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Abstract

This paper investigates the relationship between cancer diagnosis and the labor
supply of employed men over the age of 65. While almost 60% of male cancers are
diagnosed in men over the age of 65, no previous research has examined the effect
that cancer has on this age group, which is surprising given the relevance of this
group to public policy. With data from the Health and Retirement Study, I show
that cancer has a significant negative effect on the labor supply of these workers.
Using a combination of linear regression models and propensity score matching, I
find that respondents who are diagnosed with cancer work 3 fewer hours per week
than their non-cancer counterparts. They are also 10 percentage points more likely
to stop working. This reduction seems to be driven by a deterioration in physical
and mental health.
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Highlights

- This paper studies the effect of cancer on the labor supply of employed men over the

age of 65.

- Respondents diagnosed with cancer work 3 fewer hours per week than non-cancer ones.

- They are also 10 percentage points more likely to stop working.

- This reduction seems to be driven by a deterioration in physical and mental health.

- The effect doesn’t differ by the employer-sponsored insurance status of the respondents.
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1 Introduction

One of the most common health shocks that a worker can face is cancer. As of 2014, the

American Cancer Society (ACS) estimates that there are 14.5 million Americans alive who

have been diagnosed with cancer at some point in their lives (American Cancer Society,

2016a). Concerning yearly diagnoses, they expect that almost 1.7 million people will be

diagnosed with cancer in 2016 (American Cancer Society, 2016a). For comparison with

the other severe health shocks, the Centers for Disease Control and Prevention report

that 800,000 people have a stroke and 735,000 have a heart attack every year (Centers for

Disease Control and Prevention, 2015, 2016). Due to the sheer number of diagnoses, it is

important for policy makers to be aware of the impact that cancer has on employment.

Since cancer is the most common severe health shock, a large literature has developed

over the past 15 years which focuses exclusively on the effect that cancer diagnosis has on

labor supply. However, despite this previous research, one area has received little to no

attention: the effect of cancer on the labor supply of workers who are employed past the

age of 65 at the time of diagnosis. This is surprising for a number of reasons. The first

is that the majority of cancer diagnoses occur in people over the age of 65. The National

Cancer Institute estimates that the median age of cancer diagnosis is 66 (National Cancer

Institute, 2015). Focusing on males specifically, the ACS estimates that the majority of

new cancers, 56%, will be diagnosed in men who are at least 65 years of age (American

Cancer Society, 2016b). The second reason is that the labor force participation rate for

older workers has been steadily increasing for a number of years. According to the Bureau

of Labor Statistics, men between the ages of 65 to 74 have a labor force participation rate

of 31% (Bureau of Labor Statistics, 2015). Given that the population of males between

the ages of 65 to 74 is over 12 million, this is not a negligible portion of the labor market

(Bureau of Labor Statistics, 2015). Finally, due to the persistent threats of cuts to Social

Security and Medicare, this is a group whose labor market response to health shocks is

extremely policy relevant.

In spite of the lack of research on this topic, a robust examination of the effect of

cancer on the labor supply of workers over the age of 65 is required for the following
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reasons. First, the percentage of the labor force made up of workers over the age of 65 is

growing. In 2024, workers between the ages of 65-74 will make up 6.5% of the labor force,

compared to 4.4% in 2014 (Bureau of Labor Statistics, 2015)1. Given that people who

work past the age of 65 are likely to be healthier, better educated, and more motivated

than the workers who are already retired, the results from previous studies of younger

cancer survivors cannot simply be extrapolated to this population. While workers who

work past the age of 65 in the future may differ from workers who work past 65 today

(since the regular retirement age is being raised from 65 to 67) knowing whether their

labor supply response is similar to contiguous age groups can help us understand whether

the mechanisms that lead to reductions in labor supply at younger ages are exacerbated

or improved at older ages.

Second, even though the regular retirement age is being raised, 65 is still the age

at which people become eligible for Medicare. This is an important consideration given

that it has been shown that having access to multiple health insurance programs leads

to different labor supply responses (Bradley et al., 2013). The results from this study

may differ from previous ones due to the fact that the entire population is eligible for

Medicare, in addition to any employer provided insurance they have. Finally, the results

from this study could be particularly informative for public policy in the future. The

increased economic pressures that stem from an ever aging population can be alleviated

by knowing how to stimulate the labor market activity of the elderly. According to the

Congressional Budget Office, the aging of the population is expected to account for 55%

of the projected growth in federal spending on Social Security and the major health

care programs as a share of GDP through 2039 (Congressional Budget Office, 2014). If

cancer is causing labor market exits, it will help policymakers to know whether these exits

are being driven by cancer related morbidity, changes in labor-leisure preferences, or by

health insurance status. From the point of view of cancer survivors, returning to work

may relieve any financial strain associated with illness and improve both their physical

and mental health.

1While these numbers are for the labor force as a whole they are very similar when broken down by
gender.
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This paper contributes to the literature in numerous ways. Firstly, it exploits the

fact that age is the biggest cancer risk factor. Within this high risk group all other risk

factors appear to have a negligible relationship with future cancer diagnosis. With data

from the Health and Retirement Study I demonstrate this by showing that the cancer

and non-cancer respondents look identical across multiple dimensions. This provides

appropriate justification for the assumptions behind the econometric analysis. Secondly,

I find that males, who are employed at the time of cancer diagnosis, work 3 hours fewer

per week in the period after diagnosis when compared to their non-cancer counterparts.

This reduction is driven by changes at the extensive margin. Respondents diagnosed with

cancer are 10 percentage points more likely to leave the labor market than non-cancer

respondents. I find no evidence of any reduction at the intensive margin. While these

estimates are of the same magnitude as estimates for younger survivors it is important

to remember that those who work past the age of 65 are a highly selected sample. If

the general population had been made to work past the age of 65 due to increases in

the retirement age then the estimates would likely be much larger. This is an important

consideration for policy makers due to the increasing retirement age. Thirdly, I find

that the presence of employer provided health insurance (EPHI) has no effect on the

probability of leaving the labor market. Since the previous literature on EPHI and job

mobility offers no clear pattern for male cancer survivors or men who are eligible for

Medicare, this provides more empirical evidence that male cancer survivors with EPHI

are not job-locked once they are eligible for Medicare. However, it does appear as if the

results are driven in part by the health of the respondents as I find that cancer has a

negative effect on both mental and physical health.

The rest of the paper is organized as follows: A brief review of the related literature

is contained in Section 2; Section 3 contains information on the methods and the data

used in the analysis; The validity of the assumptions for the econometric models are

scrutinized in Section 4; In Section 5, I present the main results of the analysis; Section

6 examines the mechanisms by which the respondents reduce their labor supply; Section

7 discusses the implications of the results and Section 8 concludes.
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2 Related literature

While I am not aware of any other studies which explicitly examine the effect of cancer on

male labor supply for this age group, there are papers which have addressed this question

at other ages. In the US, Coile (2004) shows that married men (between 50 and 69

years of age) diagnosed with cancer are 8 percentage points more likely to leave the labor

market than workers without cancer. Coile (2004) also uses HRS data to examine the

effect of health shocks on labor supply but my paper differs in a number of substantive

ways. Firstly, I exclusively focus my analysis on workers over the age of 65 while workers

over the age of 65 in Coile (2004) are most likely a small group given that the mean age

of males is 60. Secondly, Coile uses data from waves 1 - 6 of the HRS while I use data

from waves 1 - 11. Coile includes respondents who have reported previous conditions of

severe illnesses (such as cancer) while these people are excluded from my analysis. Coile

also uses linear probability models while I augment my analysis with propensity score

matching and rigorous checks of the conditional independence and overlap assumptions.

Finally, Coile groups together all health shocks while I focus specifically on cancer, for

reasons justified in the Introduction. In fact, the result quoted above is the only cancer

specific result reported in the entire paper as it is from a specification check of a main

result.

Datta Gupta et al. (2015) shows that older men (between 55 and 64 years of age)

diagnosed with cancer are 9.8 percentage points more likely to not work than non-cancer

survivors two years after diagnosis. Bradley et al. (2005) and Bradley et al. (2007) show

that older men (with a mean age of 56) who have been diagnosed with prostate cancer

are 10 percentage points less likely to work in the 6 months following prostate cancer

diagnosis than healthy controls. Looking at longer term outcomes, Short et al. (2008)

show that, between two to six years after diagnosis, there is no significant difference

in employment for older male (between 55 and 65 years of age) cancer survivors versus

healthy workers, though they are less likely to work full-time and they work fewer hours

compared to control workers. The longer term impact for younger workers (with a mean
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age of 45) is similar, with Moran et al. (2011) showing that male survivors are less likely

to work, less likely to work full-time, and work fewer hours than controls.

There have also been several studies which have examined the effect of cancer on labor

supply around the world2. Evidence from Canada (Jeon, 2017), Denmark (Datta Gupta

et al., 2015; Heinesen and Kolodziejczyk, 2013; Kolodziejczyk and Heinesen, 2016), Finland

(Taskila-Brandt et al., 2004), Norway (Torp et al., 2013), the UK (Candon, 2015), and a

collection of 16 European countries (Trevisan and Zantomio, 2016), all show that cancer

has a negative effect on labor supply over various time horizons.

In this group, the most similar paper to this one is Candon (2015), though there are

still a number of sizable differences between the papers. With regards to the populations

of interest, the major difference between these two studies is that all of the respondents

in this paper are at least 65 years of age whereas only 4% of the sample in Candon (2015)

is at least 65. As mentioned earlier, there is no reason to believe that the labor supply

response of those below the traditional age of retirement would be the same as those

who are above it. With regards to the location, Candon (2015) is set in the UK which

has both a markedly different labor market and a markedly different healthcare market

compared to the US. This means that, even if the age groups were comparable, the results

from one setting cannot be generalized to the other. This also allows me to examine the

role that health insurance status plays in the labor supply decision, something not done

in Candon (2015) but something which is extremely important in US labor markets,

as the large literature on this topic demonstrates (Madrian (1994), Buchmueller and

Valletta (1996), and Kapur (1998)). Also, the aim of Candon (2015) was to determine

how long the negative labor supply shock from cancer diagnosis lasted for, rather than a

comprehensive understanding of the mechanisms related to the labor supply reduction,

which is done here. Finally, Candon (2015) only examines the effect of cancer diagnosis

on total hours of work and probability of working, rather than whether the reductions

2There are other studies which have examined the effect of health shocks on labor supply in the US
such as McClellan (1998) and Smith (2005) and in Europe such as Garcia-Gomez and Lopez-Nicolas
(2006), Garcia-Gomez (2011), and Garcia-Gomez et al. (2013). These studies may include cancer shocks
but no specific cancer effects are reported.
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were taking place at the intensive or extensive margin. Again, this is something which is

done in this study.

With regards to the econometric methods, all of the papers mentioned here deal

with the endogeneity of cancer diagnosis by using some combination of controlling for

observable differences between groups, differencing away unobservables which are constant

over time, and using matching to construct comparable control groups. This is the

standard for the literature since there are no obvious discontinuities or instruments to

exploit with the data at hand. The methods used here are discussed in more detail in

the next section.

3 Methods and Data

3.1 Methods

In order to estimate the effect of cancer on labor supply I use a variety of simple two

period models in which the periods are referred to as period t − 1 and period t. The

first method involves trying to eliminate any unobserved heterogeneity which is constant

across both periods. While it is possible to control for many known cancer risk factors

such as smoking and alcohol consumption, the worry when estimating the effect of cancer

on labor supply is the presence of unobserved confounding variables which are correlated

with cancer status but also determine labor market outcomes. The estimator of the effect

of cancer on labor supply will be biased if such a variable is omitted from the model.

However, if such variables are constant between the two time periods then they can be

differenced out, even if they are unobserved. To do this, I create a first-difference (FD)

model. Consider the following model,

Yi,t = β0 + β1Di,t + δ0 + αi + ui,t, (1)

Yi,t−1 = β0 + β1Di,t−1 + αi + ui,t−1, (2)
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where Y represents employment outcomes, D is a binary variable representing cancer

status, α is time-invariant unobserved heterogeneity, δ is a period t indicator, and u is

the traditional idiosyncratic error. If we subtract Equation (2) from Equation (1) we get,

∆Yi = δ0 + β1∆Di + ∆ui. (3)

This allows the time-invariant unobservable variables that affect both cancer status and

employment outcomes to be differenced out. Because β1 represents the difference in

outcomes, where the outcomes are already in differences, an estimator of β1 is a difference-

in-differences estimator (Wooldridge, 2016). This equation can then be estimated via

OLS.

Other control variables are omitted from (3) in order to prevent any contamination in

their differences that would stem from cancer diagnosis in period t. A different method

that would allow for the inclusion of control variables to account for observable differences

between the cancer and non-cancer respondents is a lagged dependent variable (LDV)

model. Such a model could be represented as

Yi,t = β0 + β1Di,t + β2Yi,t−1 + γ′Xi,t−1 + ui,t, (4)

where X is a (k x 1) vector of additional control variables measured in period t−1. Again,

this model can then be estimated with OLS. In short, the identification of the effect

of cancer on labor market outcomes relies on either differencing out any unobservable

factors affecting both cancer and employment or controlling for pre-cancer observables.

As noted by Angrist and Pischke (2009), because the FD and LDV models rely on different

identifying assumptions, they have a useful bracketing property that provides upper and

lower bounds to the causal effect. Obtaining similar results using both models provides

a simple demonstration of the robustness of the results.

The final method focuses on finding a suitable counterfactual for the respondents

who are diagnosed with cancer. Many previous papers in this field have used matching or

propensity score methods to examine the causal effect of cancer on labor market outcomes.
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While these methods rely on the same assumptions as linear regression models to identify

causal effects they are less reliant on extrapolation across differing covariate distributions

and do not impose strong functional form restrictions (Imbens, 2015). Because it is a

common belief that the treated group and the control group are drawn from different

populations in nonexperimental studies, the average treatment effect on the treated

(ATT) is the parameter which has received the most attention in this literature, and

it is the parameter that the analysis will focus on.

Using notation from Heckman et al. (1997), the observed outcome for an individual,

Y , is a combination of their potential outcomes {Y (1), Y (0)} where the parentheses

denote the outcome when an individual receives the treatment (1) and does not receive

the treatment (0). If D is an indicator of whether the individual receives the treatment

(where D = 1 if the individual receives the treatment; D = 0 otherwise) this can be

expressed more succinctly as

Y = DY (1) + (1−D)Y (0). (5)

The conventional method of matching rests on two assumptions3. The first is that,

conditional on the control variables, X, the outcome for those who do not receive the

treatment and treatment assignment are independent. This is known as the conditional

independence assumption (CIA) and can be denoted as

Y (0) ⊥ D|X. (6)

The second assumption is that there is overlap between the treatment and control units

for all values of X. This prevents the case where receiving the treatment can be perfectly

predicted and can be denoted as

Pr(D = 1|X) < 1. (7)

3Because I am interested in the average treatment effect on the treated, and not the average treatment
effect, the weak versions of these assumptions can be used. The strong versions of these assumptions
would require having to justify Y (1), Y (0) ⊥ D|X and 0 < Pr(D = 1|X) < 1. For more on the difference
between the strong and weak versions please consult Caliendo and Kopeinig (2008).
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If these two conditions are met then there is no need to condition on treatment status.

This is known by many names such as ignorability, selection-on-observables, or exogeneity.

Rosenbaum and Rubin (1983) show that if treatment assignment is ignorable for the finest

level of balance, the covariates themselves, then it must also be ignorable for coarser

measures of balance such as the propensity score. The propensity score is defined by

p(x) ≡ Pr(D = 1|X). (8)

Conditioning on the propensity score, rather than the covariates themselves, reduces

the dimensionality problem. If these assumptions are satisfied, then the ATT can be

estimated as the difference in observed responses to the treatment indicator, conditional

on the propensity score, for those in the treated group,

E[E{Y (1)|p(X), D = 1} − E{Y (0)|p(X), D = 0}|D = 1] =

E[E{Y (1)− Y (0)|p(X)}|D = 1] = ATT

(9)

where the outer expectation is over the distribution of p(X) in the sub-population of

treated respondents.

If two periods of data are available, then the previous formula can be augmented to

include this information. The ATT then becomes,

E[E{Yt(1)− Yt(0)|p(Xt−1)}|Dt = 1] = ATT (10)

where Yt(1) and Yt(0) refer to the outcomes for individuals who receive and do not receive

the treatment in period t, Dt denotes cancer status in period t, and Xt−1 denotes control

variables measured in period t − 1. This means that I am only using pre-treatment

variables as part of the conditioning set, in order to ensure that they cannot have been

affected by the treatment. It is also possible to use lagged values of the outcome variable

as part of the conditioning set. In this case, all the variables used in X, whether lagged

outcome variables or other control variables, have been measured in period t− 1, before
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anyone is diagnosed with cancer. In Section 4, I present empirical evidence to support

the assumptions which are required to use these models.

3.2 Data

In order to obtain the requisite data on older workers with which to do this analysis, I use

data from the Health and Retirement Study (HRS)4. The HRS is a large, longitudinal data

set which contains information on the respondents’ health, wealth, employment, and other

demographic information. The first wave was collected in 1992 using a representative

sample of 51 to 61 year olds and, since then, it has been collected every two years. For

this analysis, I use the RAND version of the data set which has already been cleaned

and compiled for ease of use5. This data set contains the first 11 survey waves, spanning

the years 1992 to 2012. With regards to the cancer variable, a respondent is considered

as having cancer if they respond in the affirmative to the question indicating whether or

not a doctor “has ever told them that they have cancer or a malignant tumor of any kind

except skin cancer”. They do not have cancer if they respond in the negative. As with

any study which examines the impact that cancer has on labor supply, it is important

to observe the respondents’ pre-cancer behavior while they are in employment. To do

this, information on the respondents before and after they are diagnosed with cancer

is required. This means that information in two different time periods is required for

each observation. Regarding the HRS, having 11 waves of data allows me to observe 10

potential non-cancer to cancer transitions: wave 1 to wave 2, wave 2 to wave 3, . . . ,

wave 10 to wave 11.

4The Health and Retirement Study (2015) is sponsored by the National Institute on Aging (grant
number NIA U01AG009740) and is conducted by the University of Michigan.

5Due to it’s survey design the HRS oversamples Black and Hispanic respondents and weights are
provided for use in data analysis to account for this. The main reason that the weights are often used
is to obtain the correct descriptive statistics of the target population. However, the issue of whether to
use them when estimating causal effects is more nuanced. Solon et al. (2015) outline some cases where
weighting may do more harm than good, particularly if the oversampling is done exogenously rather than
endogenously. They recommend in cases like this to present both the unweighted and weighted results
as the contrast can serve as a useful diagnostic against a misspecified model or misunderstanding of the
sampling process. In this case, the unweighted results and weighted results were so similar that I decided
to just use the unweighted results. The weighted results are available in Table A7 of the Appendix.
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Four main restrictions are placed on the overall data set. The respondents must be

working in period t− 1 so we can observe the effect of cancer on employment; they must

be at least 65 years of age in period t − 1 as this is the age group that the analysis will

focus on; the respondents must all be men as fewer women work past the age of 65; and

they cannot be diagnosed with cancer in period t − 1, or at any time in the past, so we

can observe their pre-cancer behavior. This means that respondents are removed if they

answer “Yes” to the cancer question listed above in period t− 16. This means that any

non-cancer to cancer transition is unique, though respondents may appear multiple times

with regards to their non-cancer work behavior. Respondents are categorized as working

if they are working full-time, part-time, or are part-retired. They are categorized as not

working if they are unemployed, retired, disabled, or not in the labor force. Some other

minor restrictions are also placed on the data7. Imposing these restrictions leaves a final

sample of 5,602 person-wave observations, of which, 238 will be diagnosed with cancer in

period t. Of the 5,602 observations, 2,436 are unique respondents8. As noted by Bertrand

et al. (2004), the serial correlation from using multiple waves of information on the same

respondents can severely understate the standard errors of the estimators. However, they

recommend aggregating the data into two simple before and after time periods, which is

done here, in order to help mitigate the problem. Another way to deal with the serial

correlation is to follow a similar two period analysis by Finkelstein (2004) and cluster the

standard errors at the individual level. This is done for the linear regression models.

In addition to using the employment and cancer information, I also use information

on pre-diagnosis variables that are measured in period t− 1. This includes demographic

6There are two potential drawbacks to the way that the HRS asks the cancer question which should
be highlighted here. The first is that respondents with a past diagnosis who are now cancer free are
eliminated because of this past diagnosis. So respondents who are cancer free in period t − 1 will be
removed if they had cancer at some point earlier in their lives. This is why the sample I focus on is
respondents who have never had cancer, rather than simply respondents who do not have cancer in
period t− 1. The second is that I can’t distinguish between a single cancer diagnosis occurring between
period t − 1 and t or multiple diagnoses. So a respondent may be diagnosed with two cancers but it
will be treated the same as a respondent diagnosed with one form of cancer. However, including the
respondents with previous diagnoses has no effect on the overall results (see Table A6).

7These restrictions, and the number of observation lost by imposing them, are presented in Table A3.
8While it is possible for a respondent to appear more than once with regards to their non-cancer

work status, each of the 238 cancer cases represents a unique individual. This is because respondents
are removed from the analysis if they have been previously diagnosed with cancer.
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information such as age, whether the respondent is non-white, has some or a full college

education, or is married. The behavioral cancer risk factors, as documented by Danaei

et al. (2005), that are taken into account are whether the respondent is in poor health, has

ever smoked, currently smokes, ever drinks any alcohol, and if they are obese9. Regarding

their employment situation, I include variables indicating whether they have a working

spouse, are self-employed, and their hours of work per week. I also control for their

earnings, household income, income from a pension or annuity, and income from Social

Security. These variables are all transformed using the inverse hyperbolic sine (IHS)

transformation10. This transformation is preferred to the logarithmic transformation

since it behaves like the logarithmic function for positive values but does not exclude

zero or negative values. Finally, dummy variables for HRS wave and census division are

also included. All the variables are binary except for age, the income variables, and hours

of work. Information on whether or not the respondents have employer provided health

insurance is also available. However it is not included in the main analysis due to the

fact that there were a large number of missing observations. Nevertheless, analyses which

include this variable are presented in Table 7 as part of subgroup analyses. These results

are largely similar to the main results.

4 Ignorability

4.1 Overlap

Using different econometric models to identify the effect of cancer on labor supply means

that different assumptions are required to be justified. The FD model relies on the change

in cancer status being uncorrelated with changes in the error term while the LDV and

PSM models rely on the unconfoundedness (conditional independence) assumption in

Equation (6). The PSM model also relies on the overlap assumption in Equation (7).

9Poor health is defined as being in poor or fair health as opposed to good, very good or excellent in
a self-reported health measure.

10The transformation of wealth, W , is w = ln (W +
√

(W 2 + 1)). For more on this transformation see
Pence (2006). The results do not change when the natural log is used as the wealth transformation, even
with the reduced sample size (see Table A8).
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Therefore, I spend this section examining the overlap assumption, the unconfoundedness

assumption, and the trends of the respondents’ over time. The first assumption, whether

there is sufficient overlap in the covariate distributions, is relatively straightforward to

test. One way to do this is to compare the means of these covariates between groups.

The descriptive statistics for both the cancer and non-cancer groups are presented in

Table 1, along with t tests for the equality of their means. Regarding the largest

differences, the cancer group is about 5 percentage points less likely to drink alcohol

and about 4 percentage points less likely to have ever smoked. The only differences

which are statistically significant at conventional levels are the alcohol difference and the

difference in pension income. In terms of demographic characteristics, cancer risk factors,

employment related characteristics, and earnings, the groups appear balanced. In the final

column, I present the normalized differences between the groups which provides a scale

and sample size free way of assessing overlap (Imbens, 2015). Again, a similar pattern

emerges, the variables with the largest differences are the alcohol and pension variables.

Looking at the period t outcomes, there is a 10 percentage point difference between the

groups with regards to whether or not the respondents are working, which is significant

at the 1% level. The cancer group also works almost 3 hours a week fewer than the

non-cancer group. This difference is significant at the 5% level.

While it may be surprising to see no significant differences between the cancer and

non-cancer groups with regards to specific cancer risk factors, this is actually a common

epidemiological observation. Rothman and Poole (1988) noted that the association

between a disease and a single specific risk factor could be made stronger by examining

the relationship within a group where the effect of all other possible risk factors has been

eliminated. The relationship is made stronger because the other mechanisms of disease

development have been shut off and disease development can only take place through this

specific risk factor. Similarly, they also noted that this finding held in reverse. Strong

associations between risk factors and diseases became weak when analyzed in high risk

groups with many potential mechanisms of development. In this case, because age is

the single biggest risk factor in developing cancer, both smokers and non-smokers (and
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obese respondents versus non-obese respondents etc.) are very likely to get cancer anyway,

simply because of their age (American Society of Clinical Oncology, 2012; National Cancer

Institute, 2015). This then makes the relationship between cancer and its risk factors

appear weak. There are numerous explanations as to why old age is the most important

cancer risk factor. Historically, it has been posited that longevity allows cells to build up

enough mutations over time to form tumors (Cancer Research UK, 2016). More recently,

new research has also shown tissue changes which occur in old age can make cells more

susceptible to cancer and that DNA repair, which combats mutations, weakens in old age

(DeGregori, 2013; Li et al., 2017).

As a final inspection of the overlap assumption, I follow Trevisan and Zantomio (2016)

and graph the density of the propensity score for the cancer and non-cancer groups (more

information on the generation of the propensity score is given in Section 5.2). This allows

for a visual inspection of the overlap between the two groups and to see if matching can

help make the groups more comparable. In Figure 1 we can see that a simple comparison

of the two densities shows that the groups are already very similar, even before matching.

4.2 Unconfoundedness

The identification of the effect also relies on whether or not the CIA assumption can be

satisfied. While it is fundamentally impossible to test the CIA, steps can be taken to

assess whether or not it is plausible. One way to assess it would be to check what factors

help select respondents into the treatment by regressing the treatment variable on the

control variables. In this case, the coefficients reported give the effect of a particular

variable on future cancer diagnosis after the effect of all of the other control variables

have been partialled out. The results of this logistic regression are reported in column

(1) of Table 2. The results reported are average marginal effects. Again, the ability of

these variables to predict future diagnosis is weak. Even for the cancer risk factors, the

magnitude of the coefficients is rarely greater than 0.01. Due to the limited association

between the other variables and cancer diagnosis, the null hypothesis of a Wald test

for the joint insignificance of the variables cannot be rejected, meaning that there is no
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evidence that they jointly help explain future cancer diagnosis. I report the p-value for

the Wald test, rather than the Wald statistic, as it is easier to interpret.

With the lack of a relationship between cancer diagnosis and the control variables, it

may be tempting to say that the variables used in the analysis are simply poor measures

of the underlying variables. For example, it may be the case that the cancer group are

unhealthier than the non-cancer group but, because of the way the variable is measured

or the way the survey questions are asked, it does not show up in this analysis. I attempt

to address this issue in the remaining columns in Table 2. Here, I regress period t

diagnosis of high blood pressure, heart problems, lung disease, arthritis, and diabetes on

the same period t−1 variables. The questions in the HRS that ask the respondents about

these health conditions are worded the same as the question that asks the respondents

about their cancer status. It is apparent that, even after controlling for the fact that

the respondents may have been diagnosed with this condition in period t − 1 or earlier,

all of the known risk factors (except for whether the respondents drink alcohol) are

statistically significant in determining these diseases. Since these variables help explain

variation in future diagnoses of other diseases, it supports the idea that the covariates

are in fact balanced between the cancer and non-cancer groups, rather than the idea that

these variables are simply coarse measures of underlying variables. While the comparison

across health conditions isn’t perfect, since people with previous cancer diagnosis are

removed in the Table 1 analysis, similar results can be found for these other health

conditions when restricting the sample to those respondents with no previous record of

the condition.

4.3 Trends

Finally, in order to justify the use of the FD model, I exploit the panel nature of HRS and

compare the past labor market outcomes and health outcomes of both sets of respondents.

If the outcomes are similar in the lead up to cancer diagnosis then we can be confident

that any difference found after diagnosis is due to cancer. The two outcomes I follow are

the weekly hours of work of the respondents and the proportion of respondents reporting
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themselves in poor health. A t test for the equality of their means is tested in each period.

It is apparent in both Figures 2 and 3 that in the three periods before cancer diagnosis

there is no difference in either outcome across groups. The only statistically significant

difference between the two groups arises in the period after diagnosis. Taken all together,

this evidence supports the plausibility of the ignorability assumptions and the use of the

different models.

5 Results

5.1 Linear regression models

I begin by estimating a simple regression of the hours of work in period t on cancer status

in period t. The results are presented in Panel A of Table 3. Cancer diagnosis leads to a

3.2 hour reduction in the number of hours worked per week. When the FD model in (3)

is estimated the results show that cancer diagnosis leads to a 3.3 hour reduction in hours

of work. No observations are lost when using the FD model since one of the restrictions

placed on the respondents is that they must be working in period t−1. HRS wave dummy

variables are also included in the FD model to capture any secular changes in hours of

work. The LDV model from (4) is estimated with and without the other pre-diagnosis

covariates. In both cases, cancer reduces hours of work by approximately 3.2 hours per

week. Given the lack of correlation between cancer status and the other covariates it

is not surprising to see similar estimates across different specifications. All results are

statistically significant at the 1% level.

In order to get a more comprehensive understanding of the effect that cancer has on

labor market outcomes, I check whether the previous results are due to reductions at the

intensive margin or the extensive margin. This will tell us whether the respondents are

reducing their labor supply within employment or whether they simply stop working. I

begin with the extensive margin. Since the respondents may stop working in different

ways, I use two different variables to capture the negative effect that cancer may have.

The first variable is whether or not the respondent is working in period t. This variable
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is equal to 1 if they are working full-time, part-time, or are part-retired and equal to 0

if the respondent is retired, unemployed, disabled, or not in the labor force. The second

variable is whether or not the respondent is in the labor force. This variable is equal to

1 if the respondent is working full-time, part-time, part-retired, or unemployed and 0 if

they are retired, disabled, or not in the labor force. Because all of the respondents are

working in period t− 1 the FD and LDV models are not appropriate for these outcomes.

Instead, I simply run pooled OLS with and without the control variables (which include

period t − 1 hours of work). In this case the identifying assumption is the same as the

one which will be used in the PSM section: conditional on observable characteristics in

period t − 1, cancer diagnosis in period t is assumed to be exogenous. The results of

this analysis are presented in Panel B. Cancer leads to an approximate 10 percentage

point decrease in the probability of working and an 11 percentage point decrease in the

probability of being in the labor force. Results are significant at the 1% level. Because

the number of respondents who are unemployed in period t is so small, respondents who

are not working will be referred to as out of the labor force when discussing the remaining

results.

I now check the intensive margin and estimate the same four models as in Panel A,

but with the added restriction that all the respondents must be employed in period t.

The results are presented in Panel C. In no model is the effect of cancer on the hours of

work of the respondents who are employed statistically significant. The respondents who

do return appear to work the same number of hours as those respondents who have not

been diagnosed with cancer. Together with the results from Panel B, this suggests that

the results presented in Panel A are being driven by reductions at the extensive margin,

rather than the intensive margin11.

5.2 Propensity score matching

I now use PSM to examine the effect of cancer diagnosis on employment outcomes. The

specific matching algorithm I use is kernel matching. This involves using a weighted

11I also estimate similar results with other panel data methods such as random effects and fixed effects.
For more information see Tables A1 and A2 of the Appendix.
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average of the entire control group to generate a counterfactual for each treatment

observation. While many different matching algorithms exist, kernel matching has been

shown to work well in situations where there are many control observations per treatment

observation and the propensity score distributions are well behaved (Frolich, 2004)12. For

a more detailed review of this, and other matching algorithms, see Caliendo and Kopeinig

(2008). I use a Gaussian kernel and, to select the bandwidth, I follow Heckman et al.

(1998) and use a rule of thumb. In this case, the rule of thumb is defined as

bandwidth ≈ 0.9An−
1
5 , (11)

where A = min{sample standard deviation, sample interquartile range/1.34} and n is

the number of observations in the control group (Sheather, 2004). The rule of thumb

above suggests a bandwidth of 0.003. I also estimate the effect using half and double

this bandwidth to test how sensitive the results are to this specification. To generate the

propensity score, I follow Dehejia and Wahba (1999, 2002) and use a logit model where the

covariates from Table 2 are entered linearly along with dummy variables for HRS waves

and census divisions. A balancing test confirms that the covariates are evenly distributed

across both groups within different strata of the estimated propensity score13. As was

shown in Figure 1 previously, the distribution of the propensity score looks similar for

both the cancer and non-cancer groups so the results from the matching process should

give similar results to those in Table 3.

The results of the PSM are presented in Table 4. Panel A shows that cancer diagnosis

leads to an approximate 3.3 hour reduction in the number of hours worked per week for

each of the three different bandwidths. Results are significant at the 1% level. In Panel

B, I check the extensive margin and find that cancer diagnosis leads to an approximate 10

percentage point decrease in the probability of working. Results are again significant at

the 1% level. Finally, I turn to the intensive margin in Panel C. In no model is the effect

12I also estimate the results with methods which use the propensity score in different ways. These
methods provide almost identical estimates. For more information see Tables A4 and A5 of the Appendix.

13To implement these methods, I use the ATT commands developed by (Becker and Ichino, 2002) for
Stata.
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of cancer on the hours of work of those who are employed statistically significant. In

addition, the coefficients are very close to zero. The respondents who do return work the

same number of hours as those respondents who have not been diagnosed with cancer.

As predicted, the results from PSM perfectly mirror the results from the other two period

models presented in Table 3.

5.3 Sensitivity

In this scenario, I hypothesize the presence of an unobserved binary confounding variable,

U , whose exclusion results in selection bias. This means that assignment to treatment is

not independent given X, but it is independent once U is taken into account,

Pr(D|Y (1), Y (0), X) 6= Pr(D|X), (12)

Pr(D|Y (1), Y (0), X, U) = Pr(D|X,U). (13)

If the omission of the variable U does result in selection bias then it must be the case that

U fulfills the following two conditions. The first condition is that U selects respondents

into the treatment. This means that a respondent with the confounding variable is more

likely to be in the treatment group. The second is that U leads to worse labor market

outcomes for those respondents who are not in the treatment group. This means that, in

the non-treatment group, the respondents with the confounding variable are more likely

to have worse labor market outcomes.

If we let

pij = Pr(U = 1|D = i, Y = j,X) = Pr(U = 1|D = i, Y = j), (14)

pi. =
1∑

j=0

pij · Pr(Y = j|D = i), (15)

with i, j ∈ {0, 1}, then these two conditions can be expressed more precisely as the

following two equations:

s = p1. − p0. > 0, (16)
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d = p01 − p00 < 0. (17)

Equation (16) states that the probability of having the confounder given you are in the

treated group is greater than the probability of having the confounder given you are in the

untreated group. Equation (17) states that the probability of having the confounder given

you have a negative work outcome is greater than the probability of having the confounder

given you have a positive work outcome, conditional on being in the untreated group.

The idea behind this model is that, if this confounder is the true cause of the treatment

effect, it needs to be the case that we are mistaking the confounder for the treatment

variable (s > 0) and that the confounder has it’s own negative effect on outcomes that

is separate from the treatment (d < 0). For a more mathematically rigorous explanation

of this model, and the Stata commands to implement it, readers should consult both

Ichino et al. (2008) and Nannicini (2007)14. The work outcome that I choose to focus on

in this section is the probability of working given that cancer has been shown to have

a large negative effect on the extensive margin rather than the intensive margin. Since

the results in the previous section did not vary with different bandwidths I restrict my

analysis to the 0.003 bandwidth.

A potential candidate for this unobserved confounder could be a hazardous working

environment which simultaneously makes workers more likely to get cancer (s > 0) and

more likely to stop working even if they don’t get cancer (d < 0). If we imagine that this

hazardous working environment is the confounder, we can generate this selection bias

with just the four pij parameters that it would produce from Equation (14) if it was U .

A new variable, which is characterized by these four pij parameters, is then added to the

matching process and a new ATT is calculated. This is done 200 times and an average

of the ATTs is taken. This test is similar to that of Altonji et al. (2005) but with the

benefit of not having to rely on a specific model to characterize the bias.

In the top panel of Table 5, I hypothesize that the unobserved confounder takes

on a distribution similar to some of the binary variables already in the model. For

14The SENSATT command builds on the existing ATT commands developed by Becker and Ichino
(2002).
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example, if the omitted variable were to take on a distribution similar to the binary

variable indicating whether the respondent is a drinker, then its inclusion in the model

would result in the kernel matching estimate of the negative effect of cancer on working

decreasing in magnitude from 10.2 percentage points to 10 percentage points, a negligible

change. In fact, this is the largest change that happens when the omitted variable takes

on a distribution like one of the binary variables already in the model. Again, this is to

be expected given the weak relationship between these variables and cancer diagnosis.

I also vary the values of both d and s manually and examine how the matching

estimate changes in response. This allows me to demonstrate how strong both of the

effects would have to be in order to drive the estimate to zero. In order to reduce the

dimensionality of the problem in the search for the “killer” confounders, I need a system

of four equations to identify the four pij parameters that characterize the confounder’s

distribution. To do this, I fix at pre-determined values the parameters Pr(U = 1) (the

prevalence of the confounder in the whole sample) and p11 − p10 (the difference in the

probability of having the confounder given that you have a positive labor market outcome

in the presence of the treatment and the probability of having the confounder given that

you have a negative labor market outcome in the presence of the treatment). The values

they are fixed at are

Pr(U = 1) = p11 · Pr(Y = 1|D = 1) · Pr(D = 1) +

p10 · Pr(Y = 0|D = 1) · Pr(D = 1) +

p01 · Pr(Y = 1|D = 0) · Pr(D = 0) +

p00 · Pr(Y = 0|D = 0) · Pr(D = 0) = 0.2.

(18)

p11 − p10 = 0. (19)

These values indicate that the prevalence of the confounder in the sample is 20%, while

the effect of the confounder on the treated outcome is normalized to zero. Ichino et al.

(2008) notes that these parameters can be held constant at fixed values as they are not

expected to threaten the validity of the original estimates. In the case of Equation (18),
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it is not the prevalence of the confounding variable in the sample that is the issue but

the fact that it causes selection into the treatment variable. We have already represented

this selection problem as s. The value of 20% is chosen simply because the prevalence

of the other health conditions in Table 1 is between 10 - 60%. Similarly, with regards

to Equation (19), selection bias does not stem from the fact that the confounder affects

the work outcomes of those in the treatment group so we have normalized this effect to

be zero. In order for the confounder to be the true cause of the effect it needs to have

it’s own negative effect on the outcome, separate from the treatment. We have already

represented this outcome problem as d. So while the values chosen for the parameters

in Equation (18) and Equation (19) are somewhat arbitrary, the important thing is that

they are held constant at fixed, known values, in order to simulate values of d and s.

Equation (18) and Equation (19) are combined with Equation (16) and Equation (17) to

solve for the four pij parameters when certain numerical values are entered for d and s.

In the second panel of Table 5, the values of both d and s that are required to produce

substantial changes in the estimate are far greater than any variable already in the model.

This means that there would have to be an unobserved variable which strongly makes

the respondents more likely to get cancer and less likely to work if they did not have

cancer. Given the major cancer risk factors and other important determinants of work

are already included in the model, this seems unlikely. Taken altogether, the analyses

presented in Sections 4 and 5 robustly demonstrate that cancer has a negative effect on

the labor supply of men over the age of 65.

6 Mechanisms

6.1 Health mechanism

The next step in the analysis is to find out why the respondents who are diagnosed

with cancer are reducing their labor supply. The most obvious mechanism would be

that cancer affects the respondents’ health and that this decrease in health causes the

reduction. In order to examine whether it is the change in the health of the respondents
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which is driving the reduction in labor supply I replace the outcome variable with a

variety of health variables and estimate the effect using the same four models that were

used in Table 3.

In particular, I focus on binary outcomes indicating whether the respondents are in

poor health and whether health is limiting their work. The results in Table 6 show that

cancer increases the probability of reporting these negative health outcomes by between

14 - 16 percentage points. I also examine whether it is mental health or physical health

which is affected. These results should be interpreted with care as the original outcome

variables are not binary. For mental health, I use a Center for Epidemiologic Studies

Depression scale (CES-D) which is a 9-point scale with each point corresponding to a

negative response to one of these eight CES-D questions: whether the respondent feels

depressed; feels everything is an effort; has restless sleep; feels sad; feels lonely; cannot get

going; doesn’t feel happy; and doesn’t enjoy life. Cancer diagnosis leads to an increase

of between 0.2 to 0.3 of one of these points. For physical health, I use a summary of the

Activities of Daily Living (ADL) variables. This variable uses a 4-point scale which is

the sum of three binary variables indicating whether the respondent has trouble bathing,

eating, and dressing. Cancer diagnosis leads to an increase of 0.08 of one of these points.

Overall, the results show that cancer has a negative effect on general, mental, and physical

health with each result in columns (2), (3), and (4) significant at the 5% level.

Previous research has cautioned against interpreting self-reported health problems in

this scenario due to the fear that people may exaggerate illness to explain labor force

absence (Anderson and Burkhauser, 1985; Stern, 1989; Bound, 1991). However, this is

unlikely to be the case here since a) the workers do not need to exaggerate illness to

gain access to Social Security or Medicare at this age and b) they do not face societal

pressures to justify leaving the labor force in the way a younger worker would.

6.2 Insurance mechanism

An important factor which may affect the labor supply of workers is health insurance.

There already exists a large literature which examines the effect of health on worker
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mobility in the presence of employer provided health insurance (EPHI) (see Madrian

(1994), Buchmueller and Valletta (1996), and Kapur (1998) for some of the original

papers in this area). With regards to cancer, more recent studies have found evidence

of job-lock for women (Bradley et al., 2006; Tunceli et al., 2009; Bradley et al., 2013)

though the evidence for men is mixed (Tunceli et al., 2009; Bradley et al., 2012). There

is the potential for this to be mitigated in this sample since the respondents are all

eligible for Medicare and are not relying on continuous employment to maintain their

health insurance. However, previous studies which have examined the effect of Medicare

eligibility on worker mobility have also found mixed results (Fairlie et al., 2011, 2016).

Since the previous literature offers no clear pattern for male cancer survivors and men

who are eligible for Medicare, the question of whether we expect the effect to differ based

on EPHI status will have to be answered empirically.

There is a variable in the HRS data set which indicates EPHI status but this was

not used in the main analysis due to a large number of missing observations. In Table

7, I present the results of extra analyses using this EPHI variable. Column (1) gives

the results when EPHI status in period t− 1 is included as an extra control in the LDV

model. The new effects calculated are almost identical to the ones in Table 3. The effects

are slightly smaller when the sample is restricted to those respondents who did not have

EPHI in period t−1 and slightly larger when the sample is restricted to those with EPHI

in period t− 1. While the difference between these coefficients may seem large they are

not statistically different from zero. For this sample of workers, it appears as if their

mobility is not affected by EPHI.

6.3 Hours mechanism

A final way in which the labor supply decision of the respondents may be affected is by

the amount of hours they are already working before they are diagnosed. Respondents

who work relatively few hours per week may feel a weaker attachment to labor market

and may decide to reduce their labor supply at a greater rate in the event of illness. In

Table 8, I run the LDV model separately for respondents who work fewer than 30 hours
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per week and respondents who work at least 30 hours per week. While the results in

Panel A show no difference between the models, the difference in the coefficients in Panel

B is quite large. It shows that respondents diagnosed with cancer who were working

fewer than 30 hours per week are almost 16 percentage points less likely to be working

compared to their non-cancer counterparts. However, the coefficient for those who work

at least 30 hours is only 5 percentage points. The difference between these coefficients

is also large enough that it is statistically different from zero. For those who do return

to work no difference is found, as has been the case throughout the analysis. Similar

results are found if the workers are classified as full-time versus not full-time instead of

at least 30 hours per week versus fewer than 30 hours per week. It may be tempting

to say that the respondents working fewer hours to begin with may have been sicker or

more susceptible to disease but this does not appear to be the case. In the Appendix,

Table A9 gives some descriptive statistics for both of the groups. The two groups are

very well balanced across the demographic and health variables that we saw in Table 1.

The only major difference appears to be that those who were working fewer than 30 hours

are slightly older than the other group. While this analysis does not say anything about

cancer diagnoses changing the respondents’ labor-leisure preferences, it does suggest that

those who had a greater preference for leisure over labor to begin with were the ones who

had the greatest labor supply response.

6.4 Propensity score matching results

Table 9 presents PSM estimates for all of the LDV and Pooled OLS estimates calculated

in Section 6. As was the case with the results in Section 5, the PSM estimates generally

give the same results as the linear regressions.

7 Discussion

How do these results compare with the results from other studies in the field? With

regards to studies on slightly younger survivors (Bradley et al., 2005; Short et al., 2008;
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Datta Gupta et al., 2015) the results are very similar. However, care should be taken to

not generalize these results to other groups, particularly future cohorts of workers who

will work past the age of 65. Those who are working past the age of 65 in this data set

are a highly selected sample: they are likely to be healthier than the people who have

already left the labor market at this age, or have jobs that require less physical exertion.

Given these differences it is also likely that their labor supply response to this shock will

be different to the people who have already left the market. For example, we may expect

that a worker with an average level of health may retire after a cancer diagnosis, whereas

a worker who is in excellent health may still return to work after a cancer diagnosis.

However, in the future, the people who would have left the market at 65 will need to

remain in order to receive full Social Security benefits. Estimating this model for workers

who need to work past the age of 65 for their full retirement benefits would likely give

results which are larger in magnitude since the sample would now include workers who

are not as healthy, who are in more physical jobs, or who are not as attached to their

jobs as the workers in this sample. Nevertheless, policy makers can use this result as a

lower bound of the true effect for future cohorts.

If the labor supply reductions are being driven by changes in the health of the

respondents, as the results suggest, then it has important implications for future policy

decisions. For example, flexible working conditions such as shorter work days or the ability

to work from home are likely to benefit both workers who are physically impaired, as well

as workers who have had their labor-leisure preferences changed. However, more targeted

approaches, such as helping the workers find rehabilitative services from an external

provider, would only be of benefit to workers whose health had suffered. Neumark et al.

(2015) recently showed that working women who had been diagnosed with breast cancer

were more likely to stay working if their employer provided such services. Given that

the results in this study are similar in magnitude to those from other studies on younger

cohorts, such as Bradley et al. (2005) and Datta Gupta et al. (2015), policies which have

improved the labor market activity of these survivors may be able to help older cohorts

too.
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This paper also contains some limitations. The first is that, as with any study of

health shocks on employment, I can only observe the effect of cancer on labor supply for

those who are healthy enough to stay in the survey. Therefore, attrition is likely to be

an issue. It is easy to imagine that the respondents who have been severely affected by

cancer would be more likely to leave the survey than the respondents who have only been

mildly affected. This again raises the issue of how representative the remaining sample is

of employed men who work past the age of 65. What are the implications of these attriters

for the results and future policies? With regards to the results we can again think of these

estimates as lower bounds of the true effects. If the attriters had been included in the

analysis then the effect of cancer on labor supply would likely be greater in magnitude,

not closer to zero. This is because we are not including the people who would have had

the biggest reduction in labor supply. So while attrition is a limitation of this paper,

solving the attrition problem would reinforce the results rather than undermine them.

We have a similar situation regarding policy: any remedial programs arising from these

results are likely only to be able to help respondents who are healthy enough to take

advantage of them and could be of less help to people who are so sick that they drop out

of the survey.

The second is that I am unable to explicitly test whether the reduction in labor supply

is driven by physical impairment, a change in labor-leisure preferences, or both. However,

given that I do find a negative effect on physical and mental health it does suggest at least

some of the effect is driven by health impairment. This is in line with recent research from

Trevisan and Zantomio (2016) who find that physical impairment is a major driver of

labor market exits for men. Also, it should be stated that the results found here are short

term results, where workers must be within two years of diagnosis. If the respondents

were followed over a longer period of time, as in studies such as Moran et al. (2011) or

Short et al. (2008), then the effect of cancer on the labor supply of this age group may

be different. Finally, I do not have access to the type of cancer that the respondents are

diagnosed with so the results cannot be broken down by cancer subgroup. However, this

is not an uncommon limitation as studies such as Datta Gupta et al. (2015), Moran et al.
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(2011), Short et al. (2008), and Trevisan and Zantomio (2016) also report the effect for all

cases pooled together. Despite these limitations, this paper contributes to the literature

by providing a comprehensive analysis of the effect of cancer on the labor supply of men

over the age of 65, including demonstrating that EPHI has no effect on the labor supply

reduction of these workers.

8 Conclusion

While previous research has documented the negative effect that cancer has on male labor

supply, no paper has examined this effect on those who work past the age of 65. Due to

the number of new cancer diagnoses within this age group every year, and the relevance of

this age group to public policy, addressing this question can provide valuable information

as both age and labor demographics shift dramatically. I contribute to this literature by

providing a robust analysis of the effect of cancer on male workers over the age of 65. I

find that respondents who are diagnosed with cancer work 3 hours fewer per week when

compared with workers who were not diagnosed with cancer. This reduction stems from

workers leaving the labor market. For the workers who continue to work, no difference is

observed between the cancer and non-cancer respondents. Cancer has a negative effect

on both the physical and mental health of the respondents. Finally, while the results

differ based on whether or not the respondents were working fewer than 30 hours per

week as opposed to at least 30 hours per week, the effect of cancer on labor supply does

not appear to differ by EPHI status. In the future, further research can help shed light

on the exact mechanism by which these reductions occur.

30



Figures

0
10

20
30

D
en

si
ty

0 .05 .1 .15
Estimated propensity score

Cancer
Non-cancer

kernel = gaussian, bandwidth = 0.0030

Figure 1: Kernel density estimates

31



t− 3

(0.59)

t− 2

(0.40)

t− 1

(0.94)

t

(0.01)

15

20

25

30

35

40

Period

(p-value)

H
ou

rs
of

w
or

k
(p

er
w

ee
k
)

Cancer
Non-cancer

Figure 2: Employment comparison

32



t− 3

(0.85)

t− 2

(0.17)

t− 1

(0.72)

t

(0.00)

0.1

0.2

0.3

0.4

Period

(p-value)

P
ro

p
or

ti
on

in
p

o
or

h
ea

lt
h

Cancer
Non-cancer

Figure 3: Health comparison

33



Tables

Table 1: Summary statistics

(1) (2) (3) (4) (5) (6)

Cancer Non-cancer

Mean Standard
deviation

Mean Standard
deviation

t stat Nor-diff

Period t − 1
Age 69.85 3.66 69.54 3.68 1.30 0.09
Non-white 0.13 0.34 0.14 0.34 -0.15 -0.01
College 0.48 0.50 0.47 0.50 0.20 0.01
Married 0.88 0.32 0.87 0.34 0.77 0.05
Poor health 0.16 0.37 0.15 0.36 0.36 0.02
Smoker (ever) 0.64 0.48 0.68 0.47 -1.19 -0.08
Smoker (now) 0.13 0.33 0.11 0.32 0.65 0.04
Drink alcohol 0.55 0.50 0.60 0.49 -1.68 -0.11
Obese 0.25 0.43 0.25 0.43 -0.02 -0.00
Spouse working 0.37 0.48 0.36 0.48 0.47 0.03
Self-employed 0.39 0.49 0.39 0.49 -0.05 -0.00
Hours of work 30.18 15.73 30.11 16.23 0.07 0.00
IHS (earnings) 7.17 5.02 7.09 5.05 0.25 0.02
IHS (HH income) 11.87 0.81 11.79 0.87 1.33 0.09
IHS (pension) 4.08 5.02 3.53 4.84 1.72 0.11
IHS (SS) 8.80 3.45 8.78 3.48 0.06 0.00

Period t
Working 0.63 0.48 0.73 0.45 -3.39 -0.22
Hours of week 18.25 18.60 21.44 18.95 -2.55 -0.17

Observations 238 5,364

Note: Nor-diff - Normalized differences; IHS - Inverse hyperbolic sine; HH - Household.
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Table 2: Selection into diseases

(1) (2) (3) (4) (5) (6)

Cancer High blood
pressure

Heart
problems

Lung
disease

Arthritis Diabetes

Period t − 1
Past diagnoses - 0.371*** 0.351*** 0.164*** 0.399*** 0.278***

- (0.016) (0.012) (0.014) (0.011) (0.021)
Age 0.001 0.000 0.003*** 0.001 0.002** -0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Non-white 0.000 0.005 -0.033*** -0.007 -0.003 0.010

(0.008) (0.009) (0.011) (0.006) (0.010) (0.007)
College -0.000 -0.009 0.004 -0.001 -0.004 0.001

(0.006) (0.007) (0.007) (0.004) (0.008) (0.006)
Married 0.005 -0.012 0.003 0.001 -0.007 0.004

(0.009) (0.009) (0.010) (0.006) (0.011) (0.007)
Poor health 0.003 0.007 0.037*** 0.014*** 0.031*** 0.002

(0.007) (0.010) (0.010) (0.005) (0.011) (0.007)
Smoker (ever) -0.007 0.021*** 0.003 0.018*** 0.005 0.003

(0.006) (0.007) (0.007) (0.006) (0.008) (0.005)
Smoker (now) 0.011 -0.024** -0.009 0.026*** -0.009 -0.007

(0.009) (0.011) (0.011) (0.005) (0.012) (0.009)
Drink alcohol -0.009* -0.005 -0.012* -0.000 0.003 -0.003

(0.006) (0.006) (0.007) (0.004) (0.008) (0.005)
Obese 0.001 0.021*** 0.008 0.007 0.022** 0.027***

(0.006) (0.008) (0.008) (0.004) (0.009) (0.005)
Spouse working 0.002 -0.013* 0.002 0.006 0.009 -0.008

(0.006) (0.007) (0.007) (0.004) (0.008) (0.006)
Self-employed -0.002 0.003 -0.002 -0.008 -0.005 -0.001

(0.007) (0.008) (0.009) (0.005) (0.009) (0.007)
Hours of work 0.000 0.000 -0.000 -0.000 -0.000* 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
IHS (earnings) -0.000 -0.000 0.000 -0.001* 0.001 -0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
IHS (HH income) 0.005 -0.000 -0.001 0.002 -0.007 -0.004

(0.004) (0.003) (0.004) (0.003) (0.005) (0.003)
IHS (pension) 0.001 -0.001 0.001 0.000 0.002*** 0.000

(0.001) (0.001) (0.001) (0.000) (0.001) (0.001)
IHS (SS) -0.000 0.000 0.001 0.000 0.001 -0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

p-value 0.493 0.000 0.000 0.000 0.000 0.000
Observations 5,602 5,373 5,477 5,506 5,328 5,498

Note: All models estimated by maximum likelihood. Clustered standard errors (by individual)
in parentheses. * Result significant at the 10% level. ** Result significant at the 5% level. ***
Result significant at the 1% level. The p-value is for the Wald test for the joint insignificance
of all the variables in the logistic regression. IHS - Inverse hyperbolic sine; HH - Household.
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Table 3: Linear models

(1) (2) (3) (4)

Panel A: Hours of work

Pooled FD LDV LDV

Cancer -3.196*** -3.298*** -3.240*** -3.176***
(1.233) (1.172) (1.084) (1.074)

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes
Observations 5,602 5,602 5,602 5,602

(5) (6) (7) (8)

Panel B: Working Panel C: In labor force

Pooled Pooled Pooled Pooled

Cancer -0.100*** -0.100*** -0.111*** -0.110***
(0.032) (0.031) (0.032) (0.031)

Wave dummies No Yes No Yes
Region dummies No Yes No Yes
Period t− 1 controls No Yes No Yes
Observations 5,602 5,602 5,602 5,602

(9) (10) (11) (12)

Panel D: Hours of work (if working)

Pooled FD LDV LDV

Cancer -0.368 -1.461 -1.094 -1.025
(1.277) (1.008) (0.931) (0.907)

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes
Observations 4,046 4,046 4,046 4,046

Note: All coefficients are from separate models. All models estimated by OLS. Clustered
standard errors (by individual) in parentheses. * Result significant at the 10% level. ** Result
significant at the 5% level. *** Result significant at the 1% level. FD - First-differences; LDV
- Lagged dependent variable.
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Table 4: Propensity score matching

(1) (2) (3)

Panel A: Hours of work

Bandwidth: 0.0015 Bandwidth: 0.003 Bandwidth: 0.006

Cancer -3.271*** -3.257*** -3.227***
(1.154) (1.146) (1.134)

Observations 5,602 5,602 5,602

Panel B: Working

Bandwidth: 0.0015 Bandwidth: 0.003 Bandwidth: 0.006

Cancer -0.102*** -0.102*** -0.102***
(0.032) (0.032) (0.031)

Observations 5,602 5,602 5,602

Panel C: Hours of work (if working)

Bandwidth: 0.0015 Bandwidth: 0.003 Bandwidth: 0.006

Cancer -0.299 -0.313 -0.328
(1.222) (1.202) (1.192)

Observations 4,046 4,046 4,046

Note: All coefficients are from separate models. Bootstrapped standard errors in parentheses.
* Result significant at the 10% level. ** Result significant at the 5% level. *** Result significant
at the 1% level.
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Table 5: Sensitivity of matching estimates to unobserved confounder

Original ‘Working’ estimate = -0.102

Panel A: ‘Calibrated’ confounder

Confounder like New estimate d s

Non-white -0.102 -0.03 -0.01
College -0.103 0.10 0.01
Married -0.102 0.02 0.01
Poor health -0.102 -0.05 0.01
Smoker (ever) -0.103 -0.05 -0.04
Smoker (now) -0.101 -0.04 0.02
Alcohol drinker -0.100 0.03 -0.05
Obese -0.102 -0.02 0.00

Panel B: ‘Killer’ confounder

Confounder like New estimate d s

Manually constructed -0.089 -0.10 0.10
Manually constructed -0.077 -0.10 0.20
Manually constructed -0.064 -0.10 0.30
Manually constructed -0.077 -0.20 0.10
Manually constructed -0.056 -0.20 0.20
Manually constructed -0.025 -0.20 0.30
Manually constructed -0.063 -0.30 0.10
Manually constructed -0.031 -0.30 0.20
Manually constructed 0.008 -0.30 0.30

Note: s = p1. − p0. > 0 - the probability of having the confounder given you are in the treated
group is greater than the probability of having the confounder given you are in the untreated
group; d = p01 − p00 < 0 - the probability of having the confounder given you have a negative
work outcome is greater than the probability of having the confounder given you have a positive
work outcome, conditional on being in the untreated group.
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Table 6: Health mechanism

(1) (2) (3) (4)

Panel A: Poor health

Pooled FD LDV LDV

Cancer 0.168*** 0.155*** 0.164*** 0.164***
(0.031) (0.031) (0.029) (0.029)

Observations 5,601 5,601 5,601 5,601

Panel B: Health limits work

Pooled FD LDV LDV

Cancer 0.120*** 0.158*** 0.143*** 0.137***
(0.031) (0.032) (0.031) (0.030)

Observations 5,237 4,978 4,978 4,978

Panel C: CES-D

Pooled FD LDV LDV

Cancer 0.159 0.306*** 0.224** 0.219**
(0.110) (0.100) (0.097) (0.097)

Observations 5,076 4,842 4,842 4,842

Panel D: ADL

Pooled FD LDV LDV

Cancer 0.082** 0.086** 0.083*** 0.081**
(0.033) (0.034) (0.032) (0.032)

Observations 5,600 5,490 5,490 5,490

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes

Note: All coefficients are from separate models. All models estimated by OLS. Clustered
standard errors (by individual) in parentheses. * Result significant at the 10% level. ** Result
significant at the 5% level. *** Result significant at the 1% level. FD - First-differences; LDV -
Lagged dependent variable; CES-D - Center for Epidemiologic Studies Depression Scale; ADL
- Activities of Daily Living.
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Table 7: Insurance mechanism

(1) (2) (3) (4)

Panel A: Hours of work

LDV LDV LDV p-value for
(2) - (3) = 0

Cancer -3.066*** -2.854** -4.065** 0.5937
(1.132) (1.443) (1.771)

Observations 5,274 3,299 1,975 5,274

Panel B: Working

Pooled Pooled Pooled p-value for
(2) - (3) = 0

Cancer -0.100*** -0.093** -0.127** 0.6016
(0.032) (0.040) (0.054)

Observations 5,274 3,299 1,975 5,274

Panel C: Hours of work (if working)

LDV LDV LDV p-value for
(2) - (3) = 0

Cancer -0.705 -0.320 -1.758 0.4086
(0.947) (1.297) (1.180)

Observations 3,819 2,342 1,477 3,819

EPHIt−1 included Yes No No -
EPHIt−1 = 0 No Yes No -
EPHIt−1 = 1 No No Yes -

Wave dummies Yes Yes Yes -
Region dummies Yes Yes Yes -
Period t− 1 controls Yes Yes Yes -

Note: All coefficients are from separate models. All models estimated by OLS. Clustered
standard errors (by individual) in parentheses. * Result significant at the 10% level. ** Result
significant at the 5% level. *** Result significant at the 1% level. LDV - Lagged dependent
variable; EPHI - Employer Provided Health Insurance.
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Table 8: Hours mechanism

(1) (2) (3)

Panel A: Hours of work

LDV LDV p-value for
(1) - (2) = 0

Cancer -3.046** -3.379* 0.8739
(1.212) (1.732)

Observations 2,556 3,046 5,602

Panel B: Working

Pooled Pooled p-value for
(1) - (2) = 0

Cancer -0.157*** -0.054 0.0943*
(0.047) (0.041)

Observations 2,556 3,046 5,602

Panel C: Hours of work (if working)

LDV LDV p-value for
(1) - (2) = 0

Cancer -0.405 -1.565 0.5461
(1.587) (1.118)

Observations 1,729 2,317 4,046

Hourst−1 < 30 Yes No -
Hourst−1 ≥ 30 No Yes -

Wave dummies Yes Yes -
Region dummies Yes Yes -
Period t− 1 controls Yes Yes -

Note: All coefficients are from separate models. All models estimated by OLS. Clustered
standard errors (by individual) in parentheses. * Result significant at the 10% level. ** Result
significant at the 5% level. *** Result significant at the 1% level. LDV - Lagged dependent
variable.
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Table 9: Propensity score matching estimates for subsections

(1) (2) (3) (4)

Panel A: Table 6

Poor health Health limits
work

CES-D ADL

Cancer 0.165*** 0.136*** 0.220** 0.081***
(0.029) (0.032) (0.097) (0.031)

Panel B: Table 7

Hours of work Working Hours of work
(if working)

Cancer (EPHIt−1 included) -3.020*** -0.100*** -0.718
(1.079) (0.032) (1.106)

Cancer (EPHIt−1=0) -3.003** -0.095** 0.592
(1.348) (0.038) (1.691)

Cancer (EPHIt−1=1) -3.408 -0.116* -2.161
(2.106) (0.061) (1.984)

Panel C: Table 8

Hours of work Working Hours of work
(if working)

Cancer (Hourst−1 < 30) -3.240** -0.162*** -0.448
(1.375) (0.052) (1.778)

Cancer (Hourst−1 ≥ 30) -3.075 -0.046*** -1.464
(1.936) (0.045) (1.372)

Note: All coefficients are from separate models. Bootstrapped standard errors in parentheses.
* Result significant at the 10% level. ** Result significant at the 5% level. *** Result significant
at the 1% level.
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Table A1: LDV with random effects

(1) (2) (3)
Hours Working Hours (if working)

Cancer -3.338*** -0.109*** -1.074
(1.079) (0.031) (0.949)

Observations 5,602 5,602 4,046

Note: All models are estimated by OLS. Clustered standard errors in parentheses. All models
also include the control variables from Table 1, dummy variables for HRS waves, and census
regions. * Result significant at the 10% level. ** Result significant at the 5% level. *** Result
significant at the 1% level.
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Table A2: Fixed effects model

(1) (2) (3)
Hours Working Hours (if working)

Cancer -4.342*** -0.138*** -1.062
(1.186) (0.033) (1.026)

Observations 8,038 8,038 6,482

Note: Before estimating the fixed effects model it is important to remember that each
observation in the original sample requires two periods of information to construct it. Therefore,
each observation represents a two-wave transition which involves a respondent transitioning
from a non-cancer state to a cancer state, or remaining without cancer. This means that
for each unique respondent in the main sample, the first observation is lost by constructing
these two-wave transitions. In order to run the correct fixed effects model, I need to add this
first observation for each unique person back into the sample. Because there are 2,436 unique
respondents in the main sample that means adding 2,436 observations to the original sample of
5,602 observations for a total of 8,038. All models are estimated by OLS. Clustered standard
errors in parentheses. All models also include dummy variables for HRS waves. * Result
significant at the 10% level. ** Result significant at the 5% level. *** Result significant at the
1% level.
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Table A3: Sample information

Exclusion criteria Observations

Unrestricted sample 207,816

Female 120,956
Younger than 65 or older than 78 in period t− 1 60,853
Previous cancer diagnosis in period t− 1 (or before) 4,238
Not working in period t− 1 15,319
Reporting no hours when working (and vice versa) in either period 458
Working more than 80 hours a week in either period 63
Missing information for control variables in t− 1 327

Restricted sample 5,602

Note: Observations refers to person-wave observations (i.e one individual in the survey for
10 waves appears as 10 observations). While the final sample used is only a fraction of the
unrestricted sample, the overwhelming majority of observations excluded results from restricting
the data to the population of interest: working men who are over the age of 65 and who have
never been diagnosed with cancer before.
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Table A4: Stratification matching

(1) (2) (3)
Hours Working Hours (if working)

Cancer -3.229*** -0.102*** -0.319
(1.133) (0.031) (1.198)

Observations 5,602 5,602 4,046

Note: All coefficients are from separate models. Three blocks are used for stratification.
Bootstrapped standard errors in parentheses. * Result significant at the 10% level. ** Result
significant at the 5% level. *** Result significant at the 1% level.
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Table A5: Inverse probability weighting

(1) (2) (3)
Hours Working Hours (if working)

Cancer -3.122*** -0.093*** -0.606
(1.175) (0.033) (1.298)

Observations 5,602 5,602 4,046

Note: All coefficients are from separate models. Bootstrapped standard errors in parentheses.
* Result significant at the 10% level. ** Result significant at the 5% level. *** Result significant
at the 1% level.
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Table A6: Including respondents with previous cancer diagnoses

(1) (2) (3) (4)

Panel A: Hours of work

Pooled FD LDV LDV

Cancer -2.932** -2.887** -2.897*** -2.810***
(1.194) (1.166) (1.074) (1.060)

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes
Observations 6,487 6,487 6,487 6,487

(5) (6) (7) (8)

Panel B: Working Panel C: In labor force

Pooled Pooled Pooled Pooled

Cancer -0.086*** -0.085*** -0.095*** -0.094***
(0.032) (0.031) (0.032) (0.031)

Wave dummies No Yes No Yes
Region dummies No Yes No Yes
Period t− 1 controls No Yes No Yes
Observations 6,487 6,487 6,487 6,487

(9) (10) (11) (12)

Panel D: Hours of work (if working)

Pooled FD LDV LDV

Cancer -0.602 -1.031 -0.882 -0.790
(1.226) (1.018) (0.936) (0.912)

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes
Observations 4,689 4,689 4,689 4,689

Note: All coefficients are from separate models. All models estimated by OLS. Clustered
standard errors (by individual) in parentheses. * Result significant at the 10% level. ** Result
significant at the 5% level. *** Result significant at the 1% level. FD - First-differences; LDV
- Lagged dependent variable.
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Table A7: Using HRS weights to account for over-represented populations

(1) (2) (3) (4)

Panel A: Hours of work

Pooled FD LDV LDV

Cancer -3.486** -4.197** -3.886** -3.872***
(1.490) (1.754) (1.523) (1.498)

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes
Observations 5,306 5,306 5,306 5,306

(5) (6) (7) (8)

Panel B: Working Panel C: In labor force

Pooled Pooled Pooled Pooled

Cancer -0.114*** -0.119*** -0.124*** -0.128***
(0.037) (0.037) (0.037) (0.037)

Wave dummies No Yes No Yes
Region dummies No Yes No Yes
Period t− 1 controls No Yes No Yes
Observations 5,306 5,306 5,306 5,306

(9) (10) (11) (12)

Panel D: Hours of work (if working)

Pooled FD LDV LDV

Cancer -0.168 -0.611 -0.477 -0.401
(1.503) (1.247) (1.172) (1.114)

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes
Observations 3,833 3,833 3,833 3,833

Note: All coefficients are from separate models. All models estimated by OLS. Clustered
standard errors (by individual) in parentheses. * Result significant at the 10% level. ** Result
significant at the 5% level. *** Result significant at the 1% level. FD - First-differences; LDV
- Lagged dependent variable.
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Table A8: Using natural log transformation of wealth instead of IHS

(1) (2) (3) (4)

Panel A: Hours of work

Pooled FD LDV LDV

Cancer -3.888** -3.246** -3.452** -3.473**
(1.527) (1.509) (1.390) (1.374)

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes
Observations 3,179 3,179 3,179 3,179

(5) (6) (7) (8)

Panel B: Working Panel C: In labor force

Pooled Pooled Pooled Pooled

Cancer -0.124*** -0.120*** -0.139*** -0.133***
(0.042) (0.041) (0.042) (0.041)

Wave dummies No Yes No Yes
Region dummies No Yes No Yes
Period t− 1 controls No Yes No Yes
Observations 3,179 3,179 3,179 3,179

(9) (10) (11) (12)

Panel D: Hours of work (if working)

Pooled FD LDV LDV

Cancer -0.678 -0.926 -0.764 -0.868
(1.614) (1.351) (1.254) (1.241)

Wave dummies No Yes No Yes
Region dummies No No No Yes
Period t− 1 controls No No No Yes
Observations 2,312 2,312 2,312 2,312

Note: All coefficients are from separate models. All models estimated by OLS. Clustered
standard errors (by individual) in parentheses. * Result significant at the 10% level. ** Result
significant at the 5% level. *** Result significant at the 1% level. FD - First-differences; LDV
- Lagged dependent variable.
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Table A9: Demographic and health variables for hours groups

(1) (2) (3) (4) (5) (6)

< 30 hours per week ≥ 30 hours per week

Mean Standard
deviation

Mean Standard
deviation

t stat Nor-diff

Period t − 1
Age 70.29 3.76 68.93 3.49 14.05 0.38
Non-white 0.12 0.32 0.16 0.36 -4.51 -0.12
College 0.49 0.50 0.46 0.50 2.86 0.08
Married 0.88 0.33 0.86 0.35 1.90 0.05
Poor health 0.15 0.36 0.15 0.36 0.38 0.01
Smoker (ever) 0.68 0.47 0.67 0.47 1.21 0.03
Smoker (now) 0.10 0.30 0.12 0.33 -2.36 -0.06
Drink alcohol 0.62 0.49 0.59 0.49 1.79 0.05
Obese 0.24 0.43 0.26 0.44 -1.81 -0.05
Spouse working 0.33 0.47 0.39 0.49 -4.84 -0.13
Self-employed 0.40 0.49 0.38 0.49 1.19 0.03

Observations 2,556 3,046

Note: Nor-diff - Normalized differences.
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