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Abstract. In vehicle dynamics, the determination of the tire-road interaction 
forces plays a fundamental role in the analysis of vehicle behavior. This paper 
proposes a simple yet effective approach to estimate longitudinal forces. The 
proposed approach: i) is based on equilibrium equations; ii) analyses the pecu-
liarities of driving and braking phases; iii) takes into account the interactions 
between vehicle sprung mass and unsprung mass. The unsprung mass is often 
neglected but that might lead to significant approximations, which are deemed 
unacceptable in performance or motorsport environments. The effectiveness of 
the proposed approach is assessed using experimental data obtained from a high 
performance racing car. Results show that the proposed approach estimates tire 
longitudinal forces with differences up to 10% when compared against a simp-
ler formulation which uses only the overall mass of the vehicle. Therefore the 
distinction among vehicle sprung and unsprung masses, which is likely to be an 
easily obtainable piece of information in motorsport environments, is exploited 
in this approach to provide significant benefits in terms of longitudinal force es-
timation, ultimately aimed at maximizing vehicle performance. 
 

Keywords: Vehicle Dynamics, Tire-Road Interaction, Longitudinal Forces, 
Sprung and Unsprung Masses. 

1 Introduction 

The accurate estimation of the tire-road interaction forces is of great interest in ve-
hicle dynamics. Only through a precise and accurate calculation of such forces the 
real behavior of the vehicle can be thoroughly investigated, understanding whether 
the tires are working correctly and at the maximum of their performance.  

In recent years, tire technological development has played a fundamental role in 
motorsport and in the automotive sector. The availability of reliable procedures and 
methods to estimate tire-road interaction forces is a crucial aspect therein. 

In the literature several contributions [1-5] deal with this problem, using different 
hypotheses and schematizations of the vehicle. In most cases, a single-track model is 
introduced, but that is not suitable to calculate the forces on each corner. Other ap-
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proaches adopt Kalman filters to calculate tire-road interaction forces [6-8]. In [9] the  
T.R.I.C.K. tool is presented, which uses a 8 degrees-of-freedom (DOF) rear-wheel-
drive vehicle model to obtain a fairly good estimation of the tire-road interaction 
forces. However, only the global mass of the vehicle is considered, without looking in 
detail at sprung mass and unsprung mass. In [10], sprung and unsprung masses are 
used to develop a tool that calculates the energy released from a vehicle to the road 
pavement, but such data are not directly used to estimate the interaction forces. 

The main novelty of this paper is to present a formulation for the calculation of 
longitudinal forces that takes into account the distribution of the vehicle global mass 
into sprung mass and unsprung mass. The availability of such information is not a 
difficult task especially in motorsport environments, and it allows to introduce a sig-
nificantly improved accuracy in the estimation of the tire-road longitudinal forces. 
Also, a different approach is used when compared to [9], i.e. individual free body 
diagrams are studied and exploited in the present formulation, which leads to different 
results than [9] even when only the global mass of the vehicle is considered. Addi-
tionally, in most road vehicles a further distinction can be made between the unsprung 
mass of the front wheels and the rear wheels, e.g. for a rear-wheel drive architecture, 
the rear wheel assembly includes additional components for housing the axle shafts. 

Section 2 introduces the equilibrium equations of the individual wheels and of the 
whole vehicle, leading to two formulations. Section 3 investigates the general case of 
a non-even front-rear distribution of unsprung mass. In Section 4 the proposed formu-
lations are assessed via experimental data acquired on a high-performance race car. 

2 Longitudinal Force Formulations  

The reference system used to calculate the longitudinal forces is the same as in [1]: 
it is centered in the vehicle center of mass, x is the longitudinal axis, positive for-
wards, y is the lateral axis, positive to the left, and z is the vertical axis, positive up-
wards. Table 1 reports the list of symbols used throughout the paper. The vehicle is 
assumed to be rear-wheel-drive, also it is assumed ܽ௫ > 0 and ܨ௫ < 0 in the direction 
of travel.  

Acceleration and braking cases need to be addressed separately because of their in-
dividual peculiarities. Two main formulations are presented: 

1. Splitted Mass Formulation (SMF), considering sprung mass and unsprung mass; 
2. Overall Mass Formulation (OMF), considering only the total mass of the vehicle. 

2.1 SMF - Acceleration 

Based on individual free body diagrams, the equilibrium equations can be derived.  
 

Front Wheel (Fig. 1a) 

─ Moment balance equation (rotation around the wheel center): 

௫்ଵ௝ܴଵܨ + ோோଵ௝ܴଵܨ − ଵݐ௭ଵ௝ܨ = ଵఫ̈ߠ௭ଵܬ   (1) 
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         (a)     (b)    

Fig. 1. Acceleration: (a) front wheel, (b) rear wheel 

Table 1. List of symbols 

Symbol Description 
ܽ௫ Vehicle longitudinal acceleration  
 ஺௘௥௢ௗ௥௔௚ Drag forceܨ
ோோ௜௝ܨ  Rolling resistance for wheel ij 
௫௜௝ܨ  Overall tire-road longitudinal interaction force for wheel ij 
௫்௜௝ܨ  Tire-road longitudinal interaction force for wheel ij, excluding ܨோோ௜௝  
௭௜௝ܨ  Vertical load for wheel ij 
 ଴௜௝ Force transmitted to the hub for wheel ijܨ
 ௭௜ Moment of inertia for wheel iܬ
 ௜௝ Braking torque action for wheel ijܯ
݉ Overall vehicle mass 
݉ோ Unsprung mass  
݉ோி Front wheel unsprung mass  
݉ோோ Rear wheel unsprung mass 
݉௩ Sprung mass 
ܴ௜ Effective rolling radius for wheel i 
ܶ Driving torque 
௝ܶ  Driving torque acting on a single wheel j 
௭௜௝ܨ ௜ Offset betweenݐ  contributions due to rolling resistance 
 ௝ Vertical force distribution (rear left - rear right)ߛ
 Vertical force distribution (front-rear) ߜ
 ௜௝ Angular acceleration for wheel ijߠ̈
Subscripts 
݅   axle index: 1=front, 2= rear                                 ݆    Side index: 1=left, 2=right 

─ Longitudinal equilibrium equation: 

଴ଵ௝ܨ − ௫்ଵ௝ܨ + + ோோଵ௝ܨ = −݉ோܽ௫    (2) 
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The reaction force ܨ௭ଵ௝  from the road to the vehicle is shifted forwards by  ݐଵ with 
respect to the wheel center, due to rolling resistance, so that  ܨோோଵ௝ܴଵ =  . ଵݐ௭ଵ௝ܨ
Therefore Eq. (1) can be rearranged as: 

௫்ଵ௝ܨ = ௭ଵܬ 
ఏభണ
ோభ

̈
 (3) 

The longitudinal force exchanged between tire and wheel 1j is ܨ௫்ଵ௝ +  :ோோଵ௝ܨ

௫ଵ௝ܨ = ௫்ଵ௝ܨ  + ோோଵ௝ܨ = ௭ଵܬ 
ఏభണ
ோభ

̈
+ ோோଵ௝ܨ   (4) 

Combining Eq. (2) and (4), the force transmitted to the hub for wheel 1j is: 

଴ଵ௝ܨ =  ݉ோܽ௫ + ௭ଵܬ 
ఏభണ
ோభ

̈
+ ோோଵ௝ܨ         (5) 

Sprung mass (Fig. 2) 

 
Fig. 2. Acceleration: sprung mass 

─ Longitudinal equilibrium equation: 

஺௘௥௢ௗ௥௔௚ܨ                             + ଴ଵଵܨ + ଴ଵଶܨ  − ଴ଶଵܨ  − ଴ଶଶܨ =  − ݉௩ܽ௫ (6) 

-஺௘௥௢ௗ௥௔௚ is assumed applied at the vehicle center of mass, which is an approximaܨ
tion [1], however that has a negligible effect the estimation of the longitudinal forces. 
Equation (6) can be rewritten in the following form, useful to obtain Eq. (11) later: 

଴ଶଵܨ                                + ଴ଶଶܨ =   ݉௩ܽ௫ + ஺௘௥௢ௗ௥௔௚ܨ  + ଴ଵଵܨ +  ଴ଵଶ   (7)ܨ 

The moment balance equation is not studied as it only provides information about 
the vehicle pitch motion, with no effect on the estimation of the longitudinal forces. 
Rear Wheel (Fig. 1b) 

─ Longitudinal equilibrium equation: 

଴ଶ௝ܨ  + ோோଶ௝ܨ − ௫்ଶ௝ܨ  =  −݉ோܽ௫ (8) 

─ Moment balance equation (rotation around the wheel center): 

௝ܶ + ோோଶ௝ܴଶܨ − ଶݐ௭ଶ௝ܨ − ௫்ଶ௝ܴଶܨ =  ଶ௝ (9)ߠ௭ଶ̈ܬ
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The longitudinal force exchanged between tire and wheel 2j is −ܨ௫்ଶ௝ +  :ோோଶ௝ܨ

௫ଶ௝ܨ = ோோଶ௝ܨ  − ௫்ଶ௝ܨ =  −݉ோܽ௫ −  ଴ଶ௝ (10)ܨ 

Replacing  ܨ଴ଶ௝ from Eq. (7), using Eq. (5) and introducing ߛ௝ =
ி೥మೕ

ி೥మభାி೥మమ
: 

௫ଶ௝ܨ =   −݉ோܽ௫ − ቀ݉௩ܽ௫ + ஺௘௥௢ௗ௥௔௚ܨ  + 2݉ோܽ௫  + ௭ଵܬ ቀ
11ߠ̈
ோభ

+ 12ߠ̈
ோభ
ቁ + ோோଵଵܨ  ௝ (11)ߛோோଵଶቁܨ +

The overall ܨ଴ଶଵ +  ଴ଶଶ contribution is split based on the vertical loads at left andܨ
right side, using ߛ௝, whenever no information is available on the differential, follow-
ing the approach in [9] which accounts for longitudinal and lateral load transfers as 
well as downforce. 

2.2 OMF and comparison with SMF - Acceleration 

The OMF formulation is here introduced, for use when no specific data on sprung and 
unsprung mass are available. For the front wheels still Eq. (4) holds, whilst for the 
rear wheels the OMF formula is: 

௫ଶ௝ܨ =   −൬݉ܽ௫ ஺௘௥௢ௗ௥௔௚ܨ + + ௭ଵܬ
ఏభభ
ோ೑

̈ + ௭ଵܬ
ఏభమ
ோ೑

̈ + ோோଵଵܨ +  ௝ (12)ߛோோଵଶ൰ܨ 

The inertia and rolling resistance contributions are the same in Eq. (11) and Eq. 
(12). Differences arise in all terms containing a mass: Table 2 compares such terms 
for SMF and OMF, for three values of ߛ௝. It should be noted that ݉ = ݉௩ + 4݉ோ . 

Table 2. Comparison between SMF and OMF for rear wheels - Acceleration 

 ௝ SMF term(s) OMF term(s) Magnitudeߛ
0 −݉ோܽ௫ 0 |SMF| > |OMF| 

0.5 −2݉ோܽ௫ −݉௩ܽ௫/2 −2݉ோܽ௫ −݉௩ܽ௫/2 |SMF|= |OMF| 
1 −3݉ோܽ௫ −݉௩ܽ௫ −4݉ோܽ௫ −݉௩ܽ௫ |SMF| < |OMF| 

The OMF introduces an error which depends on the vertical loads on the wheel. In 
particular, the error grows when the vertical loads are different from each other, 
which is typical of lateral dynamics. If ߛ௝ ∈ ൣ0; 1

2ൗ ൣ the OMF underestimates the 
longitudinal forces. If ߛ௝ ∈ ൧1 2ൗ ; 1൧ the OMF overestimates the longitudinal forces. 

2.3 SMF - Braking 

Sprung mass (Fig. 3) 

─ Longitudinal equilibrium equation: 

஺௘௥௢ୢ௥௔௚ܨ + ଴ଵଵܨ + ଴ଵଶܨ  + ଴ଶଵܨ  + ଴ଶଶܨ =  − ݉௩ܽ௫    (13) 
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which can be rewritten as: 

଴ଵଵܨ ଴ଵଶܨ + ଴ଶଵܨ + + ଴ଶଶܨ =  − ݉௩ܽ௫ −  ஺௘௥௢ௗ௥௔௚ (14)ܨ

 
Fig. 3. Braking: sprung mass 

Front Wheel (Fig. 4) 

 
Fig. 4. Braking: generic wheel  

─ Moment balance equation (rotation around the wheel center): 

௫்ଵ௝ܴଵܨ + ோோଵ௝ܴଵܨ − ଵݐ௭ଵ௝ܨ ଵ௝ܯ− =  ଵ௝ (15)ߠ௭ଵ̈ܬ

─ Longitudinal equilibrium equation: 

଴ଵ௝ܨ − ௫்ଵ௝ܨ + + ோோଵ௝ܨ =  −݉ோܽ௫ (16) 

Introducing ߜ = ி೥భభାி೥భమ
ி೥భభାி೥భమାி೥మభାி೥మమ

, from Eq. (14): 

଴ଵ௝ܨ = (− ݉௩ܽ௫ − (஺௘௥௢ௗ௥௔௚ܨ ఋ
ଶ
   (17) 

where the factor 2 indicates a 50-50 left-right distribution of the braking effort.  
The longitudinal force exchanged between tire and wheel 1j is ܨ௫்ଵ௝ +  :ோோଵ௝ܨ
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௫ଵ௝ܨ = ௫்ଵ௝ܨ  + ோோଵ௝ܨ =  −݉ோܽ௫ + (− ݉௩ܽ௫ − (஺௘௥௢ௗ௥௔௚ܨ ఋ
ଶ
    (18) 

Rear Wheel (Fig. 4) 

Following from Eq. (18) and from the definition of ߜ: 

௫ଶ௝ܨ = ௫்ଶ௝ܨ  + ோோଶ௝ܨ =  −݉ோܽ௫ + (− ݉௩ܽ௫ − (஺௘௥௢ௗ௥௔௚ܨ (ଵିఋ)
ଶ

   (19) 

2.4  OMF and comparison with SMF - Braking 

OMF does not account for sprung and unsprung masses, therefore: 

௫ଵ௝ܨ = (− ݉ܽ௫ − (஺௘௥௢ௗ௥௔௚ܨ ఋ
ଶ
 (20) 

௫ଶ௝ܨ = (− ݉ܽ௫ − (஺௘௥௢ௗ௥௔௚ܨ (ଵିఋ)
ଶ

 (21) 

Table 3. Comparison between SMF and OMF for front wheels - Braking 

 SMF term(s) OMF term(s) Magnitude  ߜ

0 −݉ோܽ௫ 0 |SMF| > |OMF| 
0.5 −݉ோܽ௫− ݉௩ܽ௫/4 −݉ோܽ௫ −݉௩ܽ௫/4 |SMF| = |OMF| 
1 −݉ோܽ௫ −݉௩ܽ௫/2 −2݉ோܽ௫ −݉௩ܽ௫/2 |SMF| < |OMF| 

Table 4. Comparison between SMF and OMF for rear wheels - Braking 

 SMF term(s)  OMF term(s) Magnitude ߜ

0 −݉ோܽ௫ −݉௩ܽ௫/2 −2݉ோܽ௫ −݉௩ܽ௫/2 |SMF| < |OMF| 
0.5 −݉ோܽ௫ −݉௩ܽ௫/4 −݉ோܽ௫ −݉௩ܽ௫/4 |SMF| = |OMF| 
1 −݉ோܽ௫ 0 |SMF| > |OMF| 

Table 3 and Table 4 compare SMF and OMF in braking, for three values of ߜ. 
SMF and OMF coincide only if ߜ = 0.5. If ߜ ∈ ൣ0; 1

2ൗ ൣ the OMF underestimates the 
longitudinal forces for the front wheels and overestimates them for the rear wheels. If 
ߜ ∈ ]1 ⁄ 2; 1] the OMF overestimates the longitudinal forces for the front wheels and 
underestimates them for rear wheels. 

3 SMF with Different Unsprung Masses: SMF*  

This paragraph studies presents the case in which front and rear unsprung masses 
are different. As discussed before, such a condition is not unlikely, e.g. depending on 
the drive architecture, the front and rear wheel assemblies may differ significantly. 
This formulation will be indicated as SMF*. It implies ݉ = ݉௩ + 2݉ோி + 2݉ோோ. 

During acceleration, SMF* and the OMF are identical for the front wheels. For the 
rear wheels, replacing ݉ோ with ݉ோி and ݉ோோ where appropriate in Eq. (11): 
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௫ଶ௝ܨ =   −݉ோோܽ௫ − ቀ݉௩ܽ௫ + ஺௘௥௢ௗ௥௔௚ܨ  + 2݉ோிܽ௫  + ௭ଵܬ ቀ
ఏ̈భభ
ோభ

+ ఏ̈భమ
ோభ
ቁ + ோோଵଵܨ +

ோோଵଶቁܨ  ௝ߛ  (22) 

Table 5 compares SMF* and OMF, for three values of ߛ௝.  

Table 5. Comparison between SMF* and OMF for rear wheels - Acceleration 

 ௝ SMF* term(s) OMF term(s) Magnitudeߛ
0 −݉ோோܽ௫ 0 |SMF*| > |OMF| 

0.5 −݉ோோܽ௫ −݉௩ܽ௫/2−݉ோிܽ௫ −݉ோோܽ௫ −݉௩ܽ௫/2−݉ோிܽ௫ |SMF*| = |OMF| 
1 −݉ோோܽ௫ −݉௩ܽ௫ − 2݉ோிܽ௫ −2݉ோோܽ௫ −݉௩ܽ௫ − 2݉ோிܽ௫ |SMF*| < |OMF| 
 

During braking, again front and rear wheels need to be analyzed. For the front wheels 
Eq. (18) can be modified as: 

௫ଵ௝ܨ =   −݉ோிܽ௫ + (− ݉௩ܽ௫ − (஺௘௥௢ௗ௥௔௚ܨ ఋ
ଶ
   (23) 

Table 6 compares SMF* and OMF for the front wheels, for three values of ߜ. 

Table 6. Comparison between SMF* and OMF for front wheels - Braking 

 SMF* term(s) OMF term(s) Magnitude ߜ
0 −݉ோிܽ௫ 0 |SMF*| > |OMF| 

0.5 −݉ோிܽ௫ −݉௩ܽ௫/4 −݉ோிܽ௫/2−݉௩ܽ௫/4−݉ோோܽ௫/2 |SMF*| ≠ |OMF| 
1 −݉ோிܽ௫ −݉௩ܽ௫/2 −݉ோிܽ௫ −݉௩ܽ௫/2− ݉ோோܽ௫ |SMF*| < |OMF| 
 
For the rear wheels, Eq. (19) changes into: 

௫ଵ௝ܨ =   −݉ோோܽ௫ + (− ݉௩ܽ௫ − (஺௘௥௢ௗ௥௔௚ܨ (ଵିఋ)
ଶ

 (24) 

Table 7 compares SMF* and OMF, for the rear wheels, for three values of ߜ. 

Table 7. Comparison between SMF* and OMF - Rear wheels - Braking 

 SMF* OMF Magnitude  ߜ
0 −݉ோோܽ௫ −݉௩ܽ௫/2 −݉ோோܽ௫ −݉௩ܽ௫/2− ݉ோிܽ௫ |SMF*| < |OMF| 

0.5 −݉ோோܽ௫ −݉௩ܽ௫/4 −݉ோோܽ௫/2−݉௩ܽ௫/4−݉ோிܽ௫/2 |SMF*| ≠ |OMF| 
1 −݉ோோܽ௫ 0 |SMF*| > |OMF| 

When looking at acceleration (Table 5), again SMF* and OMF provide the same 
result only if ߛ௝ = 0.5. Interestingly however, during braking (Tables 6 and 7, last 
column) SMF* and OMF provide different results even when ߜ = 0.5.  
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4 Comparison among T.R.I.C.K. Formulation, SMF and OMF 

The SMF and OMF, along with the T.R.I.C.K. formulation [9], were compared by 
means of experimental data, obtained on a professional proving ground with a high-
performance vehicle (details on which cannot be disclosed). All the relevant parame-
ters were available for the vehicle, except details on the front and rear unsprung 
masses. Only the average value of unsprung mass was available. Therefore it was not 
possible to study the performance of the SMF*.  

Figure 5 shows a comparison between SMF and OMF considering the longitudinal 
forces obtained at each vehicle corner ݆݅ (indicated in the legend). The percentage 
error depicted in Fig. 5 is calculated as: 

݁ௌெிିைெி =
ிೣ೔ೕ,ೄಾಷିிೣ೔ೕ,ೀಾಷ

ிೣ೔ೕ,ೄಾಷ
100 (25) 

According to Fig. 5, the error between the SMF and OMF reaches up to 10%. 

 
Fig. 5. Percentage error between SMF and OMF for the four wheels 

 
Fig. 6. Percentage error between SMF and T.R.I.C.K. formulation for the four wheels 
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Figure 6 compares, in a similar fashion, the SMF with the T.R.I.C.K. formulation. 
The percentage error depicted in Fig. 6 is calculated as: 

݁ௌெிି்ோூ஼௄ =
ிೣ೔ೕ,ೄಾಷିிೣ೔ೕ,೅ೃ಺಴಼

ிೣ೔ೕ,ೄಾಷ
100 (26) 

In this case the error is up to 20%, and in general it is often different from zero. 

5 Conclusion 

In this paper three different formulations (SMF, SMF* and OMF) were presented 
within a new approach for the estimation of the tire-road longitudinal forces of a race 
car. The proposed approach is generally based on the equilibrium equations of front 
and rear sprung masses, along with the equilibrium equations of the unsprung mass. 
Moreover, the knowledge of the vehicle sprung/unsprung mass distribution improves 
the estimation of longitudinal forces up to 10% compared to when such specific piece 
of information is not available. Also, when comparing the SMF with the T.R.I.C.K. 
formulation, differences are up to 20%. 

Future studies will involve: i) the availability of specific information on the front 
and rear unsprung masses, which allows to experimentally validate the SMF*; ii) the 
adoption of advanced sensors on the test vehicle, such as driveshaft load cells, wheel 
force transducers, brake pressure sensors. That would allow to further validate the 
proposed approach, which ultimately is meant to be an useful tool for motorsport and 
race engineers to investigate the vehicle behavior in a simple yet effective fashion. 
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