Birkbeck

ST UNIVERSITY OF LONDON

BIROn - Birkbeck Institutional Research Online

Zhou, Y. and Han, Tingting and Chen, Taolue and Zhou, S. (2019)
Probabilistic analysis of QoS-aware service composition with Explicit
Environment Models. IET Software , ISSN 1751-8806. (In Press)

Downloaded from: http://eprints.bbk.ac.uk/29829/

Usage Guidelines:

Please refer to usage guidelines at http://eprints.bbk.ac.uk/policies.html

or alternatively
contact lib-eprints@bbk.ac.uk.

http://eprints.bbk.ac.uk/29829/
http://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Probabilistic Analysis of QoS-Aware Service Composition with
Explicit Environment Models

Yu Zhou, Tingting Han, Taolue Chen, Shiqi Zhou

November 6, 2019

Abstract

Service composition is one of the primary ways to provide
value-added services on the Internet. Quality-of-Service
(QoS) represents a crucial indicator for the underlying
composition policy adoption, but it is highly influenced
by various environmental factors. Existing composition
strategies rarely take the influence of environment into
consideration explicitly, which may lead to sub-optimal
composition policies in a dynamic environment. In this
paper, a model-based service composition approach is
proposed. Given the user request, it is possible to first
find a set of matching abstract web services (AWSs),
and then pull relevant concrete web services (CWSs)
based on the AWSs. The set of CWSs can be modelled
as a Markov decision process (MDP). In addition, we
model the environment as a fully probabilistic system,
capturing changes of environment probabilistically. The
environment model can be further composed with the
MDP from the service models, obtaining a monolithic
MDP. The policy of which corresponds the selection of
concrete services. We demonstrate how probabilistic ver-
ification techniques can be used to find the optimal service
selection strategy against their QoS and the environment
change. A distinguished feature of our approach is that the
QoS of services, as well as the dynamic of environment
change, are made parametric, so that the formal analysis
is adaptive to the environment which is of paramount
importance for autonomous and self-adaptive systems.
Examples and experiments confirm the feasibility of our
approach.

KEYWORDS
Service Composition, Markov Decision Process, Para-

metric Model Checking, Quality-of-Service

1 Introduction

Web service has nowadays become one of the most pop-
ular forms of software function provision on the Internet.
Despite an increasing number of individual services, more
complex and systematic user tasks pose a high demand for
the composition of underlying atomic services. Web ser-
vice composition has been an active research topic dur-
ing the last decade from both the theoretical and practical
points of view [1, 2, 3,4, 5]. During composition, Quality-
of-Service (QoS) usually emerges as the primary concern,
since it is often the case that multiple services provide sim-
ilar or the same functionality, but with significantly differ-
ent QoS measures. Supporting QoS-aware service compo-
sition is a challenging task due to the inherent uncertainty
from the environment [6, 7, 8]. For instance, it is con-
ceivable that services may exhibit fluctuating performance
ensuing the vibrating network bandwidth. A majority of
existing approaches, however, merely model the QoS with
pre-defined values (which are acquired by, e.g., historical
data or experiments), and reduce the composition prob-
lem to an optimisation problem, such as [9, 10]. These
approaches, while being simple, disregard the uncertain-
ties from the environment which may have a significant
impact on QoS in real settings.

In this paper, we are mostly concerned with two forms
of uncertainties: (1) Environment uncertainty. Itis not dif-
ficult to understand that the environment would have an ef-
fect on the QoS, and in a dynamic setting, various “modes”
in the environment may switch from one to another. Here,
the environment could be weather, traffic conditions, tim-

ing, security issues, network performance and any other
factors that might affect the QoS. A mode is a typical con-
figuration of an environment. For instance, the mode can
be “rainy and peak times” and switch to “cloudy and off-
peak times" or the security level is “severe” and switch to
“medium", etc. (2) Parameter uncertainty. QoS of individ-
ual web services, or the probabilities of the environment
modes switch are numeric values. They are acquired via
monitoring, test, experiments, etc, and are essentially of
statistical nature. It is virtually impossible to obtain a pre-
cise value for them. For instance, the time to arrive at an
airport at peak hours is one hour on average, but can be
in the range of, for instance, 0.8 to 2 hours. To have a
more accurate analysis of the time, it is suggested to use
a parameter (variable) to represent some probability (e.g.,
the probability to turn from sunny to cloudy) or measure
(e.g., the time it takes to get somewhere), and to explore
how the property of interest depends on the concrete pa-
rameter values.

To address these issues, in this paper, we propose a
parametric Markov decision process based approach to
support the analysis of QoS-aware service composition.
Apart from modelling web services and their composi-
tion, we also explicitly model the mode switch of envi-
ronments using a probabilistic model. The probabilities
can usually be extracted from the real-time weather fore-
cast, live traffic data, on-going network performance re-
ports, or other domain-specific historical data that might
be related and informative. The parameters may appear as
the transition probabilities in the environment model, or
as the QoS measures in the service models. Consider the
following scenario. A customer wants to buy a product
online. The person should make a decision in (1) which
shopping websites, e.g., Amazon or Ebay; (2) which shop,
e.g., Amazon or third party shops; (3) delivery services
at different speeds and rates, e.g., expedite but expensive
same-day delivery or free 3-5 days delivery; and (4) pay-
ment methods, including credit card fees, possible dis-
counts and cashbacks, etc. In this example, depending
on the customer’s priorities and needs, different decisions
could been made. For instance, if the customer makes this
purchase for a birthday party that evening, then only shops
that provide same-day delivery would be chosen. If the
product is not urgently needed, then the most economical
way of delivery would be used.

Our system takes in the user requirements, finds the ab-

stract web services (the type-matching services that are
used in the workflow at a high level), searches the eligible
and compatible concrete web services (the services that
are really used) and builds models for both the web ser-
vices and the environment. Depending on the user’s ob-
jectives and constraints, the system recommends the best
strategies or decisions in choosing concrete web services.
The system can then invoke and compose the chosen web
services and deliver the final result to the user.

During the process of composition, we observe that al-
though services are standalone entities, at times, a client’s
requirements would greatly reduce the number of poten-
tially usable web services. For instance, if a traveller
would like to bring a pet along, this basically excludes the
option of taking the airplane. Or if a traveller needs to
use a lift to get to the platform of an underground train,
but the closest station does not provide a lift facility, the
underground option could be taken off the table. In our
approach, by formalising the user’s requirements, we can
reduce the state space at an early stage instead of enumer-
ating all the composition possibilities.

Contribution The main contributions of the paper are
summarised as follows:

e A modelling language including both the web ser-
vice model and the environment model; the web ser-
vice model is extended with variables and pre-/post-
conditions to facilitate modelling of composition. The
approach, which follows the “separation of concerns"
rationale, provides the maximum modularity and flexi-
bility with regards to web services and environments. In
other words, we separate the modelling of web services
and environment so that either can easily be replaced by
other matching services or environment.

o Automated analysis with fully-fledged tool support.
Our analysis is parametric, and accounts for Pareto op-
timality, which is indispensable when factoring in a
dynamic environment. More technically, our analysis
benefits from advanced, automated probabilistic veri-
fication tools, and supports analysis of objectives akin
to QoS-aware service composition (based on expected
reachability rewards rather than discounted sum which
is a least worst surrogate).

Structure of the paper. The rest of the paper is structured
as follows. Section 2 briefly reviews related work. Section

3 gives background information and preliminaries. We de-
tail our approach in Section 4, and conclude our paper in
Section 5.

2 Related Work

In this section, we briefly overview some most relevant
work with focus on QoS-aware service composition.

Canfora et al. [11] proposed a genetic algorithm based
approach for QoS service composition. Particularly, ge-
netic algorithms are leveraged to determine a set of con-
crete services to be bound to abstract services. The ap-
proach only supports single objective (fitness) function,
not the parametric analysis. Zhou et al. [12] proposed
a model based approach to assure the behaviour consis-
tency of service composition during runtime evolution.
Wang et al. [13] studied the incomplete information prob-
lem of selecting one service among a set of candidates,
and employed dynamic pricing strategy to compose web
services with the maximum utility and the lowest costs.
Ren et al. [14] modelled the service composition prob-
lem as a Markov decision process to satisfy the require-
ments of both functional aspects and non-functional ones,
and then a Q-learning based algorithm is applied to solve
the model. Rodriguez-Mier et al. [15] proposed a hybrid
approach for service composition which could produce
a composition strategy that minimizes a single objective
QoS function. These pieces of work mainly cast the ser-
vice composition into a constraint solving problem and
leverage optimisation techniques to provide optimal solu-
tions. More remotely, genetic algorithms and swarm op-
timisation algorithms, have also been used in self-adapted
systems [16, 17].

Apart from using different techniques, our work is
grounded on a formal framework with rigorous lan-
guages for modelling and specification, as well as well-
established tool support. One of the advantages of our ap-
proaches lies in the theoretical guarantee it provides, ow-
ing to the underlying probabilistic verification. Computa-
tionally, our approach essentially utilises specific numeri-
cal methods for solving Markov decision processes (e.g.,
value iteration) so could be more efficient than the gen-
eral optimisation methods, especially when their objective
functions are overly complicated.

Wang et al. [9, 10] proposed approaches based on re-

inforcement learning to enable adaptive and dynamic ser-
vice composition. During composition, the multi-agent
reinforcement learning technique is employed to select the
concrete service. Jungmann et al. [18] studied the prob-
lem of functional discrepancy during service composition
and presented an automated approach for adaptive ser-
vice composition. Moustafa et al. [19] proposed a rein-
forcement learning based approach to support QoS-aware
service composition with conflicting objectives. Similar
to our work, they use Markov decision process to model
the service composition. However, they neither explicitly
model the environment factors, nor support the parame-
terisation. On a more technical level, these authors usu-
ally take discounted sum of rewards as the optimisation
objective in MDPs, which is a tradition in the reinforce-
ment learning literature, but which arguably is not suitable
for service composition purposes. Bashari et al. [20] pro-
posed an automated approach to reconfigure the service
composition strategy from the changing environment, the
reconfiguration policies were derived from software prod-
uct line techniques. Zhang et al. [8] recognised the neces-
sity of an explicit environment model during service se-
lection and proposed a QoS-aware monitoring approach.
However, this approach is restricted to QoS monitoring
purposes instead of service composition.

There are several service composition patterns, for in-
stance, atomic pattern, sequential patten, multiplication
pattern, parallel pattern and combined pattern, etc [21].
Our work focuses on sequential patterns. Moreover, be-
cause of the similarity of web service composition and
business process modelling [22], our methods can be ap-
plied to the analysis and optimisation of business pro-
cesses, which would complement the existing approaches
[23, 24, 25].

Apart from the previous work on the composition as-
pect, there is also another line of research on the QoS-
aware service prediction, such as [26, 27, 28, 29, 30].
In [26], a temporal QoS-aware web service recommen-
dation framework via non-negative tensor factorisation is
proposed by considering third dynamic context informa-
tion, i.e., the time information. In [27], a probabilistic la-
tent model for QoS prediction has been proposed. The
model mainly leverages a user observable variable and a
web service observable variable, which constitutes a user-
service matrix. [28] extended the traditional collaborative
filtering and combined historical QoS value to forecast the

personalised QoS values. [29] proposed a learning based
approach for QoS value prediction which integrate multi-
dimensional context. Particularly, the approach adopts
an unsupervised encoder-decoder framework to generate
a hidden feature based on which the similarity between
two context entities could be calculated more accurately.
In [30], a model was proposed which can embed policies
to calculate composite service performance, and based on
which, the composite service’s performance could be pre-
dicted. Different from the work, our approach addresses
the QoS awareness in the context of service composi-
tion despite the fact that some common composition tech-
niques might have been employed in the previous work
mentioned above.

3 Preliminaries

In real-world settings, the web services are hosted in a dy-
namic and unstable Internet-based environment, which in-
evitably makes deterministic models inappropriate. Prob-
abilistic model checking has been widely applied in quan-
titatively analysing systems which exhibit stochastic fea-
tures. Properties could be specified based on the two prob-
abilistic temporal logics, i.e., Probabilistic Computation
Tree Logic (PCTL) [31] and Continuous Stochastic Logic
(CSL) [32].

We leverage the PRISM model checker [33] to construct
the probabilistic model. PRISM is a leading open-source
model checker and has been successfully applied in many
fields, such as communication protocols, distributed algo-
rithms and some other systems of specific subjects like bi-
ology. PRISM supports a set of probabilistic models, such
as Markov decision processes extended with costs and re-
wards. Therefore, a wide range of quantitative measures
related to model behaviours could be analysed. In addi-
tion, PRISM has also integrated the support for a para-
metric analysis of these models.

Definition 3.1 (FPS) A fully probabilistic system D is a
tuple (S, 5o, P), where S is a set of states with s, € S
being the initial state; and P . S x S — [0,1] is the
transition probability function such that for all states s €
S, Yes Ps,0) €0, 1].

Definition 3.2 (MDP) A Markov Decision Process M is
a tuple (S, g, A, P, R), where

o S is a set of states with s, € .S being the initial state;
e A is a set of actions,

o P: SXAXS — [0,1] is the transition probability
function such that for all states s € S and actions a €

A Y,es PGs,a,1) € {0,1};
e R:S§-R,,.

For each state s € S and action «, itheS P(s,a,t) =1,
then we say the action a is enabled in s.

Policies play a crucial role in the analysis of MDPs.
For our purposes, it suffices to consider simple policies,
in which for each state s, the policy fixes one of the en-
abled actions at s and selects the same action every time
when the system resides in s. Thus, the choices made by a
simple policy are independent of history. Formally, a sim-
ple policy is a function ¢ : S — Act such that o(s) is one
of the actions enabled at state s. A path in MDP under o
is an infinite sequence of states p = ss; -+ such that, for
alli > 0, P(s;,a,5;41) > 0fora = o(s;). Let Pathy,,
be the set of paths in M under ¢. Let Path , ;(s) be the
subset of paths that start from s, and Pr Mo be the stan-
dard probability distribution over Path , , as defined in
the literature [34, Ch. 10].

The expected cumulative reward, or simply cumulative
reward, of reaching a set G C S of goal states (called
G-states hereafter) in MDP under o, denoted R, ,(G),
is defined as follows: First, let Ry (s, G) be the ex-
pected value of random variable X : Path, ;(s) = Ry
such that (i) if s € G then X(p) = 0, (ii) if p[i] & G
for all i > 0 then X(p) = oo, and (iii) otherwise X (p) =
> R(s;) where s, € G and s; & G forall j < n. Then,
let R ,(G) = Ry ,(59, G).

4 Our approaches

4.1 Overview

Figure 1 gives an overview of our approach. A user request
specifies the specification of what the user needs (e.g., in-
put, output, type of service, etc). When a user sends a
request r, the web service configurator matches the func-
tional operations with the ontology of a pool of abstract
web services (AWSs). The depth-first-search (DFS) algo-
rithm could be applied to the interface of AWSs to match

Pool of all AWSs f—matching=| All related AWSs A —

ves, build MDP

AWSs

exclude unused

pull relevant

A
> Set Adr e

Set Clr

build MDP

Environment
model £ available?

nput:

parametric MDP
En i: kt"

pMcyr or pMcydlE
|

parametric analysis

Functions/Plots

Policies to indicate
which CWSs to
compose

MDP

probabilistic model checking
True/False
Numeric values

Mc,, or Mcw\ &

Figure 1: Overview of our approach

the user request. The result is a set A of AWSs. With
additional constraints specified in the user request, AWSs
which do not satisfy the user’s needs are excluded from A.
The result becomes A | r.

The next step is to pull the concrete web services
(CWSs) corresponding to A | r, based on which a Markov
Decision Process (MDP) My, will be built. In case
that the environment model £ is available, it will be inte-
grated resulting the MDP model M 4 |,||€ which respects
the changes in the environment. The formal definitions
of AWS, CWS and environment model are given in Sec-
tion 4.2.

Recall that there might be environment or parameter un-
certainty in either the service models or environment mod-
els, and the uncertainties are modelled by parameters. In
these cases, we will have a parametric MDP (i.e., either
pMpy,, or pMpy ,||E). Parameter analysis can then be ap-
plied to the parametric MDPs against user QoS require-
ments. The results may be closed-form functions or plots,
which describe the region of the feasible solutions. One
can instantiate the parameters as per any point of the re-
gion obtaining a (non-parametric) MDP, whereby obtain
an acceptable selection/combination of web services.

In case that the MDP is not parametric, probabilistic
model checking can be applied on the user QoS require-

ment. Either boolean or numeric values may be returned
together with a policy that indicates which concrete web
services to select and compose.

4.2 Models and specifications of web service
selection

4.2.1 Web service models

There are different ways by which individual services can
be integrated to build a process, e.g., sequential, paral-
lel, conditional, iterative, etc. In this paper, we focus ex-
clusively on the sequential composition of web services,
which is the most fundamental and widely used pattern in
service composition. Other ways of composition are con-
vertible to the sequential composition [35] under a config-
urator, which acts as a policy, resolving all the uncertain-
ties in the composition models. Note that the configurator
in this paper is a general manager that does web service se-
lection, composition and adaptation. We refer the readers
to [35] for more details.

When a user specifies the requirements, the web ser-
vice configurator first decides which abstract web services
(AWS) are needed to accomplish the tasks. AWSs are used
in the workflow at a high level. An AWS has input/output

and positive/negative pre-/post-conditions. A similar con-
cept of AWS can be found in e.g., [36].

Definition 4.1 (Abstract web service, AWS)
An abstract web service is defined as a tuple
A = (OP,1,0,p*,p ,e",e”), where each compo-
nent comprises a set of (atomic) propositions.

Here the atomic propositions represent the status and/or
properties of a state or condition. Intuitively, OP is the
semantic description of the service, in the form of a mem-
bership statement of a class in an ontology [36]. Input [
and output O represent signature information (basic input
and output data types) of a service. They ensure syntac-
tically correct solutions and a successful execution. On
the other hand, required pre-conditions p*, prohibited pre-
conditions p~, positive post-conditions e*, and negative
post-conditions e~ represent semantic information which
reduces the set of syntactically correct solutions to only
those solutions that are really useful. We reserve two
propositions init and end for p* and e~, respectively to
indicate the start and end of the sequential composition of
the AWSs as shown in Def. 4.4.

Example 4.2 Suppose Adam would like to go from his
home in city A to another city B. He could choose to go
by train or plane, and whether to take taxi or tube to ei-
ther the train station or the airport. Suppose there are
one train station, two airports that have connection to B.
The abstract web services in this case could be TAXI TS,
TAXI_Al, TAXI_A2, TUBE_TS, TUBE_AI, TRAIN (train
from A to B) and PLANE_AI, PLANE_A2. More specifi-
cally, TAXI_TS and TAXI_AI mean the taxi service to the
train station, and Airport_1, respectively, and PLANE_A1
means the airlines from Airport_I to city B. Given the
input (starting location) and the output (destination), we
show some of the AWSs in Fig. 2.

Recall that the keyworsd init and end mean that the cor-
responding AWSs are the initial and last service along the
composition. In PLANE_AI, pets are not allowed on the
planes and are restricted by p~. In TUBE_AI, the dis-
able access is not available at the local station, which is
excluded by p~.

To sequentially compose two AWSs A, and A,, one
needs to ensure that A, and A, are compatible, which en-
tails the following three conditions: (a) the input of A, is

TAXI_TS = { TUBE_A1 = {

OP = {taxi_to_train_station}, OP = {tube_to_airport_1},
I = {home}, I = {home},

O = {T'rainStation}, O = {Airportl},

pt = {init}, pt = {init},

p-={}, p~ = {disable access},
et ={} et ={},

e ={} e ={}

} }

TRAIN = { PLANE_A1 = {

OP = {train_to_city_B}, OP = {plane_to_city_B},
I = {TrainStation}, I = {Airportl},
0={(B}, 0={(B),

pr=1{L pr=A{}

rm={} p~ = {pets},

et = {end}, et = {end},

e”={} e ={}

} }

Figure 2: Example AWSs

a subset of the output of A;; this is to guarantee that all
the inputs of the second AWS would be available as a re-
sult of the outputs from the first AWS. (b) the required
pre-condition of A, should be a subset of the positive
post-condition of A;; (c) the intersection of the prohib-
ited pre-condition of A, and the positive post-condition
of A, should be empty. Formally,

Definition 4.3 Two AWSs Ay =
(0P, I, Ol,p'l",pl_, e?’, e) and Ay = (OPy,1,,0,,
p;, Py e;, e,) are compatible, written A; M Ay, if
(@ I, COy; (b) py Cefs (c) p;Nnef =0
As expected, when two AWSs are compatible, one
can define their sequential composition, yielding another
AWS.

Definition 4.4 (Service composition) Given two AWSs
A, = (OP,, Il,Ol,pT, pl',ef,el') and A, =
(OP2,IZ,02,p;,p£, e;,eg) such that A; X A,. The
sequential composition A; @ A, of Ay and A, is de-
fined as A, ® Ay, = (OP,1,0,p*,p",et,e”) where
OP = OP,UOP, I =1,, 0 = Oy, p* = p] Upj,
pT=puUpy, et =efuel, e = Uej.

An AWS can be seen as a service type. Any concrete
web service of a particular type would have the same sig-
nature (operation, input, output, pre- and post-condition).
The difference between the concrete web services of the

same type lies in the quality of services. To this end, a
concrete WS is defined as follows.

Definition 4.5 ((Concrete) web service, CWS)

A (concrete) web service is defined as a tuple
C = (ID,AWS, QoS), where ID is the identifier of
the web service; AWS is the abstract web service (service
type); QoS is the quality of the service represented
by an (n + 1-tuple (Qy,Qy,+,0,), where each
Q,,i € {0, ...,n} denotes a QoS attribute of the CWS.

We reserve Q) as a primary QoS, representing the avail-
ability of the service, usually given as the probability of
the service being successfully invoked.

Example 4.6 C, = (MiniCab, TAXIL_TS,
(00, 0,,0,,0,.)) is a taxi service called MiniCab.
Qo = 0.95 is the probability that a minicab is available
and arrives on time; Q, = 0.9h shows how fast the
service is; Q, = 0 stops shows that it is a direct journey
and no transfer is required; Q, = £50 shows how much it
charges.

C, = (Uper!, TAXI_TS, (Q, = 09,0, = 0.9h,0, =
0,0, = £40)) is another taxi service called Uper, which
is cheaper than MiniCab, but with less availability.

C; = (Linel&2, TUBE_AIL, (Q, = 099,0, =
1h,Q; = 1,0, = £5)) is a tube service. Note that the
probability of a tube running on time (0.99) is much higher
than that of a taxi. But this service requires one transfer
during the journey.

C4 = (Express, TRAIN, (Q, = 0.98,0, = 24,0, =
0, Q. = £100)) is an express train and it provides fast and
direct connections, but is rather expensive.

Cs = (Local, TRAIN, (Q, = 0.90,0, = 5h,0, =
2,0, = £50)) is connected by several local trains, which
is relatively slow and needs 2 transfers, but is economical.

After deploying the abstract web service composition at
a higher level, the web service configurator then picks a
CWS for each AWS so that the concrete chain of services
satisfies its own need subject to certain constraints. In-
spired by [18] which used transition systems to model the
composition, we construct an MDP to model the sequen-
tial composition of CWSs. Given a set of candidate CWSs
C, we can generate an MDP as follows.

1A fictitious company

Definition 4.7 (MDP for composition) Given a set C of
candidate CWSs, the MDP is

MC = (S’ s03 A’P’ R’AP9 L)»
where

o S C CU {5y, End}, with s the initial state and End a
special state indicating the end of a process;

o AP is the set of atomic propositions;

o L : .S — 24P isqalabelling function that assigns subset
of AP to each state;

o The set of actionsis A = {a | «a = C.ID, YVC € C} U
{fin};
o The transition probabilities are defined as
- P(sg,a,C;) =qandP(sg,a,C;)=1—g¢, if
* C; €C,
* init € Cj.p+ (C; is one of the starting web ser-
vices),
* a = C;.ID (action is the ID of the starting web
service), and
* q = C;.Q (probability of successfully calling ser-
vice Cj);
- P(C,a,C;)) =qand P(C;,a,C;) =1—¢q, if
* C,-,Cj eC, a= Cj.ID and q = Cj.QO,
*x C; X CJ- (C; and Cj are compatible);
- P(C;.fin,End) = 1, ifC; € C, end € Cj.e+.
e R : SXAXS — R"™is the reward function that

describes a vector of m (transition) rewards, and for
C,C'eCanda € A,

R,(C.a.C")=C".0,, ifC # C and R,(C.a,C) =0

The state space .S’ consists of the set of CWSs and two
extra states - the initial state and the end state. The set of
atomic propositions AP is the set of all atomic proposi-
tions from the AWSs. The set of actions A is the ID of
each CWS in C with an additional one fin.

To lay out the transition probabilities, we distinguish
three cases. (1) Starting from the initial state s;. A transi-

tion init — C ; can take place if the target state C; (which is
a CWS) has been labelled with init (representing the start
of the sequence of web services). The action would be the

ID of the CWS C;, and the probability of the transition
is the initial probability of C;. (2) For all the intermedi-

ate transitions C; Sc ;» we require that the source and
target states (CWSs) are compatible. The actions are the
IDs of the target states and the transition probability is the
probability successfully calling the target CWS C;. This

probability is C y .Qy. (3) For the final transition C y jz End,
we introduce another action fin and the extra state End and
the probability is 1.

4.2.2 User requirement

A user requirement defines what a user wants, which
guides the configurator to select appropriate abstract or
concrete web services. With the user requirement, it is
possible to greatly narrow down the range of feasible web
services and web service composition, facilitating the se-
lection of web services.

We use the same formalism of (abstract) web services
for specifying a user requirement so they can be cast into
the same framework in a uniform manner. In general, user
requirements consist of two parts, the functional require-
ment which usually specifies the pre- and post-conditions,
but from the user’s perspective; and the non-functional re-
quirement which usually focuses on the QoS set by the
user. The non-functional requirement is defined as fol-
lows.

Definition 4.8 (QoS requirement) Given a QoS mea-
sure Q, a QoS requirement is

(i) hard, if it is of the form Q ~ v where ~ € {<,>,<, >}
and v is a real number, or

(ii) soft, if it is of the form max Q or min Q, which is to
maximise or minimise Q.

Intuitively, the hard requirements are of the boolean
type and should be met, and the soft requirements are of
the optimisaton type and the target to be achieved.

Definition 4.9 (User requirement) A user
requirement r is defined as a tuple
(op,i,o, pret, pre”, postt, post~,req), with op de-

notes the type of operation the user asks, i and o denoting
input and output, respectively; pre*, pre and post*,
post™ are positive and negative pre- and post-conditions;
req is a set of QoS requirements.

Example 4.10 A request from a disabled passenger who
would like to bring a pet from home to city B would be

r= (travel, home, cityB, pret = {disabled, pets},
@,6,0, {min Q, O, < £110}).

Here, min Qg is to minimise the number of transfers
and Q, < £110 means the total sum of fare should be
no greater than £110.

4.2.3 Web service selection at the abstract level

Given the user requirement, the main task is to select
which web services to compose to fulfill the requirement.
The selection is carried out at two levels.

At the abstract level, the pre- and post-conditions in the
request are crucial to reduce the state space of the MDP
for composition. For instance, the positive pre-condition
of disabled would rule out the option of taking a tube from
a station that does not have disable access; meanwhile, tak-
ing a pet would exclude travelling by plane. The above two
restrictions leave the option of taking a taxi connected by
a train.

At the concrete level, the composition may only choose
the available concrete web services from the remaining
AWSs and build an MDP accordingly. The QoS require-
ment can restrict certain policies and CWSs in the MDP,
as such policies may induce a model that dissatisfies the
QoS requirement.

In the following, we will show how to exclude some
AWS from the given set of AWSs and a user request at the
abstract level.

Definition 4.11 (AWS exclusion) Given a set of AWSs
A, the corresponding CWSs C and a user request r =
(op,i,o, pre*, pre”, postt, post™, req), we define the set of
AWSs exluded by r as Alr = {A\ A}, for each A =
(OP,I,0,p*, p~,et,e”) € A if one of the following is
true

(2) postt ne™ £ 4,
(4) post— net £ 4@.

() pret np~ # 6,
QB)pre npT #0, or

C |r is the set of concrete web services that belong to A | r.

Example 4.12 (Continued from Example 4.10)
The set of abstract web services A =

{TAXI_TS,TAXI_Al, TAXI_A2, TRAIN, TUBE_TS,
TUBE_AIl,PLANE_Al,PLANE_A2} is reduced to
be Alr = {TRAIN, TAXI_TS} by the user request
r. The corresponding set of concrete web services is
C|r = {Express, Local, MiniCab, Uper}.

Given a set of AWSs A, the corresponding CWSs C and
a user requirement r, the resulting MDP is Mc,,. Intu-
itively, the MDP produces all the functionally feasible so-
lutions that conform to the user requirement. Each path
that starts from s, and ends at End represents a way to
compose web services to achieve the functional require-
ment of the user.

Figure 3: Example of MDP from composing CWSs

Example 4.13 (Continued from Example 4.12) The
MDP for composing set of CWSs Clr is shown as in
Fig. 3, where the probabilities were taken from all the
availability probabilities Qs in Example 4.6.

The exclusion at the AWS level could have led to a (sig-
nificant) state space reduction. The MDP in Fig. 3 has 6
states and this is after the exclusion due to positive and
negative pre- and post-conditions. The MDP before the
exclusion has 18 states, assuming there are 2 CWSs per
AWS. In PRISM, due to some auxiliary variables that are
used to synchronise, there would be more states than 6 or
18.

Table 1 summarises the number of states and transi-
tions before and after the exclusion due to pre- and post-
conditions for the travel example. Note that #A is the num-
ber of AWSs and #C is the number of CWSs per AWS. To

test the magnitude of state space reduction, we scaled the
MDP model by enlarging the number of AWSs and CWSs.
From the table, the number of states/transitions after the
exclusion using pre-/post-conditions is approximately re-
duced by 80% of that before the exclusion.

4.2.4 Web service selection at the concrete level

At the concrete level, the goal is to decide which CWS to
select from each type of AWS to satisfy the QoS require-
ments. In the MDP, it is to find a policy under which the
rewards along the set of paths that go from s to the End
state fulfiling the QoS requirements.

Remark that there are two types of QoS requirements,
the hard ones (e.g., O, < £110, Q, < 5h) and the soft
ones (e.g., min Q, minimise the number of transfers). As a
result, we may have eight different patterns of the QoS re-
quirements in the first column of Table 2. We write 1H1S
a short form of “one hard and one soft requirement” and
mHmS is short for “multiple hard and multiple soft re-
quirements”, etc.

Six out of the eight QoS patterns can be calculated in
PRISM. The only limitation is that there cannot be mul-
tiple software requirement and one or more hard require-
ments. As a very useful by-product, PRISM provides a
policy on how the result is or could be obtained. In other
words, the resulting policy points out which concrete web
services are being selected.

Example 4.14 o [1H] R{"Qc"}<=110 [F End] is false.
The formula asks whether under ALL policies, one can
reach city B with no more than £110. The result is false,
and a counterexample policy is given - taking MiniCab
(£50) + Express train (£100) will add up to £150, which
exceeds £110.

o [ISIR{"Qs"}min=? [F End] is 1. The minimum num-
ber of transfers is achieved when taking Uper followed
by the Express train. The result 1 comes from changing
means of transportations.

e [mH] Multi(R{"Qc"}<=200[C], R{"Qs"}<=1[C])
asks whether there exists a policy under which both
boolean requirements are true. An evidence policy is
provided - taking MiniCab then Express trains.

o [mS] Multi(R{"Qc"}min=?[C], R{"Qs"}min=?[C]) is
a pareto curve. The result is a region with two extreme

before after before after
#A #C #states #trans #states #trans #A #C #states #trans #states #trans
2 62 91 14 19 2 142 191 30 39
4 202 301 42 61 4 842 1181 170 237
6 422 631 86 127 6 2582 3691 518 739
8 8 722 1081 146 217 11 8 5842 8441 1170 1689
10 1102 1651 222 331 10 11102 16151 2222 3231
20 4202 6301 842 1261 20 | 84x10* | 12x10° | L.7x10* | 2.5x10*
30 9302 13951 1862 2791 30 2.8x10° 4.1x10° 5.6 x 10* 8.3 x 10*
before after before after
#A #C #states #trans #states #trans #A #C #states #trans #states #trans
2 302 391 62 79 2 622 791 126 159
4 3402 4701 682 941 4 13642 18781 2730 3757
6 15542 22051 3110 4411 6 93302 132211 18662 26443
14 8 4.7 % 10* 6.7 x 10* 9.4 x10° 1.3x10* 17 8 3.7x10° 54x10° 7.5 % 10* 1.I1x10°
10 | L1x10° | 1.6x10° | 22x10* | 3.2x10% 10 | 1L.Ix10® | 1.6x10° | 22x10° | 32x10°
20 1.7 x 106 2.5x 108 34x10° 5.0x10° 20 3.4 x 107 5.0 x 107 6.7 x 10° 1.0 x 107
30 8.4 x 10° 1.2 x 107 1.7 x 106 2.5% 100 30 2.5% 108 3.7 x 108 5.0 x 107 7.5% 107

Table 1: Comparison of #states and #transitions before/after AWS exclusion

[Pattern [Example [Result [Policy
IH R{"Qc"}<=110[F End] false MiniCab—Express
1S R{"Qs"}min=?[F End] 1 Uper—Express
mH Mulu(Rg ,8:,}} <—%E)((:)][)C L S MiniCab—Express
S Multi(R{"Qc" }min=?[C], [(94, 3), Uper—Local
m R{"Qs"}min=?[C]) (140, 1] MiniCab—Express
Multi(R{"Qs" }min=?[C],
1H1S R{"Qc"}<=95[C]) 3 Uper—Local
Multi(R{"Qs" }min=?[C],
mHI1S R{"Qc"}<=110[C], 2.33 MiniCab— Express
R{"Qt"}<=[C]
Multi(R{"Qs" }min=?[C],
1HmS R{"Qc"}min=?[C], Error -
R{"Qt"}<=5[C])
Multi(R{"Qs" }min=?[C]
R{"Qc"}min=?[C],
mHmS R{"Qt"}<=5[C], Error -
R{"Qc"}<=130[C])

Table 2: The QoS pattern and the PRISM properties

10

points, one with minimum cost and the other with min-
imum number of transfers. For each extreme point, a
policy is given.

° [1H1S,mH1S] Multi(R{"Qs"}min=?[C],
R{"Qc"}<=95[C]) and Multi(R{"Qs"}min=2[C],
R{"Qc"} <=110[C], R{"Qt"}<=5[C]) calculate
the minimum expected cumulative value of reward
structure Qs, given one or more constraints on other
expected cumulative values. The policy returns a
feasible solution on how to achieve this.

4.3 Adaptive Web Service Composition

As stated previously, QoS depends heavily on the external
environmental factors [7, 37, 38], and thus a web service
would not always withhold the same QoS performance in
different environment. For instance, the availability of taxi
services would drastically decrease if it is at rush hours
or the weather is bad. At some extreme weathers, flights
might be cancelled (so the availability drops to very low
Q, = 0.1). Meanwhile, the tube services are more robust
to weather influences.

To match the different mode of the environment, each
concrete web service will have to be equipped with differ-
ent sets of QoS measures.

Example 4.15 (Continuing Example 4.6) The set of
QoS of the Uper service C, was QoS = (Qy = 0.9,0, =
0.9h,0, = 0,0, = £40) and let us assume it is the QoS
when the taxi service is running normally at off-peak

time. In the case of peak time, the QoS might be Q0S, =
(Qy=0.7,0,=1.7h,Q, = 0,0, = £51) and in the case
of night time when there is little traffic, the QoS might be
Q083 =(0Qy =0.95,0,=0.68h,0, = 0,0, = £26).

Modelling the environment change is challenging. In
this section, we will abstract the environmental change as
a fully probabilistic system (FPS) and describe the inter-
action and influence between the environment and the web
services as a composition between the FPS and the MDP.

4.3.1 Environment model

As discussed before, we abstract the environment’s possi-
ble behaviours as a fully probabilistic model (as defined
in Section 3), which is to capture the environment uncer-
tainty.

Definition 4.16 (Environment) An environment is £ =
(S¢, sg, P¢) where

o S¢ is afinite set of environment states (or modes), with
sg € S¢ the initial state;

e P& : xS = [0,1] is the transition probability func-
tion of the system.

Example 4.17 We model the environment for the travel
example as in Fig.4. The probabilities are chosen such
that the long-run distribution is approximately (25—4, %, %)
for peak, normal and night mode, respectively. The long-
run distribution is based on the fact that peak hours are
6am-9am, Spm-7pm (5 hours), normal hours are 9am-5pm
and 7pm-10pm (11 hours), and quiet night time is 10pm-
6am (8 hours). Note that there is no transition from peak
hours to quiet time directly. The traffic will first reduce to

normal and then to the night time.

4.3.2 Web services in environment

Given a versatile environment, the web services adapt
themselves to fit in. The composition of the underlying
models is of two-folds. At any state (s™, s€) it is possible
to have an environmental change or carry out a web ser-
vice. Therefore, we stratify the model states into (s, s)
and (ﬂ , s€), where only environmental changes can take
place in the former states and only web service execution

11

9am or 7pm, 0.8

Spm, 0.15
0.65

10pm, 0.2

Figure 4: Environment model

could take place in the later states. The resulting model is
an MDP and is defined as follows:

Definition 4.18 Given a CWS MDP model M
(SM,sM,AM, PM,RM,APM, LM) and the environ-
ment model £ = (S‘g, sg, P‘?), the composed model is an
MDP M||E = (S, 59, A,P,R, AP, L), where

oS = {(s0.(s,0) | s € SM1 € SE}, with s

M €
(55755,

A = AM U {env}, where env is a new action;
P((s, 1), env, (s, 1)) = PE(1,1") and P((s, 1), a, (s', 1))
PM(s, a, 5');
R((s,g),env, (s, t’))
RM(s,a,s");
AP = APM, and L((s,1)) = LM(s).

) as the initial state;

0 and R((s,1),a,(s,1))

Example 4.19 Given the CWS MDP in Fig. 3 and the en-
vironment model in Fig. 4, the resulting MDP is shown in
Fig. 5. Note that due to the space limit, we only show the
part of the MDP (the first two steps from the CWS MDP).
The model starts from the initial state (sq,normal)
where a probability distribution (labelled with action env)
takes place, which is from the state normal in the environ-
ment model. In the next level, from state (s, peak), two
actions are taken from the CWS MDP, but the probabili-
ties are from the peak time availability Q in Table 3.
From state (MiniCab,normal), it has a similar dis-
tribution as the one mentioned above; and from state
(Uper, night), it takes the probabilities from state night
in the environment model in Fig. 4. The dashed lines are
other probability transitions of which we omit the details.

normal peak night
0 [omw]oJo®] o [oJo,Jo. [o | o Jo o
MiniCab 0.95 0.9 0 50 0.6 1.7 0 57 098 | 0.68 0 49
Uper 0.9 0.9 0 40 0.7 1.7 0 51 0.95 | 0.68 0 26
Express 0.98 2 0 100 0.98 2 0 115 0.98 2 0 100
Local 0.9 5 2 50 085 | 55 2 60 0.91 5 2 50

Table 3: The QoS in different environment

The reward structure will depend on the environ-
ment model and will only have positive rewards on
transitions that start from CWS-active states, i.e., (s,1).
In this example, the travel time is RQI((so,night),

Uper, (Uper, night)) = 0.68h, the number of transfers is

RQS ((s_o, night), Uper, (Uper, night)) = 0, and the cost is
RQc ((s_o, night), Uper, (Uper, night)) = £26.

4.3.3 Analysis

We now show the results of the running example against
some typical properties listed in Table 4. We will explain
what it means to the model and, in particular, how they
can be used for the web service composition. The policies
in the last column specify which CWSs to select and in
which order.

Booleanresults The boolean results tell whether a given
property is true or false.

e The first property in Table 4 - P>=0.98[F End] - is a
reachability probability property. For all policies the
probability of reaching B is no less than 0.98. An ex-
ample policy is Uper to Local.

e The next three are pareto properties. When the journey
is finished, either it is achieved by the express train or
the local train, but not both (hence Multi(P>=0.98[F
Express], P>=0.95[F local]) is false). A counterexam-
ple policy for the false property is given.

e The next two are related to rewards. The first one is
a reachability reward property and the second one is a
multi-objective referring to the expected total cumula-
tive values.

12

Numerical results

e The first class of properties we compute is the (un-
bounded) reachability probability. As it is an MDP,
where uncertainty arises, it is to compute the maximum
or minimum reachability probability. In Table 4, the
minimum probability of reaching city B by an express
train is 0. The maximum probability of arriving at B is
1.0, as the probability of taking a loop (whose probabil-
ity is less than 1) infinitely many times is 0. See the
rows in Table 4.

e The second class of properties we compute is the reach-
ability rewards. It is to compute the maximum or min-
imum reward when reaching a certain goal. In Table 4,
we listed three properties (rows marked with +) to cal-
culate the minimum time, cost, number of stops when
reaching City B (It takes 2 hours, £99.6 and 1 stop at the
minimum. Note that this is the weighted mean average
between different modes of the environment.

e The third class of properties is single objective single
constraint. It has one soft and one hard QoS require-
ment. To study these properties, one way is to first fix
a pair of QoS measures, say Q, (time) and Q, (cost),
and then change the bounds of the restriction (Q, <=
2,2.3,3, etc) and see how the value of the other prop-
erty changes (minimum Q, is £104, £99.3, £87.8, re-
spectively). As the travel time increases, the budget re-
duces. See & marked in Table 4. The other direction
also holds - when budget increases (£100, £110, £120),
the travel time decreases (6.42, 5.75, 5.09 hours), see
rows marked with —.

The other way is to fix the restrictive properties (say
the budget is no more than £200, marked with #) and
see what the other metrics are. Compared with the case
when budget is £100 (marked with §), the number of
stop of the high budget case is lower, travelling time is

0.6
(

N

MiniCab

(89, peak)

Uper

\ o7
0.15 03
0.05 0.95
Cab
- Uper
‘ e
0.1
0.2 0.98
0.02 (
iCab
Uper
0.95

M

M

(

(MiniCab, normal) cnv

(Uper, normal) ¢

(Uper, night)

iniCab, peak) env

Uper, peak) en

iniCab, night) env

\%

nv

env

Figure 5: Concrete web service model and environment composition

shorter and the cost stays the same.

The fourth class is a generalisation of the third class -
single objective multiple constraints. It has one soft and
multiple hard QoS requirement. In Table 4, it shows
in »k that when the travelling time is no more than 3.5
hours and as the budget increases (£149, £150, £155),
the minimum number of transfers reduces (1.09, 1.05,
1.00). This is expected as a higher budget means the
affordability to take an express train. Similarly, the »k-
marked rows show the case when a minimum travel time
is calculated for a restricted budget and time.

The last class is multiple objective properties. The re-
sults contain the extreme points in the region. For in-
stance, Multi(R{"Qc"}min=?[C], R{"Qs"}min=?[C])
has four extreme points. All the points included within
the four points form a region where the two factors (cost
and number of stops) are competing with each other.

13

Often one is not able to obtain a policy that can min-
imise both objectives and has to compromise.

In summary, the QoS requirements from all aforemen-
tioned classes can be checked. Either none of the exist-
ing CWSs would satisfy the requirement and, if this is
the case, a counterexample is given, or a policy on which
CWSs to select and how to compose them is returned.

4.4 Web service composition via parametric
analysis

In this section, we show how to perform web service com-
position by an approach based on parametric probabilistic
verification. The overall strategy is to reduce the prob-
lem of finding an optimal combination of concrete web
services to the policy synthesis of MDPs. The main chal-
lenges are the environment uncertainty and complicated

\ Property Result Policy
o | P>=0.98[F End] True U-L
§ Multi(P>=0.98[F Express], P>=0.95[F Local]) False M-E
8 | Multi(P>=0.98[F End], P>=0.95[F Local]) True M-L
" Multi(P>=0.98[F Express], P>=0.95[F End]) True M-E
R{"Qc"}<=110 [F End] False M—E
Multi(R{"Qc"}<=200[C], R{"Qs"}<=1[C]) True M-E
+ Pmin=?[F Express] 0.0 M-E
) * Pmax="?[F End] 1.0 M-E
= + R{"Qt"}min=?[F End] 3.28 U-E
g + R{"Qc"}min=?[F End] 99.6 M-L
g + R{"Qs"}min=?[F End] 1 M—E
L — Multi(R{"Qt" }min=?[C], R{"Qc"}<=100[C]) 6.42 UL
£ = | — Multi(R{"Qt"}min=?[C], R{"Qc"}<=110[C]) 5.75 U-L
% — Multi(R{"Qt" }min=?[C], R{"Qc"}<=120[C]) 5.09 U-L
g & Multi(R{"Qc"}min=?[C], R{"Qt"}<=4[C]) 137 U-E
Z | & Multi(R{"Qc"}min=?[C], R{"Qt"}<=5[C]) 121 U-E
& Multi(R{"Qc"}min=?[C], R{"Qt"}<=6[C]) 106 U-L
Multi(R{"Qs" }min=?[C], R{"Qc" }<=200[C]) 1.00 U-E
Multi(R{"Qc" }min=?[C], R{"Qc"}<=200[C]) 99.60 U-L
Multi(R{"Qt" }min="?[C], R{"Qc" }<=200[C]) 3.28 U-E
§ Multi(R{"Qs"}min=?[C], R{"Qc"}<=100[C]) 3.00 M-L
§ Multi(R{"Qc"}min=?[C], R{"Qc"}<=100[C]) 99.60 U-L
§ Multi(R{"Qt" }min=?[C], R{"Qc"}<=100 C]) 6.42 U-L
v Multi(R{"Qs" }min=?[C], R{"Qc"}<=99[C], R{"Qt"}<=3.5[C)) NaN -
v Multi(R{"Qs"}min=?[C], R{"Qc"}<=130[C], R{"Qt"}<=3.5[C]) | NaN -
v Multi(R{"Qs"}min=?[C], R{"Qc"}<=155[C], R{"Qt"}<=3.5[C]) | 1.00 M-E
k Multi(R{"Qt" }min=?[C], R{"Qc"}<=130[C], R{"Qt"}<=6.5[C]) | 4.45 U—-E
ke Multi(R{"Qt" }min=?[C], R{"Qc"}<=150[C], R{"Qt"}<=6.5[C]) | 3.36 U-E
e Multi(R{"Qt" }min=?[C], R{"Qc"}<=170[C], R{"Qt"}<=6.5[C]) | 3.28 U-E
% Multi(R{"Qc" }min=?[C], R{"Qs"}min=?[C]) [151,1] M-E
[137,1.5], U-E; [121,2.1], U=E | [100,3] U-L
% Multi(R{"Qc" }min=?[C], R{"Qt" }min=?[C]) [151,3.28] | M—E
[156,3.28], U—E; [137,4], U-E; [121,5], U=E | [100,6.44] | U-=L
% Multi(R{"Qs" }min=?[C], R{"Qt" }min=?[C]) [1,3.27] M-E

Table 4: Non-parametric Analysis Results for Travelling Example with Environment M — MiniCab, U — Uper, L —

Local, E — Express

QoS requirement, which will be addressed by a parametric
multi-objective analysis with the aid of the state-of-the-art
probabilistic model checker PRISM.

4.4.1 Parametric environment and QoS models

As mentioned in Section 1, there are generally two oc-
currences of parameters in our models, i.e., in the envi-
ronment and in the QoS of web services. Fig.4 gives an

14

example of the first case. The probability to go from nor-
mal to night (peak) could be p; (p,) instead of 0.2 (0.15),
naturally, the probability to go from normal to itself is
1 — p; — p,. This probability parameters will remain to
be a parameter for probability in the resulting MDP.

In the second case, parameters represent some QoS
measures of the transitions in the CWS models, They can
either be the availability of a CWS or other QoS measures
usually with given upper- and lower-bounds. After the

composition, those QoS parameters continue to be QoS
parameters in the resulting parametric MDPs. The follow-
ing example introduces three parameters, two of which are
the probabilities in the environmental model (p;, p,) and
the last one is a QoS measure g;.

Example 4.20 In this case study, we will have three pa-
rameters: p; € [0.1,0.3] (the probability from normal
to night), p, € [0.1,0.4] (the probability from normal
to peak) and q; € [0.6,2] (the average time to drive
from home to train station). Note that q, is introduced
as there is a high variation in the arriving time and the
Uper/MiniCab fare closed related to q,. Here we assume
the taxi fare Q. is a linear function in q,. Depending on
how jammed the traffic is, one would choose MiniCab or
Uper to minimise the cost. The parametric QoS measures
are set in Table 5. The other measures remain the same as
in Table 3.

MiniCab Uper
0,(h) 0. o | 0.
normal | 0.5¢,+0.3 | 34q, +10 | 0.5g,+03 | 3q,+4
peak | 0.5¢;,+0.5 | 24¢,+22 | 0.5, +0.5 | 35¢,+9
night | 0.4¢g,+0.2 | 35¢,+7 | 0.4q,+0.2 | 20g, +2

Table 5: The parametric QoS in three environment modes

Probabilistic verification tools support automated solv-
ing parametric MDPs against various kinds of properties
specified before. (In probabilistic verification terms, they
are unbounded until and reachability rewards properties.)

Depending on the property under consideration, the re-
sult is then given as either a rational function over the pa-
rameters or as a mapping from regions of these parameters
to rational functions or truth values [39, 40]. To be more
specific, given a property, we usually have three types of
results which can be exploited for web service selection:
it is either a boolean result, a numerical result of probabil-
ities/rewards, or, in the presence of a parametric model, an
explicit form of a rational function that can be optimised
or plotted.

4.4.2 Parametric analysis

In the parametric analysis, it is possible to have one or
more parameters the ranges of which are given. For a

15

reachability probability or a reachability reward property,
the closed-form expressions for the objective could be cal-
culated. For instance, we have described three parameters
p; € [0.1,03],p, € [0.1,04],q9, € [0.6,2] in Section
4.4. We are to show cases with 1, 2 and 3 parameters. The
results are summarised in Table 6.

[[[Property | Result |
(py=04,9,=12) | h(py)
R{"Qc"}min=?[F End] (p, =0.2,q, = 1.2) | h°'(p,)
5 (1 =0.2,p,=04) | h°'(q)
° (py=04,4,=12) | K" (p))
§ | R("QU}min=?[F End] (q; =0.2,q,=12) | h'}(p,)
ol = (1 =02,p,=04) | h''(p))
3 (p,=04,q,=12) | 1
§ R{"Qs"}min=?[F End] (¢, =02,q,=12) | 1
£ (py=02,p,=04) | 1
2z | R{"Qc"}min="[F End] (¢, = 1.2) RN
g | R{"Qt"}min=2[F End] (g, = 1.2) 201, p2)
' | R{"Qs"}min=7[F End] (¢, = 1.2) 1
g | R{"Qc"}min=?[F End] PR
g | R("Qt"}min=?[F End] y
e | R{"Qs"}min=?[F End] 1
Table 6: Parametric Analysis Results for Travelling Ex-

ample with Environment

One parameter If we instantiate the two parameters
p> = 0.4, q, = 1.2, that would leave only one parameter p; .
The function for the minimum cost is captured by /¢!(P1)s
where ¢ means it is to calculate the cost and 1 means there
is one parameter. The function is of the following form
for p; € [0.1,0.3] is shown in (1). The functions h”(pz)
and h¢! (g,) are in the similar fashion with p, and g, as the
parameter, respectively.

hCI(pl) =(145397874025p% + 117281115430p; + 2189373409209)

/(2448936757 + 4572125610p, + 21340212843)
()
h!(py) =(36960320250p] — 168561353275p5
+776963615860p, + 1932464456940)
/(136890075p3 + 3382066380p, + 20889704748)
2)
h¢'(g,) =(31377704725q, + 54790318799)/927684738
3)

101}

100.5 \\

100 | e
\-\

99.5 | .

99 | e

M e ‘\.\l

98.5+ e

01 015 02 025 0.3

pl

Figure 6: h°!(p,)

When the functions are plotted, we can see how the three
parameters are related to the minimum expected cost of
reaching City B, respectively.

100
99
98
97
96

95

0.10.150.20.250.30.350.4
p2

Figure 7: h°!(p,)

It shows from Table 3 that it is cheaper to travel in the
night than at normal time. As a result, when p; increases,
the price drops, and that explains the trend in Fig. 6. On
the contrary, it costs more to travel at the peak time. Thus
when more weights are towards the peak time, i.e., p, in-
creases, the cost would rise, see Fig. 7. As the MiniCab or
Uper fare is positively linearly related to g, it means that
when ¢, increases the taxi cost also increases, see Fig. 8.
With the closed-form expression, it is possible to evaluate
the value (in this case the minimum cost) given the value
to the parameter. For instance, h“(pl) = £101.04 when
instantiating p; = 0.2 in Eq. (1).

16

130
120
110
100

90

80

2

0608 112141618
qt

Figure 8: h¢!(q,)

Two parameters If the model has two parameters, the
resulting closed-form expression could be quite involved.
Let’s still take the minimum cost Q.. as the objective and
letg, =1.2.

The function f cz(pl , D») calculates the minimum cost
when parameters p; € [0.1,0.3] and p, € [0.1,0.4].

1 p2)
=(66121292250p7 p, + 98870908500, p; + 36960320250p3
+118949357125p% — 246838623450p, p, — 1883355349752
+200197219450p, + 823686488860p, + 1887667038765)
/(244893675p7 + 366188550p, p, + 136890075p3
+4425650190p, + 3308828670p, + 19994778963

Given this closed-form expression, we can evaluate the
function fcz(O.l,O.l) = 95.75, which means that when
the probability to go from normal to night and from nor-
mal to peak are both 0.1, then the minimum expected cu-
mulative value of total cost (Q,) is £95.75. The plot can
be found in Fig. 9.

Likewise we can have a similar analysis on how two
parameters vary to affect the measure Q, (time to reach B).
The different combinations of parameters can be found in
Fig. 10 and 11.

Three or more parameters. When there are more than
two parameters, it is not easy to visualise the results in one
plot. Instead, we present the results in a series of plots,
each with several surfaces. When there are more param-
eters, the computation time increases and the expression

could be (sometimes very) complicated.
For minimum Q,, where p; € [0.1,0.3], p, € [0.1,0.4]
and ¢, € [0.6,2.0]:

g2 (1. pyeay)

=(423635301250p%q, — 191557642500p; p,q, — 351326263750p2¢,
+83056825250p7 — 177233878500p, p, — 418554481500, ¢,
—168447287750p2 + 1509743875500g, * p, — 57386583300p,

+575587328100p, + 3353377815450¢, + 482741425890)

/(627074175p% + 936527550p, p, + 349672575p3
+17599103940p, + 13147688820p, + 107824464333)

For instance, we could have three figures (Fig. 12, 13
and 14), where three surfaces are shown.

110

100

£

9L
0 02

// -
0.5
p2

e/
510

).4 0:5"(’{
pl

Figure 9: h“z(pl,pz) atg, = 1.2

2.5

9.48
9.46
9.44
9.42
() ~,~,~;A,~.»,~,J.>V~V>.~.>v>ﬁ>w»J»
0204 g6 0.8 10

pl

Figure 10: K'2(p,, p,) at g, = 1.2

17

Figure 11: h2(p,q,) at p, = 0.4

5 Conclusion

In this paper, we present a model-based approach for QoS-
aware service composition based on MDPs. We show how
to obtain an MDP model based on the models of abstract
and concrete services, and the environment model as a
fully probabilistic system. Armed with probabilistic veri-
fication, we are able to find the optimal service selection
strategy against their QoS and the environment changes.
The analysis can be made parametric with parametrised
models for QoS of services and dynamics of environment
changes, which makes them amicable to autonomous and
self-adaptive systems. Our approach is based on a formal
framework on a rigourous basis which provides a holis-
tic, independent support for QoS-aware service compo-
sition, including modelling, specification and automated
synthesis of composition strategies and parameters. This
model-based approach offers great flexibility, owing to
the expressiveness of the MDP models we have adopted,
and allows to take the environment into account explic-
itly. One of the strengths of our approach is to provide,
not only qualitative, but also quantitative analysis results,
which is indispensable especially for the parametric anal-
ysis. While bearing the modelling capability, as the exper-
iments show, our framework is computationally feasible,
and may demonstrate superiority in performance because
of the optimised methods and tools to solve MDPs.

Further work includes a learning approach to find out
the parameters online so we can have a more comprehen-
sive framework in support of environment-sensitive ser-
vice composition.

120

100

1) S— e

L gy

5 6‘:;07- »‘:7L‘77;77-A7
202 o3 r2

pl

Figure 12: fcz(pl, py) at
g, =0.8,13,1.8

Figure 13: f"’z(pl, q,) at
p, =0.15,0.25,0.35

0.4.8 qt

Figure 14: f<%(p,, q,) at
p; =0.12,0.2.0.28

Acknowledgements The work was partially supported
by the National Key R&D Program of China (No.
2018YFB1003902), the National Natural Science Foun-

dation of China (No. 61972197), the Fundamen-
tal Research Funds for the Central Universities (No.
NS2019055), Collaborative Innovation Center of Novel
Software Technology and Industrialization, and the Qing
Lan Project. T. Chen is partially supported by Birk-
beck BEI School Project (ARTEFACT), ARC Discovery
Project (DP160101652, DP180100691), NSFC grant (No.
61872340), and Guangdong Science and Technology De-
partment grant (No. 2018B010107004). T. Han is sup-
ported by EPSRC grant (EP/P015387/1).

References

[1] Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C.,
Bourne, S., Xu, X.: ‘Web services composition: A
decades overview’, Information Sciences, 2014, 280,
pp- 218 — 238

[2] Chen, W., Paik, I.: ‘Toward better quality of ser-
vice composition based on a global social service
network’, IEEE Transactions on Parallel and Dis-

tributed Systems, 2015, 26, (5), pp. 1466-1476

[3] Lemos, A.L., Daniel, F., Benatallah, B.: “Web ser-
vice composition: A survey of techniques and tools’,

ACM Comput Surv, 2016, 48, (3), pp. 33:1-33:41

[4] Zhou, Y., Chen, T.: ‘Software Adaptation in an Open
Environment: A Software Architecture Perspective’.
(CRC Press, Taylor & Francis Group, 2017)

[5] Hayyolalam, V., Kazem, A.A.P.: ‘A systematic liter-
ature review on qos-aware service composition and
selection in cloud environment’, Journal of Network
and Computer Applications, 2018, 110, pp. 52 — 74

[6] Mabrouk, N.B., Beauche, S., Kuznetsova, E., Geor-
gantas, N., Issarny, V. ‘Qos-aware service com-
position in dynamic service oriented environments’.
In: ACM/IFIP/USENIX International Conference
on Distributed Systems Platforms and Open Dis-

tributed Processing. (Springer, 2009. pp. 123-142

[7] Silic, M., Delac, G., Srbljic, S.: ‘Prediction of
atomic web services reliability for qos-aware recom-
mendation’, IEEE Transactions on Services Comput-

ing, 2015, 8, (3), pp. 425-438

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Zhang, P., Zhuang, Y., Leung, H., Song, W., Zhou,
Y. ‘A novel qos monitoring approach sensitive to
environmental factors’. In: Web Services ICWS),
2015 IEEE International Conference on. (IEEE,
2015. pp. 145-152

Wang, H., Wu, Q., Chen, X., Yu, Q., Zheng, Z.,
Bouguettaya, A. ‘Adaptive and dynamic service
composition via multi-agent reinforcement learn-
ing’. In: Web Services ICWS), 2014 IEEE Inter-
national Conference on. (IEEE, 2014. pp. 447-454

Wang, H., Ma, P., Yu, Q., Yang, D, Li, J., Fei, H.:
‘Combining quantitative constraints with qualitative
preferences for effective non-functional properties-
aware service composition’, Journal of Parallel and
Distributed Computing, 2017, 100, pp. 71-84

Canfora, G., Di.Penta, M., Esposito, R., Villani,
M.L. ‘An approach for qos-aware service compo-
sition based on genetic algorithms’. In: Proceedings
of the 7th annual conference on Genetic and evolu-
tionary computation. (ACM, 2005. pp. 1069-1075

Zhou, Y., Ge, J., Zhang, P., Wu, W.: ‘Model based
verification of dynamically evolvable service ori-
ented systems’, Science China Information Sciences,

2016, 59, (3), pp. 32101

Wang, P, Liu, T., Zhan, Y., Du, X. ‘A bayesian nash
equilibrium of qos-aware web service composition’.
In: Web Services (ICWS), 2017 IEEE International
Conference on. (IEEE, 2017. pp. 676683

Ren, L., Wang, W., Xu, H.: ‘A reinforcement learn-
ing method for constraint-satisfied services compo-
sition’, IEEE Transactions on Services Computing,
2017,

Rodriguez.Mier, P., Mucientes, M., Lama, M.: ‘Hy-
brid optimization algorithm for large-scale qos-
aware service composition’, IEEE transactions on
services computing, 2017, 10, (4), pp. 547-559

Ali, N., Solis, C. ‘Self-adaptation to mobile re-
sources in service oriented architecture’. In: 2015
IEEE International Conference on Mobile Services,
MS 2015, New York City, NY, USA, June 27 - July

19

[17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

2, 2015. (, 2015. pp. 407—414. Available from:
https://doi.org/10.1109/MobServ.2015.62

Yu, Y., Ma, H., Zhang, M. ‘An adaptive genetic pro-
gramming approach to qos-aware web services com-
position’. In: Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2013, Cancun,
Mexico, June 20-23, 2013. (IEEE, 2013. pp. 1740—
1747. Available from: https://doi.org/10.
1109/CEC.2013.6557771

Jungmann, A., Mohr, F.: ‘An approach towards
adaptive service composition in markets of com-
posed services’, Journal of Internet Services and Ap-
plications, 2015, 6, (1), pp. 5

Moustafa, A., Zhang, M. ‘Multi-objective service
composition using reinforcement learning’. In: In-
ternational Conference on Service-Oriented Com-
puting. (Springer, 2013. pp. 298-312

Bashari, M., Bagheri, E., Du, W.: ‘Self-adaptation
of service compositions through product line recon-
figuration’, Journal of Systems and Software, 2018,
144, pp. 84-105

Tilsner, M., Fiech, A., Zhan, G., Specht, T. ‘Pat-
terns for service composition’. In: Fourth Interna-
tional C* Conference on Computer Science & Soft-
ware Engineering, C3S2E 2011, Montreal, Quebec,
Canada, May 16-18, 2011, Proceedings. (, 2011.
pp. 133-137. Available from: https://doi.org/
10.1145/1992896.1992913

Aguilar.Saven, R.S.: ‘Business process modelling:
Review and framework’, International Journal of
Production Economics, 2004, 90, pp. 129-149

Wong, P.Y.H., Gibbonsa, J.: ‘Formalisations and ap-
plications of bpmn’, Science of Computer Program-
ming, 2011, 76, pp. 633-650

Corradini, F., Fornari, F., Polini, A., Re, B.,
Tiezzi, F., Vandin, A. ‘Bprove: tool support
for business process verification’. In: Rosu, G.,
Penta, M.D., Nguyen, T.N., editors. Proceedings
of the 32nd IEEE/ACM International Conference
on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03,

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

2017. (IEEE Computer Society, 2017. pp. 937-
942. Available from: https://doi.org/10.
1109/ASE.2017.8115708

Kheldoun, A., Barkaoui, K., Ioualalen, M.: ‘Formal
verification of complex business processes based on
high-level petri nets’, Inf Sci, 2017, 385, pp. 39—
54. Available from: https://doi.org/10.1016/
j.ins.2016.12.044

Zhang, W., Sun, H., Liu, X., Guo, X. ‘Tempo-
ral qos-aware web service recommendation via non-
negative tensor factorization’. In: Proceedings of the
23rd international conference on World wide web.
(ACM, 2014. pp. 585-596

Madi, B.M.A., Sheng, Q.Z., Yao, L., Qin, Y., Wang,
X. ‘Plmwsp: Probabilistic latent model for web ser-
vice qos prediction’. In: IEEE International Confer-
ence on Web Services, ICWS 2016, San Francisco,
CA, USA, June 27 - July 2, 2016. (, 2016. pp. 623—
630

Wu, C., Qiu, W., Wang, X., Zheng, Z., Yang,
X. ‘Time-aware and sparsity-tolerant qos prediction
based on collaborative filtering’. In: IEEE Interna-
tional Conference on Web Services, ICWS 2016, San
Francisco, CA, USA, June 27 - July 2, 2016. (, 2016.
pp- 637-640

Xiong, W., Wu, Z., Li, B., Gu, Q. ‘A learning ap-
proach to qos prediction via multi-dimensional con-
text’. In: 2017 IEEE International Conference on
Web Services, ICWS 2017, Honolulu, HI, USA,
June 25-30, 2017. (, 2017. pp. 164-171

Trang, M.X., Murakami, Y., Ishida, T.: ‘Policy-
aware service composition: Predicting parallel ex-
ecution performance of composite services’, IEEE

Transactions on Services Computing, 2018, 11, (4),
pp. 602-615

Hansson, H., Jonsson, B.: ‘A logic for reasoning
about time and reliability’, Formal Aspects of Com-
puting, 1994, 6, (5), pp. 512-535

Baier, C., Haverkort, B.R., Hermanns, H., Katoen,
J. ‘Model checking continuous-time markov chains

20

(33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

by transient analysis’. In: Computer Aided Verifi-
cation, 12th International Conference, CAV 2000,
Chicago, IL, USA, July 15-19, 2000, Proceedings.
(, 2000. pp. 358-372. Available from: https:
//doi.org/10.1007/10722167_28

Kwiatkowska, M., Norman, G., Parker, D.: ‘Prism
4.0: verification of probabilistic real-time systems’,
Lecture Notes in Computer Science, 2011, 6806,

pp. 585-591

Baier, C., Katoen, J.: ‘Principles of model checking’.
(MIT Press, 2008)

Yu, T, Lin, K. ‘A broker-based framework for
gos-aware web service composition’. In: 2005
IEEE International Conference on e-Technology, e-
Commerce, and e-Services (EEE 2005), 29 March -
1 April 2005, Hong Kong, China. (, 2005. pp. 22-29

Wu, Z., Gomadam, K., Ranabahu, A., Sheth, A.P.,
Miller, J.A. ‘Automatic composition of semantic web
services using process mediation’. In: ICEIS 2007 -
Proceedings of the Ninth International Conference
on Enterprise Information Systems, Volume SAIC,
Funchal, Madeira, Portugal, June 12-16, 2007. (,
2007. pp. 453462

Zhu, J., He, P, Xie, Q., Zheng, Z., Lyu, M.R.
‘Carp: Context-aware reliability prediction of black-
box web services’. In: 2017 IEEE International Con-
ference on Web Services (ICWS). (,2017. pp. 17-24

Wang, H., Wang, L., Yu, Q., Zheng, Z., Yang,
Z.: ‘A proactive approach based on online reliabil-
ity prediction for adaptation of service-oriented sys-
tems’, Journal of Parallel and Distributed Comput-
ing, 2018, 114, pp. 70 — 84

Hahn, E.M., Hermanns, H., Zhang, L.: ‘Probabilis-
tic reachability for parametric markov models’, Inter-
national Journal on Software Tools for Technology
Transfer (STTT), 2011, 13, (1), pp. 3-19

Hahn, E.M., Han, T., Zhang, L. ‘Synthesis for PCTL
in parametric markov decision processes’. In: Proc.
3rd NASA Formal Methods Symposium (NFM’11),
volume 6617 of LNCS. Springer. (, 2011.

