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Abstract 

This paper examines the performance of five different metrics for forecasting men’s and 

women’s professional tennis matches. We use data derived from every match played at the 

2018 Wimbledon tennis championships, the only grass court Grand Slam tournament. The 

metrics we use are the betting odds, the official tennis rankings, the overall Elo ratings, the 

surface-specific Elo ratings (Elo based in this case only on matches played on grass), and a 

composite of some of the above. The Elo rating system is a method of ranking players based 

on their past matches, weighted by the ratings of the players they competed against.  The 

performance indicators we use are prediction accuracy, calibration and model discrimination. 

For men’s tennis we find that the betting odds outperform the other measures in terms of 

prediction accuracy and calibration. A weighted composite of overall and surface-specific Elo 

performs best in terms of model discrimination. For women’s tennis, we find that a weighted 

composite of overall and surface-specific Elo performs best in terms of prediction accuracy, 

while a weighted composite of the betting odds, overall Elo and surface-specific Elo performs 

best in terms of calibration and model discrimination.  

 

 

Key words: Forecasting, Elo, calibration, prediction accuracy, model discrimination, 
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1. Introduction 

Sport is bound up with forecasting. The bookmaking industry exists because of disagreements 

between forecasts. It is thus clear that forecasting is a central aspect of sport and of sports 

betting. The purpose of this paper is to examine the performance of different forecasting 

methodologies for both men’s and women’s professional tennis matches. The measures we 

use are the betting odds, the official men’s (ATP) and women’s (WTA) tennis rankings, the 

overall Elo ratings, the surface-specific Elo ratings (Elo based in this case only on matches 

played on grass), and a composite of some of the above. The Elo rating system is a method of 

ranking players based on their past matches, weighted by the ratings of the players they 

competed against. The performance indictors we use are prediction accuracy, calibration and 

model discrimination.  

We focus on both men’s and women’s singles matches for the 2018 Wimbledon tennis 

championships, employing data derived from every match played at Wimbledon. Originating 

in 1877, it is the third of the four annual Grand Slam tournaments of the tennis season, and the 

only major tournament played on grass courts. 

Both the men’s and women’s singles consist of 128 players, with direct entries based on the 

official ATP rankings of 104 males and the official WTA rankings of 108 female competitors. 

Another eight players of each gender are then chosen as ‘wild card’ entries, decided by the 

Committee of Management based on a player’s previous performances during the season or 

by being a competitor of public interest to increase publicity for the event, with the remaining 

spots being filled by the winners of qualifying matches held in the week prior to the main 

competition (Wimbledon, 2019). The strongest 32 players of each gender are ‘seeded’ so that 

the best players do not play each other too early in the tournament. The rest of the players are 

then randomly assigned their matches, both against themselves and the seeded players. For 

female competitors, lower-ranked players can be put forward for seeding by the committee if 

it is considered that the official rankings do not correctly reflect the true current ability of the 

player. The players compete in a “single elimination tournament modus (knockout system)” 

(Leitner et al., 2009, p. 278).  

 

2. Literature 

Stekler et al. (2010) provide a review of sports forecasts – see also Vaughan Williams and 

Stekler (2010) – noting that many seek to evaluate the profitability of a forecasting method 

when used to place bets, rather than to evaluate forecasts per se. They also note that if we 

view betting odds as forecasts, then standard tests of forecast efficiency are also tests of 

information efficiency. Such studies have been common over the years – seminal papers 

include Snyder (1978), Asch et al. (1984) for horse race betting; Pope and Peel (1989) for 

football betting.  

Many forecasting methods are evaluated according to whether they would achieve positive 

betting returns – early papers include Vergin and Scriabin (1978) for American football, 

Bolton and Chapman (1986) for horse racing, while much more recently Angelini and De 

Angelis (2019) assess betting market efficiency for eleven European football leagues.  

Among statistical forecasting models, a common approach is to rank participants based on 

historical performance. Many sports run official ranking systems, and in addition Elo (1978) 

proposed a rating system for chess that has been used in a range of sports. Hvattum and 

Arntzen (2010) test Elo ratings against bookmakers and econometric models as a forecasting 



tool for English Premier League matches, finding that bookmakers outperform Elo ratings, 

but that Elo ratings are superior to econometric models, while Leitner et al. (2010) use Elo 

ratings among other methods when attempting to forecast outcomes from the 2008 European 

Championships football tournament. Ryall and Bedford (2010) create an Elo-based model for 

Australian Rules football, and Carbone et al. (2016) do so for rugby league. Kovalchik (2016) 

evaluates an Elo-based prediction system created by the website FiveThirtyEight.com (Silver 

and Fischer-Baum, 2015; Morris et al., 2016) and finds that this comes closer than other 

forecasting methodologies to beating bookmaker prices in tennis. Kovalchik and Reid (2019) 

extend this method for in-play tennis betting.  

 

3. Data and Methodology 

Table 1 summarises the source and sample size of the data including men’s Association of 

Tennis Professionals (ATP) rankings and Women’s Tennis Association (WTA) rankings, 

betting odds, and Elo ratings. The data used for each of the models is based on the 256 

Wimbledon main draw entrants (128 men and 128 women). The construction of the data set is 

summarised in Table 1.    

 

Table 1: Summary of the data set 

Data set Source Sample size 

ATP Rankings ATP World Tour, 2018 Top 200 

WTA Rankings WTA Tennis, 2018 Top 300 

Betting ATP odds Oddschecker, 2018a 222 match odds 

Betting WTA odds Oddschecker, 2018b 222 match odds 

ATP Elo ratings Tennis Abstract, 2018a Top 169 

WTA Elo ratings Tennis Abstract, 2018b Top 173 

 

Data was collected for the ATP and WTA rankings and for the Elo ratings at the start of the 

tournament and for the betting odds before the beginning of play on each day of the 

tournament. The ATP and WTA rankings were collected from the official websites, 

atpworldtour.com and wtatennis.com respectively, with the rankings of the top 300 women 

and 200 men shown in Table 1.  The Elo and surface-specific Elo ratings were collected from 

www.tennisabstract.com. The data available was gathered for the top 173 rated WTA tour 

competitors and the top 169 ATP tour competitors. To find the best betting odds available, the 

betting comparison website, www.oddschecker.com was used as it collates all the data from a 

wide range of betting operators to give the most competitive odds.   

 

3.1 ATP/WTA ranking 

The Association of Tennis Professionals (ATP) and Women’s Tennis Association (WTA) 

official world rankings are used within professional tennis to determine tournament eligibility. 

They both follow a 52-week cumulative rolling points system, with the results from the four 

Grand Slam tournaments having the highest points weighting. The weighting of the points 

decreases with the prestige of the tournament, as well as the round of the tournament reached. 

The points accrued from 19 ATP and 16 WTA tournaments out of all those played (weakest 

http://www.tennisabstract.com/
http://www.oddschecker.com/


tournament scores drop out) are totalled to create the overall rankings of the players (Dingle et 

al. 2012).  

3.2 Elo 

The Elo rating system, originally developed by Arpad Elo (Elo, 1978) as a method of ranking 

chess players, takes the relative skill level of players based on their past performances to 

establish a prediction for a head-to-head outcome, and then updates the ratings after each 

match result. 

The method works by allocating more points to a player when defeating a stronger opponent 

and deducting points when losing to a weaker opponent (Hvattum and Arntzen, 2010).   

As a general rule, a 100-point difference is the equivalent of a 64% chance of winning, a 200-

point difference equivalent to 75%, and 300-point difference to an 85% chance (Walkofmind, 

2018) - see Equation (1). 

 
𝑝(𝐴) =

1

1 + 10(𝑅𝐵−𝑅𝐴)/400
 

 

(1) 

 

where 𝑅𝐴 and 𝑅𝐵 are the ratings for player A and B. The Elo ratings differences were then 

converted to win probabilities for each player in a match. However, this formula does not 

work in a different rating structure, such as the ATP and WTA rankings.  

 

Three types of Elo ratings were used within the methodology. 

1. Standard Elo for ATP and for WTA. 

2. Surface-specific Elo. Wimbledon is played on a grass court, so a surface-specific Elo only 

accounts for games played by the competitors on a grass surface. Other surfaces are clay and 

hard court. 

3. An adjusted/combined Elo, which weights both standard Elo and surface-specific Elo. As 

Wimbledon is played on a grass court, the grass surface ratings are chosen to best reflect the 

player’s abilities within this match scenario. We firstly construct an adjusted Elo rating to 

reflect both Elo and surface ratings, which is shown in Equation (2).   

 

 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐸𝑙𝑜 = (1 − 𝜆) ∗ 𝐸𝑙𝑜 + 𝜆 ∗ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 (2) 

 

The simplest adjustment is to weight each type of Elo equally, so taking the midpoint of the 

standard Elo and surface-specific Elo for each player (Adjusted Elo ratings 1). However, the 

equal weight of Elo and surface-specific Elo may not produce the optimal return. Considering 

this, we set 𝜆 to be varying between 0 and 1. For each 𝜆, we calculate the prediction accuracy, 

calibration and model discrimination. We choose the maximum value (best performance) of 

the three measures. The corresponding 𝜆 is the optimal weight on surface-specific Elo. Instead 

of placing equal weights on Elo and surface Elo, we have calculated the adjusted Elo ratings 

(Adjusted Elo ratings 2), which uses the optimal weights. 

As the forecasting performance of betting odds is another important indicator, we construct 

another rating in the Equation (3) incorporating the betting odds. 



 

 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐸𝑙𝑜 3 = (1 − 𝜆1 − 𝜆2) ∗ 𝐸𝑙𝑜 + 𝜆1 ∗ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 + 𝜆2 ∗ 𝐵𝑒𝑡𝑡𝑖𝑛𝑔 𝑂𝑑𝑑𝑠 

 

(3) 

 

We set 𝜆1 and 𝜆2 to be varying between 0 and 1 but the sum of them cannot exceed 1. For 

each combination, we calculate the calibration and model discrimination. We choose the 

maximum value of the three measures. 

The idea of developing a weighting-based or rule-based combination of methods to improve 

forecasting accuracy in sport has been previously explored by, for example, Spann and Skiera 

(2009). 

 

3.3 Betting 

To find the best odds available for the analysis, the odds comparison site, Oddschecker, was 

used as it collates all the data from a range of betting operators to give the best odds. 

The odds were deflated by the over-round (the excess of the sum of the odds over 1) to give 

the implied probabilities for each player in a match. 

Regarding the fractional odds, the method in which the implied probabilities were calculated 

is given in Equation (4), which follows Graham and Stott (2008). See also Clarke et al. (2017). 

 

 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + 𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟
∗ 100 

(4) 

 

4. Model performance 

To test the performance of the models, three measures were used: prediction accuracy, 

calibration and model discrimination. When looking at the predictive power of a model, 

although accuracy may be viewed as the most desirable characteristic, the sensitivity to bias 

within the model is also important (Irons et al. 2014), hence the choice of these different 

measures. 

Prediction accuracy is a measure of the number of correctly predicted matches that the player 

with the higher probability won. It is calculated by finding the number of matches that were 

correctly predicted divided by the total number of predictions and is expressed as a percentage. 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100 

 

 

 (5) 

Calibration can be defined as how well the forecasted probabilities correspond to the actual 

outcomes (Tetlock and Gardner, 2015). In this paper, a calibration ratio is used, calculated as 

the sum of the probabilities of the higher ranked player winning divided by the number of 

matches the higher ranked player won. 

 



𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 =
sum of the probabilities of the higher ranked player wins

total number of matches the higher ranked player won
∗ 100 

(6) 

 

The closer the ratio is to 1, the better calibrated and less biased the model is. If the model puts 

more weighting on the higher ranked players to win, the calibration will be more than 1, with 

a model underestimating the higher ranked players having a ratio less than 1. 

Model discrimination is calculated as the mean probability of matches the higher-ranked 

player won minus the mean probability of when they lost (upsets).  

 

𝑀𝑜𝑑𝑒𝑙 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛
= 𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ℎ𝑖𝑔ℎ𝑒𝑟 𝑟𝑎𝑛𝑘𝑒𝑑 𝑝𝑙𝑎𝑦𝑒𝑟 𝑤𝑜𝑛
− 𝑚𝑒𝑎𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑡ℎ𝑒𝑦 𝑙𝑜𝑠𝑡 

 

(7) 

  

This is equal to the integrated discrimination improvement (IDI) measurement used by 

Pencina, D’Agostino and Vasan (2008). Higher values of the IDI and model discrimination 

reflect a higher discriminatory power, indicating that the probabilities are more certain for 

wins than upsets within the matches. 

 

5. Results 

Table 2 shows the forecasting performance of different rating methods. For men’s tennis we 

find that the betting odds outperform the other metrics in terms of prediction accuracy and 

calibration. A simple weighted average of overall and surface-specific Elo performs best in 

terms of model discrimination. Looking at women’s tennis, we find that betting odds perform 

the best in terms of prediction accuracy and calibration, while a simple weighted average 

method and surface Elo outperforms the others in terms of model discrimination.   

As there are no probabilities associated with the ATP and WTA rankings, we are not able to 

calculate calibration and model discrimination.  

Table 2: Summary of prediction by method type  

 Rating methods Prediction 

accuracy  

Calibration Model 

Discrimination 

ATP Betting odds 76.6% 74.9% 7.6% 

ATP Rankings 64.9% NA NA 

Elo ratings 70.3% 72.1% 6.0% 

Surface Elo ratings 69.4% 72.0% 6.3% 

Adjusted Elo ratings 1 

(𝜆=0.5) 70.3% 71.1% 7.7% 

WTA Betting odds 70.3% 71.3% 4.8% 
WTA Rankings 63.1% NA NA 

Elo ratings 68.5% 71.3% 4.0% 

Surface Elo ratings 66.7% 69.1% 6.4% 

Adjusted Elo ratings 1 

(𝜆=0.5) 67.6% 69.7% 6.4% 

                                                                                                                    



Setting the Elo and surface-specific Elo equally may not produce the best performance. We 

then set 𝜆 to be varying between 0 and 1. For each 𝜆, we calculate the prediction accuracy, 

calibration and model discrimination. We choose the maximum value (best performance) of 

the three measures. The corresponding 𝜆  is the optimal weight. Table 3 summarises the 

prediction by this method. Based on this search, almost all the forecasting measures are 

improved compared with the Elo rating itself. The optimal weights are different if we choose 

to maximise different forecasting measures. For example, if we use prediction accuracy as our 

target, we should set 5.6% on Elo rating for ATP but 65.3% on Elo rating for WTA. 

 

Table 3: Summary of prediction by weighted Elo and Grass surface ratings 

Rating methods Adjusted ATP Elo ratings 2 Adjusted WTA Elo ratings 2 

Prediction accuracy 72.1% 71.2% 

Optimal weight on Elo 5.6% 65.3% 

Optimal weight on surface 94.4% 34.7% 

Calibration 73.1% 71.3% 

Optimal weight on Elo 74.0% 100.0% 

Optimal weight on surface 26.0%  0.0% 

Model discrimination 11.0 6.6% 

Optimal weight on Elo 40.5% 3.7% 

Optimal weight on surface 59.5% 96.3% 

 

As the role of betting odds is important in forecasting the performance, we construct another 

rating in the Equation (3) incorporating the betting odds. The corresponding optimal weights 

are shown in Table 4. For example, we should set the weight on Elo to be 57.7%, 12.9% on 

surface Elo and 29.4% on betting odds to achieve the highest model discrimination in men’s 

tennis.  

It should be noted that there is no prediction accuracy calculated, as the only way to construct 

this adjusted Elo is through the weighted average of probabilities of winning. We need to 

convert Elo, Elo surface and betting odds into probabilities first. Therefore, the adjusted Elo is 

a weighted average of winning probabilities. It is not possible to calculate prediction accuracy 

using these probabilities.  

 

Table 4: Summary of prediction by weighted Elo, Grass surface ratings and booker 

makers odds 

Rating methods Adjusted ATP Elo 

ratings 3 

Adjusted WTA Elo 

ratings 3 

Calibration 74.7% 71.7% 

Optimal weight on Elo 1.9% 69.8% 

Optimal weight on surface 0.0% 6.1% 

Optimal weight on betting odds 98.1% 24.1% 

Model discrimination 10.9 8.0% 

Optimal weight on Elo 57.7% 63.6% 

Optimal weight on surface 12.9% 11.9% 

Optimal weight on betting odds 29.4% 24.5% 

 



Table 5, 6 and 7 summarise methods with the best forecasting performance. For men’s tennis, 

Betting odds are still the best in terms of prediction accuracy and calibration. Adjusted Elo are 

better in terms of model discrimination. For women’s tennis, a weighted composite of the 

betting odds, overall Elo and surface-specific Elo performs best in terms of calibration and 

model discrimination.   

Table 5: Best performance in terms of prediction accuracy 

ATP Weights WTA Weights 

Betting ATP odds NA Adjusted WTA Elo 

ratings 2 

65.3% (Elo) 
34.7% (surface) 

 

Table 6: Best performance in terms of calibration 

ATP Weights WTA Weights 

Betting ATP odds NA Adjusted WTA 

Elo ratings 3 

69.8% (Elo) 
6.1% (surface) 
24.1% (betting odds) 

Adjusted ATP Elo 

ratings 3 

1.9% (Elo) 

0.0% (surface) 

98.1% (betting 

odds) 

  

 

Table 7: Best performance in terms of model discrimination 

ATP Weights WTA Weights 

Adjusted ATP Elo 

ratings 2 

40.5% (Elo) 
59.5% (surface) 

Adjusted WTA 

Elo ratings 3 

63.6% (Elo) 
11.9% (surface) 
24.5% (betting odds) 

Adjusted ATP Elo 

ratings 3 

57.7% (Elo) 

12.9% (surface) 

29.4% (betting 

odds) 

  

 

6. Conclusion 

This paper seeks to compare and evaluate the performance of different metrics (official world 

rankings, Elo-based ratings and betting odds) against three indicators, i.e. prediction accuracy, 

calibration and model discrimination. For men’s tennis we find that the betting odds 

outperform the other metrics in terms of prediction accuracy and calibration. A weighted 

composite of overall and surface-specific Elo performs best in terms of model discrimination. 

For women’s tennis, we find that a weighted composite of overall and surface-specific Elo 

performs best in terms of prediction accuracy, while a weighted composite of the betting odds, 

overall Elo and surface-specific Elo performs best in terms of calibration and model 

discrimination. Consistently, therefore, we find that the official ranking system proved to be 

the worst performing measure, highlighting a case for a change in the method by which the 

official rankings are calculated (see also Reid et al., 2010).  

The findings of this paper complement those of earlier studies, notably Kovalchik (2016), 

who studied the predictive ability of previously published tennis prediction models. 



Kovalchik finds that no approach was able to match the predictive ability of the bookmaker, 

although the standard Elo was the closest competitor (the study did not include the combined 

Elo approach employed in this paper).   

Overall, the findings of this study add to the case for a wider use of Elo-based approaches 

within sports forecasting, as well as within the player rankings methodologies. 

Further work could extend the general approach applied to Elo-based forecasting to evaluate 

the performance of this approach against additional indicators, such as expected return as well 

as on different surfaces and at different tournament levels. Brier scores (Brier, 1950) could 

also be calculated. The Elo scores, and official rankings, could be updated in-running during 

the tournament, and other identified biases, such as the favourite-longshot bias, could be 

adjusted for (see Abinzano et al., 2016). Additional focus could also be applied to explaining 

the gender differences identified in the results (Paserman, 2007; Wozniak, 2012; Kovalchik 

and Ingram, 2018). Differently adjusted Elo-based ratings could also be used, such as 

employed by FiveThirty.com (Silver, 2018; Kovalchik and Reid, 2018).   

Finally, an issue that was not addressed in this paper is the use of in-match updates of the pre-

play expectations of match outcomes (Kovalchik and Reid, 2018).   
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