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ABSTRACT

Cognitive control allows the coordination of cognitive processes to achieve goals. Control may be 

sustained in anticipation of goal-relevant cues (proactive control) or transient in response to the cues 

themselves (reactive control). Adolescents typically exhibit a more reactive pattern than adults in the 

absence of incentives. We investigated how reward modulates cognitive control engagement in a letter-

array working memory (WM) task in 30 adolescents (12-17 years) and 20 adults (23-30 years) using a 

mixed block- and event-related functional magnetic resonance imaging design. After a Baseline run 

without rewards, participants performed a Reward run where 50% trials were monetarily rewarded. 

Accuracy and reaction time (RT) differences between Reward and Baseline runs indicated engagement 

of proactive control, which was associated with increased sustained activity in the bilateral anterior 

insula (AI), right dorsolateral prefrontal cortex (PFC) and right posterior parietal cortex (PPC). RT 

differences between Reward and No reward trials of the Reward run suggested additional reactive 

engagement of cognitive control, accompanied with transient activation in bilateral AI, lateral PFC, PPC, 

supplementary motor area, anterior cingulate cortex, putamen and caudate. Despite behavioural and 

neural differences during Baseline WM task performance, adolescents and adults showed similar 

modulations of proactive and reactive control by reward.

Keywords: cognitive control, development, reward, adolescence, fMRI
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INTRODUCTION

Adolescents’ ability to exert cognitive control is particularly susceptible to potential rewards and 

affectively charged contexts (Cohen et al., 2016; Crone & Dahl, 2012; van Duijvenvoorde, Peters, 

Braams, & Crone, 2016). Prevailing frameworks suggesting a maturational imbalance in adolescence 

have focused on instances when cognitive control fails to constrain reward-sensitive systems, leading to 

potentially negative outcomes, typically during risky decision-making (Casey, 2015). Less is known about 

situations in which cognitive control might be enhanced by reward sensitivity (Strang & Pollak, 2014). In 

this study, we explored whether adolescents and adults can adaptively engage cognitive control 

processes as a function of the temporal dynamics of reward to maximise their performance in a working 

memory (WM) task. 

The dual mechanisms of control (DMC) framework distinguishes between two temporally distinct 

cognitive control strategies (Braver, 2012). Proactive control refers to the sustained maintenance of 

goal-relevant information in anticipation of a cue. Reactive control refers to the transient reactivation of 

goals in response to a cue. Reactive control is less demanding than proactive control, but more 

susceptible to interference (Braver, 2012; Chiew & Braver, 2017). While adults vary in the recruitment of 

proactive and reactive control as a function of trait factors (Chiew & Braver, 2017; Locke & Braver, 

2008), they can flexibly engage the most efficient mode of cognitive control to adapt to contextual 

demands, as evidenced by changes in response to experimental manipulations (Braver, Paxton, Locke, & 

Barch, 2009; Chiew & Braver, 2013). Mixed event-related/blocked functional magnetic resonance 

imaging (fMRI) designs (Visscher et al., 2003) are specifically optimised to dissociate sustained versus 

transient changes in neural activation within a single experimental paradigm. These designs have been 

employed to study cognitive control (Brahmbhatt, White, & Barch, 2010; Marklund et al., 2007; 

McDaniel et al., 2013), and the impact of reward manipulations on cognitive control strategies (Jimura, 
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Locke, & Braver, 2010). fMRI studies have predominantly implicated the frontoparietal network in 

implementing proactive and reactive control (Braver et al., 2009; Jimura et al., 2010). In addition, the 

dorsal anterior cingulate cortex (ACC) is also involved in sustained control, and the rostral ACC is 

involved in reactive compensations (Jiang, Beck, Heller, & Egner, 2015). Further, the anterior insula (AI) 

participates in estimating the volatility of control demands and the caudate in predicting forthcoming 

demands (Jiang et al., 2015).  

Reliance on reactive control in early childhood shifts towards a mix of proactive and reactive control 

depending on individual differences and task demands in mid- to late childhood (Chevalier, Martis, 

Curran, & Munakata, 2015). By age 8, children seem to have the capacity to flexibly adapt strategies to 

be more efficient (Blackwell & Munakata, 2014; Chatham, Frank, & Munakata, 2009; Chevalier et al., 

2015). In a handful of fMRI studies, more protracted proactive control development compared to 

reactive control has been described in adolescence (Alahyane, Brien, Coe, Stroman, & Munoz, 2014; 

Andrews-Hanna et al., 2011; Velanova, Wheeler, & Luna, 2009), and was associated with reduced 

prefrontal activity in adolescents compared to adults in posterior dorsolateral prefrontal cortex (PFC) 

(Andrews-Hanna et al., 2011) and with reduced sustained activity in children and adolescents compared 

to adults in a region near the inferior frontal junction (Velanova et al., 2009). In contrast, Alahyane et al. 

(2014) found that adolescents and adults had comparable fronto-parietal activity associated with 

prosaccade and antisaccade preparation, which was higher than in children (8 -12 years old). 

The balance between reactive and proactive cognitive control is sensitive to the motivational context 

(Braver et al., 2014; Chiew & Braver, 2017), and interacts with reward circuitry in the presence of 

incentives (Luna, Marek, Larsen, Tervo-Clemmens, & Chahal, 2015). Reward-driven enhancement of 

performance may be driven by top-down control mechanisms that modulate the processing of 

subsequent stimuli in preparatory fashion through increased sustained proactive control (Jimura et al., 

2010; Locke & Braver, 2008), or transient increases in reactive control on a trial-by-trial basis (Jimura et 
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al., 2010). There is also evidence for some contribution by more automatic bottom-up processes, 

suggesting increased saliency of reward-related features (Krebs, Hopf, & Boehler, 2015). 

In the absence of reward, cognitive control continues to develop and become more stable during 

adolescence (for working memory see review in Zanolie & Crone, 2018). Over the course of 

development, cognitive control-related prefrontal activation becomes more attuned to varying 

contextual demands (Chevalier, Jackson, Revueltas Roux, Moriguchi, & Auyeung, 2019). Adolescents can 

improve their inhibitory control performance to match adults’ performance in the presence of reward 

(Geier, Terwilliger, Teslovich, Velanova, & Luna, 2010; Luna et al., 2015; Padmanabhan, Geier, Ordaz, 

Teslovich, & Luna, 2011; Zhai et al., 2015). Along these changes in performance, in the reward context, 

adolescents show increased transient recruitment of cognitive control regions (frontal cortex along the 

precentral sulcus) and reward regions (ventral striatum) during response preparation, compared to 

adults (Geier et al., 2010; Padmanabhan et al., 2011). Corticostriatal coupling under high and low 

rewards continues to develop in adolescence, underlying the increased capacity of adults to modulate 

cognitive control selectively in the context of high rewards (Insel, Kastman, Glenn, & Somerville, 2017). 

Overall, this suggests greater integration of executive control and motivation during development 

(Smith, Steinberg, & Chein, 2014). 

In contrast, Strang and Pollack (2014) found that in a task of proactive and reactive control (AX-

Continuous Performance Test (AX-CPT)) children, adolescents and adults between 9 and 30 years old 

showed a similar ability to shift into a proactive control strategy in the context of reward, associated 

with increased sustained activity in the right lateral PFC, right posterior parietal cortex (PPC) and right 

AI, among other regions.  An outstanding question is whether modulation of transient brain activity can 

also be observed across age groups. Greater modulation of prefrontal activation in response to 
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contextual demands has been proposed as one of the developmental mechanisms underlying cognitive 

control development (Chevalier et al., 2019). 

Here, we investigated the age-related increases in proactive and reactive cognitive control and their 

modulation by a motivational (reward) context that varied trial-by-trial and across blocks. We employed 

a mixed block and event-related fMRI design while adolescents and adults completed a WM task in 

neutral and reward conditions adapted from Jimura et al. (2010). We used a mixed experimental design 

which allowed us to detect sustained brain activity across blocks (proactive control) and transient 

activity in response to trials (reactive control). We expected adolescents to be more reliant on reactive 

control and to show greater sensitivity to a rewarding context, in terms of behaviour and transient 

neural activity, while we expected adults to exhibit a more proactive control strategy, with associated 

sustained frontoparietal activity across blocks. 

METHODS

Participants

Thirty adolescents (15 females, 12-17 years old, M = 14.6 ± 1.4 (SD)) and 20 adults (10 females, 22-30 

years old, M= 27.1 ± 1.9) participants took part in this study. Participants were reimbursed £20 (plus up 

to £8 depending on their performance on the task) and their travel expenses. This study was approved 

by the University College London Research Ethics Committee. Consent was obtained according to the 

Declaration of Helsinki, adults and the parents of adolescents provided written consent while adolescent 

themselves gave verbal consent. Adolescent and adult groups did not differ in their age-normed scores 

on the Vocabulary subtest of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 2011) 

(adolescents: M = 66.9 ± 0.9 (SE); adults: M = 64.7 ± 1.7; t(28.8) = 1.15, p = .25). 
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Experimental Design and Stimulus Material 

Design

The fMRI task had one between-subjects factor (Age group: adults and adolescents) and two types of 

within-subject factors: either sustained, run effects (Baseline run vs Reward run) or transient, trial 

effects (Baseline trials vs Reward trials vs No reward trials). In the Reward run, half of the trials had 

potential rewards (Reward trials) and half did not (No reward trials). Preceding the Reward run, 

participants were unaware of the potential rewards, and hence all the Baseline trials in the Baseline run 

were unrewarded (Figure 1A). 

Insert Figure 1 about here

Letter array working memory task    

We employed a fixed set-size Sternberg-item recognition task adapted from Jimura, Locke and Braver 

(2010; Figure 1B). At the beginning of each WM trial, a cue indicated whether a potential reward could 

be obtained on this trial (Reward trial) or not (Baseline trial or No reward trial). Five uppercase 

consonants were then presented and after a retention interval a single lowercase probe letter. 

Participants indicated by pressing one of two buttons on a handheld response box whether the probe 

matched one of the letters from the memory set (right index finger) or not (right middle finger). 

Participants were encouraged to respond both accurately and quickly. Visual feedback indicated 

whether the response was incorrect, too slow, correct and not rewarded, or correct and rewarded 

(Figure 1B). Cut-off times were individually set for each participant based on his/her own median correct 

reaction time (RT) on trials performed in the practice. 
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Other behavioural measures

After scanning, participants completed computerised versions of the Behavioural Activation and 

Inhibition Scale (BIS/BAS; Carver & White, 1994), Sensitivity to Punishment and Sensitivity to Reward 

Questionnaire (SPSRQ; Torrubia, Ávila, Moltó, & Caseras, 2001), WEBEXEC, a web-based short self-

report of executive functions (Buchanan et al., 2010) and a simple Go/No Go task (Humphrey & 

Dumontheil, 2016; Simmonds, Pekar, & Mostofsky, 2008). Lastly, participants completed forward and 

backward digit span tasks, and the Vocabulary subtest of the WASI. In addition, after scanning, 

participants rated how rewarding they found both stars and money on a scale from 1 (not at all) to 5 

(very rewarding).

Procedure

Participants were trained on the letter-array WM task outside the scanner. After receiving task 

instructions, participants performed one block of ten trials with a cut-off time of 2.5 s and one further 

block of 15 trials with their individual cut-off time limit (median RT in the first ten trials). This was done 

to adapt task difficulty to each individual and quickly achieve a consistent level of performance.  

In the scanner, participants first performed the Baseline run (30 Baseline trials) of the task. At this point 

participants were naïve regarding the chance to earn further money based on their performance on the 

task. Participants were then given further instructions regarding the reward component of the second 

run, they were told: “In the second run, in some of the trials you can earn stars. Stars will turn into 

money in the end. You can win up to £8.00”. Participants were also introduced to the reward cues and 

reward feedback. Participants then performed the Reward run (15 Reward trials, 15 No reward trials). 

The order of the trial types was fixed in one of two possible sequences, which were counterbalanced 

across participants. Sequences started with the presentation of a Reward trial and did not present the 

same trial type more than twice in a row (i.e. RNRRN RNRN RNRNN NRNRRN). Task blocks lasted 57.5-
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95.0 s and alternated with fixation periods lasting 21.9-29.7 s. Block starts and ends were indicated by a 

1.5 s instruction screen. The task was programmed in Cogent 

(www.vislab.ucl.ac.uk/cogent_graphics.php) running in MATLAB (The MathWorks, Inc., Natick, MA).

Image acquisition

Functional data were acquired using the CMRR multiband echo-planar imaging sequence (Xu et al., 

2013) 2x acceleration, leak block on (Cauley, Polimeni, Bhat, Wald, & Setsompop, 2014) with blood-

oxygen-level dependent (BOLD) contrast (44 axial slices with a voxel resolution of 3 × 3 × 3 mm covering 

most of the cerebrum; TR = 2 s; TE = 45 ms; TA = 2 s) in a 1.5 T MRI scanner with a 30-channel head coil 

(Siemens TIM Avanto, Erlangen, Germany). Participants completed two scanning runs in which 321 

functional volumes were obtained. A T1-weighted MPRAGE with 2x GRAPPA acceleration anatomical 

image lasting 5 min 30 s was acquired after the functional runs. 

Data Analysis

Behavioural data analysis

2 (Age group) x 3 (Trial type: Baseline, No reward, Reward) mixed-model repeated measures ANOVAs 

were performed on correct trials mean RT and accuracy of the letter-array WM task. Models were fitted 

in R 3.5.2 (R Development Core Team, 2018) using afex (Singmann, Bolker, Westfall, & Aust, 2018). 

Greenhouse-Geisser correction was employed for violation of sphericity and Tukey correction for 

multiple comparisons.

MRI data preprocessing

MRI data were preprocessed and analysed using SPM12 (Statistical Parametric Mapping, Wellcome 

Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Images were realigned to the first 

analysed volume with a second-degree B-spline interpolation. The bias-field corrected structural image 
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was coregistered to the mean, realigned functional image and segmented using Montreal Neurological 

Institute (MNI)-registered International Consortium for Brain Mapping (ICBM) tissue probability maps. 

Resulting spatial normalisation parameters were applied to obtain normalised functional images with a 

voxel size of 3 x 3 x 3 mm, which were smoothed with an 8-mm full width at half maximum Gaussian 

kernel. Realignment estimates were used to calculate framewise displacement (FD) for each volume 

(Siegel et al., 2014). Volumes with an FD > 0.9 mm were censored and excluded from general linear 

model (GLM) estimation by including a regressor of no interest for each censored volume. Adolescents 

and adults did not differ in estimated movements (all p’s > .28) except adolescents had a lower root 

mean square translational movement (M = 0.18, SD = .07) than adults (M = 0.24, SD = .12, p = .03).

Block and event-related fMRI data analysis

Sustained activity was modelled in Reward and No reward runs separately using extended boxcar 

regressors representing task and fixation blocks. Transient activity was modelled using two boxcar 

regressors of 10.5 s, representing correctly answered Reward trials and No reward trials (in the Baseline 

run, this distinction was arbitrary but matched the order of Reward and No reward trials in the Reward 

run). Other regressors were: start of blocks (1.5 s), end of blocks (1.5 s), incorrect trials (10.5 s), 

censored volumes and session means. Regressors were convolved with a canonical haemodynamic 

response function. The data and model were high-pass filtered at 1/128 Hz.

Two second-level whole-brain random-effect flexible factorial analyses were performed to look at 

sustained and transient patterns of activation. The first included the factors Subject, Age group and 

Block type ([Baseline blocks – fixation blocks], [Reward blocks – fixation blocks]), modelling Subject as a 

main effect and the Age group x Block type interaction. The second analysis similarly included the 

factors Subject, Age group and Trial type (Baseline trials, No reward trials, Reward trials event-related 

activation).
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Statistical contrasts were thresholded at p < .001 at the voxel level with cluster size family wise error 

(FWE) correction (p < .05) corresponding to a minimum cluster size of 82 voxels. In addition, activations 

that survived whole-brain FWE correction at p < .05 are indicated. Automatic anatomical labelling was 

done using AAL2 (Rolls, Joliot, & Tzourio-Mazoyer, 2015; Tzourio-Mazoyer et al., 2002), and manual 

Brodmann area labelling with mricron (Rorden, Karnath, & Bonilha, 2007). Regions that exhibited mixed 

sustained and transient effects were identified by running the transient contrasts inclusively masked by 

the sustained contrasts. Reversely, to identify regions that were exclusively sustained or transient, the 

relevant contrast was exclusively masked (puncorr < .05). Statistical maps for all whole-brain, voxel-wise 

analyses are available at:  https://neurovault.org/collections/WCYBQLBQ/.

Regions of interest analyses

Region of interest (ROI) analyses were performed on extracted mean signal within regions that exhibited 

a mixed pattern of transient and sustained sensitivity to reward to explore possible interaction effects 

between Task, Condition and Age group using the mixed block/events analysis parameter estimates. 

ROIs were defined using MarsBar (Brett, Anton, Valabregue, & Poline, 2002) as 10 mm radius spheres 

centred on the peak coordinates of clusters identified in the relevant contrasts. 

RESULTS

Behavioural results

Accuracy and speed in the letter array WM task increased with age (Table 1), and differed between trial 

types (accuracy: F(1.7,84.3) = 4.20, p = .02, ηp
 2 = .02, RT: (F(1.6,77.9) = 40.5, p < .0001, ηp

 2 = .13). 

Participants were more accurate in Reward trials than in Baseline trials, with similar, but not significant, 

increased accuracy in No reward trials (Figure 2A). Participants were faster in No reward trials than in 

Baseline trials and even faster for Reward trials (Figure 2B).  
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Insert Table 1 about here

Insert Figure 2 about here

There was a trend for a decrease in Reward Sensitivity (z-score normalised composite index of the two 

self-report indices, SPSRQ and BIS/BAS) with age. A post-hoc analysis revealed adolescents were more 

sensitive to rewards than adults when assessed with the SPSRQ, but not the BIS/BAS (Table 1). 

Adolescents and adults earned comparable amounts of money although adolescents reported finding 

money incentives more rewarding than adults (Table 1). Adults had greater backwards digit span scores 

than adolescents, but the two age groups did no differ on the forward digit span task, WEBEXEC or 

Go/No go task (Table 1). When including backward digit span score as a covariate in the mixed design 

ANOVAs of the letter-array WM task, the difference between age groups in accuracy became non- 

significant (F(1,46) = 1.21, p = .28), however, the RT difference remained (F(1,46) = 5.82, p = .020).

Neuroimaging results

Baseline activation during the WM task

A broad network of regions showed sustained increased BOLD signal during letter array WM task blocks 

compared to fixation blocks in the Baseline run (Table 2 and Figure 3A). Activation was overall more 

extensive in the left hemisphere, which may reflect the verbal nature of the task, but also overlapped 
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with the “default mode network”.  In the frontal lobes, bilateral activation was observed in the superior 

frontal gyri (SFG) and anterior part of the inferior frontal gyri (IFG), extending along the medial wall into 

the anterior aspect of the ACC. There was increased bilateral parietal activity in the left and right angular 

gyri, as well as in the left middle temporal gyri and medial and left inferior occipital gyri. Activation in 

the occipital cortex and angular gyrus bilaterally, left fusiform gyrus, middle temporal gyrus and 

temporal poles, inferior and superior frontal gyri and putamen survived voxel-level whole brain 

correction (Table 2). Compared to adolescents, adults showed increased activation, which survived 

whole-brain correction at the cluster-level (but not voxel-level) in the left superior frontal and superior 

medial gyri, extending into the ACC, precentral gyrus and supplementary motor area (SMA), and activity 

in the lingual gyri (Table 2 and Figure 3A).

Insert Figure 3 about here

Widespread transient increased BOLD activation was observed in frontal, parietal and temporal regions, 

during WM task trials in the Baseline run, surviving both cluster-level and voxel-level whole-brain 

correction (Table 2 and Figure 3B). In the frontal lobes, bilateral activation was observed in the SFG and 

anterior part of the IFG, as well as orbitofrontal cortex, extending along the medial wall predominantly 

into the middle cingulate cortex. There was increased bilateral activity in the insulae, in the angular gyri 

in the parietal cortex, as well as in the middle temporal gyri and inferior occipital gyri. Increases in 

subcortical activation were observed in the caudate and putamen, as well as in the thalamus and 

hippocampus bilaterally. There was widespread bilateral activation in the cerebellum. Adults showed 

increased activity in the precentral gyrus bilaterally, extending predominantly into the left postcentral 

gyrus compared to adolescents (left peaks survived whole-brain correction at the voxel-level, except 

clusters in left hippocampus and postcentral gyrus), while adolescents exhibited less deactivation in 

medial prefrontal cortex and precuneus, than adults (Table 2 and Figure 3B).
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Insert Table 2 about here

Reward effects

Sustained effects of reward were assessed by contrasting task block activation of the Reward run and 

the Baseline run. This resulted in a large cluster peaking in the right insula and extending into bilateral 

ventral PFC, right dorsolateral PFC and the left insula, as well as into the caudate and putamen 

subcortically.  There was an additional cluster in the right angular and supramarginal gyri. Bilateral 

ventroprefrontal, insula, caudate and occipital peaks survived whole-brain correction at the voxel-level 

(Table 3 and Figure 4A). The pattern of activation largely did not overlap with the sustained WM task 

effects (Figure 3A vs. Figure 4A). No increased activation was observed in the reverse contrast [Baseline 

blocks > Reward blocks]. 

Insert figure 4 about here

Transient effects of reward were assessed by contrasting activation in Reward trials with No reward 

trials within the Reward run. This resulted in a large cluster peaking in inferior middle occipital gyrus and 

extending into the middle occipital gyrus, the superior and inferior parietal cortex bilaterally, right 

ventral and dorsolateral PFC and along the medial wall the medial frontal cortex and anterior and 

middle cingulate cortex, as well as the right insula. There were additional clusters in the left insula and 

right precentral and middle frontal gyri. Subcortical activity was observed bilaterally in caudate nucleus 

extending slightly into accumbens, pallidum, thalamus, and bilateral hippocampi. There was widespread 

activation of cerebellar regions. Peaks located in posterior occipital brain regions, inferior parietal 

cortex, subcortical regions, and the cerebellum survived whole-brain correction at the voxel-level. 

Among anterior brain regions the ACC and insulae were the only peaks surviving voxel-level correction. 
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No increased activation was observed in the reverse contrast [No reward trials > Reward trials] (Table 3 

and Figure 4B).

To further explore the pattern of changes in transient changes in BOLD signal according to reward, 

Reward and No reward trials were contrasted to Baseline trials (Table 3). Reward trials were associated 

with less deactivation of the precuneus and left lingual gyrus and middle occipital cortex (the latter was 

not significant with voxel-level whole brain correction) than Baseline trials, and greater activation than 

Baseline trials within a subset of the left lingual gyrus cluster (Figure 5A). No difference in activation was 

observed in the reverse contrast [Baseline trials > Reward trials].  No reward trials showed, similarly to 

Reward trials, less deactivation in the precuneus than Baseline trials, as well as less deactivation than 

Baseline trials in the left superior frontal gyrus (the latter was not significant with voxel-level whole 

brain correction) (Figure 5B). Finally, Baseline trials showed higher activation than No reward trials in 

bilateral insulae, left precentral gyrus, medial frontal gyrus extending into middle cingulate gyrus, and 

left inferior frontal cortex, there was also activation in the caudate, and inferior and middle occipital gyri 

(Figure 5C). Only activations in the bilateral insulae survived voxel-level whole-brain correction. The 

predominant pattern across regions showing transient increases in activation during the working 

memory trials was therefore No reward trials < Baseline trials < Reward trials. 

Insert Table 3 about here

Insert Figure 5 about here

Inclusive and exclusive masking contrasts indicated that bilateral insulae (surviving voxel-wise whole-

brain correction), right angular gyrus, and a subcortical cluster including right caudate nucleus, thalamus 
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and left pallidum exhibited reward context-related changes in both transient and sustained activity. No 

regions exhibited an exclusively sustained pattern of activation, but the more anterior aspect of the ACC 

as well as some cerebellar and occipital areas exhibited transient changes only in response to reward. 

Activations in the inferior occipital lobe and anterior cingulate cortex survived voxel-level whole-brain 

correction (Table 3). 

ROI analyses

To explore age effects in regions identified to have a mixed pattern of response to rewards, we 

extracted mean parameter estimates in 10 mm radius spheres centred on the peaks of the four clusters 

exhibiting modulation by reward of both transient and sustained activation (left and right insulae, 

angular gyrus and caudate, see Table 3). The left AI showed a significant interaction between Run and 

Age group: adolescents exhibited a greater increase in reward-dependent sustained activation than 

adults (F(1,48) = 6.35, ηp
 2 = .05, p = .02, Figure 6A). The right AI showed a similar pattern (F(1,48) = 3.91, 

p = .05) (Figure 6B). Analyses of transient activations showed that adults exhibited increased overall 

activity in the right AI (F(1,48) = 4.79, ηp
 2 = .08, p = .03), but not the left AI (F(1,48) = 2.22, ηp

 2 = .04, p = 

.14), across Reward and No reward trials compared to adolescents (Figure 6C-D). No other age effects 

were identified. 

Insert figure 6 about here
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DISCUSSION 

We examined the impact of reward on sustained and transient engagement of cognitive control, and 

whether differences exist between adolescence and adulthood. In the letter-array WM task, high 

accuracy rates can be achieved with a reactive control strategy. However, to produce accurate 

responses that are fast enough, the optimal strategy is to proactively sustain the task set and rule use 

across trials, in anticipation of the stimuli (Jimura et al., 2010). Results showed similar behavioural and 

neural evidence for engagement of proactive and reactive strategies in the context of reward for 

adolescents and adults. 

Proactive control

Reaction times were faster in No reward than Baseline trials, suggesting sustained performance 

improvement in the Reward run associated with a proactive cognitive control strategy (Jimura et al., 

2010). Reward blocks were associated with increased frontoparietal activity outside of the network 

recruited in the main WM block contrast. Our results align with findings of reward-related increased 

sustained activity in the right lateral PFC (middle frontal gyrus) and right PPC (angular gyrus), regions 

associated with proactive control in adults (Jimura et al., 2010; Locke & Braver, 2008) and children, 

adolescents and adults (Strang & Pollak, 2014). An increased cognitive control system engagement could 

also be reflective of higher load due to the introduction of two different reward conditions, Reward and 

No reward trials. However, this is unlikely to reflect a task switching load, as the working memory task 

stays constant (there is no perceptual, response or set shifting needed [Kim, Cilles, Johnson, & Gold, 

2012]), and we see a pattern of improved performance rather than the performance cost typically 

associated with a switching context (Monsell, 2003). In addition, there was evidence for sustained 

activation in regions typically associated with reward across age groups: the  caudate nucleus, putamen 

and orbitofrontal cortex (Silverman, Jedd, & Luciana, 2015). 
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Reactive control

Adolescents and adults were fastest for Reward trials, with a similar trend for accuracy, which points to 

a trial-by-trial reward enhancement reflecting reactive control. Reward trials were associated with 

increased transient activity in cortical regions recruited overall during the letter-array WM task (AI, ACC 

and parietal cortex), in contrast to the block effects of reward, which did not overlap with WM regions. 

The overall pattern shows intermediate activations for baseline trials compared to No reward and 

Reward trials.

A possible interpretation of these results is that, as transient activation is not as resource consuming as 

sustained activation, there is still scope for increased trial-by-trial recruitment of working memory 

regions to increase the chance of obtaining a reward, on top of working memory transient activation. In 

addition to the sustained activation, Reward trials also recruited the right orbitofrontal cortex, the 

caudate nucleus and putamen (Haber & Knutson, 2010). 

In the present study, transient activity in the ACC might be related to increased monitoring in response 

to reward. The ACC has been proposed to be involved in performance monitoring and, when conflict 

arises, is thought to recruit higher control order structures in the lateral PFC (Botvinick & Braver, 2015). 

In this case, conflict might signal a cost-benefit analysis where cost of task performance is weighed 

against expect values of its outcome and necessary effort required (Shenhav, Botvinick, & Cohen, 2013). 

Further, exclusively transient activations were observed in anterior aspects of the ACC, which fit with 

previous evidence that this region is selectively involved in compensatory reactive control processes 

(Jiang et al., 2015).

Mixed and exclusively transient regions

Bilateral insulae, the right PPC and the caudate exhibited a mixed pattern: with both higher sustained 

activity for the Reward run than the Baseline run, and higher transient increases in activity for Reward 
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trials compared to No reward trials, with Baseline trials showing intermediary levels of transient activity 

(i.e. No reward < Baseline < Reward in most cases). The AI emerged as the key mixed region involved in 

proactive and reactive control in response to reward, while the DLPFC had a more sustained pattern of 

activation in the baseline working memory run. Sustained activation in the DLPFC in the reward context 

may reflect increased top-down “boosting” excitatory connectivity to more posterior regions, which may 

facilitate maintenance of representations over a delay (Edin et al., 2009). The AI has been implicated in 

top-down control processes including task-set maintenance (Dosenbach, Fair, Cohen, Schlaggar, & 

Petersen, 2008; Nelson et al., 2010), and tracking cognitive control demand stability (Jiang et al., 2015). 

It has also been implicated in bottom-up salience detection of relevant cues (Menon & Uddin, 2010) as 

part of the salience network and key cognitive-emotional hub (Menon & Uddin, 2010; Smith, Steinberg, 

& Chein, 2014). The AI has been implicated in transient detection of salient stimuli and initiating 

attentional control signals which are then sustained by the ACC and the ventrolateral and DLPFC (Menon 

& Uddin, 2010). As one of the most commonly activated areas in fMRI studies, the AI has been 

implicated in controlling attention as a function of task demands (see Nelson et al., 2010 for a review). 

The caudate nucleus has been implicated in processing extrinsic reward related to monetary gains and 

losses (Haber & Knutson, 2010; Richards, Plate, & Ernst, 2013). We found that activity in the caudate 

nucleus was greater in Reward blocks than Baseline blocks, and that it tracked trial reward status as 

baseline activity was maintained for Reward trials only, while activation was lower for No reward trials. 

A speculative interpretation of these results is that once the explicit reward trials were introduced, the 

value of the No reward trials dropped compared to their starting level. However, the caudate nucleus 

has also been found to be activated in WM tasks in the absence of rewards (e.g. Ziermans et al., 2012), 

and in the present study there were transient increases in activation in the caudate in Baseline WM task 

trials, which suggests a non-exclusive reward role of the caudate.  
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Our results speak to the debate surrounding two underlying configurations which have been proposed 

for the DMC (Jiang et al., 2015). One of the accounts proposes that proactive and reactive control are 

implemented by different dynamics within the same region of the right dorsolateral PFC (BA 46/9) 

(Braver et al., 2009; Burgess & Braver, 2010; Jimura et al., 2010). Other accounts propose that different 

strategies are implemented by distinct brain regions (De Pisapia & Braver, 2006; Jiang et al., 2015). Here, 

we found evidence that both mechanisms might be at play. The bilateral AI, right PPC and caudate 

nucleus showed a mixed pattern of response while the anterior aspects of the ACC showed transient 

effects of reward only. 

Developmental effects

In line with developmental studies of cognitive control (Humphrey & Dumontheil, 2016; Luna et al., 

2015), adults had greater overall accuracy and faster RT than adolescents, as well as greater backwards 

digit span scores (Karakas, Yalin, Irak, & Erzengin, 2002). However, since speed thresholds were 

determined individually, adolescents and adults earned comparable monetary rewards. Adolescents 

reported finding monetary incentives more rewarding than adults. Comparable performance between 

adolescents and adults might be driven by increased motivation to perform by the adolescents, perhaps 

associated with finding money more rewarding.  

Adolescents showed a trend for more reward sensitivity than adults (Galván, 2013; van Duijvenvoorde 

et al., 2016).  Post-hoc analyses revealed adolescents had significantly greater reward sensitivity than 

adults on the SPSRQ (Torrubia et al. 2001, which assesses reward sensitivity per se, but not on approach 

motivation subscale of the the BIS/BAS (Carver & White, 1994). However, we did not find age 

differences reward-related brain activation. Although age differences between adolescents and adults 

are often described in the neuroimaging reward literature, they are not consistent across stages of 

reward processing or type of task (Galván, 2010, 2013).
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In the absence of rewards, previous developmental work has suggested that adolescents employ a more 

reactive than proactive cognitive control strategy (Alahyane et al., 2014; Andrews-Hanna et al., 2011; 

Velanova et al., 2009). In the present study we show that, like Strang and Pollack (2014), in the context 

of potential rewards, adolescents, like adults, can sustain cognitive control proactively. By also 

examining reactive control, in contrast to Strang and Pollack (2014), we provide evidence that 

adolescents, like adults, show additional improvements in a trial-by-trial fashion.

In follow-up ROI analyses of the main results, we found that transient activation was overall greater in 

the right AI in adults than in adolescents, but that both age groups showed similar increases in transient 

activation in Reward trials compared to No reward trials. A different pattern was observed for sustained 

activation, whereby adolescents showed a greater increase in activation in task blocks of the Reward run 

compared to the Baseline run in the left AI, “catching up” with adult levels of activation. Adolescents 

may be relying on an adaptive mechanism of sustained, but not transient, increase in AI activation. This 

speaks to an immature proactive capacity in adolescents that is only engaged in the context of reward. 

The role of the AI in adolescent decision-making processes is increasingly recognised, suggesting that the 

relative immaturity of this cognitive-emotional hub, which is connected to both the lateral PFC and 

striatum, may bias adolescents in affectively driven contexts (for a review see Smith et al., 2014). Here 

we suggest that a sensitivity to reward context in the AI may support increased sustained engagement 

of cognitive control in some instances. 

Limitations and future directions

Varying between Reward and No reward trials could be an additional component of the task which may 

have led to an increase in sustained activation of the cognitive control system by making the task more 

engaging. However, a greater overall engagement could not account for transient differences between 

reward and no-reward trials. Order effects are a limitation of the current study (as in Jimura et al., 
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2010). Counterbalancing the order of blocks was not possible to ensure participants were at first naïve 

regarding potential rewards to determine their baseline performance. To minimise order effects related 

to practice, we introduced a long practice period to ensure that participant’s performance stabilised 

before the scanning runs. It is possible that the better performance observed in the second run could 

still be driven in part by practice effects. Plots of RT and accuracy as a function of trial number and block 

number suggest indeed that in adolescents the RT difference between baseline and no-reward trials 

may have been driven by practice effects (Supplementary Figure S1). However, this is not apparent in 

adults, nor in the accuracy data (Supplementary Figure S2). Practice effects however could not explain 

the difference in RT and brain activation between Reward and No reward trials.  Although demanding, 

the task was not very difficult, as reflected by high accuracy rates. It might be that the balance between 

proactive and reactive strategies begins to emerge in more challenging cognitive control tasks, and 

future studies could investigate this. 

CONCLUSION

This study shows behavioural and neuroimaging evidence of modulation of both proactive and reactive 

control by reward in adults and in adolescents. Proactive and reactive control were found to be 

supported both by partly separable frontoparietal neural circuitries, and by regions that exhibit both 

sustained and transient modulation by reward. In the face of incentives, adolescents and adults can 

sustain cognitive control in a proactive fashion, with additional transient readjustments in response to 

the reward. There is some evidence of adaptive higher sustained activation in the anterior insula by 

adolescents in the context of reward. 
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Table 1: Summary statistics of measures collected in adolescent and adult participants. BIS/BAS: Behavioural 

Inhibition/Activation scales; M: Mean; SE: standard error; RT: reaction time; SPSRQ: Sensitivity to Punishment and 

Sensitivity to Reward Questionnaire; WM: working memory.

Adolescents 

(M ± SE)

Adults

(M ± SE)

Age group comparisons

Letter array WM task accuracy (%) 84.1 ± 1.7 90.3 ± 2.1 F(1,48) = 5.35, p = .03, ηp
 2 = .08

Letter array WM task RT (ms) 795 ± 18 742 ± 18 F(1,48) = 3.98, p = .05, ηp
 2 = .06

Reward sensitivity compositea .21 ± .13 -.19 ± .21 n.s. (p = .09)

Reward sensitivity SPSRQ 

(Possible range: 0 - 16)a

8.4 ± 0.6 6.2 ± 0.7 t(1,49) = 2.30,  p = .03

Reward sensitivity BIS/BAS 

(Possible range: 13 - 52)a

40.3 ± 1.3 39.9 ± 1.3 n.s. (p = .86)

Forward digit span total score 

(Possible range: 1 -22)

17.0 ± 0.6 18.1 ± 0.7 n.s. (p = .24)

Backward digit span total score 

(Possible range: 1 -22)

8.9 ± 0.6 11.8 ± 0.8 F(1,48) = 10.4, p < .01, ηp
 2 = .18

No go accuracy (%) 87.8 ± 1.7 91.7 ± 1.9 n.s. (p = .14)

WEBEXEC 

(Possible range: 6 -24) b

13.3 ± 0.5 12.9 ± 0.7 n.s. (p = .57)
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Total money earned (£)

(Possible range: 0 – 8)

6.50 ± 0.24 6.67 ± 0.23 n.s. (p = .63)

Rating of monetary incentive

(Possible range: 1 – 5)c

4.17 ± 0.14 3.45 ± 0.30 F(1,48) = 6.02, p = .02, ηp
 2 = .11

a  Higher scores indicate more sensitivity to reward

b  Higher scores indicate more executive function failures

c  Higher scores indicate finding money more rewarding
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Table 2:  Letter array working memory task neuroimaging results in the Baseline run. Coordinates and t-values are 

listed for regions showing a significant difference in BOLD signal in the whole brain analysis of block effects of 

working memory ([Baseline blocks – Fixation blocks]) and trial effects of working memory ([Baseline trials]). Both 

main effects and age group differences are reported.  x, y, and z = Montreal Neurological Institute (MNI) 

coordinates. a indicates voxels where pFWE < .05 at the voxel-level, b indicates clusters where pFWE  < .05 at the 

cluster-level. BA = Brodmann area, L/R = left/right hemisphere. 

Region L/R Extent t-score x y z BA

Baseline task blocks > Baseline fixation blocks

Inferior occipital cortex L 629 b 10.09 a -27 -88 -10 18

Inferior occipital cortex L 6.01 a -36 -67 -10 19

Fusiform gyrus L 5.73 a -36 -46 -19 37

Mid occipital cortex R 334 b 8.63 a 27 -97 5 17

Mid temporal gyrus L 895 b 6.90 a -60 -28 -1 21

Mid temporal gyrus L 6.89 a -60 -10 -16 21

Mid temporal pole L 4.33 a -48 11 -31 20

Mid superior frontal gyrus L 2650 b 6.82 a -9 50 50 9

Superior frontal gyrus L 6.19 a -21 29 59 8

Inferior frontal gyrus R 5.92 a 12 32 5 11

Putamen L 176 b 5.97 a -21 2 5
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Angular gyrus L 323 b 5.64 a -42 -58 29 39

Angular gyrus L 5.57 a -45 -67 47 39

Angular gyrus R 125 b 5.50 a 51 -61 32 39

Adults [Baseline blocks – Baseline fixation blocks] > Adolescents [Baseline blocks – 

Baseline fixation blocks]

Superior frontal gyrus L 168 b 4.64 -18 2 56 6

Precentral gyrus L 4.58 -39 -4 56 6

Supplementary motor 

area
L

3.49 -6 17 65 6

Medial superior frontal 

gyrus
L

102 b 4.43 -9 17 41 32

Anterior cingulate cortex L 3.76 -6 32 26 32

Lingual gyrus L 160 b 4.23 -18 -46 -7 30

Lingual gyrus L 3.96 -21 -67 -13 18

Superior medial frontal 

gyrus
L

113 b 4.21 -30 47 26 46

Superior frontal gyrus L 4.05 -30 38 47 9

Baseline trials
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Precentral gyrus

L 18304 

b 26.63 a -36 -7 68 6

Insula L 24.92 a -30 20 5 48

Postcentral gyrus L 23.83 a -45 -37 53 2

Middle frontal gyrus R 530 b 12.82 a 42 38 32 46

Middle frontal gyrus R 9.14 a 39 56 14 46

Orbitofrontal cortex R 97 b 7.07 a 21 44 -16 11

Adults Baseline trials > Adolescents Baseline trials

Postcentral gyrus L 695 b 8.18 a -36 -43 62 2

Inferior parietal lobule L 5.71 a -51 -28 50 2

Precuneus L 339 b 7.26 a -21 -46 8 37

Inferior temporal gyrus L 5.80 a -39 -55 -7 37

Hippocampus L 4.08 -36 -31 -10 37/20

Hippocampus R 167 b 6.23 a 24 -40 8 37

Hippocampus L 3.80 39 -37 -7 37

Superior frontal gyrus R 364 b 6.21 a 33 -4 68 6

Paracentral lobule R 6.09 a 6 -19 80 6

Superior frontal gyrus L 5.79 a -33 -4 68 6
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Postcentral gyrus R 148 b 4.56 42 -31 50 3

Adolescents Baseline trials > Adults Baseline trials

Medial orbitofrontal 

cortex 521 b 7.41 a 0 56 -4
10

Medial orbitofrontal 

cortex 6.70 a 0 32 -10
11

Caudate 3.76 0 11 -13 25

Superior frontal gyrus L 431 b 7.05 a -9 47 47 9

Medial superior frontal 

gyrus 5.59 a 0 44 20 32

Medial superior frontal 

gyrus

R

4.19 15 53 41 9

Mid temporal gyrus L 250 b 6.23 a -60 -25 -16 20

Posterior cingulate cortex L 136 b 4.60 -3 -55 32 23
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Table 3:  Effects of reward on sustained and transient activation during the letter array working memory task. 

Coordinates and t-values are listed for regions showing a significant difference in BOLD signal for the whole brain 

analysis for block effects of reward [(Reward run – Fixation) vs (Baseline run - Fixation)] and trial effect of reward 

[Reward trial vs No reward vs Baseline trials].  x, y, and z = Montreal Neurological Institute (MNI) coordinates. a 

indicates voxels where pFWE < .05 at the voxel-level, b indicates clusters where pFWE  < .05 at the cluster-level. BA = 

Brodmann area, L/R = left/right hemisphere.

Region L/R Extent t-score x y z BA

Proactive control: Reward block - fixation > Baseline run - fixation

Insula R 1152 b 5.72 a 30 20 -4 47

Insula L 5.47 a -30 23 -4 47

Caudate R 5.24 a 9 8 14

Insula R 4.94 45 20 -7 38

Precentral gyrus R 4.82 45 5 47 6

Pallidum R 4.66 6 -1 2

Middle frontal gyrus R 4.31 48 20 29 44

Angular gyrus R 356 b 4.98 33 -61 47 7

Reactive control: Reward trials > No reward trials

Inferior occipital cortex L 11426 b 11.54 a -21 -91 -7 18

Lingual gyrus L 11.48 a -24 -88 -10 18

Lingual gyrus L 10.32 a -33 -82 -13 19

Middle occipital cortex L 10.19 a -27 -91 2 18

Fusiform gyrus L 9.47 a -33 -70 -13 19

Cerebellum L 9.12 a -33 -58 -19 37
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Vermis 7.69 a 0 -64 -16

Vermis R 7.63 a 3 -58 -28

Inferior occipital cortex R 7.34 a 33 -88 -1 19

Cerebellum R 7.18 a 6 -64 -28

Vermis 7.13 a 0 -52 -13

Vermis R 6.89 a 3 -43 -1

Anterior cingulate cortex R 7.36 a 6 35 20 24

Insula R 6.95 a 36 20 -7 47

Insula L 332 b 6.42 a -30 23 2 47

Inferior frontal gyrus 

(triangular part)
L

4.00 -54 17 -4 38

Inferior frontal gyrus 

(triangular part)
R

3.53 -36 29 20 48

Precentral gyrus R 97 b 3.93 45 5 35 6

Frontal operculum R 3.92 45 11 26 44

Frontal operculum R 3.83 51 14 26 44

Inferior frontal gyrus 

(triangular part)
R

3.51 60 17 23 44

Middle frontal gyrus R 94 b 3.77 45 47 8 45

Middle frontal gyrus 3.69 39 56 17 46

Middle frontal gyrus 3.66 45 50 17 46

Middle frontal gyrus 3.64 45 38 23 45

Reward trials > Baseline trials
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Lingual gyrus L 819 b 7.42 a -18 -94 -7 18

Precuneus L 854 b 5.85 a -6 -58 29 23

Middle occipital cortex L 107 b 4.14 -36 -70 26 39

No reward trials > Baseline trials

Precuneus L 601 b 6.83 a -6 -58 29 23

Middle occipital cortex L 202 b 5.35 a -48 -73 35 39

Superior frontal gyrus L 94 b 4.56 -21 38 50 9

Baseline trials > No reward trials

Inferior frontal gyrus/ insula L 239 b 5.76 a -39 20 -4 47

Inferior frontal gyrus/ insula R 120 b 5.32 a 36 23 -7 47

Precentral gyrus L 346 b 5.20 a -33 -10 62 6

Middle cingulate cortex L 285 b 5.15 a -9 20 38 32

Supplementary motor area L 4.97 -6 8 56 6

Supplementary motor area R 3.20 15 8 68 6

Caudate R 182 b 5.01 a 3 5 2

Inferior occipital gyrus L 127 b 4.73 -39 -67 -10 19

Middle occipital gyrus R 202 b 4.64 36 -85 -1 19

Fusiform gyrus R 4.02 33 -61 -16 19

Mixed regions 

[(Reward block - fixation > Baseline run – fixation) inclusively masked by (Reward 

trials > No reward trials)

Insula R 225 b 5.72 a 30 20 -4 47

Insula L 156 b 5.47 a -30 23 -4 47
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Angular gyrus R 187 b 4.98 33 -61 47 7

Caudate R 109 b 4.66 6 -1 2

Exclusively transient regions

[Reward trials > No reward trials] exclusively masked by [(Reward block – fixation) > 

(Baseline run – fixation)]

Inferior occipital lobe L 5371 b 11.54 a -21 -91 -7 18

Anterior cingulate cortex R 618 b 6.79 a 3 35 20 24

Inferior parietal lobule L 112 b 4.87 -45 -40 50 40

Insula L 92 b 4.82 42 11 -10 48
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Figure 1: Letter-array working memory task. (A) Experimental design. Participants performed two runs of 30 trials 

each of a letter-array working memory task. In the first run, none of the trials were rewarded. In the second run, 

half of the trials could be rewarded.  (B) Example trials. On each trial, participants were presented with a 5 letter 

set, and, after a delay, had to indicate whether the probe was present in the set. Each trial was preceded with a 

cue screen indicating whether participants could earn rewards (stars) on this trial and followed by feedback on 

performance. The next trial started after an intertrial interval lasting 2.5, 5 or 7.5 s.
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Figure 2: Mean accuracy (A) and reaction times (B) as a function of trial type. Error bars represent standard error. † 

<.10, * p < .05, ** p < .01, *** p < .001 (Tukey corrected). 
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Figure 3: Letter working memory task activation and age group differences in the absence of reward. (A) Regions 

showing sustained increased BOLD signal in the Baseline task blocks vs. fixation blocks. Top: main effect; bottom: 

interaction with age group. (B) Regions showing transient increased BOLD signal in Baseline trials. Top: main effect; 

bottom: interaction with age group. Contrasts are rendered on the surface of the SPM12 MNI template. Threshold: 

voxel puncorr = .001, cluster pFWE < .05 (k =82). 
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Figure 4: Sustained and transient effects of reward on letter array working memory task activation. (A) Sustained 

effects identified by the [Reward blocks – fixation blocks] > [Baseline blocks – fixation blocks] contrast. (B) 

Transient effects identified by the Reward trials > No reward trials contrast. The red and blue shading of activations 

reflect whether these regions overall show transient activation or deactivations vs. the implicit baseline. Contrasts 

are rendered on the surface of the SPM template. Threshold: voxel puncorr < .001, cluster pFWE < .05 (k =82).
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Figure 5: Differences in transient activation in reward and no reward trials compared to baseline trials. Increased 

transient activations in reward (A) and no reward (B) trials compared to baseline trials are observed mostly in 

regions showing overall deactivations compared to the implicit baseline. (C) Increased transient activation in 

baseline trials compared to no reward trials was observed in regions showing overall activation versus the implicit 

baseline. The overall pattern shows intermediate activations for baseline trials compared to no reward and reward 

trials. Contrasts are rendered on the surface of the SPM template. Threshold: voxel puncorr < .001, cluster pFWE < .05 

(k =82).
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Figure 6:  Reward effects on BOLD signal changes in the left and right anterior insulae (AI). Parameter estimates 

extracted from 10 mm radius sphere regions of interests centred on the left and right AI are plotted to illustrate 

main effects of age and interactions between age and (A,B) block and (C,D) trial effects. Error bars represent 

standard error (SE). † p < .10, * p < .05 (Tukey corrected). 
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Figure 1: Letter-array working memory task. (A) Experimental design. Participants performed two runs of 30 
trials each of a letter-array working memory task. In the first run, none of the trials were rewarded. In the 

second run, half of the trials could be rewarded.  (B) Example trials. On each trial, participants were 
presented with a 5 letter set, and, after a delay, had to indicate whether the probe was present in the set. 

Each trial was preceded with a cue screen indicating whether participants could earn rewards (stars) on this 
trial and followed by feedback on performance. The next trial started after an intertrial interval lasting 2.5, 5 

or 7.5 s. 
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Figure 2: Mean accuracy (A) and reaction times (B) as a function of trial type. Error bars represent standard 
error. † <.10, * p < .05, ** p < .01, *** p < .001 (Tukey corrected). 
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Figure 3: Letter working memory task activation and age group differences in the absence of reward. (A) 
Regions showing sustained increased BOLD signal in the Baseline task blocks vs. fixation blocks. Top: main 
effect; bottom: interaction with age group. (B) Regions showing transient increased BOLD signal in Baseline 
trials. Top: main effect; bottom: interaction with age group. Contrasts are rendered on the surface of the 

SPM12 MNI template. Threshold: voxel puncorr = .001, cluster pFWE < .05 (k =82). 
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Figure 4: Sustained and transient effects of reward on letter array working memory task activation. (A) 
Sustained effects identified by the [Reward blocks – fixation blocks] > [Baseline blocks – fixation blocks] 

contrast. (B) Transient effects identified by the Reward trials > No reward trials contrast. The red and blue 
shading of activations reflect whether these regions overall show transient activation or deactivations vs. the 

implicit baseline. Contrasts are rendered on the surface of the SPM template. Threshold: voxel puncorr < 
.001, cluster pFWE < .05 (k =82). 
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Figure 5: Differences in transient activation in reward and no reward trials compared to baseline trials. 
Increased transient activations in reward (A) and no reward (B) trials compared to baseline trials are 

observed mostly in regions showing overall deactivations compared to the implicit baseline. (C) Increased 
transient activation in baseline trials compared to no reward trials was observed in regions showing overall 
activation versus the implicit baseline. The overall pattern shows intermediate activations for baseline trials 

compared to no reward and reward trials. Contrasts are rendered on the surface of the SPM template. 
Threshold: voxel puncorr < .001, cluster pFWE < .05 (k =82). 
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Figure 6:  Reward effects on BOLD signal changes in the left and right anterior insulae (AI). Parameter 
estimates extracted from 10 mm radius sphere regions of interests centred on the left and right AI are 

plotted to illustrate main effects of age and interactions between age and (A,B) block and (C,D) trial effects. 
Error bars represent standard error (SE). † p < .10, * p < .05 (Tukey corrected). 
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Supplementary information

Magis-Weinberg et al. Rewards enhance proactive and reactive control in adolescence and adulthood

SI METHODS

Experimental Design and Stimulus Material

Procedure

Letter array working memory task    

We employed a fixed set-size Sternberg-item recognition task that was adapted from Jimura, Locke and 

Braver (2010; Figure 1B). At the beginning of each working memory trial, a cue was presented in the 

centre of the screen for 1.5 s. There were two different cues: “⋆⋆⋆ trial” indicating that a potential 

reward could be obtained on this trial (Reward trial) or “new trial” indicating that no reward could be 

obtained on this trial (Baseline trial or No reward trial). As in Jimura et al. (2010), immediately after the 

reward cue, without jittering, five uppercase consonants were presented on the screen for a 1.5 s 

encoding period. A fixed 3.5 s delay followed to serve as a retention interval. After the delay, a single 

lowercase probe letter was presented for a fixed duration of 1.5 s. Participants were required to indicate 

whether the probe matched one of the letters from the memory set. Participants were encouraged to 

respond both accurately and quickly. Responses were indicated by pressing one of two buttons on a 

handheld response box (right index finger = match, right middle finger = no match), and were followed 

by a fixed 2 s delay and then feedback for a fixed duration of 1.5 s. Thus, total trial duration was 11.5 s 

(excluding intertrial interval). Four different types of feedback could be provided, indicating whether the 

response was incorrect, too slow, correct and not rewarded, or correct and rewarded (Figure 1B). Cut-
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off times were individually set for each participant, based on their own median correct reaction time 

(RT) on trials performed in the practice (see Procedure). Trials were separated by intertrial intervals 

lasting 2.5, 5 or 7.5 s. 

MRI data preprocessing

Realignment estimates were used to calculate framewise displacement (FD) for each volume, which is a 

composite, scalar measure of head motion across the six realignment estimates (Siegel et al., 2014). 

Volumes with an FD > 0.9 mm were censored and excluded from general linear model (GLM) estimation 

by including a regressor of no interest for each censored volume. No session met criteria for exclusion 

(scanning sessions with more than 10 % of volumes censored or a root mean square (RMS) movement 

over the whole session greater than 1.5 mm). Adolescent and adult participants did not differ 

significantly in the number of overall censored volumes (adolescents = 0.75 ± 1.21 (SD), adults = 0.56 ± 

1.87; p = .659), mean RMS rotational movement (adolescents = 0.18 mm ± 0.07, adults = 0.19 mm 

± 0.08; p = .633), and mean FD (adolescents = 0.11 mm ± 0.03, adults = 0.10 mm ± 0.05; p = .280).  There 

was a difference between groups in terms of mean RMS translational movement, with more movements 

in this axis for adults than adolescents (adolescents = 0.18 mm ± 0.07, adults = 0.24 mm ± 0.12; p = 

.025).

SI RESULTS

To investigate whether some of the differences in performance between Baseline, No reward and 

Reward trials may have been due to practice effects of the course of the two scanning runs, which were 

performed in a fixed order (Baseline, then Reward run), mean reaction time and accuracy were plotted 
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as a function of trial number over the course of the difference practice and test phases of the working 

memory task. 

While practice effects are clearly observed in both accuracy and RT during the second, time-limited, 

practice phase (Figures S1 and S2). Practice effects are subtler during the test (scanning runs) but do 

suggest that in adolescents in particular faster RTs in No reward trials compared to Baseline trials may 

be due to practice effects. This is not apparent in the adult group and the accuracy data does not 

demonstrate consistent improvements in performance over the course of successive trials of the 

Baseline and Reward runs. Note that formal statistical analyses were not performed on the data plotted 

here.

Figure S1: Mean reaction time (ms) (± SE) plotted as function of trial number over the course of the 

practice and test phases of the working memory task. Practice free were the first 15 trials, without a 

time limit, and Practice trials were the following 20 trials, with participants median RT as a time limit. 
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Figure S2: Mean accuracy (proportion) (± SE) plotted as function of trial number over the course of the 

practice and test phases of the working memory task. Practice free were the first 15 trials, without a 

time limit, and Practice trials were the following 20 trials, with participants median RT as a time limit. 
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