Accepted Manuscript

A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design

Iván García Kerdan, Rokia Raslan, Paul Ruyssevelt, David Morillón Gálvez

PII:	S0360-5442(17)30535-2
DOI:	10.1016/j.energy.2017.03.142
Reference:	EGY 10609
To appear in:	Energy
Received Date:	14 November 2016
Revised Date:	06 March 2017
Accepted Date:	28 March 2017

Please cite this article as: Iván García Kerdan, Rokia Raslan, Paul Ruyssevelt, David Morillón Gálvez, A comparison of an energy/economic-based against an exergoeconomic-based multiobjective optimisation for low carbon building energy design, *Energy* (2017), doi: 10.1016/j.energy. 2017.03.142

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- The study compares an energy-based and an exergy-based building design optimisation
- Occupant thermal comfort is considered as a common objective function
- A comparison of thermodynamic outputs is made against the actual retrofit design
- Under similar constraints, second law optimisation presents better overall results
- Exergoeconomic optimisation solutions improves building exergy efficiency to double

A comparison of an energy/economic-based against an 1 exergoeconomic-based multi-objective optimisation for low 2 carbon building energy design 3

Iván García Kerdan^{a,c,d*}, Rokia Raslan^b, Paul Ruyssevelt^a, David Morillón Gálvez^c 4

5 ^a Energy Institute, University College London, 14 Upper Woburn PI, London, WC1H 0NN, U.K.

6 7 ^b Environmental Design and Engineering, University College London, 14 Upper Woburn PI, London, 8 WC1H 0NN, U.K.

- 9 ^c Departamento de Mecánica y Energía, Instituto de Ingeniería, Universidad Nacional Autónoma de 10 México, México, México
- ^d Centre for Process Systems Engineering, Imperial College London, Roderic Hill Building, South 11

12 Kensington Campus, London, SW7 2AZ, UK 13

14

15 Abstract

This study presents a comparison of the optimisation of building energy retrofit strategies from 16 17 two different perspectives: an energy/economic-based analysis and an exergy/exergoeconomic-based analysis. A recently retrofitted community centre is used as a 18 19 case study. ExRET-Opt, a novel building energy/exergy simulation tool with multi-objective 20 optimisation capabilities based on NSGA-II is used to run both analysis. The first analysis, 21 based on the 1st Law only, simultaneously optimises building energy use and design's Net Present Value (NPV). The second analysis, based on the 1st and the 2nd Laws, simultaneously 22 23 optimises exergy destructions and the exergoeconomic cost-benefit index. Occupant thermal 24 comfort is considered as a common objective function for both approaches. The aim is to assess the difference between the methods and calculate the performance among main 25 26 indicators, considering the same decision variables and constraints. Outputs show that the 27 inclusion of exergy/exergoeconomics as objective functions into the optimisation procedure has resulted in similar 1st Law and thermal comfort outputs, while providing solutions with less 28 29 environmental impact under similar capital investments. This outputs demonstrate how the 1st Law is only a necessary calculation while the utilisation of the 1st and 2nd Laws becomes a 30 sufficient condition for the analysis and design of low carbon buildings. 31

32 **Keywords:**

33 optimisation; building simulation; energy; low carbon buildings; exergy; 34 exergoeconomics.

35 36 *Corresponding author at: CPSE, Imperial College London, UK., United Kingdom. Tel: +44 (0) 7867798730

E-mail addresses: i.kerdan.12@ucl.ac.uk , i.garcia-kerdan@imperial.ac.uk (I. Garcia Kerdan)

37 **1. Introduction**

38 In industrialised countries, buildings are responsible for approximately 20-40% of the national 39 primary energy utilisation [1] and 25-30% of the global CO₂ emissions [2, 3]. Therefore, the 40 sector holds a great opportunity for energy reduction and carbon abatement by delivering cost-41 effective building energy retrofit (BER) strategies. As the energy issue is becoming more 42 evident in the building sector, developing techniques for designing efficient and cost-effective 43 energy systems is still a challenge that practitioners and researchers face in today's building 44 industry. Optimisation is a technique that is commonly used in research and engineering 45 applications. Buildings' energy design optimisation is an inherently complex technique involving disciplines such as engineering, mathematics, enviro-economic science, and 46 47 computer science [4]. Three basic types of algorithms are used in optimisation problems applied to buildings: enumerative, deterministic, and stochastic [5]. Stochastic methods based 48 on genetic algorithms (GA) can be regarded as the most popular method for building 49 optimisation. Other popular algorithm methods are 'Direct Search', 'Simulated Annealing', and 50 51 'Particle Swarm optimisation' [6].

Evins [6] conducted a comprehensive review of 74 optimisation research studies, providing a 52 53 list of the most typical objectives used in sustainable building design. He found that the most common objective was energy use (found in 60% of the studies), followed by costs and 54 occupants' thermal comfort. While multi-objective optimisation (MOO) methods are usually 55 56 used during early designs [5] they have also been applied for retrofit projects. As MOO studies 57 have been increasing in number in recent years, several tools have been developed, using 58 typical building energy simulation tools, such as TRNSYS and EnergyPlus (as the core 59 calculation engines) combined with optimisation toolboxes from MatLab, R, C++ and Python 60 [4]. Taking the advantages from these tools, BER optimisation studies have become more 61 common, considering different decision variables, objective functions, and constraints. Table 62 1 presents a comprehensive review of the most notable contributions in the field in the last 63 decade.

[Table 1 around here]

65 1.1 Exergy and exergoeconomic optimisation

66 As shown, the basis of typical optimisation process has been the 1st Law of thermodynamics 67 or the 'conservation of mass and energy' principles. Energy analysis typically shows limitations 68 when it comes to assessing the characteristics of energy conversion systems. With the current 69 high dependency on high-quality energy sources, such as natural gas, oil, and fossil-fuel 70 based generated electricity, combined with the low thermodynamic efficiency of current building system technologies (e.g. at $T_0 = 5$ °C and $T_i = 20$ °C, electric heater Ψ : 0.05; air 71 72 source heat pump Ψ : 0.15), new approaches to improve the selection of optimal BER 73 measures are required. In this sense, there is an opportunity to redesign typical approaches, 74 where the consideration of the fundamental 2nd Law of thermodynamics under the exergy 75 concept appears to hold some promise. Combining 1st and 2nd Law analysis has significant 76 advantages, as it provides with technical limits that the 1st Law misses and an appropriate link 77 between demand and supply analyses, which is often performed separately. This 78 disengagement has led the decision makers to assume that systems, such as electric-based 79 heating, are the most efficient way to deliver heat as it has an 'energy efficiency' of 100%. The 80 problem is that the delivery of electricity to cover a low-guality demand, such as space 81 heating/cooling or DHW, can be considered as irrational because the gualities of the demand 82 and supply do not match. Exergy-based analysis could be the ideal methodological 83 complement for the assessment and comparison of energy designs as it focuses on improving 84 efficiency.

85 After decades of exergy research in other sectors, the 2nd Law and exergy concepts can be 86 considered well established. However, in the building sector, it still needs to achieve certain 87 degree of maturity that could make the analysis useful. In the last years, exergy analysis 88 research in buildings has significantly increased. Main contributions came from three research 89 groups: IEA EBC Annex 37 [31], IEA EBC Annex49 [32] and the 'LowEx - COSTeXergy' [33]. 90 The common aim was to provide a standard methodology that could lead to a deeper 91 understanding of using both thermodynamic laws in the built environment and its potential 92 application.

However, decision making in building energy design is still mainly based on typical economic indicators, such as Net Present Value (NPV), Life Cycle Cost (LCC), and Discounted Payback (DPB) [34,35]. In this sense, exergoeconomics, which considers not only the thermodynamic inefficiencies of a system but also the costs associated with these inefficiencies, and the investment expenditure required to reduce them could be considered for a comprehensive analysis. Widely used in process and power generation optimisation [36], exergoeconomic optimisation aims to find a trade-off between the energy streams/product cost and capital

100 investment cost of energy systems within the technically possible limits. Exergoeconomics has 101 been effectively combined with the cost-benefit analysis to improve operation and design. By 102 minimising the Life Cycle Cost (LCC), the best system considering the prevailing economic 103 conditions could be found; and by minimising the exergy loss, environmental impact could also 104 be minimised [37]. The major strengths of combining exergoeconomics is the ability to 105 pinpoint exact sources of inefficiencies, highlight real improvement potential, and provide a 106 robust comparison among designs. Specifically, in building research, exergoeconomic has 107 been applied for the analysis and optimisation of different building energy systems such as 108 district heating networks [38-40], micro cogeneration systems (mCHP) [41,42], heat pumps 109 [43], energy storage [44,45], envelope's insulation [46] and conventional heating systems [47-110 49]. However, neither study performs an exergoeconomic-based multi-objective optimisation 111 under different objective functions.

112 After highlighting the research gaps in both building energy design optimisation and 113 exergy/exergoeconomic analysis, with the intention of challenging the established 114 methodology for building energy design optimisation based on the 1st law only, the novelty of 115 this paper comes from performing a comparative study between an energy/economic-based 116 and exergy/exergoeconomic-based multi-objective optimisation. To achieve this, ExRET-Opt [50], an automated simulation tool developed for building energy/exergy design optimisation 117 118 is used. The aim is to illustrate through a detailed analysis the differences between the methodologies and results. Although it is expected that both approaches would provide a more 119 120 informed assessment of BER designs than the actual retrofit design of the selected case study, 121 it is also expected that each approach would deliver different BER designs and outputs due to 122 the differences in calculation methods.

123 **2. Case Study**

The case study building is based on an 1890s-community centre located in Islington, London 124 (UK) that was retrofitted in 2011 to Passivhaus standards. The actual BER design resulted in 125 126 the installation of an 8.4 kW ground source heat pump (GSHP) and a 90% efficient Mechanical 127 Ventilation Heat Recovery (MVHR) system. Additionally, 18 kWp PV solar panels were 128 installed together with a 3 kW solar thermal system connected to a 300 litres water storage 129 tank. Triple glazed clear windows to maximise winter solar gains and high levels of envelope 130 insulation were installed, compiling with Passivhaus standards. Building's main characteristics 131 and a diagram of the energy system can be found in Table 2 and Fig. 1.

[Table 2 around here]

132

133

[Fig. 1 around here]

For simplification, the building energy model has been divided into six thermal zones, 134 135 according to the orientation, activity type and the spaces' internal loads: 1) basement floor 136 offices, 2) above ground offices, 3) music studio, 4) main hall, 5) reception, and 6) kitchen 137 area. Heathrow, London weather file (epw file) is used as reference temperature for dynamic 138 energy/exergy analysis. Previously, Garcia Kerdan et al. [51] presented the exergy and 139 exergoeconomic evaluation for the retrofitted building. The model calculated a retrofit 140 investment of approximately £417,028 exclusively for energy related measures. The ratio of 141 passive and active technology investment was calculated at 0.41, where PV/T panels 142 represented almost 37% of the total investment, followed by glazing (17.5%) and roof 143 insulation (10.4%). For a 50-year period, the buildings life cycle cost (eq. A.17) has been 144 calculated at £471,403 considering project's capital investment, annual energy bills, government incentives through the feed-in-tariff (FiT) and renewable heat incentives (RHI), 145 146 and the salvage cost or residual value. This resulted in a discounted payback of 137 years. 147 Table 3 presents the main energy, exergy and other non-thermodynamic values for the case 148 study building.

149

[Table 3 around here]

These will be used to design the optimisation studies and as benchmark for comparative purposes. A secondary aim of this paper is to showcase the tool's capabilities of providing more cost-effective designs regardless of the approach.

153

154 3. Methods and Materials

155

157 ExRET-Opt [50] is a simulation tool that enhances typical building retrofit-oriented tools with 158 the addition of exergy and exergoeconomic analysis and multi-objective optimisation. The 159 systematic methodology and simulation tool covers an existing gap that limits the introduction

^{156 3.1} ExRET-Opt

of exergy into energy design practice. The tool allows the practitioner to quantify indices of performance of the building retrofit based on the 1st and 2nd laws analyses, among other nonenergy indicators. It has been developed by embedding a comprehensive dynamic exergy analysis [52] and a tailored exergoeconomic method [53] into a typical open-source building simulation tool – EnergyPlus [54]. The main exergy and exergoeconomic formulas embedded in the tool can be found in Appendix A.

166 3.2 Optimisation study design

167 As mentioned, the MOO studies are designed from two different perspectives: a) an 168 energy/economic-based focus and b) an exergy/exergoeconomic-based focus. Yet, buildings 169 are designed to the primary objective of providing a comfortable environment for its occupants. 170 Therefore, the optimal selection of BER should be a trade-off between the thermodynamic 171 efficiency, capital costs, and most importantly, occupant thermal comfort. Thus, occupants' thermal comfort is the only common objective for both approaches. The first MOO method, 172 173 based on the 1st Law only (typically used in the building industry and research), optimises 174 building energy use and project's Net Present Value (NPV). From this point in the paper, this 175 approach is referred to as the energy/economic optimisation. The second method, based on 176 the 1st and 2nd Laws simultaneously, optimises building exergy destructions and an 177 exergoeconomic index. This approach is referred to as the exergy/exergoeconomic 178 optimisation. Fig. 2 shows the methodological approach applied to this study.

179

[Fig. 2 around here]

180 Following the finalisation of the optimisation processes, Pareto fronts are obtained for both 181 approaches. In a first level of analysis and to make a comparison of both approaches' main 182 outputs, both the number of constrained solutions and the size of non-dominated solutions 183 (Pareto fronts) are statistically analysed using an independent two sample t-test was. An 184 independent t-test compares the mean values from the two-sample gathered and test the 185 likelihood of the samples originating from populations with different mean values. The t-test 186 calculates the null hypothesis that the means of two normally distributed groups are equal. 187 Similar to Yoo and Harman [55], the null hypothesis in this study (setting an α level of 0.95) is 188 that with two different optimisation approaches, the mean values of the number of nondominated solutions are equivalent. If a p-values is significant, this would suggest that the null 189 190 hypothesis should be rejected, meaning that one of the optimisation approaches produces a 191 larger number of Pareto solutions.

192 3.2.1 Decision variables

Due to the inclusion of the extensive ExRET-Opt technology database, the tool can be applied to analyse a wide range of different BER measures. Table 4 presents the characteristic of the main HVAC systems embedded in the database. The techno-economic values for all other possible retrofit measures can be found in [50,52] and in Appendix B.

[Table 4 around here]

Apart from typical technologies found in the tool, some additional considerations are made. 198 199 Following the actual retrofit design (up to Passivhaus standards) and due to the building's 200 nature, the envelope is differentiated into six parts: 1) above ground wall insulation, 2) 201 basement wall insulation, 3) basement floor insulation, 4) ground floor insulation, 5) pitched 202 roof insulation, and 6) normal roof insulation. Additionally, thicker insulation technologies have been included to achieve U_{values} per Passivhaus standards (U_{val}<0.15 W/m²K). After 203 204 discretisation of all variables, the total number of decision variables for the optimisation 205 process are defined in Table 5.

206

197

[Table 5 around here]

Therefore, as all possible combinations are more than seven thousand quadrillion (7,099,580,375,363,174,400), presenting an impossible task for almost any computer due to limited number of cores and processing time. However, the optimisation jobs have been subject to the following NSGA-II parameters.

- 211 3.2.2 Objective functions
- As mentioned, the two approaches, consider three conflicting objectives that must be satisfiedsimultaneously.
- 214 3.2.2.1 Energy/economic-based optimisation
- For the energy/economic approach the objectives are the minimisation of building energy use,
- 216 reduction of occupant thermal discomfort, and maximisation of project's NPV:
- 217 I. Building's annual site energy use (kWh/m²-year):

218
$$Z_1(x)min = EUI_{bui}$$

219 (1)

where EUI_{bui} is the total annual energy used by the building.

221 II. Occupant discomfort hours (Fanger's model [56]):

222
$$Z_2(x)min = (|PMV| > 0.5) = (|(0.303e^{-0.036M} + 0.028)(H - L)| > 0.5)$$

where *e* is the Euler's number (2.718), *M* is the metabolic rate (W/m²), H is internal heat production rate of an occupant per unit area (W/m²), and *L* is energy loss (W/m²). This value is given by ExRET-Opt through EnergyPlus calculations.

(2)

226 III. Net Present Value_{50 years} (£):

227
$$Z_3(x)max = NPV_{50years} = -TCI + \left(\sum_{n=1}^{N} \frac{R}{(1+i)^n}\right) + \frac{SV_N}{(1+i)^N}$$

228 (3)

where *TCI* is the initial total capital investment, *R* is the annual revenue cost (composed of the annual energy cost savings minus the operation and maintenance cost), and *SV* is the salvage cost or residual value. Detailed calculation information can be found in Appendix A.2 (eq. A.20). However, for simplification and to encode a purely minimisation problem, the NPV is set as negative $- NPV_{50years}$ (however, results throughout the appear are presented as normal positive outputs).

235 3.2.2.2 Exergy/exergoeconomics-based optimisation

For the exergy/exergoeconomic approach, the objectives are the minimisation of overall building exergy destructions, reduction of occupant thermal discomfort, and minimisation of the exergoeconomic cost-benefit index:

239 I. Building annual exergy destructions (kWh/m²-year):

240
$$Z_1(x)min = Ex_{dest,bui} = \sum Ex_{prim}(t_k) - \sum Ex_{dem,bui}(t_k)$$

241 (4)

(5)

where Ex_{prim} and $Ex_{dem,bui}$ are the total primary exergy supplied and total building exergy demand respectively.

244 II. Occupant discomfort hours (Fanger's model):

245 $Z_2(x)min = (|PMV| > 0.5) = (|(0.303e^{-0.036M} + 0.028)(H - L)| > 0.5)$

246 III. Exergoeconomic cost-benefit _{50 years} (£/h):

247 $Z_3(x)min = Exec_{CB} = \dot{C}_{D,sys} + \dot{Z}_{sys} - \dot{R}$ 248 (6)

where $\dot{C}_{D,sys}$ is the building total exergy destruction cost (eq. A.25), \dot{Z}_{sys} is the annual capital cost rate for the retrofit measure (eq. A.26), and \dot{R} is the annual revenue rate. All three parameters are levelised considering the project's lifetime (50 years) and the present value of money. The outputs are given in £/h. The *exergoeconomic cost-benefit indicator* $Exec_{CB}$ [53] is a novel index for energy system design comparison developed from the SPECO exergoeconomic method [61].

255 3.2.3 Constraints

The optimisation problem is subjected to three constraints. First, the capital investment of the actual retrofit project of £417,028 [51], requiring the model to deliver cheaper designs. Secondly, a positive NPV or a DBP of less than 50 years is also considered a constraint. Finally, the amount of discomfort hours obtained by the actual retrofit model (853 hours) is considered as the third constraint. Hence, the optimisation problems for both approaches can be generally formulated as follows:

262 Given a thirteen-dimensional decision variable vector

263 $x = \{X^{\text{HVAC}}, X^{\text{wall}}, X^{\text{roof}}, X^{\text{ground}}, X^{\text{wall}_{\text{BS}}}, X^{\text{roof}_{\text{Pi}}}, X^{\text{ground}_{\text{BS}}}, X^{\text{seal}}, X^{\text{glaz}}, X^{\text{light}}, X^{\text{PV}}, X^{\text{wind}}, X^{\text{heat}}\}, \text{ in }$

- 264 the solution space *X*, find the vector(s) x^* that:
- 265 Minimise: $Z(x^*) = \{Z_1(x*), Z_2(x*), Z_3(x*)\}$
- 266 (7)

267 Subject to follow inequality constraints: $\begin{cases} TCI \le \pounds 417,028\\ DPB \le 50 \ years\\ Discomfort \ \le 853 \end{cases}$

- 268 (8)
- 269 Based on compromise programming and equal weight solution, all three objective functions
- are considered to have the same weight (w1 =0.33, w2=0.33, and w3=0.33).
- 271 3.2.4 NSGA-II parameters
- Table 6 presents the NSGA-II settings defined for both studies hoping to obtain more variabilityamong simulation results:
- 274

[Table 6 around here]

Each procedure should perform approximately 10,000 simulations, or terminate either if the objective functions converge or a time limit is reached. The detailed optimisation algorithm process as well as the modelling environments is shown in more detail in Fig. 3.

[Fig. 3 around here]

279

278

280

It is important to point out that GA presents some limitations. Apart of only operating under a discrete search space, meaning that continuous variables must be discretised, algorithm parameters such as population size, crossover and mutation, can affect the location of the optimal value and convergence rate [57, 58].

285 **4. Results**

In an 8-core laptop, following 150 hours of simulation, the energy/economic-based MOO collected 9,815 simulations, while the exergy/exergoeconomic-based MOO simulated 9,747 models. However, the number of constrained solutions are found at 475 and 344 for the energy-based and exergy-based MOO respectively. This demonstrates that around 3-5% of the simulated solutions have a better thermal comfort and economic performance than the actual retrofitted building.

292 4.1 Single-objective analysis

Each objective from the non-dominated solutions are individually optimised for both approaches. The single objective optimal BER designs are shown in Table 7 for the energy/economic based approach and Table 8 for the exergy/exergoeconomic-based approach.

297

[Table 7 around here]

298

[Table 8 around here]

299 4.1.1 Energy-based single objective results

For the energy-based optimisation, when single-optimising building's EUI, the tool produces a 300 BER design similar to the actual retrofit building. The model is also based on a GSHP, differing 301 302 in that instead of considering a MVHR, the model suggests the installation of underfloor 303 heating. In addition, the wall insulation is similar to that found in the actual BER, having 0.25m 304 of Polyurethane for the above ground walls and 0.30m of cellular glass for the basement walls. 305 In terms of infiltration rate, again, the model suggests a similar value to the one in the real 306 design (model: 0.50 ach, real: 0.42 ach). However, to lower the capital cost, the model reduces 307 the glazing system to double-glazed air-filled windows instead of the triple-glazed air-filled. 308 The lighting system is based on T8 LFC, similarly to the actual building. The biggest change 309 comes in the PV panels, where the model does not consider their installation, and instead, a 310 20 kW turbine is proposed. The design is able to lower energy use from 47,293 kWh/year 311 (61.6 kWh/m²-year) to 44,845 kWh/year (58.4 kWh/m²-year). It also improves thermal comfort 312 by 1.4% (from 853 to 841 discomfort hours), while delivering a positive NPV_{50 years} of £8,488. 313 The project's total capital investment is calculated of £271,738, reducing the original budget 314 by 34.8%.

When single-optimising for thermal comfort, the model suggests the installation of H21: GSHP with underfloor heating with similar envelope insulation levels compared to the previous case, but considering double-glazed Krypton-filled windows instead of air-filled. The model also considers an airtight envelope, with a value of 0.6 ach. T5 LFC lighting is considered along the implementation of 3.9 kWp PV panels and a 20 kW turbine. This results in a high-energy

320 use of 50,571 kWh/year (65.9 kWh/m²-year); however discomfort hours are reduced to 550.

321 This BER has a capital investment of £316,444 and a DPB of 33.6 years.

322 Finally, by single-optimising NPV, the model considers H31: microCHP and gas boiler 323 connected to a CAV system. The solution considers low insulation levels (with some parts not 324 even meeting minimum Part L2B requirements) and an improvement on the airtightness of the 325 building of just 20% (0.8 ach). In the model, the windows are retrofitted to double-glazed air-326 filled, while considering a more efficient lighting system of T5 LFCs. It also suggests the 327 installation of 3.9 kWp of PV panels and a 20 kW turbine. With this design, the building 328 demands 209,006 kWh/year (272.4 kWh/m²-year) while keeping thermal comfort at the same 329 level as the original design (853 discomfort hours). However, it has the best economic 330 performance with a payback of 23.7 years requiring a capital investment of £262,992.

331 4.1.2 Exergy/exergoeconomics-based single objective results

332 In the exergy/exergoeconomics-based approach, by single-optimising building exergy 333 destructions, the optimisation procedure delivers a design composed of H15: district heating connected to a wall heating system. From a 2nd Law perspective, district systems (especially 334 335 waste heat-based) are considered as the most ideal low-exergy supplying systems due to their 336 high efficiency in using low grade heat. The design is combined with medium levels of 337 insulation, where just the basement walls and ground insulation meet Part L2 requirements. 338 The design also proposes a reduction of 20% in the air leakage (0.8%) with no retrofit in the 339 glazing system. The lighting system is changed to T8 LED, with no PV panels and a 20 kW 340 wind turbine. The model is able to reduce thermodynamic irreversibilities from the actual 341 retrofit of 104,918 kWh/year (136.8 kWh/m²-year) to 78,938 kWh/year (102.9 kWh/m²-year) 342 and improves exergy efficiency (Ψ) from an already high value of 18.0% to 22.2%. Discomfort 343 levels and the exergoeconomic cost-benefit indicator are also reduced to 791 hours and 344 £0.23/h respectively. This BER design has a capital investment of £179,250 and a DPB of 50 345 years.

By single-optimising discomfort under an exergy oriented approach, the BER design is based on a H28: biomass boiler with wall panel heating with high envelope insulation values, suggesting the installation of 0.25m of EPS for the above ground walls, 0.14m of cork board for the ground floor and 0.12m of cork board for the pitched roof. It also suggests a 0.07m of EPS for the basement walls. This is combined with a slight improvement in the airtightness of 10% (0.9 ach) and the installation of double-glazed air filled windows. For active systems, it

recommends the installation of T5 LFC and 7.8 kWp PV panels. This design reduces exergy destructions to 90,364 kWh/year (117.8 kWh/m²-year) and improves exergy efficiency to 19.5%. In addition, it reduces discomfort hours to 584 hours and minimises exergoeconomic cost-benefit value to £0.28/h. The design requires an investment of £256,761 delivering a DPB of 43.7 years.

357 Finally, of great interest are the results obtained from the single optimisation of the novel 358 exergoeconomic cost-benefit indicator. This design suggests an HVAC system based on H29: 359 biomass boiler connected to underfloor heating. The algorithm chooses a low-exergy efficient 360 system but with a high renewability factor and high income from government incentives. The envelope is characterised by high levels of insulation in the roof and ground floors and low 361 362 levels in the walls and pitched roof. A building airtightness of 0.9 ach and the utilisation of the 363 pre-retrofit single glazing is also considered by the model. For active systems, the models 364 suggest the installation of highly efficient T5 LFC lighting and the implementation of 7.8 kWp 365 of PV panels. This design results in exergy destructions of 87,405 kWh/year (114.0 kWh/m²-366 year) and an exergy efficiency of 19.9%. Discomfort values are reduced to 666 hours per year. 367 Moreover, the exergoeconomic cost-benefit indicator reaches a value of -£0.11/h, meaning that the project was exergoeconomically efficient. This is supported by a low cost BER design 368 (£180,017) with a payback of 26.7 years; similar to the one obtained by optimising NPV in the 369 370 energy-based approach.

371 Table 9 provides a comparative study of other main indicators. As seen in the results, the 372 solution that reduced the most carbon emissions is the single optimisation of the 373 exergoeconomic cost-benefit indicator. This design provides the best overall performance, 374 obtaining the best outcomes in three main indicators without delivering indicators showing 375 unsatisfactory performance. This large reduction is achieved thanks to the installation of the 376 biomass-based boiler (0.039 kgCO₂e/kWh) working with low temperature floor systems 377 combined with the 7.8 kWp of PV panels (0.075 kgCO₂e/kWh). On the other hand, as expected 378 the NPV single optimisation provided the best economic outcomes; however, it presents the 379 worst performance in seven other indicators related to carbon emissions and exergy use.

380

[Table 9 around here]

381 4.2 Triple-objective analysis

382 As mentioned, the 475 constrained models obtained in the energy/economic-based MOO 383 procedure, represent less than 4.8% of all the simulated models. In this case the Pareto front 384 is composed of just nine solutions. The sample is dominated by H21: GSHP and underfloor heating, appearing in 66.6% of the solutions. H31: microCHP with condensing boiler and H28: 385 386 Biomass boiler and wall heating also appear in the Pareto front. For envelope's insulation, not 387 a single technology appears to dominate the solutions, with XPS and polyurethane being the 388 most common solutions. The rest of the envelope is mainly dominated from high levels of 389 infiltration (>0.7 ach) and single-glazing. For renewable energy, 20 kW turbine and 13.8 kWp 390 of PV panels appear most frequently.

391 On the other hand, the exergy/exergoeconomics-based optimisation delivers an even smaller 392 constrained search space with 344 models, representing 3.5% of the simulated space; 393 however, it is able to deliver more Pareto optimal solutions with fourteen non-dominated 394 models. This suggests that an exergy/exergoeconomics-based optimisation presents better 395 performance and more variability among models, locating solutions in a wider spectrum. The 396 most frequent HVAC system is H29: biomass boiler and underfloor heating with a frequency 397 of 64.2%. This is followed by H15: district heating with wall heating with a frequency of 21.4%. 398 For the insulation measures, high variability existed among technologies and thicknesses, with 399 XPS and EPS being the most common measures. The air tightness of the building is 400 characterised for solutions with 0.8 ach. In terms of glazing systems, double glazing 401 technologies are the most frequent. For renewable technologies, 20 kW wind turbines and 402 11.7 kWp are the most common measures.

Fig. 4 and Fig. 5 shows a comparison of all the constrained solutions and the non-dominated Pareto fronts for the energy/economics and exergy/exergoeconomics based approaches respectively. For both graphs, the current retrofitted building can be located. In this case, every single Pareto point presents a better overall performance compared to the baseline model.

[Fig. 4 around here]

409

408

[Fig. 5 around here]

410 4.3 Algorithm behaviour – Convergence study

To check convergence in objectives, a comparison in the algorithm behaviour for both 411 412 approaches is presented. Fig. 6 illustrates the convergence rates for the three studied 413 objectives for the energy/economic optimisation. The results demonstrate that energy use 414 converged rather early reaching the minimum value at the 28th generation. However, the 415 discomfort hours and NPV converged at a much later stage (around the 60th generation). As 416 it can be seen, the minimum value for in-site building energy use, found in the third generation 417 (~70 kWh/m²-year) is similar to the optimised value. This means that the algorithm selected a 418 'strong' and 'healthy individual' at an early stage in the simulation. On the other hand, due to 419 the study strict constraints on capital investment and thermal comfort, larger number of 420 generations were required for these objectives to converge within an acceptable value.

[Fig. 6 around here]

422

421

423 Fig. 7 illustrates the convergence rates for the exergy/exergoeconomic optimisation. Although 424 it might seem that exergy destruction rate converged late in the optimisation process 425 (generation 77th), the values at the initial generation already presented similar values to the 426 final optimised value. The same behaviour is found for the discomfort hours, reaching 427 convergence after the 8th generation. In the case of the exergoeconomic cost-benefit indicator 428 the initial value of £0.20/h already represented a major improvement from the actual 429 Passivhaus retrofit (£1.33/h); however, it was after generation 74th when it reached the best 430 outcome (-£0.11/h) due to economic constrains set in the study.

[Fig. 7 around here]

431

432

433 *4.4 A statistical comparison of optimisation outputs*

Although there is no minimum sample size for a t-test to be valid, it is considered that the Pareto fronts are too small (sample sizes: 9 and 14); therefore, it is decided to perform the analysis in the constrained solutions (474 and 343 samples). For the test, the analysed indicators are the same as presented in Table 9. Fig. 8 presents boxplots for each of these

outputs. The boxplots would also help to determine each output's variability, median values
(skewness), and outliers. Although not conclusive, the test should provide an initial evidence
to exhibit that, on average, either approach delivers better outcomes than the real retrofit.
Although the t-test requires normally distributed samples, the test is not sensitive to deviation
if the distribution of both samples' outputs is similar and the sample size is large enough (>50).
Nevertheless, data transformation is required to make the output samples more normally
distributed, meaning to remove some extreme outliers.

445

[Fig. 8 around here]

The independent t-test results are displayed in Table 10. Beforehand, it was expected that each approach dominates its related outputs, meaning that the energy/economic optimisation would deliver better indicators such as energy, NPV, LCC; while the exergy/exergoeconomic optimisation would perform better in indexes such as exergy destruction cost, exergy efficiency, etc. However, there are outputs such as discomfort and carbon emissions which were of great interest for this study.

452

[Table 10 around here]

453 According to the results, discomfort hours and annual revenue p-values demonstrated that the 454 difference between the approaches' means, at a significance level of 5%, do not have statically 455 significant difference from zero; therefore, there is insufficient evidence to suggest that either 456 approach has a better performance. The discomfort hours' indicator p-value was expected, as 457 this objective was optimised for both approaches; however, the fact that the annual revenue's 458 energy/economic optimisation do not seem to outperform its exergy/exergoeconomic 459 counterpart, suggests that exergoeconomic optimisation can also deliver cost-effective 460 solutions without the need to invest larger amounts, as shown in the NPV t-test outputs. 461 However, the indicator that seemed to provide the most meaningful outcome is the annual 462 carbon emissions, where there is an average difference in annual emissions of 7.67 tCO₂ in 463 favour of the exergy/exergoeconomic solutions. The t-test provided a 95% confidence interval 464 of the mean difference between 5.8 and 9.78 tCO₂ and a small p-value of 7.16E-15; therefore 465 the null-hypothesis can be rejected and conclude that the exergy/exergoeconomic 466 optimisation approach, at least for this specific case study, provides larger carbon emission 467 reductions.

469 **5. Conclusions**

470

471 This paper presented two different approaches (1st Law and combined 1st & 2nd Laws) for the 472 optimisation of building energy retrofit designs under tight economic constraints. A recently 473 retrofitted Passivhaus community centre has been used as case study. The results, although 474 presented for a single case, clearly demonstrate the strengths of exergoeconomic optimisation 475 compared to 1st Law-only optimisation (energy and typical economics). Considering the practical limitations that ExRET-Opt might present, the inclusion of exergy/exergoeconomics 476 477 as objective functions into the MOO procedure has resulted in models with better overall 478 performance, including non-thermodynamic values such as thermal comfort and carbon 479 emissions.

However, due to the high capital investment constraints and high technological prices for low-480 481 exergy systems, some Pareto solutions under the exergy/exergoeconomic optimisation are 482 based on high exergy systems (e.g. biomass boilers). This has deprived the optimisation 483 model from suggesting more thermodynamic efficient designs. In an ideal thermodynamic 484 situation, the BER system design would be based on either a high efficient low-temperature 485 lift GSHP or on a waste-heat or low-carbon-based district system network, combined with low 486 temperature hydronic systems and medium levels of envelope's thermal insulation. 487 Nevertheless, the exergy-oriented approach is able to double the thermodynamic efficiency 488 by focusing on improving exergy efficiency on generation systems and electrical appliances. The optimisation drove BER designs towards low-carbon HVAC systems, allocating limited 489 490 budget to efficient active systems and suggesting U_{values} (envelope and glazing), and infiltration 491 rates not as strict as government minimum requirements. These results suggest that both 1st 492 and 2nd Law analysis, as they have the capability to locate exact sources of inefficiency, should 493 be used together as objective functions and constraints in optimisation procedures.

494 Exergy and exergoeconomic optimisation could have an important future role in the building 495 industry if some practical barriers can be overcome. The analysis has demonstrated to provide designs with an appropriate balance between active and passive measures, while consistently 496 497 accounting of irreversibilities and its exergetic and economic costs along every subsystem in 498 the building energy system. Meanwhile, the application of the exergoeconomic cost-benefit 499 index as an objective function could provide more consistent outputs among a large variety of 500 indicators. This index could be a practical solution as it supports building designers in making 501 informed and robust economic decisions.

502 The outputs from this study should critically expose the limitations of using energy analysis 503 only, demonstrating how the 1st Law is only a necessary calculation while the utilisation of the 1st and 2nd Laws simultaneously becomes a sufficient condition for an in-depth analysis. It is 504 505 sought that the lessons learned and conclusions from this study may be useful for future retrofit 506 standards and appropriate taxation across the UK and other countries. Minimising exergy 507 destructions at a larger scale could provide countries with greater energy security as high-508 quality energy sources can be used more efficiently in sectors such as the chemical industry 509 and transport. Nevertheless, more case studies and optimisation runs are necessary to generalise these conclusions. 510

511 Acknowledgments

- 512 The first author acknowledges support from The Mexican National Council for Science and
- 513 Technology (CONACyT) through a scholarship to pursue doctoral studies with a CVU: 331698
- and grant number: 217593.

515 Nomenclature

516	ach	air change rates (1/h)
517	BER	building energy retrofit
518	\dot{C}_D	exergy destruction cost rate (£/h)
519	\dot{C}_p	exergy cost balance (£/kWh)
520	C _f	average cost of fuel (£/kWh)
521	c_p	average cost of product (£/kWh)
522	CAV	constant air volume
523	CRF	capital recovery factor (£)
524	DHW	domestic hot water
525	DPB	discounted payback (years)
526	е	Euler's number
527	EPS	Expanded Polystyrene
528	EUI	energy use index (kWh/m²-year)
529	Ex	exergy (kWh)
530	\dot{Ex}_D	exergy destructions (kWh)
531	Ex _{dem}	exergy demand
532	Ex _{prim}	primary exergy
533	Exec _{CB}	exergoeconomic cost benefit factor (£/h)

534	f	overgeoconomic factor ()					
554							
535	F _p	printary energy factor (-)					
536	F_q	quality factor (-)					
537	FiT	feed-in-tariff					
538	GSHP	ground source heat pump					
539	Н	internal heat production rate (W/m ²)					
540	HVAC	heating, ventilation, and air conditioning					
541	i	interest rate (%)					
542	kW	Kilowatt(s)					
543	kWh	Kilowatt-Hour(s)					
544	L	energy loss (W/m²)					
545	LCC	life cycle cost (£)					
546	LFC	Lampe Fluorescente Compacte					
547	М	metabolic rate (W/m ²)					
548	MVHR	mechanical ventilation heat recovery					
549	NPV	net present value (£)					
550	Ν	project lifetime (years)					
551	NSGA	Non-Dominated Sorting Genetic Algorithm					
552	PMV	predicted mean vote					
553	PW	present factor (£)					
554	R	annual revenue (£)					
555	Ŕ	annual revenue rate (£/h)					
556	r_k	relative cost difference (-)					
557	RHI	renewable heat incentive (£)					
558	SV	salvage cost (£)					
559	T_0	reference temperature (K)					
560	T _i	room temperature (K)					
561	TCI	total capital investment (£)					
562	U_{value}	thermal transmittance (W/m ² -K)					
563	VAV	variable air volume					
564	VRF	variable refrigerant flow					
565	$Z_j(\mathbf{x} *)$	objective function					
566	Ż _{sys}	capital investment rate (£/h)					
567	Greek sy	mbols					
568	ψ_{tot}	exergy efficiency (-)					

570Appendices571Appendix A. Exergy/exergoeconomic calculation framework [52, 53]572A.1 Exergy analysis for building energy systems573A.1 Exergy analysis for building energy systems574A.1.1 HVAC exergy stream575A.1.1 HVAC exergy stream576A.1.1 HVAC exergy stream577a) Detailed thermal exergy demand (heat and matter):578
$$Ex_{dem,therm, zone l}(t_k) = \sum_{t=1}^{n} \left[En_{dem, therm lith}(t_k) * \left(1 - \frac{T_{0}(t_k)}{T_{1}(t_k) - T_{0}(t_k)} \right) \right] (A.1)579 $Ex_{dem,vent, zone l}(t_k) = \sum_{t=1}^{n} \left[En_{dem, vent lith}(t_k) * \left(1 - \frac{T_{0}(t_k)}{T_{1}(t_k) - T_{0}(t_k)} \right) \right] (A.2)580b) Room air subsystem:581 $F_{q,room}(t_k) = 1 - \frac{T_{e}(t_k)}{T_{massion}(t_k)}$ (A.3)582Therefore, the exergy load of the room is:583 $Ex_{room}(t_k) = F_{q,emission}(t_k) * Q_{emission}(t_k)$ (A.4)584c) Emission subsystem:585Referencing to the inlet and return temperature of the system, the exergy losses of the586emission system are calculated as follows:587 $\Delta Ex_{emission}(t_k) = \frac{Q_{out}(t_k) + Q_{out}(t_k) - Q_{ret}(t_k)} - T_{ret}(t_k) - T_{0}(t_k) + \ln\left(\frac{T_{out}(t_k)}{T_{ret}(t_k)}\right)\right]$ (A.5)588Therefore, exergy load rate of the heating system is:589 $Ex_{emission}(t_k) = Ex_{room}(t_k) + \Delta Ex_{emission}(t_k)$ (A.6)590d) Distribution subsystem:591As a result of the heat losses in the supply pipe, a temperature drop occurs (ΔT_{dis}). The exergy592demand of the distribution system is:593 $\Delta Ex_{d$$$$

594 Hence, the exergy load of the distribution system is:

595
$$Ex_{dist}(t_k) = Ex_{emission}(t_k) + \Delta Ex_{dist}(t_k)$$
(A.8)

596 e) Storage subsystem:

(A.10)

597 The exergy demand of the storage can be calculated as follows:

598
$$\Delta Ex_{strg} = \frac{Q_{loss,strg}(t_k)}{\Delta T_{strg}(t_k)} * \left\{ (\Delta T_{strg}(t_k) - T_0(t_k)) * \ln\left(\frac{T_{dist}(t_k) + \Delta T_{strg}(t_k)}{T_{dis}(t_k)}\right) \right\}$$
(A.9)

599 And the exergy load is calculated as follows:

$$600 \quad Ex_{strg}(t_k) = Ex_{dist}(t_k) + \Delta Ex_{strg}(t_k)$$

601

- 602 A.1.2 DHW exergy stream
- 603 Exergy demand for domestic hot water is calculated as follows::

604
$$Ex_{dem,DHW}(t_k) = Q_{DHW}(t_k) * \frac{\eta_{WH}(t_k)}{q_{fuel}} * \left(1 - \left(\frac{T_0(t_k)}{T_{p_{WH}}(t_k) - T_0(t_k)}\right) * \ln\left(\frac{T_{p_{WH}}(t_k)}{T_0(t_k)}\right)\right)$$
(A.11)

- Distribution and storage subsystem in the DHW stream is calculated similar to the HVACstream.
- 607 A.1.3 Electric-based exergy stream
- 608 Electric-based equipment such as fans, pumps, lighting, computers, and motors are 609 considered to have the same exergy efficiency as their energy counterpart ($\psi_{elec} \approx \eta_{elec}$) and 610 therefore the same exergy consumption.
- 611 $Ex_{dem,elec,i}(t_k) = En_{dem,elec,i}(t_k) * F_{q,elec}$ (A.12)

612

- 613 A.1.4 Other end-use streams
- 614 Exergy demand for cooking equipment (gas based):

615
$$Ex_{dem,cooking} = Q_{cook}(t_k) * \frac{\eta_{cook}(t_k)}{q_{fuel}} * \left(1 - \frac{T_0(t_k)}{T_{p_{cook}}(t_k)}\right)$$
(A.13)

616 Exergy demand for refrigeration:

617
$$Ex_{dem,ref}(t_k) = Q_{ref}(t_k) * COP_{ref}(t_k) \left(\frac{T_0(t_k)}{T_{p_{ref}}(t_k)} - 1 \right)$$
(A.14)

- 618 A.1.5 Primary Exergy Input
- 619 For primary exergy input, the following formula is used:

$$620 \qquad Ex_{prim}(t_k = \sum_i \left(\frac{En_{gen,i}(t_k)}{*\eta_{gen,i}(t_k)} * F_{p,source,i} * F_{q,source,i}\right) + \left(Ex_{dem,elec,ith}(t_k) * F_{p,elec}\right)$$
(A.15)

Fuel primary energy factors and quality factors used in this study are shown in Table A.1

622	
623	[Table A.1 around here]
624	
625	A.1.6 Exergy destructions and exergy efficiency
626	Exergy destructions is obtained by subsystems or whole building is obtained as follows:
627	$Ex_{dest,i} = Ex_{IN,i} - Ex_{OUT,i} $ (A.16)
628	Therefore, a building's exergy efficiency Ψ_i is obtained as follows:
629	$\Psi_{sys,i}(t_k) = \frac{Ex_{out,i}(t_k)}{Ex_{in,i}(t_k)} $ (A.17)
630	
631	
632	A.2 Economic/Exergoeconomic analysis
633	
634	A.2.1 Economic analysis
635	The proposed framework recommends and considers typical economic calculations as a first
636	assessment.
637	a) Life cycle cost analysis (LCCA):

638
$$LCCA = \sum_{n=1}^{N} \frac{CF_n}{(1+r_d)^n}$$
 (A.18)

639 where CF_n is the annual cash flow of year *n*, N is the total years of evaluation, and r_d is the 640 discount rate. The annual cash flow is calculated as follows:

641
$$CF_n = \left[C_n^B + O\&M_n^B\right] + \left[C_n + O\&M_n\right] + \left[C_{en} - C_{inc}\right] - SV_N$$
 (A.19)

where C_n^B is the baseline capital cost, $O \& M_n^B$ is the baseline operation and maintenance cost, C_n is the incremental capital cost in year *n*, $O \& M_n$ is the incremental operation and maintenance cost in year n, C_{en} is the annual energy cost, C_{inc} is annual income from

645 incentives, and SV_N is the salvage cost or residual value with measures with longer lifespan 646 (considering a common rate of 15%).

647 b) Net Present value (NPV) and Discounted Payback (DPB)

648
$$NPV_{Nyears} = -TCI + \left(\sum_{n=1}^{N} \frac{R}{(1+i)^n}\right) + \frac{SV_N}{(1+i)^N}$$
 (A.20)

649 where *TCI* is the initial total capital investment, *R* is the annual revenue cost (composed of the 650 annual energy cost savings minus the operation and maintenance cost). A lifespan (N) of 50 651 years and a discount rate (i) of 3% [59] are considered. DPB can be calculated by contracting 652 the Taylor Series of the NPV formula and by accounting for the retrofit project annual revenue:

653
$$DPB = -\frac{\ln\left[\left((1-(1+i))*\left(\frac{TCI}{R}\right)\right)+1\right]}{\ln(1+i)}$$
 (A.21)

ExRET-Opt accounts for programs such as FiT and RHI. Other economic parameters that are
considered are energy price escalation, inflation rate, labor and maintenance cost, taxes, etc.
Table A.2 shows energy tariffs including CCL for 'small' non-domestic consumers.

658

657

An annual energy price escalation until 2035 for gas and electricity is considered. [60]. Prices from 2035 onwards maintain the same value. Additionally, energy price forecasts for other energy sources are not considered.

Table A.3 shoes government incentives considered in the analysis. Price changes are notconsidered for these schemes.

664 [Table A.3 around here]
665
666 A.2.2 Exergoeconomic analysis (SPECO) [61]
667

693	[Table B.1 around here]
692	Appendix B - ExRET-Opt BER strategies techno-economic characteristics [11]
691	$f_k = \frac{\dot{z}_k}{\dot{z}_k + c_{F,k}(\dot{E}x_{D,k})} \tag{A.30}$
690	Exergoeconomic factor
689	$r_k = \frac{c_{P,k} - c_{F,k}}{c_{F,k}}$ (A.29)
688	Relative cost difference
687	performance indicators can be calculated:
686	Apart from the basic exergoeconomic evaluation, within the SPECO method, two additiona
685	$CRF = \frac{i(1+i)^n}{(1+i)^n - 1} $ (A.28)
684	$PW = TCI - \frac{SV_N}{(1+i)^N} $ (A.27)
683	PW and CRF are obtained as follows:
682	$Z_{sys} = \frac{PW \cdot CRF}{\tau} $ (A.26)
681	dependant also on the project's lifetime:
680	To account for the component capital investment, we should convert it into an hourly rate
679	$\dot{C}_{D,sys} = \Sigma_{k=0}^{n} (c_{f,K} \dot{Ex}_{D,k}) $ (A.25)
677 678	To obtain building exergy destruction cost rate, a sum of all subsystems' components is needed:
676	$\dot{C}_{D,k} = c_{f,K} \dot{E} x_{D,k} \tag{A.24}$
675	In addition, the exergy destruction cost rate of a component is defined as:
674	$\dot{C}_{p,k} = \dot{C}_{D,k} + \dot{Z}_{sys} \tag{A.23}$
673	balance expression rate is expressed as follows:
672	where c_i and Ex_i are the streams' specific cost and exergy, respectively. A general cost
671	$\dot{C}_i = c_i E x_i \tag{A.22}$
670	An exergy cost stream rate associated with the corresponding stream <i>i</i> is calculated as follows
669	presented in £/h.

694 [Table B.2 around here]

- 695 [Table B.3 around here]
- 696 [Table B.4 around here]
 - [Table B.5 around here]
 - [Table B.6 around here]

699

698

697

- ----
- 700
- 701

702 **References**

- [1] Pérez-Lombard L, Ortiz J, Pout C. A review on buildings energy consumption information.
 Energy and Buildings. 2008;40(3):394-8.
- [2] Metz B, Davison OR, Bosch PR, Dave R, Meyer LA. Climate Change 2007: Mitigation of
 Climate Change. In: IPCC, editor. Contribution of Working Group III to the Fourth Assessment
 Report of the Intergovernmental Panel on Climate Change2007.
- 708 [3] UNEP-SBCI. Buildings and Climate Change Summary for Decision-Makers. UNEP 709 Sustainable Buildings & Climate Initiative. 2009.
- 710 [4] Nguyen A-T, Reiter S, Rigo P. A review on simulation-based optimization methods applied 711 to building performance analysis. Applied Energy. 2014;113(0):1043-58.
- [5] Attia S, Hamdy M, O'Brien W, Carlucci S. Assessing gaps and needs for integrating building
 performance optimization tools in net zero energy buildings design. Energy and Buildings.
 2013;60(0):110-24.
- [6] Evins R. A review of computational optimisation methods applied to sustainable building
 design. Renewable and Sustainable Energy Reviews. 2013;22(0):230-45.
- 717 [7] Diakaki C, Grigoroudis E, Kolokotsa D. Towards a multi-objective optimization approach 718 for improving energy efficiency in buildings. Energy and Buildings. 2008;40(9):1747-54.
- [8] Diakaki C, Grigoroudis E, Kabelis N, Kolokotsa D, Kalaitzakis K, Stavrakakis G. A multi abiective decision model for the improvement of energy efficiency in buildings. Energy
- objective decision model for the improvement of energy efficiency in buildings. Energy.
 2010;35(12):5483-96.
- [9] Siddharth V, Ramakrishna PV, Geetha T, Sivasubramaniam A. Automatic generation of
 energy conservation measures in buildings using genetic algorithms. Energy and Buildings.
 2011;43(10):2718-26.
- 725 [10] Asadi E, da Silva MG, Antunes CH, Dias L. A multi-objective optimization model for 726 building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB. Building and
- 727 Environment. 2012;56(0):370-8.
- 728 [11] Diakaki C, Grigoroudis E, Kolokotsa D. Performance study of a multi-objective 729 mathematical programming modelling approach for energy decision-making in buildings.
- 730 Energy. 2013;59:534-42.
- [12] Gossard D, Lartigue B, Thellier F. Multi-objective optimization of a building envelope for
 thermal performance using genetic algorithms and artificial neural network. Energy and
 Buildings. 2013;67:253-60.
- [13] Malatji EM, Zhang J, Xia X. A multiple objective optimisation model for building energy
 efficiency investment decision. Energy and Buildings. 2013;61(0):81-7.
- [14] Asadi E, Silva MGd, Antunes CH, Dias L, Glicksman L. Multi-objective optimization for
 building retrofit: A model using genetic algorithm and artificial neural network and an
 application. Energy and Buildings. 2014;81(0):444-56.
- [15] Murray SN, Walsh BP, Kelliher D, O'Sullivan DTJ. Multi-variable optimization of thermal
- 740 energy efficiency retrofitting of buildings using static modelling and genetic algorithms A
- case study. Building and Environment. 2014;75(0):98-107.

- [16] Shao Y, Geyer P, Lang W. Integrating requirement analysis and multi-objective
 optimization for office building energy retrofit strategies. Energy and Buildings. 2014;82:35668.
- [17] Wang B, Xia X, Zhang J. A multi-objective optimization model for the life-cycle costanalysis and retrofitting planning of buildings. Energy and Buildings. 2014;77(0):227-35.
- [18] Ascione F, Bianco N, De Stasio C, Mauro GM, Vanoli GP. A new methodology for cost-
- optimal analysis by means of the multi-objective optimization of building energy performance.
 Energy and Buildings. 2015;88(0):78-90.
- [19] Echenagucia, T. M., Capozzoli, A., Cascone, Y., & Sassone, M. The early design stage
 of a building envelope: Multi-objective search through heating, cooling and lighting energy
 performance analysis. Applied Energy. 2015;154:577-591.
- 753 [20] Dahlhausen M, Heidarinejad M, Srebric J. Building energy retrofits under capital 754 constraints and greenhouse gas pricing scenarios. Energy and Buildings. 2015;107:407-16.
- [21] Carlucci, S., Cattarin, G., Causone, F., & Pagliano, L. Multi-objective optimization of a
 nearly zero-energy building based on thermal and visual discomfort minimization using a non dominated sorting genetic algorithm (NSGA-II). Energy and Buildings. 2015; 104: 378-394.
- 758 [22] Lu Y, Wang S, Zhao Y, Yan C. Renewable energy system optimization of low/zero energy
- buildings using single-objective and multi-objective optimization methods. Energy and
 Buildings. 2015;89(0):61-75.
- [23] Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. Design of the
 building envelope: A novel multi-objective approach for the optimization of energy
 performance and thermal comfort. Sustainability. 2015; 7(8):10809-10836
- [24] Ascione, F., Bianco, N., De Masi, R. F., De Stasio, C., Mauro, G. M., & Vanoli, G. P. Multi objective optimization of the renewable energy mix for a building. Applied Thermal
 Engineering. 2015; 101:612-521
- 767 [25] Penna P, Prada A, Cappelletti F, Gasparella A. Multi-objectives optimization of Energy
 768 Efficiency Measures in existing buildings. Energy and Buildings. 2015;95(0):57-69.
- [26] Delgarm N, Sajadi B, Kowsary F, Delgarm S. Multi-objective optimization of the building
 energy performance: A simulation-based approach by means of particle swarm optimization
 (PSO). Applied Energy. 2016;170:293-303.
- [27] Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M., & Vanoli, G. P. Simulation-based
 model predictive control by the multi-objective optimization of building energy performance
 and thermal comfort. Energy and Buildings. 2016;111:131-144.
- [28] Schwartz Y, Raslan R, Mumovic D. Implementing multi objective genetic algorithm for life
 cycle carbon footprint and life cycle cost minimisation: A building refurbishment case study.
 Energy. 2016;97:58-68.
- [29] Hamdy, M., Nguyen, A. T., & Hensen, J. L. A performance comparison of multi-objective
 optimization algorithms for solving nearly-zero-energy-building design problems. Energy and
- 780 Buildings. 2016;121:57-71.
- [30] Fan, Y., & Xia, X. A multi-objective optimization model for energy-efficiency building
 envelope retrofitting plan with rooftop PV system installation and maintenance. Applied
 Energy. 2017; 189: 327-335.
- [31] IÉA-EBC Annex37. Technical Synthesis Report: Low Exergy Systems for Heating andCooling of Buildings, IEA ECBCS, UK, 2007.
- [32] IEA-EBC Annex49. Detailed Exergy Assessment Guidebook for the Built Environment,
 IEA ECBCS. Torio H, Schmidt D, editors. Fraunhofer, IBP; 2011.
- [33] Ala-Juusela M, Angelotti A, Koroneos C, Van der Kooi HJ, Simone A, Olesen BW. Low exergy in the built environment insights from the costeXergy action 2007-2012 In: Technology
 CECiSa, editor. 2014.
- [34] Remer DS, Nieto AP. A compendium and comparison of 25 project evaluation techniques.
- Part 1: Net present value and rate of return methods. International Journal of ProductionEconomics. 1995;42(1):79-96.
- [35] Ashuri B, Kashani H, Lu J. An Investment Analysis Framework for Energy Retrofit in
 Existing Buildings. 47th ASC Annual International Conference Proceedings. 2011:9.

- 796 [36] Rosen MA. Does industry embrace exergy? Exergy, An International Journal.797 2002;2(4):221-3.
- [37] Wall G. Exergy a useful concept within resource accounting. 1977(Report no. 77-42,
- 799 Institute of Theoretical Physics, Chalmers University of Technology and University of800 Göteborg).
- [38] Verda V, Borchiellini R, Cali M. A Thermoeconomic Approach for the Analysis of District
 Heating Systems. International Journal of Thermodynamics. 2001;4(4):183-90.
- [39] Verda V, Kona A. Thermoeconomics as a tool for the design and analysis of energy
 savings initiatives in buildings connected to district heating networks. International Journal of
 Thermodynamics 2012;15(4):221-9.
- [40] Pirkandi J, Jokar MA, Sameti M, Kasaeian A, Kasaeian F. Simulation and multi-objective
 optimization of a combined heat and power (CHP) system integrated with low-energy
 buildings. Journal of Building Engineering. 2016;5:13-23.
- 809 [41] Tozer R, Lozano Serrano MA, Valero Capilla A, James R. Thermoeconomics applied to 810 an air conditioning system with cogeneration. Building Services Engineering Research and
- 811 Technology. 1996;17(1):37-42.
- 812 [42] Campos-Celador Á, Pérez-Iribarren E, Sala JM, del Portillo-Valdés LA. Thermoeconomic
- analysis of a micro-CHP installation in a tertiary sector building through dynamic simulation.
 Energy. 2012;45(1):228-36.
- [43] Ozgener O, Hepbasli A, Dincer I, Rosen MA. Modelling and assessment of ground-source
 heat pump systems using exergoeconomic analysis for building applications. Ninth
 International IBPSA Conference Montréal, Canada. 2005:15–8.
- [44] Demirel Y, Öztürk HH. Thermoeconomics of seasonal latent heat storage system.
 International Journal of Energy Research. 2006;30(12):1001-12.
- [45] Caliskan H, Dincer I, Hepbasli A. Thermoeconomic analysis of a building energy system
 integrated with energy storage options. Energy Conversion and Management.
 2013;76(0):274-81.
- [46] Ucar A. Thermoeconomic analysis method for optimization of insulation thickness for the
 four different climatic regions of Turkey. Energy. 2010;35(4):1854-64.
- [47] Baldvinsson I, Nakata T. A comparative exergy and exergoeconomic analysis of a
 residential heat supply system paradigm of Japan and local source based district heating
 system using SPECO (specific exergy cost) method. Energy. 2014;74:537-54.
- 828 [48] Yücer CT, Hepbasli A. Exergoeconomic and enviroeconomic analyses of a building 829 heating system using SPECO and Lowex methods. Energy and Buildings. 2014;73(0):1-6.
- [49] Açıkkalp E, Yucer CT, Hepbasli A, Karakoc TH. Advanced low exergoeconomic
 (ALEXERGO) assessment of a building along with its heating system at various stages.
 Energy and Buildings. 2015;87(0):66-73.
- [50] García Kerdan I, Raslan R, Ruyssevelt P, Morillón Gálvez D. ExRET-Opt: An automated
 exergy/exergoeconomic simulation framework for building energy retrofit analysis and design
 optimisation. Applied Energy. 2017;192:33-58.
- [51] Garcia Kerdan, I., Raslan, R., Ruyssevelt, P., Vaiciulyte, S., Morillón Gálvez, D.
 Thermodynamic and exergoeconomic analysis of a non-domestic Passivhaus retrofit, *Building and Environment*, 2017. doi: 10.1016/j.buildenv.2017.03.003. In Press, Corrected Proof
- 839 [52] García Kerdan I, Raslan R, Ruyssevelt P. An exergy-based multi-objective optimisation
- model for energy retrofit strategies in non-domestic buildings. Energy. 2016;117(2):506–522.
- [53] García Kerdan I, Raslan R, Ruyssevelt P, Morillón Gálvez D. An exergoeconomic-based
 parametric study to examine the effects of active and passive energy retrofit strategies for
 buildings. Energy and Buildings. 2016;133:155-71.
- [54] EnergyPlus. Getting Started with EnergyPlus. BasicConcepts Manual Essential
 Information You Need about Running EnergyPlus. The Board of Trustees of the University of
 Illinois and the Regents of the University of California through the Ernest Orlando Lawrence
 Berkeley National Laboratory. 2012:73.
- 848 [55] Yoo S, Harman M. Pareto efficient multi-objective test case selection. Proceedings of the
- 849 2007 international symposium on Software testing and analysis. London, United Kingdom:
- 850 ACM; 2007. p. 140-50.

- [56] ASHRAE. ANSI/ASHRAE Standard 55-2004. Thermal Environmental Conditions for
 Human Occupancy. American Society of Heating, Refrigerating and Air-conditioning
 Engineers; 2004.
- [57] Roeva O, Fidanova S, Paprzycki M. Influence of the population size on the genetic
 algorithm performance in case of cultivation process modelling. Conference Influence of the
 population size on the genetic algorithm performance in case of cultivation process modelling.
 p. 371-6.
- ¹[58] Alajmi A, Wright J. Selecting the most efficient genetic algorithm sets in solving
 unconstrained building optimization problem. International Journal of Sustainable Built
 Environment. 2014;3(1):18-26.
- [59] HM Treasury. THE GREEN BOOK: Appraisal and Evaluation in Central Government. In:
 Treasury H, editor. London, UK2003.
- [60] NationalGrid. Future Energy Scenarios: UK gas and electricity transmission. 2015.
- 864 [61] Lazzaretto A, Tsatsaronis G. SPECO: A systematic and general methodology for
- calculating efficiencies and costs in thermal systems. Energy. 2006;31(8–9):1257-89.
- 866
- - -
- 867
- 868
- 869

870

871

872

Fig. 1 Schematic layout of the energy system for the post-retrofit Community Centre

- Fig. 2 Methodological approach to assess the differences between results of both optimisation approaches
- 880

881 882

Fig. 3 Genetic algorithm optimisation process applied to the ExRET-Opt tool [52]

Fig. 6 Convergence of energy/economic optimisation procedure for the three objective functions

Fig. 7 Convergence of exergy/exergoeconomic optimisation procedure for the three-objective functions

Fig. 8 Boxplots representing each output gathered for both optimisation approach

Author	Case study	Location(s)	Simulation engine(s)	Decision variables	Objective functions	Constraints	Optimisation algorithm	Ranking method
Diakaki et al. [7]	Single-zone dwelling (100 m2)	Athens, Greece	LINGO	Windows, insulation type, wall insulation thickness	 Initial investment cost Building load coefficient 	Insulation thickness	Mixed-integer combinatorial optimisation problem	Compromise programming and goal programming
Diakaki et al. [8]	Single-zone dwelling (100 m2)	Athens, Greece	LINGO	HVAC and DHW systems, Solar collectors, and building envelope characteristics	 Primary energy use Carbon emissions Initial investment cost 	Capital investment	Mixed-integer combinatorial optimisation problem	Chebyshev programming
Siddharth et al. [9]	Office building (3721 m2)	Chennai, India. Maryland, USA. USA	DOE-2.2	HVAC systems, envelope characteristics	 Energy use Initial investment cost 	Non-defined	NSGA-II	N/A
Asadi et al. [10]	Semi- detached dwelling (97 m2)	Coimbra, Portugal	TRNSYS, GenOpt, and MatLab	Envelope characteristics (windows, walls, and roof) and solar collectors	 Initial investment cost Energy savings Thermal comfort 	Non-defined	Mixed-integer combinatorial optimisation problem	Chebyshev programming
Diakaki et al. [11]	Single-zone dwelling 50m2	Iraklion, Greece	TRNSYS and LINGO	Envelope characteristics and HVAC svstems	 Primary energy use Carbon emissions Initial investment cost 	Technological and budget constraints	Mixed-integer multi- objective combinatorial optimisation problem	Chebyshev programming
Gossard et al. [12]	Single-zone dwelling (112 m2)	Nancy, France Nice, France	TRNSYS, GenOpt, and ANN	Envelope thermo-physical values	 Energy use Thermal comfort 	Comfort conditions	NSGA-II and Particle swarm optimisation (PSO)	Weighted-sum method
Malatji et al. [13]	Facility building (m2)	Pretoria, South Africa	NA	Insulation, lighting, controls, and HVAC systems	 Energy use Payback period 	NPV, initial investment, energy target, and payback period	Integer programming GA	Weighted-sum method

Table 1 Comparison of several multi-objective optimisation studies applied to building energy design studies

ဖ
Q
ω

	N/A	N/A	Multiple-attribute value theory (MAVT)	Weighted sum method	N/A	N/A	N/A	
2	NSGA-II	NSGA-II	NSGA-II	Differential evolution (DE) algorithms	NSGA-II	NSGA-II	mixed-integer multi- objective combinatorial optimisation problem	
	Non-defined	Capital investment	Envelope physical values, annual energy use and envelope air leakage	% energy use, expected payback period, initial investment	Investment costs	Building physical characteristics	Investment costs	
	 Energy use Retrofit cost Thermal comfort 	 Simple payback Carbon emissions Energy Cost 	 Initial capital investment Energy use, Carbon emissions 	 Energy savings NPV Evaluation period 	 Initial investment cost HVAC energy requirement Thermal comfort 	Heating Cooling Lighting	• Energy use • NPV	
	Envelope characteristics (windows, walls, and roof), solar collectors, and HVAC systems	Envelope characteristics (windows, walls, and roof)	Envelope characteristics (windows, walls, and roof), and HVAC systems	Lighting and HVAC systems	Setpoints, envelope insulation, and HVAC systems	Wall thickness, Number, shape and placement of windows Glazing characteristics	Building enclosure, solar control, plug load/lighting control, and HVAC equipment	
	TRNSYS, GenOpt, and ANN	Degree-days and BeOpt	Visual Basic energy model	N/A	EnergyPlus and MatLab	EnergyPlus	Open Studio, EnergyPlus, and R	72
	Coimbra, Portugal	Cork, Ireland	Aachen, Germany	Pretoria, South Africa	Naples, Italy	Palermo, Torino, Frankfurt and Oslo	Philadelphia, USA	
	School building 9850 m2	University building (m2)	Office building (400 m2)	Facility building (m2)	Apartment flats (110 m2 per flat)	Open space office (first floor) (280 m2)	Office building (6968 m2)	
	Asadi et al. [14]	Murray et al. [15]	Shao et al. [16]	Wang et al. [17]	Ascione et al. [18]	Echenagucia et al. [19]	Dahlhausen et al. [20]	

	N/A	N/A	Weighted sum method	Weighted sum method	
<	NSGA-II	NSGA-II	NSGA-II	NSGA-II	
	Indoor air quality	Zero energy use	Maximum value of admitted discomfort	Fulfillment of the minimum levels of RES integration per Italian law (minimum production of DHW, minimum size of PV, etc)	
	 Thermal comfort Visual comfort 	 Investment costs Carbon emissions Grid interaction index. 	 Primary energy for space conditioning Thermal comfort 	 Primary energy consumption Investment cost 	
	Envelope characteristics, control strategies, and window openings	Envelope and HVAC systems	Solar absorbance and infrared emittance of external plastering, insulation thickness, brick thickness and density, windows' thermal transmittance	Presence and the characteristics (typology and size) renewable systems (type and size of solar collectors, type and size of PV panels, generation system for heating, cooling and DHW)	
	EnergyPlus, GenOpt and Java	TRNSYS and MatLab	EnergyPlus and MatLab	EnergyPlus and MatLab	J.
	Mascalucia, Italy	Hong Kong, China.	Napes, Italy. Istambul, Turkey	Napes, Italy	
	detached single-family house (149.2 m2)	Office building (1520 m2)	Apartment flats (110 m2 per flat)	Apartment flats (110 m2 per flat)	
	Carlucci et al. [21]	Lu et al. [22]	Ascione et al. [23]	Ascione et al. [24]	

	N/A	Weighted sum method	Weighted sum method	N/A	Normalized generational distance, normalized inversed generational distance and normalized diversity metric	Weighted sum method	
7	NSGA-II	Particle swarm optimisation (PSO)	NSGA-II	NSGA-II	pNSGA-II MOPSO PR.GA ENSES evMOGA spMODE-II MODA	Genetic Algorithm	
	Investment costs	NIA	Maximum duration of HVAC system daily operation	N/A	N/A	Total cost of the building envelope retrofitting considering maintenance during a time, and maximum area for solar panel	
	 Energy use NPV Thermal comfort 	 Annual heating Cooling Lighting 	 Energy demand Thermal comfort 	 Life cycle cost Life cycle carbon 	 primary energy consumption life-cycle cost (LCC) of the design solution 	 Energy savings NPV Payback period 	
	Envelope and HVAC systems	Insulation, glazing, and solar shading	hourly values of set point temperatures in the building thermal zones	Envelope characteristics, insulation, windows	Energy saving measures (envelope, equipment, systems), renewable energy sources (thermal collectors, PV) and mechanical systems	Windows, external wall insulation materials, roof insulation materials, rooftop solar panel	
	TRNSYS and MatLab	EnergyPlus, jEPlus and MatLab	EnergyPlus and MatLab	EnergyPlus, jEPlus and jEPlus EA	IDA-ICE 4.6	Non-linear integer programming problem.	24
	Milan, Italy. Messina, Italy	Tehran, Iran. Kerman, Iran	Napes, Italy	Sheffield, England	Helsinki, Finland	South Africa	
	Single-zone dwelling (100 m2)	Single-zone dwelling (9 m2)	Residential building (140 m2)	Council house complex (m2)	Residential house –two floors (143 m2)	Residential building – 66 apartments (70 m2 each)	
	Penna et al. [25]	Delgarm et al. [26]	Ascione et al [27]	Schwartz et al. [28]	Hamdy et al. [29]	Fan et al. [30]	897

898

Table 2 Retrofitted Community Centre main characteristics

General Description	Three Storey Corr	nmunity Centre - C	Offices		-		
Building Type	Commercial					ILER C	
Configuration	Low Rise-Shallow	Plan					
Location	London						
Coordinates	51° 33' 03'' N, (51.550833º, -0.08	0° 04′ 57" W De 2489º	ecimal				
Weather File	London Heathrow	, UK					
Geometry		1 1					
Number of Floor	S	3	Total Floor Are	a	800m ²		· · · · · · · · · · · · · · · · · · ·
Opaque	Materials	Constr	ruction (from in	nside layer)		U-V	Value Wm ² /K
External Walls (GF/1 ^{s1} F)	400mm Solid Wa	all – 300mm Ex	truded Polysty	rene		0.109
External Walls (I	Basement)	400mm Solid W	all – 200mm Ex	panded Polyst	yrene		0.160
Basement Floor		300 mm Concret	te Floor Slab – 8	30mm Phenolic	Foam		0.173
Ground Floor		Timber framed - 300mm Cellular Glass - Zinc finish 0.134			0.108		
Pitched Roof		Timber framed -	300mm Cellula	ar Glass - Zinc	tinish		0.134
Flat Roof		200 mm concrete Stab – 300mm cellular Glass 0.131				0.131	
Transpare	nt Materials	Property U-Value W/m ² K SHGC V			VT		
Glazing Material		6-13-6-13-6 Trip Filled-Low-e	1.598	0	0.613	0.696	
Glazing Area		23% of Total Wall Area					
Skylight Area		5% of Total Roof Area					
Shading		N/A					
Systems							
HVAC System T	уре	Mechanical Ven	tilation with Hea	at Recovery Sy	stem		
Heating System		Heat Recovery S	System + 8.4kV	V Ground Sour	ce Hea	t Pump	with radiators
COP GSHP		4.5					
	Osistasla	Electricity	The)l' - t	
Heating System	Controis	Nain System In	ermostat – The	ermostatic valv	es on F	kadiators	6
Vontilation				fine Cooling)			
Ventilation		Heat Recovery-	Radius Heat Ex	changer Eff= 0	.75		
		 Summer. Ivi Heat Recovery-I 	Radius Heat Ex	changer Eff= (75 + N	latural V	entilation
Specific Fan Pov	ver	0.7 - 1.5 kPa					childton
DHW		, s.t. field u					
Generator Type		Single 3m ² thern	nal vacuum tub	e panel + hot v	/ater ta	nk GSH	P for top-up
Fuel Type		Solar energy - E	lectricity	· ·			
Lighting			5				
Туре		T8 LFC					
Controls		manual-on-off					
Loads							
Occupancy		1 person/16m ² -	at average 140	watts= 8.75 W	//m²		
Equipment		73.4 W/m ²					
Lighting		10.6 W/m ²					
Rates		1					
Infiltration Rate ((@50 Pa)	0.42 ach					
Renewables (P	V system)						
Available roof sp	ace	398.6 m ²					
PV array		125m ² of PV on	pitched surface	e (inclination 30	⁰)		
Туре		77 modules of 18kWp, c-Si-Monocrystalline					

Energy and economic indicators	Values
Energy use (EUI) (kWh/m ² -year)	61.6
Energy bill (£/year)	4,379
RHI income (£/year)	988.3
FiT income (£/year)	723.6
Retrofit capital investment (£)	417,028
Annual revenue (£/year)	7,415.4
Life Cycle Cost 50 years (£)	471,403
Net Present Value _{50 years} (£)	-213,436
DPB	137.2
Exergy and exergoeconomic indicators	Values
Exergy input (fuel) (kWh/m ² -year)	166.8
Exergy demand (product) (kWh/m ² -year)	30.0
Exergy destructions (kWh/m ² -year)	136.8
Exergy efficiency HVAC	10.4%
Exergy efficiency DHW	2.5%
Exergy efficiency Electric equip.	19.9%
Exergy efficiency Building	18.0%
Exergy cost fuel-prod HEAT (£/kWh) $\{r_k\}$	0.12—0.26{1.14}
Exergy cost fuel-prod COLD (£/kWh) $\{r_k\}$	{}
Exergy cost fuel-prod DHW (£/kWh) $\{r_k\}$	0.12—1.90 {14.82}
Exergy cost fuel-prod Elec (£/kWh) $\{r_k\}$	0.12-0.24 {0.97}
D (£/h) Exergy destructions cost {energy bill £; %D from energy bill}	0.38 {2,947.3; 68.2 %}
Z (£/h) Levelised capital cost	1.78
R (£/h) Levelised revenue	0.84
Exergoeconomic factor $f_k \mbox{ (\%)}$	0.82
Exergoeconomic cost-benefit (£/h)	1.33
Non-thermodynamic indices	Values
Occupant thermal discomfort (PMV)	853
Carbon emissions tCO ₂	38.6
\mathcal{S}	

Table 3 Actual performance for the case study Passivhaus building [51]

900

Table 4 Characteristics and investment cost of HVAC systems [50, 52]

HVAC ID	System Description	Emission system	Cost
H1	Condensing Gas Boiler + Chiller	CAV	Generation systems
H2	Condensing Gas Boiler + Chiller	VAV	• £160/kW Water-
H3	Condensing Gas Boiler + ASHP-VRF System	FC	based Chiller (COP=3.2)
H4	Oil Boiler + Chiller	CAV	• £99/kw Condensing
H5	Oil Boiler + Chiller	VAV	• £70/kW Oil Boiler
H6	Oil Boiler + Chiller	FC	(η=0.90)
H7	Electric Boiler + Chiller	CAV	• £150/kW Electric
H8	Electric Boiler + Chiller	VAV	Boller (η =1.0) £208/kW Biomass
H9	Electric Boiler + ASHP-VRF System	FC	Boiler (n=0.90)
H10	Biomass Boiler + Chiller	CAV	• £1300/kW ASHP-
H11	Biomass Boiler + Chiller	VAV	VRF System
H12	Biomass Boiler + ASHP-VRF System	FC	(COP=3.2)
H13	District system	CAV	(Water-Water)
H14	District system	VAV	System (COP=4.2)
H15	District system	Wall	• £452/kW ASHP (Air-
H16	District system	Underfloor	Air) (COP=3.2)
H17	District system	Wall+Underfloor	svstem
H18	Ground Source Heat Pump	CAV	• £27080 micro-CHP
H19	Ground Source Heat Pump	VAV	(5.5 kW) + fuel cell
H20	Ground Source Heat Pump	Wall	system
H21	Ground Source Heat Pump	Underfloor	Emission systems
H22	Ground Source Heat Pump	Wall+Underfloor	• £700 per CAV
H23	Air Source Heat Pump	CAV	• £1200 per VAV
H24	PVT-based system (50% roof) with supplemental Electric boiler and Old Chiller	CAV	 £35/m² wall heating £35/m² underfloor heating
H25	Condensing Boiler + Chiller	Wall	• £6117 per Heat
H26	Condensing Boiler + Chiller	Underfloor	Recovery system
H27	Condensing Boiler + Chiller	Wall+Underfloor	Other subsystems:
H28	Biomass Boiler + Chiller	Wall	£56/kW District heat
H29	Biomass Boiler + Chiller	Underfloor	exchanger + £6122
H30	Biomass Boiler + Chiller	Wall+Underfloor	connection charge
H31	Micro-CHP with Fuel Cell and Electric boiler and old Chiller	CAV	insulated distribution
H32	Condensing Gas Boiler and old Chiller. Heat Recovery System included.	CAV	pheo
H33*	Ground Source Heat Pump + Heat Recovery System	MT Radiators	

904

* H33 represents the actual post-retrofit HVAC system installed

905

907

Table 5 Decision variables and vector ID used for the case study

Decision variables - BER measures	Number of possible solutions	Vector ID		
HVAC system	34	X ^{HVAC}		
Wall insulation (above ground)	116	X ^{wall}		
Roof Insulation	116	X ^{roof}		
Ground floor Insulation	111	X ^{ground}		
Basement Wall insulation	116	X ^{wall_BS}		
Pitched Roof Insulation	116	X ^{roof_Pi}		
Basement Ground Insulation	111	X ^{ground_BS}		
Sealing (infiltration rate)	10	X ^{seal}		
Glazing	13	X^{glaz}		
Lighting	4	$X^{ ext{light}}$		
Photovoltaic panels	12	X ^{PV}		
Wind turbines	3	X ^{wind}		
Heating set-point	5	X ^{heat}		

908 909

Table 6 Algorithm parameters and stopping criteria for optimisation with GA

F	alameters		
Encoding scheme	Integer encoding (discretisation)		
Population type	Double-Vector		
Population size	100		
Crossover Rate	100%		
Mutation Rate	40%		
Selection process	Stochastic – fitness influenced		
Tournament Selection	2		
Elitism size	Pareto optimal solutions		
Sto	pping criteria		
Max Generations	100		
Time limit (s)	10 ⁶		
Fitness limit	10 ⁻⁶		

	NPV_{50y}		(11/2)	{DPB-	years}	+8,488		{50.0}	+79,773		{33.6}	+148.667		{23.7}	•			Exec _{CB}		(£/h)		{DPB	(years)}	0.23	{50.0}	ac 0	07.0	{43.7}		-0.11	{26.7}	,
	Discom	-fort	(hours)			841			550			853						Discom	-fort	(hours)				791		EQ.4	100			666		
	EUI_{bu}		(kWh/	Vear)	ycai,	58.4			65.9			272.4						Ex_{dest}		(kWh/	 m	year)		102.9		117.0	0. /			114.0		
ch	X^{heat}	000	$\hat{\boldsymbol{\omega}}$			21			21			21					roach	X^{heat}		(C°)				20		00	04		:	19		
approa	X ^{wind}		(KVV)			20			20			20)				ed app	X^{wind}		(kW)				20		c	5			0		
-based	X^{PV}	ò	% Roof	panels		0			10			10	2				iics-bas	X^{PV}		%_	Roof	panels		0		30	2		;	20		
nomics	X^{light}		tach			T8	LFC		T5	LFC		Τ5	LFC				econom	X^{light}		Light	tech			T8		ТБ) İ	ł	15	D ī	
nergy/eco	$X^{ m glaz}$		(glass-	dass.	in mm)	Double	glazed	Air (6-6-6)	Double	glazed	Krypton	Double	glazed	Ăir	(6-13-6)		ly/exergoe	$X^{ m glaz}$		(glass-	gap-	glass,	(mm n	Single	(9)	Dauble	alazed	Air	(0-13-0)	Single	gidtod	
on using er	X^{seal}		Reduction		(ach)	50%		(0.9 ach)	40%		(0.6 ach)	20%		(0.8 ach)			using exerg	X^{seal}		Infiltration	Reduction	%	(acn)	20%	(0.8 ach)	1002	0/01	(0.9 ach)		10%		(0.9 ach)
optimisati	$X^{\mathrm{ground_BS}}$	Basement	Insulation	(m)	{U-value}	Phenolic		(0.10m) {U: 0.11}	Polyure-	thane	(0.10m)	Phenolic		(0.04m)	{Ù: 0.26}	L	timisation (X^{ground_BS}	Basement	Ground	Insulation	(m)	{U-value}	Aerogel	(0.025m)		dass	(0.13m)	{U: U. 13}	Polyure- thane		(0.07m) {U: 0.14}
le-objective	$X^{\mathrm{roof}\mathrm{Pi}}$	Pitched	Insulation	(m)	{U-value}	Phenolic		(0.08m) {U: 0.25}	EPS		(0.12m)	XPS		(0.03m)	{Ù: 0.41}		bjective op	X ^{roof_Pi}	Pitched	Roof	Insulation	(m)	{U-value}	EPS	(m60.0)	10. 0.3/}	Board	(0.12m)	{U: U.20}	Polyure- thane		(0.04m) {U: 0.57}
ign for sing	X^{wall_BS}	Basement	VVall Insulation	(m)	{U-value}	Cellular	Glass	(0.30m) {U: 0.13}	XPS		(0.25m) (1.0.13)	XPS)	(0.04m)	{Ù: 0.60}		for single-o	X^{wall_BS}	Basement	Wall	Insulation	(m)	{U-value}	Glass Fihre	(0.20m)	{0. 0. 10} EDS	5	(m20.0)	{U: U.38}	SdX		(0.03m) {U: 0.72}
retrofit des	$X^{ m ground}$		Insulation	(m)	{U-value}	Phenolic		(0.05m) {U: 0.15}	Cellular	Glass	(0.12m)	Cork	Board	(0.14m)	{Ù: 0.18}		ofit design	X^{ground}		Ground	Insulation	(m)	{U-value}	Polyure- thane	(0.06m)	{U: U.23}	hoard	(0.14m)	{U: U.1z}	Phenolic		(0.03m) {U: 0.17}
able 7 BER	X^{roof}		R001 Insulation	(m)	{U-value}	Phenolic		(0.03m) {U: 0.32}	XPS		(0.10m)	XPS)	(0.08m)	{Ù: 0.85}		8 BER retr	X^{roof}		Roof	Insulation	(m)	{U-value}	Phenolic	(0.05m)	{U: U:3/}	board	(0.28m)	{U: U. 13}	Polyure-		(0.12m) {U: 0.19}
Ta	X^{wall}	101-11	Insulation	(m)	{U-value}	Polyure-	thane	(0.25m) {U: 0.09}	EPS		(0.14m) (0.0 -1 n	Glass	Fibre	(0.15m)	{Ù: 0.21}		Table	X^{wall}		Wall	Insulation	(m)	{U-value}	Polyure- thane	(0.03m)		5	(0.25m)	{U: U. 13}	Glass Fihre		(0.065m) {U: 0.42}
	X^{HVAC}					H21:	GSHP +	Underfloor Heat.	H21:	GSHP +	Underfloor	H31:	mCHP +	Boiler +	CAV			X^{HVAC}						H15: District	Heating +		Biomass	Boiler +	wall heat.	H29: Biomass	Boiler +	Underfloor Heat
11	Obj.					[min]	EUI_{bui}		[min]	Discom	-fort	[max]	NPV_{50v}	622			912	Obj.						[min] Ex_{down}	uestinut	[min]	Discom	-fort		[min] Exec _{cn}	g1	

,bər	Exec _{CB}	(£/h)		2.03	1.43	4.39		0.23	0.28	<u>-0.11</u>	
d and underlir	Heating fuel- product price	(£/kWh)		0.124.24	0.123.59	0.124.46		0.070.12	0.04-0.29	0.040.19	
nce in bol	Exergy dest. cost rate	(£/h)		2.06	1.05	5.05		0.25	0.28	0.25	
st performa	Exergy eff. Building	(%)		12.3%	12.7%	13.1% 22.2% 19.5% 19.9%	22.2% 19.5%				
oaches (be	Exergy dest.	(kWh _{ex} / m²- year)		194.7	185.9	255.9	_	102.9	117.8	114.0	
MOO appr italic)	Primary exergy input	(kWh _{ex} / m²- year)	iisation	222.1	213.1	294.5	ptimisation	<u>132.2</u>	146.3	142.2	
s from both n bold and	NPV (50 years)	(£)	ased optim	8,489	71,297	148,667	cs-based o	3,844	43,005	80,633	
sation models performance i	Annual Revenue (with incentives)	(£)	y/economic-b	10,530	14,649	<u>15,650</u>	ergoeconomi	6,878	11,309	9,891	
ngle optimi worst p	BER Total Capital Invest.	(£)	Energ	271,738	316,444	262,992	Exergy/ex	179,250	256,761	180,018	
s among sir	LCC (50 years)	(£)		249,478	186,670	109,300		254,123	150,796	177,333	JOL
n indicators	Discom- fort	(hours)		841	550	853		791	584	666	
ison of mai	Annual Carbon	(tCO ₂)		27.5	28.3	81.0		53.6	25.0	14.4	
A compar	EUI	(kWh/ m² - year)		58.4	65.9	272.4		118.3	121.7	123.3	
Table 9	Model			[min] EUI _{bui}	[min] Discom- fort	[max] NPV _{50y}		[min] Ex _{dest,bui}	[min] Discom- fort	[min] $Exec_{CB}$	

Indicator	Mean <u>energy/</u> <u>economic</u> approach	Mean <u>exergy/</u> <u>exergoeconomic</u> approach	Estimation difference	95 Confic inter	% lence ·val	t-value	p-value
EUI (kWh/m²year)	<u>102.4</u>	135.0	-32.4	-39.1	-26.0	-9.78	2.2E-16
Carbon emissions (tCO ₂ /year)	31.65	<u>23.98</u>	7.67	5.8	9.6	7.94	7.2E-15
Discomfort (Hours)	726	729	-3	-11.6	6.2	-0.59	0.5507
LCC (£)	<u>226,694</u>	233,946	-7252	-10,576	-3,928	-4.28	2.1E-05
BER Capital Investment (£)	<u>282,047</u>	292,534	-10487	-18,640	-234	-2.53	0.01177
Annual Revenue (£)	11,802	11,914	-112	-421	198	-0.71	0.4787
NPV (£)	<u>31,273</u>	24,021	7252	3,928	10,576	4.28	2.1E-05
Primary exergy input (kWh/m²year)	215.9	<u>186.4</u>	29.5	24.4	34.6	11.35	2.2E-16
Exergy destructions (kWh/m²year)	187.6	<u>158.0</u>	29.6	24.6	34.6	11.72	2.2E-16
Exergy efficiency (%)	13.4	<u>15.6</u>	-2.2	-2.5	-1.84	-12.3	2.2E-16
Exergy destructions cost (£/h)	1.59	<u>0.80</u>	0.79	0.67	0.9	13.12	2.2E-16
Heating product final price (£/kWh)	3.64	<u>1.47</u>	2.17	1.92	2.42	17.19	2.2E-16
Exergoeconomic Cost-benefit (£/h)	1.15	<u>0.70</u>	0.45	0.64	0.87	12.86	2.2E-16
919							
920	CCCCCCCCCCCCC	5					

917 918
 Table 10 Independent t-test analysis on main indicators from both optimisation approaches (best performance in bold and underlined)

921 Table A.1 Primary Energy Factors and Quality Factors by energy sources Primary energy factor Quality factor (**Energy source** (\mathbf{F}_p) F_q) (kWh/kWh) (kWhex/kWhen) Natural gas 1.11 0.94 Electricity (Grid supplied) 2.58 1.00 District energy¹ 0.94 1.11 1.07 1.00 Oil Biomass (Wood pellets) (0.20)^t 1.20 1.05 Coal 1.01 1.04 922 The District system was assumed to be run by a single-effect indirect-fired absorption chiller with a coefficient of performance 923 (COP) of 0.7. 924 ^tConsidering a quality factor for renewable based and fossil based separately. 925 926 927 928 Table A.2 Energy tariffs for small non-domestic buildings in the UK in 2015 (considering CCL) **Prices Energy source** (£/kWh) 0.030 Natural gas Electricity (Grid supplied) 0.121 **District Heating and Cooling** 0.066^y Oil 0.054 Biomass (Wood pellets) 0.044 929 930 Prices taken from Shetland Heat Energy & Power Ltd - Lerwick's District Heating Scheme (Commercial tariffs http://www.sheap-Itd.co.uk/commercial-tariffs) Accessed: 15-October-2015 931 932 Table A.3 FiT and RHI tariffs included in ExRET-Opt. Prices are from September, 2015 **Incentive Schemes Tariff** Prices (£/kWh) **FiT Electricity Exported** 0.048 **FIT PV Electricity Generation** 0.059 FiT Wind Electricity Generation 0.138 **RHI Solar Heat Generation** 0.103 **RHI GSHP Heat Generation** 0.090 **RHI ASHP Heat Generation** 0.026 **RHI Biomass Heating Generation** 0.045 933 934 935 Table B.1 Characteristics and investment cost of lighting systems Lights Lighting Cost per ĪD W/m² technology T8 LFC L1 £5.55 L2 T5 LFC £7.55 L3 T8 LED £11.87 936

938 Table B.2 Characteristics and investment cost of renewable energy generation systems

_

Renewable ID	Technology	Cost
R1	PV panels 10-100% roof	PV: £1200/m ²
R2	Wind Turbine 20 kW	Turbine: £4000/kW
R3	Wind Turbine 40 kW	

*For the case study PV panels roof area were applied in 10% steps (0-100%)

Table B.3 Cooling and heating indoor set points variations

Set-point ID	Set-point Type	Value (°C)	Cost
SH18	Heating	18	(-)
SH19	-	19	
SH20		20	
SH21		21	
SH22		22	

944

939 940

943

945

Table B.4 Characteristics and investment cost of different insulation materials

Ins. ID	Insulation measure	Thickness (cm)	Total of measures	Cost per m² (lowest to highest)
11	Polyurethane	2 to 15 in 1 cm steps	14	£6.67 to £23.32
12	Extruded polystyrene	1 to 15 in 1 cm steps	15	£4.77 to £31.99
13	Expanded polystyrene	2 to 15 in 1 cm steps	14	£4.35 to £9.95
14	Cellular Glass	4 to 18 in 1 cm steps	15	£16.21 to £72.94
15	Glass Fibre	6.7 7.5 8.5 and 10 cm	4	£5.65 to £7.75
16	Cork board	2 to 6 in 1 cm steps 8 to 20 cm in 2 cm steps 28 and 30 cm	14	£5.57 to £85.80
17	Phenolic foam board	2 to 10 in 1 cm steps	9	£5.58 to £21.89
18	Aerogel	0.5 to 4 in 0.5 cm steps	8	£26.80 to £195.14
19	PCM (w/board)	10 and 20 mm	2	£57.75 to £107.75
*For the	case study, for insulation measu	res I1, I2, I3, I4, I5, I6, and I7, extra	thicknesses (20, 25	and 30 cm) with its respective

946 947

948

949

Table B.5 Characteristics and investment cost of glazing systems

cost were added. This was done to achieve envelope U-values within the Passivhaus standard

Glazing ID	System Description (# panes – gap)	Gas Filling	Cost per m ²
G1	Double pane - 6mm	Air	£261
G2	Double pane - 13mm	Air	£261
G3	Double pane - 6mm	Argon	£350
G4	Double pane - 13mm	Argon	£350
G5	Double pane - 6mm	Krypton	£370
G6	Double pane - 13mm	Krypton	£370
G7	Triple pane - 6mm	Air	£467
G8	Triple pane - 13mm	Air	£467
G9	Triple pane - 6mm	Argon	£613
G10	Triple pane - 13mm	Argon	£613
G11	Triple pane - 6mm	Krypton	£653
G12	Triple pane - 13mm	Krypton	£653

950Table B.6 Characteristics and investment cost for air tightness improvement considering951baseline of 1 ach @50Pa

Sealing ID	ACH (1/h) @50Pa Improvement %	Cost per m² (opaque envelope)		
S1	10%	£1.20		
S2	20%	£3.31		
S3	30%	£6.35		
S4	40%	£10.30		
S5	50%	£15.20		
S6	60%	£20.98		
S7	70%	£27.69		
S8	80%	£35.33		
S9	90%	£43.88		

952

953

View publication stats