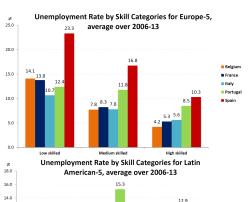
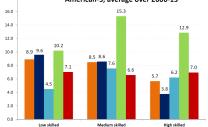
University of Manchester


Unemployment, Growth and Welfare Effects of Labor Market Reforms

King Yoong Lim


School of Social Sciences, University of Manchester

This version: April 12, 2017

Long-term Structural Unemployment

- Global Unemployment:
 204 millions in 2016; 5.6%.
 - If they formed their own country, the unemployed would be the 5th largest country in the world.
- High rates of long-term structural unemployment;
- Example: Europe-5 (**52.8%** Colle
 Colle

Source: OECD; ILO

Addressing Shortcomings in LMR Literature

Large LMRs literature: Efficiency wages, U.Benefits, Min wages, C.Bargaining, Search [van Schaik & de Groot (2000), Meckl (2004), Zagler (2009; 2011), Bhattacharyya & Gupta (2015), Cacciatore & Fiori (2016), Chang & Hung (2016)]

Addressing Shortcomings in LMR Literature

Large LMRs literature: Efficiency wages, U.Benefits, Min wages, C.Bargaining, Search [van Schaik & de Groot (2000), Meckl (2004), Zagler (2009; 2011), Bhattacharyya & Gupta (2015), Cacciatore & Fiori (2016), Chang & Hung (2016)]

Shortcomings that we attempt to address:

- Key Issue: Simultaneous LMRs In Practice, LMRs often implemented in Packages. Ignoring *Policy Externalities*: a potential source of bias.
- 2. Welfare effects and trade-offs with growth;
- Transitional dynamics (hence, dynamic trade-offs of LMRs)
 often neglected due to limited attention to supply side of
 workforce composition;

Model Overview

Issues addressed in the following settings:

- Innovation driven OLG growth model, with heterogeneous labor force (untrained & specialized), LM rigidities-generated structural unemployment in equilibrium;
- 2-period individuals with different innate abilities; In old age, time is allocated to leisure;
- 4 production sectors: manufacturing (homogeneous final good); intermediate goods (IGs); innovation (designs for producing IGs); education (allows skills acquisition);
- Impact of LMRs is assessed not only in terms of unemployment, growth, and welfare, but also misallocation of talent.

Individuals

Utility function

$$V_t^{h,j} = \eta_C \ln c_{t|t}^{h,j} + \frac{\ln c_{t|t+1}^{h,j}}{1+\rho}, \ h = U, SY, SR, \ j = E, L$$

Budget constraints

$$c_{t\mid t}^{U,j} + s_t^{Uj} = \left\{ \begin{array}{ll} (1-\tau)w_t^U & \text{if } j=Y \\ b_t^U & \text{if } j=L \end{array} \right.,$$

$$c_{t|t}^{h,j} + s_t^h = \begin{cases} (1 - \varepsilon)(1 - \tau)(w_t^h - tc_t) & \text{if } j = E, \ h = SY, SR \\ (1 - \varepsilon)(b_t^S - tc_t) & \text{if } j = L \end{cases}$$

$$c_{t|t+1}^{h,j} = (1 + r_{t+1})s_t^h, h = U, SY, SR, j = E, L$$

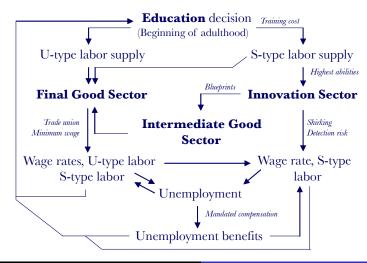
Skills Acquisition - depends on Expected S-U wage

Threshold level of ability, a_t^C , above which individuals choose to undergo training depends on

$$(1-\zeta_t^{UL})w_t^U+\zeta_t^{UL}b_t^U$$
 ,

$$(1-\varepsilon)(\zeta_t^{SY}w_t^{SY}+\zeta_t^{SR}w_t^{SR}+\zeta_t^{SL}b_t^S)-tc_t,$$

where ζ_t^j , j = SY, SR, SL, UL are respective probabilities.


Training cost proportional to expected S-wage & inversely related to ability.

Key channel through which unemployment/public policy affect supply side of labor market.

Overview of Production Sectors

Production Structure and the Labor Market

LMR Feature 1 (T.Union and Minimum Wage)

- ► FG: Wages set through a *right-to-manage* bargaining process between a centralized trade union & firms.
- ▶ Union maximizes, for h = U, SY:

$$\mathfrak{V}_{t}^{h} = (w_{t}^{h} - w_{t}^{hT})^{\xi^{h}} (N_{t}^{h})^{1-\xi^{h}},$$

subject to labor demand functions. Solution:

$$w_t^h = (\frac{1-\xi^h}{1-2\xi^h})w_t^{hT},$$

where $w_t^{UT} = w_t^{UM}(\theta_t^{UL})^{-\varkappa^U}$, $w_t^{UM} = w_0^U(\frac{Y_t}{N})$.

- Similar specification SY-workers.
- ▶ In a growth setting: minimum wage, target wages, and benefit rates must rise at same rate as (average) income.

LMR Feature 2 (U.Insurance, Endogenous Payroll Taxes)

 Gov. operates u.insurance fund (financed by payroll contribution of firms), in addition to general budget.

$$(b_t^U \theta_t^{UL} + b_t^S \theta_t^{SL}) \bar{N} = \varsigma_t \{ w_t^U \theta_t^{UY} + (1 - \varepsilon) (w_t^{SY} \theta_t^{SY} + w_t^{SR} \theta_t^{SR}) \} \bar{N},$$

which implies

$$\varsigma_t = \frac{b_t^U \theta_t^{UL} + b_t^S \theta_t^{SL}}{w_t^U \theta_t^{UY} + (1 - \varepsilon)(w_t^{SY} \theta_t^{SY} + w_t^{SR} \theta_t^{SR})}.$$

- ▶ Implication:higher unemployment may raise the payroll tax if wages do not fall enough; may further depress unemployment.
- ► To ensure nondegenerate solution, UI set as a linear function of level of per capita income: $b_t^h = \kappa^h \frac{Y_t}{N}$, h = U, S.

LMR Feature 3 (Innovation - Efficiency wage framework)

Sub-utility function:

$$U^{R}(w_{t}^{SR}, 1 - e_{t}^{R}) = \ln[(w_{t}^{SR})^{\delta_{R}}(1 - e_{t}^{R})^{1 - \delta_{R}}]$$

In equilibrium, we can derive:

$$e_t^R = 1 - (1 - e_m^R) (\frac{\zeta_t^{SY} w_t^{SY} + \zeta_t^{SL} b_t^S}{w_t^{SR}})^{\psi}, \text{ with } \psi = \pi \delta_R / (1 - \delta_R),$$

and, wage in innovation:

$$w_t^{SR} = \kappa^R (\zeta_t^{SY} w_t^{SY} + \zeta_t^{SL} b_t^S),$$

with $\kappa^R>1$ a function of π , a choice variable at the level of firms. π 1-to-1 to monitoring intensity (Shapiro-Stiglitz, 1984), which in turn varies inversely with unit monitoring cost (exogenous) (van Schaik & de Groot (2000)).

Solow condition satisfied.

► Supply functions:

$$N_t^U = \bar{N} \int_0^{a_t^C} f(a) da = a_t^C \bar{N}, \quad ext{and} \quad N_t^S = rac{1 - (a_t^C)^2}{2} \bar{N}.$$

Supply functions:

$$N_t^U = \bar{N} \int_0^{a_t^C} f(a) da = a_t^C \bar{N}, \text{ and } N_t^S = \frac{1 - (a_t^C)^2}{2} \bar{N}.$$

▶ Supply of S-workers in innovation $(a^R > a^C)$

$$N_t^R = \frac{(1-a^R)(a^R+1)}{2}\bar{N} = \frac{1-(a^R)^2}{2}\bar{N}.$$

▶ Supply of S-labor to manufacturing: $N^S - N^{SR}$ where $N^{SR} \leq N^R$ is actual employment in innovation.

Supply functions:

$$N_t^U = \bar{N} \int_0^{a_t^C} f(a) da = a_t^C \bar{N}, \text{ and } N_t^S = \frac{1 - (a_t^C)^2}{2} \bar{N}.$$

▶ Supply of S-workers in innovation $(a^R > a^C)$

$$N_t^R = \frac{(1-a^R)(a^R+1)}{2}\bar{N} = \frac{1-(a^R)^2}{2}\bar{N}.$$

- ▶ Supply of S-labor to manufacturing: $N^S N^{SR}$ where $N^{SR} \le N^R$ is actual employment in innovation.
- ▶ Index of talent misallocation:

$$\max[0,(N_t^R-N_t^{SR})/N_t^{SY}].$$

Supply functions:

$$N_t^U = \bar{N} \int_0^{a_t^C} f(a) da = a_t^C \bar{N}, \text{ and } N_t^S = \frac{1 - (a_t^C)^2}{2} \bar{N}.$$

▶ Supply of S-workers in innovation $(a^R > a^C)$

$$N_t^R = \frac{(1-a^R)(a^R+1)}{2}\bar{N} = \frac{1-(a^R)^2}{2}\bar{N}.$$

- ▶ Supply of S-labor to manufacturing: $N^S N^{SR}$ where $N^{SR} \le N^R$ is actual employment in innovation.
- ▶ Index of talent misallocation:

$$\max[0,(N_t^R-N_t^{SR})/N_t^{SY}].$$

► Equilibrium:

$$N_t^S = N_t^{SY} + N_t^{SR} + N_t^{SL}, \quad \text{and} \quad N_t^U = N_t^{UL} + N_t^{UY}.$$

Social Welfare Function

$$W_{t} = 0.2 \sum_{h=0}^{\infty} \Lambda^{h} (V_{t+s}^{U,E} + V_{t+h}^{U,L} + V_{t+h}^{SY,E} + V_{t+h}^{SR,E} + V_{t+h}^{S,L}),$$

with Λ: social discount rate.

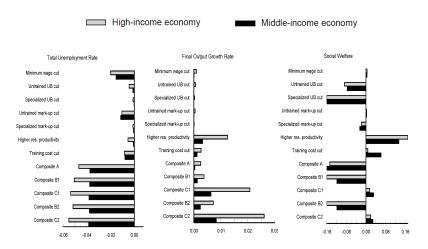
- Equal weight to each group; accounts for welfare of all current and future generations;
- Approximation along the BGE (see paper).
- ► Alternative: varying weights; but rather arbitrary in such a model without explicit modelling of insider-outsider.

Parameterization and Policy Experiments

- Parameterize 2 sets & compare systematically between a HIC benchmark (Europe-5) and MIC benchmark (Latin America-5).
- Partial analysis of individual Pure LMR Policies (min wage, UB rates, cut in union wage mark-ups).
- Further, a proxy each for (i) active-LM policy (training cost), and (ii) increase in labor productivity in innovation.
- Examining for policy externalities Sum of Parts vs LT effect of Composite Reforms.

Policy Experiments - Composite Programs

- ▶ Program A: Pure labor market policies.
- Program B1: Program A, plus skills expansion policies (training cost).


- ▶ **Program C1:** Program B, plus a proxy policy improving research productivity in innovation.
- ▶ Programs B2 and C2: adds public infrastructure investment.

Main Results 1

- ➤ **Key Results**: LMRs entail a **two-way causality** between growth and unemployment: *dynamic trade-offs* between growth, unemployment, & welfare.
- Individual reforms may generate conflicting effects on growth and welfare.
- ► Reaffirms literature that growth & unemployment has **weak** relationship. . .
- ... but policies promoting growth via direct skills expansion tend to result in absorption problem/oversupply of qualified labour (specialized unemployment rate going up).

Steady-state Growth and Welfare Effects in a Snapshot

Individual and Composite Experiments: Steady-State Effects

Main Results 2

 Popular recommendations/implementation of simultaneous ambitious LM composite reforms can be costly due to inadequate Policy Externalities.

▶ In MICs, where efficiency level is lower in both public & private sectors, public investment in infrastructure, through its supply-side effects, may help: (i) mitigate the growth-welfare tradeoff, and (ii) relieve the absorption problem of specialized labor.

Thank You

Appendix

Key differences between MIC and HIC

- Higher efficiency and lower cost of training in HIC.
- Lower degree of substitution between intermediate goods in MIC.
- Higher elasticities of output and innovation activity with respect to public capital in MIC.
- ▶ Higher share of S-workers in innovation in HIC.
- Higher efficiency and lower cost of training in HIC.
- ► Lower degree of substitution between intermediate goods in MIC.

Key differences between MIC and HIC

- Higher elasticities of output and innovation activity w.r.t public capital in MIC.
- ▶ Higher share of S-workers in innovation in HIC.
- Higher open unemployment rate for U-workers (S-workers) in HIC (MIC).
- Higher payroll tax rate in HIC.
- Higher degree of talent misallocation in MIC.
- Note: other important structural differences are quality of governance and share of spending on R&D in output.

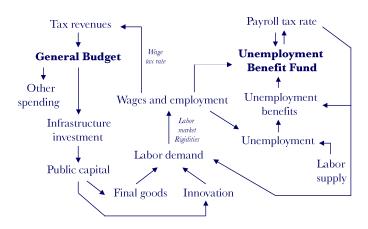
Benchmark Parameters

Calibrated Parameter Values: Benchmark Case

Parameter	Description	High	Middle
		Income	Income
Households			
ρ	Intergenerational discount rate	0.375	0.375
σ	Household savings rate	0.109	0.138
χ	Productivity parameter (efficiency of training)	0.9	0.5
μ	Advanced education cost	0.08	0.12
ε	Time allocated to schooling activity	0.115	0.123
Final goods			
ω	Elasticity wrt public-private capital ratio	0.17	0.24
β^S	Elasticity wrt specialized workers	0.3	0.35
eta^U	Elasticity wrt untrained workers	0.3	0.2
α	Elasticity wrt private capital	0.3	0.35
γ	Elasticity wrt intermediate input	0.1	0.1
Intermediate goods	-		
η	Substitution parameter, intermediate goods	0.61	0.25

Benchmark Parameters

Innovation sector			
ϕ_1^R	Elasticity wrt public infrastructure	0.186	0.300
π	Probability of being caught shirking	0.078	0.048
δ_R	Elasticity wrt wage for innovation	0.9	0.9
λ	Elasticity of production wrt labor input	0.6	0.6
ψ	Elasticity of effort wrt relative wages	0.70	0.43
Government			
au	Tax rate on total wages	0.198	0.123
v_I	Share of spending on infrastructure	0.050	0.069
φ	Efficiency parameter, public investment	0.5	0.4
Labor market			
κ^S	Specialized labor, unemp. benefit indexation	0.4	0.4
κ^U	Untrained labor, unemp. benefit indexation	0.4	0.4
$rac{\xi^U}{\xi^{SY}}$	Relative weight, untrained workers	0.06	0.08
ξ^{SY}	Relative weight, specialized workers	0.06	0.08
w_0^U	Minimum wage indexation, untrained workers	0.522	0.546
w_0^{SY}	Minimum wage indexation, specialized workers	0.740	0.699
\varkappa^U	Elasticity wrt unemployment, untrained wage	0.12	0.12
\mathcal{L}^{S}	Elasticity wrt unemployment, specialized wage	0.12	0.12


Initial Steady State Values

Initial Steady-State Values of Key Variables

Variable	Description	High	Middle
		Income	Income
θ^U	Share of untrained workers in population	0.732	0.795
$ heta^{S}$	Share of effective specialized workers in population	0.232	0.184
θ^{SR}	Share of effective specialized workers in innovation sector	0.019	0.004
θ^{SY}	Share of effective specialized workers in final good sector	0.145	0.109
θ^{UY}	Share of untrained workers in final good sector	0.606	0.708
$ heta^{UL}$	Untrained unemployment rate	0.126	0.087
θ^{SL}	Specialized unemployment rate	0.068	0.071
$(\theta^R - \theta^{SR})/\theta^{SY}$	Index of misallocation of talent	0.189	0.392
$(\theta^{R} - \theta^{SR})/\theta^{SY}$ ζ_{SY}^{SL} ζ_{SR}^{SR}	Probability of specialized workers getting unemployed	0.293	0.385
ζ^{SY}	Prob. of specialized workers employed in final good sector	0.623	0.593
ζ	Prob. of specialized workers employed in innovation sector	0.084	0.022
ζ^{UL}	Prob. of untrained workers getting unemployed	0.172	0.110
ζ^{UY}	Prob. of untrained workers getting employed	0.828	0.890
ς	Firms' payroll contribution rate	0.126	0.052
$w^U/w_{weighted}^S$	Relative wage ratio	0.550	0.750
$w^{U}/w_{weighted}^{S}$ k^{G}	Public-private capital ratio	0.189	0.147
Y/K^P	Final output-private capital ratio	0.286	0.429
m	Stock of innovation-private capital ratio	0.100	0.100

Government

Government

