) Measuring the risky through the interactions of the stocks in the portfolio; 

otherwise called the covariance method.  

2) Another one is calculating the risk using the historical data of the shares. And 

lastly  

3) Monte Carlo. This is a method where the random market scenarios are generated; 

while the risk factors are assumed to be a multivariate normal distribution. The return 

of the portfolio is computed based on the scenarios.  

The risk calculation proposed by Markowitz in 1952 before now used to be the 

easiest way of working out the risk of a portfolio due to its assumption. His work was 
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the foremost work of the risk optimisation of portfolio; he introduced Mean-Variance 

(MV) in portfolio optimisation. It is assumed to have multi-normal distribution, but the 

results from the asset returns indicated that this assumption is not correct; instead, 

they have fat tails and high kurtosis. The result gotten from the correlation of the 

different stocks in the market has shown that there is no linear dependence between 

the asset returns as assumed earlier. Due to these problems mentioned, Markowitz 

classical approach to the risk management of a portfolio was criticised by a lot of 

market practitioners which inspired many researchers to develop some models to 

take care of those deficiencies which MV has shown while estimating the risk of a 

portfolio.  

Sharpe (1970) came up with what he called the Capital asset pricing model (CAPM), 

which investigates the relationship between the expected return and risk of assets. 

Sharpe designed the CAPM to handle some of the deficiencies discover from MV; it 

tends to manage the systemic risk which MV and its diversification could not handle. 

Ross (1976), in his model, considered the relationship of the asset and many risk 

factors; he called his model Arbitrage pricing theory (APT). This model tries to 

correct the mispricing from the theoretical predictions of the price of the securities. 

APT uses the expected return and factors of several risk premiums of the asset, 

which is flexible; therefore, it is seen as an alternative model to CAPM.  

As the year goes by, the financial market was growing and becoming more robust 

and volatile; therefore, the risks associated with the market were also increasing. 

This situation demands that sophisticated risk measures need to be developed to 

meet up with the challenges imposed by the rapid growth of the market. A good 

number of researchers worked and developed different risk measure, which we have 

discussed in section 2.2.2 from subsection (a) to (g). 

Some of the models developed to tackle this problem used dependency structure 

without bringing into consideration the market and asset interdependency structure, 

that is, the joint tail realisations. Some authors have criticised the use of the linear 

correlation between securities; it is believed that its feasible values depend on the 

marginal distribution, according to Embrechts et al., (2002). Also, Stulajter (2009) 

pointed out that when assets have positive dependence, it does not mean correlation 

of one and zero correlation does not always imply independence. In his analysis, he 
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demonstrated with scattered plots where he showed the stronger tail dependence, 

which underestimates risk and thereby makes the portfolio to be less diversified. 

These problems persisted until researchers brought the results of Sklar (1959), 

called copulas into financial market studies. The origin of this area of research is 

traced back to Frechet (1951) where he studied distribution functions defined on a 

probability space with given marginals. Though Frechet introduced the concept, it 

was not clear at that moment; this made Abe Sklar work and improve the idea he 

Frechet (1951) introduced. This gave rise to Sklar (1959). It was in Sklar's work 

where copulas were mentioned first. Copulas help to determine the distribution of the 

return of a portfolio which depends on the univariate distributions and the 

dependence between assets in the portfolio Andrew (2007). 

Though copulas can be applied in so many areas of research, our interest will be in 

finance and economics. It has been widely used in the areas of decision making in 

finance and economics like; risk management, option pricing, credit risk, and the 

relationship between different financial markets Patton (2006).  

 In risk management, it is used to evaluate the tail probabilities and market trade-

offs. This was difficult to evaluate using other risk measures. Cherubini and Luciano 

(2001) dropped the joint normality assumption on returns; they used value-at-risk 

(VaR) and copulas to recover the marginal probability distribution and then calibrate 

copula function and recover the joint distribution. Embrechts et al. (2003) with a host 

of other researchers also used copulas method to study VaR. 

Joe (1997) and Nelsen (2006) were believed to have introduced statistical methods 

into copulas and used it in derivatives and options pricing while Cherubini et al. 

(2004) gave a detailed introduction of copulas to option pricing which serves as an 

alternative to the statistical methods of Joe above.  

Therefore, the copula is a multivariate distribution function defined on the unit cube 

[0,1]𝑛  that joins to its one-dimensional marginal distribution function. Since the 

calculation of the correlation coefficient works perfectly with normal distributions, and 

some of the market calculations are meanly skewed, copula is applied to deal with 

the skewness. 
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Definition 6.1.1  
Let 𝑋 be a vector random variables where 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]

′ and 𝐹 as joint 

distribution with marginathe l distribution 𝐹1, 𝐹2, … , 𝐹𝑛 , Sklar (1959) proves that there 

exists a function 𝐶 such that  

𝐹(𝑥1,𝑥2,…,𝑥𝑛) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑛(𝑥𝑛)),       ∀ 𝑥 ∈ ℝ
𝑛                        ( 6.1)  

This shows that from the multivariate distribution 𝐹 we can get the marginal 

distributions and the copula, 𝐹𝑖 and 𝐶 respectively. From Sklar's theorem, the copula 

function 𝐶 is 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛)) =  𝐶(𝑈1, 𝑈2,…,𝑈𝑛) is the distribution function 

of random variables. This means that 𝐶 meets the following conditions in the case of 

n- dimension Nelsen (2006); 

For every 𝑈 ∈ [0,1]𝑛, 𝐶(𝑈) =  0, if at least one element of 𝑈 is 0. 

For every 𝑈 ∈ [0,1]𝑛, 𝐶(𝑈) =  𝑈, if all coordinates of 𝑈 are 1 except 𝑈𝑗,  

𝐶 is an increasing function (see definition 1.7.9) 

Therefore, equation (6.1) shows that 𝐶 is to determine the dependence between 𝑋𝑖 

since each 𝐹𝑖 contains all the univariate information of each 𝑋𝑖 and the joint 

distribution 𝐹 has univariate and multivariate information. 

If the margins are continuous, the 𝑛-times partial derivative of equation (6.1) with 

respect to all the variables gives the multivariate density for the data. 

 

𝑓(𝑥1,𝑥2,…,𝑥𝑛) = 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑛(𝑥𝑛))𝑓1(𝑥1),… , 𝑓𝑛(𝑥𝑛)     ∀ 𝑥 ∈ ℝ
𝑛 ,          (6.2) 

 

where 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑛(𝑥𝑛)) is called the copula density, which is derived from 

the partial derivative.  

6.1.1 Copula Density 

Let 𝑋 be a multivariate random data set defined above, and 𝐶 is a cumulative 

distribution function or that vector   𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]
′  defined on a unit square [0,1]𝑛 

with uniform marginal distribution as 𝑈𝑖 = 𝐹𝑖(𝑥𝑖) for 𝑖 =  1, 2, … , 𝑛. If 𝐶 is continuous, 

the probability density function (pdf) of 𝐶 will be  

𝑐(𝑈1, 𝑈2, … , 𝑈.) =  
𝜕𝑛

𝜕𝑈1, 𝜕𝑈2, … , 𝜕𝑈𝑛
 𝐶(𝑈1, 𝑈2, … , 𝑈.),                         (6.3) 
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Where 𝑐 is the copula density.  Without loss of generality, equation (6.3) can be 

expressed as  

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =  ∏𝑓𝑖(𝑥𝑖)

𝑛

𝑖=1

. 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑛(𝑥𝑛))                          (6.5) 

The above equation shows that copula density controls the dependence between 

the 𝑥𝑖, therefore, 𝑓 is the product of the univariate marginal. Patton (2009) pointed 

out that the joint log-likelihood is the summation of the univariate log-likelihood and 

the copula log-likelihood. This is possible because, the joint density is the product of 

the marginal densities and the copula density.  

log 𝑓(𝑥) =∑log 𝑓𝑖(𝑥𝑖) + log 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2),… , 𝐹𝑛(𝑥𝑛)).

𝑛

𝑖=1

                             (6.6) 

The tail dependence and bounds for dependence form the central concept of copula 

functions theory. The conditional probability of copula function is represented by the 

lower or upper tail dependence coefficient; this implies that 𝑥1 takes a value in its 

lower or upper tail given that 𝑥2 takes a value in its lower or upper tail for all 𝑥1, 𝑥1 ∈

𝑋 . 

When lower and upper tail dependence coefficients of copula functions are equal, it 

is said to have symmetric tail dependence. But when their lower and upper tail 

dependence coefficients are different, it said to have asymmetric tail dependence. 

In the discussion of copulas, there are three fundamental concepts: they are copulas 

representing independence, copulas with perfect positive dependence and copulas 

with perfect negative dependence. Hence, the perfect positive and perfect negative 

dependence of copulas is defined as Frechet upper and lower bound copulas. 

Alexander (2008) and Stulajter (2009) said that no copula could take a value that is 

greater than the value of Frechet upper bound copula or a value less than Frechet 

lower bound copula. 

6.1.2 Dependence 

There are three dependence natures of copula functions; these include 

independence, copulas with perfect positive dependence and copulas with perfect 

negative dependence.  

Let 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑛) be a random vector with 𝑢𝑖, 𝑖 = 1, . . , 𝑛 as independence 

uniform random variables, if the distribution function of 𝑈 is a copula function 𝐶 which 

is   
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𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) =  ∏𝑢𝑖

𝑛

𝑖=1

,                                                     (6.7) 

Then 𝐶 is known as the independence copula. This shows that random variables are 

independent if the associate copula is equal to the independence copula. 

 

Perfect positive dependence is a term used in probability theory, which refers to the 

dependence between the components of a random vector. Let 𝑋 be a random vector 

that is 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)
, such that  

𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, … , 𝑋𝑛 ≤ 𝑥𝑛) = min{𝑋𝑖 ≤ 𝑥𝑖}𝑖=1
𝑛                       (6.8) 

For 𝑥𝑖 ∈ ℝ
𝑛, 𝑖 = 1, 2, … , 𝑛. Then the dependence of X is called perfect positive 

dependence. It is sometimes called comonotone random variable and seen as the 

upper bound of the Frechet - Hoeffind bound when the inequalities are equality.  

Perfect negative dependence is an expression that shows countercomonotonicity 

copula which is of the form  

𝑊(𝑢1, 𝑢1, … , 𝑢1) = 𝑚𝑎𝑥{𝑢1 + 𝑢2 +⋯+ 𝑢𝑛 + 1 −  d, 0}                      (6.9) 

6.1.3 Frechet - Hoeffding bounds 

Frechet - Hoeffding bounds is a maximal and minimal bivariate copula which every 

other take values in between the bounds. The Frechet - Hoeffding upper and lower 

bounds correspond to the perfect positive and perfect negative dependence, 

respectively. Kort (2007) shows that for any copula 𝐶 with domain 𝑋1 × 𝑋2,  

𝐶−(𝑢, 𝑣) = max(𝑢 + 𝑣 − 1,0) ≤ 𝐶(𝑢, 𝑣) ≤ min(𝑢, 𝑣) = 𝐶+             (6.10) 

for every (𝑢, 𝑣) ∈ 𝑋1 × 𝑋2. 𝐶
+ and 𝐶− are called the Frechet - Hoeffding upper and 

lower bounds respectively.  

Equation (6.10) can be given in a generalised form. This is Frechet - Hoeffding 

theorem and states thus, for any copula 𝐶: [0,1]𝑛 → [0,1] and any (𝑢1, 𝑢2, … , 𝑢𝑛) ∈

[0,1]𝑛, then the following bounds hold 𝐶−(𝑢1, 𝑢2, … , 𝑢𝑛) ≤ 𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) ≤

𝐶−(𝑢1, 𝑢2, … , 𝑢𝑛) . This implies that, 

𝐶−(𝑢1, … , 𝑢𝑛) = 𝑚𝑎𝑥 {∑𝑢𝑖

𝑛

𝑖=1

+ 1 − 𝑛, 0} ≤ 𝐶(𝑢1, … , 𝑢𝑛) ≤ min(𝑢1, … , 𝑢𝑛) = 𝐶
−(𝑢1, … , 𝑢𝑛)  (6.11) 

𝐶+ and 𝐶− are upper and lower bounds and they correspond to comontone and 

counter-monotonic random variables respectively. 
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Note: As the parameter values of the copula functions change, it tends to one of the 

Frechet - Hoeffding bounds either positive or negative dependence between the 

variables. If it does not tend to upper or lower bound as correlation approaches 1 or -

1 respectively, we then say that the copula is a Gaussian copula.  

 

6.2 Copula Family 
In this section, we will present different families of the copula. Copula families refer 

to the parameters that control the strength of the dependence of the copula 

functions, while the copula class refers to a collection of copula families that have 

similar properties. 

Nelsen (2006) states that there are two main methods used to derive copula 

function; these include; inversion method and generator functions method. The 

normal or student t distribution is a type of multivariate distribution copula that is 

derived from the inversion method. A good example is the elliptical copulas. The 

Archimedean copula is an example of copula functions constructed by a generator 

function. 

6.2.1 Elliptical copulas 

Elliptical copulas are a type of copula that is derived from elliptical distributions. 

These include multivariate normal (Gaussian) distribution and student t distribution, 

and this is as a result of Sklar's theorem. 

Definition 6.2.2 
Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑛) be a random vector with 𝑋𝑖, 𝑖 = 1, . . , 𝑛, for some 𝜇 ∈ ℝ𝑛 the 

mean vector, ∑ = 𝐴𝐴′ is the covariance matrix (see 5.3.3) and 𝜙 ∶  [0, +∞[ →

[0, +∞[ be the generator, the characteristic function 𝜑𝑋 − 𝜇(𝑡) of 𝑋 − 𝜇 is a function 

of the quadratic form 𝑡𝑇∑𝑡, 𝜑𝑋 − 𝜇(𝑡) =  𝜙(𝑡𝑇∑𝑡). Then 𝑋 has an elliptical distribution 

with parameters 𝜇, ∑ and 𝜙, and one can write 𝑋~𝓔(𝜇, ∑, 𝜙 ), if it can be expressed in 

the form  

𝑋 =  𝜇 + 𝑅𝐴𝑈,                                                                             (6.12) 

Example 6.2.3 
An elliptical copula with multivariate normal distribution is called multivariate 

Gaussian copula. This can be written as  
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𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝜙(𝜙−1(𝑢1), 𝜙
−1(𝑢2),… , 𝜙

−1(𝑢𝑛)),                      (6.13) 

where 𝜙−1 is the inverse of the standard multivariate normal distribution function 𝜙. 

The density of the function is  

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) =  
1

|𝑅|
1
2

𝑒𝑥𝑝 (−
1

2
𝜔𝑇(𝑅−1 − 1)𝜔),                        (6.14) 

where 𝜔 = (𝜙−1(𝑢1),… , 𝜙
−1(𝑢𝑛))

𝑇 and 𝑅 is the correlation matrix (see 5.3.3). And 

𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)
′, where 𝜔𝑖 is the 𝑢𝑖 quantile of the standard normal random 

variable 𝑋𝑖 which is  

𝑢𝑖 = 𝑃(𝑋𝑖 < 𝜔𝑖), 𝑋𝑖~𝑁(0, 1), 𝑖 = 1, 2, … , 𝑛.                            (6.15) 

Example 6.2.4 
An elliptical copula with multivariate Student's 𝑡 −distribution, correlation matrix 𝑅 

and 𝑣 degree of freedom is called multivariate Student's 𝑡 −copula. This can be 

written as  

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝑡𝑣,𝑅(𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢2), … , 𝑡𝑣
−1(𝑢𝑛)),                       (6.16) 

where 𝑡𝑣,𝑅 is a standardised multivariate Student's 𝑡 −distribution and 𝑡𝑣
−1 is the 

inverse of the univariate cumulative distribution function of Student's 𝑡 with 𝑣 degree 

of freedom 

The density of the Student's t- copula is  

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) =
Γ((𝑣 + 𝑑) 2⁄ )[Γ(𝑣

2
)]
𝑑
(1 + 𝜔𝑇𝑅𝑇𝜔)−

(𝑣+𝑑)
2⁄

|𝑅|
1
2Γ(𝑣 2⁄ )[Γ((𝑣 + 1) 2⁄ )]𝑑∏ (1 +

𝜔𝑖
2

𝑣
)
−𝑣+1

2𝑑
𝑖=1

    (6.17) 

where 𝜔 = (𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢2),… , 𝑡𝑣
−1(𝑢𝑛))

𝑇
, and Γ(∗) is the gamma function.  

As we have seen above, the elliptical family of copula functions has two main 

examples; Gaussian and Student's 𝑡 −copula. Though, the Gaussian copula seems 

to be more popular than the Student's 𝑡 −copula but the Gaussian copula does not 

possess tail dependence like the Student's 𝑡 −copula. This allows an increase in the 

probability of joint extreme events, and serves as an advantage over Gaussian 

copula, see He and Gong (2009). Secondly, Student's t- copula has a parameter 𝑣  
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called the degree of freedom, a higher value for 𝑣 decreases the probability of tail 

events and as 𝑣 tends to infinite; (𝑣 → ∞) the Student's 𝑡 −copula converges to the 

Gaussian copula.  

Finally, Kole et al. (2007) show that the Student's 𝑡 −copula matches both the 

dependence in the centre and the dependence in the tails than Gaussian copula 

which fails to capture tail dependence. 

6.2.2 Archimedean copulas 

Archimedean copulas are a class of copulas that are easily derived, and they are the 

type of copulas that allow a wide range of dependence. Unlike the elliptical copulas 

(Gaussian and Student - t copulas, which is implicit copulas and are built using an 

inversion method from multivariate distribution), Archimedean copulas are 

cumulative distribution functions without integral, but they have regular form and an 

alternative method of building which is depends on the generators.  Therefore, given 

any generator, one can easily define a corresponding Archimedean copula. 

 
Definition 6.2.4 
Let  ∅: [0,1] → [0,∞)  be a continuous decreasing convex function such that ∅(1) = 0 

and ∅(0) =  ∞ which is strictly decreasing is called an Archimedean generator if the 

pseudo-inverse of ∅ is;  

∅[−1] = {
∅−1(𝑢),               0 ≤ 𝑢 ≤ ∅(0)                                         (6.18)

0,                           ∅(0) ≤ 𝑢 ≤ ∞                                                   
 

If ∅ is a strict generator when ∅(0) = ∞, ∅[−1] = ∅−1 . Se Demarta and  

Definition 6.2.5 

Let ∅ in definition 6.2.4 be a strict generator and its inverse ∅−1: [0,∞) → [0,1] is 

completely monotone, the n-dimensional function generates by ∅ is called a 

multivariate Archimedean copula if  

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = ∅
−1(∅(𝑢1) + ∅(𝑢2) + …+ ∅(𝑢𝑛)), 

which is  

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛) = ∅−1 (∑∅(𝑢𝑖)

𝑛

𝑖=1

)                                               (6.19) 
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In the literature, there are groups of copula families generated by an Archimedean 

generator which has one or more parameters. Different types of Archimedean copula 

are as a result of the generator used; any parameter used gives a different result. 

For example, one parameter families are Clayton copula, Gumbel copula and Frank 

copula. 

 
Example 6.2.6 

 Let ∅(𝑢) = (−𝑙𝑛 (𝑢))𝜃, for 𝜃 ≥ 1. If  ∅(𝑢) is continuous and ∅(1) = 0, then derivative 

of  ∅(𝑢) is  ∅′(𝑢) = −𝜃(− ln(𝑢))𝜃−1
1

𝑢
 and  ∅ is a strictly decreasing function from the 

domain [0,1] to the range[0,∞). If the second derivative exists and  ∅′′(𝑢) ≥ 0 on 

[0,1], so  ∅(𝑢) is convex. With ∅(𝑢) = ∞ , ∅ is a strict generator? Then from equation 

(6.19), the copula will be  

𝐶𝜃(𝑢1, 𝑢2, … , 𝑢𝑛) = ∅
−1 (∑∅(𝑢𝑖)

𝑛

𝑖=1

) = 𝑒𝑥𝑝 (−[(−𝑙𝑛𝑢1)
𝜃 +⋯+ (−𝑙𝑛𝑢𝑛)

𝜃]
1
𝜃⁄ ) 

this implies that  

𝐶𝜃(𝑢1, 𝑢2, … , 𝑢𝑛) = 𝑒𝑥𝑝(− [∑(−ln (𝑢𝑖))
𝜃

𝑛

𝑖=1

]

1
𝜃⁄

)                                      (6.20) 

This type of copula family is called the Gumbel family. The Gumbel copulas cannot 

represent negative dependence and can model symmetric dependence in the data 

due to its stronger upper dependence and with a weaker lower dependence. 

Example 6.2.7 

Let ∅(𝑢) = (𝑢−𝜃 − 1)/𝜃, for 𝜃 ∈ [−1,∞)\{0},  this will generate a copula of the form  

𝐶𝜃(𝑢1, 𝑢2, … , 𝑢𝑛) = max([1 +∑(𝑢i
−𝜃 − 1)

n

𝑖=1

]

−1 𝜃⁄

, 0)                            (6.21) 

but for 𝜃 > 0, and copulas are strict, equation (6.21) will be simplified to  

𝐶𝜃(𝑢1, 𝑢2, … , 𝑢𝑛) =  (1 +∑(𝑢i
−𝜃 − 1)

n

𝑖=1

)

−1 𝜃⁄

                                            (6.22) 
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This type of copula is called the family of Clayton copulas. The Clayton copulas are 

used to study correlated risk in mathematical finance because of its capacity to 

capture lower tail dependence. If the parameter 𝜃 = 1, this generates an 

independence copula, while the copula coincides with the comonotonicity when 𝜃 =

∞. For any other value of the parameter, the copula moves between the 

independence and comonotonicity and can never be negative dependence. 

Example 6.2.8 

Let ∅(𝑢) = −𝑙𝑛
e−𝜃𝑢−1

e−𝜃−1
, for 𝜃 ∈  ℝ\{𝜃} this parameter will generate a copula in the form  

𝐶𝜃(𝑢1, 𝑢2, … , 𝑢𝑛) = −
1

𝜃
 𝑙𝑛 (1 +

∏ (e−𝜃𝑢𝑖 − 1)n
𝑖=1

(e−𝜃 − 1)𝑛−1
)                            (6.23) 

This is a strict Archimedean copula called the Frank copulas. In 𝑛-dimension, the 

parameter is restricted to the range (0,∞) and the copula is reduced to positive while 

the bivariate case, the parameter is allowed to take both positive and negative 

values, and the bounds of Frechet - Hoeffding are both obtained at 𝜃 = −∞ or 

𝜃 = +∞. This shows that Frank copula describes symmetric dependence. 

In Nelsen (1997), it shows that if ∅ is a strict generator for an Archimedean copula 

with ∅(𝑡𝛼) and [∅(𝑡)]𝛽 which are considered as two parameter family of strict 

generators for all 𝛼 ∈ (0,1] and 𝛽 ≥ 1, and ∅𝛼,𝛽(𝑡) = ∅𝛽° ∅𝛼(𝑡) = [∅(𝑡𝛼)]𝛽 .  If ∅𝛼
−1 and 

∅𝛼,𝛽
−1  are completely monotonic in (0,∞), then ∅𝛼,𝛽generates an n-copula. 

Example 6.2.9 

Let∅(𝑡) =  𝑡−1 − 1, for 𝛼 > 0 it is obvious that the inverse ∅𝛼
−1(𝑡) = (1 + 𝑡)−

1
𝛼 is 

completely monotonic in the interval (0,∞), then ∅𝛽° ∅𝛼(𝑡) = (𝑡−𝛼 − 1)𝛽 for 𝛽 ≥ 1 will 

generates the family of copula 

𝐶𝛼,𝛽(𝑢1, 𝑢2, … , 𝑢𝑛) = {[∑(𝑢𝑖
−𝛼 − 1)𝛽

𝑛

𝑖=1

]

1
𝛽

+ 1}

−1
𝛼

                                      (6.24) 

for 𝑢𝑖 ∈ [0,1] and 𝑛 ≥ 2. When 𝛽 = 1 ,we can easily see that equation (6.19) will be 

the Clayton family with one parameter.  
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One method to estimate the parameters is to calibrate with Kendall’s tau. The 

relation between the parameter 𝜃 and Kendall’s tau,  
𝜏 is summarized in the following table below for the three Archimedean copulas. 

Copula Type 𝜏 Formula for 𝜃 

Clayton 

Gumbel 

Frank 

𝜃/(𝜃 + 2) 

1 − 1/𝜃 

1 − 4𝜃−1(1 − 𝐷1(𝜃)) 

 

2𝜏/(1 − 𝜏) 

1/(1 − 𝜏) 

No closed form 

Table 6.1. The summary of the parameters and their tau. 

6.3 Measuring the coupled risk 
Value - at - Risk (VaR) is widely used as a risk measure; it measures the potential 

loss in value of risky assets in a portfolio within a given interval of confidence over 

some time. It is often used by commercial and investment banks to capture the 

probability of the most they can lose on their investment.  VaR took centre stage until 

Artzner et al. (1997) and others criticised it. They claimed that among its problem 

was its inability to satisfy subadditivity; and therefore, not a coherent risk measure. 

Secondly, it does not measure adequately; the possible loses in the tail of the 

distribution. It is accepted that the alternative risk measure to VaR is conditional 

Value - at - Risk (CVaR). CVaR manages and has a better description of the 

distribution of loses on the tail, Rockafeller and Uryasev (2000a) 

6.3.1 Estimation of VaR and CVaR 

Value - at - Risk (VaR) is a concept developed to help and manage risk in financial 

studies. It is a measure that defines the maximum amount a portfolio of assets is 

likely to lose over some time at a specific confidence level. 

Definition 6.3.3 
Given 𝛼 ∈ (0,1) some confidence level threshold, which is normally 5% and 1% are 

taken in practise, and then VaR is defined as; 

𝑉𝑎𝑅𝛼(𝑋) = 𝑖𝑛𝑓 {𝑚: 𝑃[𝑋 + 𝑚 < 0] ≤ 𝛼}                                      (6.25) 

So, if we chose 𝛼 = 5%, this shows that we are 95% confident that our lost will not 

exceed the value of the VaR. If we let the lose to be −𝑋, then the VaR is defined as; 
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𝑉𝑎𝑅𝛼(𝑋) = 𝑖𝑛𝑓 {𝑚: 𝑃[−𝑋 < 𝑚]𝛼} ≥ 1 − 𝛼                           (6.26) 

If we assume 𝑋 to be normal distributed with the mean and variance as 𝜇 and 𝜎2 

respectively, then VaR will be  

𝑉𝑎𝑅𝛼(𝑋) =  −[𝜇 + 𝑁−1(𝛼). 𝜎]                                     (6.27) 

This shows that VaR is the (1 − 𝛼) quantile of the return distribution which is 

specified in most cases. Also, we have seen that VaR depends on some concerts 

like confidence level, holding period, volatility and correlation of the stocks. 

Some authors criticised VaR because of its inability to satisfy sub-additivity axiom 

and therefore, lacks the coherent property as a risk measure Artzner et al. (1997).  

Also, it was claimed that VaR does not put into consideration the tail of the 

distribution well; that is, it does not capture the losses at the tail of a distribution. 

To address these challenges mentioned above and many more problems with VaR, 

Rockafellar and Uryasev (2000a)  introduced Conditional Value at Risk (CVaR). 

CVaR propose a minimisation formulation that gives a convex or linear problem; this 

helps in providing a better description of the loss on the tail of the distribution 

Rockafellar and Uryasev (2000a) (2000b).  

Definition 6.3.4 
Let 𝑋 be a continuous random variable representing loss, given a parameter𝛼 ∈

(0, 1), and then Conditional Value at Risk (CVaR) of 𝑋 is defined as  

𝐶𝑉𝑎𝑅𝛼 = 𝐸[𝑋/𝑋 ≥ 𝑉𝑎𝑅𝛼(𝑋)]                                              (6.28) 

Where 𝐸 is seen as a conditional expectation of losses above the threshold value of 

the loss. If one looks at the definition of 𝐶𝑉𝑎𝑅𝛼 above and equ (6.28), one can easily 

see that 𝐶𝑉𝑎𝑅𝛼 is always not less than 𝑉𝑎𝑅𝛼.  

In some cases, authors refer to 𝐶𝑉𝑎𝑅𝛼 as mean excess loss, tail 𝑉𝑎𝑅𝛼 and mean 

shortfall. 𝐶𝑉𝑎𝑅𝛼 can be directly derived from 𝑉𝑎𝑅𝛼 if the cut off level periodicity of the 

data and the assumption of the stochastic volatility appear the same, thus 

𝐶𝑉𝑎𝑅𝛼 = 
1

1 − 𝛼
∫ 𝑥 𝑝(𝑥)𝑑𝑥

𝑉𝑎𝑅𝛼

−1

                                                 (6.29) 
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where 𝑝(𝑥)𝑑𝑥 is the probability density of a return 𝑋. 

Having defined 𝑉𝑎𝑅𝛼 and 𝐶𝑉𝑎𝑅𝛼, we will now define the two in terms of the copula. 

Remember, that in the definition (6.1.1), we stated 𝑋 is a vector of random variables 

and 𝐹 is a set of joint distribution with the marginal distribution 𝑓1, 𝑓2, … , 𝑓𝑛 where 

𝑢 = 𝐹(𝑋), is assumed to be a continuous distribution with the function 𝐶(. ) called 

copula function.  

If 𝑔(𝑤, 𝑢) is a cost function which does not exceed a threshold  𝛽, and  �̌�(𝑤, 𝑢) =

𝑔(𝑤, 𝐹−1(𝑢)), where  𝐹−1(𝑢) = (𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2),… , 𝐹𝑛
−1(𝑢𝑛))

′. This transforms the 

domain of 𝑔(. , . ) from ℝ𝑛 → Ι𝑛 which was implied by the transformation of 𝑢𝑖 = 𝑓𝑖(𝑥𝑖) 

in (6.1.2). Therefore, we can now define the copula version of 𝑉𝑎𝑅𝛼 as thus 

Definition 6.3.4 
Let 𝑋 be a random vector in ℝ𝑛 with 𝑛 − copula function ∅, c: Ι𝑛 → [0,∞) where 𝑐 is 

the copula density define in (6.1.2), with 𝛼 as the confidence level, 𝑉𝑎𝑅𝛼 is defined 

as thus; 

𝑉𝑎𝑅𝛼 = 𝑚𝑖𝑛 {𝛽 ∈ ℝ ∶ ∅(𝑤, 𝛽) ≥ 𝛼}                                            (6.30) 

this implies that  

𝑉𝑎𝑅𝛼 = 𝑚𝑖𝑛 {𝛽 ∈ ℝ: 𝐶(𝑢/�̌�(𝑤, 𝑢) ≤ 𝛽} ≥ 𝛼                     (6.31) 

where 𝑤 ∈ ℝ𝑛. We can now give the definition of 𝐶𝑉𝑎𝑅𝛼 in terms of a copula. 

Definition 6.3.5 
Given 𝑤, 𝑢, 𝐹(𝑋) and �̌�(𝑤, 𝑢) above, and for a confidence level 𝛼 𝐶𝑉𝑎𝑅𝛼 can be 

defined as  

𝐶𝑉𝑎𝑅𝛼 = 
1

1 − 𝛼
∫ �̌�(𝑤, 𝑢)𝐶(𝑢)𝑑𝑢

�̌�(𝑤,𝑢)≥𝑉𝑎𝑅𝛼

                               (6.32) 

6.4 Numerical Application 
In this section, we give numerical examples and applications of modelling the risk of 

a portfolio using copula, 𝐶𝑉𝑎𝑅𝛼 and  𝑉𝑎𝑅𝛼. 

In the examples, we use the following stocks: Custodyins, Guaranty Trust Bank, 

Nem, Skye Bank, Sterling Bank, Transcorp, Wapic, Wema Bank and Zenith Bank 
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Plc. These represent nine stocks from the financial sector of NSE, and the data used 

cover the period between August 2009 and August 2015, which we look at the daily 

returns of the stocks. This is shown in figure (6.1) below. 

 

Fig 6.1: shows the closing price from 3rd August 2009 to 3rd August 2015. 

6.4.1 Multiple regression analyses of Variance. 

In our analysis, multiple regression analyses were conducted to examine the 

relationship between risk (which is our response variable) and weights (which is our 

explanatory variables, i.e. the various banks). 

The number of the parameters used is 9 (𝑛), while the number of the observation is 

1483. The degree of freedom is 𝑛 –  1 equal to 8 (which is, number of the parameters 

minus 1) and in other to accept or reject the null hypothesis, we have to look at the 

tabulated F and compare it with our calculated one. This gives us 1.95 and when 

compared with the calculated F from the analysis of variance table displayed in table 

6.2, the 𝐹 value of 1901.21 (with an associated p-value that is 0), we found out that 

the calculate 𝐹 is greater than the tabulated 𝐹, indicates a significant relationship 

between the dependent variable, risk, and at least one of the explanatory variables 

see Courville and Thompson (2001), LeBreton et al (2004) and Nathans et al (2012). 

Therefore, we have to reject the null hypothesis because the implication of the above 

statement is that since the tabulated 𝐹 is less than the calculated one, indicates that 

the model as a whole has the statistically significant predictive capability. 
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Table 6.2. Regression 1   

The 𝑡 −statistic is employed for making inferences about the regression coefficients. 

The hypothesis test on coefficients of the explanatory variables, tests the null 

hypothesis that it is equal to zero – meaning the corresponding term is not significant 

– versus the alternate hypothesis that the coefficient is different from zero. The 

coefficients’ 𝑝 −values are used to determine which terms to keep in the regression 

model. The coefficient’s 𝑝 −value for TRANSCORP is 0.71 and CUSTODYINS is 

0.77. Both are considered not statistically significant at 5% a significance level see 

LeBreton et al (2004) and Nathans et al (2012). Hence, their removal from the model 

is considered to optimize the predictive capability of the model. A better model in 

terms of having more predictive capability were obtained after removing the variables 

TRANSCORP and CUSTODYINS, as shown in the results presented in the table 6.3 

below.   

The 𝑅 −square value shows that approximately 92% of the variability in the risk 

(which is our response variable) can be accounted for or explained by differences 

between weights (which is our specific explanatory variables, i.e. the various 

allocations of weights to the banks stocks). Hence, up to 92% of the variability of the 

response data around its mean could be explained by this model.  

 

Table 6.3. Regression 2 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 2.69E-02 4.80E-04 5.61E+01 0.00E+00 2.60E-02 2.79E-02 2.60E-02 2.79E-02

GUARANTY -5.08E-02 2.15E-02 -2.37E+00 1.80E-02 -9.29E-02 -8.72E-03 -9.29E-02 -8.72E-03

ZENITHBANK -5.73E-02 2.11E-02 -2.72E+00 6.65E-03 -9.86E-02 -1.59E-02 -9.86E-02 -1.59E-02

NEM 3.03E-01 2.68E-03 1.13E+02 0.00E+00 2.97E-01 3.08E-01 2.97E-01 3.08E-01

SKYEBANK 2.84E-01 4.57E-03 6.20E+01 0.00E+00 2.75E-01 2.93E-01 2.75E-01 2.93E-01

STERLNBANK -6.72E-02 1.57E-02 -4.27E+00 2.06E-05 -9.80E-02 -3.63E-02 -9.80E-02 -3.63E-02

TRANSCORP -5.26E-03 1.43E-02 -3.67E-01 7.14E-01 -3.34E-02 2.29E-02 -3.34E-02 2.29E-02

CUSTODYINS 4.46E-03 1.55E-02 2.89E-01 7.73E-01 -2.58E-02 3.48E-02 -2.58E-02 3.48E-02

WAPIC 1.75E-01 9.43E-03 1.85E+01 5.56E-69 1.56E-01 1.93E-01 1.56E-01 1.93E-01

WEMABANK 1.01E-01 1.04E-02 9.67E+00 1.80E-21 8.02E-02 1.21E-01 8.02E-02 1.21E-01

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 2.51E-02 5.31E-04 4.74E+01 1.95E-298 2.41E-02 2.62E-02 2.41E-02 2.62E-02

GUARANTY -5.55E-02 2.37E-02 -2.34E+00 1.94E-02 -1.02E-01 -8.99E-03 -1.02E-01 -8.99E-03

ZENITHBANK -6.00E-02 2.33E-02 -2.58E+00 1.00E-02 -1.06E-01 -1.44E-02 -1.06E-01 -1.44E-02

NEM 3.38E-01 2.97E-03 1.14E+02 0.00E+00 3.32E-01 3.44E-01 3.32E-01 3.44E-01

SKYEBANK 3.17E-01 5.05E-03 6.27E+01 0.00E+00 3.07E-01 3.27E-01 3.07E-01 3.27E-01

STERLNBANK -7.43E-02 1.74E-02 -4.28E+00 1.95E-05 -1.08E-01 -4.03E-02 -1.08E-01 -4.03E-02

WAPIC 1.94E-01 1.04E-02 1.86E+01 2.43E-69 1.73E-01 2.14E-01 1.73E-01 2.14E-01

WEMABANK 1.18E-01 1.15E-02 1.03E+01 5.91E-24 9.56E-02 1.41E-01 9.56E-02 1.41E-01
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The regression equation is thus: Υ̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 +

𝛽7𝑥7 where  Υ̂ is a risk that is, the response variable, 𝛽0 is the intercept in table 6.3 

and 𝛽𝑖 ; 𝑖 = 1,2, … , 7 are the coefficients of the various allocations of weights to the 

banks stocks on the table 6.3 above while 𝑥𝑖  ; 𝑖 = 1,2, … , 7 are the specific 

explanatory variables which is the various allocations of weights to the banks stocks 

on the table 6.3 . 

Therefore, the regression model will be;  

𝑅𝑖𝑠𝑘 =  0.0251 –  0.0555𝑥1 –  0.0600𝑥2   +  0.3377𝑥3 +  0.3168𝑥4 –  0.0743𝑥5  

+  0.1937𝑥6  +  0.1181𝑥7 

Which implies that the predicted risk is; 

𝑅𝑖𝑠𝑘 =  0.0251 –  0.0555(𝐺𝑢𝑎𝑟𝑎𝑛𝑡𝑦) –  0.0600(𝑍𝑒𝑛𝑖𝑡ℎ𝑏𝑎𝑛𝑘)  +  0.3377(𝑁𝑒𝑚)

+  0.3168(𝑆𝑘𝑦𝑏𝑎𝑛𝑘) –  0.0743(𝑆𝑡𝑒𝑟𝑙𝑛𝑏𝑎𝑛𝑘)  +  0.1937(𝑊𝑎𝑝𝑖𝑐)  

+  0.1181(𝑊𝑒𝑚𝑎𝑏𝑎𝑛𝑘) 

 

6.4.2 Analysis of the portfolio using VaR𝜶 and CVaR𝜶. 

To study the coupled risk, we need to compute the 𝑉𝑎𝑅𝛼 and 𝐶𝑉𝑎𝑅𝛼 also the para, 

meters are estimated so as to select the type of copula we need. 

From the definition of  𝑉𝑎𝑅𝛼 above, we have that 𝑃 (𝑋 ≤ 𝑉𝑎𝑅𝛼|Ω𝑡−1) = α which 

implies that there is (1 − 𝛼)% confidence that loss in our chosen period will not be 

greater than  𝑉𝑎𝑅𝛼. We will note that while  𝐶𝑉𝑎𝑅𝛼 gives us an average expected 

loss, 𝑉𝑎𝑅𝛼 gives a range of potential losses there by making  𝐶𝑉𝑎𝑅𝛼 to be more 

presided than  𝑉𝑎𝑅𝛼. 

In this case, we calculated the  𝑉𝑎𝑅𝛼 and  𝐶𝑉𝑎𝑅𝛼  of the nine (9) portfolios using the 

variance-covariance and historical simulation methods at 90%, 95%, and 99%. In the 

table 6.4 below, we have the variance, the average and standard deviation of each 

of the nine stocks in the portfolio while we show some of the calculations we did to 

get the different values of 𝛼 for the variance-covariance and historical simulation 

methods at 90%, 95%, and 99% in the appendix. 
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Table 6.4.  The average, variance, and standard deviation of the portfolio.  

Table 6.5 below shows the explicit figures of the variance-covariance and historical 

simulation of  𝑉𝑎𝑅𝛼 and that of 𝐶𝑉𝑎𝑅𝛼 with the valves of 𝛼  as 1%, 5%, and 10%. 

While the detailed calculation is in the appendix 

 

Table 6.5. The variance-covariance and historical simulation of  𝑉𝑎𝑅𝛼 and that of 𝐶𝑉𝑎𝑅𝛼  

 

Table 6.6. the Student’s t copula and Gaussian copula of VaR and CVaR   

In table 6.6, we displayed the result we got from the portfolio return of VaR and 

CVaR with 99%, 95% and 90% confidence levels. The result shows that a 99% 

confidence level is higher than 95%, and 95% is bigger than the 90% confidence 

level in each of the VaR and CVaR. 

Secondly, it is observed that CVaR is bigger than the corresponding VaR in all 

confidence level. This shows that CVaR captures more information that VaR about 

the tail of the distribution.  Finally, the Student’s t copula gives us better 

approximation than that of Gaussian copula.  

 

 

VaR Historical VaR CVaR

Stocks 1% VAR 5% VAR 10% VAR 1% VAR 5% VAR 10% VAR 1% CVAR 5% CVAR 10% CVAR

CUSTODYINS -0.072 -0.051 -0.040 -0.084 -0.050 -0.047 -0.094 -0.062 -0.055

GUARANTY -0.056 -0.039 -0.030 -0.051 -0.038 -0.024 -0.093 -0.056 -0.043

NEM -0.411 -0.290 -0.225 -0.059 -0.044 -0.038 -0.078 -0.055 -0.047

SKYEBANK -0.243 -0.171 -0.133 -0.052 -0.050 -0.042 -0.075 -0.055 -0.051

STERLNBANK -0.072 -0.051 -0.042 -0.054 -0.049 -0.045 -0.083 -0.057 -0.052

TRANSCORP -0.077 -0.054 -0.065 -0.099 -0.049 -0.042 -0.103 -0.068 -0.057

WAPIC -0.119 -0.084 -0.059 -0.095 -0.050 -0.046 -0.101 -0.068 -0.058

WEMABANK -0.108 -0.076 -0.059 -0.095 -0.050 -0.047 -0.101 -0.065 -0.056

ZENITHBANK -0.057 -0.040 -0.031 -0.053 -0.043 -0.029 -0.086 -0.056 -0.045

The Student's t-copula The Gaussian copula The Student's t-copula The Gaussian copula The Student's t-copula The Gaussian copula

Stocks CVaR 1% VaR 1% CVaR 1% VaR 1% CVaR 5% VaR 5% CVaR 5% VaR 5% CVaR 10% VaR 10% CVaR 10% VaR 10%

CUSTODYINS 0.773 0.683 0.776 0.687 0.746 0.644 0.739 0.643 0.740 0.647 0.708 0.641

GUARANTY 0.642 0.546 0.645 0.549 0.609 0.508 0.607 0.513 0.610 0.514 0.576 0.511

NEM 0.773 0.680 0.778 0.687 0.741 0.641 0.732 0.641 0.738 0.646 0.701 0.639

SKYEBANK 0.656 0.558 0.655 0.558 0.628 0.525 0.626 0.527 0.626 0.529 0.595 0.525

STERLNBANK 0.751 0.655 0.759 0.665 0.734 0.629 0.724 0.627 0.735 0.637 0.693 0.625

TRANSCORP 0.883 0.796 0.884 0.800 0.894 0.806 0.874 0.785 0.879 0.792 0.843 0.783

WAPIC 0.864 0.779 0.866 0.781 0.857 0.763 0.847 0.757 0.850 0.761 0.816 0.755

WEMABANK 0.782 0.684 0.790 0.696 0.776 0.675 0.764 0.668 0.767 0.675 0.733 0.666

ZENITHBANK 0.712 0.608 0.714 0.613 0.664 0.554 0.654 0.550 0.663 0.559 0.623 0.548
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6.4.2 Normal, Historical VaR and Expected Shortfall 

Here we analysed the risk using the normal and historical VaR and expected 

shortfall. Using the closing prices of the stock we studied, we first calculated the 

return, (which we have gotten in the previous calculations). After this, we calculate 

the mean and standard deviation of each stock return see the table below. 

 

Table 6.6 the mean and standard deviation  

In our analysis, we looked at the 5% and 10% VaR from the bottom cases and the 

results are displayed in the table below. 

 

 

Table 6.7 the 5% and 10% VaR from the bottom 

The table above shows that we have 90% and 95% confidence that the loss on each 

stock in our portfolio will not exceed the percentages displayed on the table 

respectively. We need to compare the result with the historical VaR at 

 5% and 10%  as we did earlier. 

Again, we look at 1%, 5% 𝑎𝑛𝑑 10%  bottom cases; this will give 72.2𝑛𝑑  and 

148.4𝑡ℎ respectively from the bottom. Remember that the number of our observation 

is 1484; therefore the 1%, 5% and 10% is gotten through interpolation of the 

numbers 14𝑡ℎ and 15𝑡ℎ , 72𝑛𝑑 and 73𝑟𝑑  and also 148𝑡ℎ and 149𝑡ℎ respectively.  

This is shown on the tables below. 

 

Normal Dist VARCUSTODYINS GUARANTY NEM SKYEBANK STERLNBANK TRANSCORP WAPIC WEMABANK ZENITHBANK

Average 0.025% 0.033% 0.452% 0.184% 0.024% 0.099% 0.005% 0.018% 0.006%

Variance 0.097% 0.058% 3.196% 1.103% 0.096% 0.112% 0.260% 0.215% 0.061%

Standard D 3.116% 2.402% 17.878% 10.502% 3.098% 3.352% 5.100% 4.635% 2.461%

VAR(%) CUSTODYINS GUARANTY NEM SKYEBANK STERLNBANK TRANSCORP WAPIC WEMABANK ZENITHBANK

Bottom 10% -3.97% -3.05% -22.47% -13.28% -3.95% -4.20% -6.53% -5.92% -3.15%

Bottom 5% -5.10% -3.92% -28.97% -17.10% -5.07% -5.42% -8.39% -7.61% -4.04%

VAR(%) CUSTODYINS GUARANTY NEM SKYEBANK STERLNBANK TRANSCORP WAPIC WEMABANK ZENITHBANK

Bottom 10% -0.0470 -0.0239 -0.0377 -0.0424 -0.0451 -0.0419 -0.0458 -0.0465 -0.0290

Bottom 5% -0.0510 -0.0392 -0.0445 -0.0499 -0.0490 -0.0494 -0.0504 -0.0496 -0.0426

Bottom 1% -0.0836 -0.0513 -0.0590 -0.0523 -0.0544 -0.0994 -0.0953 -0.0946 -0.0530
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Table 6.8   The Historical VaR       

The table above gives us 1%, 5% and 10% historical data while the table below 

gives the corresponding CVaR 

 

Table 6.8 the corresponding CVaR  

We look at the values from the 1%, 5% and 10% historical data on the table above 

and compare them with the corresponding 1%, 5% and 10% values we got from the 

returns. We notice that the values are different, which means that the distribution 

may not be a normal distribution as thought. So, we look at the statistical distribution 

of the return. This is shown on the tables below for each stock. 

 

Table 6.9   the statistical distribution of the return 

6.5 Conclusion 
It is always good to estimate the risk of a portfolio correctly so that the investor will 

do a proper allocation of the funds to yield an optimal return. The relationship among 

the prices of the stocks in the portfolio, otherwise called the correlation plays an 

important role in determining the movement of the stock and therefore helps in the 

computation of risk. 

 
 

CVAR CUSTODYINS GUARANTY NEM SKYEBANK STERLNBANK TRANSCORP WAPIC WEMABANK ZENITHBANK

CVAR 10% -0.055480896 -0.043293711 -0.047166861 -0.05121148 -0.051992646 -0.056684287 -0.057956594 -0.056223692 -0.045458107

CVAR 5% -0.062177852 -0.055877842 -0.054659744 -0.055243022 -0.05667699 -0.067868344 -0.068285723 -0.064573281 -0.056000174

CVAR 1% -0.094164487 -0.093250599 -0.078011283 -0.074843702 -0.082775929 -0.103236006 -0.101395322 -0.101228439 -0.085569261

GUARANTY ZENITHBANK NEM SKYEBANK STERLNBANK TRANSCORP CUSTODYINS WAPIC WEMABANK

Mean 3.35E-04 5.84E-05 4.52E-03 1.84E-03 2.35E-04 9.87E-04 2.53E-04 4.70E-05 1.82E-04

Standard Error 6.24E-04 6.39E-04 4.64E-03 2.73E-03 8.05E-04 8.71E-04 8.10E-04 1.32E-03 1.20E-03

Median 0 0 0 0 0 0 0 0 0

Mode 0 0 0 0 0 0 0 0 0

Standard Deviation 2.40E-02 2.46E-02 1.79E-01 1.05E-01 3.10E-02 3.35E-02 3.12E-02 5.10E-02 4.64E-02

Sample Variance 5.77E-04 6.06E-04 3.20E-02 1.10E-02 9.60E-04 1.12E-03 9.72E-04 2.60E-03 2.15E-03

Kurtosis 1.92E+01 7.94E+00 1.42E+03 1.27E+03 -1.79E-01 1.12E+00 1.41E-01 4.97E+02 2.79E+02

Skewness -1.52E+00 -6.05E-01 3.72E+01 3.44E+01 -1.31E-02 1.63E-01 -1.55E-01 1.70E+01 1.10E+01

Range 3.59E-01 3.45E-01 6.90E+00 3.99E+00 2.01E-01 2.03E-01 2.01E-01 1.60E+00 1.28E+00

Minimum -2.62E-01 -2.48E-01 -9.66E-02 -1.00E-01 -1.05E-01 -1.05E-01 -1.05E-01 -1.05E-01 -1.05E-01

Maximum 9.74E-02 9.72E-02 6.81E+00 3.89E+00 9.53E-02 9.76E-02 9.67E-02 1.50E+00 1.18E+00

Sum 4.96E-01 8.67E-02 6.70E+00 2.74E+00 3.49E-01 1.46E+00 3.75E-01 6.96E-02 2.70E-01

Count 1483 1483 1483 1483 1483 1483 1483 1483 1483

P-value 1.80E-02 6.65E-03 0.00E+00 0.00E+00 2.06E-05 7.14E-01 7.73E-01 5.56E-69 1.80E-21

t Stat -2.37E+00 -2.72E+00 1.13E+02 6.20E+01 -4.27E+00 -3.67E-01 2.89E-01 1.85E+01 9.67E+00

Coefficients -5.08E-02 -5.73E-02 3.03E-01 2.84E-01 -6.72E-02 -5.26E-03 4.46E-03 1.75E-01 1.01E-01
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Chapter 7        Summary and Conclusion  

7.0 Introduction 
 

In this chapter, we present a summary of our work and also bring out explicitly the 

contributions to knowledge. We try to harmonise chapters 4, 5 and 6. 

7.1 Correlation of implied volatility of the portfolio. 
As we have seen in chapter 5, correlations among different assets in the market are 

beneficial not only in portfolio selection but also, in the option pricing and certain 

multivariate econometric models for pricing forecasting and volatility estimate see 

Engle and Figlewski (2014). Therefore, a perfect correlation among stocks in a 

portfolio is significant in quantifying the risk of the portfolio, option pricing and 

forecasting.  

The variance 𝜌 of a portfolio of options exposed to Vega risk only is defined by 

Black-Scholes (1973) as  

    𝑉𝑎𝑟(ρ) =  ∑
𝑤𝑖𝑤𝑙Ʌ𝑖𝑗Ʌ𝑙𝑘𝐶𝑗𝑘

𝑣𝑗𝑣𝑘𝜎𝑗𝜎𝑘
𝑖,𝑗,𝑘,𝑙                                                           (7.1) 

 where 𝑤𝑖 are the weights of the portfolio, 𝐶𝑖𝑗 is correlation coefficient between 

assets 𝑖 and 𝑗 in the implied volatility matrix and the Vega matrix has 𝑖𝑗 − 𝑡ℎ 

elements Ʌ𝑖𝑗 which is defined as 

Ʌ𝑖𝑗 = 
𝜕𝑝𝑖
𝜕𝑣𝑗

                                                                                  (7.2) 

Where 𝑝𝑖 the price of the option is 𝑖, 𝑣𝑗 is the implied volatility of asset underlying 

option 𝑗 and 𝜎𝑖  is the standard deviation of the implied volatility 𝑣𝑖. 

According to the Chicago Board options exchange (2009), the variance of a portfolio 

consisting of n assets can be calculated as  

𝜎𝑝𝑜𝑟𝑡
2 = ∑∑𝐶𝑖𝑗𝑤𝑖𝑤𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝜎𝑖𝜎𝑗                                                          (7.3) 
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where 𝜎𝑝𝑜𝑟𝑡 is standard deviation or volatility of the portfolio, 𝜎𝑖, 𝜎𝑗 are the standard 

deviations or volatility of the 𝑖 and 𝑗 assets, 𝑤𝑖 , 𝑤𝑗 are weights of 𝑖 and 𝑗 assets  

respectively, and 𝐶𝑖𝑗   is the correlation coefficient between 𝑖 and 𝑗 assets. 

Kawee and Nattachai Numpacharoen (2013) has it that if the relationship among 

assets in the portfolio is described using equi-correlation, then the variance of the 

portfolio will be written as  

𝜎𝑝𝑜𝑟𝑡
2 = ∑𝑤𝑖

2𝜎𝑖
2 + 2𝑟∑∑𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗

𝑁

𝑗>1

𝑁−1

𝑖=1

𝑁

1=1

                       (7.4) 

 

This implies that  

𝑟 =
𝜎𝑝𝑜𝑟𝑡
2 − ∑ 𝑤𝑖

2𝜎𝑖
2𝑛

𝑖=1

2∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗
𝑁
𝑗>1

𝑁−1
𝑖=1

                                                      (7.5) 

If we denote the implied volatility of the portfolio as  𝜎𝑝𝑜𝑟𝑡
𝑄

  and 𝜎𝑖
𝑄 , 𝜎𝑗

𝑄
 as the implied 

volatility of the 𝑖 and 𝑗 assets respectively, then equation (7.5) can be rewritten as  

𝑟𝑄 =
(𝜎𝑝𝑜𝑟𝑡

𝑄 )2 − ∑ 𝑤𝑖
2(𝜎𝑖

𝑄)2𝑛
𝑖=1

2∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖
𝑄𝜎𝑗

𝑄𝑁
𝑗>1

𝑁−1
𝑖=1

                                                    (7.6) 

 𝑟𝑄 is a real constant such that −1 ≤ 𝑟 ≤ 1.   

Furthermore, it was evident that 𝑤𝑖, 𝑤𝑗 , 𝜎𝑖, 𝜎𝑗 and 𝜎𝑝𝑜𝑟𝑡 are all non-negative numbers, 

then the terms ∑ 𝑤𝑖
2(𝜎𝑖

𝑄)2𝑛
𝑖=1   and ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖

𝑄𝜎𝑗
𝑄𝑁

𝑗>1
𝑁−1
𝑖=1  in the equation (7.6) is always 

positive.  Therefore, if  𝑤𝑖, 𝑤𝑗 , 𝜎𝑖, and 𝜎𝑗 remain constant, 𝜎𝑝𝑜𝑟𝑡 will be directly 

proportional to 𝑟𝑄, higher 𝜎𝑝𝑜𝑟𝑡 gives higher 𝑟 and lower 𝜎𝑝𝑜𝑟𝑡 gives lower 𝑟𝑄. 𝑟𝑄 is 

called the implied correlation coefficient of the equi-correlation matrix. 

Kawee and Nattachai Numpacharoen (2013) described 𝑅𝑄 as the realistic implied 

correlation matrix while 𝑅𝑝 is a valid correlation matrix. Then the implied volatility of 

the portfolio is  

(𝜎𝑝𝑜𝑟𝑡
𝑄 )2 = 𝑊 ∗ 𝑉𝑄 ∗ 𝑅𝑄 ∗ 𝑉𝑄 ∗ 𝑊′                                        (7.7) 
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for a case where correlation among the assets is not identical. 𝑊 is the weight of the 

individual asset in the portfolio. 

𝑊 = [𝑤1 … 𝑤𝑛]′ 

    𝑉𝑄 is the diagonal matrix got from the implied standard deviation of the individual 

assets being considered.       

𝑉𝑄 = [
𝜎1
𝑄 0⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝜎𝑛
𝑄
] 

𝑅𝑄 is the desired realistic implied correlation matrix which will be obtained from 𝑅𝑝.  

𝑅𝑄 = [

1 𝑅2,1
𝑄 ⋯𝑅𝑛−1,1

𝑄 𝑅𝑛,1
𝑄

⋮ ⋱ ⋮

𝑅𝑛,1
𝑄 𝑅𝑛,2

𝑄 ⋯𝑅𝑛−1,𝑛
𝑄 1

] 

 𝑅𝑝 is a valid correlation matrix (empirical) see Buss and Vilkov (2012). 

Kawee and Nattachai Numpacharoen (2013) set the realistic correlation coefficient to 

be  𝑟𝑄 =  𝑟𝑝 − 𝜑(1 =  𝑟𝑝) for 𝜑 ∈ (−1, 0]. Furthermore, they let 𝐼𝑛𝑥𝑛 be an 𝑛𝑥𝑛 matrix 

whose entries are 1, this implies that the realistic matrix can be written as  

𝑅𝑄 = 𝑅𝑝 − 𝜑(𝐼𝑛𝑥𝑛 −  𝑅
𝑝)                                                      (7.8) 

where 𝑅𝑄 is a function of 𝑅𝑝 with φ as a parameter to be identified, note that 𝐼𝑛𝑥𝑛 is 

not an identity matrix. To obtain φ, we substitute equation (8) into equation (7) and 

this becomes; 

  

(𝜎𝑝𝑜𝑟𝑡
𝑄 )2 = 𝑊 ∗ 𝑉𝑄 ∗ [𝑅𝑝 − 𝜑(𝐼𝑛𝑥𝑛 −  𝑅

𝑝)] ∗ 𝑉𝑄 ∗ 𝑊′   

(𝜎𝑝𝑜𝑟𝑡
𝑄 )2 = 𝑊 ∗ 𝑉𝑄 ∗ 𝑅𝑝 ∗ 𝑉𝑄 ∗ 𝑊′ − 𝜑(𝐼𝑛𝑥𝑛 −  𝑅

𝑝)(𝑊 ∗ 𝑉𝑄 ∗ 𝑉𝑄 ∗ 𝑊′) 

(𝜎𝑝𝑜𝑟𝑡
𝑄 )2 −𝑊 ∗ 𝑉𝑄 ∗ 𝑅𝑝 ∗ 𝑉𝑄 ∗ 𝑊′ = −𝜑(𝑊 ∗ 𝑉𝑄 ∗ (𝐼𝑛𝑥𝑛 −  𝑅

𝑝) ∗ 𝑉𝑄 ∗ 𝑊′) 

This implies that φ is 

𝜑 = −
(𝜎𝑝𝑜𝑟𝑡

𝑄 )2 −𝑊 ∗ 𝑉𝑄 ∗ 𝑅𝑝 ∗ 𝑉𝑄 ∗ 𝑊′

𝑊 ∗ 𝑉𝑄 ∗ (𝐼𝑛𝑥𝑛 −  𝑅𝑝) ∗ 𝑉𝑄 ∗ 𝑊′
                                         (7.9) 
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We can find 𝑅𝑄 from equation (8) once we have obtained 𝜑. Also, the implied 

volatility of the portfolio 𝜎𝑝𝑜𝑟𝑡
𝑝

 can be from 𝑅𝑝 thus, 

(𝜎𝑝𝑜𝑟𝑡
𝑝 )2 = 𝑊 ∗ 𝑉𝑄 ∗ 𝑅𝑝 ∗ 𝑉𝑄 ∗ 𝑊′                                         (7.10) 

Therefore, 

𝜎𝑝𝑜𝑟𝑡
𝑝 = √𝑊 ∗ 𝑉𝑄 ∗ 𝑅𝑝 ∗ 𝑉𝑄 ∗ 𝑊′                                             (7.11) 

When 𝜑is positive, that is, consider the cases when  𝜑 > 0,  this occurs when 

𝜎𝑝𝑜𝑟𝑡
𝑃 > 𝜎𝑝𝑜𝑟𝑡

𝑄
 since(𝐼𝑛𝑥𝑛 − 𝑅

𝑃) ≥ 0. This could make the realistic correlation matrix 𝑅𝑄 

to be invalid when 𝜎𝑝𝑜𝑟𝑡
𝑃 < 𝜎𝑝𝑜𝑟𝑡

𝑄
.  

They propose a formula for a valid correlation matrix that will take care of this 

shortcoming, as stated below. Given any two valid correlation matrices 𝐵 and 𝐷 of 

dimensions 𝑛𝑥𝑛 then, there exists a convex valid correlation matrix 𝐹 of the same 

dimension such that 𝐹 = 𝑤𝐷 + (1 − 𝑤)𝐵 with 0 ≤ 𝑤 ≤ 1as the weight. If 𝐼𝑛𝑥𝑛 and 

𝐿𝑛𝑥𝑛 are corresponding equi-correlation matrices entries are 1 and −
1

𝑛−1
  for   𝑖 ≠ 𝑗  

and1 for   𝑖 = 𝑗 respectively, 𝐼𝑛𝑥𝑛  and 𝐿𝑛𝑥𝑛 upper equicorrelation matrix and lower 

equi-correlation matrix respectively. Replacing 𝐹 and 𝐵 in equation 𝐹 with 𝑅 𝑄 and 

by  𝑅𝑝, we will obtain; 

𝑅𝑄 =  𝑤𝐷 + (1 − 𝑤)𝑅𝑃                                                         (7.12)   

This implies that  

𝑅𝑄 =  𝑤𝐷 + (1 − 𝑤)𝑅𝑃 

=  𝑤𝐷 + 𝑅𝑃 −𝑤𝑅𝑃 

= 𝑅𝑃 + 𝑤𝐷 −𝑤𝑅𝑃 

= 𝑅𝑃 + 𝑤(𝐷 − 𝑅𝑃) 

Therefore,  

𝑅𝑄 = 𝑅𝑃 + 𝑤(𝐷 − 𝑅𝑃)                                                         (7.13)   

But finding w implies; 
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𝑅𝑄 − 𝑅𝑃 = +𝑤(𝐷 − 𝑅𝑃) 

so;  

𝑤 =
𝑅𝑄 − 𝑅𝑃

𝐷 − 𝑅𝑃
 

Therefore, substituting for the weight in equation (7) is; 

𝑤 = 
(𝜎𝑝𝑜𝑟𝑡

𝑄 )2 − (𝜎𝑝𝑜𝑟𝑡
𝑃 )2

𝑊𝑉𝑄(𝐷 − 𝑅𝑃)𝑉𝑄𝑊′
                                                           (7.14) 

This is useful in assigning different weights to different assets in our portfolio as seen 

in the example below, which will help in the maximisation and minimisation of the 

returns and the risk of the portfolio, respectively.  

We, therefore, use a practical demonstration to obtain the correlation matrix from 

some of the assets we studied in the Nigerian stock market. 

7.2 Empirical Example 
In this section, we use the correlation matrix obtained from 20 of the 82 NSM stocks 

considered in chapter 5. These assets are7UP, ABC transport, Access Bank, 

AgLevent, AIICO Insurance, Air service, Ashaka Cement, Julius Berger, Cadbury 

Nigeria Plc, CAP, CCNN, Cileasing, Conoil, Contisure, Cornerstone, Costain 

Construction, Courtvile, Custodian, Cutix Cables and Dangote Cement.  

We, therefore, want to compute the realistic empirical correlation matrix for some 

assets already considered in the RMT as below (see Table 7.1 below): 
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Table7.1: Empirical correlation matrix from NSM price return 

The weights 𝑊 and implied volatility 𝑉𝑄 computed from option prices for the listed 

assets which we studied from the NSM. To carry out this assignment, we create 

hypothetical or assumed weights and implied volatilities are represented as 

𝑊 =  [
. 05; .08; .01; .04; .03; .06; .01; .03; .05; .07; .02; .04; .02; 

. 07; .09; .04; .02; .07; .12; .08
] 

and their corresponding implied volatility represented by 

𝑉𝑄  =  
[.36; .26; .30; .10; .15; .20; .25; .40; .19; .24; .38;

. 27; .10; .22; .21; .40; .28; .30; .16; .29]
 

The empirical correlation matrix has its eigenvalues as [0.71; 0.79; 0.81; 0.82; 0.83; 

0.86; 0.89; 0.92; 0.95; 0.95; 0.98; 0.99; 1.06; 1.094; 1.11; 1.12; 1.15; 1.16; 1.121; 

1.60].  

Thus, the minimum eigenvalue of  𝑅𝑝  =  0.071 which shows that 𝑅𝑝 is a valid 

correlation matrix. 

Therefore, to estimate the realistic implied correlation matrix 𝑅𝑄 from the assumed, 

implied volatility for the given portfolio consisting of twenty assets, we assume that 

A7UP ABCTRANSACCESS AGLEVENTAIICO AIRSERVICEASHAKACEMBERGER CADBURY CAP CCNN CILEASINGCONOIL CONTINSURECORNERSTCOSTAIN COURTVILLECUSTODYINSCUTIX DANGCEM

A7UP 1 -0.05084 -0.00262 0.00322 -0.00143 0.01566 -0.0029 0.041205 0.035481 0.014103 0.015787 0.010815 0.009635 0.028702 0.033092 -0.01957 -0.01251 -0.02231 0.008773 0.040708

ABCTRANS -0.05084 1 0.056511 0.107324 0.026388 -0.00063 0.057519 -0.03212 0.016378 0.046174 0.054952 -0.00091 -0.02445 0.040527 0.027983 -0.01186 -0.03699 -0.0094 -0.05143 -0.01032

ACCESS -0.00262 0.056511 1 0.041798 0.165593 0.005204 0.096497 0.054031 0.134552 0.03997 0.175307 0.055145 -0.04035 0.062478 -0.01304 0.062428 0.016785 0.01893 -0.04865 0.037644

AGLEVENT 0.00322 0.107324 0.041798 1 0.026699 0.001187 0.061421 0.009062 0.040987 0.019843 0.04584 0.009799 0.000529 0.005 0.031901 0.003182 0.015911 0.052039 0.00793 0.009541

AIICO -0.00143 0.026388 0.165593 0.026699 1 -0.0073 0.079441 -0.06684 0.034305 0.035806 0.127068 0.084493 0.013289 0.052223 0.011167 0.079949 -0.03631 0.016342 0.039694 0.000341

AIRSERVICE 0.01566 -0.00063 0.005204 0.001187 -0.0073 1 0.013793 0.01008 0.019304 0.027947 0.014157 0.008397 -0.00943 -0.01882 0.037871 0.03219 0.024177 0.0165 -0.02333 -0.02294

ASHAKACEM-0.0029 0.057519 0.096497 0.061421 0.079441 0.013793 1 0.040604 0.131813 -0.01865 0.136209 0.023381 0.068711 0.041732 0.024245 0.033759 -0.05434 0.062872 -0.00385 0.051222

BERGER 0.041205 -0.03212 0.054031 0.009062 -0.06684 0.01008 0.040604 1 0.004316 -0.05637 -0.01496 -0.00019 0.003384 -0.02062 0.031925 0.001533 0.027304 0.002867 0.01409 0.045171

CADBURY 0.035481 0.016378 0.134552 0.040987 0.034305 0.019304 0.131813 0.004316 1 0.039896 0.06141 -0.02738 0.044002 -0.05896 -0.01341 0.078438 -0.00591 0.003203 0.006094 -0.00317

CAP 0.014103 0.046174 0.03997 0.019843 0.035806 0.027947 -0.01865 -0.05637 0.039896 1 0.032908 0.040034 -0.02318 -0.01104 0.011431 0.03451 0.021587 -0.00672 -0.02004 0.084764

CCNN 0.015787 0.054952 0.175307 0.04584 0.127068 0.014157 0.136209 -0.01496 0.06141 0.032908 1 0.049229 -0.06661 0.024031 -0.00524 0.040984 0.007728 0.065341 0.001566 0.030894

CILEASING 0.010815 -0.00091 0.055145 0.009799 0.084493 0.008397 0.023381 -0.00019 -0.02738 0.040034 0.049229 1 0.042932 0.032846 0.030753 0.00305 -0.01163 0.075287 -0.00421 0.037988

CONOIL 0.009635 -0.02445 -0.04035 0.000529 0.013289 -0.00943 0.068711 0.003384 0.044002 -0.02318 -0.06661 0.042932 1 0.017264 0.018679 -0.01089 -0.07688 0.059827 0.00496 0.041872

CONTINSURE0.028702 0.040527 0.062478 0.005 0.052223 -0.01882 0.041732 -0.02062 -0.05896 -0.01104 0.024031 0.032846 0.017264 1 0.07067 0.022625 0.008551 -0.08108 0.007992 0.008142

CORNERST 0.033092 0.027983 -0.01304 0.031901 0.011167 0.037871 0.024245 0.031925 -0.01341 0.011431 -0.00524 0.030753 0.018679 0.07067 1 0.016227 -0.01527 0.013627 -0.04751 0.011117

COSTAIN -0.01957 -0.01186 0.062428 0.003182 0.079949 0.03219 0.033759 0.001533 0.078438 0.03451 0.040984 0.00305 -0.01089 0.022625 0.016227 1 -0.03288 0.030068 -0.02884 -0.0262

COURTVILLE-0.01251 -0.03699 0.016785 0.015911 -0.03631 0.024177 -0.05434 0.027304 -0.00591 0.021587 0.007728 -0.01163 -0.07688 0.008551 -0.01527 -0.03288 1 -0.00295 0.009347 0.006857

CUSTODYINS-0.02231 -0.0094 0.01893 0.052039 0.016342 0.0165 0.062872 0.002867 0.003203 -0.00672 0.065341 0.075287 0.059827 -0.08108 0.013627 0.030068 -0.00295 1 -0.00166 0.027586

CUTIX 0.008773 -0.05143 -0.04865 0.00793 0.039694 -0.02333 -0.00385 0.01409 0.006094 -0.02004 0.001566 -0.00421 0.00496 0.007992 -0.04751 -0.02884 0.009347 -0.00166 1 0.079732

DANGCEM 0.040708 -0.01032 0.037644 0.009541 0.000341 -0.02294 0.051222 0.045171 -0.00317 0.084764 0.030894 0.037988 0.041872 0.008142 0.011117 -0.0262 0.006857 0.027586 0.079732 1
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the implied volatility of the portfolio  𝜎𝑝𝑜𝑟𝑡
𝑄 = 0.04. If the weight 𝑊, then the following 

values, 𝑅 𝑝and 𝑉𝑄 will be used to solve for   (𝜎𝑝𝑜𝑟𝑡
𝑝 )2 in the equation (10). But  

𝜎𝑝𝑜𝑟𝑡
𝑝 = √(𝑊 ∗ 𝑉𝑄 ∗ 𝑅𝑝 ∗ 𝑉𝑄 ∗ 𝑊′) 

𝜎𝑝𝑜𝑟𝑡
𝑝 = 0.0361                                      

Remember that our 𝑉𝑄 is; 

 

To this effect we will replace 𝐷 in equation (14) with the 𝑛𝑥𝑛 matrix whose entries 

are1;  𝐼𝑛𝑥𝑛. Since 0.04 is greater than  0.0361, this implies that 𝜎𝑝𝑜𝑟𝑡
𝑄  >   𝜎𝑝𝑜𝑟𝑡

𝑝
. 

 

𝑤 = 
(𝜎𝑝𝑜𝑟𝑡

𝑄 )2 − (𝜎𝑝𝑜𝑟𝑡
𝑃 )2 

𝑊 ∗ 𝑉𝑄 ∗ (𝐼20𝑥20 − 𝑅𝑃) ∗ 𝑉𝑄 ∗ 𝑊′
 

=
0.0016 − 0.001303

𝑊 ∗ 𝑉𝑄 ∗ (𝐼20𝑥20 − 𝑅𝑃) ∗ 𝑉𝑄 ∗ 𝑊′
 

= 
0.0003

−6.5737𝑒−04
                                         

= −0.4564                                                                    

 

The eigenvalues of 𝑅𝑄  =  [.57; .69; .72; .74; .76; .80; .84; .89; .93; .93; .96;  

. 98; 1.09; 1.14; 1.16; 1.18; 1.22; 1.23; 1.30; 1.98] from where we obtain the minimum 

eigenvalue to be 0.57 showing that 𝑅𝑄 is also a positive semi-definite. We now verify 

0.26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0.21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.36 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.24 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.19 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.24 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.18 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0.17 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.21 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.29 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.23 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.18 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14
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our solution from equation (8) to compute the variance of the portfolio using the 

obtained realistic implied correlation matrix 𝑅𝑄 gotten above: 

The implied correlation matrix is applicable in hedging risks associated with foreign 

exchange. Large corporations are always very interested in hedging their currency 

exposures by using a basket of options instead of taking separate put options for the 

respective countries where they have their investments Bensman (1997). This will 

help guard against the unnecessary losses they might incur in the event of the rising 

value of the domestic currency where they have their investments. Companies that 

are therefore exposed to a variety of currency fluctuations find it profitable to directly 

hedge their aggregate risk by using a basket of options made possible through the 

use of estimated implied correlation matrix in the form of a basket of options H 

Krishnan and I Nelken (2001). For a manufacturing firm in the United States that 

sources its raw materials in Nigeria, Ghana, and South Africa and pays for its 

operation in those countries in local currencies will be exposed to exchange rate risk. 

To hedge against the risk of falling United States dollars against Naira, Cedi, and 

Rand, the manufacturing firm has to use a basket of option in its risk management 

strategy. The company could, therefore, directly buy an option on a basket of 

currencies at a lower price than it can purchase through separate options on the 

individual currencies. This is possible through the use of historical return time series 

correlation, as we have done with some stocks in the NSM, and the major concern 

will then be the amount of weight to be assigned to the individual stocks (or 

currencies). For optimal portfolio on the investment, we need to predict the future 

correlation of the respective option values correctly by observing the correlation 

throughout the life span of the option. 

7.3 Kurtosis and Skewness 
Looking at data on the tables, we find out that the Kurtosis and the Skewness both 

are not zero in each of the stocks in our portfolio. We now look at the frequency 

distribution of the individual stock. 

The histogram can give you a general idea of the shape, but two numerical 

measures of shape (skewness and kurtosis) provide a more precise evaluation. A 

frequency distribution is said to be skewed when its mean and median are different, 

or more generally when it is asymmetric. The kurtosis of a frequency distribution is 
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the concentration of scores at the mean, or how the distribution peaked appears if 

depicted graphically. 

Skewness tells you the amount and direction of skew (departure from horizontal 

symmetry), and kurtosis tells you how tall and sharp the central peak is, relative to a 

standard bell curve. Many statistics inferences require that a distribution be normal 

or nearly normal. A normal distribution has skewness and excess kurtosis of 0, so if 

your distribution is close to those values, then it is probably close to normal. 

If skewness is positive, the data are positively skewed or skewed right, meaning that 

the right tail of the distribution is longer than the left. If skewness is negative, the 

data are negatively skewed or skewed left, meaning that the left tail is longer. 

Variance is a measurement of the spread between numbers in a data set. The 

variance measures how far each number in the set is from the mean. Variance is 

used in statistics for a probability distribution. Since variance measures the variability 

(volatility) from an average or means and volatility is a measure of risk, the variance 

statistic can help determine the risk an investor might assume when purchasing a 

specific security. A variance value of zero indicates that all values within a set of 

numbers are identical; all non-zero variances will be positive numbers. A significant 

deviation indicates that numbers in the set are far from the mean and each other, 

while a small variance indicates the opposite. 

The standard error is an indication of the reliability of mean. A small value of the 

standard error indicates that the mean is a more accurate reflection of the actual 

population mean – implying that it could be used as an accurate representation of 

the population. 

The median is the value of the 50% or half population (observation). 

7. 4 Conclusion and hints on future work 
The analysis of the correlation and structure of stock market returns has provided the 

necessary data for a hypothetical analysis of implied correlation in the NSM, carried 

out in this research using the concept of RMT. This foregrounds research on 

comparative derivative pricing in the NSM, especially on foreign exchange futures. 

Marcenko-Pastur eigenvalue distribution predicted that the theoretical eigenvalues 
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should be in the range of 0.52 and 1.65 for NSM. It was observed that 6 out of 82 

stocks considered, have their corresponding eigenvalues lie outside this theoretical 

bound of eigenvalues. Therefore, 89% of the information from the return distributions 

is purely random thereby leaving us with the alternative hypothesis of the RMT which 

states that the information on the market lies on the deviating eigenvalues which 

imply then that for NSM the actual market characteristic lies with only 11% of the 

stocks considered. 

As stated earlier, these correlation matrices contain some relevant information for 

options pricing and hedging, J. Hull (1997). The realistic implied correlation matrix 𝑅𝑄 

has positive coefficients meaning that the respective stock move in the same 

direction hence the diversification method in the portfolio is not an optimal portfolio 

strategy.  It is; therefore, better to invest in some derivative products like call and or 

put option to hedge against the risk on the portfolio for the hypothetical weight and 

implied volatility used in the estimated implied correlation matrix. 

The eigenvectors associated with the essential eigenvalues[𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]are non-

normal and highly asymmetric; this suggests the presence of market signals such as 

depicted also in the information-carrying stocks. The fact that the first eigenvalue 

represents the market (that is, it contains the most information of the market), it also 

suggests that the Nigerian Stock Market (NSM) is inefficient and contains a lot of 

noise. The positive asymmetry in the distribution of eigenvectors of 1  shows that, 

the NSM reacts more strongly to positive variations than negative variations. It 

shows a fairly even spread which suggest that there are no dominant stocks in 

among the 82 stocks we studied. Therefore, we advised the investors and the 

market players who may want to control the risk of their portfolios to select most of 

their stocks in the portfolio from the same sector of the market due to the nature of 

NSM. This is what we demonstrated in chapter six. 

We also noted that the concept of implied correlation could be used in options 

trading and hedging the risks associated with the portfolio of investment, including 

the use of a basket of options in hedging foreign exchange risk. In this regard, it is, 

therefore, open to further work for the investigation of the use of the basket of an 

option to hedge against exchange rate risk especially in emerging markets like 

Nigeria and South Africa. As Nigeria has already started trading on foreign exchange 
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futures, it is pertinent therefore to note that soon market data will be available for the 

empirical application of the concept of the implied correlation matrix for the hedging 

of exchange risk in Nigeria. 

The risks of any portfolio should be calculated accurately so that the investor can 

manage his investment adequately.  We intend to help the investor maximise the 

expected returns for the targeted values of VaR/CVaR. The correlation among the 

prices of the stocks in the portfolio plays a vital role in the proper estimation of 

VaR/CVaR. When there is a non-linear arrangement, it becomes difficult to capture 

the risk very well with the correlation alone. Therefore, the use of copula functions 

becomes necessary to capture those non-linear and the fat-tailed dependencies. Our 

analysis shows that the Student t copula provides a better approximation to describe 

the joint distribution of pairs of stocks in a portfolio better than Gaussian copula in 

portfolio optimisation.      

Future works 
In our proposals for future work, we want to study in details some of the African 

emerging markets like South Africa and Morocco markets, look at the similarities and 

find the best portfolio selection/combination of assets from those markets studied.  

Nigeria has not included the financial derivatives in her market, so we include the 

development of financial derivatives in the NSM using the information from NSM-JSE 

market affinities, which was foreshadowed in this work. 

We will apply and verify Fernandez et al. (2016) claims on multivariate lower and 

upper dependence coefficient to analyse the relationship among pairwise, mutual 

and extremal tail independence, using a selected number of stocks from NSM and 

other African emerging markets hopefully. 

Finally, we will use the principles of optimality for uncertain optimal control to solve 

our portfolio selection problem.  
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Appendix  
5.0 Distribution of Eigenvalues 

 Remember that the probability density function 𝑃𝑟𝑚(𝜆) of eigenvalues 𝜆 of the random 

correlation matrix, 𝑅 is given by equation (5.21) in chapter 5 and its stated thus, 

𝑃𝑟𝑚(𝜆) =
𝑄

2𝜋𝜎2
 
√(𝜆+ − 𝜆)(𝜆 − 𝜆−)

𝜆
                                         

For 𝜆 within the bounds 𝜆−  ≤  𝜆𝑖 ≤ 𝜆+,  that is [𝜆+, 𝜆−] where 𝜆− and 𝜆+are the minimum and 

maximum eigenvalues of 𝑅 respectively,  and this given by equation (5.22) in chapter 5 and 

its stated thus, 

𝜆± = 𝜎
2 (1 +

1

𝑄
 ± 2√

1

𝑄
)                                                                               

To solve for the 𝜆± in the above equation, we need to first solve for 𝑄 in that equation.  

But 𝑄 =
𝐿

𝑁
 , where 𝑁 =  82 stocks we analysed from NSE and 𝐿 =  1019  is the total of daily 

closing prices of those stocks. Therefore, 

𝑄 = 
1019

82
= 12.426 

This implies 𝑄 = 12.4, then 
1

𝑄
= 0.0806 which is the reciprocal of 𝑄.  To get the eigenvalue 

bound [𝜆+, 𝜆−], we substitute for 𝑄 in the equation above having in mind that 𝜎2 is 

unitary. Thus,  

𝜆± = 𝜎
2 (1 +

1

𝑄
 ± 2√

1

𝑄
) 

= 12(1 +
1

12.4
 ± 2√

1

12.4
) 

= (1 + 0.0806 ± 2√0.0806) 

= (1.0806 ± 2(0.28398)) 

Therefore, 𝜆+ = 1.0806 + 0.56796 or 𝜆− = 1.0806 − 0.56796. Thus  𝜆+ = 1.64856 and 

𝜆+ = 0.51264. 

Now, with the eigenvalue bound [𝜆+, 𝜆−], we can get the eigenvalue distribution by ploting 

the density 𝑃(𝜆𝑖) against its value, where 𝑖 = 1, 2, … , 82 and 𝜆𝑖 is the eigenvalues 

from Empirical, theoretical and the cleaned up matrices.  

The distribution of the eigenvalues is figure 5𝑎 and 5𝑏 in chapter 5. Tables below are the 

collection of the eigenvalues of Empirical, theoretical and the cleaned-up matrices.  
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Table 5a 

 

Table 5b 

The Empirical eignevalue s from the empirical Matrix with the 82 stocks studied

1 2 3 4 5 6 7 8 9 10

0.462222 0.473459 0.488408 0.49809 0.511803 0.543933 0.55661 0.562031 0.568181 0.578575

11 12 13 14 15 16 17 18 19 20

0.590499 0.609337 0.611057 0.627254 0.636702 0.649487 0.659342 0.66186 0.677746 0.686433

21 22 23 24 25 26 27 28 29 30

0.712838 0.715223 0.72883 0.736066 0.748083 0.756257 0.768498 0.771428 0.779155 0.788935

31 32 33 34 35 36 37 38 39 40

0.79658 0.807143 0.825354 0.831951 0.842357 0.855395 0.861913 0.867174 0.879861 0.904011

41 42 43 44 45 46 47 48 49 50

0.910028 0.914347 0.933889 0.941113 0.951644 0.967685 0.987744 0.993686 1.008948 1.016445

51 52 53 54 55 56 57 58 59 60

1.026461 1.03542 1.050241 1.064123 1.082887 1.088031 1.10157 1.116517 1.122921 1.135287

61 62 63 64 65 66 67 68 69 70

1.160098 1.173476 1.18679 1.229139 1.252345 1.264717 1.289052 1.29836 1.314655 1.333823

71 72 73 74 75 76 77 78 79 80

1.346487 1.362685 1.375556 1.389884 1.420827 1.476302 1.508283 1.551156 1.638806 1.675504

81 82

1.797996 4.87499

The theorrtical eigenvalues from the Random Matrix with the 82 stocks studied

1 2 3 4 5 6 7 8 9 10

0.513932 0.532032 0.567023 0.568798 0.590938 0.605732 0.623991 0.636007 0.640739 0.648842

11 12 13 14 15 16 17 18 19 20

0.655356 0.674591 0.679524 0.692426 0.710797 0.717694 0.722189 0.728217 0.736619 0.755268

21 22 23 24 25 26 27 28 29 30

0.758787 0.765712 0.775475 0.776365 0.798904 0.801509 0.818156 0.828238 0.847754 0.850238

31 32 33 34 35 36 37 38 39 40

0.856627 0.862422 0.877382 0.88091 0.891943 0.9054 0.92724 0.934375 0.939671 0.945271

41 42 43 44 45 46 47 48 49 50

0.959132 0.975637 0.997079 1.005844 1.010911 1.022984 1.033933 1.042242 1.061527 1.070929

51 52 53 54 55 56 57 58 59 60

1.076723 1.087992 1.108933 1.115786 1.127053 1.135099 1.148131 1.155036 1.16007 1.179377

61 62 63 64 65 66 67 68 69 70

1.191439 1.203998 1.2104 1.231302 1.243953 1.268141 1.276897 1.294013 1.309118 1.329654

71 72 73 74 75 76 77 78 79 80

1.350229 1.365713 1.392018 1.394322 1.410243 1.428856 1.449078 1.460471 1.502005 1.530906

81 82

1.581872 1.655286
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5c 

 

𝑝(𝜆𝑖) =
𝑄

2𝜋𝜎2
√(1.6484 − 𝜆𝑖) ∗ (𝜆𝑖  − 0.5128)

𝜆𝑖
 

 

where 𝑖 = 1, 2, … , 82 and 𝜆𝑖 is the eigenvalues from Empirical, theoretical and the cleaned-up 

matrices. This value is plotted against the eigenvalues in the tables above to get the 

distribution of such eigenvalue. 

 

 

 

 

 

The eigenvalues from the Cleaned up Matrix 

1 2 3 4 5 6 7 8 9 10

0.395332 0.409255 0.436172 0.437537 0.454568 0.465948 0.479993 0.489237 0.492876 0.499109

11 12 13 14 15 16 17 18 19 20

0.50412 0.518916 0.522711 0.532636 0.546767 0.552072 0.55553 0.560167 0.56663 0.580976

21 22 23 24 25 26 27 28 29 30

0.583683 0.58901 0.596519 0.597204 0.614542 0.534339 0.545437 0.552159 0.565169 0.566826

31 32 33 34 35 36 37 38 39 40

0.571085 0.574948 0.584922 0.587273 0.594629 0.6036 0.545435 0.549632 0.552748 0.556042

41 42 43 44 45 46 47 48 49 50

0.564195 0.573904 0.586517 0.591673 0.594653 0.601755 0.608196 0.613083 0.624428 0.629958

51 52 53 54 55 56 57 58 59 60

0.633367 0.639995 0.652314 0.656344 0.662973 0.667705 0.765421 0.770024 0.77338 0.786251

61 62 63 64 65 66 67 68 69 70

0.794293 0.802666 0.806934 0.820868 0.829302 0.845428 0.851265 0.995395 1.007014 1.022811

71 72 73 74 75 76 77 78 79 80

1.038637 1.050548 1.070783 1.072556 1.084802 1.09912 1.114675 1.123439 1.155389 1.17762

81 82

1.216825 1.273297


